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ABSTRACT
Nowadays, the general interest in Machine Learning (ML) based
solutions is increasing. However, to develop and deploy a ML so-
lution often requires experience and it involves developing large
code scripts. In this paper, we propose AI4CITY, an automated tech-
nological platform that aims to reduce the complexity of designing
ML solutions, with a particular focus on Smart Cities applications.
We compare our solution with popular Automated ML (AutoML)
tools (e.g., H2O, AutoGluon) and the results achieved by AI4CITY
were quite interesting and competitive.
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1 INTRODUCTION
Due to advances in Information Technology (IT), nowadays it is
more easy to collect, store and process data that reflects multiple as-
pects of our daily lives, giving rise to the concept of Smart Cities[4].
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All this data hold potentially valuable knowledge that can be ex-
tracted to better support decision-making. Thus, there has been
a growing need to rely on data-driven systems, such as Artificial
Intelligence (AI) and Machine Learning (ML) tools to make sense
of the constant inputted data. As ML becomes so vast, in a way
that is hard to keep up with, there is a shortage of experts that can
effectively take advantage of state-of-art ML solutions. Thus, there
has been a growing focus on the development of Automated ML
(AutoML) solutions, which automate the search for the best ML
algorithm and its hyperparameter setup [2, 9].

The paper proposes the AI4CITY technological platform, con-
sisting of an AutoML tool that facilitates the application of ML
algorithms to solve smart cities tasks. The goal is to reduce the com-
plexity of the ML design code for smart cities applications, allowing
both non-expert users and expert users to benefit from the whole
ML workflow by using just a few lines of code. Our platform works
with supervised learning tasks (classification, regression, and time
series forecasting). In particular, it assumes a step-by-step approach
architecture that includes the typical ML workflow, such as task
detection, data preprocessing stage (e.g., missing data imputation),
model and hyperparameter selection and pipeline deployment.

2 PLATFORM ARCHITECTURE
This work is inserted in a large R&D project, termed CityCatalyst,
related to the Smart Cities context, which involves multiple large
Portuguese companies from different domains (e.g., Telecommuni-
cations, Electric Power) and different technological subjects (e.g.,
AI, DataWarehousing, Interoperability). Considering the lack of ML
specialists working in some of these companies and the diversity of
domains involved, the main outcome of this R&D project, in terms
of AI, is an agnostic automated ML solution that can be used by
both experts and non-ML-experts with just a few lines of code.

In this paper, we propose AI4CITY, an automated smart city
solution for predictive analytics, specifically targeting supervised
learning tasks with tabular data. The solution builds default full ML
pipelines that include most of the usual MLworkflow steps and only
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require two input parameters: data and the target column. Then,
the solution automatically detects the ML task, the necessary data
preprocessing steps and then fits an AutoML algorithm. Moreover,
if needed, the AI4CITY platform also allows ML-experts to decide
which steps should be included in the ML pipeline, as well as the
algorithm to be used in each step. In both cases, the AI4CITY output
is an ML pipeline ready to be used in new and not-yet-transformed
data, applying all the defined steps and returning predictions.

The proposed solution was written using Python programming
language and returns a pipeline that relies on imblearn pipeline
logic, which is similar to the scikit-learn’s, with the particularity of
applying some of the steps only to the training data (e.g., balancing
techniques). In fact, the proposed solution works as a wrapper
of an extensive set of ML techniques from several other Python
modules (e.g., scikit-learn, H2O, CANE). The main advantages of
the AI4CITY solution can be expressed in terms of: usability, since
it requires considerably less coding when compared to other tools,
improving the usage of for non-ML-expert users; flexibility, since
all pipeline steps are highly configurable, useful for advanced ML
users; and automation, considering that it assumes a predefined
set of steps and only requires data and a target output to be provided.
Figure 1 summarizes the overall AI4CITY architecture.

Figure 1: The AI4CITY platform architecture.

2.1 Pipeline Steps
ML task detection: the solution detects automatically the super-
vised ML task, according to the target column data type. If needed,
the user can also explicitly define the ML task. The possible choices
are: binary and multi-class classification, regression and TSF.

Data selection: this pipeline step allows expert users to filter
data records based on a query. By default, this step is not adopted.

Imputation: the purpose is to replace missing values in the
dataset and it uses the scikit-learn Simple Imputer to do so. By
default, whenever missing data is detected in the training data, this
step is added to the pipeline, using mean values for the numerical
attributes and most frequent values for the categorical ones.

Categorical Transformation: we provide 4 implementations:
scikit-learn ordinal encoding and CANE one-hot encoding, Inverse
Document Frequency (IDF) and Percentage Categorical Pruning
(PCP) [5]. By default, AI4CITY applies one-hot encoding for datasets
with a maximum cardinality of 50 levels. Otherwise, based on recent
studies[6–8], IDF is applied. Nevertheless, experts can explicitly
select any of the mentioned techniques.

