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A B S T R A C T
Effectively homogenizing microstructure heterogeneity within the coarse-graining volume is
a long-lasting challenge in crystal plasticity theories. In this paper, we propose a data-based
homogenization method that utilizes discrete dislocation dynamic simulations to derive the
nearfield correction stress (back stress) for continuum models. This stress accounts for the
effective stress field induced by microstructure heterogeneity under the length scale of a coarse-
graining volume, providing a physically based homogenization approach. To bridge the gap
between discrete and continuous regimes, we introduce two versions of the nearfield correction
stress, as well as a criterion based on microstructure and numerical parameters to determine the
discrete and continuous transition. Moreover, by analyzing the mathematical connections with
the work-conjugated gradient plasticity theory, we further provide a physical explanation for
the observed material length scale in the thermodynamically consistent back stress term. This
work presents a novel methodology for effectively addressing microstructure heterogeneity and
advancing the understanding and modeling of material behavior bridging different length scales.

1. Introduction
The motion and interaction of dislocations are fundamental for understanding and predicting the mechanical

behavior of materials. Continuous crystal plasticity has made significant advancements in recent years by incorporating
microstructural mechanisms into modeling approaches. Notably, studies conducted, e.g., by Yefimov et al. (2004);
Gurtin et al. (2007); Gurtin and Ohno (2011); Hochrainer et al. (2014); Geers et al. (2014); Cui et al. (2015); Sudmanns
et al. (2019); Ryś et al. (2020); Lin and El-Azab (2020); Vivekanandan et al. (2023) have contributed to this field
by integrating mechanism-based knowledge into continuum modeling frameworks. In these models, microstructural
information is represented by state variables such as dislocation density, stress, dislocation flux, and dislocation
velocity within the elements, achieved through a homogenization strategy. By considering microstructural effects in a
continuous manner, continuum models offer computational efficiency compared to discrete models while still capturing
the advantages of incorporating microstructural characteristics.

Within the continuum models, there have been plenty of references showing the use of crystal plasticity capturing
non-uniform deformation induced by the existence of multiple grains, precipitations, and gradient of mechanical
properties, e.g., Ma et al. (2006), Roters et al. (2010), Izadbakhsh et al. (2011), Jafari et al. (2017), Bhattacharyya
et al. (2019), Li et al. (2022). Within these theories, homogenization approaches have been proposed to address
the non-uniform structure at the length scale of several microns, even across grains. However, Berdichevsky and
Dimiduk (2005); Roy et al. (2008) have pointed out that the applicability of continuum theories is doubtful as the
discretization level shrinks to the scale close to dislocation spacing. Addressing microstructure heterogeneity within
the coarse-graining volume under such a smaller scale remains one of the challenges for continuum theories. Here, the
heterogeneity of the scale close to dislocation spacing refers to the inhomogeneous microstructural features, such as
dislocation patterning and pile-up, occurring at the length scales smaller than the numerical resolution employed in
continuous simulations. It usually occurs in the region with highly non-uniform deformation, e.g. in the proximity of
grain boundaries and inclusions, or regions with high strain gradient. Therefore, the coarse-graining volume under such
conditions should take the heterogeneities into account. Another challenge of continuum modeling is the derivation of
physical-based homogenization strategies. The models usually include many parameters that have to be taken into
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the constitutive formulation. Mostly, these parameters are very difficult or even impossible to be measured from
experiments and have to be approximated, e.g. based on theoretical considerations of possible ranges. The direct
homogenization from discrete to continuum formulation without unknown or non-physical input parameters is still
missing within the field of continuum theories.

To bridge the gap between discrete and continuum theories by considering the heterogeneity, smaller scales of
homogenization approaches have been proposed. For instance, Geers et al. (2013) have considered a system of parallel
straight edge dislocations, and further derived the effective stress field induced by dislocation pile-up as a back stress
term. In continuous dislocation dynamic theory (CDD), an internal correction stress having the role of back stress
within the flow rule has been introduced. This correction stress considers the heterogeneity effect induced by the
short-range interactions between excessive dislocations within the coarse-graining volume. It was motivated by the
back stress proposed within the statistical theory by Groma et al. (2003, 2007); Ispánovity et al. (2008); Groma et al.
(2016). And a further extension to numerical modeling proposed by Schulz et al. (2014); Schmitt et al. (2015) mitigates
errors caused by different sizes of coarse-graining. Meanwhile, Dogge et al. (2015) has started from a more idealized
dislocation configuration (e.g., the Taylor lattice) and derived the correction effect induced by the heterogeneity
considering both the excessive and total dislocations. In these derivations, the correction stress (back stress) has
formulations scaled by the inverse of the square root of the dislocation density homogenized within the coarse-graining.
A similar scaling characteristic is also commonly applied in the back stress conjugated with the energetic defect energy
potential within gradient plasticity theory. This scaling is more often denoted as the square of material length scale
(e.g., Gurtin (2000)). Berdichevsky (2006) has introduced a “saturation density of the crystal” as a scaling for the non-
convex logarithmic energy potential. Constant values of saturation densities are further obtained for Al and Ni. This
finding bridges the material length scale derived from thermodynamic consistency toward microstructure mechanisms.
However, the discussions by Norfleet et al. (2008); Zaiser (2015); Hochrainer (2016); Forest (2019); Piao and Le (2022)
show the uncertainty of dwelling upon the question of the correct definition for the scaling density. Up to now, there
is still no physical-based explanation for the role of “saturation density” from microstructure point of view. Also, the
magnitude of the scaling density still remains an open issue for numerical implementations (e.g., Wulfinghoff and
Böhlke (2015); Ryś and Petryk (2018); Albiez et al. (2019); Jebahi et al. (2020)). It has been concluded by Voyiadjis
and Song (2019) that the precise definition and magnitude for both the defect energy potential as well as the material
length scale are still controversial.

Hence, based on the presumption that the presence of the correction stress within the continuous flow rule emerges
due to the heterogeneity in coarse-graining volume, we propose a data-based homogenization strategy addressing
the microstructure heterogeneity and the derivation for the correction stress (back stress). Considering a bottom-up
methodology (i.e., transitioning from the discrete to continuous scale), we derive a back stress formulation as well
as reveal a deeper understanding of the physical aspects governing the homogenized stress field in the framework of
crystal plasticity theories. The derivation procedure encompasses several key aspects:

• Identifying microstructure heterogeneity.
• Representative dislocation configurations in the discrete-to-continuum regime.
• Homogenization strategy for capturing internal length scales.
Within Section 2, we construct a discrete dislocation dynamic (DDD) benchmark simulation to gain insights

into the formation and characteristics of microstructure heterogeneity within a coarse-graining volume. Based on the
results of DDD benchmark simulations from Section 2, we derive representative microstructure configuration for an
averaging volume of continuum theories in Section 3. The configuration takes the formation of inhomogeneously
distributed edge dislocation walls within the coarse-graining into account. We further propose a homogenization
strategy by introducing the effective stress addressing the heterogeneity within the coarse-graining. To determine the
heterogeneous distribution within the coarse-graining induced by different microstructure and numerical conditions,
we adopt a data-based approach to determine the probability distribution of edge dislocation walls within Section 4.
Within Section 5, we derive a formulation for the effective internal stress induced by microstructural heterogeneity.
The direct homogenization from discrete to continuum formulation as presented in this study physically addresses
microstructure heterogeneity within the coarse-graining. At the same time, we avoid unknown input parameters for
the continuum model. The homogenization strategy is then a purely physical outcome of a continuum formulation
that is able to represent the internal stress fields. It is important to distinguish between the applicable domain of
homogenization for the effective internal stress fields and the whole system domain. Within this study, we aim to
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investigate the microstructure features under the length scale of a coarse-graining volume, which contains highly
heterogeneous dislocation distributions. It has to be remarked that this addresses the heterogeneity in every single
averaging element which is in most cases different from the microstructure heterogeneity distributed throughout the
whole system. The derivation comes along with a criterion for identifying the transition regime between continuous and
discrete modeling approaches. This nearfield correction stress is derived for a highly flexible numerical discretization
scheme based on both the microstructure and numerical length scales of the coarse-graining volume. Moreover, the
presented results yield insights into a longstanding problem: the physical explanation of the material length scale within
work-conjugated gradient plasticity.

2. Discrete Analysis of Heterogeneity in Continuous Crystal Plasticity Coarse-graining
In this section, we explore the heterogeneity formation within a coarse-graining volume by discrete-level simu-

lation. We introduce a benchmark DDD simulation setup that calculates dislocation mobility within spatial coarse-
graining under the influence of adjacent elements. Thereby, the emergence of microstructural heterogeneity formation
at length scales smaller than the numerical resolution can be revealed.
2.1. Benchmark System by Discrete Dislocation Dynamic Simulation

The use of continuous crystal plasticity theory in representing dislocation arrangements within an element employs
state variables, such as dislocation density. However, this approach fails to explicitly consider the microstructure
heterogeneity within a coarse-graining volume. We therefore investigate the microstructure heterogeneity in a coarse-
graining volume as a first step. To achieve this goal, a 2D DDD simulation, which simulates the microstructure evolution
within an element, is constructed. This approach builds on the pioneering works of Amodeo and Ghoniem (1990);
Van der Giessen and Needleman (1995); Groma et al. (2003).

