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Julia Haag 1,*, Lukas Hübner 1,2, Alexey M. Kozlov 1, Alexandros Stamatakis 1,2,3

1Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany
2Institute for Theoretical Informatics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
3Biodiversity Computing Group, Institute of Computer Science, Foundation for Research and Technology – Hellas, 70013 Heraklion, Greece

*Corresponding author. Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Schloß-Wolfsbrunnenweg 35, 69118
Heidelberg, Germany. E-mail: julia.haag@h-its.org

Associate Editor: Aida Ouangraoua

Abstract
Summary: Maximum likelihood (ML) is a widely used phylogenetic inference method. ML implementations heavily rely on numerical optimiza-
tion routines that use internal numerical thresholds to determine convergence. We systematically analyze the impact of these threshold settings
on the log-likelihood and runtimes for ML tree inferences with RAxML-NG, IQ-TREE, and FastTree on empirical datasets. We provide empirical
evidence that we can substantially accelerate tree inferences with RAxML-NG and IQ-TREE by changing the default values of two such numeri-
cal thresholds. At the same time, altering these settings does not significantly impact the quality of the inferred trees. We further show that in-
creasing both thresholds accelerates the RAxML-NG bootstrap without influencing the resulting support values. For RAxML-NG, increasing the
likelihood thresholds �LnL and �brlen to 10 and 103, respectively, results in an average tree inference speedup of 1.96 0.6 on Data collection 1,
1.86 1.1 on Data collection 2, and 1.960.8 on Data collection 2 for the RAxML-NG bootstrap compared to the runtime under the current default
setting. Increasing the likelihood threshold �LnL to 10 in IQ-TREE results in an average tree inference speedup of 1.36 0.4 on Data collection 1
and 1.36 0.9 on Data collection 2.

Availability and implementation: All MSAs we used for our analyses, as well as all results, are available for download at https://cme.h-its.org/
exelixis/material/freeLunch_data.tar.gz. Our data generation scripts are available at https://github.com/tschuelia/ml-numerical-analysis.

1 Introduction

Phylogenetic trees have many important applications in biol-
ogy and medicine, e.g. in drug development (Gregoretti et al.
2004), forensics (Metzker et al. 2002), or the analysis of
SARS-CoV-2 genomes (Morel et al. 2021). A widely used ap-
proach for reconstructing phylogenetic trees from a multiple
sequence alignment (MSA) is the maximum likelihood (ML)
method (Yang et al. 1995). Popular ML-based tools are
RAxML-NG (Kozlov et al. 2019), IQ-TREE (Minh et al.
2020), and FastTree (Price et al. 2010). Finding the most
likely tree is NP-hard (Chor and Tuller 2005) due to the
super-exponential number of possible tree topologies. ML
tree inference tools therefore implement tree search heuristics
that attempt to iteratively optimize the log-likelihood (LnL
score) by improving the tree topology, branch lengths, and
substitution model parameters. These heuristics heavily rely
on a plethora of numerical optimization routines [e.g. typi-
cally Brent’s method (Brent 1971) and the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method (Fletcher 2000)] that use
specific internal numerical convergence thresholds. To the
best of our knowledge, the impact of these threshold settings
on inference times and LnL scores has never been systemati-
cally assessed, while anecdotal observations do exist. For

instance, when analyzing SARS-CoV-2 data, Morel et al.
(2021) observed that one of these numerical thresholds, the
minimum allowed branch length (minBranchLen), impacts
the LnL scores of trees inferred with RAxML-NG and IQ-
TREE. Here, we systematically investigate if we can repro-
duce this effect on other MSAs as well as for additional nu-
merical thresholds. In addition to RAxML-NG and IQ-TREE,
we also investigate the behavior of FastTree. We explore the
influence of up to seven distinct numerical thresholds on LnL
scores and runtimes for these three ML inference tools. For
each tool, we analyze the influence of these settings on the
standard tree inference procedure. During this standard tree
inference procedure, the tools strive to optimize the tree topol-
ogy, the branch lengths, and the substitution model parame-
ters based on an initial starting tree topology. RAxML-NG
and IQ-Tree also offer a tree evaluation procedure. During
this tree evaluation procedure, the given (user-defined) tree to-
pology remains fixed while only the branch lengths and sub-
stitution model parameters are being optimized. For RAxML-
NG and IQ-Tree, we also analyze the influence of the numeri-
cal thresholds on this tree evaluation procedure.

A frequently used execution flavor in RAxML-NG is the
––all mode. In addition to inferring 20 ML trees, RAxML-
NG infers bootstrap replicate trees, and draws the bootstrap
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support values onto the best-scoring out of the 20 inferred
ML trees. By default, RAxML-NG infers at most 1000 boot-
strap replicates, but implements an early-stopping criterion
that determines convergence based on the bootstopping crite-
rion introduced by Pattengale et al. (2010). For RAxML-NG,
we also analyze the influence of two likelihood epsilon thresh-
olds on the results and the runtime of the bootstrapping
procedure.

Our analyses comprise four main studies. The following
paragraph summarizes each study and highlights the most im-
portant results.

Study 1: In this first exploratory study, we analyzed the in-
fluence of up to seven numerical thresholds on the LnL scores
and runtimes of the RAxML-NG, IQ-TREE, and FastTree
tree inference procedures. For RAxML-NG and IQ-TREE, we
also analyzed the influence of the same thresholds when var-
ied during the tree evaluation procedure. In this first study,
we exclusively analyzed unpartitioned empirical DNA MSAs
(Data collection 1). We observe a substantial runtime impact
on tree inferences for two likelihood epsilons in RAxML-NG
(�LnL and �brlen). We further find that we can increase the set-
tings of both thresholds without compromising the quality of
the inferred trees, while obtaining a speedup of 1.9 6 0.6. We
make a similar observation for one numerical threshold (�LnL)
in IQ-TREE that yields a speedup of 1.3 6 0.4. All other
thresholds we analyzed for RAxML-NG and IQ-TREE, as
well as all thresholds analyzed for FastTree do not substan-
tially influence neither runtime nor LnL scores as long as these
settings remain within a reasonable range. For all analyzed
ML inference tools, their current default settings fall within
this reasonable range. As expected, we observe that the run-
time of the evaluation phase is small compared to the corre-
sponding tree inference time. Despite the impact of some
numerical thresholds on tree evaluation runtimes, we there-
fore recommend using a conservative numerical threshold set-
ting for tree evaluation.

