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Abstract—For an energy management system (EMS) of a
charging station (CS), information on future load is crucial.
Existing models primarily focus on load forecasting for large
charging stations. In this study, three different load forecasting
models based on real data from a public CS with two charging
points are developed. The models include two persistent models
and one model that utilizes a machine learning algorithm.

To assess the impact of forecasting accuracy on operational
costs, a case study with dynamic electricity prices and a stationary
battery storage is conducted. Using the load predictions, a mixed-
integer linear programming problem is formulated to optimize
the scheduling of the stationary battery charging.

Index Terms—charging infrastructure, load forecast, energy
management system (EMS), stationary battery storage

NOMENCLATURE

AWM Average Week Model
BESS Battery Energy Storage System
CS Charging Station
EMS Energy Management System
EV Electric Vehicle
LWM Last Week Model
LSBoost Least Squares Boosting
i Day Interval Number
d Weekday
w Week Number

I. INTRODUCTION

A. Motivation and Background

In today’s world, the mobility and energy sector aim
to reduce carbon emissions worldwide, due to the impact
of global climate change. With an expansion of renewable
energies such as photovoltaic (PV) and wind power plants
comes the disadvantage of increasingly fluctuating and less
controllable energy generation that requires adjusting the load
to the generation. To address this, the German Federal State
passed a law that obliges electricity suppliers to offer dynamic
electricity tariffs from 2025 [1]. Since the high availability
of renewable electricity is associated with low prices, load

shifting by end consumers is economically advantageous.
A charging station (CS) equipped with solar rooftops allows
for the charging of vehicles using locally generated renewable
energy. In combination with a battery energy storage system
(BESS), the power drawn from the grid can be shifted to
periods when electricity prices are low. Optimized scheduling
of the BESS charging and discharging requires a forecast of
future load and energy production.

In this study, the impact of the accuracy of load forecasts
is investigated by using a case study of a PV-powered CS
with BESS and dynamic electricity prices. Three different
load forecast models are developed and compared to a perfect
prediction. The prediction models include a machine learning
algorithm and two persistent models based on the weekly
average and the charging behavior of the week prior.

B. Relevant Literature

Existing research on charging station (CS) forecasting can
be categorized based on the algorithms used and in terms of
their focus. Predicted parameters include occupancy [2]–[5],
load demand and parking duration of an individual charging
session [6]–[8]. The following focuses on work that develops
forecasts of the load of CSs.
The range of studies predicting charging power varies from
entire regions [4], [5], [9] or entire cities [5], [10] to individual
charging stations. Kim et al. [11] compare predictions for these
three observation levels and conclude that predictions at the
city and regional levels provide good results, while predictions
at the charging station level have room for improvement.
Individual CSs studied vary significantly in size, with loads
in the megawatt range [10], [12], [13]. Smaller CSs have up
to 10 charging points [14], [15].

Load forecasting algorithms can be divided into linear
and nonlinear models. A commonly used linear model is
the autoregressive integrated moving average (ARIMA) al-
gorithm used by Amini et al. [16]. ARIMA can be further
improved to the seasonal autoregressive integrated moving



average (SARIMA) and by adding an external variable to the
SARIMAX model [17].

Nonlinear methods include artificial neural networks (ANN)
and long short-term memory networks (LSTM), a special
type of neural network optimized for time series processing
[18]. Other nonlinear methods are ensemble learning methods,
that combine multiple regression trees, and support vector
regression [19]. Boosted trees, a popular ensemble learning
algorithm, have been utilized by Almaghrebi et al. [6] and
Xue et al. [20].

The literature presented focuses on load forecasts for CSs
with six or more charging points. As the data analysis of the
next chapter shows, most public CSs in Germany consist of
only two charging points. To evaluate the forecasts, the most
commonly used metrics are mean absolute error (MAE) and
mean squared error (MSE). None of the work compares the
impact of the accuracy on a CS’s energy management system
(EMS).

C. Contributions and Organization

The existing literature has shown a lack of attention to
load forecasts for small CSs and the subsequent impact on
the EMS scheduling. This paper aims to address this gap by
introducing three load forecasting models designed for small
CSs. In addition, the load forecast dependent savings potential
for CS operators is determined.

First, a suitable charging point is selected and the corre-
sponding forecasting models are developed. To analyze the
operating costs, a case study is conducted using a CS equipped
with a PV system and BESS located in Germany. The study
includes dynamic electricity prices and selects one week each
representing summer, winter, and spring weather conditions.
By utilizing historical charging data and PV power generation
of these case study weeks, the operating costs are analyzed to
compare the impact of the different forecasting models.