The reason for using DDD simulations arises from the pronounced nature of microstructure heterogeneity under
non-uniform deformation conditions, such as bending, indentation, or deformation in the proximity of obstacles or
grain boundaries. At low temperatures, edge dislocations represent the primary mode of deformation, with out-of-
plane movements such as dislocation climb and cross-slip being negligible in a simplifying assumption. As a result,
the short-range interaction caused by the same slip system becomes crucial within a small range, such as a coarse-
graining volume, during low-temperature non-uniform deformation. Although the 2D DDD simulation overlooks 3D
mechanisms such as junction formation and inter-slip system interactions, it is still an effective tool for identifying
short-range dislocation interactions within a single slip system, as demonstrated by numerous studies in the literature
(Kuykendall and Cai (2013); Keralavarma and Curtin (2016)). Additionally, as mentioned in Gurtin and Ohno (2011),
the interaction between slip systems is supposed to become important at length scales above a few microns, which
is larger than the length scale of a single element. Therefore, the 2D DDD simulation can be utilized to observe the
microstructure heterogeneity induced by the short-range effect of dislocations belonging to the same slip system within
a single coarse-graining volume. Consequently, this study commences with a 2D DDD simulation that solely considers
edge dislocation and a single slip system.

Fig. 1 demonstrates the geometry of the three-element coarse-graining DDD simulation we consider for investi-
gating the microstructure heterogeneity within an element. Here, x-direction is the slip direction, and y-direction is the
normal of slip plane. The edge dislocations in the DDD simulation are only capable of gliding along the slip direction
and do not exhibit any out-of-plane movement. The velocity 𝑣𝑖 of an individual dislocation 𝑖 with sign 𝑠𝑖 is determined
solely by the Peach-Koehler force exerted by all neighboring dislocations 𝑗, in the absence of external loading. It is
commonly assumed that the dislocation velocity is isotropic and over-damped for DDD simulation in the literature
(Groma et al. (2003, 2016)). Therefore, the velocity of each dislocation is proportional to the resulting shear stress,
given by

𝑣𝑖 =
|𝒃|
𝐵

𝑠𝑖𝜏r , (1)
where |𝒃| is the magnitude of the Burgers vector of the dislocation, 𝐵 is the drag coefficient, and 𝜏r is the resolved
shear stress induced by all other dislocations 𝑗, given by

𝜏r =
𝑁
∑

𝑗≠𝑖
𝑠𝑗

𝜇 |𝒃|
(1 − 𝜈)2𝜋

𝑥̃(𝑥̃2 − 𝑦̃2)
(𝑥̃2 + 𝑦̃2)2

, (2)
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Figure 1: The geometry arrangement and setup for the three-element coarse-graining DDD simulation.

where 𝜇 is the shear modulus, 𝜈 is the Poisson’s ratio, and 𝑁 is the total number of dislocations. The distance between
dislocation 𝑗 and the target dislocation 𝑖 is denoted as 𝑥̃ = 𝑥𝑗 − 𝑥𝑖 and 𝑦̃ = 𝑦𝑗 − 𝑦𝑖.In order to analyze microstructure heterogeneity influenced by coarse-graining using the DDD method, a three-
element benchmark system is introduced. The system takes into account the influence of adjacent elements (Element 1
and 3) on the targeted element (Element 2). The motion of edge dislocations within the targeted element is affected not
only by the dislocations within its own element but also by all the dislocations within the adjacent elements. Within
each element, random initial seeding of edge dislocations is performed.

We use the three-element setup to investigate a localized domain under high strain gradient, e.g., the GND pile
up in the proximity of grain boundaries as shown in Fig. 1. Without loss of generality, the positive dislocations are
assumed to be excessive. To be noted, we construct the three-element DDD simulation to investigate the microstructure
distribution within a localized high strain gradient domain, instead of a whole system. The non-zero long-range average
stress induced by the excessive dislocations has been addressed by the fixed boundary condition on the boundaries of the
elements. This setup is similar to that: In a numerical continuum problem, the existence of non-zero net GND within the
coarse-graining will cause the long-range average stress and therefore geometry incompatibility on the boundaries of
elements. This issue is addressed in the numerical solution by the introduction of the mean-field stress while resolving
the eigenstrain problem, which has been discussed within Lemarchand et al. (2001); Sandfeld et al. (2013); Hochrainer
et al. (2014); Schulz et al. (2014). Within this study, we are not using the three-element simulation to resolve a real mean
field problem for an overall domain. In contrast, we are studying a localized domain and focusing on identifying the
cause of the internal stress within one single element. Therefore, the domain of the three-element simulation does not
represent an overall system, but a localized domain with excessive dislocations. According to the number of positive
and negative dislocations, N+ and N−, respectively, the corresponding state variables, such as dislocation density
and gradient of dislocation density, for continuum models can be calculated. Dislocation densities, such as SSDs and
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GNDs, are commonly used to describe the microstructure status in dislocation-based crystal plasticity theories. Based
on the geometrical differences between GNDs and SSDs, dipole and multipole structures form when SSDs are present,
while excessive dislocations are considered as GNDs (Arsenlis and Parks (1999)). The edge dislocations within the
coarse-graining volume are assumed to be straight “dislocation lines” along the z-direction of Fig. 1. Within this study,
we assume all the non-excessive (i.e., negative) dislocations will form into a dipole or multiple structures in a converged
state. The number of non-excessive dislocations will correspond to the number of SSDs. Therefore, the SSD density
can be expressed as:

𝜌SSD =
N− × 𝓁

𝓁3
=

N−

𝓁2
. (3)

The number of excessive dislocations (i.e., positive dislocations deduct negative dislocations) will correspond to the
number of GNDs, given by

𝜌GND =

(

N+ − N−
)

× 𝓁

𝓁3
=

(

N+ − N−
)

𝓁2
. (4)

And the total dislocation density, 𝜌tot , is the summation of 𝜌GND and 𝜌SSD. For the state variable representing the
influence of the adjacent elements, the gradient of dislocation densities is calculated as ∇𝜌2 = 𝜌3−𝜌1

𝓁
, where ∇𝜌2 is the

gradient of dislocation density across Element 2, and 𝜌𝑛 denotes the specific dislocation density within element 𝑛 and
𝜌 can be replaced by different types (i.e., SSD, GND, or total dislocation density) of dislocation density.

If we assume that the deformation during each simulation time step in continuum simulations is quasi-static,
the microstructure within each simulation time step should reach an equilibrium state before moving on to the
calculation for the next time step. Therefore, to simulate the microstructure evolution for a coarse-graining volume, the
corresponding state variables within each averaging element are considered to be constant. To ensure the constancy of
the state variables within each element throughout the DDD benchmark, a periodic boundary condition is implemented,
as indicated by the red dashed lines in Fig. 1. The boundary condition is similar to a simple periodic boundary
condition allowing dislocations leaving and re-entering the coarse-graining. However, the dislocations are not allowed
to transmit through adjacent elements. In other words, each element (domain) contains dislocations interacting with
dislocations in the other element (domain), but the dislocations within each domain do not transfer. Thereby, we ensure
to maintain constant state variables (e.g. dislocation density and gradient) within each coarse-graining volume, and the
final microstructure is achieved under a quasi-static condition obtained with constant state variables.
2.2. The Heterogeneity Formation within a Coarse-graining Volume

To identify the heterogeneity forming within a coarse-graining volume, we analyze the benchmark system
demonstrated in Section 2.1 calculating the microstructure of copper materials. The material properties used for the
simulation are as follows: the shear modulus 𝜇 is set to 40.0GPa and the Poisson’s ratio 𝜈 is set to 0.367, as reported in
Date and Andrews (1969). The length of the Burgers vector |𝑏|, is determined to be 0.254 nm based on Davey (1925).
Additionally, the value of 𝐵 is chosen as 5×10−5 sPa according to Kubin et al. (1992), representing the drag coefficient
for dislocation motion for the under-damped assumption.

Fig. 2a illustrates the relaxed microstructure within the targeted element (Element 2), resulting from the setup
shown in Fig. 1. The resulting microstructure heterogeneity includes the presence of dipoles and multipoles formed by
dislocation interaction, as shown in Fig. 2b, and edge dislocation walls consisting of excessively positive dislocations,
as shown in Fig. 2c. The dipoles and multipoles are randomly positioned, while the edge dislocation walls exhibit
a non-uniform distribution along the x-direction within the coarse-graining element. Based on the definition within
Arsenlis and Parks (1999), we conclude the heterogeneities forming within the coarse-graining volume include the
randomly seeding SSDs, as well as the non-uniformly distributed GND walls.
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Element 2 (N−: 100, N+: 200)
(a)

Element 2 (N−: 100, N+: 200)
(b)

Element 2 (N−: 100, N+: 200)
(c)

Figure 2: Identifying heterogeneous structure within Element 2 by the benchmarked DDD simulation. The postprocessed
images are shown in (a): relaxing status to simulate a quasi-static time step; (b): dislocation dipoles and multiples; (c):
the edge dislocation wall structure (highlighted by the black dashed box) is found.