Study 2: To verify the findings of Study 1 for the likelihood
epsilons �LnL and �brlen in RAxML-NG, and �LnL in IQ-TREE,
we subsequently analyzed a more comprehensive as well as
representative collection of empirical MSAs, including DNA,
amino-acid (AA), and partitioned MSAs (Data collection 2).
Our analyses on this more comprehensive data collection con-
firm our observations regarding tree inferences: the speedup
for RAxML-NG is 1.8 6 1.1 and 1.3 6 0.9 for IQ-TREE.
Analogous to our results on Data collection 1, we do not ob-
serve a significant impact on the quality of the inferred trees
according to our evaluation metrics.

Study 3: In our third study, based on the results of Study 2,
we analyze the impact of the �LnL and �brlen thresholds on the
RAxML-NG bootstrapping procedure. Study 2 suggests that
both thresholds can be increased for tree inferences without
compromising the quality of the inferred trees, yet resulting in
faster analyses. The hypothesis is that we can safely increase
both thresholds to accelerate bootstrapping as well. We test
this hypothesis using the MSAs of Data collection 2. Our
analyses suggest that both likelihood epsilon settings can be
increased without compromising the bootstrapping results
and yield a speedup of 1.9 6 0.8 for Data collection 2.

Study 4: In our final study, we conducted a more detailed
analysis of the likelihood epsilons in RAxML-NG as it is be-
ing actively developed in our lab. Since RAxML-NG uses the
same threshold �LnL for four distinct operations during its tree
inference procedure, we separated this threshold into four

distinct fine-grained likelihood epsilons. The goal was to as-
sess if appropriate fine-grained threshold settings further im-
prove runtimes. Our analyses suggest that separating the �LnL

into four distinct thresholds does not further improve run-
times. We observe a similar behavior for all four thresholds,
both in terms of tree inference quality and runtime. We hence
conclude that such a fine-grained distinction of threshold set-
tings is neither necessary nor beneficial.

The remainder of this article is organized as follows: In
Section 2, we outline the numerical thresholds we analyze and
their usage in ML inference tools, our experimental setup,
and the metrics we used to assess the influence of the numeri-
cal thresholds on tree inference quality, bootstrapping quality,
and runtime. In Section 3, we present our key findings and
results of our analyses. To limit the extent of this article, we
only describe and discuss the results of Study 2 and Study 3 in
greater detail. The results of Study 1 and Study 4 are available
in the Supplementary Material.

All MSAs we used for our analyses, as well as all results, are
available for download at https://cme.h-its.org/exelixis/mate
rial/freeLunch_data.tar.gz. Our data generation scripts are
available at https://github.com/tschuelia/ml-numerical-analysis.

2 Methods

2.1 Numerical thresholds

Due to the extremely large tree space, an exhaustive search to
identify the most likely tree is not feasible. ML-based tree in-
ference tools therefore typically implement iterative tree im-
provement techniques, which they apply to an initial
(starting) tree. Such an initial topology is obtained via heuris-
tic tree inference methods [e.g. randomized stepwise addition
order (Cavalli-Sforza and Edwards 1967) or maximum parsi-
mony (Farris 1970, Fitch 1971)]. In our analyses, we focus on
the three widely used ML inference tools RAxML-NG, IQ-
TREE, and FastTree. Each tool iteratively optimizes the tree
topology, the branch lengths, and the substitution model
parameters starting from an initial tree. For example,
RAxML-NG iteratively applies Subtree Pruning and
Regrafting (SPR) moves followed by branch length and sub-
stitution model parameter optimizations. We provide a more
detailed description of the tree search heuristics in
Supplementary Section 1. In our initial exploratory study
Study 1 we analyze the influence of the following seven nu-
merical thresholds:

• Likelihood epsilon �LnL: Threshold for LnL score improve-
ment after one complete iteration (tree topology, branch
lengths, and model parameters). The optimization only
continues if the likelihood improvement is higher than this
threshold.

• Branch length likelihood epsilon �brlen: RAxML-NG spe-
cific threshold for LnL score improvement. This epsilon is
used during a so-called fast branch length optimization to
rapidly approximate the LnL score of potential SPR
moves.

• Minimum branch length (minBranchLen): Lower limit for
branch length values.

• Maximum branch length (maxBranchLen): Upper limit
for branch length values.

• Model likelihood epsilon �model: Threshold for substitution
model parameter improvement. The substitution model
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parameters are only further optimized if the LnL score im-
provement exceeds this threshold.

• num_iters: Threshold to control the maximum number of
iterations during Newton-Raphson based branch length
optimization in RAxML-NG.

• bfgs_factor: This RAxML-NG specific threshold controls
the convergence of the L-BFGS-B method used for opti-
mizing substitution rates and stationary frequencies. The
L-BFGS-B is a variant of the standard BFGS method, opti-
mized for limited memory, and is extended to incorporate
bound constraints in variables (Zhu et al. 1997).

For RAxML-NG we analyze the influence of all seven
thresholds, for IQ-TREE we analyze the influence of �LnL,
minBranchLen, maxBranchLen, and �model. For FastTree we
analyze the influence of �LnL and minBranchLen. Table 1
shows a comprehensive list of the threshold settings we ana-
lyze. In all follow-up studies (Studies 2–4) we focus on the fol-
lowing thresholds: �LnL and �brlen. In Study 1 we find that
decreasing the default settings does not substantially improve
the LnL scores. To economize on computational resources
and runtime, we thus only compare the current default setting
to larger settings in Studies 2–4. For IQ-TREE, the current de-
fault setting for �LnL is 10�3. We analyze the potentially more
liberal/superficial settings f10�3;10�2; . . . ;103g. For
RAxML-NG the current default setting for both, �LnL and
�brlen, is 10�1. We analyze more superficial settings of
f10�1;1; . . . ;103g

2.2 Data collections

In our exploratory Study 1 we analyze 22 empirical unparti-
tioned DNA MSAs (Data collection 1). For all follow-up stud-
ies (Studies 2–4), we analyze a broader collection of 19
empirical MSAs, including AA and partitioned MSAs (Data
collection 2). For one additional AA dataset with excessive
memory and runtime requirements, we only compare the
results of the default threshold settings to the suggested new
default settings. We exclusively analyze empirical datasets, be-
cause it was shown that reconstructing the best tree is more
difficult on empirical datasets than it is on simulated datasets
(Huelsenbeck 1995). Supplementary Section 2 provides a de-
tailed overview of all MSAs we used for our analyses.

