
An Overview of Fairness Notions in
Multi-Party Computation

Bachelor’s Thesis of

Tim Strasser

at the Department of Informatics

KASTEL – Institute of Information Security and Dependability

Reviewer: Prof. Dr. Jörn Müller-Quade

Second reviewer: Prof. Dr. Thorsten Strufe

Advisor: M.Sc. Saskia Bayreuther

15. May 2023 – 15. September 2023

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text.

PLACE, DATE

. .

(Tim Strasser)

Abstract

Multi-party Computation (MPC) is a cryptographic technique that enables multiple mutu-

ally distrusting parties to jointly compute a function over their private inputs. Fairness

in MPC is defined as ensuring that if one party receives the output, all honest parties do.

This thesis addresses the lack of comprehensive overviews on different fairness notions in

MPC.

Complete fairness, often considered the ideal, guarantees that either all parties receive

an outcome or none do. However, this ideal is not generally achievable due to theoretical

and contextual constraints. As a result, alternative notions have emerged to address these

limitations.

In this thesis, we review different notions of fairness inMPC, including complete fairness,

partial fairness, Delta-fairness, gradual release, fairness with penalties, and probabilistic

fairness. Each notion approaches different requirements and limitations to real-world

scenarios. We find that complete fairness requires an honest majority to be achieved for

general functions without stronger assumptions, such as access to public ledgers, while

specific functions can be computed with complete fairness even without these assumptions.

Other notions, such as Delta-fairness, require secure hardware components. We provide

an overview of the notions, their interrelations, trade-offs, and practical implications of

these notions. In addition, we summarize the findings in a comparative table that provides

a compact overview of the protocols that achieve these notions of fairness, showing the

trade-offs between security, efficiency, and applicability.

The thesis identifies assumptions and constraints associated with various notions of

fairness, citing protocols from seminal works in the field. Several impossibility results are

also presented, demonstrating the inherent challenges in achieving fairness in MPC. The

practical implications of these fairness notions are explored, providing insights into their

applicability and limitations in real-world scenarios.

i

Zusammenfassung

Die sichere Mehrparteienberechnung (“Multi-party Computation”, MPC) ist eine krypto-

grafische Technik, die es mehreren Parteien, die sich gegenseitig misstrauen, ermöglicht,

gemeinsam eine Funktion über ihre privaten Eingaben zu berechnen. Fairness in MPC ist

definiert als die Eigenschaft, dass, wenn eine Partei die Ausgabe erhält, alle ehrlichen Par-

teien diese erhalten. Diese Arbeit befasst sich mit dem Defizit an umfassenden Übersichten

über verschiedene Fairnessbegriffe in MPC.

Vollständige Fairness (“complete fairness”), die oft als Ideal angesehen wird, garantiert,

dass entweder alle ehrlichen Parteien ein Ergebnis erhalten oder keine. Dieses Ideal ist

jedoch aufgrund theoretischer und kontextbezogener Beschränkungen im Allgemeinen

nicht zu erreichen. Infolgedessen haben sich alternative Begriffe herausgebildet, um diese

Einschränkungen zu überwinden.

In dieser Arbeit werden verschiedene Fairnessbegriffe in MPC untersucht, darunter voll-

ständige Fairness, partielle Fairness (“Partial Fairness”), Delta-Fairness, graduelle Freigabe,

Fairness mit Strafen und probabilistische Fairness. Jedes Konzept stellt unterschiedliche

Anforderungen und Einschränkungen für reale Szenarien dar. Wir stellen fest, dass voll-

ständige Fairness eine ehrliche Mehrheit erfordert, um für allgemeine Funktionen ohne

stärkere Annahmen, wie z. B. den Zugang zu öffentlichen Ledgern, erreicht zu werden,

während bestimmte Funktionen auch ohne diese Annahmen mit vollständiger Fairness

berechnet werden können. Andere Begriffe, wie Delta-Fairness, erfordern sichere Hard-

warekomponenten. Wir geben einen Überblick über die Begriffe, ihre Zusammenhänge,

Kompromisse und praktischen Implikationen dieser Begriffe. Darüber hinaus fassen wir

die Ergebnisse in einer vergleichenden Tabelle zusammen, die einen kompakten Über-

blick über die Protokolle bietet, die diese Fairnessbegriffe erfüllen, und die Kompromisse

zwischen Sicherheit, Effizienz und Anwendbarkeit aufzeigt.

In der Arbeit werden Annahmen und Einschränkungen im Zusammenhang mit ver-

schiedenen Fairnessbegriffe aufgezeigt und Protokolle aus grundlegenden Arbeiten auf

diesem Gebiet zitiert. Es werden auch mehrere Unmöglichkeitsergebnisse vorgestellt,

die die inhärenten Herausforderungen beim Erreichen von Fairness im MPC aufzeigen.

Die praktischen Implikationen dieser Fairnesskonzepte werden untersucht und geben

Einblicke in ihre Anwendbarkeit und Grenzen in realen Szenarien.

iii

Contents

Abstract i

Zusammenfassung iii

1 Introduction 1

2 RelatedWork 3

3 Preliminaries 5
3.1 System Parameters . 5

3.1.1 Security Parameter . 5

3.1.2 Number of Parties . 5

3.1.3 Threshold . 5

3.2 Basic Concepts in Multi-Party Computation 6

3.2.1 Multi-Party Computation (MPC) 6

3.2.2 Parties . 6

3.2.3 Protocol . 6

3.3 Cryptographic Primitives and Assumptions 7

3.3.1 Encryption . 7

3.3.2 Signatures . 8

3.3.3 Message Authentication Codes (MAC) 8

3.3.4 Secret Sharing . 9

3.3.5 Trusted Execution Environments (TEEs) and Secure Processors . 9

3.3.6 Quadratic Residucity Assumption 10

3.4 Adversarial Models . 10

3.4.1 Semi-honest adversary: . 10

3.4.2 Malicious adversary: . 10

3.4.3 Static Adversary: . 10

3.4.4 Adaptive Adversary: . 10

3.5 Proofs and Frameworks . 11

3.5.1 Simulation Proofs . 11

3.5.2 The Universal Composability (UC) Framework 12

4 Fairness Notions and Protocols 15
4.1 Complete Fairness . 15

4.1.1 Definition and Context . 15

4.1.2 Protocols that achieve Complete Fairness 16

4.1.3 Limitations and Impossibility Results 19

v

Contents

4.2 Partial Fairness . 20

4.2.1 Definition and Context . 20

4.2.2 Protocols that achieve Partial Fairness 21

4.2.3 Limitations and Impossibility Results 24

4.3 Δ-Fairness . 24

4.3.1 Definition and Context . 24

4.3.2 Protocols that achieve Δ-Fairness 25

4.3.3 Limitations and Impossibility Results 26

4.4 Gradual Release . 27

4.4.1 Definition and Context . 27

4.4.2 Protocols that achieve Fairness using Gradual Release 28

4.4.3 Limitations and Impossibility Results 29

4.5 Fairness with Penalties . 30

4.5.1 Protocols that achieve Fairness with Penalties 30

4.5.2 Limitations and Impossibility Results 32

4.6 Probabilistic Fairness . 33

4.6.1 Protocols that achieve Probabilistic Fairness 33

4.6.2 Limitations and Impossibility Results 35

5 Interrelations Between Fairness Notions 37
5.1 Complete Fairness and Partial Fairness 37

5.2 Probabilistic Fairness and Gradual Release 37

5.3 Δ-Fairness and Fairness with Penalties 38

5.4 Complete Fairness and Δ-Fairness . 38

5.5 Overview . 39

6 Practical Implications of Fairness Notions 41
6.1 Complete Fairness . 41

6.2 Partial Fairness . 41

6.3 Δ-Fairness . 41

6.4 Gradual Release . 42

6.4.1 Fairness with Penalties . 43

6.4.2 Probabilistic Fairness . 43

7 Conclusion 45

8 Appendix 47
8.1 Protocols . 47

Bibliography 53

vi

1 Introduction

Let us imagine a scenario where multiple companies want to compute the average salary

of their employees to assess industry standards. However, each company wants to keep

the individual salaries of their employees private. This problem might seem impossible to

solve initially because traditionally, to compute an average, one would need to know all

the individual values. However, an area of cryptography called Multi-party Computation

(MPC) makes this possible.

Multi-party computation (MPC) is a cryptographic approach that allows multiple parties

to jointly compute a function over their private inputs. No information about these inputs

is revealed, except what can be inferred from the function’s output. This property is

referred to as input privacy. Other desirable security properties of MPC are correctness
and fairness. [25, 13, 30].
For example, in the scenario above, the companies could use MPC to jointly compute

the average salary of their employees without revealing any individual salary information

to each other. The only result they would learn is the average salary, which is the intended

output of the function. This type of computation preserves the privacy of individual salary

information.

MPC has found practical applications in various fields where sensitive data is involved,

such as computing statistics on the gender wage gap, private DNA comparisons for medical

purposes, gathering statistics without revealing anything but the aggregate results, and

more [25]. Protecting the privacy of the inputs is crucial in these scenarios, as revealing

the data may have legal implications. For example, in the case of the Boston wage gap

study, companies were hesitant to provide their raw data due to privacy concerns; MPC

allowed them to share information without revealing individual employees’ compensation

data [25].

In addition to privacy, fairness is an important property often desired in MPC protocols.

This thesis explores fairness, which informally means that either all honest parties receive

the output or no party does. Ensuring fairness in MPC protocols is necessary to maintain

trust between participants, as well as to prevent any party from gaining an unfair advantage.

An unfair advantage, in this context, means that a dishonest party obtains the output while

honest parties do not, potentially allowing the dishonest party to exploit the results for

their own benefit.

For example, in the context of an auction, multiple parties want to determine the highest

bid without exposing individual bids. Each participant, or bidder, submits a bid, which

is treated as their private input into the auction protocol. The protocol then computes

the highest bid while ensuring that individual bids remain private. After evaluation, the

outcome, is revealed to all participants.

However, in a system that lacks fairness, certain vulnerabilities can emerge. For instance,

an adversary, might learn in advance that her bid wasn’t the highest. With this information,

1

1 Introduction

and before others receive the outcome, they could disrupt the auction process by simulating

a network failure. If they get to submit their bid again, the adversary could strategically

adjust their bid, placing it just above the highest bid. This provides the adversary with an

advantage. [10]

Achieving fairness in MPC protocols is, however, not trivial. Certain notions of fairness

may be unachievable under certain conditions. The feasibility of certain fairness notions

can depend on many factors, including but not limited to the number of parties, the fraction

of corrupted parties, or the acceptable round complexity.

The primary objective of this thesis is to deepen the understanding of various notions of

fairness in Multi-Party Computation (MPC) protocols. We aim to identify their similarities,

differences, and their role in different application scenarios. To achieve this, we address

the following research questions:

1. What are different notions of fairness in multi-party computation (MPC) protocols?

2. How do these notions of fairness relate to each other, and what are the trade-offs

between them in terms of security, efficiency, and applicability in different scenarios?

3. What assumptions are necessary to achieve certain levels of fairness?

4. What known impossibility results exist for achieving fairness in MPC protocols, and

under what conditions or assumptions do these results hold?

5. What are the practical implications of the different notions of fairness in real-world

application scenarios?

In order to achieve the objectives of this thesis and address the stated research questions,

we undertook a literature review. Primarily, we used Google Scholar to identify and

collect papers discussing protocols that achieve different notions of fairness in multi-party

computation. We built a structural representation of the different notions of fairness,

their interrelationships, and practical implications by methodically classifying, analysing

and comparing the information extracted from these papers. We aim to analyse these

notions, highlight their similarities and differences, and discuss the trade-offs between

them. Furthermore, we will examine known impossibility results and study the conditions

under which certain notions of fairness become unattainable.

This research contributes to the field by offering a comparison of different notions of

fairness and by investigating known impossibility results and the preconditions under

which they hold. More specifically, we explore the preconditions for various notions

of fairness, including the number of participating parties, the threshold of corrupted

parties, the underlying network model, and the acceptable round complexity. From these

preconditions, we look at the resulting impossibilities and limitations in achieving fairness.

The intended outcome is an understanding of the different notions of fairness in MPC

protocols, including the conditions under which they can and cannot be achieved, and

their practical implications in real-world scenarios.

2

2 RelatedWork

Li et al., 2023 [22] Li et al., 2023 [22] published a survey on Trusted Execution Environ-

ments (TEEs) (see Section 3.3.5) for secure computation. The survey systematically reviews

TEE-based secure computation protocols and classifies them into three general categories:

secure outsourced computation, secure distributed computation, and secure multiparty

computation. Their comparison of different protocols serves as a useful resource for us,

particularly as we dive into the specifics of various secure computation protocols.

While the [22] survey provides a solid understanding of the current state of TEE-based

secure computation protocols, it does not go into the specifics of how these protocols

address fairness, a core focus of our research. Their focus is primarily on privacy and

integrity, while our work specifically addresses fairness in secure computation protocols.

Yin et al., 2021 [31] Federated learning (FL)
1
has seen significant development over the

past four years, but this has also raised new privacy concerns, particularly during the

aggregation
2
of distributed intermediate results [31]. To address these issues, privacy-

preserving federated learning (PPFL) has been proposed as a solution to maintain privacy in

machine learning. Regardless, the challenge of protecting privacy without compromising

the utility of data through machine learning remains. A comprehensive survey on PPFL,

as conducted by Yin et al., 2021 [31] proposes a taxonomy based on the “5Ws” (Who,

What, When, Where, and Why) to categorize various scenarios in privacy-preserving

federated learning. This classification provides an analysis of privacy leakage risks in FL

from five different perspectives [31]. The review summarizes existing methodologies and

also identifies potential future research directions in this area.

1
FL refers to a machine learning approach where the training data remains on the client’s device and only

model updates are sent to the central server for aggregation. This helps in preserving data privacy.

2
Aggregation in this context is the process of combining updates from multiple clients to improve the

global model.

3

3 Preliminaries

This introduces the fundamental concepts of multi-party computation (MPC). We explore

the basic components of MPC, from basic definitions to secure computation techniques,

parameters, and models. This basic understanding will provide the necessary background

for our examination of fairness in MPC protocols.

3.1 System Parameters

This section outlines the fundamental parameters in cryptographic protocols: the security

parameter, the number of participants and the threshold for resilience of the protocol.

3.1.1 Security Parameter

The security parameter, referred to as _, is a variable that determines the level of security in

cryptographic protocols. For a security parameter _, an adversary would need to perform

approximately 2
_
operations to break the security, making the probability of a successful

attack approximately 1/2_ . [14]

3.1.2 Number of Parties

The number of parties, represented as 𝑛, denotes the total number of participants involved

in the protocol. Each party has its own private input and wishes to jointly compute a

function over its collective inputs, without revealing individual inputs to others (unless

the output of the function dictates otherwise) [30]. The value of 𝑛 can vary and, depending

on its relationship to the threshold 𝑡 , affects the protocol’s resilience to malicious parties.

3.1.3 Threshold

The threshold 𝑡 in a system with 𝑛 parties refers to the maximum number of parties that

can be corrupted without violating the security guarantees of a protocol. In some protocols,

an honest majority is assumed, where 𝑡 < 𝑛
2
, meaning that more than half of the total

parties are honest and follow the protocol.

5

3 Preliminaries

3.2 Basic Concepts in Multi-Party Computation

3.2.1 Multi-Party Computation (MPC)

In many real-world scenarios, a number of participants need to calculate a function over

their collective data, for example, determining the average salary in a company, without

revealing their individual inputs to each other. Multi-party computation (MPC) provides

an approach to such computations that uses cryptographic methods to ensure that these

security properties are met. More precisely, MPC is a cryptographic protocol in which

𝑛 parties jointly compute a function 𝑓 : N × ({0, 1}∗)𝑛 × {0, 1}∗ → ({0, 1}∗)𝑛 over their
private inputs while maintaining certain security properties. The function 𝑓 represents a

joint computation, where the first parameter represents the security parameter, the next 𝑛

parameters represent the private inputs of the 𝑛 parties, and the last parameter represents

the randomness built into 𝑓 .

The security properties guaranteed by MPC protocols are:

1. Correctness: The protocols should match the output of the function 𝑓 when applied

to the inputs, for all honest parties.

2. Input privacy: During the computation, no party should learn more information

about the private inputs of the other parties than can be inferred from the output of

the function and its own input

3. Fairness: The computation should adhere to a predefined fairness notion, the details

of which are discussed in Chapter 4.

The protocol operates under the assumption of an adversarial model (see Section 3.4),

where the adversary may control a subset of the participating parties and even potentially

manipulate the communication network. However, the protocol is designed to maintain

its security properties in the face of such adversarial behaviour. [20]

3.2.2 Parties

In the context of MPC, a party refers to an entity participating in a computation. Each

party has a private input value that it wishes to keep confidential while participating in a

joint computation with others. In some scenarios, the set of parties is static, that is, the set

of participants remains the same throughout the entire computation. However, certain

applications may allow for a dynamic set of parties, where participants can join or leave

the computation process.

3.2.3 Protocol

A protocol in MPC is a predefined set of rules or instructions that define how the partici-

pating parties should interact and process their inputs to jointly compute a function. It

specifies the sequence of computation and communication steps that each party should

follow, and is designed to ensure certain security properties such as privacy, correctness,

and fairness.

6

3.3 Cryptographic Primitives and Assumptions

Protocols can be either synchronous or asynchronous. Synchronous protocols work

based on defined time limits, where there is a known upper bound on both the processing

of tasks and the delivery of messages. In these systems, the time taken by a process

to perform a step, which may involve receiving or sending a message or performing

local computation, never exceeds this known limit. Such protocols function in fixed time

intervals called “rounds”. Each round has specific start and end times, and during a round

specific actions or tasks are performed. To maintain synchronization, all parties involved

typically align their local clocks with a global clock. This global clock ensures that all

processes remain synchronized, Asynchronous protocols do not assume a global clock or

shared time reference. Instead, they’re designed to deal with the uncertainty of message

delivery times and potential network delays. [8]

Protocols, whether synchronous or asynchronous, rely on different communication

models:

• Authenticated Channels: These channels assure the recipient that a message really

comes from its declared sender. They prevent external entities from impersonating a

party within the protocol, thereby mitigating man-in-the-middle attacks.

• Broadcast Channels: In scenarios where a message needs to be communicated to all

participants simultaneously, broadcast channels come into play. They guarantee that

each participant receives an identical copy of the message, thus ensuring uniformity

of information.

• Peer-to-Peer Communication: This model assumes direct communication be-

tween two specific parties, without the interference or mediation of other entities.