3. Homogenization for Continuum Crystal Plasticity Theories
In this section, we present an extended analysis focusing on the homogenization strategy for the coarse-graining

volume building upon the findings in Section 2.2. We first demonstrate the impact of heterogeneous structures based on
randomly positioned SSDs and GND walls by visualizing the associated stress fields. To account for the heterogeneity
within the coarse-graining, we further quantify the resulting internal stress field as a homogenization approach.
3.1. Impacts of Dislocation Configuration within a Coarse-graining

As elaborated in Section 2, the microstructure comprises randomly distributed dipoles and multipoles, along with
edge dislocation walls formed by excessively positive dislocations, as depicted in Fig. 2b and Fig. 2c, respectively. Here,
we investigate the impacts of the two heterogeneities by visualizing the stress fields induced by different heterogeneous
structures within Element 2, we divide the element into a grid of 100 × 100 cells. By calculating the cumulative shear
stress at the centroid of each cell, caused by all dislocations within the element, we can quantify the internal stress field
within the coarse-graining. The stress fields induced by these microstructural features are presented in Fig. 3, where
Fig. 3a demonstrates the stress field induced by the randomly distributed SSDs, and Fig. 3b showcases the stress field
induced by the non-uniformly distributed GND walls. For a better comparison, Fig. 3c is the same as Fig. 3a, but we
tune the scale bar the same as Fig. 3b, and also remove the mark of positive and negative dislocations. The results
reveal that the stress field induced by dipoles and multipoles is short-range, exhibiting rapid decay to zero within a
small distance and yielding an overall stress-free region within the coarse-graining (1.5 MPa in average). In contrast,
the stress field induced by the GND walls is predominantly negative given the considered slip direction, exhibiting a
significant magnitude (468 MPa in average) throughout the coarse-graining volume. To be noted, from Fig. 3c, within
the close region of each dipole and multiple, the stress induced by each SSD still exhibits a noticeable value of stress.

Based on the findings presented in Fig. 3, we conclude that the influence arising from dipoles and multiples (SSDs)
is rather low and can be neglected in the continuous configuration. However, it is crucial to consider the stress induced
by excessive dislocation walls (GND walls). Taking the observed heterogeneity into account, we have to consider a
certain homogenized configuration of GND walls in a coarse-graining volume. A schematic sketch of the proposed
configuration within this study is given by Fig. 4. The excessive dislocations form GND walls, which are highlighted
by the dashed box. Within each GND wall, the dislocations are assumed to be equally spaced with a distance L
for simplicity. L are approximated by the average spacing between excessive dislocations, therefore, L ≈ 1

√

𝜌GND
.

Consequently, the total number of slip planes within a coarse-graining element along the y-direction is given by
Ny = 𝓁

√

𝜌GND. The walls are distributed non-uniformly along the x-direction, resulting in a noticeable non-zero
net stress field within the coarse-graining.
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(a) (b)

(c)
Figure 3: Illustration of the stress fields induced by different heterogeneous microstructures in a coarse-graining (Element
2). (a) shows the stress field induced by dipoles and multipoles, while (b) shows the stress field induced by GND walls.
The colors represent the magnitude and sign of the stress field, with red indicating positive stress, white indicating zero
stress, and blue indicating negative stress. For better comparison, (c) is the stress field induced by dipoles and multipoles
but with the same scaling bar as (b).

3.2. Effective Correction Stress for Heterogeneous microstructure
To address the effect induced by microstructure heterogeneity within the coarse-graining as shown in Fig. 4, we

define the effective internal stress (nearfield correction stress), 𝜏𝜉nfc. 𝜏𝜉nfc is formulated to account for the stress field
induced by the non-uniformly distributed GND walls within the coarse-graining volume on slip system 𝜉. To be noted,
the heterogeneity effect we are addressing within this study is induced within a coarse-graining volume. Therefore,
the interaction considered here forming the heterogeneity features is limited to at least one or two orders smaller than
the overall simulated system, depending on the discretization level. As mentioned in Gurtin and Ohno (2011), the
interaction between slip systems becomes important at length scales above a few microns. We assume that 𝜏𝜉nfc does
not involve the forest densities hardening and hence the interaction between different slip systems.

Considering the generalized Orowan’s equation, which describes the relation between the plastic slip rate, 𝛾̇𝜉 ,
mobile dislocation density, 𝜌𝜉𝑚, and the average dislocation velocity 𝑣𝜉 on slip system 𝜉, is given by

𝛾̇𝜉 = |𝒃| 𝜌𝜉𝑚𝑣
𝜉 . (5)

While the coarse-graining volumes are under non-uniform deformations, the resulting stress can be calculated by
resolving the eigenstrain problem discussed by Lemarchand et al. (2001); Sandfeld et al. (2013); Hochrainer et al.
(2014); Schulz et al. (2014). The resulting shear stress on slip system 𝜉 is the projection of the stress onto the slip
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Figure 4: Spatial distribution of excessive dislocations within a coarse-graining element in continuous crystal plasticity
theory.

system 𝜉 by Schmid’s factor and denoted as 𝜏𝜉 . We further consider the heterogeneous effect within the coarse-graining
as discussed within Section 2, the resulting shear stress becomes 𝜏𝜉 − 𝜏𝜉nfc. Similar to Eq. (1), 𝑣𝜉 can be approximated
by

𝑣𝜉 =
|𝒃|
𝐵

sgn
(

𝜏𝜉 − 𝜏𝜉nfc
) [

|

|

|

𝜏𝜉 − 𝜏𝜉nfc
|

|

|

− 𝜏𝜉y
]

, (6)

if the resulting shear stress exceeds the yield stress 𝜏𝜉y . Here, 𝜏𝜉y induces the hindering effect resulting from forest
dislocation densities from different slip systems. Thus, we obtain

𝛾̇𝜉 =
|𝒃|2 𝜌𝜉𝑚

𝐵
sgn

(

𝜏𝜉 − 𝜏𝜉nfc
) [

|

|

|

𝜏𝜉 − 𝜏𝜉nfc
|

|

|

− 𝜏𝜉y
]

. (7)

This motivates the evolution of plastic slip for dislocation-based crystal plasticity (c.f., Yefimov et al. (2004);
Hochrainer et al. (2014); Schulz et al. (2019)), and in general share the same form with the simplified visco-plasticity
power law model as the power equal to one (c.f., Evers et al. (2002); Geers et al. (2006); Gurtin and Ohno (2011)). The
role of 𝜏𝜉nfc within the flow rule Eq. (7) is a back stress term contributing to kinematic hardening.

The stress 𝜏𝜉nfc can be defined as the convolution between the GND wall density 𝜅GNDwall(r) and the stress field
induced by a single GND wall 𝜏wall(r), given by

𝜏𝜉nfc = ∫Ω
𝜅GNDwall(r1)𝜏wall(r − r1)dr1, (8)

where Ω represents the volume of the coarse-graining element.
In the proposed convolution formulation, the term 𝜅GNDwall(r1) represents the density of GND walls at position

r1, while 𝜏wall(r − r1) denotes the stress field at the position r induced by a single GND wall at position r1. The
product of 𝜅GNDwall(r1) and d𝑟1 corresponds to the total number of GND walls within a small distance segment d𝑟1.
By integrating the product over the entire element domain Ω, the convolution yields the effective stress at position r
induced by the heterogeneous distribution of GND walls within the coarse-graining volume. To fully determine the
nearfield correction stress field, the functional forms of 𝜅GNDwall(r) and 𝜏wall(r) need to be specified.

In this study, we adopt the formulation 𝜏wall(r − r1) for the stress field induced by a single GND wall at position r1based on Hirth and Lothe (1982). The stress caused by a GND wall can be derived from the superposition of individual
edge dislocations within the wall. To address the divergence behavior near the core region of the GND wall, we employ
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the integration form proposed by Roy et al. (2008). The explicit form of 𝜏wall(r − r1) is given by:

𝜏wall(r − r1) =
𝜇 |𝑏|

2𝜋(1 − 𝜈)
L(r − r1)

L2 + (r − r1)2
. (9)

It is important to remark that the direct resolution of 𝜅GNDwall(r) through experimental or theoretical methods is
currently not feasible. Thus, we assume that it can be expressed as the product of the total number of dislocation walls,
denoted as Nx, and the probability density function, denoted as 𝑑(r). This assumption allows us to control the overall
quantity of GNDs within the coarse-graining by adjusting Nx, while 𝑑(r) governs the shape of the inhomogeneous
distribution. Assuming the coarse-graining has the same length along both the x and y directions, Nx is therefore
assumed to be the same as Ny. The factors influencing the probability density function 𝑑(r) are assumed to include
the position within a coarse-graining r, the element size 𝓁, the gradient of dislocation density crossing the element
∇𝜌, which accounts for the influence of adjacent coarse-graining elements, and the microstructure within the coarse-
graining volume, including 𝜌SSD, 𝜌GND, and 𝜌tot . Notably, when considering the gradient of dislocation density ∇𝜌,
it is crucial to consider the gradient of GND rather than SSD density. This finding is supported by Fig. 3, where it is
evident that the impact of dislocation dipoles is limited to a short range, resulting in a negligible influence from the
SSDs present in adjacent elements on the heterogeneity distribution within the targeted element. Hence, we consider
only the influence of ∇𝜌GND, and the formulation of 𝜅GNDwall(r) can be represented as:

𝜅GNDwall(r)|r∈Ω = Nx ⋅ 𝑑(r,𝓁,∇𝜌GND, 𝜌SSD, 𝜌GND, 𝜌tot), (10)
where r resides within the range of the coarse-graining volume Ω. Regarding the determination of the probability
density function 𝑑(r,𝓁,∇𝜌GND, 𝜌SSD, 𝜌GND, 𝜌tot), we employ a statistical analysis of a large dataset generated from
extensive DDD simulations within Section 4.