2.3 Experimental setup

In this section, we describe the experimental setup of our anal-
yses. We separate this section into two paragraphs. In the first
paragraph, we describe our experiments for analyzing the in-
fluence of the numerical thresholds on the tree inference and
tree evaluation procedures (Studies 1, 2, 4). In the second par-
agraph, we describe our experiments for analyzing the influ-
ence of the likelihood epsilons on the bootstrapping
procedure in RAxML-NG (Study 3). A more detailed descrip-
tion of our setup, as well as the software we use, is available
in Supplementary Section 1.

2.3.1 Tree inference and tree evaluation
We analyze each threshold and each ML inference tool sepa-
rately. For each threshold and for each possible threshold set-
ting, we infer 50 trees using the standard/default tree
inference mode of the respective tool. Subsequently, we re-
evaluate each inferred tree using the tree evaluation mode.
During the tree evaluation, we set the numerical thresholds to
their corresponding default values. In the set comprising all
inferred trees under all analyzed threshold settings, we deter-
mine the tree with the best LnL score (henceforth referred to
as best-known tree) and compare it to all other trees using
several distinct phylogenetic statistical significance tests. For
reasons, we detail further below, we do not compare all trees
at once, but always conduct a pairwise comparison of each
tree with the best-known tree. We collect trees that pass all
significance tests in a so-called plausible tree set [see Morel
et al. (2021) for the introduction of the term]. All trees in such
a plausible tree set are not significantly worse than the best-
known tree under all statistical significance tests.

To analyze the influence of the numerical thresholds on the
RAxML-NG and IQ-Tree tree evaluation procedures, we use
an analogous setup. Of the above-described pipeline, we reuse
the 50 trees inferred under the current default setting of the re-
spective numerical threshold. For each possible threshold set-
ting, we re-evaluate each of the 50 trees using the tree
evaluation mode and the respective threshold setting. The
subsequent plausible tree set analysis is analogous to the setup
for the tree inference procedure described above.

2.3.2 Bootstrapping
In Study 3 we exclusively analyze the influence of the likeli-
hood epsilons on the RAxML-NG bootstrapping procedure.
Since the bootstrapping procedure is computationally expen-
sive, we refrain from testing all possible �LnL and �brlen settings
in contrast to Studies 1, 2, and 4. Based on our findings in
Study 2 (see Section 3), we only compare the current default
settings �LnL ¼ 0:1 and �brlen ¼ 0:1 to our suggested new set-
tings �LnL ¼ 10 and �brlen ¼ 103. To compare the bootstrap
results under both settings, we first infer 20 ML trees using
RAxML-NG’s standard tree inference procedure. Based on
our findings of Study 2 (see Section 3), we set the likelihood
epsilons to the suggested new settings �LnL ¼ 10 and �brlen ¼
103 during this tree inference procedure. For both parameter
configurations [(0.1, 0.1), (10, 103)], we separately infer boot-
strap replicates using RAxML-NG and map the bootstrap
support values onto all 20 inferred ML trees.

2.3.3 Model of evolution
For all experiments described above, we set the substitution
model according to the following rules: For the unpartitioned
DNA MSAs we use the general time reversible (GTR) model

Table 1. Numerical thresholds we varied, including the analyzed settings

and respective inference tools where they are applicable.a

Threshold Tested settings Inference tools
(resp. default setting)

minBranchLen f10–10,10–9, . . ., 10–2gb RAxML-NG (10�6)
IQ-TREE (10�6)
FastTree (5�9)

maxBranchLen f10;102g RAxML-NG (102)
IQ-TREE (10)

�LnL f10�3;10�2; . . . ; 103g RAxML-NG (10�1)
IQ-TREE (10�3)
FastTree (10�1)

�model f10�3;10�2;10�1g RAxML-NG (10�3)
IQ-TREE (10�2)

�brlen f10�3;10�2; . . . ; 103g RAxML-NG (10�1)
num_iters f16, 32, 64g RAxML-NG (32)
bfgs_factor f105;107; 109g RAxML-NG (107)

a The values in parentheses indicate the default setting for the respective
inference tool.

b For FastTree we additionally analyze its default setting 5�9.
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(Tavaré 1986) of nucleotide substitution as it is a flexible and
general model of nucleotide substitution that is widely used
and computationally efficient (Sumner et al. 2012). To ac-
count for among site rate heterogeneity, we also use four dis-
crete C rate categories. The AA equivalent of the GTR model
is the GTR20 (or PROTGTR) model. However, this model
for AA data is very parameter rich. In particular, on datasets
with weak phylogenetic signal (see below) the corresponding
parameter estimates might thus be unstable. Instead, we use
the LG substitution model (Le and Gascuel 2008) with four
discrete C rate categories for unpartitioned AA MSAs. For
partitioned MSAs, we use the partition file as provided along-
side the MSA in the respective data source (see Supplementary
Material).

2.4 Evaluation metrics
2.4.1 Tree inference and tree evaluation
In the following, we compare LnL scores in percent rather
than via absolute LnL unit difference, since the datasets cover
a broad range of absolute LnL values [LnL scores range be-
tween approximately –90 (D4) and –13 000 000 (D37)].
Thus, as LnL scores are reported on a log scale, the observed
effects are greater than the percentages might suggest.
Therefore, we use two additional quality metrics: statistical
significance tests and Robinson-Foulds distances (RF-
Distances) (Robinson and Foulds 1981) which we describe
further below. While our plausible tree set analyses do incor-
porate the branch length estimates to some extent, as the
statistical tests are based on the ML scores of the trees, we ad-
ditionally analyze the impact of the suggested changes on the
branch lengths using the K Tree Score (KTS). For evaluating
the runtimes of the tree inferences, we compute the speedup
by comparing the runtime of each tree inference in relation to
the average runtime under the respective default setting. We
report all speedups as mean 6 standard deviation. To ensure
fair comparisons, we use identical hardware for all per-
dataset experiments. Additionally, for the tree inference
experiments, we fix the random seed to ensure that tree infer-
ences always initiate their search on the same starting tree, de-
spite using different numerical threshold settings. Note that in
our analyses we do not compare inferred trees, LnL scores,
runtimes, or evaluation metrics across ML inference tools. All
described analyses and evaluations metrics are applied sepa-
rately and independently to each tool.

