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Abstract: Petrochemical and dairy industries, waste management, and paper manufacturing fall
under the category of process industries where flow and liquid control are essential. Even when
liquids are mixed or chemically treated in interconnected tanks, the fluid and flow should constantly
be observed and controlled, especially when dealing with nonlinearity and imperfect plant models.
In this study, we propose a nonlinear dynamic multiple-input multiple-output (MIMO) plant model.
This model is then transformed through linearization, a technique frequently utilized in the analysis
and modeling of fractional processes, and decoupling for decentralized fixed-structure H-infinity
robust control design. Simulation tests based on MATLAB and SIMULINK are subsequently executed.
Numerous assessments are conducted to evaluate tracking performance, external disturbance re-
jection, and plant parameter fluctuations to gauge the effectiveness of the proposed model. The
objective of this work is to provide a framework that anticipates potential outcomes, paving the way
for implementing a reliable controller synthesis for MIMO-connected tanks in real-world scenarios.

Keywords: Bernoulli principle; flow rates; fluid study; H-infinity control design; linear time invariant
system; liquid levels; MATLAB mixsyn; optimization problem; system linearization

1. Introduction

Control of linked tank systems is recognized as a crucial challenge in process indus-
tries such as pharmaceuticals, food processing, autonomous liquid dispensing, and other
chemical-related sectors [1,2]. The traditional proportional, integral, and derivative (PID)
controller, noted for its effectiveness in linear systems and its intuitive user-friendly con-
trol, is widely used in these industries [3–8]. However, when we have multiple-input
multiple-output (MIMO) coupled-tank systems, which are nonlinear in essence, standard
control methods typically fail to deliver consistent performance because of nonlinearities,
parameter variations, and external disturbances. This is where the importance of a lin-
earization process arises, a process often employed in fractional systems [9]. To address
these failures, much approaches have explored nonlinear control strategies for multi-tank
systems. Such approaches include controls related to nonlinear sliding modes [8], nonlinear
backstepping [10], constrained prediction [11], convolution network [12], and fuzzy meth-
ods [13–15], which are some of the techniques employed to tackle the challenges posed by
these nonlinear systems.
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We propose a controller that represents a novel approach and unexplored in the
context of two-tank systems. The controller is based on H-infinity (H∞) theory, which
enables decentralized control of MIMO systems as well as robust control of single-input
single-output (SISO) systems [16–20]. A recent study has also demonstrated the potential of
fractional transformation-based intelligent H∞ systems in controlling a direct current servo
motor [21]. Nonetheless, fixed-structure H∞ controllers offer a significant advantage over
traditional H∞ synthesis methods, as our controller can be designed with specific orders
and fixed structures. This allows process industries to utilize traditional PID controllers,
which are linear such as the real-time controllers. Nevertheless, traditional techniques are
often limited by design objectives such as response speed, disturbance rejection, and robust
stability. The complex structure and control bandwidth of MIMO systems impose additional
challenges for traditional H∞ control architectures [19].

Our advanced linear robust controller tackles these challenges by providing a solution
with a simpler gain structure, PID-like characteristics, sophisticated lead-lag features,
and an observer-based architecture. Furthermore, a non-smooth H∞ optimizer in the
frequency domain is employed to tune the parameters of the proposed controller [22]. With
their inherent robustness and linearity, these controllers are ready for direct deployment.

The objective of the present study is to regulate the liquid level in a MIMO coupled-
tank system by manipulating the operation of the water pump within the tanks. To
reach this objective, the MIMO nonlinear model is first linearized, and then a decoupled
linear model is derived, enabling the decentralized and robust construction of our fixed-
structure H∞ controller. Subsequently, a reliable fixed-order robust synthesis tailored for the
decoupled MIMO model is introduced, ensuring that the time domain performance remains
uncompromised [23]. The robust control toolbox in MATLAB proves to be invaluable in the
optimization of the proposed decentralized synthesis architecture. Capable of managing
plant nonlinearity, external interferences, and measurement noise simultaneously, our
advanced robust controller guarantees consistent liquid levels in the MIMO coupled-tank
system, synthesizing apt control signals in response to target liquid levels.

