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Abstract: The application of machine learning approaches

in medical technology is gaining more and more attention.

Due to the high restrictions for collecting intraoperative patient

data, synthetic data is increasingly used to support the training

of artificial neural networks. We present a pipeline to create

a statistical shape model (SSM) using 28 segmented clinical

liver CT scans. Our pipeline consists of four steps: data pre-

processing, rigid alignment, template morphing, and statisti-

cal modeling. We compared two different template morphing

approaches: Laplace-Beltrami-regularized projection (LBRP)

and nonrigid iterative closest points translational (N-ICP-T)

and evaluated both morphing approaches and their corre-

sponding shape model performance using six metrics. LBRP

achieved a smaller mean vertex-to-nearest-neighbor distances

(2.486± 0.897 mm) than N-ICP-T (5.559± 2.413 mm). Gen-

eralization and specificity errors for LBRP were consistently

lower than those of N-ICP-T. The first principal components

of the SSM showed realistic anatomical variations. The perfor-

mance of the SSM was comparable to a state-of-the-art model.
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1 Introduction

Machine learning approaches often require a large amount of

training data, which can be difficult to obtain, especially in

medical image analysis due to difficult acquisition and ethical

considerations [1]. Regarding the liver, publicly and off-the-

shelf datasets are only sparsely available. In order to overcome

this difficulty, the statistical information of the data could

be used to synthesize synthetic data. One common approach

to create realistic 3D data is using a statistical shape model

(SSM) [2].

The work presented by Lamecker et al. [3] is the first 3D

SSM of the liver. To solve the 3D correspondence problem,

they extended a morphing method algorithm presented in [4].
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They used an approach dividing the liver into multiple patches

according to the geometry’s curvature.

We instead propose an approach relying on landmarks on

the liver surface and provide additional metrics such as speci-

ficy and vertex-to-nearest-neighbor distance. Automatic pre-

processing steps to increase robustness are also included. Our

statistical surface model of the liver can be used to generate

many three-dimensional organ models. The pipeline consists

of re-meshing and hole closing, rigid alignment, template mor-

phing, statistical modeling, and the performance evaluation of

two different morphing algorithms. By extending a existing

SSM approach to the liver, our pipeline is capable of gener-

ating realistic models, providing a possible valuable tool for

medical imaging research and applications.

2 Methods

2.1 Dataset and Preprocessing

The dataset consisted of 28 liver 3D CT models, including

from the University Hospital in Cologne and the SLIVER07

challenge [5]. Meshlab and its Python-API pymeshlab [6]

was used to remove isolated parts and duplicated vertices and

to smooth the surface of the meshes. We used isotropic explicit

remeshing [7] to obtain regular and uniform meshes. The final

mean edge lengths are 2 mm for the template and 1 mm for the

targets. These steps were performed to reduce the complexity

of the dataset and to increase the computation speed and the

performance of the morphing step.

2.2 Template Alignment

The alignment of two different shapes required a list of se-

lected feature points as input. Eleven anatomical landmarks

were manually placed on the liver surface that corresponded

to the same anatomical location on each shape in the train-

ing data. The positions of the landmarks on the anterior and

posterior side, including their notations, are shown in Fig. 1.

The manual placing had to be performed only once during the

whole generation process.

To prepare template morphing, the template was initially

aligned to each target using the annotated landmarks. Pro-
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Fig. 1: (i) Anterior view of one exemplary liver model with the

five placed landmarks: (1) bottom of anterior ridge, (2) gallbladder

(fundus), (3) falciform ligament, (4) bottom of left lobe, (5) middle

of left lobe. (ii) Posterior view with the six placed landmarks: (6)

top of left lobe, (7) vena cava (superior), (8) vena cava (inferior),

(9) left part of porta hepatis, (10) indentation of gallbladder, (11)

middle part of right lobe.

crustes analysis was used to rigidly transform the original tem-

plate landmarks onto the corresponding target landmarks. By

minimizing the Euclidean Procrustes distance between both

shapes, the transformation was applied to the whole set of the

template points. Note that this process only facilitates tem-

plate morphing and does neither rescale nor change the target

shapes.