2.4.1.1 Significance tests

In order to compare the trees inferred under different thresh-
old settings, we use the statistical significance tests imple-
mented in IQ-TREE. IQ-TREE implements the following
significance tests: the Kishino–Hasegawa (KH) test (Kishino
and Hasegawa 1989) and the Shimodaira–Hasegawa (SH)
test (Shimodaira and Hasegawa 1999), both in their weighted
and unweighted variants, the Approximately Unbiased (AU)
test (Shimodaira 2002), as well as the Expected Likelihood
Weight (ELW) test (Strimmer and Rambaut 2002). We use
the default IQ-TREE settings for the number of resampling of
estimated log-likelihoods (RELL) replicates (10 000) and the
significance level (a ¼ 0:05). We further denote a tree passing
all statistical tests when compared to the best-known tree as
being plausible. As described above, we collect all plausible
trees per threshold setting in a plausible tree set. In subsequent
analyses, we also use the number of plausible trees per setting,
i.e. the size of the respective plausible tree sets, as well as the

number of unique plausible tree topologies (Npl) and their av-
erage pairwise RF-Distance (RFpl). Since the significance tests
can be biased by the number of trees in the candidate set
(Strimmer and Rambaut 2002), we remove identical tree to-
pologies from the set of inferred trees prior to applying the
tests. Despite this tree set cleaning, we observed some unex-
pected behavior by the significance tests. First, the ELW test
computes a c-ELW score (posterior weight) for each tree, sorts
the trees according to this score and accepts trees as being not
significantly different until the sum of c-ELW scores exceeds a
predefined threshold. In our case, numerous trees in the in-
ferred tree set have highly similar LnL scores despite their to-
pologies being different. Yet, the c-ELW score for such trees is
identical. Therefore, for trees that have a c-ELW that is close
to exceeding the predefined significance threshold, only some
trees with the exact same c-ELW score are accepted while the
remaining ones are rejected. This leads to trees being rejected
despite having identical LnL score as some accepted trees.
Further, re-running the significance tests with the same trees
but in a different order leads to a different subset of trees be-
ing accepted. Instead of re-estimating the substitution model
parameters of each candidate tree, IQ-TREE uses a given best
tree to optimize these parameters and uses them for all other
trees. As stated above, numerous trees have identical LnL
scores, and therefore choosing the best tree according to
the LnL score is ambiguous. We observe that the results of the
significance tests vary largely depending on what tree is
passed as the best tree, despite identical LnL scores. We pro-
vide an example for both scenarios in the Supplementary
Information. For the above reasons, instead of comparing all
trees in the inferred tree set to each other at once, we only
compare each inferred tree separately via all significance tests
in a pairwise manner to the best-known tree. However, the c-
ELW test is not intended for pairwise comparisons and only
rejects one of the trees if the LnL scores deviate largely.
Therefore, we also use the RF-Distance metric, which we de-
scribe in the following section.

2.4.1.2 RF-distances

For the tree inference experiments, we fix the random seed to
ensure that tree inferences always initiate their search on the
same starting tree, despite using different numerical threshold
settings. Therefore, we can directly compare tree topologies
inferred under different numerical threshold settings that
started on the same starting tree. We compare these trees in a
pairwise manner via the relative RF-Distance. If the RF-
Distance between two trees, e.g. one inferred under �LnL ¼
10�1 and one inferred under �LnL ¼ 103 is 0.0, then the tree
inference converged to the same topology despite the different
�LnL setting. However, an RF-Distance > 0 does not necessar-
ily indicate that the tree is worse. For example, the plausible
tree set generally comprises multiple distinct tree topologies
which are not distinguishable via statistical significance tests.
Therefore, when using this metric, we further compare these
RF-Distances to the average pairwise RF-Distance between all
plausible trees inferred under the default numerical threshold
setting per tool (default plausible trees). We further refer to
this RF-Distance as default RF-Distance. This default RF-
Distance provides a notion of how topologically scattered the
plausible trees are under the default numerical threshold set-
tings. The higher the default RF-Distance is, the more rugged
the tree space will be. If the default RF-Distance is greater or
equal to the RF-Distance between trees inferred under
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different numerical threshold settings, we assume that these
differences are due to the ruggedness of the tree space rather
than the trees being worse.

2.4.1.3 K tree score

In addition to analyzing the impact on the inferred tree topolo-
gies, we examine the influence of changing the threshold set-
tings on the branch lengths. We follow a similar approach as
described in the previous paragraph. We compare trees inferred
using identical seeds but distinct threshold settings using the K
tree score (KTS) (Soria-Carrasco et al. 2007), and examine the
average KTS per MSA. The KTS is a normalized variant of the
Branch Score Distance (Kuhner and Felsenstein 1994), where K
refers to the scaling factor such that both trees have a similar
global divergence rate. As baseline reference, we compute the
average KTS between all plausible trees inferred under the de-
fault numerical threshold setting per tool (default KTS).

2.4.2 Bootstrapping
To determine the influence of the likelihood epsilon settings
on the quality of the RAxML-NG bootstrapping procedure,
we adopt an analogous quality assessment strategy as
Stamatakis et al. (2008). As described in Section 2.3, we infer
20 ML trees per MSA. For each of these 20 ML trees, we
compare the bootstrap support values drawn onto those 20
trees based on bootstrap replicates inferred under the current
default setting (�LnL ¼ �brlen ¼ 0:1) to the support values
drawn onto the same 20 trees based on bootstrap replicates
inferred under the suggested new setting �LnL ¼ 10 and
�brlen ¼ 103. Since we draw bootstrap support values on the
same 20 ML trees, we can directly compare the values on a
branch-by-branch basis using the Pearson correlation. This
correlation only quantifies the relative similarity across boot-
strap values. Hence, we also quantify the absolute difference
between support values. To this end, we compute the pairwise
absolute difference between support values under the old ver-
sus the suggested new setting across all branches of all 20 ML
trees. Since RAxML-NG implements a bootstopping proce-
dure (Pattengale et al. 2010), the number of bootstrap repli-
cates may differ between likelihood epsilon configurations.
We therefore also compare the number of computed repli-
cates. We further summarize all bootstrap replicates per likeli-
hood epsilon configuration in a consensus tree and compare
the consensus trees between configurations using the RF-
Distance. In the following analyses, we denote the consensus
tree of all replicates inferred under �LnL ¼ �brlen ¼ 0:1 as
Cdefault and the consensus for all replicates inferred under the
suggested new settings (10, 103) as Cnew.