The structure of the article is as follows. Section 2 delves into MIMO modeling of
the linked tank system. In Section 3, we describe the decoupling model and proposed
controller. Section 4 discusses our results. The conclusions of this work are in Section 5.

2. Modeling

This section describes an in-depth discussion of nonlinear MIMO system.

2.1. System’s Description

An industrial coupled-tanks system comprises two tanks interconnected by orifice
valves, with electrical valves controlling the input flow into both tanks, and orifice valves
regulating the outflow from the tanks. In coupled tanks, there are typically restrictions on
the maximum opening of control valves. Such systems exhibit inherent complexity and
nonlinearity, presenting challenges for traditional control approaches. Figure 1 illustrates
a two-tank system, and Table 1 provides descriptions of the symbols used. The control
system’s inputs, Qi1 and Qi2, represent the liquid inflow rates into the tanks via the electrical
valves. The control variables, Qo1 and Qo2, indicate the liquid outflow rates through the
orifice valves, while H1 and H2 represent the MIMO output variables. The orifice flow
between the tanks, denoted as Q12, facilitates the coupling between the tanks.
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Table 1. Description of notations.

Notation Definition

Qi1 Flow index/control input for tank 1
Qi2 Flow index/control input for tank 2
H1 Height (liquid) in tank 1
H2 Height (liquid) in tank 2
Qo1 Outflow rate through tank 1’s orifice valve
Qo2 Outflow rate through tank 2’s orifice valve
Q12 Coupling flow rate between tanks 1 and 2 through orifice valve
A Cross-section area of each tank

H1

H2

Qi1 Qi2

Q12

Qo1 Qo2

outlet valve tanks interface valve outlet valve

Figure 1. Industrial MIMO coupled tank system.

2.2. Nonlinear MIMO Mathematical Model

Next, we establish a mathematical model that captures the dynamic behavior of
interconnected systems. The nonlinearity and MIMO structure of these systems typify
many real-world scenarios. The equations for the dynamic flow balance in tank 1 are

Qi1 −Qo1 −Q12 = A1
d
dt

H1 (1)

and
Qi2 −Q12 −Qo2 = A2

d
dt

H2, (2)

where A1, A2 are the cross-section areas of tanks 1 and 2, respectively; and H1, H2 refer to
the baseline or equilibrium liquid levels in tanks 1 and 2, respectively, that is, they represent
the static or steady-state levels of the liquid in the absence of any disturbances or inputs.

Using the Bernoulli principle, the formulas stated in (1) and (2) are now converted
into nonlinear dynamic equations. The Bernoulli principle, which ignores compressibility
and viscosity, relates the steady flow of a flowing liquid to pressure, velocity, and elevation.
The fluid flow described by the Bernoulli principle is shown as

P
ρ
+

v2

2
+ gH = c,

where g is the gravity acceleration, H is the fluid height from the reference point, v is the
fluid movement speed, P is the fluid pressure, ρ is the fluid density, and c is a constant.

Applying the Bernoulli principle to a fluid in motion, we get

P1

ρ
+

v2
1

2
+ gH1 =

P2

ρ
+

v2
2

2
+ gH2. (3)

Suppose that v1 = 0, P1 = 0, and P2 = 0. When we solve the equation given in (3),
we obtain
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v2 =
√

2g(H1 − H2).

Then, the equation for coupling flow discharge is formulated as Q12 = Cd ao12 v2, with
Cd being the discharge coefficient and ao12 being the coupled orifice cross-section area
between tanks 1 and 2, representing the passage that allows flow from one tank to the other.
Similarly, we have that

Qo1 = Cd2ao1
√

2gH1, Qo2 = Cd3ao2
√

2gH2,

where ao1 and ao2 are the orifice cross-section areas for the outflow from tanks 1 and 2,
respectively, which controls the liquid’s discharge from the corresponding tank.

Note that the expressions given in (1) and (2) are changed to

Qi1 − Cd2 ao1
√

2gH1 − Cdao12

√
2g(H1 − H2) = A

d
dt

H1

and
Qi2 + Cdao12

√
2g(H1 − H2)− Cd3 ao2

√
2gH2 = A

d
dt

H2,

respectively, when the Bernoulli principle has been applied, where A is the cross-section area
of tanks 1 and 2. By assuming α1 = Cd ao12

√
2g, α2 = Cd2 ao1

√
2g, and α3 = Cd3 ao2

√
2g,

our nonlinear equations are formulated as

Qi1 − α2
√

H1 − α1
√

H1 − H2 = A
d
dt

H1 (4)

and
Qi2 + α1

√
H1 − H2 − α3

√
H2 = A

d
dt

H2. (5)

These nonlinear equations represent the system’s underlying complexity, paving the way
for exploring advanced control strategies in interconnected systems.