2.3 Template Morphing

The two-stage Laplace-Beltrami Regularized Projection

(LBRP) was employed to morph the template towards the

targets. The core method was presented by [8] and a sec-

ond morphing step added in [9]. It relies on mutual corre-

spondences between the template and the target. It uses the

Laplace-Beltrami operator L0 ∈ R
𝑛𝑝×𝑛𝑝 computed on the

template as a regularization, controlled by the stiffness param-

eters 𝜆. The template projection step can be described as fol-

lows [8]:

[︃

𝜆L0

S𝑋

]︃

X =

[︃

𝜆L0X0

S𝑌 Y

]︃

, (1)

where X0 is the initial and X is the morphed template for

which we are solving. The corresponding points k for the tem-

plate and the target are selected by the two Boolean matrices

S𝑋 ∈ [0, 1]𝑘×𝑛𝑝 and S𝑌 ∈ [0, 1]𝑘×𝑛𝑡 , where 𝑛𝑝 denotes the

number of template, and 𝑛𝑡 the number of target vertices. The

idea of the method is to perform this template projection twice.

First, the projection is employed with a high stiffness param-

eter 𝜆 = 10 to adapt the template to the target. Afterwards 𝜆

is decreased to 1, to enable a more flexible deformation of the

template to the target.

To compare this approach with other registration methods,

the template morphing was also performed for the nonrigid it-

erative closest point translational (N-ICP-T) method. The core

idea is to solve for a translational transformation of each point

and locally regularize transformations of connected points. For

detailed explanations, the reader is referred to [10].

2.4 Statistical Modeling

A statistical analysis was performed by computing the sam-

ple mean and sample covariance matrix of the training data.

To align the morphed templates, a rigid generalized Procrustes

analysis (GPA) was employed [2]. GPA iteratively calculates

the mean shape of the training data and the deviation of the

training data to the calculated mean shape and aligns the train-

ing data accordingly. The Euclidean distance was used as the

Procrustes distance metric. In this work, scaling was consid-

ered as an attribute of shape due to the high variation in size

of the liver anatomy. The deformed templates X𝑖 ∈ R
𝑝×3

were reshaped into column vectors x𝑖 ∈ R
3𝑝. The mean shape

x̄ ∈ R
3𝑝 was computed. By subtracting the mean shape from

the observations matrix XObs ∈ R
3𝑝×2𝑁 , the mean-aligned

data matrix was obtained. Principal component analysis was

used to extract the principal components and reduce the di-

mensionality of the data.

2.5 Performance Evaluation

Each template morphing approach was evaluated using

three metrics: landmark errors, vertex-to-nearest-neighbor dis-

tances, and surface normal deviations. Landmark errors pro-

vide sparse point-to-point errors on known correspondences.

Vertex-to-nearest-neighbor distances evaluate how close the

template has been morphed onto the target without taking into

account whether the nearest neighbor is morphologically cor-

rect. The surface normal deviation evaluates how well point

identifiers have been morphed onto morphological similar re-

gions across all deformed templates. For shape model evalua-

tion, the three metrics compactness, generalization and speci-

ficity were used. Compactness determines the model’s ability

to capture most of the variance with few components. Gener-

alization measures the model’s ability to fit to unknown obser-

vations and specificity the model’s ability to create synthetic

instances similar to the training data.

3 Results

In Tab. 1 the morphing errors for the two-stage LBRP method

and the N-ICP-T method are shown. The LBRP outperformed

the N-ICP-T method for the mean vertex-to-nearest-neighbor

distance and the mean surface normal deviation. The mean
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Fig. 2: Shape model metrics for both SSMs as a function of principal components. From left to right: Compactness (higher is better),

Generalization and Specificity (lower is better).

Tab. 1: Mean error and standard deviation for both morphing

methods.