4. Statistical Analysis of the Distribution Function for Heterogeneity
Based on the results in Section 3, within this section, a statistical approach is employed to obtain the distribution

function 𝑑(r,𝓁,∇𝜌GND, 𝜌SSD, 𝜌GND, 𝜌tot) of Eq. (10) for the GND walls withing coarse-graining. Generating a dataset
of GND wall distribution under various combinations of state variables by the DDD simulation, we utilize a neural
network to conduct sensitivity tests confirming the impact of each state variable on heterogeneity formations. Finally,
the formulation of the probability density function is derived in a way appropriate for incorporation into the nearfield
correction stress formulation.
4.1. Statistical Dataset Generation

In order to generate the dataset required for deriving the probability density function within Eq. (10), we conduct
a series of benchmarked DDD simulations. Each simulation follows the setup outlined in Section 2. Through the
manipulation of the number of positive and negative dislocations within the three elements, along with adjusting
the sizes of these elements, we systematically explore the heterogeneous distribution of GND walls under various
combinations of associated state variables. These adjusted variables, which correspond to the variables of continuum
theories, include the element size 𝓁 representing the numerical length scale that measures the level of discretization for
coarse-graining. Additionally, we consider the state variables being representative of microstructures, such as ∇𝜌GND,
𝜌SSD, 𝜌GND, and 𝜌tot .

As discussed in Section 3.2, 𝜏𝜉nfc considers the internal stress of the heterogeneity within the coarse-graining, thus,
the interaction across slip systems should play a minor role on influencing the heterogeneity features within the coarse-
graining. The effects induced by the interaction between different slip systems might have a significant influence on the
local stress field but a detailed incorporation based on discrete considerations go beyond the scope of this paper and
is supposed to be further considered by the yield stress term in Eq. (7). Moreover, there are often single slip systems
more active in forming pileups in the region close to grain boundaries or precipitates. Therefore, the single-slip DDD
simulation can serve as a meaningful tool for deriving the distribution function for the GND walls within the coarse-
graining volumes. Insights into single-slip processes can therefore lead to a fundamental understanding that is also
helpful for a better evaluation of interaction in complex three-dimensional configurations.

Within this study, we aim at the derivation of the correction stress for the microstructure heterogeneity in the
transition regime from discrete to continuum simulations. To construct a representative dataset for statistical derivation,
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Table 1
The summary of simulated length scale for discrete dislocation dynamic.

reference initial dislocation density(𝜇𝑚−2) system size(𝜇𝑚)

Zbib et al. (1998) 21 3
Arsenlis et al. (2007) 1.8 15
Motz et al. (2009); Weygand et al. (2008) 20 0.5 ∼ 1
Zhou et al. (2010) 2 ∼ 25 0.5 ∼ 1
Hussein et al. (2015) 0.5 ∼ 10 10
Sills et al. (2018) 0.7 15
Zhang et al. (2021) 100 0.6

we investigate the range of system sizes and dislocation densities that are commonly employed in DDD simulations
summarized in Table 1. The range of dislocation densities for our dataset encompasses an expansion from 101𝜇𝑚−2

to 102𝜇𝑚−2, starting from a commonly observed initial dislocation density in the referenced DDD simulations and
extending two orders higher to cover up the dislocation density of a deformed material. This range of dislocation
density is also consistent with experimental observations (e.g., Jiang et al. (2013)). The system sizes from 10𝜇𝑚 to
100𝜇𝑚 are commonly explored not only in discrete simulations but also in continuum-scale simulations (e.g., Fleck
et al. (1994); Chong et al. (2001); Tagarielli and Fleck (2011); Wulfinghoff et al. (2013); Bardella and Panteghini
(2015); Guo et al. (2017)). Therefore, we select reasonable discretization levels ensuring the coarse-graining size, 𝓁,
one to two orders smaller than the overall system size. Regarding the range of ∇𝜌GND, it is automatically determined
once the dislocation density and element size are fixed.

To sum up the ranges of each variable, we assume six levels for the values of 𝜌SSD and 𝜌GND within the
range {10, 20, 40, 60, 80, 100}𝜇𝑚−2, five levels for ∇𝜌GND ∈ {20, 40, 60, 80, 100}𝜇𝑚−3, and three levels for 𝓁 ∈
{0.5, 1, 1.5}𝜇𝑚. As a result, for each element size, we conduct DDD simulations, generating a total of 180 combinations
of state variables. For each combination of state variables, a minimum of 20 DDD simulations were conducted to
estimate the probability of GND wall formation at each position within the coarse-graining volume. All simulations
were controlled to maintain consistent state variables, while the initial seeding varied following a random distribution.
This yields a DDD dataset comprising a total of 10859 simulations.

The simulated results obtained from each combination of state variables undergo a post-processing procedure.
To illustrate the post-processing procedure of the DDD simulation data, as an example, we examine the 20 resulting
targeted elements, which have the same dislocation quantity and element size as the setup shown in Fig. 1. The post-
processing procedure comprises two main steps: SSD filtering and GND wall identification, as depicted in Fig. 5(a)
and (b).

In the SSD filtering step, the goal is to enhance the identification of GND walls by excluding SSD. To achieve this,
a criterion based on the angle between pairs of dislocations with different signs is employed. Specifically, if the angle
between two dislocations falls within the range of -45 degrees to 45 degrees (depicted as the gray triangle regions
in Fig. 5 (a)), they are identified as part of a dipole structure and are excluded. After applying the SSD filtering, the
post-processing procedure for GND wall identification is presented in Fig. 5 (b). This procedure involves calculating
the probability of GND wall formation at different positions within the coarse-graining volume. To achieve this, the
coarse-graining volume is divided into multiple bins along the r-direction (see Fig. 5 (b)). The number of excess edge
dislocations within each bin is quantified. A GND wall structure is considered to form if the count of excess dislocations
surpasses a threshold value. In this study, we assume the threshold value is equivalent to Ny, based on the assumed
configuration of coarse-graining for continuous theories as depicted in Fig. 4. The bin size, 𝓁bin, is equal to the length
of the attraction zone near a edge dislocation wall, as derived by Li (1960):

𝓁bin =
L
𝜋
ln
(

𝜋
√

n
)

, (11)
where n represents the number of edge dislocations within the finite wall, which is equivalent to Ny. The choice of
𝓁bin as the value of the attraction zone adjacent to a GND wall is due to the fact that dislocations within this region
are attracted to the GND wall rather than being repelled. Therefore, positive dislocations within this attraction zone
are considered as part of the GND wall. The position of each bin is defined as the distance from the right end of the
coarse-graining volume to the center of the bin, as illustrated in Fig. 5(b). The right end of the coarse-graining volume
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Figure 5: Schematic visualization of the post-processing steps and GND wall probability derivation. (a) SSD Filtering:
This step excludes SSDs to enhance the identification of GND walls. Dislocations with different signs that form an angle
between -45 degrees and 45 degrees are considered dipole structures and are disregarded in the analysis. (b) GND Wall
Identification: After the SSD filtering, the remaining excess dislocations are analyzed within bins of length 𝓁bin. Bins with
an excess dislocation number surpassing Ny are identified as regions where GND walls exist and are shown in green. Bins
with a lower count indicate the absence of GND walls and are shown in red. (c) GND Wall Probability: The results from
each 20 DDD simulations with the same parameter configuration are combined to derive the probability of encountering a
GND wall within each coarse-graining volume. This is accomplished by calculating the frequency of GND wall occurrence
across all simulations.

corresponds to the side adjacent to a higher GND density element. The position of the center of bin n is defined by
rbin,n, the distance of bin n to the right end of the coarse-graining volume is denoted as 𝑑𝑖𝑠𝑡n = 𝓁 − rbin,n.