This sequence of computation and communication is repeated, round after round, until

the protocol is completed, and the final output is revealed.

3.3 Cryptographic Primitives and Assumptions

3.3.1 Encryption

Encryption is a cryptographic primitive that enables secure communication between parties

over an insecure channel. It provides both confidentiality, by preventing unauthorized

access to information, and integrity, by ensuring that the information is notmodified during

transit. There are two main types of encryption: symmetric and asymmetric. Symmetric

encryption uses the same key for both encryption and decryption, with AES (Advanced

Encryption Standard) being a commonly used, state-of-the-art algorithm. Asymmetric

encryption, also known as public key encryption, uses two different keys: a public key for

encryption and a private key for decryption, with RSA (Rivest-Shamir-Adleman) and ECC

(Elliptic Curve Cryptography) being popular examples.

Definition 3.3.1 (Encryption Scheme). Formally, an encryption scheme consists of the

following three algorithms:

7

3 Preliminaries

• KeyGen(1_): Given a security parameter _, this probabilistic algorithm outputs a

pair of bit strings (𝑒, 𝑑), where 𝑒 is the encryption key and 𝑑 is the decryption key.

• Encrypt(𝑒, 𝛼): Given an encryption key 𝑒 and a plaintext 𝛼 , this algorithm produces

a ciphertext 𝛽 .

• Decrypt(𝑑, 𝛽): Given a decryption key 𝑑 and a ciphertext 𝛽 , this deterministic

algorithm returns the original plaintext 𝛼 if the decryption is successful.

It holds that for every pair (𝑒, 𝑑) in the range of KeyGen(1_), and for every 𝛼 ∈ {0, 1}∗,
algorithms Encrypt and Decrypt satisfy Decrypt(𝑑,Encrypt(𝑒, 𝛼)) = 𝛼 . [14]

3.3.2 Signatures

Signatures are cryptographic primitives that allow an entity to prove the authenticity and

integrity of a message. They allow a sender to attach a unique signature to a message,

which can then be verified by any receiver to confirm that the message originated from

the claimed sender and has not been manipulated.

Definition 3.3.2 (Signature Scheme). Formally, a signature scheme consists of the follow-

ing three algorithms:

• KeyGen(1_): Given a security parameter _, this probabilistic algorithm outputs a

pair of bit strings (𝑠, 𝑣), where 𝑠 is the signing key and 𝑣 is the verification key.

• Sign(𝑠, 𝛼): Given a signing key 𝑠 and amessage𝛼 , this algorithm generates a signature

𝜎 .

• Verify(𝑣, 𝛼, 𝜎): Given a verification key 𝑣 , a message 𝛼 and a signature 𝜎 , this

deterministic algorithm returns 1 if the signature is valid for the given message and

0 otherwise.

It holds that for every pair (𝑠, 𝑣) in the range of KeyGen(1_), and for every 𝛼 ∈ {0, 1}∗,
the algorithms Sign and Verify satisfy Verify(𝑣, 𝛼, Sign(𝑠, 𝛼)) = 1. [14]

3.3.3 Message Authentication Codes (MAC)

A Message Authentication Code (MAC) is a cryptographic primitive that provides a means

of verifying the authenticity and integrity (see Section 3.3.1) of a message.

Definition 3.3.3 (Message Authentication Code). Formally, a MAC scheme consists of

the following three algorithms:

• KeyGen(1_): Given a security parameter _, this probabilistic algorithm generates a

secret key 𝑘 . Where probabilistic means, the algorithm can produce different outputs

on different executions, even with the same input.

• MAC(𝑘,𝑚): Given a secret key 𝑘 and a message 𝑚, this algorithm produces an

authentication tag 𝑡 .

8

3.3 Cryptographic Primitives and Assumptions

• Verify(𝑘,𝑚, 𝑡): Given a secret key 𝑘 , a message𝑚, and an alleged authentication tag

𝑡 , this deterministic algorithm returns valid if the tag is valid for the message under

the key, and invalid otherwise.

[29]

3.3.4 Secret Sharing

A Secret Sharing scheme involves a trusted authority that distributes pieces of information,

known as “shares”, among participants. Each party receives a share of the secret, and

when a predetermined number of shares are combined, the secret can be reconstructed.

This ensures that even if some parties are corrupted, the secret remains secure, as long

as a sufficient number of shares are held by honest parties. A prominent type of secret

sharing is a threshold scheme.

A threshold scheme, specifically called a (𝑘, 𝑛)-threshold scheme, involves generating

𝑛 shares such that any combination of 𝑘 shares allows the reconstruction of the secret.

However, any subset of 𝑘 − 1 or fewer shares reveals no information about the value of

the secret.

Definition 3.3.4 (Threshold Scheme). Let 𝑡,𝑤 be positive integers with 𝑡 ≤ 𝑤 . A (𝑡,𝑤)-
threshold scheme is a procedure to share a key 𝐾 among a set of 𝑤 participants, such

that any group of 𝑡 participants can deduce the value of 𝐾 . However, no group of 𝑡 − 1

participants can determine it. [29]

3.3.5 Trusted Execution Environments (TEEs) and Secure Processors

Trusted Execution Environments (TEEs) are secure areas of a main processor that ensure

that the code and data loaded into these areas is protected in terms of privacy and integrity.

TEEs provide an isolated environment where applications can run protected from external

threats, even if the overall system is compromised. In essence, a TEE is a conceptual

framework or environment that can be realized through various hardware or software

mechanisms.

Secure processors, which are hardware components, allow the realization of such TEEs.

They are specialized hardware designed to securely execute code, protecting both the

execution process and the data involved.

A prominent example of a secure processor is Intel’s Software Guard Extensions (SGX).

Intel SGX allows applications to execute code in private areas of memory called enclaves,

which are protected from processes running at higher privilege levels.

The term “attested execution processor” in this context refers to a processor that can

provide cryptographic proof of its actions. It can attest or guarantee that it has executed

a particular piece of code securely without manipulation. This attestation mechanism is

important in scenarios where, in addition to ensuring the confidentiality and integrity

of code and data, there is a need to validate that the code has been executed exactly as

intended in a trusted environment. [22]

9

3 Preliminaries

3.3.6 Quadratic Residucity Assumption

The Quadratic Residucity Assumption (QRA) is a computational hardness assumption in

cryptography. It states that, given an integer 𝑛 which is the product of two different odd

prime numbers 𝑝 and 𝑞, and an integer 𝑥 such that the Jacobi symbol (𝑥/𝑛) = +1, it is
computationally infeasible to determine whether 𝑥 is a quadratic residue modulo 𝑛 (i.e,

there exists an integer 𝑦 such that 𝑦2 ≡ 𝑥 mod 𝑛) without knowing the factors 𝑝 and 𝑞.

This problem, known as the Quadratic Residucity Problem (QRP), is easy to solve when 𝑝

and 𝑞 are known, but is thought to be difficult when only 𝑥 and 𝑛 are known. [19]

3.4 Adversarial Models

An adversary inMPC is amalicious entity that tries to disrupt the computation, compromise

security, or gain unauthorized knowledge of the honest parties inputs. The adversary

may control one or more parties and can have different capabilities. The exact model

of the adversary depends on the security assumptions of the protocol. Below are brief

descriptions of common adversary models:

3.4.1 Semi-honest adversary:

Often referred to as passive adversaries, semi-honest adversaries follow the steps of the

protocol but try to learn additional information from the messages they see. [14]

3.4.2 Malicious adversary:

Unlike semi-honest adversaries, malicious or active adversaries may not follow the rules of

the protocol. They may insert messages in the name of the corrupted party and modify or

withhold messages, that are being sent between the parties, with the intention of disrupting

computation or cheating other participants. [14]

3.4.3 Static Adversary:

This adversary decides which parties to corrupt before the protocol starts, and cannot

change his choice once the protocol is running. His corruption targets are predetermined

and unchangeable. [1]

3.4.4 Adaptive Adversary:

These adversaries can adaptively choose which parties to corrupt based on observed

protocol execution and the parties internal state. [1]

10

3.5 Proofs and Frameworks

3.5 Proofs and Frameworks

3.5.1 Simulation Proofs

Simulation proofs are a key tool in cryptography for proving the security of cryptographic

protocols. Instead of proving multiple safety properties individually, simulation proofs

offer a more streamlined approach: they work by comparing an adversary’s behaviour in

a “real world” execution of a protocol with an “ideal world” scenario in which a trusted

party securely computes the function in question.

In real execution, parties have their own private inputs and a shared initial input. They

send and receive messages following a protocol. Honest parties follow the protocol to

generate their messages, whereas corrupt parties may deviate under the attack of an

adversary. The adversary can view the messages sent by the honest parties and decide

when or if they are delivered, but can’t alter or forge them. At the end of the process, the

parties produce outputs based on the protocols, while the attacker’s output is a function

of what he has observed throughout.

On the other hand, the ideal execution is a simplified scenario where there’s no protocol

for message exchange between parties. Instead, all parties send their input to a trusted

party called the “ideal functionality”. This trusted party computes the desired function

from the parties private inputs and then provides an output to each party. In this model,

for every real-world attacker, there is a “ideal world” adversary called the “simulator”. The

goal is to ensure that any information an attacker can obtain in the real world can also be

obtained by the simulator in the ideal world, thus proving the security of the protocol, as

in this ideal world, the primitive in question is secure by definition. [20]

In the context of proving security within this framework, a simulator is an algorithm

designed to mimic the interaction between the adversary and the honest parties in the

real world, while having access only to the information available in the ideal world. The

goal is to show that for every adversary in the real world, there exists a simulator in the

ideal world such that no distinguisher can tell whether it is interacting with the real-world

adversary or the ideal-world simulator.

In the context of protocol execution, let 𝐸𝑋𝐸𝐶𝜋,𝐴 (𝑥,𝑦, _) be the random variable de-

scribing the output of party 𝑃𝑖 in protocol 𝜋 with adversary 𝐴. Similarly, in the ideal

execution, 𝐼𝐷𝐸𝐴𝐿𝐹,𝑆𝑖𝑚 (𝑥,𝑦, _) represents the corresponding random variable for the ideal

functionality 𝐹 .

Definition 3.5.1 (Ideal Model: IDEAL
MPC

𝐹
). The ideal model describes a protocol execution

scenario in which two parties, each with their private inputs, interact with a trusted third

party to compute the function 𝐹 . This model guarantees complete fairness as both parties

receive their respective outputs from the trusted third party simultaneously. Either of

the parties can be corrupted by an adversary 𝐴, but there is also the possibility that both

parties remain honest.

In the ideal model, the parties first send their inputs to the trusted party. If a party

is honest, it sends its true input. However, a party under the adversary’s control may

choose to send any value, or even its true input. The inputs given to the trusted party are

represented as (𝑥′, 𝑦′). If 𝑥′ or 𝑦′ do not belong to their respective input domain 𝑋𝑛 or 𝑌𝑛 ,

the trusted party replaces them with a default element from the appropriate domain.

11

3 Preliminaries

Upon receiving the inputs, the trusted party generates a uniform random variable 𝑟 and

computes the function outputs 𝑓 1

𝑛 (𝑥′, 𝑦′; 𝑟) and 𝑓 2

𝑛 (𝑥′, 𝑦′; 𝑟). These results are then sent

simultaneously to 𝑃1 and 𝑃2, ensuring complete fairness.

The output of the adversary and the honest party after protocol execution are represented

by the random variables OUT
𝐴
𝐹,𝐴(aux) (𝑥,𝑦, _) and OUT

hon

𝐹,𝐴(aux) (𝑥,𝑦, _) respectively. The
combined output of the model, represented by the random variable IDEAL

MPC

𝐹,𝐴(aux) (𝑥,𝑦, _),
is given by a tuple of the outputs of the adversary and the honest party. The formal

definition is

IDEAL
MPC

𝐹,𝐴(aux) (𝑥,𝑦, _)
def

=

(
OUT

𝐴
𝐹,𝐴(aux) (𝑥,𝑦, _),OUT

hon

𝐹,𝐴(aux) (𝑥,𝑦, _)
)
.

[15]

A protocol is said to be secure if, for every PPT attacker 𝐴 in real execution, there exists

a PPT simulator 𝑆𝑖𝑚 in the ideal world such that

𝐸𝑋𝐸𝐶𝜋,𝐴 ≈ 𝐼𝐷𝐸𝐴𝐿MPC

𝐹,𝑆𝑖𝑚 .

[20]

If such a simulator can be constructed, the protocol is considered secure, since the

real-world adversary cannot learn more than the ideal-world simulator.

Secure with Abort In some cases, a protocol can be proven secure with abort, as defined
by [15]. In this two party model, fairness is not always guaranteed. Here, the ideal

functionality is altered, such that a malicious party 𝑃1 has the option of sending either

“continue” or “abort” to the trusted party. If the message is “abort”, the computation is

aborted and the other party, 𝑃2, does not receive their output. In this specific definition, by

[15] only a malicious 𝑃1 is given the opportunity to abort the computation. The reason for

this restriction is, that for the protocols proven to be secure-with-abort in, [15], a malicious

𝑃2, by protocol design, can not gain any learn more than 𝑃1 by aborting.

3.5.2 The Universal Composability (UC) Framework

The Universal Composability (UC) Framework as introduced by Canetti, 2000 [9] provides a

model for proving the security of cryptographic protocols. It is designed to handle complex,

concurrent protocol executions, providing a way to formulate and prove security properties

that remain valid even when the protocol interacts with arbitrary other protocols. [9]

In [24] which uses the standalone security model, the focus is on understanding the

security of an isolated protocol instance. The UC framework expands on this model. To

achieve a security model that maintains security under arbitrary protocol composition,

the stand-alone model is extended by allowing the distinguisher to interact with both the

protocol and the adversary during protocol execution. In the UC context, the (interactive)

distinguisher is called the environment 𝑍 .

Let 𝐸𝑋𝐸𝐶𝜋,𝐴,𝑍 (_, 𝑟) be the output of the environment 𝑍 in the UC experiment with

protocol 𝜋 , adversary𝐴, randomness 𝑟 and security parameter _. 𝐸𝑋𝐸𝐶𝜋,𝐴,𝑍 (_) denotes the
random variable associated with 𝐸𝑋𝐸𝐶𝜋,𝐴,𝑍 (_, 𝑟), where 𝑟 is chosen uniformly at random.

𝐸𝑋𝐸𝐶𝜋,𝐴,𝑍 represents the corresponding probability ensemble {𝐸𝑋𝐸𝐶𝜋,𝐴,𝑍 }_∈N [18].

12

3.5 Proofs and Frameworks

Definition 3.5.2 (UC security). A protocol 𝜋 is said to UC-emulate a function Protocol 𝜙 ,

if for all Probabilistic Polynomial Time (PPT) adversaries 𝐴, there exists a PPT simulator 𝑆

such that, for all PPT environments𝑍 , the environment𝑍 (acting as a distinguisher) cannot

tell whether it is interacting with the real-world adversary or the ideal-world simulator.

Formally, this can be denoted as:

𝐸𝑋𝐸𝐶𝜋,𝐴,𝑍 ≈ 𝐸𝑋𝐸𝐶𝜙,𝑆,𝑍

Key to the UC framework is the concept of security preservation under composition: a

protocol that has been proven secure in isolation remains secure when combined with other

protocol instances. These instances may be of the same or different protocols. Composition

can occur sequentially, where one protocol follows another; concurrently, where protocols

overlap in time without executing simultaneously; or in parallel, where concurrent tasks

are executed simultaneously on different processors. [9, 18]

13

4 Fairness Notions and Protocols

In this section, we look at the different notions of fairness that apply to secure multiparty

computation (MPC). Complete fairness, which ensures that either all parties receive an

output or none do, is an ideal goal. However, it is not always achievable in practice due to

computational and contextual constraints. As a result, a variety of alternative notions of

fairness have been developed. These different notions impose different requirements and

constraints.

In the following subsections, we will explore these notions, by looking at how they

can be defined and how they can be implemented: complete fairness, partial fairness,

Δ-fairness, probabilistic fairness, fairness with penalties and gradual release along with

protocols that achieve these notions.

4.1 Complete Fairness

Complete fairness in the context of MPC ensures that, by the end of the protocol, either

all honest receive the computations output or none of the parties receive their output.

4.1.1 Definition and Context

For the definition of Complete Fairness, we use the concept of a simulation proof (see

section 3.5.1). For this, we first define the real and ideal model similar to [15].

Definition 4.1.1 (Real Model). In the real model, we describe the execution environment

for a two-party protocol Π that takes place between two parties, 𝑃1 and 𝑃2. In this model,

there is no trusted third party involved. One of the parties is controlled by an adversary 𝐴.

The adversary 𝐴 is a non-uniform probabilistic polynomial-time machine, which means

that it is capable of performing probabilistic computations in polynomial time and its

behaviour can change depending on certain circumstances. The adversary assumes the

role of one party and issues all messages on behalf of the corrupted party using an arbitrary

polynomial-time strategy. Whereas the other party, referred to as the honest party, strictly

follows the instructions given by the protocol Π.
In such a setup, the “view” of the adversary after an execution of Π is represented by

the random variable VIEW
𝐴
Π,𝐴(aux) (𝑥,𝑦, 𝑛). Here 𝑥 and 𝑦 are the inputs of the two parties,

_ is the security parameter, and aux refers to some auxiliary input that might influence

the adversary’s behaviour. Similarly, the random variable OUT
hon

Π,𝐴(aux) (𝑥,𝑦, 𝑛) denotes the
output that the honest party receives from the execution of the protocol.

The complete execution of the protocol in the real model is contained in the random

variable REALΠ,𝐴(aux) (𝑥,𝑦, 𝑛), which is defined as a tuple combining the adversary’s view

and the honest party’s output. The formal definition is

15

4 Fairness Notions and Protocols

REALΠ,𝐴(aux) (𝑥,𝑦, _)
def

=

(
VIEW

𝐴
Π,𝐴(aux) (𝑥,𝑦, _),OUT

hon

Π,𝐴(aux) (𝑥,𝑦, _)
)
.

[15]

Definition 4.1.2 (Complete Fairness). A protocol Π is said to securely compute a func-

tionality 𝐹 with complete fairness if for every non-uniform probabilistic polynomial-time

adversary 𝐴 in the real model, there exists a non-uniform probabilistic polynomial-time

adversary 𝑆 in the ideal model such that{
IDEAL

MPC

𝐹,𝑆 (aux) (𝑥,𝑦, 𝑛)
}
(𝑥,𝑦)∈𝑋×𝑌,aux∈{0,1}∗

𝑐≡
{
REALΠ,𝐴(aux) (𝑥,𝑦, 𝑛)

}
(𝑥,𝑦)∈𝑋×𝑌,aux∈{0,1}∗

In this definition, the notion of complete fairness is defined by the indistinguishabil-

ity between the output of ideal model (see Definition 3.5.1) and the real model. Here,

IDEAL𝐹,𝑆 (aux) (𝑥,𝑦, 𝑛) represents the output of the ideal model, where a trusted third party

ensures that all parties receive their output simultaneously. This ensures fairness in

the ideal model, as no party can gain an advantage by learning its output before others.