LBRP N-ICP-T

Landmark error (mm) 23.443 ± 5.961 21.968 ± 6.077

Vertex-to-nearest-

neigbor-distance (mm) 2.486 ± 0.897 5.559 ± 2.413

Surface normals

deviations (∘) 22.618 ± 4.613 30.969 ± 9.209

landmark error was lower for the N-ICP-T method. The per-

formance of both final models derived from the morphing al-

gorithms training data are visualized in Fig. 2. The normalized

compactness was similar for both SMMs, whereas the general-

ization and specificity metrics differed for both methods. The

LBRP algorithm outperformed the N-ICP-T algorithm. In ad-

dition to the performance metrics a qualitative evaluation for

the first variations of the final models from the LBRP approach

was performed, as shown in Fig. 3. The first mode showed a

variation in the height of the liver. Further, a variation in the

width of the left and right liver lobes was visible. The second

mode showed variations along the anterior ridge and the width

of the right liver lobe. In the third mode the most variances

were found in the width of the liver lobes. Additionally, a vari-

ation in the height of the right liver lobe was visible.

4 Discussion

A pipeline using the two-stage LBRP morphing algorithm

was proposed to generate a SSM for the liver. To get a com-

parison with another registration method, the meshes were

also morphed with the N-ICP-T algorithm. The morphing and

the shape model evaluation showed that the LBRP approach

clearly outperformed the N-ICP-T algorithm. With a smaller

mean vertex-to-nearest-neighbor distances of approximately

3 mm and a lower mean surface normal deviation of approx-

imately 8∘, the LBRP considered to be the more promising

method. Only for the landmark error, the N-ICP-T method

had a slightly lower mean lower error of approximately 1 mm.

Landmark errors are typically considered the gold standard,

but as the landmarks are placed without any expert knowledge,

the metric is deemed less trustworthy for this model. For the

compactness of the model both morphing approaches showed

similar results. However, the N-ICP-T algorithm appears to be

over-fitted in terms of generalization, as it was worse at de-

scribing instances outside of the training set. The SSM created

with the LBRP algorithm had a better ability to create syn-

thetic instances similar to the training data which is important

to improve deep-learning approaches. To evaluate the LBRP

algorithm qualitatively, the first mode of the SSMs was ana-

lyzed. It showed that the algorithm was able to capture mean-

ingful variations in the liver shape. Moreover, the first modes

of the SSM seem to be anatomically correct.

The study of Lamecker et al. [3] used compactness and

generalization as performance metrics. The model needed 21

principal components, which corresponds to 48% of the used

dataset, to describe 95% of the total variance. The model pre-

sented in this work needed 13 principal components which

corresponds to 46% of the used dataset, to describe 95% of

the total variance. The surface distance errors of the general-

ization in this work was 1.8 (±0.5)mm, whereas Lamecker et

al. obtained an error of 1.9 (±0.3)mm (mean ± standard de-

viation 𝜎). However, a direct comparison must be taken with

caution due to the use of different datasets and a partly differ-

ent choice of quantitative metrics.

The most substantial limitation is the small dataset used to

train the morphing algorithms. It reduces the performance of
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Fig. 3: Mean shape and first three modes of the full model in anterior and posterior view. For the first three models −3𝜎 and 3𝜎 were

used.

the SSM by limiting the range of variation seen in the model

creation process. With abundant training data, the results in

terms of the generalization of the shape model performance

would probably improve.

5 Conclusion

We presented a pipeline for the generation of a SSM of the

liver which does not rely on manual patch definitions. The

SSM captured meaningful variations in the liver shape and

showed similar performance to comparable models [3]. The

synthesized three-dimensional liver models generated from the

SSM can be used to augment preoperative 3D CT data. After

validation by clinical experts regarding their anatomical cor-

rectness, the model can be used to augment patient cohorts

with synthesized samples or to facilitate the development and

testing of algorithms for feature and shape analysis.
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