After the identification of GND walls within each coarse-graining volume through the post-processing steps, we
proceed to calculate the probability of finding a GND wall at each bin, as depicted in Fig. 5(c). By following the
aforementioned procedure, we generate a dataset that contains the probability of finding a GND wall as the dependent
variable. The independent variables in this dataset include the state variables, namely ∇𝜌GND, 𝜌SSD, 𝜌GND, 𝜌tot , and
𝑑𝑖𝑠𝑡.
4.2. Neural Network Analysis for Identifying Independent Variables

Following the methodology outlined in Section 4.1, we generate a dataset that spans the transition from discrete
to continuous theory. However, the exact formulation of the function 𝑑 still remains unknown. To examine the impact
of each independent variable on the probability, we employ neural network analysis as a sensitivity test to identify the
influence of independent variables.

The network architecture employed in training the dense neural network models is shown in Fig. 6. We use Keras
(Chollet et al. (2015) to construct and train our model. The architecture consists of three densely connected layers.
The initial layer comprises 64 units and uses the rectified linear activation function (ReLU) to introduce non-linearity.
Following standard practice, batch normalization is applied after each hidden layer to enhance training stability. The
subsequent hidden layer has 32 units also activated by ReLU keeping the possibility of non-linearity. The final layer,
consisting of a single unit, employs the sigmoid activation function to generate a probability-like output. The model is
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Figure 6: Neural network model trained for identifying the independent variables having the highest impact comprises five
inputs, two hidden layers of 64 and 32 neurons respectively, and an output layer with one output.

optimized using the Adam optimizer, and its performance is assessed using the mean squared error loss function. The
performance of the models is then assessed using two approaches: ground truth validation and regression distribution
analysis. By alternating different combinations of variables in the input layer, the impact of independent variables can
be analyzed based on the quality of the trained neural network model.

In the ground truth validation, the R2 (coefficient of determination) is calculated to measure the error between the
predicted probabilities and the actual observed values from the DDD simulations. In this study, the R2 is calculated by

R2 = 1 −
∑

(𝑝obs − 𝑝pred)2
∑

(𝑝obs − 𝑝̄obs)2
, (12)

where 𝑝obs represents the observed values of the dependent variable, 𝑝pred represents the predicted values of the
dependent variable, and 𝑝̄obs represents the mean of the observed values. Additionally, the root mean squared error
(RMSE) serves as a complementary metric to further assess the accuracy and precision of the prediction models. The
RMSE is calculated by

RMSE =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑝obs − 𝑝pred)2 (13)

where 𝑝obs represents the observed values of the dependent variable, 𝑝pred denotes the predicted values of the dependent
variable, and 𝑛 is the number of data points.

The performance of the neural network model, which was trained using all five independent parameters in the input
layer (as depicted in Fig. 6), is shown in Fig. 7. Fig. 7 (a) illustrates the ground truth validation results, where the R2

value is 0.6760, indicating a moderate level of correlation between the predicted values and the actual ground truth
values. The RMSE has a value of 0.0271. Fig. 7 (b) showcases the distribution of residual errors, which are centered
slightly smaller than zero. These results suggest that the neural network model, trained using all five independent
variables together, achieves an approximate average error of 2.7% in determining the probability of predicting the
formation of a GND wall. The residual errors are randomly distributed around the true values but slightly smaller than
zero, indicating that the model tends to slightly underestimate the predictions.

To categorize the independent variables based on their length scales, ∇𝜌GND has the largest length scale, as it
involves the influence across the elements. On the other hand, 𝑑𝑖𝑠𝑡 has the smallest length scale, capturing spatial
discretization within the coarse-graining. In terms of the dislocation densities, 𝜌SSD, 𝜌GND, and 𝜌tot exhibit similar
length scales. In order to investigate the influence of different dislocation densities, specifically 𝜌SSD, 𝜌GND, 𝜌tot , we
conduct an analysis focusing on neural network models that utilize only three independent parameters. We kept the
two independent variables ∇𝜌GND and 𝑑𝑖𝑠𝑡 fixed in the input layer, and varied the included dislocation densities to
assess their impact on predicting the probability of GND wall formation. The ground truth validation results are
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Figure 7: The figure demonstrates the performance of the neural network model trained by all five independent variables.
(a) presents the results of the ground truth validation. The red dashed lines represent the ideal prediction along a 45-degree
line. (b) illustrates the distribution of residuals

shown in Fig. 8a to Fig. 8e. From Fig. 8a, the model trained with 𝜌SSD achieves an R2 value of 0.6747, indicating
that approximately 67.47 % of the variance in the dependent variable can be explained by this model. The RMSE value
of 0.0336 suggests that the average error in the predicted probabilities is 3.36 %. The ground truth validation results
shown in Fig. 8a shows the model trained with 𝜌SSD has nearly equal performance as the model trained with all five
independent parameters based on the quantity of R2 and RMSE, and has noticeably better performance than the models
trained with 𝜌GND or 𝜌tot , which both show low 𝑅2 values of ≈ 0.3. The regression distribution analysis visualizes
the error distributions of the trained models and is shown in Fig. 8b to Fig. 8f. In the case of the model trained with
𝜌SSD, the error distribution follows a normal distribution with a spread of approximately 0.1 centering at zero. On the
other hand, the models trained with 𝜌GND and 𝜌tot exhibit a rightward tail in their error distributions. This means that
the models trained with 𝜌GND or 𝜌tot consistently predict lower probabilities compared to the actual probabilities and
therefore both have systematic underpredictions.

As part of the investigation, we have carefully explored various model architectures to understand whether different
neural network architecture influences the sensitivity patterns observed. Upon analyzing the results, we observed that
while there were some minor variations in sensitivity, the overarching trends and relationships between input variables
and predictions remained consistently aligned. Therefore, we choose the model which shows the best performance for
the analysis.

Summarizing, the models trained with only three independent variables, namely ∇𝜌GND, 𝜌SSD, and 𝑑𝑖𝑠𝑡, demon-
strate comparable prediction performance to the model trained with all five variables. This indicates that these three
variables are nearly sufficient to predict the probability of the GND wall formation within a coarse-graining. The
potential influence of other state variables, other than the five selected variables, on the prediction of probability is
beyond the scope of this study.
4.3. Formulation of the Probability Density Function

As an initial guess, the formulation of the probability density function 𝑑(r) is motivated by the classical back stress
formulation in the context of work-conjugated gradient plasticity theory (e.g., Aifantis (1984); Gurtin (2002)). Building
upon these theoretical foundations, we postulate that the distribution function 𝑑(r) is proportional to the gradient of
the GND density ∇𝜌GND and the square of the material length scale 𝑙2, so it holds

𝑑 ∝ 𝑙2∇𝜌GND. (14)
Although the relationship between microstructure and the material length scale within work-conjugated gradient

plasticity theory remains uncertain as discussed within Section 1, we adopt the finding by Berdichevsky (2006) that
the material length scale should be approximated by a kind of dislocation density maintaining the consistency of
units.Therefore, we can express Eq. (14) as:

𝑑 ∝
∇𝜌GND

𝜌
, (15)

Page 13 of 25



In
de

pe
nd

en
t

va
ria

bl
es

:
∇
𝜌 G

N
D
,𝜌

SS
D
,𝑑

𝑖𝑠
𝑡

slope = 0.6904
bias = 0.0390
R2 = 0.6747
RMSE = 0.0336

(a) (b)

In
de

pe
nd

en
t

va
ria

bl
es

:
∇
𝜌 G

N
D
,𝜌

G
N
D
,𝑑

𝑖𝑠
𝑡

slope = 0.3998
bias = 0.0867
R2 = 0.3068
RMSE = 0.0491

(c) (d)

In
de

pe
nd

en
t

va
ria

bl
es

:
∇
𝜌 G

N
D
,𝜌

to
t,
𝑑𝑖
𝑠𝑡

slope = 0.3781
bias = 0.0801
R2 = 0.3761
RMSE = 0.0466

(e) (f)
Figure 8: Performance evaluation of neural network models trained using different combinations of independent parameters.
The adopted independent variables are as listed. (a) and (b) were trained with the 𝜌SSD as the independent parameter,
models (c) and (d) utilized the 𝜌GND, and models (e) and (f) employed the 𝜌tot . Ground truth validation results are shown
in (a), (c), and (e), in which the red dashed lines represent the perfect prediction of a 45-degree line, and the red solid
line indicates the fitted curve between the predicted values and the ground truth. Regression error distribution analysis is
depicted in (b), (d), and (f).

where 𝜌 represents the dislocation density, which can be any type, including 𝜌SSD, 𝜌GND, or 𝜌tot . The performance
evaluation of the neural network models, as presented in Section 4.2, lead to the conclusion that the inclusion of 𝜌SSDin the formulation is deemed more suitable. By observing the results shown in Fig. 5, it is evident that the likelihood of
encountering a GND wall tends to be higher along the direction of the gradient of GND density. Therefore, we propose
that the probability of GND wall formation is inversely proportional to the parameter 𝑑𝑖𝑠𝑡. Therefore, Eq. (15) can be
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Figure 9: The scatter plot between the probability and ∇𝜌GND
𝜌SSD(𝓁−r)

.

written as

𝑑 ∝
∇𝜌GND

𝜌SSD ⋅ 𝑑𝑖𝑠𝑡
=

∇𝜌GND
𝜌SSD(𝓁 − r)