REAL𝜋,𝐴(aux) (𝑥,𝑦, 𝑛) represents the output of the real execution of the protocol 𝜋 . The

ideal model guarantees fairness, as all parties receive their output simultaneously from

the trusted party. The notation 𝑋
𝑐≡ 𝑌 denotes that the two distribution ensembles 𝑋,𝑌

are computationally indistinguishable. [15, 16]

4.1.2 Protocols that achieve Complete Fairness

Choudhuri et al., 2017 [10] Achieving fairness in secure multiparty computation (MPC)

is a not trivial, especially when faced with a dishonest majority. Choudhuri et al., 2017

[10] addresses this problem by proposing a model that achieves fairness in MPC through

the use of public bulletin boards. These boards can be established using pre-existing

infrastructure, such as blockchain technology or Google’s certificate transparency logs.

A public bulletin board in this context is essentially a publicly accessible ledger where

anyone can publish arbitrary strings. When a party publishes their data 𝐷 on the bulletin

board, they receive proof that 𝐷 was indeed published. This proof is crucial, as it prevents

unauthorized removal or alteration of the data once it’s posted. Because of its public

nature, anyone can view the contents of the bulletin board. This is critical to the security

of the model, as it ensures that the content of the board cannot be deleted and the proof

of publication cannot be forged, meaning that no one can create a counterfeit proof

claiming that a particular data 𝐷 was published when it was not. Both centralized systems,

such as Google’s certificate transparency project, and decentralized systems, such as

blockchain-based ledgers like Ethereum with proofs of participation, can provide practical

implementations of these bulletin boards.

Building on this, [10] offers both theoretical and practical constructions that use either

witness encryption or trusted hardware, such as Intel SGX
1
. Their model achieves complete

1
Trusted hardware refers to a secure and tamper-resistant computing environment provided by specialized

hardware components. Intel SGX (Software Guard Extensions) is an example of such hardware, which

creates secure enclaves within the CPU to execute code and store data in a protected manner.

16

4.1 Complete Fairness

fairness by leveraging the existing infrastructure and presents a newway to achieve fairness

in MPC.

The protocol in [10] focuses on the two-party case, which can be extended to a multi-

party case. At its core, the approach reduces the problem of fairness in MPC to the problem

of fair decryption. The authors use a public bulletin board to implement a fair decryption

protocol for a witness encryption scheme.

Witness encryption is a method of encryption (see Section 3.3.1) that allows a message

to be encrypted with a problem statement, so that the message can only be decrypted by

providing a solution to the problem. The authors use this to transform the problem of fair

computation into a problem of fair decryption.

In this context, to securely compute a function 𝑓 with complete fairness, the parties

first run a standard (possibly unfair) MPC protocol to compute a randomized function.

This function takes the parties’ private inputs (𝑦1, 𝑦2) and outputs a witness encrypted

ciphertext𝐶𝑇 of the desired output 𝑓 (𝑦1, 𝑦2). The statement 𝑥 associated with𝐶𝑇 is set so

that a valid witness for 𝑥 is equivalent to proving the posting of a “release token” 𝛼 (to be

determined later) on the bulletin board.

The only way for any party to obtain such a witness is to post 𝛼 on the bulletin board

and obtain the corresponding proof of posting 𝜎 . However, this makes the pair (𝛼, 𝜎)
public, so anyone can obtain it. This ensures that if a malicious adversary learns the

witness for decrypting 𝐶𝑇 , so can the honest party, since they can simply read the public

bulletin board.

This protocol works in a two-party setting, with a protocol that can be extended to a

multi-party scenario. However, it does not require an honest majority, allowing complete

fairness even in the presence of a dishonest majority. The communication model includes

public bulletin boards for publishing arbitrary strings and achieving a fair decryption

mechanism.

Gaddam et al., 2023 [12] Related to the work of [10], Gaddam et al., 2023 [12] extends the

idea of fair computation protocols in a setting that uses multiple blockchains, as opposed

to Choudhuri et al., 2017 [10]’s single bulletin board model. They explore a scenario

where not all parties have equal access to read or write to a single blockchain, and not all

parties are willing to post to a public blockchain. The authors propose protocols for fair

secure computation in this multi-blockchain setting, where secure computation can be

achieved as long as there is a subset of parties with access to a trusted hardware, and each

of these parties shares some blockchain access with the others. Their work highlights the

potential of using multiple blockchains, as well as existing trusted execution environments,

to achieve complete fairness.

This protocol is designed for an 𝑛-party setting, where at most 𝑡 < 𝑛 parties can be

corrupt. For the protocol to achieve fair, secure computation, 𝑡 parties must have access to

a trusted execution environment, and each of these 𝑡 parties shares blockchain access with

all other parties, whereas only these 𝑡 parties need write permissions on the blockchains.

If all parties are honest, the protocol operates entirely outside the blockchain, which can

significantly improve efficiency.

Gordon et al., 2008 [17] Gordon et al., 2008 [17] demonstrate that many interesting and

non-trivial functions can be computed with complete fairness, even without an honest

17

4 Fairness Notions and Protocols

majority, in the two-party setting. They propose two protocols, one for the fair computation

of Yao’s millionaires’ problem
2
and one for fair computation of functions with an embedded

XOR
3
. Both protocols are equally relevant, but for the scope of this thesis, we will focus

on the first protocol.

In the first protocol, they achieve completely fair computation of the millionaires

problem (and related functionalities).

The function 𝑓 that both parties try to evaluate returns 1 if the first parties input is

higher than the second parties input. The function is defined by

𝑓𝑚 (𝑥𝑖, 𝑦 𝑗) =
{

1 if 𝑖 > 𝑗

0 if 𝑖 ≤ 𝑗 ,

where 𝑋𝑚 = {𝑥1, . . . , 𝑥𝑚} denotes the valid inputs for the first party, 𝑌𝑚 = {𝑦1, ..., 𝑦𝑚}
denotes the valid inputs for the second party, ordered such that for 𝑖 < 𝑗, 𝑥𝑖 < 𝑦 𝑗 , and a

polynomial𝑚 =𝑚(_) denotes the size of the domain of each input, with security parameter

_.

The approach is based on a series of𝑚 iterations, where 𝑃1 chooses an input 𝑥𝑖 and

learns the output in iteration 𝑖 , and 𝑃2 chooses an input𝑦 𝑗 and learns the output in iteration

𝑗 . Depending on the party’s own input, they learn the output at different iterations. If one

party aborts after receiving its message in round 𝑘 and the second party hasn’t received

its output yet, the second party assumes that the first party learned its output in iteration

𝑘 , and therefore had chosen 𝑥𝑘 as its input. The second party then computes the output

using input 𝑥𝑘 for 𝑃1.

The protocol does this in two phases. In the first phase, a secure with abort (see

Section 3.5.1) protocol computes the output of a protocol referred to as “ShareGen” (defined

in detail in Figure 8.1). ShareGen receives the parties inputs 𝑥𝑖 and 𝑦 𝑗 and generates the

messages 𝑎1, ..., 𝑎𝑚 and 𝑏1, ..., 𝑏𝑚, so it holds that 𝑎𝑖 = 𝑏 𝑗 = 𝑓 (𝑥𝑖, 𝑦 𝑗) while all the other
𝑎ℓ respectively 𝑏ℓ are set to NULL. Then random shares of these 𝑎ℓ respectively 𝑏ℓ are

generated (I.e., 𝑎
(1)
𝑖

is random and 𝑎
(1)
𝑖
⊕𝑎(2)

𝑖
= 𝑎𝑖 .). Further, the shares, that are intended to

be exchanged in the next phase, are authenticated with a MAC (see Section 3.3.3), denoted

𝑡𝑎ℓ respectively 𝑡
𝑏
ℓ . The MAC-keys generated by ShareGen will be sent to the receiving

party respectively, so that MACs can be verified. Finally, for every 𝑎ℓ respectively 𝑏ℓ each

party receives a share. 𝑃1 receives the values 𝑎
(1)
1
, ..., 𝑎

(1)
𝑚 and (𝑏 (1)

1
, 𝑡𝑏

1
), ..., (𝑏 (1)𝑚 , 𝑡𝑏𝑚), and

the MAC-key 𝑘𝑎 and 𝑃2 receives the values (𝑎(2)
1
, 𝑡𝑎

1
), ..., (𝑎(2)𝑚 , 𝑡𝑎𝑚) and 𝑏

(2)
1
, ..., 𝑏

(2)
𝑚 , and the

MAC-key 𝑘𝑏 .

In the second phase, the shares 𝑎
(2)
𝑖

and 𝑏
(1)
𝑖

, which 𝑃2 respectively 𝑃1 are holding, are

exchanged, so that the opposing party can reconstruct the 𝑎ℓ respectively 𝑏ℓ . In each of

the𝑚 rounds, 𝑃2 begins sending (𝑎(2)𝑖 , 𝑡𝑎𝑖) to 𝑃1, which verifies the MAC and then sets its

output to the reconstructed 𝑎𝑖 , if a value different to NULL is reconstructed. Then 𝑃1 sends

2
A classic problem in secure multi-party computation, where two millionaires want to determine who is

richer without revealing their actual wealth to each other. This problem illustrates the need for MPC

protocols that allow parties to jointly compute a function over their private inputs while preserving the

privacy of those inputs. [30, 25]

3
An “embedded XOR” refers to a function that includes an XOR operation as a component within a more

complex function.

18

4.1 Complete Fairness

(𝑏 (1)
𝑖
, 𝑡𝑏𝑖) to 𝑃2. 𝑃2 also verifies the MAC and sets its output accordingly. If, during the

second phase, one party, here 𝑃1, receives a message with an invalid MAC or no message

(because the other party aborted), 𝑃1 outputs 𝑓 (𝑥,𝑦1) and halts. Likewise, if 𝑃1 aborts, 𝑃2

outputs 𝑓 (𝑥1, 𝑦) and halts. The protocol is explained in detail in Figure 8.2.

If 𝑃1 aborts in iteration 𝑘 < 𝑖 , it never learns the correct output, ensuring fairness. If 𝑃1

aborts in iteration 𝑘 ≥ 𝑖 , it obtains the output in iteration 𝑖 and aborts in some iteration

𝑘 ≥ 𝑖 . In this case, there are two subcases: If 𝑗 < 𝑘 , 𝑃2 has already received its output in a

previous iteration, ensuring fairness. If 𝑗 ≥ 𝑘 , 𝑃2 has not yet received its output. Since 𝑃1

aborts in iteration 𝑘 , the protocol directs 𝑃2 to output 𝑓 (𝑥𝑘 , 𝑦) = 𝑓 (𝑥𝑘 , 𝑦 𝑗). Since 𝑗 ≥ 𝑘 ≥ 𝑖 ,
we have 𝑓 (𝑥𝑘 , 𝑦 𝑗) = 0 = 𝑓 (𝑥𝑖, 𝑦 𝑗), ensuring fairness.

This protocol works in a two-party system and demonstrates that complete fairness is

possible even without an honest majority for certain functions.

In summary, achieving complete fairness in MPC protocols depends on certain assump-

tions. As demonstrated by Gordon et al., 2015 [16], the assumption of an honest majority

is crucial for ensuring complete fairness. Additionally, Gordon et al., 2008 [17] shows that

complete fairness can be achieved without an honest majority in the two-party setting,

using specific protocols for the computation of certain non-trivial functions.

4.1.3 Limitations and Impossibility Results

Achieving complete fairness in secure multiparty computation protocols is far from trivial.

It is often subject to limitations. It has also been shown to be impossible in certain settings.

The limitations and impossibilities associated with complete fairness have been studied in

detail in various contexts.

General impossibility One of the earliest impossibility results was shown by Cleve, 1986

[11]. They showed that in a setting without an honest majority, complete fairness is

generally impossible to achieve. The idea behind this is based on the idea that in a protocol,

communication takes place in rounds. During these rounds, there exists a critical moment

where a participant receive enough information to be able to compute their own output

for the first time. If a dishonest party can predict this round, they can strategically abort

the communication. By doing so, the dishonest party can obtain their output without

revealing their information, leaving the honest party without knowledge of their output.

Public ledgers Despite this initially strict constraint, researchers have found scenarios

where complete fairness can be realized. Choudhuri et al., 2017 [10] showed that complete

fairness for general functions can indeed be achieved when parties have access to a public

ledger or bulletin board.

Lower Bounds for Round Complexity Achieving complete fairness becomes much more

complex when the round complexity of a protocol is taken into account. A notable result

by Gordon et al., 2015 [16] showed that 2-round fair multiparty computation (MPC) for

general functions is impossible, even with an honest majority. However, a 3-round MPC

19

4 Fairness Notions and Protocols

protocol with guaranteed output delivery is feasible for general functions in the Common

Random String (CRS) model
4
.

Work by Asharov et al., 2011 [2] demonstrated a 5-round protocol that provides security

with guaranteed output delivery, thus ensuring fairness with the best-known round

complexity, assuming the existence of an honest majority.

Exceptions to [11]’s result In addition, the question of round complexity in achieving

complete fairness was addressed by Gordon et al. [17]. They showed the feasibility of

complete fairness without honest majority for certain functions over polynomial-size

domains that do not contain an “embedded XOR”. They also showed certain functions

that contain an embedded XOR that also allow complete fairness. However, they proved a

lower bound, showing that any protocol that ensures complete fairness for such functions

must have a round complexity that is super-logarithmic in the security parameter.

4.2 Partial Fairness

Partial fairness is a relaxation of complete fairness where the security requirement is

satisfied within a certain probability bound. This notion is particularly relevant in scenarios

where complete fairness may be infeasible or too expensive in terms of computational

resources or round complexity. Here, the goal is still that either all parties learn the correct

output or none of them do. However, this can only be guaranteed with a certain probability.

4.2.1 Definition and Context

In the case of the protocols proposed by Gordon and Katz, 2008 [15] and Bailey et al., 2022

[3], the terms
1

𝑝
-security and

1

𝑅
-fairness are used to describe the level of fairness a protocol

achieves. While both describe similar concepts, they differ in their underlying parameters.

The term
1

𝑝
-security, as used by [15], allows for a relaxation of the simulation re-

quirements between the real and ideal world, while reusing the same ideal world (see

Definition 3.5.1) that was used in Definition 4.1.2. , so that the real and ideal worlds may

be distinguishable with probability at most
1

𝑝
. Here, 𝑝 is some specified polynomial, and

the number of rounds is dependent on this 𝑝 .

On the other hand,
1

𝑅
fairness, introduced by [3], is directly related to the total number

of communication rounds 𝑅 in the protocol. If the adversary cannot predict the round in

which the true output is revealed, and the best strategy is to abort a round at random, there

is a
1

𝑅
probability that he will abort in the critical round, such that he gets the output while

the honest parties do not. Hence, if the adversary aborts at round 𝑟 , he has a probability

of
𝑟+1
𝑅

of getting the correct output, while the honest party has a probability of
𝑟
𝑅
. For the

scope of this thesis, we use the definition proposed by [15].

Definition 4.2.1 (Partial Fairness). Formally, a protocol Π is said to 1/𝑝-securely compute

a functionality 𝐹 if for every non-uniform probabilistic polynomial-time (PPT) adversary

4
The Common Random String (CRS) model is a setup model in cryptography. In this model, all parties

have access to a common, randomly chosen string. The string is assumed to be generated honestly. It is

used to simulate shared randomness among the parties, which can be leveraged for protocol design.

20

4.2 Partial Fairness

𝐴 in the real model, there exists a non-uniform PPT adversary 𝑆 in the ideal model such

that:{
IDEAL

MPC

𝐹,𝑆 (aux) (𝑥,𝑦, 𝑛)
}
(𝑥,𝑦)∈𝑋×𝑌,aux∈{0,1}∗,𝑛∈N

1/𝑝
≈

{
REALΠ,𝐴(aux) (𝑥,𝑦, 𝑛)

}
(𝑥,𝑦)∈𝑋×𝑌,aux∈{0,1}∗,𝑛∈N

Here, the notation

1/𝑝
≈ is defined as follows: A function ` (·) is negligible if for every

positive polynomial 𝑝 (·) and all sufficiently large 𝑛, it holds that ` (𝑛) < 1

𝑝 (𝑛) . For a fixed

function 𝑝 , the ensembles 𝑋 = {𝑋 (𝑎, 𝑛)}𝑎∈𝐷𝑛,𝑛∈N and 𝑌 = {𝑌 (𝑎, 𝑛)}𝑎∈𝐷𝑛,𝑛∈N are computa-

tionally 1/𝑝-indistinguishable, denoted 𝑋
1/𝑝
≈ 𝑌 , if for every non-uniform polynomial-time

algorithm 𝐷 there exists a negligible function ` (·) such that for every 𝑛 and every 𝑎 ∈ 𝐷𝑛 ,
we have

|Pr[𝐷 (𝑋 (𝑎, 𝑛)) = 1] − Pr[𝐷 (𝑌 (𝑎, 𝑛)) = 1] | ≤ 1

𝑝 (𝑛) + ` (𝑛).

We two distribution ensembles are computationally indistinguishable, denoted 𝑋
𝑐≡ 𝑌 , if

for every 𝑐 ∈ N they are computationally 1/𝑛𝑐-indistinguishable. The real model and ideal

model are defined as in Definition 4.1.1 respectively Definition 3.5.1. [15]

4.2.2 Protocols that achieve Partial Fairness

Gordon and Katz, 2008 [15] Building on the work of Gordon et al., 2008 [17], which shows

that complete fairness can only be achieved for certain specific functions, Gordon and

Katz, 2008 [15] introduce the concept of partial fairness. In their work, they describe a

1

𝑝
-secure protocol that can compute any function with polynomial inputs and outputs. In

their approach, the authors propose a two-stage protocol.

Like the protocol by [17] described in Section 4.1.2, this protocol works in two stages.

The stages themselves however differ from the earlier protocol. The first stage, referred to

as the pre-processing stage, chooses a “critical round” at random in which both parties

discover the “true output”. This is in contrast to [17], where this round was chosen

dependent on the parties private inputs. This stage involves the generation of random

shares containing the parties outputs and distributing these shares between the parties.