Numerical Transformation: for experts, we provide 6 scikit-
learn numerical transformation options to experts: min-max, stan-
dard, maximum absolute, robust, quantile and power. By default,
standard scaling is applied to all numerical features.

Data Balancing: in a recent study [10], we have compared
several data balancing techniques, namely Gaussian Copula (GC),
Synthetic Minority Over-sampling Technique (SMOTE), Random
Undersampling and Tomek Links. The results achieved presented
advantages in using GCwhen comparedwith the remaining options.
Thus, GC is used in terms of AI4CITY default option for unbalanced
classification data. Yet, any of the mentioned methods can be used.

Feature Selection: AI4CITY wraps all of the scikit-learn imple-
mentations and, if needed, the user can explicitly select the relevant
input features. However, this step is not yet automated.

Modeling: for expert users, in this step, AI4CITY provides a
large set of options. In particular, from scikit-learnwe havewrapped
22 classifiers and 29 regressors. Furthermore, for both classifica-
tion and regression tasks, we have also wrapped 4 AutoML tools
(H2O, AutoGluon, AutoKeras and FEDOT) and 3 popular ensemble
alternatives (XGBoost, CatBoost and LightGBM). Concerning TSF
tasks, we provide 2 AutoML options: FEDOT and AutoTS. In terms
of default choices (for non experts), based on[2, 9], we chose the
AutoGluon for both regression and multi-class classification tasks,
H2O for the binary classification ones and FEDOT for TSF tasks.

Evaluation: although this is not a step of the pipeline, the pro-
posed solution allows to easily compute several measures related to
the predictive performance. These include 15 known scikit-learn’s
metrics (e.g., Mean Absolute Error (MAE), Area Under the Curve
(AUC) of the ROC analysis) and a complementary metric that is
useful for regression and TSF tasks [2, 9]: the Normalized Mean
Absolute Error (NMAE). Furthermore, the AI4CITY solution imple-
ments a set of 14 scikit-learn cross-validation procedures and two
realistic procedures: Rolling Window and Growing Window.

Pipeline deployment: the AI4CITY solution allows to import
and export of all steps of the pipeline (e.g., transformers, models) as
a whole, in the joblib format. This way, when users need to perform
predictions, they only need to load the pipeline object and feed it
with new unseen data. Then, our solution ensures that the new data
goes through the same data processing executed for the training.

2.2 Usability
In addition to the ML workflow automation provided by our plat-
form, its ease of use by both expert and non-expert users is a major
advantage. With a few lines of code, non-ML-experts can easily
implement a whole pipeline with multiple data preprocessing steps
that intend to improve the model’s predictive performance. In fact,
most of the choices performed internally in an automatic way are
based on recent studies that proved the value of using each of these
steps in the ML workflow. On the other hand, since there is not a
single solution that can solve all the problems, we propose a flexible
solution that allows expert ML users to select each of the steps and
techniques they intend to use for their problem. As far as we know,
this is the first work providing high flexibility, automation, variety
of techniques and ease of use in a single solution for the creation of
predictive ML pipelines within the context of Smart Cities. Further-
more, for comparison purposes, we performed exactly the same ML
workflow in two different ways: writing the required code from
the used libraries versus the code required by our solution. With
AI4CITY, we could verify a considerable decrease in the required
code, from 15 lines to 5 lines.
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3 MATERIALS AND METHODS
3.1 AutoML Tools
Section 2.1 presents all the steps and methods provided by AI4CITY,
including the default pipeline choices for non-expert users. How-
ever, using predefined pipeline steps based only on data andwithout
any domain context, can lead to wrong assumptions and, conse-
quentially, to low quality predictive performance. Therefore, in this
work we perform a comparison between two pipeline usage modes
of our platform: auto and none. The former mode automatically
builds the pipeline with the preprocessing steps mentioned in sec-
tion 2.1, while the latter inputs the data directly to the AutoML
tool, executing the data preprocessing step only if directly assumed
by the AutoML tool. The purpose of this comparison is to assess
the influence of our data preprocessing steps in the ML workflow.
Based on AutoML benchmarking studies [2, 8], the chosen AutoML
tools are H2O, AutoGluon and FEDOT.

3.2 Data
The datasets used in this work for testing the proposed solution
were divided into three major predictive ML tasks: regression, bi-
nary and multi-class classification. Although the AI4CITY platform
is able to deal with TSF tasks, it implements the FEDOT tool without
any additional preprocessing steps. Thus, no time series data was
selected for experimentation in this paper. The selection of pub-
lic datasets was based on recent AutoML tools benchmark studies
[1–3]. Excepting the counts datasets, which are private and were
provided by a company related to CityCatalyst project, all datasets
are publicly available in OpenML, Kaggle and UCI platforms.