2.4.3 Phylogenetic signal
The properties of the MSA influence the phylogenetic infer-
ence (Stamatakis 2011). The stronger the so-called phyloge-
netic signal in the data is, the easier the phylogenetic analysis
will be. This phylogenetic signal provides a notion of how
informative the data is about the underlying evolutionary
process (Lemey et al. 2009). In our study, we use the sites-per-
taxa ratio as a proxy for the phylogenetic signal. The sites-
per-taxa ratio is computed by dividing the number of sites by
the number of taxa in the MSA. In general, the higher the
sites-per-taxa ratio of the MSA, the better the phylogenetic
signal of the data will be. In the following analyses, we will re-
fer to MSAs with a sites-per-taxa ratio � 80 as good phyloge-
netic signal. We refer to MSAs with a lower sites-per-taxa

ratio as MSA with an intermediate or weak phylogenetic sig-
nal. We are aware that quantifying this signal is a challenging
task, and a plethora of alternative, more elaborate methods
than the sites-per-taxa ratio have been proposed in the litera-
ture [see e.g. Misof et al. (2014) for an overview]. However,
our analyses suggest that the impact of the numerical thresh-
olds is well predicted by the sites-per-taxa ratio of the MSA
under study, justifying our selection of this easy to compute
proxy.

3 Discussion

In the following discussion, we focus on the analysis of the in-
fluence of �LnL and �brlen on the RAxML-NG and IQ-TREE
tree inference (Study 2), as well as the influence of both
thresholds on the RAxML-NG bootstrapping procedure
(Study 3). All findings apply to Data collection 2. We discuss
the less interesting results of Study 1 and Study 4 in detail in
the Supplementary Material (Sections 3 and 5). The threshold
with the highest impact on the runtimes of the RAxML-NG
and IQ-Tree tree inference procedures is the likelihood epsilon
�LnL. We further observe a substantial impact of the branch
length likelihood epsilon �brlen on the runtime of the RAxML-
NG tree inference. Our analyses suggest that increasing these
likelihood epsilon settings for RAxML-NG and IQ-TREE leads
to equally good results, requiring less CPU time. The same ob-
servation holds true for the RAxML-NG bootstrapping proce-
dure. All figures in the following section show the results
summarized over all MSAs of Data collection 2. If not stated
otherwise, we removed outliers using Tukey’s fences (Tukey
1977) with k :¼ 3 for all figures depicting a speedup for better
visualization. For the sake of completeness, we provide compre-
hensive speedup figures including all outliers in Supplementary
Section 4. In all box plots, a dashed vertical line indicates the
mean, and a solid vertical line the median value.

In the following, we discuss our analysis results for Study 2
and Study 3 on Data collection 2. In the first paragraph, we
focus on the influence of the likelihood epsilons on tree infer-
ences with RAxML-NG and IQ-Tree (Study 2). In the second
paragraph, we present our results for the RAxML-NG boot-
strapping procedure (Study 3).

3.1 Study 2: Tree inference
3.1.1 RAxML-NG
With increasing �LnL threshold in RAxML-NG, we observe an
expected decrease in LnL scores for higher settings. Especially
for �LnL settings � 102 the LnL scores deteriorate noticeably
(Fig. 1a). This is reflected by the proportion of tree inferences
yielding a tree that is included in the plausible tree set (hence-
forth called a plausible tree) as well. For the RAxML-NG de-
fault setting �LnL ¼ 10�1 on average 85% of tree inferences
yield a plausible tree, for 103 on average only 83% yield a
plausible tree. Averaged across all datasets, the RFpl increases
from 0.13 (10�1) to 0.16 (103), and Npl from 17.4 to 24.6.
For all datasets (except D15) the RF-Distances between trees
inferred under �LnL � 10 compared to the default setting
�LnL ¼ 10�1 are smaller or equal to the default RF-Distance.
However, for settings of 102 and 103 this is not the case. The
average RF-Distances between trees inferred under these set-
tings compared to the default setting are higher than the de-
fault RF-Distance. The topological differences among trees
inferred under settings of 102 and 103 to trees inferred under
the current default setting 10�1 can therefore not only be
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explained by the rugged tree space alone. This observation
holds true even for datasets with a good phylogenetic signal.
We conclude that for �LnL settings � 102 RAxML-NG infers
worse trees than for settings below 102. The runtimes of
RAxML-NG tree inferences decrease with higher �LnL settings
(Fig. 1b). On average, tree inferences under �LnL ¼ 103 run
approximately twice as fast as tree inferences under
�LnL ¼ 10�1.

Given these observations, we conclude that the �LnL setting
can be increased to 10. The quality of the trees is not affected
by this more superficial optimization, but the tree inferences
run on average 1.4 6 0.6 times faster.

With RAxML-NG, we also analyze the influence of the
�brlen threshold. Similar to the �LnL threshold, the runtimes for
�brlen improve with increasing settings (Fig. 2b). According to
our analyses, the LnL score is unaffected by the �brlen setting
(variations between settings � 0.007%; Fig. 2a). Across all
MSAs the number of tree inferences yielding a plausible tree is
identical for all �brlen settings we analyze. The RFpl increases
only slightly from 0.13 (�brlen ¼ 10�1) to 0.14 (�brlen ¼ 10�1).
In analogy, Npl increases only slightly from 17.4 to 17.8 aver-
aged over all datasets. For MSAs with a good phylogenetic

signal, we observe that the �brlen setting does not affect the fi-
nal tree topology: for all tested settings, the inferred tree to-
pologies are identical (RF-Distance¼0.0). For all other
MSAs, the average RF-Distance between trees inferred under
different settings is below the default RF-Distance. We con-
clude that the �brlen threshold does not substantially influence
the tree inference in RAxML-NG and the �brlen setting can be
increased to 103. In our analyses this observation holds true
for all analyzed MSAs independently of the magnitude of the
LnL scores. RAxML-NG uses the �brlen to optimize the three
branch lengths that are adjacent to the node at which a sub-
tree is regrafted via an SPR move. We suspect that since all
branch lengths are optimized at a later step during the tree in-
ference, conducting a thorough optimization of these three
branch lengths does not substantially improve the LnL score
and can thus be terminated early.