The second stage involves several iterations in which the parties exchange and reconstruct

the shared values from the first stage. At the end of these rounds, each party will have

a final output value. If a party leaves the protocol early, the remaining party uses the

last successfully reconstructed value as its output. This protocol is designed to maintain

fairness, by ensuring that no party can reliably predict the round in which the “true output”

will be learned.

The protocol starts with the first stage, where a trusted party, ShareGen, receives the

parties inputs and determines a critical round 𝑖∗ ∈ 1, . . . , 𝑟 and generates corresponding

sets of values 𝑎1, . . . , 𝑎𝑟 and 𝑏1, . . . , 𝑏𝑟 . For each round 𝑖 less than the critical round, 𝑎𝑖 and

𝑏𝑖 are derived from random function evaluations. Conversely, for rounds 𝑖 ≥ 𝑖∗, the values
𝑎𝑖 and 𝑏𝑖 correspond directly to the true function output 𝑓 (𝑥,𝑦). ShareGen then uses a

secure-with-abort protocol to distribute these values between the parties. Each value is

also authenticated with a MAC 𝑡𝑎𝑖 respectively 𝑡
𝑏
𝑖 , ensuring the integrity of the shared data.

21

4 Fairness Notions and Protocols

In the second phase, the parties carry out 𝑟 rounds. During each iteration, they exchange

shares and reconstruct the values 𝑎𝑖 and 𝑏𝑖 , with 𝑃2 initiating the exchange. If one party

aborts during an iteration, the other party outputs the last successfully reconstructed value.

This is repeated for 𝑟 rounds.

After 𝑟 rounds, 𝑃1 outputs 𝑎𝑟 and 𝑃2 outputs 𝑏𝑟 . If a party aborts in some iteration, the

other party outputs the value reconstructed in the previous iteration. The protocol is

explained in detail in Figure 8.4.

The protocol achieves partial fairness because fairness is violated only if 𝑃1 aborts

exactly in iteration 𝑖 . If 𝑃1 aborts before iteration 𝑖 , neither party learns the correct value

𝑓 (𝑥,𝑦). If it aborts after iteration 𝑖 , both parties learn the correct value. An abort by 𝑃2 in

iteration 𝑖∗ does not violate fairness, as 𝑃1 has already learned the output. The authors

show that even if a party knows the value of the output, they cannot determine with

certainty when iteration 𝑖 , in which the “true output” is learned, occurs, thus maintaining

partial fairness.

This protocol, as described above, is not secure-with-abort, however. To achieve this,

ShareGen has to be modified, so the 𝑖∗ is chosen uniformly from {2, . . . , 𝑟 + 1} and set

𝑏𝑖∗−1 = ⊥, where ⊥ is a distinguished value outside the range of 𝑓 . With this modification,

[15] proves the protocol to be secure-with abort (see ??). This security definition only

gives 𝑃1 the opportunity to abort. As described above, an abort by 𝑃2 would not violate

fairness.

In [17] this protocol (referred to as Protocol 2) is also used to illustrate that functions

with an embedded XOR can even be computed with complete fairness. While [15] achieves

Partial Fairness as long as the size of both input and output is polynomial, [17] shows that

only for certain functions Complete Fairness can be achieved.

Bailey et al., 2022 [3] Bailey et al., 2022 [3] get around the limitations of [15], which

presumed the size of both input and output to be polynomial. [3] present a protocol which

allows for any MPC to be carried out with ≈ 1/𝑅 partial fairness, where 𝑅 is the number

of communication rounds.

This protocol, similar to [15], achieves partial fairness by obfuscating the critical round

where the true output is revealed. However, this protocol is extended to support general

multi-party functionality.

In the protocol every participant first generates a key pair and a random value, then

uses a Verifiable Delay Function (VDF)
5
and the private key to create share randomness

and round randomness. These are then committed and broadcasted along with the public

keys and random values. Following this, all parties enter their inputs, share randomness,

and round randomness into a secure-with-abort MPC protocol.

5
A Verifiable Delay Function (VDF) is a function that takes a fixed amount of time to compute, so the

computation cannot be accelerated by parallel processing or faster hardware. Once the computation

is complete, the output can be verified quickly and efficiently, despite the time taken for the initial

computation. The function VDF.KeyGen generates a public and a secret key. The functions VDF.Trapdoor

and VDF.Eval can be modelled as random oracles that compute 𝑦 as a function of an input 𝑥 . While

VDF.Eval is designed to take the adversary time Δ to compute, even on a parallel computer, VDF.Trapdoor

computes the same 𝑦 using the secret key 𝑠𝑘 and may take less time. Both functions also produce 𝜋 , a

quickly verifiable “proof”. The function VDF.Verify can then take such a proof along with 𝑥 , 𝑦 and will

return 1 if this is the result of a valid call to VDF.Trapdoor or VDF.Eval, otherwise it will return 0. [7, 3]

22

4.2 Partial Fairness

This protocol calculates a critical round and an encryption pad, with commitments for

messages being exchanged between every pair of parties for each round. These messages

either contain a random function evaluation or the true output, depending on the round.

All parties then receive commitments for messages intended for them, completing the

pre-processing phase.

In the reveal phase, commitments are revealed and verified. After this, parties have the

option to either compute the VDF evaluation to obtain the critical round and encryption

pad, which takes a certain amount of time, or they can open their commitments to the

share and round randomness. Upon receiving all messages, each party can then reconstruct

the true output.

In detail, the protocol works as follows. In the initial phase of the protocol, all parties

generate a key pair and broadcast the public key. Each party then chooses a random

value 𝑣𝑖 which, together with the private key, is used with the VDF trapdoor to generate

a pair, ((𝑠𝑖, 𝑟𝑖), 𝜋𝑖) := VDF.Trapdoor(𝑠𝑘, 𝑣𝑖,Δ), representing share randomness and round

randomness. A VDF proof 𝜋 is also generated.

In a next step, The parties then provide their data 𝑥𝑖 , their share randomness 𝑠𝑖 and their

round randomness 𝑟𝑖 to a secure-with-abort MPC protocol. The protocol computes the

critical round 𝑟 ∗ :=
∑
𝑖∈𝑁 𝑟𝑖 mod 𝑅 and 𝑠 := ⊕𝑖∈𝑁𝑠𝑖 , which will be used as an encryption

pad. For the upcoming reveal phase, the MPC then sends a message𝑚𝑖, 𝑗,𝑟 to party 𝑖 for

each pair of parties 𝑖, 𝑗 and every round 𝑟 . The message is intended to be sent from party 𝑖

to party 𝑗 in the 𝑟 th round. For 𝑟 ≠ 𝑟 ∗ the value for𝑚𝑖, 𝑗,𝑟 is chosen uniformly at random.

For 𝑟 = 𝑟 ∗ the messages (𝑚𝑖, 𝑗,𝑟 ∗) 𝑗∈𝑁 are a random secret shares OTP encrypted with 𝑠

with

⊕
𝑗∈𝑁 𝑚𝑖, 𝑗,𝑟 ∗ = 𝑠 ⊕ 𝑓 𝑗 (𝑥). Additionally, every party 𝑗 receives commitments to all the

messages𝑚𝑖, 𝑗,𝑟 intended for them and party 𝑖 receives the corresponding opening for that

commitment. Lastly, all parties receive commitments to 𝑠𝑖, 𝑟𝑖 that can be opened by party 𝑖 .

This concludes the pre-processing step.

For the reveal phase, every party starts the VDF timer and the parties open the commit-

ments to their 𝑣𝑖 to each other. The protocol continues by the every party 𝑖 opening their

commitments to each𝑚𝑖, 𝑗,𝑟 and party 𝑗 verifying the opening.

With the 𝑣𝑖 revealed, every party could compute VDF.Eval in order to calculate 𝑟 ∗ and 𝑠 ,
which requires Δ time to do. Instead, parties can also open their commitments to the 𝑠𝑖, 𝑟𝑖 .

If a party has received all messages𝑚𝑖, 𝑗,𝑟 ∗ it can output 𝑠 ⊕ (
⊕

𝑗∈𝑁 𝑚𝑖, 𝑗,𝑟 ∗). The protocol is
explained in detail in Figure 8.5.

This protocol archives
1

𝑅
-fairness, as for the adversary, the share randomness and round

randomness is unknown during the reveal phase and all shares are randomly distributed.

This effectively means that the adversary’s optimal strategy is to stop at a particular round

𝑟𝐴 during the reveal phase.

Depending on the value of 𝑟𝐴 relative to the critical round 𝑟 ∗, fairness is ensured. If
𝑟𝐴 = 𝑟 ∗, the opponent learns his output while the honest parties do not. If 𝑟𝐴 < 𝑟 ∗, no
party learns its output. If 𝑟𝐴 > 𝑟 ∗, all parties learn their output. The protocol is thus called

1/R-fair, since the probability of the first case occurring is at most 1/R.

The VDF plays a critical role in fairness by obscuring the critical round and preventing

an adversary from making decisions based on instant calculations of the expected output.

It is important to hide both the critical round 𝑟 ∗ and the encryption pad 𝑠 in the VDF

output. Obfuscating 𝑟 ∗ prevents the adversary from knowing the exact round to stop.

23

4 Fairness Notions and Protocols

Similarly, hiding 𝑠 prevents parties from computing 𝑠 ⊕ (
⊕

𝑗∈[𝑁]𝑚𝑖, 𝑗,𝑟 ∗) and comparing it

the expected output, ensuring that no party can abort based on the output of the previous

round.

The VDF within the protocol effectively hides 𝑟 ∗ and 𝑠 . Parties can find these values in

two ways. They can wait until the reveal phase ends and then use the opened commitments

to 𝑠𝑖, 𝑟𝑖 to compute 𝑟 ∗ :=
∑
𝑖∈𝑁 𝑟𝑖 mod 𝑅 and 𝑠 := ⊕𝑖∈𝑁𝑠𝑖 . Alternatively, they can calculate

VDF.Eval using 𝑣𝑖 unveiled at the start of the reveal phase. Because computing VDF.Eval

uses all remaining time in the reveal phase, it stops any adversary from revealing 𝑟 ∗ and 𝑠
during the reveal phase.

4.2.3 Limitations and Impossibility Results

Despite the trade-off between fairness and feasibility that partial fairness provides, there

are still limitations and infeasibility results associated with it. The protocol proposed by

Gordon and Katz, 2008 [15] is limited to only two parties and has shown specific limitations

when dealing with super-polynomially large input domains.

In their work, they show that no protocol computing a certain deterministic Boolean

function can simultaneously achieve both security-with abort and
1

𝑝
-security for 𝑝 > 4

when the input domains are of super-polynomial size. They also present a deterministic

function with super-polynomial sized input and output domains that cannot be computed

1

𝑝
-safely for 𝑝 > 2.

Furthermore, they prove that for a given functionality there is no protocol that can

compute it even under the notion of partial fairness (Theorem 11 in [15]).

4.3 Δ-Fairness

Δ-Fairness, introduced by Pass et al., 2016 [27], is a relaxed form of complete fairness. In

this variant, a certain amount of time discrepancy between when the adversary and the

honest party learn the result of the computation is acceptable.

4.3.1 Definition and Context

Definition 4.3.1 (Δ-Fairness). In Δ-fairness, if an adversary decides to abort the protocol

and learns the output in round 𝑟 , the honest party should be able to determine the output

no later than in round Δ · 𝑟 . Here Δ is a polynomial that, given the round the adversary

learns the output, determines the latest round in which the honest party leans the output.

Δ-Fair Ideal Model The Δ-Fair Ideal Model, as proposed in [27], works within the clock

model of execution
6
and introduces a fairness parameter Δ, which is a fixed polynomial

function. This model ensures that if an adversary receives the output by round 𝑟 , the

honest parties are guaranteed to receive their outputs by round Δ(𝑟).
6
The clock model of execution refers to a computational setting in which each party has access to a secure

hardware clock.

24

4.3 Δ-Fairness

If all parties behave honestly, the protocol will terminate in 𝑔(_) rounds, where 𝑔 is a
fixed polynomial. All parties will receive the correct output with negligible probability of

error.

However, if at least one party is corrupt, the running time of the protocol may depend

on the actions of the adversary and is not necessarily bounded by a fixed polynomial. In

that case, the ideal fair two-party computation functionality can delay the honest parties

output as follows:

When a message (“compute”, inp𝑖) is received from party 𝑃𝑖 , where 𝑖 ∈ {0, 1}, the ideal
functionality checks whether the other party 𝑃1−𝑖 has also sent the message (“compute”,

inp
1−𝑖). If both parties have sent their inputs, the model computes the function outputs

(outp
0
, outp

1
) := 𝑓 (inp

0
, inp

1
).

The adversary𝐴 can send a message (“output”, 𝛿∗) to the ideal functionality. Assuming,

both parties had previously sent their inputs, the delay 𝛿 , by which the honest parties

output delivery will be delayed, is then calculated as the minimum of 𝛿∗ and Δ(𝑟), where
𝑟 is the current round counter.

After verifying that the outputs (outp
0
, outp

1
) have been stored, the model immediately

sends outp𝑏 to 𝐴, where 𝑏 is the corrupt party. However, the output outp
1−𝑏 is sent to the

honest party after a delay of 𝛿 rounds.

The output of the adversary and the honest party after protocol execution are represented

by the random variables OUT
Δ,𝐴
𝐹,𝐴(aux) (𝑥,𝑦, 𝑛) and OUT

Δ,hon
𝐹,𝐴(aux) (𝑥,𝑦, 𝑛) respectively. The

combined output of the model, represented by the random variable IDEAL
Δ
𝐹,𝐴(aux) (𝑥,𝑦, 𝑛),

is given by a tuple of the outputs of the adversary and the honest party. For the scope of

this thesis, we define the ideal model for Δ-Fairness as follows:

IDEAL
Δ
𝐹,𝐴(aux) (𝑥,𝑦, 𝑛)

def

=

(
OUT

Δ,𝐴
𝐹,𝐴(aux) (𝑥,𝑦, 𝑛),OUT

Δ,hon
𝐹,𝐴(aux) (𝑥,𝑦, 𝑛)

)
.

[27]

4.3.2 Protocols that achieve Δ-Fairness

Pass et al., 2016 [27] In their work, Pass et al., 2016 [27] introduced the concept of

Δ-fairness.
The authors propose a two-party computation protocol that achieves Δ-fairness (with

Δ(𝑟) = 2𝑟) by relying on all participants having secure processors equipped with tamper-

resistant clocks. A secure processor is a piece of hardware that realizes a trusted execution

environments. It provides secure computation that often includes mechanisms such as

encryption, secure storage, and other features to prevent data leakage and resist tampering.

Tamper-resistant clocks are crucial for time-dependent security measures, as they are

designed to resist any malicious attempts to manipulate their timekeeping. They model

the core functionality of secure attested execution processors
7
in an ideal functionality,

they refer to as G𝑎𝑡𝑡 .
7
“Secure attested execution processors” refers to specialized hardware components that, in addition to

providing a trusted execution environment, also provide an attestation mechanism. Attestation allows

the processor to provide cryptographically secure proof that a particular piece of code has been executed

correctly

25

4 Fairness Notions and Protocols

The protocol is structured so that the secure processors of both parties negotiate the

timing of the release of the computation output. Both processors exchange encrypted

inputs and are able to compute the output, but they deliberately delay revealing the results

to their owner for a predefined period of time.

The protocol initiates with a timeout value (𝛿) which is exponentially large, specifically

set as 𝛿 := 2
_
, with a security parameter _. The processors then engage in a series of

rounds, during which they exchange acknowledgments via a secure channel.

Upon receipt of an acknowledgment, a processor commits to a reduction in the timeout

period by a factor of 2, before it discloses the output to its associated party. Formally, the

new timeout value is recalculated as 𝛿 := 𝛿
2
.

This process ensures a Δ-fair release of the output, accommodating the possibility of

adversarial behaviour from one party. In the scenario where a dishonest party manages to

acquire the output during round 𝑟 before aborting, the mechanism guarantees that the

honest party receives the output by round 2𝑟 This is ensured, as the delay 𝛿 after which

the secure processor releases the output, is, for each party, halved in each round and thus

by aborting the adversary can only obtain a value of 𝛿 that is half the value for 𝛿 the secure

processor of an honest party holds. This leads to the establishment of Δ-fairness, with Δ
being a function defined as Δ(𝑟) = 2𝑟 .

4.3.3 Limitations and Impossibility Results

The Δ-fairness protocol proposed by Pass et al., 2016 [27] represents a new approach to

addressing fairness in secure two-party computation. However, in order to understand

the practical implications of this method, some limitations, and constraints need to be

acknowledged.

An essential factor that limits the application of this protocol is the requirement that

all parties need to be equipped with a clock-aware secure processor. Fairness becomes

impossible if only one of the two parties is equippedwith a secure processor. This is because

the party without a secure processor can complete the remaining computation immediately,

thereby breaking fairness. This limitation, again, remains even if the adversary is only

fail-stop
8
, limiting the usefulness of the protocol in scenarios where not all participants

have the necessary hardware.

However, it is notable that while general functions cannot be Δ-fairly computed when

only one party has an attested execution processor, the protocol can Δ-fairly compute a

broader range of functions than is achievable in a setting without any secure processors.

[27] illustrates this by proposing how a Δ-fair 2-party coin toss protocol.

Finally, a significant limitation is the adversary’s ability to choose the round 𝑟 in which

to abort. Although the protocol ensures that, if an adversary leans the output in round 𝑟 ∗,
an honest party learns the output in twice the time (Δ(𝑟 ∗) = 2𝑟 ∗) it takes the adversary,
this time difference can still be significant.

8
In the fail-stop model, an adversary can only prematurely abort the protocol, but cannot perform any

other malicious actions such as modifying messages

26

4.4 Gradual Release

4.4 Gradual Release

The concept of “Gradual Release”, is a different fairness notion. When employing Gradual

Release, secret information are exchanged gradually between two mutually distrusting

parties. This notion of fairness ensures that neither party can cheat the other by releasing

secrets in small chunks, each verifiable before the next.

4.4.1 Definition and Context

In this setup, we consider two parties: Party A, which can be either honest or potentially

corrupted by an adversary, and Party B, which always acts honestly. Party B always

initiates the process by sending a piece of its secret to party A. Since party B always starts

the exchange, there’s no advantage for it to abort prematurely; it would simply withhold

its own secret without gaining any of party A’s information. Therefore, only party A, if

corrupted, has the decision to continue or abort the protocol after each round.