II. LOAD FORECAST

The charging data available consist of a total of 7098
charging stations with 4.3 million charging sessions in the
years 2020-2021 [21], which are divided into different sce-
narios illustrated in Fig. 1. The data provides the following
information for each charging session:

• Charging station ID
• Charging station scenario
• Charging point ID
• Charging session ID
• Start time and date of the charging session
• End time and date of the charging session
• Charged energy of the charging session
• Maximum power of the charging point
From the available data one public CS is selected for the

load forecast. To maximize the amount of training data, CSs
that do not provide data over the entire two-year period are
excluded. This criterion is met by 77 CSs, with the majority of
them having two 22 kW charging points. Among these CSs,
one is selected with the characteristics outlined in Table I.

Fig. 1. Share of CSs by scenario (OBELIS data set [21]).

TABLE I
PROPERTIES OF THE SELECTED CS WITH TWO CHARGING POINTS

Total Number of Charging Sessions 3240
Mean Charging Duration 60 min
Mean Charged Energy per Session 17.9 kWh
Power Charging Point 1 22 kW
Power Charging Point 2 22 kW

A. Data Preparation

The aim of the forecasting models is to predict the charging
power for an entire day with a resolution of 15 min. The
charging data does not provide specific details about the load
profile during the charging session. Therefore, it is assumed
that the charging power remains constant throughout the entire
duration of the charging session. Charging sessions that are
shorter than three minutes are excluded from the analysis, as
they are considered to be potentially erroneous. Due to the
missing information on the location of the charging point, no
external location-dependent features such as weather informa-
tion can be added. For each time interval of the day (denoted
as i), the mean charging power PLoad (1) is calculated based
on the data collected from 2020 to 2021, spanning a total of
104 weeks (w).

PLoad(w, d, i) with (1)
w ∈ {1, 2, ..., 104}

d ∈ {Mo, Tu, ..., Su}
i ∈ {1, 2, ..., 96}

Of the available data 10 weeks or approximately 10 % are
used for the test data set. The test weeks are chosen in a
way that they contain the three weeks of the case studies. The
remaining seven weeks are chosen randomly. The set of test
weeks wtest consists of the following weeks:

wtest = {36, 43, 55, 60, 67, 79, 86, 96, 100, 103} (2)

In the next sections the models are presented starting with
the ”Average Week Model” and ”Last Week Model”.

B. Average Week Model (AWM)

The Average Week Model (AWM) calculates the average
charging power PAWM(d, i) over the entire training weeks per
day interval i and weekday d as described in (3).
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Fig. 2. Charged energy per weekday of the selected CS defined by Table I
from 2020-2021.

PAWM(d, i) =

∑
m∈wfit

PLoad(m, d, i)

count(wfit)
withwfit ∈ w\wtest (3)

C. Last Week Model (LWM)

Similar to persistence forecasts for wind and solar power
predictions this model assumes that charging behavior remains
similar over time. As can be seen in Fig. 2, charging sessions
vary by day of the week. Therefore, instead of using the charg-
ing performance from the previous day, this model utilizes the
charging performance from the corresponding weekday of the
previous week.

PLWM(w, d, i) = PLoad(w − 1, d, i) (4)

D. Machine Learning Model

The Machine Learning algorithm used is Least-Squares
Boosting (LSBoost), an ensemble learning algorithm that
uses gradient boosting. It combines multiple weak learning
models, in this case regression trees, with gradient boosting.
Gradient boosting minimizes the squared-error loss function
by constructing the new weak learner to correlate with the
negative gradient of the loss function. [22]
LSBoost is combined with the AWM. Instead of directly
forecasting the load, LSBoost is used to predict the error of
the AWM PError,AWM:

PError,AWM(w, d, i) = PLoad(w, d, i)− PAMW(d, i) (5)

This serves the two main purposes:
1) Most of the time there is no electric car connected to

any of the charging points. For the response variable,
the predicted charging power, this leads to a large
proportion of zeros which is disadvantageous for the
learning process of the algorithms. By forecasting the
error of the AWM instead of the charging power directly,
this issue is resolved.

2) By learning the error of the AWM, the model can
improve its performance. This means that the model can
build upon the already existing knowledge captured by
the AWM and refine its predictions.

The features used for training include the historical load
data of the previous 14 days and calendar information. The
calendar data contain the week number, the day of the week
from 1 to 7, a logical distinction if it is a holiday and the day
interval number. To reduce the number of features for the time
series data, a resolution of 1 hour is chosen. This results in a
total of 340 features.

Before training, the data are normalized ([0, 1]). Hyperpa-
rameter optimization is performed using Bayesian optimiza-
tion with 50 iterations. The remaining days, excluding the test
data set, are further divided into 30 % validation days and
70 % of the days for the training set.