Since we suggest changing two likelihood epsilons in
RAxML-NG, we further analyze the influence of simulta-
neously changing both settings on the quality and the run-
times of tree inferences. To limit the computational effort, we
only compare the default combination ð�LnL; �brlenÞ ¼
ð10�1; 10�1Þ with the suggested new combination
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Figure 1. Influence of the �LnL setting on the LnL scores and runtime of RAxML-NG tree inferences. (a) Influence of the �LnL setting on the LnL scores of

RAxML-NG. The highlighted box indicates the default setting. The y-axis shows the LnL score degradation per inferred tree in percent relative to the LnL

score of the best-known tree. Higher percentages indicate worse LnL scores. (b) Influence of the �LnL setting on the RAxML-NG tree inference runtimes.

The highlighted box indicates the default setting. The y-axis shows the speedup relative to the average runtime under the default setting.
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Figure 2. Influence of the �brlen setting on the LnL scores and runtime of RAxML-NG tree inferences. (a) Influence of the �brlen setting on the LnL scores of

RAxML-NG. The highlighted box indicates the default setting. The y-axis shows the LnL score degradation per inferred tree in percent relative to the LnL

score of the best-known tree. Higher percentages indicate worse LnL scores. (b) Influence of the �brlen setting on the RAxML-NG tree inference runtimes.

The highlighted box indicates the default setting. The y-axis shows the speedup relative to the average runtime under the default setting.
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ð�LnL; �brlenÞ ¼ ð10;103Þ. As expected, the LnL scores are
worse under the new setting compared to the old setting
(Fig. 3a), but the tree inferences are faster (Fig. 3b). Averaged
over all MSAs, the LnL scores between the current default
and the suggested new combination vary by <0.004%. For
16 out of 19 MSAs, the KTS between trees inferred under the
current default combination versus the new combination are
smaller or equal to the default KTS. For D815, we observe an
unusually long branch of length 46 in one tree inferred under
the current default setting, resulting in a KTS greater than the
default KTS. This is likely to be a bug in the numerical branch
length optimization procedure of RAxML-NG which we are
currently investigating. Removing this single tree prior to av-
eraging yields a KTS that is smaller than the default KTS. For
D101 we observe a minor KTS increase: the default KTS is
0.2 while the KTS for trees inferred under the current default
combination versus the new combination is 0.24. We observe
a similar behavior for D140: the default KTS is 0.01 while the
KTS for trees inferred under the current default combination
versus the new combination is 0.09. We suspect that this is an
artifact of the weak signal of both MSAs: the sites-per-taxa
ratio is 18 for D101 and 8 for D140. The percentage of tree
inferences yielding a plausible tree is identical under both set-
ting combinations (87%). We observe only a minor increase
of RFpl from 0.12 to 0.14 and Npl from 17.2 to 21.4. For all
MSAs the RF-Distances between trees inferred under the cur-
rent default combination versus the new combination are
smaller or equal to the default RF-Distance. We conclude that
increasing both threshold settings does not substantially de-
crease the LnL scores of the inferred trees and does therefore
not affect the quality of the inferred trees. With the MSAs of
Dataset collection 1 we observe a speedup of 1.9 6 0.6, on
Data collection 2 we observe a speedup of 1.8 6 1.1.

3.1.2 IQ-TREE
Analogous to RAxML-NG, the runtimes of tree inferences im-
prove with higher �LnL settings for IQ-Tree. Tree searches un-
der the default setting of �LnL ¼ 10�3 run on average
approximately twice as long as tree searches with �LnL ¼ 103

(Fig. 4b). However, IQ-TREE appears to be more sensitive to
the �LnL setting than RAxML-NG in terms of LnL scores.

Under higher �LnL settings, the LnL score degradation is an or-
der of magnitude worse than for RAxML-NG (on average �
0.2% for IQ-TREE versus � 0.03% for RAxML-NG;
Fig. 4a). For �LnL values � 10 the LnL scores are on average
approximately equal. Also, based on the plausible tree set size
under various settings, we observe that IQ-TREE is more sen-
sitive to the �LnL setting. We observe that for �LnL ¼ 103 aver-
aged over all MSAs, noticeably fewer tree inferences yield a
plausible tree than for any other setting (58% versus 76% for
�LnL ¼ 10�3). This effect is less pronounced for MSAs with
good phylogenetic signal. For MSAs with a sites-per-taxa ra-
tio � 80 we observe that the �LnL setting does not affect the fi-
nal tree topology: under all tested settings the inferred tree
topologies are identical (RF-Distance¼0.0). For MSAs with a
worse phylogenetic signal, the RF-Distance between trees in-
ferred under the default setting 10�3 and settings of 102 and
103 exceed the average RF-Distance in the plausible tree set.
We conclude that for MSAs with an intermediate or weak
phylogenetic signal, the trees inferred under �LnL settings �
102 are worse than under lower settings. According to our
evaluation metrics across all analyzed MSAs the �LnL setting
can be set to 10 without compromising the quality of the in-
ferred tree topologies. For 17 out of 19 MSAs, the KTS be-
tween trees inferred under the current default setting versus
the new setting are smaller or equal to the default KTS. For
D80 we observe a minor increase in KTS: the default KTS is
0.17 while the KTS for trees inferred under the current default
combination versus the new combination is 0.37. We observe
a similar behavior for D815: the default KTS is 0.19 while the
KTS for trees inferred under the current default combination
versus the new combination is 0.36. We suspect that this is an
artifact of the weak signal of both MSAs: the sites-per-taxa
ratio is 25 for D815 and 3 for D80. In our analyses, the sug-
gested increase of �LnL to 10 results in an average speedup of
1.3 6 0.9.