Definition 4.4.1 (Gradual Release). With gradual release, if an adversary decides to abort

the protocol after releasing part of its secret, then at most the adversary would have

one more chunk (e.g. bit) of the honest party’s secret than the honest party has of the

adversary’s secret.

4.4.1.1 Gradual Release Ideal Model

The gradual release ideal model involves the gradual, bit-by-bit release of secrets. In this

model, a trusted third party mediates the exchange between a party (party A) that may

be under the control of an adversary and an honest party (party B). The adversary can

potentially decide to abort the computation after revealing part of its secret, but before

Party B receives the corresponding part of its secret.

This trusted party, possessing the secrets of both party A and party B, first divides each

secret into 𝑘 equally sized chunks, possibly single bits. The secrets are represented as

𝑠𝐴
1
, 𝑠𝐴

2
, . . . , 𝑠𝐴

𝑘
and 𝑠𝐵

1
, 𝑠𝐵

2
, . . . , 𝑠𝐵

𝑘
for Party A and Party B respectively.

In the first round, the trusted party sends 𝑠𝐴
1
to party A. If party A is honest, it will

always send a continue message to the trusted party. If party A is adversarial, it can choose

to send either a continue or a abort message. On receiving a “continue” message, the

trusted party sends 𝑠𝐵
1
to party B and the process moves on to the next chunk.

If Party A (the adversary) sends an abort message after the trusted party has sent 𝑠𝐴𝑖
to Party A, where 𝑖 is the current round, the trusted party then terminates the protocol.

Thus, when the protocol is terminated, party A has exactly one more chunk than party B.

The outputs from this model are denoted as OUT
grad,𝐴

𝐹,𝐴(aux) (𝑥,𝑦, 𝑛) for Party A and

OUT
grad,𝐵

𝐹,𝐴(aux) (𝑥,𝑦, 𝑛) for Party B. The combined output of the model, represented by

IDEAL
grad

𝐹,𝐴(aux) (𝑥,𝑦, 𝑛), includes the outputs of both parties after execution in this Gradual

Release Ideal Model. The formal definition of this output is

IDEAL
grad

𝐹,𝐴(aux) (𝑥,𝑦, 𝑛)
def

=

(
OUT

grad,𝐴

𝐹,𝐴(aux) (𝑥,𝑦, 𝑛),OUT
grad,𝐵

𝐹,𝐴(aux) (𝑥,𝑦, 𝑛)
)

27

4 Fairness Notions and Protocols

4.4.2 Protocols that achieve Fairness using Gradual Release

Blum, 1983 [5] In their paper, Blum, 1983 [5] proposed a protocol that embodies the

concept of gradual release and allows two adversaries to exchange secrets fairly. Specifi-

cally, the protocol addresses a scenario where two parties, Alice and Bob, wish to securely

exchange secret prime factors of their respective public composite numbers.

Each public composite number, 𝑛𝐴 and 𝑛𝐵 , is a product of two primes: 𝑛𝐴 = 𝑝1𝐴 × 𝑝2𝐴

and 𝑛𝐵 = 𝑝1𝐵 × 𝑝2𝐵 . The prime factors 𝑝1𝐴 and 𝑝1𝐵 are the secrets that Alice and Bob want

to exchange.

While both Alice and Bob know their own factors and the composite number of the

other party (𝑛𝐵 and 𝑛𝐴 respectively), neither has knowledge of the prime factors of the

other’s composite number.

The protocol begins by constructing the numbers𝑛𝐴 and𝑛𝐵 , each of which is the product

of two randomly generated 60-digit prime numbers. The numbers are then swapped and

checked for validity: they must not be a unit, an even number, a prime, a non-trivial power

of an integer, or anything other than a positive integer of 120 digits (or less). If any of

these checks fail, the other party has violated the protocol and the process is terminated.

Next, Alice and Bob randomly choose 100 numbers 𝑎𝑖 and 𝑏𝑖 respectively from the set

𝑍𝑛𝐵/2 = (1, 2, ..., [𝑛𝐵/2]) and 𝑍𝑛𝐴/2 = (1, 2, ..., [𝑛𝐴/2]). They compute the greatest common

divisor gcd(𝑎𝑖 , 𝑛𝐵) and gcd(𝑏𝑖 , 𝑛𝐴) respectively. If one of the numbers 𝑎𝑖 or 𝑏𝑖 splits 𝑛𝐵 or

𝑛𝐴, the process is aborted, as this indicates either that 𝑛𝐵 or 𝑛𝐴 has more than two prime

factors or, under certain assumptions, that the splitting party was lucky enough to pick a

factor of the other number. If none of the numbers split 𝑛𝐵 or 𝑛𝐴, Alice and Bob compute

and exchange the quadratic residues 𝑎2

𝑖 mod 𝑛𝐵 and 𝑏
2

𝑖 mod 𝑛𝐴 respectively.

In number theory, a number 𝑎 is said to be relatively prime to another number 𝑛 if their

greatest common divisor (GCD) is 1. If 𝑛 is a composite number, that is, the product of

two different odd prime numbers, 𝑎 has an interesting property. The number 𝑎, which is

relatively prime to 𝑛, will have exactly four square roots modulo 𝑛. In other words, there

will be four different numbers 𝑥1, 𝑥2, 𝑥3, 𝑥4 such that 𝑥2

𝑖 ≡ 𝑎 mod 𝑛 for 𝑖 = 1, 2, 3, 4. This

property is discussed in detail in [21].

Alice and Bob then calculate the four square roots mod𝑛𝐴 respectively mod𝑛𝐵 of each

number received from the other party. Since the prime factors of 𝑛𝐴 and 𝑛𝐵 are known

by Alice respectively Bob, this can be done efficiently. If one of the numbers is not a

square root mod𝑛𝐴 or mod𝑛𝐵 , the process is aborted, as this indicates cheating. For each

number, the four square roots are ordered by size and the two largest roots are deleted.

The remaining two roots are denoted as sqrt1(𝑏 𝑗 mod 𝑛𝑎), sqrt2(𝑏 𝑗 mod 𝑛𝑎) respectively
sqrt1(𝑎 𝑗 mod 𝑛𝑏), sqrt2(𝑎 𝑗 mod 𝑛𝑏).
Finally, Alice and Bob exchange 100 pairs of square roots, one bit at a time, or more

precisely, one hundred pairs of bits (i.e. 200 bits) at a time, with the most significant bits

first. It should be noted that the number 100 is chosen arbitrarily by [5] to suggest a

reasonable value for the exchange Throughout the exchange, they ensure that the other

party is not cheating by checking the most significant bits of the square roots received

from the other party to make sure that one of these strings matches the most significant

bits of the number they initially selected. If either of these checks fails, the protocol is

aborted.

28

4.4 Gradual Release

This protocol provides a method of exchanging secrets bit by bit, with the revealing party

providing a proof of validity for each bit revealed. This mitigates the risks associated with

traditional bit-by-bit exchange methods, such as the other party aborting the exchange

after receiving but not sending a bit, or the other party sending a “junk” bit. The protocol

achieves fairness by ensuring that the level of unfairness, measured as the difference

between the number of bits revealed by each party, remains small at all times.

Pinkas, 2003 [28] In their work, Pinkas, 2003 [28] discuss Yao’s protocol [30] for secure

two-party computation and its limitations. Yao’s protocol allows two parties to compute a

function, ensuring privacy. However, one of the main limitations of Yao’s protocol is the

lack of fairness. One party can learn its output first and terminate the protocol before the

other party has learned its output.

To overcome this limitation, [28] propose a modification of Yao’s protocol. They suggest

using commitments on the outputs of both parties. After exchanging the commitments,

the parties gradually reveal the openings for their commitments bit by bit, to prevent one

party from gaining an advantage over the other.

However, this solution introduces a new problem. A more powerful party could use

parallel brute-force attacks to discover the rest of the opening faster. To solve this problem,

[28] introduce a new concept called “gradual release timed commitments”, which combines

timed commitments with a gradual release of the commitments opening.

Timed commitments, as introduced by Boneh and Naor, 2000 [6] represent an extension

of standard commitments that includes a forced opening phase that allows the receiver to

recover the committed value without the help of the sender. This ensures that the commit-

ted value remains hidden from the receiver only for a specified time and is resistant to

parallel attacks. Thus, even if the receiver has significantly more computational resources,

it cannot discover the committed value much earlier than a single-processor receiver.

By combining these timed commitments with the concept of gradual release, which

refers to the slow release of information over a period of time, the modified protocol

guarantees that the commitments opening is released in a timed manner.

4.4.3 Limitations and Impossibility Results

One of the major limitations of the gradual release protocols described above is that they

can be computationally intensive and time-consuming, as secrets are exchanged bit by bit.

This can be impractical for larger secrets or in time-sensitive applications.

The gradual release protocols described above are designed for two-party settings.

The Blum, 1983 [5] protocol assumes that the parties have equal computing power

and knowledge of algorithms, and that factoring a number that is a product of two large

“randomly chosen” primes is hard.

Protocols using timed commitments, such as the one proposed by Pinkas, 2003 [28],

rely on the assumption that a particular computational task (e.g. factoring a large number)

cannot be performed by the receiver within a given time. This assumption may not always

hold, especially as computing power advances. Timed commitments, are designed to be

resistant to parallel attacks. However, this assumes that the party does not have access to

significantly more computational resources than expected.

29

4 Fairness Notions and Protocols

Gradual release does not completely eliminate the risk of a party aborting the protocol

prematurely. Although the concept mitigates this risk by reducing the advantage a party

can gain from aborting, a party can still learn some parts of the secret before aborting.

4.5 Fairness with Penalties

Fairness with penalties is a concept in secure computation where an adversarial party

is forced to pay a predetermined monetary penalty if it chooses to abort the protocol

after receiving its output. This incentivizes parties to behave honestly and complete the

protocol.

4.5.1 Protocols that achieve Fairness with Penalties

Bentov and Kumaresan, 2014 [4] A study by Bentov and Kumaresan, 2014 [4] proposed

a new approach to fairness in secure computation by adding a monetary penalty for

adversarial parties that abort after receiving their output. To implement this, they utilized

the bitcoin network and extended its application to a wide range of scenarios, including

those with a dishonest majority.

Central to their protocol is an ideal functionality called F★
𝐶𝑅

(claim or refund), which is

built around specific properties of bitcoin that are critical to its penalty-enforced fairness

mechanism. In essence, F★
𝐶𝑅

allows a party 𝑃𝑠 to deposit an amount 𝑥 of bitcoin while

specifying a certain condition Φ𝑟 . If party 𝑃𝑟 can provide a witness𝑤𝑟 satisfying Φ𝑟 (𝑤𝑟) = 1

within a certain time, it can claim the deposited amount. Otherwise, 𝑃𝑠 can reclaim the

amount after the timeframe. The ideal functionality F★
𝐶𝑅

defined as follows:

Definition 4.5.1 (F★
𝐶𝑅
). F★

𝐶𝑅
with session identifier sid, running with parties 𝑃1, . . . , 𝑃𝑛 , a

parameter 1
_
, and an ideal adversary 𝑆 proceeds as follows:

• Deposit phase. Upon receiving the tuple (deposit, sid, ssid, 𝑠, 𝑟 , 𝜙𝑠,𝑟 , 𝜏, coins(𝑥)) from
𝑃𝑠 , record the message (deposit, sid, ssid, 𝑠, 𝑟 , 𝜙𝑠,𝑟 , 𝜏, 𝑥) and send it to all parties. Ignore
any future deposit messages with the same ssid from 𝑃𝑠 to 𝑃𝑟 .

• Claim phase. In round 𝜏 , upon receiving (claim, sid, ssid, 𝑠, 𝑟 , 𝜙𝑠,𝑟 , 𝜏, 𝑥,𝑤) from 𝑃𝑟 ,

check if (1) a tuple (deposit, sid, ssid, 𝑠, 𝑟 , 𝜙𝑠,𝑟 , 𝜏, 𝑥) was recorded, and (2) if

𝜙𝑠,𝑟 (𝑤) = 1. If both checks pass, send (claim, sid, ssid, 𝑠, 𝑟 , 𝜙𝑠,𝑟 , 𝜏, 𝑥,𝑤) to all parties,

send (claim, sid, ssid, 𝑠, 𝑟 , 𝜙𝑠,𝑟 , 𝜏, coins(𝑥)) to 𝑃𝑟 , and delete the record

(deposit, sid, ssid, 𝑠, 𝑟 , 𝜙𝑠,𝑟 , 𝜏, 𝑥).

• Refund phase: In round 𝜏 + 1, if the record (deposit, sid, ssid, 𝑠, 𝑟 , 𝜙𝑠,𝑟 , 𝜏, 𝑥) was not
deleted, then send (refund, sid, ssid, 𝑠, 𝑟 , 𝜙𝑠,𝑟 , 𝜏, coins(𝑥)) to 𝑃𝑠 , and delete the record

(deposit, sid, ssid, 𝑠, 𝑟 , 𝜙𝑠,𝑟 , 𝜏, 𝑥).

Definition 4.5.2 (Fairness with Penalties). A protocol is said to be fair with penalties if it
achieves secure computation by ensuring that

• An honest party never suffers a penalty.

30

4.5 Fairness with Penalties

• If an adversary 𝑆 learns the output but aborts without delivering the output to honest

parties, each honest party is compensated.

This is achieved by the ideal functionality 𝐹★
𝑓
, which works as follows:

Definition 4.5.3 (F★
𝑓
). Functionality 𝐹★

𝑓
with session identifier 𝑠𝑖𝑑9 running with parties

𝑃1, . . . , 𝑃𝑛 , a security parameter _, and simulator 𝑆 that corrupts parties {𝑃𝑠}𝑠∈𝐶 proceeds as

follows. Let 𝐻 = [𝑛] \𝐶 and ℎ = |𝐻 |. Let 𝑑 be a parameter representing the safety deposit,

and let 𝑞 denote the penalty amount. The functionality is divided into the following phases:

• Input phase: The functionality receives inputs for the function 𝑓 from all parties.

Honest parties deposit a fixed amount of 𝑐𝑜𝑖𝑛𝑠 (𝑑). 𝑆 may deposit coins, which may

be used to compensate honest parties if 𝑆 aborts after receiving outputs.

• Output phase: Honest parties will be refunded their initial deposits. Depending on

the coins deposited by 𝑆 :

– If insufficient coins are deposited, 𝑆 does not receive the output and may pay a

penalty to some subset 𝐻 ′ of honest parties.

– If enough coins are deposited, 𝑆 looks at the output and may decide:

∗ Deliver the output to all parties, and possibly pay an additional penalty to

some subset 𝐻 ′′.

∗ To abort. In this case, all honest parties are compensated with the penalty

deposited by 𝑆 .

The specification of sets 𝐻 ′ and 𝐻 ′′ in the definition may seem somewhat unnatural.

However, these sets are required to prove the security properties of the functionality. 𝐻 ′

represents the honest parties that have actively participated in a specific phase of the

protocol by revealing their tokens, and (𝐻 ′′ deals with cases where the last party is corrupt

and makes selective deposit claims. For a detailed understanding, we refer to the original

work [4].

The functionality F★
𝐶𝑅

can be implemented efficiently in the Bitcoin network using the

protocol proposed in [4]. The depositing party, 𝑃𝑠 , first creates a transaction that deposits

the coins and sets the redemption condition (either the signatures of both parties, or the

valid witness and the signature of 𝑃𝑟). 𝑃𝑠 then prepares a refund transaction that issues this

deposit back to itself, set to become valid only after the timeframe. After 𝑃𝑟 has signed this

refund transaction, 𝑃𝑠 broadcasts the deposit transaction to the Bitcoin network, effectively

locking the coins in the deposit. 𝑃𝑟 can claim the coins by providing the required witness

and signature, while 𝑃𝑠 can reclaim the coins by broadcasting the signed refund transaction

after the timeframe.

The concept of fair reconstruction proposed by Bentov and Kumaresan, 2014 [4] aims

to ensure that an honest party never has to pay a penalty. Also, if the adversary gets to

9
The session identifier 𝑠𝑖𝑑 uniquely identifies this specific execution of the functionality, ensuring isolation

from other concurrent executions.

31

4 Fairness Notions and Protocols

reconstruct the secret, but an honest party does not, then the honest party is compensated.

This is made possible by using the F★
𝐶𝑅

functionality.

For this, the authors use a public Non-Malleable Secret Sharing (see Section 3.3.4) scheme.

In this scheme, the secret is split into “tag-token” pairs using the Share algorithm. The

secret is then shared between the parties so that each party 𝑃𝑖 has all tags (AllTags) and

its own token (Token𝑖). The secret can only be reconstructed if all tokens are known.

These tags and tokens are used to specify transactions in the context of the F★
𝐶𝑅

func-

tionality. A deposit can only be claimed by a receiving party if it reveals the corresponding

tokens associated with the tags used in the transaction.

In the two-party case, let’s denote the parties as 𝑃1 and 𝑃2, and their respective tokens

as 𝑇1 and 𝑇2. The protocol is executed as follows

1. 𝑃1 creates a F★
𝐶𝑅

deposit which can only be claimed by 𝑃2 if 𝑃2 presents both tokens

𝑇1 and 𝑇2.

2. 𝑃2 makes a similar deposit that can only be claimed by 𝑃1 if 𝑃1 presents the token 𝑇1.

The deposits are then claimed in reverse order. First, 𝑃1 claims the deposit made by 𝑃2

by revealing the token 𝑇1. This revealed token, 𝑇1, can then be used by 𝑃2 (along with its

own token, 𝑇2) to claim the deposit made by 𝑃1.

This protocol ensures that if both parties are honest, neither pays a penalty and both

receive the tokens. It guarantees fair reconstruction and protects against scenarios where

a malicious party might try to abort the process after the other party has made its deposit.

In particular, if 𝑃2 aborts after 𝑃1 has made its deposit, 𝑃2 cannot claim 𝑃1’s deposit,

since 𝑃1 will not reveal its token 𝑇1 without 𝑃2 making its deposit. Similarly, if 𝑃1 was

malicious and aborted without making its deposit, an honest 𝑃2 will not make a deposit,

ensuring that neither party learns the secret nor loses its deposit.

Lindell, 2008 [23] In contrast to the Bentov and Kumaresan, 2014 [4] study, which uses

a bitcoin-based penalty enforced fairness mechanism, Lindell, 2008 [23] introduces a

legal approach to enforcing fairness in two-party computation. Their approach relies on

the established legal status of digital signatures to ensure that if fairness is violated, the

disadvantaged party holds a digitally signed cheque from the other participant. This allows

fairness to be legally enforced: any violation will result in financial loss to the opposing

party.