2.3. The Perturbed Linearized MIMO Mathematical Model

Next, we aim to develop a linearized model based on perturbations from steady-state
conditions, a common approach to simplifying analysis and control design in complex
systems.

The liquids in tanks 1–2 and the flow rates, Qi1 and Qi2 namely, are assumed to be at
steady-state levels. Then, the nonlinear equations adopt the forms given by

Qi1 + qi1 − α2
√

H1 + h1 − α1

√
(H1 + h1)− (H2 + h2) = A

d
dt

(H1 + h1) (6)

and

Qi2 + qi2 + α1

√
(H1 + h1)− (H2 + h2)− α3

√
(H2 + h2) = A

d
dt

(H2 + h2), (7)

if any one of the parameters is slightly altered; where qi1 and qi2 are the perturbations in
Qi1 and Qi2, respectively; whereas h1 and h2 are the perturbations in the liquid levels of
tanks 1 and 2, respectively, from their baseline states H1 and H2. In other words, h1 and h2
depict how much the liquid levels deviate from their equilibrium states due to disturbances
or inputs to the system.

Now, after subtracting and simplifying the nonlinear equations stated in (4) and (5)
from the perturbed equations presented in (6) and (7), respectively, we obtain

qi1 −
α2

2
√

H1
h1 −

α1h1

2
√

H1 − H2
+

α1h2

2
√

H1 − H2
= A

d
dt

H1
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and
qi2 +

α1h1

2
√

H1 − H2
− α1h2

2
√

H1 − H2
− α3h2

2
√

H2
= A

d
dt

H2.

Let

k1 =
α1

2
√

H1 − H2
, k2 =

α1

2
√

H1 − H2
+

α2

2
√

H1
, k3 =

α1

2
√

H1 − H2
+

α3

2
√

H2
.

Before delving further, it is essential to understand the term LTI, which stands for
linear time-invariant, where ‘linear’ means the system obeys superposition principles,
and ‘time-invariant’ denotes that the system’s behavior remains consistent over time.

Table 2 provides the system parameters and LTI values for the model presented as[
ḣ1
ḣ2

]
=

[−k2 k1
k1 −k3

][
h1
h2

]
+

[
1/A 0

0 1/A

][
qi1
qi2

]
, (8)

where ḣ1 and ḣ2 denote the time derivatives of h1 and h2, respectively. In practical terms, ḣ1
describes how quickly the variation h1 is changing over time, indicating the rate at which
the liquid level in tank 1 is rising or falling. Similarly, ḣ2 represents the rate of change of the
variation h2, showing how quickly the liquid level in tank 2 is adjusting due to disturbances
or inputs. The calculated values from (8) are k1 = 4.082249, k2 = 5.344471, k3 = 6.062148.

Table 2. Extended couple tank system’s parameters and values.

Name Expression Value

Cross-section of tanks 1 and 2 A 4 m2

Discharge coefficients Cd, Cd2, Cd3 1, 0.5, 0.5
Cross sections of an orifice valve ao12, ao1, ao2 1 cm2

Gravitational acceleration g 9.8 m/s2

Sensor Ideal 1
Liquid levels offset H1, H2 0.5 m, 0.2 m
Dynamics constant 1 k1 4.082249
Dynamics constant 2 k2 5.344471
Dynamics constant 3 k3 6.062148

Additionally, the system’s MIMO coupled transfer function model is provided below.
From input 1 to both outputs, transfer functions are given by

g11 =
0.25σ + 1.516

σ2 + 11.4σ + 15.67
, g12 =

1.021
σ2 + 11.4s + 15.67

,

where σ represents the real part of a complex variable in the Laplace domain, commonly
used to analyze the dynamics in the frequency domain of control systems and transfer
functions. From input 2 to both outputs, transfer functions are formulated as

g21 =
1.021

σ2 + 11.4σ + 15.67
, g22 =

0.25σ + 1.334
σ2 + 11.4σ + 15.67

.