. (16)

The linear relationship between probability and ∇𝜌GND
𝜌SSD(𝓁−r)

is plotted in Fig. 9, it is observed that there is a logarithmic
dependency between the probability and the parameter ∇𝜌GND

𝜌SSD(𝓁−r)
. Therefore, we propose the function 𝑑 to be:

𝑑 =  ln
(

1 +
∇𝜌GND

𝜌SSD(𝓁 − r)

)

, (17)

where is a constant that can be determined through linear regression fitting. We additionally shift the value of ∇𝜌GND
𝜌SSD(𝓁−r)by 1 to avoid negative values induced by the logarithmic dependency. The result of a processed curve fitting of the

dataset is shown in Fig. 10. Herein, the dataset generated by DDD simulations is represented as points in Fig. 10a, and
the fitted result is indicated by the red line, with a value of  determined as 0.0588. The R2 value, is 0.5177, and the
RMSE, is 4 %. The regression error betweeen the data points and the red curve in Fig. 10a is depicted in Fig. 10b,
and the histogram is shown in Fig. 10c. The regression histogram exhibits a normal distribution centered around zero,
indicating a reasonable fit of the proposed function. The error distribution follows a normal distribution with a spread
of approximately 0.1, which is similar to the best model we trained within neural network analysis. From the value of
RMSE and the normally distributed regressions, we can conclude that the prediction quality of the function 𝑑 proposed
in Eq. (17) is comparable to that of the best neural network model trained. The scatterness induced by the error between
the predicted value and the dataset can be attributed to the nature of random initial seeding of the DDD simulations as
well as the potential influence of other factors that are not considered within this study.
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(a)

(b) (c)
Figure 10: Linear fitting results of Eq. (17), including (a) scatter plot with all DDD data, the red line indicating the best
fit, (b) regression error distribution plot, and (c) histogram of the regression error.

5. Internal Stress in the Discrete-to-Continuum Transition Regime
In this section, we first demonstrate the effect of different dislocation densities on the distribution of the GND walls

to elaborate their impact on the distribution of heterogeneity. Moreover, we derive the nearfield correction stress 𝜏𝜉nfcbased on the presumed formulation within Section 3, and incorporated the probability density function derived within
Section 4.
5.1. Influence of Dislocation Densities on the Heterogeneity

Based on the findings in Section 4.2, the importance of the dislocation density 𝜌SSD in predicting probabilities
of the existence of a GND wall has been identified. In order to further validate the finding, this section focuses on
investigating the results of microstructure heterogeneity obtained from the DDD dataset. The aim is to demonstrate
how the distribution of microstructure heterogeneity within a coarse-graining volume is influenced by the three types
of dislocation densities: 𝜌SSD, 𝜌GND, and 𝜌tot .From the DDD dataset generated in Section 4.1, as a case study, we examine the configurations with 𝓁 equals to
1𝜇𝑚 and ∇𝜌GND equals to 60𝜇𝑚−3. The total dislocation density 𝜌tot varies from 80𝜇𝑚−2 to 160𝜇𝑚−2. We analyze
two cases to explore the impact of different dislocation densities: (1) Controlling the value of 𝜌SSD as a constant and
varying the value of 𝜌GND. (2) Controlling the value of 𝜌GND as a constant and varying the value of 𝜌SSD . The results
are shown in Fig. 11, see the upper row in Fig. 11 for case (1) and lower row in Fig. 11 for case (2).

For a further comparison, the heterogeneous microstructure and stress field within the coarse-graining volumes for
cases (2) are shown in Fig. 12. Examples for high and low values of 𝜌SSD, corresponding to one of the leftmost and
rightmost cases from the lower row of Fig. 11 are depicted. The relaxed heterogeneous microstructures for high and
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𝜌GND ∶ 20 → 100𝜇𝑚−2

𝜌SSD = 20 → 100𝜇𝑚−2

𝜌tot ∶ 80 → 160𝜇𝑚−2

𝜌GND = 20𝜇𝑚−2

𝜌SSD = 60𝜇𝑚−2
𝜌GND = 40𝜇𝑚−2

𝜌SSD = 60𝜇𝑚−2
𝜌GND = 80𝜇𝑚−2

𝜌SSD = 60𝜇𝑚−2
𝜌GND = 100𝜇𝑚−2

𝜌SSD = 60𝜇𝑚−2

𝜌GND = 60𝜇𝑚−2

𝜌SSD = 20𝜇𝑚−2
𝜌GND = 60𝜇𝑚−2

𝜌SSD = 40𝜇𝑚−2
𝜌GND = 60𝜇𝑚−2

𝜌SSD = 80𝜇𝑚−2
𝜌GND = 60𝜇𝑚−2

𝜌SSD = 100𝜇𝑚−2

Figure 11: The impact of different 𝜌GND/𝜌SSD relations on the probability of GND wall formation for a variation of 𝜌tot
from 80𝜇𝑚−2 to 160𝜇𝑚−2 on the heterogeneity within a coarse-graining volume for an element size of 1 𝜇𝑚. The upper
row keeps a constant 𝜌SSD; the lower row keeps a constant 𝜌GND.

low amounts of SSDs can be observed in Fig. 12a and Fig. 12b respectively. The corresponding internal stress field is
given in Fig. 12c and Fig. 12d.
5.2. The Nearfield Correction Stress

Combining the presumed formulation of the nearfield correction stress discussed within Section 3 and the data-
based derivation for the probability distribution of the heterogeneity within Section 4, we insert Eq. (17) into Eq. (10),
then, together with Eq. (9) into Eq. (8). The nearfield correction stress can thus be written as,

𝜏𝜉nfc = ∫Ω

GND wall density function, 𝜅GNDwall(r1)(see 𝐸𝑞. (10))
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝓁
√

𝜌GND ⋅ 0.0588 ln (1 + )
𝜇 |𝑏|

2𝜋(1 − 𝜈)
L(r − r1)

L2 + (r − r1)2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

stress field created by a GND wall, 𝜏wall(r−r1)(see 𝐸𝑞. (9))

dr1, (18)

where
 =

∇𝜌GND
𝜌SSD(𝓁 − r)

. (19)

However, it becomes obvious that the formulation is not integrable in its current form. To address this issue, we
introduce two expansion methods: the Maclaurin series expansion for cases where  is less than 1, and the Puiseux
series expansion for cases where  is larger than 1.

When  < 1, we can approximate the probability density function of the GND wall density using the Maclaurin
series. Denoting 𝑑Maclaurin(r), it can be expressed as:

𝑑Maclaurin(r) ≈ 0.0588
(

 − 2

2
+ 3

3
−⋯

)

. (20)

Considering only the first-order term, the truncation error Maclaurin is given by:

Maclaurin =
1
2

(

∇𝜌GND
𝜌SSD(𝓁 − r)

)2
= 1

2
2. (21)
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(a) (b)

(c) (d)
Figure 12: The comparison between the cases of high and low 𝜌SSD values: (a) represents the resulting heterogeneity within
Element 2 when 𝜌SSD is set to 100𝜇𝑚−2. (b) represents the resulting heterogeneity within Element 2 when 𝜌SSD is set to
20𝜇𝑚−2. (c) represents the resulting stress field induced by (a). (d) represents the resulting stress field induced by (b).

This approximation allows us to compute the GND wall density function as the value of  is small, with the truncation
error proportional to 2. Therefore, the expression for 𝜏𝜉nfc of Eq. (8) in the case of  < 1 can be given by:

𝜏𝜉nfc,<1 =
𝜇 |𝑏|

2𝜋(1 − 𝜈) ∫Ω
𝓁
√

𝜌GND ⋅ 0.0588
(

∇𝜌GND
𝜌SSD

)(

1
(𝓁 − r1)

)

L(r − r1)
L2 + (r − r1)2

dr1. (22)

To separate the parts independent of the integration variable r1, we have:

𝜏𝜉b,<1 =
𝜇 |𝑏|

2𝜋(1 − 𝜈)
𝓁
√

𝜌GND ⋅ 0.0588
(

∇𝜌GND
𝜌SSD

)

∫Ω
L(r − r1)

(𝓁 − r1)[L2 + (r − r1)2]
dr1. (23)

Finally, by integrating the formulation within the range of a coarse-graining volume, i.e., r1 ∈ (0,𝓁), the expression
becomes:

𝜏𝜉b,<1 =
𝜇 |𝑏|

2𝜋(1 − 𝜈)
⋅ 0.0588𝓁

√

𝜌GND

(

∇𝜌GND
𝜌SSD

)

arctan
(

𝓁
L

)

(24)

=
𝜇 |𝑏|

2𝜋(1 − 𝜈)
𝐷′

(

∇𝜌GND
𝜌SSD

)

, (25)
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where 𝐷′ is an associated material parameter that depends on both 𝓁 and 𝜌GND:
𝐷′ = 0.0588𝓁

√

𝜌GND arctan
(

𝓁
√

𝜌GND
)

. (26)
It should be noted that the formulation of the back stress term, derived from applying the Maclaurin series, has a linear
dependency on ∇𝜌GND