Their protocol works in such a way that either both parties receive output, maintaining

fairness, or one party receives output while the other receives a digitally signed cheque

that can be presented to a court or a bank. The only way one party can avoid paying the

amount on the cheque is to reveal the other party’s output, thereby restoring fairness.

4.5.2 Limitations and Impossibility Results

Although the fairness with penalties approach, as proposed by Bentov and Kumaresan,

2014 [4], provides an interesting approach to the fairness problem in secure computations,

there are certain limitations and impossibility results to consider.

32

4.6 Probabilistic Fairness

Number of parties: Both two-party and multi-party settings are considered. In the multi-

party case, the protocols are designed to work with a dishonest majority.

Adversary Model: The proposed protocols consider a malicious adversary that behaves

strategically to potentially abort the protocol after learning the output, but before delivering

it to honest parties.

Dependence on monetary penalties: Fairness in these protocols is enforced by monetary

penalties. This is on the assumption that the parties involved are economically rational

and that the threat of financial loss will deter them from dishonest behaviour. However,

this may not always be the case. In scenarios where the value of the secret information is

much higher than the penalty, a malicious party might still choose to act dishonestly.

Dependence on Bitcoin: The protocol, as proposed by Bentov and Kumaresan, 2014 [4],

relies on the characteristics of bitcoin (or similar cryptocurrencies) and the underlying

blockchain technology. It is therefore susceptible to the limitations and uncertainties of

these technologies. A significant drop in the value of bitcoin could have an impact on the

effectiveness of this protocol. In addition, transactions on the Bitcoin network take time

to validate and confirm, which could slow down the protocols and make them unsuitable

for time-sensitive applications.

Further, the protocols require parties to pay deposits. However, this requirement may

discourage parties with limited resources from participating, especially if the deposit is

substantial.

4.6 Probabilistic Fairness

Probabilistic fairness is a form of fairness in secure computation that aims to ensure that

both parties receive their outputs with a high probability.

Probabilistic fairness can be achieved through a sequence of stages, where the likelihood

of both parties receiving their output increases with each stage.

4.6.1 Protocols that achieve Probabilistic Fairness

Luby et al., 1983 [26] Luby et al., 1983 [26] introduced a cryptographic protocol that allows

two mutually distrustful parties, denoted𝐴 and 𝐵, to exchange secret bits “simultaneously”.

In this setting, both parties start with correctly encrypted versions of their secret bits. The

fairness and security of the protocol rests on a fundamental cryptographic assumption

called the Quadratic Residucity Assumption (see Section 3.3.6).

In the context of this protocol, there are a number of integers denoted by _𝑖 . These

are derived from a security parameter _ that both machines receive in unary. Each _𝑖
is defined as 𝑇𝑖 (_), where 𝑇𝑖 (_) is a specific polynomial in _, depending on the design

parameters of the protocol. However, we won’t go into the specifics of 𝑇𝑖 (_) here.
The protocol aims to achieve the following definition of fairness:

33

4 Fairness Notions and Protocols

Definition 4.6.1 (Probabilistic fairness). Probabilistic fairness in secure computing is a

model of fairness that refers to the probability of both parties receiving their intended

outcomes.

For a cryptographic protocol to achieve probabilistic fairness, it should have certain

properties:

Output Delivery: If all the parties follow the protocol, they should receive their output

with a high probability, close to one, specifically 1 − 1

2
_

1

, where _1 is a security parameter

[26].

Progressiveness: The protocol proceeds in rounds, and each round increases the proba-

bility that each party will receive its output.

Equal Opportunity: The distribution of outputs to all participating parties should not

advantage any particular party. Each party should have an equal chance of receiving its

output at the end of the process.

Minimal Advantage upon Abort: If a participating party aborts the computation prema-

turely, it should gain only a minimal advantage, if any. This is formalized as 𝑃𝐴 ≤ 𝑃𝐵 + 1

_2

,

where 𝑃𝐴 and 𝑃𝐵 are the probabilities that parties𝐴 and 𝐵 receive their outputs, respectively,

and _2 is a security parameter.

The protocol introduces a new form of coin toss, which can be better understood by

visualizing a biased wheel. This wheel can be imagined as a flat, two-sided disc with an

axis through the centre that allows it to rotate. Two points are chosen on the circumference

of the wheel which divide it into a large arc and a small arc. The length of the larger arc is

a fraction
1

2
+ 1

_
of the total circumference.

Two colours are chosen with equal probability to be the secret bits of 𝐴 and 𝐵. The

parties encode their chosen colour on the wheel by painting the large arc with it. The

small arc is painted with the other colour. The wheel is positioned in such a way that each

party can see only one side of the wheel.

The wheel is now covered so that neither party can see it, then the wheel is turned so

that, if uncovered, each party can see the side that the other party has painted. Then the

wheel is spun by both parties having an equal opportunity to spin and stop the wheel

randomly once. Finally, both parties (first𝐴, then 𝐵) open a small slit at the top and observe

the colour. At each turn, the probability that they see the other’s chosen colour is
1

2
+ 1

_
.

The protocol is based on the simulated construction of a symmetrically biased wheel.

Initially, both parties 𝐴 and 𝐵 independently generate large composite numbers 𝑛𝐴 and

𝑛𝐵 without revealing their factorization, the encryption of their secrets 𝑎 and 𝑏, and the

non-residues 𝑦𝐴 and 𝑦𝐵 mod 𝑛𝐴 and 𝑛𝐵 , respectively. The secrets 𝑎 and 𝑏, which are

assumed to be bits, are encrypted as such. If the secret bit is 1, the encrypted secret is a

quadratic residue mod 𝑛𝐴 respectively 𝑛𝐵 . Otherwise, the encrypted secret is a quadratic

non-residue mod 𝑛𝐴 respectively 𝑛𝐵 .

Next, both parties independently construct lists 𝐿𝐴 and 𝐿𝐵 of _4 elements in 𝑍𝑛𝐴 and,

𝑍𝑛𝐵 respectively. The first (12 +
1

_4

) · _4 elements are randomly chosen quadratic residues,

while the other half are quadratic non-residues. These lists are encrypted using a quadratic

residue scheme (see [5]).

Then each party randomly chooses a cyclic permutation over _ elements, Π𝐴 and Π𝐵 ,
and sends the encrypted version to the other party.

34

4.6 Probabilistic Fairness

Then 𝐴 applies Π𝐴 to its ordered list 𝐿𝐴 and sends Π𝐴 (𝐿𝐴) to 𝐵. The same is done by

𝐵, which applies Π𝐵 to its ordered list 𝐿𝐵 and sends Π𝐵 (𝐿𝐵) to 𝐴. This step mimics the

spinning of the wheel. To ensure that the total spin on the wheel is the same for both

parties, 𝐴 applies Π𝐴 to Π𝐵 (𝐿𝐵), the list it received from 𝐵. Similarly, 𝐵 applies Π𝐵 to

Π𝐴 (𝐿𝐴).
At this point, each party asks the other to reveal the first element, 𝑡𝐵 from the list

received Π𝐴 (Π𝐵 (𝐿𝐵)) respectively 𝑡𝐴 from the list received Π𝐵 (Π𝐴 (𝐿𝐵)), without disclosing
its quadratic residucity. For this, 𝐴 randomly chooses 𝑟𝐵 ∈ 𝑍★

𝑛𝐵
and sends 𝐵 the message

𝑚𝐵 , where 𝑚𝐵 is selected with probability
1

2
to be one of the following two numbers:

𝑡𝐵 ·𝑏 · 𝑟𝐵 · 𝑟𝐵 (mod 𝑛𝐵) or 𝑡𝐵 ·𝑏 · 𝑟 ′𝐵 · 𝑟𝐵 ·𝑦𝐵 (mod 𝑛𝐵). 𝐵 does the same by sending𝑚𝐴 to𝐴.

After receiving this message, the other party determines if it is a quadratic residue or

non-residue mod 𝑛𝐵 respectively mod 𝑛𝐴, and communicates this to the other party.

With this information, the parties can now compute whether the first element of the list

(𝑡𝐵 respectively 𝑡𝐴) have the same residucity as the other parties secret bit 𝑏 respectively 𝑎.

As the lists 𝐿𝐴 and 𝐿𝐵 contain more elements with quadratic residues, the first element

being a quadratic residue is more likely, which the probability being
1

2
+ 1

_4

. With this

in mind, a secret and the first element of the list sharing the same residucity increased

the probability of the secret also being a quadratic residue. Contrary, opposing residucity

would increase the probability of the secret also not being a quadratic residue.

This process is repeated many times. After _3 turns, both A and B will know each

other’s bit with probability greater than 1 − 1

2

_1

.

4.6.2 Limitations and Impossibility Results

The probabilistic fairness protocol described above, however, also has its own limitations

and problems.

Communication Model: The protocol assumes a synchronous communication model

where messages are exchanged in a series of rounds.

Number of parties: The protocol described is designed for two-party computation. Ex-

tending it to multi-party computation may require significant changes and introduce new

complexities.

The implementation of probabilistic fairness protocols often involves high computa-

tional and communication costs. For example, the protocol described by Luby et al., 1983

[26] requires numerous rounds of communication between the parties, with each round

involving the encryption and exchange of quadratic residues and non-residues.

The probabilistic nature of fairness in the protocol can also lead to a degree of asymmetry,

where one party has a slightly higher chance of learning the other party’s bit before its

own is revealed. This can potentially allow an aborting party an advantage. It is therefore

possible for one party to learn the output and then abort the protocol, denying the other

party its output. This possibility, however small, introduces an element of risk into the

protocol that may be unacceptable for some applications.

35

5 Interrelations Between Fairness Notions

The concept of fairness in multi-party computation (MPC) spans a wide range of appli-

cations, protocols, and theoretical boundaries. This chapter explores the interrelations

between the different notions of fairness explored in this thesis.

5.1 Complete Fairness and Partial Fairness

Complete Fairness and Partial Fairness share the common goal of ensuring that all parties

are treated fairly in terms of receiving the output. In both cases, the goal is that either all

parties receive the output or no party does.

However, while the principles may appear to be the equivalent, their practical imple-

mentations and guarantees differ significantly.

Complete Fairness, as its name suggests, provides an absolute guarantee. When a

protocol is said to achieve complete fairness, it means that under no circumstances can an

adversary receive the output without the honest parties also receiving the output.

Partial fairness provides a more flexible approach. While still aiming for a fair outcome,

it recognizes that in certain scenarios complete fairness may not be achievable as the

environment does not provide the necessary preconditions (e.g. an honest majority). Here,

if an adversary is able to accurately predict the critical round and abort, he could receive

the output while denying it to the honest parties. However, it is important to note that the

probability of an adversary accurately predicting the critical round is only
1

𝑅
, where 𝑅 is

the number of rounds.

This inherent vulnerability of partial fairness is a trade-off, allowing for weaker as-

sumptions at the cost of a weakened fairness guarantee. Compared to the protocols

described that achieved Complete Fairness, for partial fairness, no assumptions for an

honest majority, public bulletin boards, blockchains or a trusted execution environment is

required.

5.2 Probabilistic Fairness and Gradual Release

Probabilistic Fairness and Gradual Release are other approaches to ensuring fairness in

multiparty computations. Contrary to Complete and Partial Fairness, these approaches do

not try to stop an adversary from gaining advantage. Rather, their common basis is that,

while an adversary may gain some advantage by aborting, the amount of this advantage is

bounded by the security parameter.

The Gradual Release method, discussed in section 4.4, works by breaking secret informa-

tion into bits and sharing them one at a time. This way, if one party decides to abort, they

37

5 Interrelations Between Fairness Notions

only gain an advantage of one bit of the secret. Essentially, it’s an incremental approach,

minimizing risk at each step.

On the other hand, probabilistic fairness, described in section 4.6, takes a different

approach. It uses a series of stages, and with each stage the chances of both parties getting

their outputs increase. So if an adversary tries to gain an unfair advantage by aborting, their

probability of computing the current output is only negligible (in the security parameter)

higher than the other parties probability of computing their output.

5.3 Δ-Fairness and Fairness with Penalties

Both Δ-Fairness and Fairness with Penalties do not attempt to prevent a malicious party

from gaining an advantage by aborting the protocol after receiving its output. However,

they differ in the solutions they provide for dealing with the disadvantaged party.

Δ-fairness ensures that the honest party eventually receives the output, even if they

have to wait. It provides honest parties with a guarantee that, when a malicious party

aborts in a round 𝑟 , the honest party will learn their output in round Δ(𝑟).
In contrast, Fairness with Penalties introduces a monetary penalty as a means of dis-

couragement. If an adversary aborts after receiving his outcome, he is penalized a pre-

determined monetary penalty. This approach doesn’t try to ensure that the honest party

gets the result, but rather tries to discourage malicious actions.

5.4 Complete Fairness and Δ-Fairness

Complete Fairness and Δ-Fairness both guarantee that either all participants receive the

outcome or none do.

The difference is in the timing of when the parties receive their output. While Complete

Fairness ensures that all parties receive their output at the same time, Δ-Fairness allows
that honest parties may receive their output after a delay.

38

5.5 Overview

5.5 Overview

Table 5.1: Protocols that achieve complete, partial, Δ-fairness, gradual release, fairness
with penalties, and probabilistic fairness

Name/Citation Fairness Notion Requirements Efficiency
Choudhuri et al., 2017

[10]

Complete Fairness Public bulletin board runtime 𝑂 (1), but

size of release token

grows with number

of parties

Gaddam et al., 2023

[12]

Complete Fairness Blockchains, TEE, at

most 𝑡 < 𝑛 parties cor-

rupt

runtime 𝑂 (1)

Gordon et al., 2008

[17]

Complete Fairness Two-party setting,

Hybrid model

Boolean AND in

Θ(𝑚) rounds, where
𝑚 = poly(𝑛)

Gordon and Katz,

2008 [15]

Partial Fairness Two-party setting runtime 𝑂 (𝑟) rounds,
𝑟 = 𝑝 · |𝑌 |, where 𝑝 is a
polynomial and |𝑌 | is
the size of the domain

𝑌

Bailey et al., 2022 [3] Partial Fairness Verifiable Delay Func-

tions (VDFs)

Honest work to re-

cover output is 𝑂 (𝑅)
Pass et al., 2016 [27] Δ-Fairness Two-party setting,

Secure processors

with tamper-resistant

clocks

runtime bounded by

Δ(𝑔(_)), where 𝑔(_))
is a fixed polynomial

Blum, 1983 [5] Gradual Release Two-party setting runtime 𝑂 (1) for a

single bit

Pinkas, 2003 [28] Gradual Release Two-party setting,

Timed commitments

runtime 𝑂 (_), with

security parameter _

Bentov and Kumare-

san, 2014 [4]

Fairness with Penal-

ties

Reliance on the Bit-

coin network, Mone-

tary penalty

runtime 𝑂 (1), how-

ever bitcoin transac-

tion delays occur

Lindell, 2008 [23] Fairness with Penal-

ties

Two-party setting, ex-

ternal authority

runtime 𝑂 (1)

Luby et al., 1983 [26] Probabilistic Fairness Quadratic Residucity

Assumption, Syn-

chronous communi-

cation, Two-party

setting

runtime 𝑂 (_)

39

6 Practical Implications of Fairness Notions

6.1 Complete Fairness

The general functions to achieve Complete Fairness can only be used in scenarios where

the majority of participants behave honestly. This means it is ideal for environments

where there’s an inherent trust among the majority. However, even without an honest

majority, Complete Fairness is still achievable for specific functions.

Application Complete Fairness is ideal for situations where guaranteed fairness, in the

sense that no adversary can gain any advantage by aborting, is critical, and where an

honest majority can be guaranteed. A possible scenario could be a democratic election in

a small, closed organization or community where all participants know each other and

can vouch for the honesty of the majority.

Implications The main practical challenge with Complete Fairness is its limitations in

general settings: it can’t be achieved for general functions if there is no honest majority.

This limits its applicability to scenarios where trust can be largely assured, or only specific

functions (see [17]) need to be evaluated.

6.2 Partial Fairness

Partial fairness is a compromise approach that seeks to achieve the highest level of fairness

when the ideal conditions for full fairness, namely an honest majority, aren’t present.

Application Partial Fairness is particularly useful in settings where complete fairness is

desirable but not guaranteed due to the lack of an honest majority. If the probability of an

adversary gaining an advantage (e.g. 1/p, where p is a polynomial) is low, partial fairness

becomes an attractive approach for many practical applications.

Implications This flexibility is both a strength and a weakness. Although it enables the

function of systems with no honest majority, there is the risk of potential exploitation,

however limited. Therefore, when using partial fairness, the risks must be evaluated.

6.3 Δ-Fairness

Δ-Fairness introduces a concept where an acceptable time difference is allowed between

the adversary and the honest party in obtaining the outcome of the computation. During

this period, the honest party is assured of learning their output, even if the malicious party

decides to abort the procedure.

41

6 Practical Implications of Fairness Notions

Application Δ-Fairness is very efficient, since it requires only 𝑂 (1) cryptographic com-

putations. This level of efficiency, similar to many Trusted Execution Environment (TEE)-

based schemes, makes Δ-Fairness ideal for scenarios where fast computation is a priority.

In particular, in non-time-sensitive use cases where the value of the computation result

does not degrade rapidly over time, Δ-Fairness can be almost as powerful as Complete

Fairness. It can be used in various domains, such as privacy-preserving data mining, where

computation speed is critical, or in the structured exchange of statistical information

between entities such as companies, or in key exchange. Another potential application

is elections, where the process is generally not time-sensitive, and the focus is on the

integrity and fairness of the result rather than the speed of computation.

Implications Δ-Fairness might not be ideal for time-sensitive applications where the

value output decreases over time. If a malicious party delays the delivery of the honest

parties outputs, in time-sensitive applications, the malicious party would be advantaged,

even though the protocol limits the delay.

For example, consider a secure multi-party computation where several companies

compute joint statistics on business data for which it is advantageous to know the result

on the stock market. Corrupt participants could gain an unfair advantage if they can abort

the computation and thus gain access to the output, while the honest participants receive

their output after a possibly significant delay. This illustrates a scenario where Δ fairness

may not be useful because the information is time-sensitive.

6.4 Gradual Release

Gradual release builds on the idea of sharing information in bits, releasing them gradually

to minimize the advantage any party could gain by aborting early. By releasing secrets bit

by bit, this method ensures that each party only risks a small portion of the secret at any

given time.

Application Key exchange is an example of a gradual release application, especially since

keys are often distributed randomly. In a key exchange protocol, parties attempt to share

a secret key. The gradual release method ensures that the key is exchanged bit by bit, and

because the bits of the key are randomly distributed, there’s no specific number of bits

after which an adversary can gain a significant advantage by aborting.