In the context of MIMO systems, the constants g11, g12, g21, and g22 represent the trans-
fer functions that define the dynamic interactions between the multiple inputs and out-
puts. The simulation results for the response of the MIMO LTI model are displayed
in Figure 2.
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Figure 2. Coupled MIMO LTI model step response.

To implement a decentralized control strategy, we opt to split our MIMO model
into two distinct SISO systems. Numerous decoupling techniques have been previously
documented in scientific publications. In this particular study, we employ a linear decou-
pling method. We want to introduce an approach for diminishing the interdependency
among the control loops by introducing additional decouplers, commonly referred to as
controllers, into the multi-loop control system. With this approach, the decoupling matrix
Dm is designed to minimize interactions across all loops [24]. Consequently, we present the
constituent elements for a 2-input-2-output system by means of

Dm =

[
d11 d12
d21 d22

]
, (9)

where d11 = 1, d12 = −g12/g11, and d21 = −g21/g22, d22 = 1 are constant elements of the
decoupling matrix designed to reduce or eliminate the mentioned interactions, ensuring
each control loop operates more independently of the others. The constants d11, d12, d21, d22,
g11, g12, g21, and g22 are essential in tuning the system to achieve the desired performance
while minimizing unwanted couplings.

After decoupling, a MIMO system may still suffer interactions and perform poorly.
The decoupling seeks to counteract the effects of interactions caused by the cross-coupling
of system variables [25]. The decoupler’s layout, which was produced using (9), is shown
in Figure 3.

The specific values for the decoupler parameters are d11 = 1, d12 = −1.021/(0.25σ + 1.516),
d21 = −1.021/(0.25σ + 1.334), and d22 = 1. The values make clear that the decoupler
described is not in static form, which makes it difficult to implement this decoupling
matrix [26]. One strategy for solving this problem is to use static decoupling. The only
advantages offered by static decoupling are the constants d12 and d21, whose values are
calculated as

d12 = lim
σ→0
− 1.021

0.25σ + 1.516
= − k12

k11
(10)

and
d21 = lim

σ→0
− 1.021

0.25σ + 1.334
= − k21

k22
, (11)

where now k12 = 1.021, k11 = 1.516, k21 = 1.021, and k22 = 1.334.
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d22

d21

d12

d11

g22

g21

g12

g11

Gc2

Gc1
r1 +

r2 +

+ h1

+ h2

+

+

+

+

+

+

−

−

Figure 3. Decoupled layout for MIMO process, where r1, r2 are the desired responses of liquid height
in tanks 1 and 2, whereas Gc1 and Gc2 are decentralized controllers for h1 and h2, respectively.

Note that the formulas given in (10) and (11) can be used to determine the two separate
SISO systems. Then, the expressions stated in

g1 = g11 −
k21

k22
g12 =

0.25σ + 0.734559
σ2 + 11.4σ + 15.67

,

g2 = g22 −
k12

k11
g21 =

0.25σ + 0.646374
2 + 11.4σ + 15.67

represent the estimated independent transfer functions. The simulation results for the
response of the decoupled MIMO LTI model are shown in Figure 4. These results validate
the derived linearized models, laying a foundation for exploring more nuanced control
design strategies. They hint at the intriguing complexity of the system’s dynamics, subtly
underscoring the potential benefits of fractal and fractional approaches in such contexts.

Figure 4. Decoupled MIMO LTI model step response.

3. Control Design for the Decoupled MIMO System

In this section, we shift our attention towards the construction of control mechanisms
for our modeled decoupled MIMO system, which subtly leads to a connection with the
multifaceted nature of fractional systems.
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3.1. Context

With our decoupled MIMO LTI perturbed model, our primary challenge is to develop a
controller capable of producing a suitable transient response and of following the reference
input accurately. In this study, we construct and compare three different types of controllers:
our H∞ control system, the traditional H∞, and the PID.

The inflow rates in both tanks serve as control variables, while the liquid levels in each
tank represent the measured variables. Performance comparisons among the controllers
are made based on their ability to track a reference signal, along with evaluating transient
characteristics such as settling time, rising time, steady-state accuracy, and overshoot.