To predict the load, two post-processing steps are added
to the LSBoost. First, the prediction of the AWM is added.
Subsequently, any negative load values are set to zero since
the charging points are unidirectional.

E. Model Comparison

The training results and the used hyperparameters are sum-
marized in Table II. The evaluation of the models on the test
dataset is based on the mean absolute error (MAE) and the
mean squared error (MSE). The results show that the LSBoost-
Model achieves lowest MSE of 61.9 kW2 and the lowest MAE
of 4.29 kW. The AWM has a 4.4 % higher MSE (64.65 kW2)
and a 6.8 % higher MAE. The LWM has the highest MSE of
121.23 kW2. In contrast its MAE (4.39 kW) it is better than
the MAE of the AWM.

TABLE II
MODEL ACCURACY ON TEST DATA SET

Model Hyperparameters MSE in (kW)2 MAE in kW
AWM - 64.65 4.58
LWM - 121.23 4.39

LSBoost

Learning Rate: 0.0174

61.90 4.29
Min. Leaf Size: 4440

Max. Splits: 5799
Learning Cycles: 278

Fig. 3 depicts the predicted load of an example day, from
which it can be concluded, that the LSBoost model is not
predicting the discrete behaviour of the charging sessions.
Instead, it only learned to adjust the AWM to the temporal
trend and could not see any correlations between the features
used and the discrete behaviour of the charging sessions. It
needs to be clarified whether additional external information
can be effectively incorporated to supplement the features used
by the model.

III. CASE STUDY

To facilitate a comparison of the models based on their
impact on the EMS of a CS, the setup illustrated in Fig. 4 is
selected. It consists of the AC coupled components BESS, PV
system including the Maximum Power Point (MPP)-tracker, a
grid connection and the charging points. Below the considered
properties for optimization and simulation are described.
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Fig. 3. Predicted load and real load for an example day.

Fig. 4. Charging station structure.

A. Battery Energy Storage System (BESS)

The battery storage is connected via an AC/DC converter.
In order to be able to linearize the scheduling optimization
problem constant efficiencies are used. For charging and
discharging an efficiency of ηBat = 0.975 is assumed for
the battery based on the work by Munzke et al. [23] on
home storage systems. The efficiency selected for the AC/DC
converter is ηAC/DC = 0.914. The BESS capacity, denoted as
EBESS,max, is varied in the later case study. Based on Munzke
et al. [23] for charging and discharging a C-rate of c = 0.5
is chosen which limits the charge and discharge power to
PFrom BESS, max = PTo BESS, max = c · EBESS,max.

B. PV System

For the PV system, the characteristics of PV plants in the
south of Germany are applied. A tilt angle of 30° and a
southern orientation is most appropriate for this latitude, for
which data are available from the solar park at KIT’s North
Campus. These already account for losses of the MPP-tracker
and are available for the considered period with a resolution of
one minute. The data are scaled based on the selected PV peak
power of the case study. Since the focus is on load predictions
for the PV forecast a perfect prediction with the actual PV data
is presumed.

C. Feed-in Tariff and Electricity Price

With a peak power below 100 kWp, the feed-in tariff set by
the German Renewable Energy Act 2023 is 0.066 EUR/kWh
[24]. Dynamic electricity tariffs use the hourly day-ahead
price adding compulsory fees (Table III). Network charges and

service fees differ regionally, so an average value is assumed
for the service fees of current suppliers. The fixed monthly
fees independent of the consumed energy are neglected.

TABLE III
FIXED COSTS DYNAMIC ELECTRICITY TARIFFS [25]

Type of Fee Costs C/kWh
Electricity Tax 0.02
Grid Utilization Fees 0.078
Concession Fee Local Community 0.0166
Total Fixed Costs 0.1146

D. Scheduling

Since the load is assumed to be not adjustable and the
MPP-tracker maximises the PV power, one degree of freedom
results for the EMS. The following optimization problem is
formulated to determine the optimal scheduling of the BESS
power for each quarter-hour interval i. The BESS and grid
connection are treated separately in terms of power direction.
The power balance equation

0 = PPV − PLoad,i + PFrom Grid,i + PFrom BESS,i

− PTo Grid,i − PTo BESS,i − PLoss,i (6)

forms the basis of the optimization problem. The following
conditions ensure that only one of the power directions of the
BESS and the grid connection is non-zero.

PFrom BESS ≤ PFrom BESS, max · (1− α) with α ∈ {0, 1} (7)
PTo BESS ≤ PTo BESS, max · α (8)
PFrom Grid ≤ PFrom Grid, max · (1− β) with β ∈ {0, 1} (9)
PTo Grid ≤ PTo Grid, max · β (10)

The loss PLoss is retrieved from

PLoss,i = (PFrom BESS,i + PTo BESS,i)

· (1− ηBat) · (1− ηAC/DC). (11)

The stored energy of the BESS EBESS results from

EBESS,i =

∫ t(i)

t(i−1)

(PTo BESS,i − PFrom BESS,i) dt+ EBESS,i−1.