Implications However, there are inherent limitations to this concept. Firstly, for small

secrets, especially those of a few bits, gradual release isn’t as effective. This is because

an adversary’s advantage in obtaining even one bit may be too great. The approach is

therefore better suited to applications involving larger secrets.

In addition, the effectiveness of the gradual release method depends on how the informa-

tion is distributed within the data chunks. If there are clusters of critical data, an adversary

aware of this distribution could strategically abort the process after obtaining these bits.

It’s therefore important that the important data is randomly distributed throughout the

secret to ensure the effectiveness of the approach. Randomly generated keys are a good

example.

42

6.4 Gradual Release

6.4.1 Fairness with Penalties

Fairness with Penalties is based on the idea of discouraging malicious behaviour by

introducing monetary penalties. Unlike traditional cryptographic approaches that focus

on the computational aspect of security, this notion combines the computational world

with economic principles.

Application An interesting application of fairness with penalties can be seen in secure

lotteries. In a multi-party setting, a protocol for a secure lottery with penalties ensures

that if an adversary aborts after learning the outcome of the lottery but before revealing

the outcome to honest parties, then each honest party is compensated with a pre-specified

amount equal to the lottery prize. This provides an economic disincentive for malicious

actors to act dishonestly and is consistent with the concept of introducing penalties

to enforce fairness. Bentov and Kumaresan, 2014 [4] provides a concrete example by

introducing a protocol for a “secure lottery with penalties”.

Implications Using the bitcoin network to achieve fairness presents several challenges.

First, the time it takes to confirm bitcoin transactions introduces delays into the protocol.

For applications where immediacy is critical, such delays can be problematic. Second,

there’s the issue of transaction fees. Although these fees may be negligible when weighed

against significant penalties, in scenarios where a protocol is executed many times on a

large scale, these accumulated fees could become significant.

When, instead of using bitcoin, a legal approach is used to enforcing fairness with penal-

ties, a protocols efficiency depends heavily on the legal infrastructure and the willingness

and ability of the parties to enforce these digital agreements in court. On a large scale

with many malicious actors, the process could be cumbersome and potentially expensive,

depending on the jurisdiction.

6.4.2 Probabilistic Fairness

Probabilistic Fairness tries to maintain fairness in secure computations by ensuring that the

probability that each participant receives its output increases uniformly with successive

stages, thus limiting the gain that an adversary can achieve by aborting before the end of

the protocol.

Application A simple example of where probabilistic fairness could be applied is in “coin

flipping by phone”. In situations where two parties need a fair way to generate a random

outcome but cannot meet physically, this protocol could serve as a digital alternative to

coin flipping.

Implications The main implication of probabilistic fairness, especially when considered

looking at Luby et al., 1983 [26], is its inherent limitation to dealing with single-bit secrets.

This can be inefficient for multi-bit or longer secrets, as the protocol would have to be run

multiple times for each bit, increasing the runtime.

43

7 Conclusion

This thesis provides an overview of fairness notions in the area of secure multi-party

protocols. In exploring the different notions of fairness in MPC protocols, various con-

cepts such as complete fairness, partial fairness, Δ-fairness, gradual release, fairness with
penalties and probabilistic fairness have been studied. These notions provide a range of

options, each with its own advantages and limitations depending on the context.

The different notions of fairness are interrelated, with trade-offs in terms of certainty,

efficiency, and applicability. Complete fairness, often considered the ideal, ensures that

either all parties receive an output or none do. However, this ideal is not universally

achievable due to theoretical limitations, such as the absence of an honest majority. As a

result, alternative notions such as Partial Fairness, which provides fairness within certain

probability bounds, and Δ-Fairness, which is efficient but may not be suitable for time-

sensitive applications, have been developed. Probabilistic Fairness introduces fairness by

targeting an equal probability of output delivery among the participants. This often comes

at the cost of higher computational and communication overheads. Gradual Release allows

incremental output delivery. Here, the output is delivered on a bit-by-bit basis, limiting

the advantage an adversary can achieve. Fairness with penalties introduces monetary

penalties for malicious behaviour, thus discouraging early aborts.

There are numerous similarities but also differences in these fairness notions. For

example, complete fairness and partial fairness share the common goal of ensuring that all

parties are receiving their output or none. However, they differ in the level of guarantee

they offer. While complete fairness provides a guarantee that either all parties receive the

output or none do, partial fairness allows for a small probability that an adversary could

receive the output while the honest parties do not. However, their practical implementation

and guarantees differ significantly. Both Probabilistic Fairness and Gradual Release limit

the advantage an adversary can gain. Gradual Release limits the adversary’s advantage

to learning only one bit of information at a time. Probabilistic Fairness takes this a step

further by also reducing the likelihood that an adversary can gain even this minimal

advantage by exchanging a single bit over multiple rounds. Both Δ-Fairness and Fairness

with Penalties do not prevent a malicious party from gaining an advantage, but differ

in their solutions for dealing with the disadvantaged party. Δ-Fairness ensures that the
honest party eventually receives the output, even if he has to wait, while Fairness with

Penalties introduces a monetary penalty as a means of discouraging malicious actions.

Achieving fairness in secure multi-party computation (MPC) protocols depends on a

number of assumptions, which often act as constraints. For example, to achieve complete

fairness, the protocol of [10] requires access to a public ledger or bulletin board. The

protocol by [17] is limited to a two-party setting and is only applicable to certain func-

tions, not general ones. Another protocol by [12] assumes the use of Trusted Execution

Environments (TEEs) and blockchains.

45

7 Conclusion

In the area of partial fairness, the protocol by [15] is also limited to two-party settings.

Further, it has limitations when the input and output domains are super-polynomial in

size. In particular, for domains of such size, the protocol can no longer achieve 1/𝑝 fairness

for 𝑝 > 2. The [3] protocol, however, overcomes these limitations and is applicable to

multi-party settings and general functions.

For Δ-Fairness, the protocols require the use of secure processors (see Section 3.3.5)

equipped with tamper-resistant clocks, as highlighted in the work of [27].

In the case of Gradual Release, both the [5] and [28] protocols are designed for two-party

settings and can be computationally intensive and time-consuming.

Fairness with penalties introduces its own set of assumptions. The protocol by [4]

assumes access to the Bitcoin network, along with the delays and fees that come with it.

In contrast, the protocol of [23] requires an external authority such as a bank or a court

to act as an intermediary. While [4] proposes an n-party protocol, [23] is designed for

two-party settings.

Finally, probabilistic fairness, as described in the [26] protocol, assumes a two-party

scenario where only a single bit is exchanged.

Several impossibility results have been identified that highlight the inherent challenges

and limitations of fairness in MPC. For complete fairness, one of the earliest impossibility

results was shown by [11]. They showed that in the absence of an honest majority, complete

fairness is generally impossible. This is because there is always some communication round

in which one party gets knowledge of its output for the first time. If an adversary knows

which round this is, he can stop communicating in that round, thereby obtaining his output,

but without the honest party having learned his output. However, there are exceptions to

this result. For example, complete fairness can be achieved if the parties have access to

a public ledger or bulletin board [10]. Further, a 2-round fair MPC for general functions

is impossible, even with an honest majority. [16]. A more recent impossibility result in

the context of Δ fairness states that if at least one party is not equipped with an attested

execution processor, it is impossible to implement UC-secure multiparty computation

without additional setup assumptions, even if all other parties are equipped with an attested

execution processor (see Section 3.3.5) [27].

The practical implications of the notions of fairness vary and depend on the context.

Complete fairness is best suited to environments where an honest majority can be assured,

such as in small, closed organizations. Its applicability is limited to certain functions in

the absence of an honest majority. Partial fairness offers a compromise that is useful in

situations where complete fairness is desirable, but an honest majority is not guaranteed.

Δ-Fairness is efficient and ideal for non-time-sensitive applications such as elections.

However, it is not suitable for time-sensitive scenarios, such as stock market calculations,

where a malicious party could gain an unfair advantage by delaying the output of honest

parties. Gradual release is effective for larger secrets and is particularly useful in key

exchange protocols. However, its effectiveness decreases for small secrets or when critical

data is locally concentrated in the secret. Fairness with penalties can be used in secure

lotteries to introduce a monetary penalty against malicious behaviour. However, its

efficiency may be compromised by transaction delays or, in the case of legally enforceable

fairness, by the complexity of legal infrastructures. Probabilistic fairness is limited to

single-bit secrets, making it inefficient for multi-bit or longer secrets.

46

8 Appendix

8.1 Protocols

ShareGen as proposed by [17] used in Figure 8.2

Inputs: Let the inputs to ShareGen be 𝑥𝑖 and𝑦 𝑗 with 1 ≤ 𝑖, 𝑗 ≤ 𝑚. (If one of the received inputs

is not in the correct domain, then both parties are given output ⊥.) The security parameter is

𝑛.

Computation:

1. Define values 𝑎1, ..., 𝑎𝑚 and 𝑏1, ..., 𝑏𝑚 in the following way:

• Set 𝑎𝑖 = 𝑏 𝑗 = 𝑓 (𝑥𝑖 , 𝑦 𝑗).
• For ℓ ∈ {1, ...,𝑚}, ℓ ≠ 𝑖 , set 𝑎ℓ = NULL.

• For ℓ ∈ {1, ...,𝑚}, ℓ ≠ 𝑗 , set 𝑏ℓ = NULL.

2. For 1 ≤ ℓ ≤ 𝑚, choose (𝑎 (1)
ℓ
, 𝑎
(2)
ℓ
) and (𝑏 (1)

ℓ
, 𝑏
(2)
ℓ
) as random secret sharings of 𝑎ℓ and

𝑏ℓ , respectively. (I.e., 𝑎
(1)
ℓ

is random and 𝑎
(1)
ℓ
⊕ 𝑎 (2)

ℓ
= 𝑎ℓ .)

3. Compute 𝑘𝑎, 𝑘𝑏 ← Gen(1𝑛). For 1 ≤ ℓ ≤ 𝑚, let 𝑡𝑎ℓ = Mac𝑘𝑎 (ℓ ∥𝑎
(2)
ℓ
) and 𝑡𝑏ℓ =

Mac𝑘𝑏 (ℓ ∥𝑏
(1)
ℓ
).

Output:

1. 𝑃1 receives the values 𝑎
(1)
1
, ..., 𝑎

(1)
𝑚 and (𝑏 (1)

1
, 𝑡𝑏

1
), ..., (𝑏 (1)𝑚 , 𝑡𝑏𝑚), and the MAC-key 𝑘𝑎 .

2. 𝑃2 receives the values (𝑎 (2)
1
, 𝑡𝑎

1
), ..., (𝑎 (2)𝑚 , 𝑡𝑎𝑚) and 𝑏

(2)
1
, ..., 𝑏

(2)
𝑚 , and the MAC-key 𝑘𝑏 .

Figure 8.1: Functionality ShareGen [17]

47

8 Appendix

Protocol 1 as proposed by [17]

Inputs: Party 𝑃1 has input 𝑥 and party 𝑃2 has input 𝑦. The security parameter is 𝑛.

Protocol:

1. Preliminary phase:

a) Parties 𝑃1 and 𝑃2 run protocol 𝜋 for computing ShareGen, using their respective

inputs 𝑥,𝑦, and security parameter 𝑛.

b) If 𝑃1 receives ⊥ from the above computation (because 𝑃2 aborts the computation

or uses an invalid input in 𝜋) it outputs 𝑓 (𝑥,𝑦1) and halts. Likewise, if 𝑃2 receives

⊥, it outputs 𝑓 (𝑥1, 𝑦) and halts. Otherwise, the parties proceed.

c) Denote the output of 𝑃1 from 𝜋 by 𝑎
(1)
1
, ..., 𝑎

(1)
𝑚 , (𝑏 (1)

1
, 𝑡𝑏

1
), ..., (𝑏 (1)𝑚 , 𝑡𝑏𝑚), and 𝑘𝑎 .

d) Denote the output of P2 from 𝜋 by (𝑎 (2)
1
, 𝑡𝑎

1
), ..., (𝑎 (2)𝑚 , 𝑡𝑎𝑚), 𝑏

(2)
1
, ..., 𝑏

(2)
𝑚 , and 𝑘𝑏 .

2. For ℓ = 1, ...,𝑚 do:

a) 𝑃2 sends the next share to 𝑃1:

i. P2 sends (𝑎 (2)
ℓ
, 𝑡𝑎ℓ) to 𝑃1.

ii. P1 receives (𝑎 (2)
ℓ
, 𝑡𝑎ℓ) from P2. If Vrfy𝑘𝑎

(ℓ ∥𝑎 (2)
ℓ
, 𝑡𝑎ℓ) = 0 (or if 𝑃1 received an

invalid message, or no message), then 𝑃1 halts. If 𝑃1 has already determined

its output in some earlier iteration, then it outputs that value. Otherwise, it

outputs 𝑓 (𝑥,𝑦ℓ−1) (if ℓ = 1, then 𝑃1 outputs 𝑓 (𝑥,𝑦1)).
iii. If Vrfy𝑘𝑎

(ℓ ∥𝑎 (2)
ℓ
, 𝑡𝑎ℓ) = 1 and 𝑎

(1)
ℓ
⊕ 𝑎 (2)

ℓ
≠ NULL (i.e., 𝑥 = 𝑥ℓ), then 𝑃1 sets its

output to be 𝑎
(1)
ℓ
⊕ 𝑎 (2)

ℓ
(and continues running the protocol).

b) 𝑃1 sends the next share to 𝑃2:

i. 𝑃1 sends (𝑏 (1)ℓ
, 𝑡𝑏ℓ) to 𝑃2.

ii. 𝑃2 receives (𝑏 (1)ℓ
, 𝑡𝑏ℓ) from P1. If Vrfy𝑘𝑏

(ℓ ∥𝑏 (1)
ℓ
, 𝑡𝑏ℓ) = 0 (or if 𝑃2 received an

invalid message, or no message), then 𝑃2 halts. If 𝑃2 has already determined

its output in some earlier iteration, then it outputs that value. Otherwise, it

outputs 𝑓 (𝑥ℓ , 𝑦).
iii. If Vrfy𝑘𝑏

(ℓ ∥𝑏 (1)
ℓ
, 𝑡𝑏ℓ) = 1 and 𝑏

(1)
ℓ
⊕ 𝑏 (2)

ℓ
≠ NULL (i.e., 𝑦 = 𝑦ℓ), then 𝑃2 sets its

output to be 𝑏
(1)
ℓ
⊕ 𝑏 (2)

ℓ
(and continues running the protocol).

Figure 8.2: Protocol 1, to compute the Millionaire’s Problem [17]

48

8.1 Protocols

ShareGen𝑟 as proposed by [15] used in Figure 8.4

Inputs: The security parameter is 𝑛. Let the inputs to ShareGen𝑟 be 𝑥 ∈ 𝑋𝑛
and 𝑦 ∈ 𝑌𝑛

. (If

one of the received inputs is not in the correct domain, a default input is substituted.)

Computation:

1. Define values 𝑎1, ..., 𝑎𝑟 and 𝑏1, ..., 𝑏𝑟 in the following way:

• Choose 𝑖∗ uniformly at random from {1, ..., 𝑟 }.
• For 𝑖 = 1 to 𝑖∗ − 1 do:

– Choose 𝑦 ← 𝑌𝑛
and set 𝑎𝑖 = 𝑓𝑛 (𝑥,𝑦).

– Choose 𝑥 ← 𝑋𝑛
and set 𝑏𝑖 = 𝑓𝑛 (𝑥,𝑦).

• Compute 𝑧 = 𝑓𝑛 (𝑥,𝑦). For 𝑖 = 𝑖∗ to 𝑟 , set 𝑎𝑖 = 𝑏𝑖 = 𝑧.

2. For 1 ≤ 𝑖 ≤ 𝑟 , choose (𝑎 (1)
𝑖
, 𝑎
(2)
𝑖
) and (𝑏 (1)

𝑖
, 𝑏
(2)
𝑖
) as random secret sharings of 𝑎𝑖 and 𝑏𝑖 ,

respectively. (I.e., 𝑎
(1)
𝑖

is random and 𝑎
(1)
𝑖
⊕ 𝑎 (2)

𝑖
= 𝑎𝑖 .)

3. Compute 𝑘𝑎, 𝑘𝑏 ← Gen(1𝑛). For 1 ≤ 𝑖 ≤ 𝑟 , let 𝑡𝑎𝑖 = Mac𝑘𝑎 (𝑖∥𝑎
(2)
𝑖
) and 𝑡𝑏𝑖 =

Mac𝑘𝑏 (𝑖∥𝑏
(1)
𝑖
).

Output:

1. Send to P1 the values 𝑎
(1)
1
, ..., 𝑎

(1)
𝑟 and (𝑏 (1)

1
, 𝑡𝑏

1
), ..., (𝑏 (1)𝑟 , 𝑡𝑏𝑟), and the MAC-key 𝑘𝑎 .

2. Send to P2 the values (𝑎 (2)
1
, 𝑡𝑎

1
), ..., (𝑎 (2)𝑟 , 𝑡𝑎𝑟) and 𝑏

(2)
1
, ..., 𝑏

(2)
𝑟 , and the MAC-key 𝑘𝑏 .

Figure 8.3: Functionality ShareGen𝑟 [15]

49

8 Appendix

Protocol 1 by [15]

Inputs: Party 𝑃1 has input 𝑥 and party 𝑃2 has input 𝑦. The security parameter is 𝑛. Let

𝑟 = 𝑝 · |𝑌𝑛 |.
The protocol:

1. Preliminary phase:

(a) 𝑃1 chooses 𝑦 ∈ 𝑌𝑛 uniformly at random, and sets 𝑎0 = 𝑓𝑛 (𝑥,𝑦). Similarly, 𝑃2

chooses 𝑥 ∈ 𝑋𝑛 uniformly at random, and sets 𝑏0 = 𝑓𝑛 (𝑥,𝑦).
(b) Parties 𝑃1 and 𝑃2 run a protocol 𝜋 to compute ShareGen𝑟 , using their inputs 𝑥 and

𝑦.

(c) If 𝑃2 receives ⊥ from the above computation, it outputs 𝑏0 and halts. Otherwise,

the parties proceed to the next step.

(d) Denote the output of 𝑃1 from 𝜋 by 𝑎
(1)
1
, ..., 𝑎

(1)
𝑟 , (𝑏 (1)

1
, 𝑡𝑏

1
), ..., (𝑏 (1)𝑟 , 𝑡𝑏𝑟), and 𝑘𝑎 .