3.2. Traditional PID Design

The traditional PID controllers are widely utilized in the process industries because
they are straightforward and have a low cost. For those dynamic models with inherently
nonlinear behavior, the PID controllers can occasionally lose some of their effectiveness.
Additionally, they do not provide the requisite transient responsiveness and reference
tracking parameters. Traditional methods are used to determine the PID parameters.
The traditional PID controller is designed utilizing the Zeigler Nicholas pole-zero placement
method. The decoupled LTI models of the connected tank system are employed to develop
the traditional controllers.

The equations for the PID controller in the frequency and time domains are stated as

U(s) =
(

Kp + Ki
1
s
+ Kd s

)
E(s)

and

u(t) = Kp e(t) + Ki

∫ t

0
e(τ)dτ + Kd

d
dt

e(t),

where E(t) is the Laplace transform of the error in the time domain. This error is the
difference between the reference value (or set-point) and the system output. In the frequency
domain (s-domain), this error is denoted by E(s). Also, e(t) is the error in the time domain,
that is, the instantaneous value of the difference between the desired value and the output
at a given time t. The PID controller aims to minimize this error by adjusting the system
output. Three parameters or gains of the PID controller are the proportional component
(Kp) that acts on the present error, the integral component (Ki) that acts on the accumulated
past errors, and the derivative component (Kd) that anticipates future errors based on their
rate of change.

3.3. Traditional H∞ Controller Design

In this design, both close-loop frequency transfer functions, that is, the complementary
sensitivity function, T(s) namely, and the sensitivity function, S(s) say, are shaped using
complicated weights or filters. Note that S(s) is the function that transfers frequency
between the error signal E(s) and the reference input R(s). In contrast, the complementary
sensitivity function T(s) represents the transfer between the reference input R(s) and the
output Y(s).

The filters or complex weights have an impact on the shape of closed-loop frequency
responses in a traditional H∞ controller’s architecture. Thus, the norm of H∞, that is, the
peak of the objective function, is decreased by choosing appropriate filters or complex
weights for S(s) and T(s).

The structural complexity and control bandwidth of this traditional H∞ controller is
primarily constrained through this H∞ norm. For the purpose of optimizing the controller
parameters, the constrained objective function equations are provided as

‖wS(s)S(s)‖∞ ≤ 1 (12)
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and
‖wT(s)T(s)‖∞ ≤ 1,

where wS(s) and wT(s) are weighting filters used to shape the frequency responses of
the sensitivity S(s) and complementary sensitivity T(s), respectively, in the proposed H∞
controller design.

The sensitivity S(s) should ideally be as low as feasible over the specified bandwidth
range. The bounds on peak specifications, which provide a margin of robustness, are
mentioned in (12). In addition to being reliable, the optimum H∞ controller outperforms
the traditional PID controller. The mixsyn MATLAB tool was employed to implement our H∞
controller.

3.4. Design of Fixed-Structure H∞ Synthesis

The traditional H∞ controller’s order is derived from the combination of the shaping
weights and the order of the plant. However, this design complexity in the traditional
H∞ controller can limit its practical applications. To address these limitations, this study
proposes a decentralized fixed-structure H∞ synthesis.

The robust toolbox of MATLAB is utilized to build the fixed-structure H∞ synthesis.
First, the system is represented in the standard form as shown in Figure 5.

P(s)

C1(s) · · · 0
...

. . .
...

0 · · · CN(s)

vu

ω z

Figure 5. Structured H∞ synthesis in standard representation, where C, P, u, w, and z are earlier
defined, while v is the error signal for the SISO system, v is the input to the controller. We use v as a
general representation in this figure and this is defined in as v(t) = r(t)− y(t) = e(t), with r(t) being
the reference value, y(t) being the true output, and e(t) being the error.

Figure 5 illustrates the standard representation of the structured H∞ synthesis, which
can be divided into two main sections:

• Block P(s): represents the non-tunable LTI components of the MIMO system.
• Block C(s): contains the tunable components diagonally as diag(C1(s), . . . , CN(s)).

Each of these components has a specific structure and is an LTI control element.