𝜌SSD
similar to the classical back stress terms within continuous crystal plasticity. This characteristic

has been discussed in previous studies by Aifantis (1984); Gurtin (2002).
For the case  ≥ 1, a Puiseux series expansion can be employed when  exceeds 1. The expansion of the GND

wall density function, denoted as 𝑑Puiseux(r), is written then by:

𝑑Puiseux(r) ≈ 0.0588
(

ln + 1


− 1
22

+ 1
33

−⋯
)

. (27)

When truncating the expansion at the first order, the truncation error Puiseux for the Puiseux series expansion is given
by:

Puiseux =
1


=
𝜌SSD(𝓁 − r)
∇𝜌GND

. (28)

Thus, for  ≥ 1, the expression for 𝜏𝜉nfc becomes:

𝜏𝜉nfc,≥1 =
𝜇 |𝑏|

2𝜋(1 − 𝜈) ∫Ω
𝓁
√

𝜌GND ⋅ 0.0588 ln
(

∇𝜌GND
𝜌SSD(𝓁 − r1)

)

L(r − r1)
L2 + (r − r1)2

dr1 (29)

=
𝜇 |𝑏|

2𝜋(1 − 𝜈)
𝓁
√

𝜌GND0.0588
[

∫Ω
ln
(

∇𝜌GND
𝜌SSD

)

L(r − r1)
L2 + (r − r1)2

dr1 − ∫Ω
ln
(

1
(𝓁 − r1)

)

L(r − r1)
L2 + (r − r1)2

dr1

]

(30)
=

𝜇 |𝑏|
2𝜋(1 − 𝜈)

𝓁
√

𝜌GND0.0588
[

ln
(

∇𝜌GND
𝜌SSD

)

∫Ω
L(r − r1)

L2 + (r − r1)2
dr1 − ∫Ω

ln
(

1
(𝓁 − r1)

)

L(r − r1)
L2 + (r − r1)2

dr1

]

(31)

=
𝜇 |𝑏|

2𝜋(1 − 𝜈)
𝓁
√

𝜌GND0.0588

⎡

⎢

⎢

⎢

⎣

ln
(

∇𝜌GND
𝜌SSD

)

L
2
ln
(

L2 + 𝓁2

L2

)

− L

⎡

⎢

⎢

⎢

⎣

ln (𝓁) ln
(

L2+𝓁2
L2

)

2
+

Li2
(

−𝓁2

L2

)

4

⎤

⎥

⎥

⎥

⎦

⎤

⎥

⎥

⎥

⎦

(32)
=

𝜇 |𝑏|
2𝜋(1 − 𝜈)

𝓁
√

𝜌GND0.0588
[

L
2
ln
(

∇𝜌GND
𝜌SSD

)

ln
(

L2 + 𝓁2

L2

)

− L
2

[

ln (𝓁) ln
(

L2 + 𝓁2

L2

)]]

(33)

=
𝜇 |𝑏|

2𝜋(1 − 𝜈)
𝓁0.0294 ln

(

∇𝜌GND
𝓁𝜌SSD

)

ln
(

1 + 𝜌GND𝓁
2) (34)

=
𝜇 |𝑏|

2𝜋(1 − 𝜈)
𝐷′′ ln

(

∇𝜌GND
𝓁𝜌SSD

)

, (35)

where 𝐷′′ is the associated material parameter, reads
𝐷′′ = 0.0294𝓁 ln

(

1 + 𝜌GND𝓁
2) . (36)

Under the condition  ≥ 1, the value of 𝜌GND and 𝓁 are way smaller than one, therefore,

𝐷′′ ≈ 0.0588𝓁 ln (1) = 0. (37)
It should be noted that, in contrast, the back stress formulation derived from the usage of Puiseux’s series exhibits a
logarithmic dependency on ∇𝜌GND

𝓁𝜌SSD
. Unlike 𝜏𝜉nfc,<1, the associate material parameter 𝐷′′ shows a tendency approaching
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Table 2
Summary of the nearfield correction stress by different approximation methods for the probability density function.

approximation method 𝜏𝜉nfc dependency on ∇𝜌GND
𝜌SSD

associated material parameter

Maclaurin’s series 𝜏𝜉nfc,<1 =
𝜇|𝑏|

2𝜋(1−𝜈)
𝐷′ ∇𝜌GND

𝜌SSD
linear 𝐷′ = 0.0588𝓁

√

𝜌GND arctan
(

𝓁
√

𝜌GND
)

Puiseux’s series 𝜏𝜉nfc,≥1 =
𝜇|𝑏|

2𝜋(1−𝜈)
𝐷′′ ln

(

∇𝜌GND
𝓁𝜌SSD

)

logarithmic 𝐷′′ = 0.0294𝓁 ln
(

1 + 𝜌GND𝓁2
)

to zero within the applicable regime (low 𝜌SSD and 𝓁). Therefore, the internal stress, 𝜏𝜉nfc,≥1, is always close to zero
under the condition of  ≥ 1.

The resulting nearfield correction stress, obtained using different expansion methods, along with the corresponding
material parameters used in each derivation, are summarized in Table 2. The nearfield correction stress include two
different formulations according to the value of  . Based on the composition of parameters within  ,  can serve as a
criterion of the transition between discrete and continuum regimes. In a discrete coarse-graining volume, the value of
𝜌SSD is small. Consequently, a discrete coarse-graining volume will lead to higher  . Regarding the role of 𝑑𝑖𝑠𝑡, it can
be represented by the attraction zone adjacent to an edge dislocation wall (as defined in Eq. (11)), which is the smallest
value of 𝑑𝑖𝑠𝑡. A smaller 𝑑𝑖𝑠𝑡 is resulting from a more dilute GND wall, therefore, also a higher value of  . Additionally,
considering the numerical discretization level, a smaller element size𝓁 corresponds to a higher numerical discontinuity,
leading to increased or even divergent gradients across the coarse-graining in numerical calculation. Consequently, a
coarse-graining volume with high microstructural and numerical discontinuity results in a high value of  .

6. Discussion
Within Section 6, we first discuss the role of  in numerical calculation serving as the criterion that indicates the

transition between discrete and continuum modeling methods, as well as the behavior and implications of both 𝜏𝜉nfc,<1
and 𝜏𝜉nfc,≥1. We then look into the influence of different dislocation densities on the heterogeneity, so as to examine
the role of 𝜌SSD within the probability function 𝑑 and the nearfield correction stress. We further propose a physical
interpretation for the material length scale in the work-conjugated gradient plasticity.
6.1. The Transition from Discrete to Continuous

In Section 5, we derived two versions of 𝜏𝜉nfc based on the range of  . To gain a better understanding of the
applicability of different versions of 𝜏𝜉nfc, we look into the physical meaning of  .  can be interpreted as a physical
parameter that reflects the level of continuity within the coarse-graining volume considering both numerical and
microstructural aspects. An increase in  arises from two factors as discussed in the end of Section 5.2:
1. Dislocation diluteness: The low value of 𝜌SSD in the coarse-graining indicates a scarcity of SSDs. Also, the smallest

value of 𝑑𝑖𝑠𝑡, which is the attraction zone besides a GND wall, affects the value of  . A more dilute GND wall
leads to a smaller attraction zone. Consequently, the increase in  resulting from the decrease in 𝜌SSD and 𝑑𝑖𝑠𝑡
corresponds to a reduction in the microstructure’s continuity within the coarse-graining.

2. Increasing the numerical discretization level, which corresponds to shrinking the element size, results in an
intensified degree of discontinuity across the elements. This enhanced discontinuity leads to steep gradients in the
calculated state variables, specifically ∇𝜌GND across the elements in our case. In the context of a coarse-graining
method, the steep gradients can limit the resolution and accuracy of the calculations. Therefore, the amplified∇𝜌GNDresulting from the shrinkage of the coarse-graining volume leads to an increase in the parameter  , indicating a
greater level of numerical discontinuity in the coarse-graining approach
The continuous version of nearfield correction stress, which employs the expansion of the probability density

function when  < 1, approximates microstructure heterogeneity of a continuous coarse-graining volume. The
resulting 𝜏𝜉nfc,<1 (see the first row in Table 2) exhibits a linear dependence on ∇𝜌GND

𝜌SSD
and bears resemblance to the back

stress term within work-conjugated crystal plasticity theories. Regarding the discrete version of nearfield correction
stress, 𝜏𝜉nfc,≥1 (see the second row in Table 2), which is calculated by the heterogeneity of a discontinuous coarse-
graining volume, displays a logarithmic dependency on ∇𝜌GND

𝓁𝜌SSD
. Additionally, the associated material parameters of
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the two versions of nearfield correction stresses also exhibit very distinguished behaviors. For the continuous version,
𝐷′ has an arc-tangent relation to element size and the GND density. Therefore, within the continuous regime, as the
coarse-graining volume evolves to a discrete condition, i.e., 𝓁 and 𝜌GND decreases, the value of 𝐷′ will also decrease.
Such that, 𝐷′ has a normalization effect to the nearfield correction stress. It can effectively prevent the divergence
behavior induced by the scaling characteristics of 1