(e) Denote the output of 𝑃2 from 𝜋 by (𝑎 (2)
1
, 𝑡𝑎

1
), ..., (𝑎 (2)𝑟 , 𝑡𝑎𝑟), 𝑏

(2)
1
, ..., 𝑏

(2)
𝑟 , and 𝑘𝑏 .

2. For 𝑖 = 1, ..., 𝑟 do:

• 𝑃2 sends the next share to 𝑃1:

(a) 𝑃2 sends (𝑎 (2)𝑖
, 𝑡𝑖𝑎) to 𝑃1.

(b) 𝑃1 receives (𝑎 (2)𝑖
, 𝑡𝑖𝑎) from 𝑃2. If Vrfy𝑘𝑎

(𝑖∥𝑎 (2)
𝑖
, 𝑡𝑎𝑖) = 0 (or if 𝑃1 received an

invalid message, or no message), then 𝑃1 outputs 𝑎𝑖−1 and halts.

(c) If Vrfy𝑘𝑎
(𝑖∥𝑎 (2)

𝑖
, 𝑡𝑎𝑖) = 1, then 𝑃1 sets 𝑎𝑖 = 𝑎

(1)
𝑖
⊕ 𝑎 (2)

𝑖
(and continues running

the protocol).

• 𝑃1 sends the next share to 𝑃2:

(a) 𝑃1 sends (𝑏 (1)𝑖
, 𝑡𝑏𝑖) to 𝑃2.

(b) 𝑃2 receives (𝑏 (1)
𝑖
, 𝑡𝑏𝑖) from 𝑃1. If Vrfy𝑘𝑏

(𝑖∥𝑏 (1)
𝑖
, 𝑡𝑏𝑖) = 0 (or if 𝑃2 received an

invalid message, or no message), then 𝑃2 outputs 𝑏𝑖−1 and halts.

(c) If Vrfy𝑘𝑏
(𝑖∥𝑏 (1)

𝑖
, 𝑡𝑏𝑖) = 1, then 𝑃2 sets 𝑏𝑖 = 𝑏

(1)
𝑖
⊕ 𝑏 (2)

𝑖
(and continues running

the protocol).

3. If all 𝑟 iterations have been run, party 𝑃1 outputs 𝑎𝑟 and party 𝑃2 outputs 𝑏𝑟 .

Figure 8.4: Generic protocol for computing a functionality 𝑓𝑛 [15]

50

8.1 Protocols

Protocol for computing functionality with VDF parameters as proposed by [3]

1. Each party sets up VDF parameters and gets the keys 𝑝𝑘𝑖 , 𝑠𝑘𝑖 ← VDF.KeyGen() and
broadcasts the public key to all other parties. The parties individually choose random values

𝑣𝑖 to input to their VDF. They compute the VDF on these values with Δ = 𝛿𝑅, where 𝛿 is the

period of time taken up by one round of communication. They get an output in the form of a

uniformly random pair of a share randomness and a round randomness 𝑠𝑖 , 𝑟𝑖 ∈ {0, 1}𝑛 × [𝑅],
as well as a VDF proof 𝜋𝑖 output ((𝑠𝑖 , 𝑟𝑖), 𝜋𝑖) := VDF.Trapdoor(𝑠𝑘, 𝑣𝑖 ,Δ). They broadcast

commitments to the 𝑣𝑖 values to the other parties.

2. The parties supply their inputs 𝑥𝑖 , along with 𝑠𝑖 , 𝑟𝑖 , to a secure-with-abort MPC protocol

which computes the following:

(a) The MPC computes the critical round as a mixture of the individual round randomnesses

𝑟 ∗ := (∑𝑖∈𝑁 𝑟𝑖) mod 𝑅.

(b) The MPC computes an encryption pad 𝑠 as a mixture of the individual share random-

nesses 𝑠 :=
⊕

𝑖∈𝑁 𝑠𝑖 .

(c) For each pair of parties 𝑖, 𝑗 , and each round 𝑟 , the MPC sends a message𝑚𝑖, 𝑗,𝑟 to party

𝑖 . This message is intended to be sent from party 𝑖 to party 𝑗 in the 𝑟 th round of the

reveal phase below:

• For 𝑟 = 𝑟 ∗, the messages (𝑚𝑖, 𝑗,𝑟 ∗) 𝑗∈[𝑁] form a random secret share of party 𝑗 ’s

output OTP encrypted with the VDF pad 𝑠 with the

⊕
𝑗∈[𝑁]𝑚𝑖, 𝑗,𝑟 ∗ = 𝑠 ⊕ 𝑓𝑗 (𝑥).

• If 𝑟 ≠ 𝑟 ∗, the value is chosen uniformly at random𝑚𝑖, 𝑗,𝑟 ← {0, 1}𝑛 .

(d) Each party 𝑗 additionally receives from the functionality a vector of commitments to

all the entries of all messages𝑚𝑖, 𝑗,𝑟 intended for them, and party 𝑖 receives an opening

for that commitment. Parties additionally receive commitments to 𝑠𝑖 , 𝑟𝑖 that party 𝑖 can

open.

3. The parties, using the 𝑣𝑖 , 𝑠𝑖 , 𝑟𝑖 , 𝜋𝑖 values they hold, complete zero-knowledge proofs for each

other that VDF.Verify yields a pass on these values and that the commitments to these values

match the commitments issued by the MPC.

4. They then start the VDF timer and open their commitments to 𝑣𝑖 to each other, and the

reveal phase begins.

(a) In round 𝑟 of the reveal phase, if all previous rounds have been successful, and the VDF

timer has not elapsed, each party 𝑖 opens the commitment to each𝑚𝑖, 𝑗,𝑟 they hold to

the corresponding 𝑗 . Party 𝑗 verifies the opening, and halts if the verification fails.

5. After the reveal phase ends, all parties compute VDF.Eval on the 𝑣𝑖 values to obtain 𝑠𝑖 , 𝑟𝑖 ,

and from this, 𝑠 , and 𝑟 ∗. (Optionally, instead, parties can open their commitments to the 𝑠𝑖 , 𝑟𝑖
to save each other the trouble of recomputing the VDF).

6. If a party 𝑗 received all messages𝑚𝑖, 𝑗,𝑟 ∗ in the 𝑟 ∗th round of the reveal phase, then that

party outputs 𝑓𝑗 (𝑥) = 𝑠 ⊕
⊕

𝑗∈[𝑁]𝑚𝑖, 𝑗,𝑟 ∗ .

Figure 8.5: Generic protocol for computing a functionality with VDF parameters [3]

51

Bibliography

[1] Gilad Asharov, Ran Cohen, and Oren Shochat. Static vs. Adaptive Security in Perfect
MPC: A Separation and the Adaptive Security of BGW. Report Number: 758. 2022.

url: https://eprint.iacr.org/2022/758 (visited on 07/25/2023).

[2] Gilad Asharov, Abhishek Jain, and Daniel Wichs. Multiparty Computation with Low
Communication, Computation and Interaction via Threshold FHE. Report Number:

613. 2011. url: https://eprint.iacr.org/2011/613 (visited on 07/05/2023).

[3] Bolton Bailey, Andrew Miller, and Or Sattath. General Partially Fair Multi-Party
Computation with VDFs. 2022. url: https://eprint.iacr.org/2022/1318.

[4] Iddo Bentov and Ranjit Kumaresan. How to Use Bitcoin to Design Fair Protocols.
Report Number: 129. 2014. url: https://eprint.iacr.org/2014/129.

[5] Manuel Blum. “How to exchange (secret) keys”. In: ACM Transactions on Computer
Systems 1.2 (May 1983), pp. 175–193. issn: 0734-2071. doi: 10.1145/357360.357368.

url: https://dl.acm.org/doi/10.1145/357360.357368.

[6] Dan Boneh and Moni Naor. “Timed Commitments”. en. In: Advances in Cryptology
— CRYPTO 2000. Ed. by Mihir Bellare. Lecture Notes in Computer Science. Berlin,

Heidelberg: Springer, 2000, pp. 236–254. isbn: 978-3-540-44598-2. doi: 10.1007/3-

540-44598-6_15.

[7] Dan Boneh et al. Verifiable Delay Functions. Report Number: 601. 2018. url: https:

//eprint.iacr.org/2018/601.

[8] Christian Cachin, Rachid Guerraoui, and Luís Rodrigues. Introduction to Reliable
and Secure Distributed Programming. en. Berlin, Heidelberg: Springer, 2011. isbn:
978-3-642-15259-7 978-3-642-15260-3. doi: 10.1007/978- 3- 642- 15260- 3. url:

http://link.springer.com/10.1007/978-3-642-15260-3 (visited on 07/28/2023).

[9] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. Report Number: 067. 2000. url: https://eprint.iacr.org/2000/067

(visited on 06/22/2023).

[10] Arka Rai Choudhuri et al. Fairness in an Unfair World: Fair Multiparty Computation
from public Bulletin Boards. Report Number: 1091. 2017. url: https://eprint.iacr.

org/2017/1091.

[11] R Cleve. “Limits on the security of coin flips when half the processors are faulty”.

In: Proceedings of the eighteenth annual ACM symposium on Theory of computing.
STOC ’86. New York, NY, USA: Association for Computing Machinery, Nov. 1986,

pp. 364–369. isbn: 978-0-89791-193-1. doi: 10 .1145 /12130 .12168. url: https :

//dl.acm.org/doi/10.1145/12130.12168.

53

https://eprint.iacr.org/2022/758
https://eprint.iacr.org/2011/613
https://eprint.iacr.org/2022/1318
https://eprint.iacr.org/2014/129
https://doi.org/10.1145/357360.357368
https://dl.acm.org/doi/10.1145/357360.357368
https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1007/3-540-44598-6_15
https://eprint.iacr.org/2018/601
https://eprint.iacr.org/2018/601
https://doi.org/10.1007/978-3-642-15260-3
http://link.springer.com/10.1007/978-3-642-15260-3
https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2017/1091
https://eprint.iacr.org/2017/1091
https://doi.org/10.1145/12130.12168
https://dl.acm.org/doi/10.1145/12130.12168
https://dl.acm.org/doi/10.1145/12130.12168

Bibliography

[12] Sivanarayana Gaddam et al. How to Design Fair Protocols in the Multi-Blockchain
Setting. Report Number: 762. 2023. url: https://eprint.iacr.org/2023/762.

[13] O. Goldreich, S. Micali, and A. Wigderson. “How to play ANY mental game”. In:

Proceedings of the nineteenth annual ACM symposium on Theory of computing. STOC
’87. New York, NY, USA: Association for Computing Machinery, Jan. 1987, pp. 218–

229. isbn: 978-0-89791-221-1. doi: 10.1145/28395.28420. url: https://dl.acm.

org/doi/10.1145/28395.28420.

[14] Oded Goldreich. Foundations of cryptography. en. Cambridge, UK ; New York: Cam-

bridge University Press, 2003. isbn: 978-0-521-79172-4 978-0-521-83084-3.

[15] Dov Gordon and Jonathan Katz. Partial Fairness in Secure Two-Party Computation.
Report Number: 206. 2008. url: https://eprint.iacr.org/2008/206.

[16] S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-Round MPC with Fairness
and Guarantee of Output Delivery. 2015. url: https://eprint.iacr.org/2015/371.

[17] S. Dov Gordon et al. Complete Fairness in Secure Two-Party Computation. Report
Number: 303. 2008. url: https://eprint.iacr.org/2008/303.

[18] Jeremias Mechler and Timo Kuch. Universelle Komponierbarkeit in der Kryptographie.
de. KASTEL – Institut für Informationssicherheit und Verlässlichkeit, KIT-Fakultät

für Informatik. 2023.

[19] Burt Kaliski. “Quadratic Residuosity Problem”. en. In: Encyclopedia of Cryptography
and Security. Ed. by Henk C. A. van Tilborg and Sushil Jajodia. Boston, MA: Springer

US, 2011, pp. 1003–1003. isbn: 978-1-4419-5906-5. doi: 10.1007/978-1-4419-5906-

5_429. url: https://doi.org/10.1007/978- 1- 4419- 5906- 5_429 (visited on

06/27/2023).

[20] Alexander Koch, Sebastian Faller, and Robin Berger. Skript zur Vorlesung Kryp-
tographische Protokolle. KASTEL – Institut für Informationssicherheit und Ver-

lässlichkeit, KIT-Fakultät für Informatik. Jan. 2023.

[21] William Judson LeVeque. Fundamentals of Number Theory. en. Google-Books-ID:
sWWKAAAAQBAJ. Courier Corporation, Jan. 1996. isbn: 978-0-486-68906-7.

[22] Xiaoguo Li et al. A Survey of Secure Computation Using Trusted Execution Environ-
ments. arXiv:2302.12150 [cs]. Feb. 2023. url: http://arxiv.org/abs/2302.12150.

[23] Andrew Y. Lindell. “Legally-Enforceable Fairness in Secure Two-Party Computation”.

en. In: Topics in Cryptology – CT-RSA 2008. Ed. by Tal Malkin. Lecture Notes in

Computer Science. Berlin, Heidelberg: Springer, 2008, pp. 121–137. isbn: 978-3-540-

79263-5. doi: 10.1007/978-3-540-79263-5_8.

[24] Yehuda Lindell. “How to Simulate It – A Tutorial on the Simulation Proof Technique”.

en. In: Tutorials on the Foundations of Cryptography: Dedicated to Oded Goldreich.
Ed. by Yehuda Lindell. Information Security and Cryptography. Cham: Springer

International Publishing, 2017, pp. 277–346. isbn: 978-3-319-57048-8. doi: 10.1007/

978-3-319-57048-8_6. url: https://doi.org/10.1007/978-3-319-57048-8_6.

[25] Yehuda Lindell. Secure Multiparty Computation (MPC). Report Number: 300. 2020.

url: https://eprint.iacr.org/2020/300.

54

https://eprint.iacr.org/2023/762
https://doi.org/10.1145/28395.28420
https://dl.acm.org/doi/10.1145/28395.28420
https://dl.acm.org/doi/10.1145/28395.28420
https://eprint.iacr.org/2008/206
https://eprint.iacr.org/2015/371
https://eprint.iacr.org/2008/303
https://doi.org/10.1007/978-1-4419-5906-5_429
https://doi.org/10.1007/978-1-4419-5906-5_429
https://doi.org/10.1007/978-1-4419-5906-5_429
http://arxiv.org/abs/2302.12150
https://doi.org/10.1007/978-3-540-79263-5_8
https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.1007/978-3-319-57048-8_6
https://eprint.iacr.org/2020/300

[26] Michael Luby, Silvio Micali, and Charles Rackoff. “How to simultaneously exchange

a secret bit by flipping a symmetrically-biased coin”. In: 24th Annual Symposium on
Foundations of Computer Science (sfcs 1983). ISSN: 0272-5428. Nov. 1983, pp. 11–22.
doi: 10.1109/SFCS.1983.25.

[27] Rafael Pass, Elaine Shi, and Florian Tramer. Formal Abstractions for Attested Execution
Secure Processors. Report Number: 1027. 2016. url: https://eprint.iacr.org/2016/

1027.

[28] Benny Pinkas. “Fair Secure Two-Party Computation”. en. In: Advances in Cryptology
— EUROCRYPT 2003. Ed. by Eli Biham. Lecture Notes in Computer Science. Berlin,

Heidelberg: Springer, 2003, pp. 87–105. isbn: 978-3-540-39200-2. doi: 10.1007/3-

540-39200-9_6.

[29] Douglas R. Stinson and Maura B. Paterson. Cryptography: theory and practice. en.
Fourth edition. Boca Raton: CRC Press, Taylor & Francis Group, 2019. isbn: 978-1-

138-19701-5.

[30] Andrew C. Yao. “Protocols for secure computations”. In: 23rd Annual Symposium on
Foundations of Computer Science (sfcs 1982). ISSN: 0272-5428. Nov. 1982, pp. 160–164.
doi: 10.1109/SFCS.1982.38.

[31] Xuefei Yin, Yanming Zhu, and Jiankun Hu. “A Comprehensive Survey of Privacy-

preserving Federated Learning: A Taxonomy, Review, and Future Directions”. In:

ACM Computing Surveys 54.6 (July 2021), 131:1–131:36. issn: 0360-0300. doi: 10.

1145/3460427. url: https://dl.acm.org/doi/10.1145/3460427.

55

https://doi.org/10.1109/SFCS.1983.25
https://eprint.iacr.org/2016/1027
https://eprint.iacr.org/2016/1027
https://doi.org/10.1007/3-540-39200-9_6
https://doi.org/10.1007/3-540-39200-9_6
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1145/3460427
https://doi.org/10.1145/3460427
https://dl.acm.org/doi/10.1145/3460427

	Abstract
	Zusammenfassung
	Introduction
	Related Work
	Preliminaries
	System Parameters
	Security Parameter
	Number of Parties
	Threshold

	Basic Concepts in Multi-Party Computation
	Multi-Party Computation (MPC)
	Parties
	Protocol

	Cryptographic Primitives and Assumptions
	Encryption
	Signatures
	Message Authentication Codes (MAC)
	Secret Sharing
	Trusted Execution Environments (TEEs) and Secure Processors
	Quadratic Residucity Assumption

	Adversarial Models
	Semi-honest adversary:
	Malicious adversary:
	Static Adversary:
	Adaptive Adversary:

	Proofs and Frameworks
	Simulation Proofs
	The Universal Composability (UC) Framework

	Fairness Notions and Protocols
	Complete Fairness
	Definition and Context
	Protocols that achieve Complete Fairness
	Limitations and Impossibility Results

	Partial Fairness
	Definition and Context
	Protocols that achieve Partial Fairness
	Limitations and Impossibility Results

	Delta-Fairness
	Definition and Context
	Protocols that achieve Delta-Fairness
	Limitations and Impossibility Results

	Gradual Release
	Definition and Context
	Protocols that achieve Fairness using Gradual Release
	Limitations and Impossibility Results

	Fairness with Penalties
	Protocols that achieve Fairness with Penalties
	Limitations and Impossibility Results

	Probabilistic Fairness
	Protocols that achieve Probabilistic Fairness
	Limitations and Impossibility Results

	Interrelations Between Fairness Notions
	Complete Fairness and Partial Fairness
	Probabilistic Fairness and Gradual Release
	Delta-Fairness and Fairness with Penalties
	Complete Fairness and Delta-Fairness
	Overview

	Practical Implications of Fairness Notions
	Complete Fairness
	Partial Fairness
	Delta-Fairness
	Gradual Release
	Fairness with Penalties
	Probabilistic Fairness

	Conclusion
	Appendix
	Protocols

	Bibliography