The suitable weights w are taken into account to obtain the targeted sensitivity and
complementary sensitivity. Then, the control parameters are improved in the frequency
domain using non-smooth H∞ optimization [19]. These fixed-structure linear optimal and
robust controllers are more practical from an industrial standpoint.

The standard form presented in Figure 5 can be used to configure SISO or MIMO
systems, according to the linear robust control [27]. In any control system block diagrams,
the block C(s) is where all the control elements are arranged and the remaining parts are
arranged in the block P(s). In the standard representation, the weight w is composed of
disturbances, commands, and external noise. Consider the partition formulated as
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[
z
y

]
= P

[
w
u

]
=

[
p11 p12
p21 p22

][
w
u

]
,

where z is composed of error signals, while the closed loop optimal objective function from
w to z is given by a linear rational transformation stated as

Twz = FLTI(P, C) = p11 + p12C(I2 − p22C)−1 p21,

where Twz denotes the closed-loop transfer function from w to z; FLTI(P, C) describes the
relationship between the process and controller; and I2 is the identity matrix of orden 2.

Note that the fixed-order linear structure controller is formulated as

Cj(s) = Kp +
Ki

s
+

Kds
Tf s + 1

, j ∈ {1, . . . , M},

where M is the total number of distinct specifications or scenarios being considered in the
controller design. The suggested controller parameters are optimized via non-smooth H∞
optimization, where, as mentioned, Kp is the proportional gain, Ki is the integral gain, Tf is
the first order derivative filter, and Kd is the derivative gain coefficient.

Critical design specifications, including disturbance rejection, control bandwidth,
and high stability margins, are encapsulated as

‖wj(s)Sj(s)‖∞ ≤ 1, ‖wj(s)Tj(s)‖∞ ≤ 1, j ∈ {1, . . . , M}.

The H∞ norm stated in H(s) = FLTI(P(s), diag(C1(s), . . . , CN(s))) is minimized to
satisfy the desired conditions.

The optimization process initiates with randomly generated parameter values and
iteratively refines until optimal values are achieved. The results and comparisons are
discussed in Section 4, which also presents the optimized controller parameters. The
optimized parameter values of the proposed controller are provided in Table 3.

Table 3. Optimized parameters of decentralized fixed-structure H∞ controller.

Symbols Description Values for h1 Tracking Values for h2 Tracking

Kp Proportional gain 6730 4210
Ki Integral gain 3230 3660
Kd Derivative gain −9750 −8580
Tf 1st order filter coefficient 1.64 2.44

4. Performance Analysis and Discussion

This section evaluates the proposed decentralized control approach for the MIMO-
coupled tank system against traditional H∞ and PID controllers, focusing on transient
response and command tracking. Precise tracking of desired signals remains a prominent
challenge in industries.

4.1. Context

Despite the affordability and simplicity of traditional PID controllers making them a
staple in process industries, they sometimes falter, especially when faced with nonlinear sys-
tem dynamics. In addition, traditional H∞ controllers ensure robust performance, but they
are marred by their intricate structure, making them less practical for some applications.
The proposed fixed-order H∞ controller strikes a balance, offering dependable performance
with a simpler implementation. A distinctive benefit of this synthesis is the flexibility it
offers in design. The controller effectively shapes the sensitivity S(s) and complementary
sensitivity T(s), uninfluenced by complex higher-order weights, contrasting the more
intricate standard H∞ controllers.
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4.2. Results and Discussion

The optimal parameters for the decentralized control of MIMO-coupled tank systems were
depicted in Table 3, and the corresponding expressions for these controllers are provided as

Ah1 =

 −0.01 0 0
2.28600 −1.8680 −1.3870

0 4 0

, Bh1 =

4.091
0
0

,

Ch1 =
[
894100 −7.2990 −54210

]
, Dh1 =

[
0
]
,

Ah2 =

 −0.01 0 0
2.52200 −2.0590 −1.3440

0 4 0

, Bh2 =

4.087
0
0

,

Ch2 =
[
987400 −8.0580 −52610

]
, Dh2 =

[
0
]
.

Before proceeding, it is important to clarify a particular aspect of Table 3, namely the
negative values of the derivative gain, Kd. These values are not errors but a direct result of
the optimization process in the fixed-structure H∞ controller design.