𝜌 , as well as the shrinkage of the element size. On the contrary, 𝐷′′

has a logarithmic dependency on the value of (1 + 𝜌GND𝓁2). Thereby, 𝐷′′ tends to be zero, since 𝜌GND𝓁2 ≪ 1 within
the discrete regime. It can be understood that the inhomogeneity within the coarse-graining volume under a discrete
numerical and microstructural condition tends to fluctuate randomly. Thus, the formation of a considerable internal
stress field is not possible and can be neglected within continuum models. The homogenization approach also becomes
unnecessary. The discrete version of nearfield correction stress, 𝜏𝜉nfc,≥1, is therefore expected to have a value close to
zero within the discrete regime.
6.2. A Physical Interpretation for the Material Length Scale

Within the formulation of 𝜏𝜉nfc,<1 (see the first row in Table 2), which is similar to the backstress term in the
continuous crystal plasticity model, 𝜌GND occurs within the material parameter 𝐷′, and 𝜌SSD contributes as a scaling
factor toward the heterogeneity distribution aligning with the material length scale within work-conjugated gradient
plasticity theories discussed within Section 1. Here, we would like to investigate the role of 𝜌GND and 𝜌SSD within the
nearfield correction stress, and also conduct a further comparison with the material length scale of back stresses for
gradient plasticity theories.

We have shown the influence of different dislocation densities on the distribution of heterogeneity by Fig. 11. In the
upper row of Fig. 11, which demonstrates case(1) within Section 5.1, a clear trend is evident: the heterogeneity increases
significantly with higher values of 𝜌GND. The leftmost histogram in the upper row, corresponding to a relatively low
value of 𝜌GND (i.e., 20𝜇𝑚−2), displays a completely random distribution of GND walls. This result indicates that
heterogeneity within a coarse-graining volume arises from the presence of excessive dislocations. A substantial quantity
of excessive dislocations is necessary for the formation of heterogeneity within coarse-graining volumes. In contrast,
the lower row of Fig. 11 presenting the trend of case(2) demonstrates a clear trend towards a more uniform distribution
of probability as the value of 𝜌SSD increases. An increase in 𝜌SSD leads to a noticeable shift towards more equal
probabilities and random distribution of GND walls. This observation indicates reduced heterogeneity caused by the
presence of a higher quantity of SSDs.

For better analysis of the impact of 𝜌SSD on the internal stress, we further investigate the resulting microstructure
heterogeneity and stress field under the influence of 𝜌SSD. In Fig. 12a, the distribution of GND walls appears to be more
uniform and scattered. In contrast, Fig. 12b displays a more concentrated and integrated distribution of GND walls.
This explains our observations from Fig. 11 that the reducing heterogeneity can be attributed to the presence of SSDs
within the coarse-graining volume. If we look into the stress field induced by a dipole structure, the influence of each
SSD is short-range. However, each SSD still provides a significant stress field within a very close region as shown in
Fig. 3c, which acts as a hindrance and disrupts the movement of the GND walls. As a result, the GND walls in Fig. 12a
are fragmented into smaller fractions and exhibit a more random distribution. Thereby, we can infer that although the
SSDs do not contribute to the near-field correction stress, they play a crucial role in interacting with the movement of
GND walls. The resulting stress fields induced by the microstructures depicted in Fig. 12a and Fig. 12b are plotted in
Fig. 12c and Fig. 12d respectively. It is evident that the resulting stress field under the case with higher 𝜌SSD is lower,
with an average value of 468 MPa, and exhibits a more non-uniform distribution. On the other hand, the case with
lower 𝜌SSD yields a higher stress field with an average value of 757 MPa that is more uniformly distributed throughout
the coarse-graining volume. It is expected that a higher level of heterogeneity leads to higher internal stress.

In conclusion, the inclusion of 𝜌SSD in the derivation of the nearfield correction stress is crucial for influencing the
formation of heterogeneity within the coarse-graining volume. It represents the quantity of obstacles that impede the
development and movement of microstructure heterogeneity. By comparing the derivation of the nearfield correction
stress to the back stress term in work-conjugated gradient plasticity theory, we can provide a physical explanation for
the material length scale. This length scale can be interpreted as the average spacing within the coarse-graining volume
at which a GND wall encounters an SSD. It effectively measures the distance a GND wall can travel without being
hindered or broken by SSDs. Therefore, a larger material length scale indicates a higher level of heterogeneity that
needs to be considered within the coarse-graining volume. Therefore, the scaling effect by 𝜌SSD can be understood
as the factor deciding the heterogeneity level within a coarse-graining volume. If we replace 𝜌SSD within Eq. (18) by
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𝜌GND as the material length scale, a low value of 𝜌GND results in a large internal stress. This formulation does not
meet the observations from Fig. 11 and Fig. 12, as well as our assumption that the existence of the nearfield stress
term is meant to resolve the internal stress induced by the heterogeneity within a coarse-graining. Moreover, it also
implies a system without any strain gradient would have an infinite magnitude of back stress and cause instability
as discussed within the publications of Bardella and Panteghini (2015); Wulfinghoff and Böhlke (2015); Wulfinghoff
et al. (2015). Regarding the influence of 𝜌GND on the magnitude of 𝜏𝜉nfc,<1, it is considered by the value of 𝐷′. A
large amount of excessive dislocations results in a higher value of 𝐷′ so as 𝜏𝜉nfc,<1. And as the value of 𝜌GND is
close to zero, the value of 𝐷′ as well as 𝜏𝜉nfc,<1 will tend to be zero since the presence of excessive dislocations
is essential for the formation of heterogeneity within coarse-graining volumes as we observed from the upper row
within Fig. 11. To be noted, the material parameter 𝐷′ associated with 𝜏𝜉nfc,<1 is a function dependent on numerical
length scale 𝓁 and the average spacing between excessive dislocations √𝜌GND. The determination of this value within
the back stress term has also been a long-lasting issue within both dislocation-based crystal plasticity theories (e.g.,
Yefimov et al. (2004); Kuroda and Needleman (2019)) and statistical theories (e.g., Groma et al. (2003); Ispánovity
et al. (2020)). The data-based homogenization approach from discrete to continuum regime physically introduced
different dislocation densities (material length scales) into the nearfield correction stress automatically. It avoids the
difficulties of determining material parameters while implemented into the numerical framework. Also, it is derived
for a highly flexible numerical discretization scheme based on both the microstructure and numerical length scales of
the coarse-graining volume.

7. Conclusion
We introduced a homogenization method addressing heterogeneity at the numerical length scale for continuous

crystal plasticity theories. Using DDD simulations, we simulated microstructure heterogeneity within an element,
taking into account the influence of neighboring averaging elements. Our analysis shows that heterogeneity within
a coarse-graining volume in continuous crystal plasticity methods comprises randomly distributed SSDs and non-
uniformly distributed GND walls. The SSDs do not contribute to any long-range stress field. Conversely, the GND
walls result in the emergence of noticeable stress fields within the coarse-graining volume.

Based on these findings, we propose a homogenization approach to calculate the nearfield correction stress field,
𝜏𝜉nfc, induced by the heterogeneity within the coarse-graining volume. 𝜏𝜉nfc is calculated by the convolution between
the GND wall density function and the stress field generated by a single GND wall. The GND wall density function
is derived through a data-based approach. The dataset was obtained from a large amount of DDD simulations. We
conducted simulations to compute different GND wall distributions within coarse-graining volume under various
combinations of state variables.

The direct homogenization from discrete to continuum formulation as presented in this study physically addresses
microstructure heterogeneity within the coarse-graining. We derived two versions of the nearfield correction stress
based on the range of  . The continuous version of nearfield correction stress 𝜏𝜉b,<1 has a similar formulation of the
classical back stress term within the work-conjugated gradient plasticity theories. The associated material parameter𝐷′

is dependent on the microstructure and numerical parameters and has a normalization effect to prevent the divergent
behavior as the coarse-graining volume evolves to the discrete regime. The discrete version of nearfield correction
stress, 𝜏𝜉nfc,≥1, corresponding to a coarse-graining volume under discrete microstructure and numerical condition. The
associated material parameter 𝐷′′ has the tendency approaching to zero within the discrete regime, which indicates
that within a discrete regime, the nearfield correction stress is negligible.  is therefore the criterion indicating the
transition between the discrete and continuum regime in a numerical dislocation-based continuum approach that comes
with strongly flexible discretization schemes.

Upon examining the derivation of the nearfield correction stress and analyzing the DDD dataset, we have found
that the presence of SSDs as obstacles impede the movement of GND walls, leading to a noticeable decrease in
heterogeneity within the coarse-graining volume. As a result, an increase in the value of 𝜌SSD corresponds to reduced
heterogeneity. Therefore, for 𝜏𝜉b,<1, which is scaled by the inverse of 𝜌SSD, the material length scale can be understood
as the average spacing for a GND wall encounter obstacles (SSDs). This finding offers a physical explanation for the
material length scale within the work-conjugated gradient plasticity theories.
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