(12)
The constraint (13) ensures the state of charge (SOC) of the

BESS is 50 % at the start and end of each day. By this, the
EMS has the flexibility to charge or discharge the battery at
the beginning of the day.

EBESS,0 = EBESS,96 = 0.5 · EBESS,max (13)

The objective function fmin is minimized depending on the
dynamic electricity tariff Cdyn,i and the constant feed in profit
Cfeedin based on the exchanged energy with the grid:

fmin = EFrom Grid,i · Cdyn,i − ETo Grid,i · Cfeedin (14)

Since the optimization problem is linear the solution found
is a global optimum which is solved using Matlab.
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(a) Spring Week (b) Summer Week (c) Winter Week

Fig. 5. Costs or profits per charged energy for each case study week per battery capacity. The PV power is 15 kWP.
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Fig. 6. Cost increase due to inaccuracies of the forecasts for a large and a small BESS.

IV. RESULTS

Three case study weeks are selected from different seasons
(Table IV). For each day of the week, the BESS power
is scheduled using the forecasts of the models. With the
scheduling result the entire week is simulated employing the
historical load data and PV data and the actual operating
costs are evaluated. The simulations of the different prediction
models and case study weeks are carried out for PV peak
powers ranging from 5 kWp to 50 kWp and BESS capacities
ranging from 2.5 kWh to 20 kWh. The cost differences
between the models arise from the fact that, due to inaccuracies
in the forecasts, the scheduling of battery power is not optimal,
resulting in higher costs.

Fig. 5 illustrates the relationship between the size of the
BESS and the resulting electricity costs. Using the per-
fect prediction the costs of the charged energy become
lower with larger BESS (spring: 0.015 EUR/kWh, summer:

TABLE IV
PV CHARACTERISTICS PER WEEKS (10 KWP )

Case Study Week Spring Summer Winter
Date 12.-17.04.21 14.-19.06.21 26.-31.10.21

Mean Energy/Day 39.6 kWh 58.6 kWh 14.6 kWh
Min. Energy/Day 21.4 kWh 30.9 kWh 4.3 kWh
Max. Energy/Day 56.7 kWh 70.3 kWh 40.0 kWh

0.015 EUR/kWh, winter: 0.01 EUR/kWh). In contrast, the
costs increase or stay constant using the forecasting models.
It can be concluded that with larger storage capacities, the
impact of suboptimal scheduling increases, negatively impact-
ing operating costs. In this case, a larger BESS would not be
profitable.

Comparing the forecast models, it can be seen that the
AWM and LSBoost model perform similarly. The results of the



LWM depend on the considered use case week. Analyzing the
different seasons, in winter the operational cost difference per
charged energy to the perfect model between 0.003 EUR/kWh
(LSBoost) and 0.005 EUR/kWh (LWM) is the smallest for the
largest BESS. The operational cost differences in spring and
summer are in a similar range between 0.029 EUR/kWh and
0.015 EUR/kWh per charged energy for the largest BESS. The
impact of the forecast quality on the operating costs increases
with the BESS capacity.

Analyzing the influence of the PV peak power (Fig. 6),
it can be observed that the differences in operational costs
between the forecast models and the perfect model vary
depending on the season. For the spring and summer weeks,
the influence decreases as the PV peak power increases. In
the winter week, operational cost differences between the
prediction models and the perfect model increase with higher
PV peak powers. Overall, it is noted that the effect of the BESS
capacity on operational costs is more significant compared to
the PV peak power.

It is observed that no single model consistently has the
lowest costs across all weeks. The overall operational costs
vary by up to 0.01 EUR/kWh between the prediction models.

V. CONCLUSION

Three different models for predicting the load of a small
public charging point are presented. It was found to be
challenging to predict the discrete behaviour of the load.
The persistence model (LWM), which relied on the data
from the previous week, exhibited the lowest accuracy. The
LSBoost machine learning model, trained to improve the
weekly average model, showed only slight improvements. It
was concluded that LSBoost, based on the available calendrical
input data, was unable to detect load patterns effectively.

In the case study that examined dynamic electricity prices, it
was demonstrated that the combination of inaccurate forecasts
and increasing storage capacities can result in higher operating
costs. By further improving the forecasting models, savings of
up to 0.03 EUR/kWh in terms of charged energy for electric
vehicles can be achieved when approaching a near-perfect
prediction.
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