After determining the optimized parameters, the resulting controllers are represented in
Table 3. These controllers provide the state-space structure of traditional H∞ controllers for decen-
tralized tracking of h1 and h2, respectively. This specific structure is pivotal for the effectiveness of
decentralized control and directly contributes to the optimized performance we observe.

While uncommon and negative derivative gains can be part of a balanced solution
minimizing an error criterion, such values might pose practical implementation challenges
due to the potential phase addition and destabilizing effects. These negative Kd values
could be problematic in a real-world application. Furthermore, fine-tuning or constraints in
the optimization process may be introduced to ensure non-negative derivative gains. Nev-
ertheless, this might deviate the system’s performance from the optimal results obtained
for the controllers presented here. These controllers provide the state-space structure of
traditional H∞ controllers for decentralized tracking of h1 and h2, respectively.

The comparison in terms of transient definition and commanded tracking among three
controllers is shown in Figures 6 and 7. Table 4 presents a comparison based on transient
parameters such as steady-state accuracy, percentage overshoot, rising time, and settling
time. It can be seen from Table 4 that both H∞ controllers have no overshoot in the transient
response, while the traditional PID controller exhibits a significant overshoot in the response.

Figure 6. Step response for the decentralized control of liquid level h1.
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Figure 7. Step response for the decentralized control of liquid level h2.

Table 4. Controllers performance evaluation for h2.

Controller
Rise Time Settling Time Over-Shoot

Steady-State Error Controller Order(s) (s) (%)

Traditional H∞ 0.0448 0.0801 0 0% Third
Fixed-structure H∞ 0.0131 0.0249 0 0% Second
PID 0.0268 0.1451 10.3289 0.1033 Second

Compared to the traditional PID controller, the traditional H∞ controller delivers
robust performance but with a somewhat slower rise time. In contrast, the proposed fixed-
structure H∞ controller shows robust performance across all tested parameters. The re-
sponse comparison for step disturbance for all three controllers is shown in Figure 8. From
this figure, note that the proposed fixed-structure H∞ synthesis provides fast and robust
step disturbance rejection as compared to other traditional controllers. The proposed
fixed-structure H∞ controller also gives a robust performance in the presence of parameter
uncertainty. The performance of the proposed controller is evaluated for a wide range of
parameter values and the results are shown in Figure 9.

Figure 8. Comparison of controllers for step disturbance response in liquid level h2.
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Figure 9. Performance of the proposed controller for (top) open loop step response with parameters
uncertainty in liquid level h2 and (bottom) step input tracking.

5. Conclusions

In this research, we proposed a decentralized intelligent robust controller for a MIMO
coupled-tank system. This system has been a longstanding challenge in process industries,
and numerous control strategies have been previously employed to manage it, such as
nonlinear sliding mode control, nonlinear backstepping control, predictive constrained
control, convolution network control, and fuzzy control. However, as demonstrated in
Table 4, our proposed controller, based on H∞ theory, has shown to outperform traditional
H∞ and PID controllers in terms of transient requirements.

The fixed order and fixed structure of the proposed controller are additional advan-
tages. These characteristics highlight the pertinence of our study in the context of fractal
and fractional systems, where the complexity often resides in the intricate structure and
variable order of the controllers. In contrast to traditional H∞ synthesis, where the order
increases when dealing with complex filter transfer functions, our proposed controller
maintains a fixed-order, an advantage previously demonstrated in the control of a direct
current servo motor. The proposed controller is decentralized robust linear and utilizes
intelligent non-smooth H∞ optimization for its parameters. Its straightforward gains or
optimized PID-based structure makes it practical and easy to use. Despite the complex
structure and control bandwidth challenges associated with MIMO systems, our proposed
linear robust controller has shown, through comparative simulation results, to be robust
against parameter changes.

Future work should consider addressing the issue of actuator saturation, which is
critical in process industries. A potential solution could be the incorporation of a strategy
related to anti-integral windup in the design of a decentralized fixed-structure H∞ controller.
To ensure stability in the presence of actuator saturation, additional simulation results can
be obtained prior to real-time implementation, ensuring no risk of systemic instability
or damage. Furthermore, while our study provided promising simulation results, future
research should also focus on real-world verification to further substantiate the efficacy of
the proposed controller.
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