As mentioned before, we observe a higher sensitivity to the
�LnL setting in IQ-TREE than in RAxML-NG. We suspect
that this is caused by the random Nearest Neighbor
Interchange (NNI) topology perturbation moves in IQ-
TREE’s search algorithm. IQ-TREE implements these random
NNI moves to escape local NNI maxima (see the
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Figure 3. Influence of simultaneously changing both likelihood epsilon settings on the LnL scores and runtime of the RAxML-NG tree inference. (a)

Influence of simultaneously changing both likelihood epsilon settings on the LnL scores of RAxML-NG. The highlighted box indicates the default

combination. The y-axis shows the LnL score degradation per inferred tree in percent relative to the LnL score of the best-known tree. Higher

percentages indicate worse LnL scores. (b) Influence of simultaneously changing both likelihood epsilon settings on the RAxML-NG tree inference

runtimes. The highlighted box indicates the default combination. The y-axis shows the speedup relative to the average runtime under the default

combination.
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Supplementary Information for a more detailed description of
the IQ-TREE inference heuristic). To explore this hypothesis,
we modify IQ-TREE and disable this randomness in the search
algorithm. As a consequence, IQ-TREE then only optimizes the
tree topology using standard NNI moves. We refer to the stan-
dard IQ-TREE as random IQ-TREE and to the IQ-TREE algo-
rithm without random NNI moves as de-randomized IQ-
TREE. We re-analyze four MSAs using the de-randomized IQ-
TREE version. Without the random NNI moves, the IQ-TREE
search heuristic can explore the tree space less, thus, we expect
the LnL scores for de-randomized IQ-TREE to be worse than
for random IQ-TREE, which we indeed observe in our analyses.
To compare the influence of the �LnL threshold, we again com-
pute the proportion of tree inferences yielding a plausible tree.
We observed that when using de-randomized IQ-TREE, notice-
ably more tree inferences yield a plausible tree under �LnL � 102

than when using the random IQ-TREE variant. We conclude
that large �LnL settings (� 102) distort the random NNI moves
in IQ-TREE, causing a premature termination of the tree
inference. This also explains the vast runtime improvement un-
der these settings.

3.2 Study 3: RAxML-NG bootstrapping

Note that in the following discussion, we will refrain from
reporting average correlation coefficients, as the most accu-
rate method of averaging correlations is disputed (Corey et al.
1998). Especially, the widely used method of applying the
Fisher z-transformation (Fisher 1992) prior to averaging is
not directly applicable to our analyses results, as the inverse
hyperbolic tangent function is only defined for values < 1.0.
We do, however, frequently observe Pearson correlation coef-
ficients of exactly 1.0.

We observe Pearson correlation coefficients > 0.99 for all
20 ML trees when comparing the support values under the
current default setting �LnL ¼ �brlen :¼ 0:1 to the suggested
new setting �LnL :¼ 10 and �brlen :¼ 103 (Fig. 5a). All P-values
are � 10�35. We observe the lowest correlation coefficient on
D354 (0.992). This is, however, not surprising, as this dataset
contains highly similar ITS sequences, and is known to be dif-
ficulty to analyze (Grimm et al. 2006). RAxML-NG reports
support values in percent on a scale of 0%–100%. Averaged
over all datasets, the absolute pairwise difference in support
values per tree topology is 0.5 percentage points. The highest

observed difference is 3.23 percentage points for a phylogeny
inferred on D25. On D25, the average support value over all
20 ML trees is 55.2%. This suggests that the bootstrap repli-
cates inferred under both settings do not substantially influ-
ence the interpretation of the resulting support values drawn
on the ML trees. As mentioned above, due to the implemented
bootstopping procedure, the number of bootstrap replicates
may differ depending on the likelihood epsilon setting. Except
for two datasets, the computed number of bootstrap repli-
cates is identical. For D354, we observe a slower convergence
with the suggested new settings: RAxML-NG infers 700 repli-
cates under ð0:1; 0:1Þ and 800 under ð10;103Þ. In contrast,
for D140, we observe a faster convergence with 400 inferred
replicates under ð0:1; 0:1Þ versus 350 replicates under
ð10;103Þ. To further analyze this observation for D140 and
D354, we reran the analyses using distinct random seeds. For
D354, changing the random starting seed to 42 and 100 in
distinct analyses, showed a similar trend: for seed¼ 42 the
more conservative setting ð0:1; 0:1Þ converges after 850 boot-
strap replicates while it does not converge under ð10;103Þ
and infers the maximum number of 1000 replicates. With
seed¼ 100 we observe 700 replicates under ð0:1;0:1Þ versus
900 replicates under ð10;103Þ. Yet, despite the increased
number of inferred replicates, the increased likelihood epsilon
settings result in a speedup > 1 compared to ð0:1;0:1Þ. For
D140, changing the random starting seed from 0 to 42
resulted in identical number of replicates under both likeli-
hood epsilon configurations (384 replicates).

Averaged over all MSAs, the relative RF-Distance between
the respective bootstrap consensus trees Cdefault and Cnew is
0.03. For 11 out of 20 MSAs, the consensus trees Cdefault and
Cnew are topologically identical (RF-Distance¼ 0.0). We ob-
serve the highest topological difference again for D354 (RF-
Distance¼ 0.14). We conclude that the bootstrapping proce-
dure is not affected by the increased likelihood epsilon values,
and we suggest changing the respective default settings in
RAxML-NG. Implementing the suggested changes results in a
speedup of 1.9 6 0.8 on Data collection 2 (Fig. 5b).

4 Conclusion

Increasing the RAxML-NG settings for the likelihood epsilons
�LnL and �brlen to 10 and 103, respectively, does not
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Figure 4. Influence of the �LnL setting on the LnL scores and runtimes of IQ-TREE tree inferences. (a) Influence of the �LnL setting on the LnL scores of IQ-

TREE. The highlighted box indicates the default setting. The y-axis shows the LnL score degradation per inferred tree in percent relative to the LnL score

of the best-known tree. Higher percentages indicate worse LnL scores. (b) Influence of the �LnL setting on IQ-TREE tree inference runtimes. The

highlighted box indicates the default setting. The y-axis shows the speedup relative to the average runtime under the default setting.
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significantly influence the quality of the inferred trees accord-
ing to statistical significance tests. By changing both settings,
we observe a speedup of 1.9 6 0.6 on Data collection 1 and
1.8 6 1.1 on Data collection 2. With IQ-TREE, increasing the
�LnL to 10 has no significant impact on the LnL scores, and
we observe a speedup of 1.3 6 0.4 on Data collection 1 and
1.3 6 0.9 on Data collection 2. Our observations are indepen-
dent of the magnitude of the LnL scores of the analyzed
MSAs. For MSAs with a good phylogenetic signal, the in-
ferred tree topologies under the current default settings and
the suggested new settings are identical for both, RAxML-NG
and IQ-TREE (RF-Distance¼ 0.0). For MSAs with an inter-
mediate or weak phylogenetic signal, the topological differen-
ces between threshold settings can be explained by the rugged
tree space, and the RF-Distances between inferred trees under
different settings are less than or equal to the default RF-
Distance. It is important to note that the final tree evaluation
after tree inference should not be omitted and performed un-
der conservative likelihood epsilon settings, e.g. the default
settings in RAxML-NG and IQ-TREE.

We further suggest increasing the �LnL and �brlen to 10 and
103, respectively, during the RAxML-NG bootstrapping pro-
cedure as well. According to our analyses, these changes do
not affect the quality of the bootstrapping results while de-
creasing the runtime of the RAxML-NG bootstrap. We ob-
serve a speedup of 1.9 6 0.8 on Data Collection 2.

Based on our results, the default values for �LnL and �brlen
were increased in the production level release of RAxML-NG
Version 1.2.0 to 10 and 103, respectively. RAxML-NG
Version 1.2.0 further performs the suggested tree evaluation
step with conservative likelihood epsilon settings (i.e. 0.1) af-
ter each tree inference (see https://github.com/amkozlov/
raxml-ng/releases/tag/1.2.0).

While our findings suggest that increasing the likelihood ep-
silon threshold �LnL to values �100 in both, RAxML-NG,
and IQ-Tree generally yields worse results, such an increase
may be (re-)considered for MSAs with specific attributes,
potentially allowing for improved speedups. For future
studies, we thus suggest a more thorough analysis of the
impact of numerical thresholds on maximum likelihood tree
inference in relation to attributes of the MSAs other than the
sites-per-taxa ratio (e.g. the proportion of gaps or alternative
measures/predictions of phylogenetic signal). To this end,

simulating MSAs with specific attributes could constitute a
way forward, albeit simulations still tend to be unrealistic
(Trost et al. 2023). However, such a more thorough explora-
tion should be carefully considered, as performing a vast
amount of tree inferences is computationally expensive.

Supplementary data

Supplementary data are available at Bioinformatics Advances
online.
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Figure 5. Influence of simultaneously changing both likelihood epsilon settings on the bootstrap support values and runtime of the RAxML-NG bootstrap.

(a) Influence of simultaneously changing both likelihood epsilon settings on the bootstrap support values. The highlighted box indicates the default

combination. The y-axis shows the Pearson correlation coefficients between support values for all ML trees across all analyzed datasets. (b) Influence of

simultaneously changing both likelihood epsilon settings on the RAxML-NG bootstrapping runtimes. The highlighted box indicates the default

combination. The y-axis shows the speedup relative to the runtime under the default combination. This figure shows all MSAs (no outlier filtering).
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Trost J, Haag J, Höhler D et al. Simulations of sequence evolution: how
(un)realistic they really are and why. bioRxiv, https://doi.org/10.
1101/2023.07.11.548509, 2023, preprint: not peer reviewed.

Tukey J. Exploratory Data Analysis. Reading, MA: Addison-Wesley,
1977.

Yang Z, Goldman N, Friday A. Maximum likelihood trees from DNA
sequences: a peculiar statistical estimation problem. Syst Biol 1995;
44:384–99. https://doi.org/10.2307/2413599

Zhu C, Byrd RH, Lu P et al. Algorithm 778: L-BFGS-B: Fortran subrou-
tines for large-scale bound-constrained optimization. ACM Trans Math
Softw 1997;23:550–60. https://doi.org/10.1145/279232.279236

10 Haag et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/3/1/vbad124/7273799 by KIT Library user on 20 O
ctober 2023

https://doi.org/10.2307/2412116
https://doi.org/10.2307/2412116
https://doi.org/10.1002/9781118723203.ch3
https://doi.org/10.1002/9781118723203.ch3
https://doi.org/10.1016/j.jmb.2004.02.006
https://doi.org/10.1016/j.jmb.2004.02.006
https://doi.org/10.1177/117693430600200014
https://doi.org/10.1093/sysbio/44.1.17
https://doi.org/10.1007/bf02100115
https://doi.org/10.1093/bioinformatics/btz305
https://doi.org/10.1093/bioinformatics/btz305
https://doi.org/10.1093/oxfordjournals.molbev.a040126
https://doi.org/10.1093/oxfordjournals.molbev.a040126
https://doi.org/10.1093/molbev/msn067
https://doi.org/10.1093/molbev/msn067
https://doi.org/10.1017/CBO9780511819049
https://doi.org/10.1073/pnas.222522599
https://doi.org/10.1093/molbev/msaa015
https://doi.org/10.1093/molbev/msaa015
https://doi.org/10.1186/s13015-014-0022-4
https://doi.org/10.1093/molbev/msaa314
https://doi.org/10.1093/molbev/msaa314
https://doi.org/10.1089/cmb.2009.0179
https://doi.org/10.1371/journal.pone.0009490
https://doi.org/10.1016/0025-5564(81)90043-2
https://doi.org/10.1080/10635150290069913
https://doi.org/10.1080/10635150290069913
https://doi.org/10.1093/oxfordjournals.molbev.a026201
https://doi.org/10.1093/bioinformatics/btm466
https://doi.org/10.1093/bioinformatics/btm466
https://doi.org/10.1002/9780470892107.ch25
https://doi.org/10.1080/10635150802429642
https://doi.org/10.1080/10635150802429642
https://doi.org/10.1098/rspb.2001.1862
https://doi.org/10.1098/rspb.2001.1862
https://doi.org/10.1093/sysbio/sys042
https://doi.org/10.1101/2023.07.11.548509
https://doi.org/10.1101/2023.07.11.548509
https://doi.org/10.2307/2413599
https://doi.org/10.1145/279232.279236

	Active Content List
	1 Introduction
	2 Methods
	3 Discussion
	4 Conclusion
	Funding
	References