Table 1 summarizes the characteristics the adopted datasets in
terms of: ML task (bin. – binary classification, multi. – multi-class
classification and reg. – regression); dataset name; Rows (total
number of instances); Num. cols (number of numerical attributes);
Cat. cols (number of categorical attributes); #Nulls (sum of null
values from all columns); #Levels (sum of different levels/categories
from all columns); %Min. class (percentage of instances from the
minority class - only for classification tasks); and Classes (number
of different levels/values from the target data).

3.3 Evaluation
For evaluation purposes and in order to present a more robust set of
results, a five-fold cross-validation approach was assumed, where in
each of the five runs, 80% of data is used in training and 20% for the
predicting phase (test data). We note that the preprocessing tech-
niques were only applied in the training phase, with the predicting
phase assuming the previous data preprocessing. For classification
tasks, a stratified 5-fold cross-validation was employed. In order to
measure the performance of each task, we adopt the same predictive
performance measures assumed in a recent benchmark study [2]:
the AUC for binary classification, the macro F-score for multi-class
classification problems and the NMAE for regression tasks.

4 RESULTS
In this section, we compare the two mode usages presented in
Section 3.1: auto and none. Tables 2 and 3 present median values
from the 5 runs for each mode regarding all predictive measures (in

Table 1: Datasets Characteristics.

Task Dataset Rows Num. Cat. #Nulls #Levels %Min Classescols cols class

bin.

PMAI4I 10K 5 1 0 3 3.39 2
creditcard 285K 30 0 0 0 0.17 2
machine17 9K 4 0 0 0 0.17 2
machine22 9K 4 0 0 0 0.17 2
machine83 9K 4 0 0 0 0.16 2
machine98 9K 4 0 0 0 0.18 2
machine99 9K 4 0 0 0 0.22 2
churn 5K 20 0 0 0 14.14 2
diabetes 0.8K 8 0 0 0 34.9 2
hotel 119K 19 11 13K 228 37.04 2
road_safety 100K 4 1 0 99K 15.16 2

multi.

machines 969K 5 0 0 0 0.01 5
cmc 1K 9 0 0 0 22.61 3
dmft 0.8K 2 2 0 5 15.43 6
mfeat 2K 6 0 0 0 10.00 10

reg.

automobile 0.2K 10 15 0 234 - 186
cholesterol 0.3K 13 0 6 0 - 152
cloud 0.1K 4 2 0 6 - 94
disorders 0.3K 5 0 0 0 - 16
life 3K 19 2 2K 185 - 362
counts(00-06) 5K 6 0 0 0 - 1544
counts(06-12) 5K 6 0 0 0 - 3868
counts(12-14) 5K 6 0 0 0 - 2570
counts(14-19) 5K 6 0 0 0 - 4361
counts(19-00) 5K 6 0 0 0 - 3266
counts(day) 5K 6 0 0 0 - 6841

percentage) and computational effort in terms of training (Train
Time) and inference (Prediction Time).

Table 2 summarizes the results for the classification tasks. In
terms of binary classification, the "auto" and "none" execution
modes resulted each in five best results and one tie. Several of
the obtained predictive results are of quality. Concerning computa-
tional effort, similar values were obtained by both modes, except
for the road_safety dataset. Regarding the multi-class classification
task, overall, the "auto" mode produces two best results, while the
"none" mode excels for the other two datasets. The averaged F-score
values are similar, except for the machines dataset, where the "auto"
mode produces a substantial improvement. As for computational
effort, both modes tend to produce similar training and inference
results.

Finally, Table 3 shows the regression results. For this type of
ML task, the "auto" mode produces 7 best results, while the "none"
mode obtains 4 best NMAE values. We particularly highlight the
counts dataset, which relates to a real-world smart city task. For
the six counts datasets, the "auto" mode consistently provided the
best results, which are of quality (e.g., NMAE lower than 1%). As
for the computational effort, both modes tend to require similar
training and inference times.

5 CONCLUSIONS
In this paper, we present AI4CITY, a novel integrated AutoML
platform that is capable of handling predictive tasks related with
Smart Cities. Working as a Python wrapper that makes use of
several ML libraries and frameworks, AI4CITY works as a single
module that is easy to install and use. To assess the utility of its
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Table 2: Results for classification tasks (best values in bold).

Measure Dataset Usage Value Train Prediction
Time (s) Time (ms)

AUC

PMAI4I auto 93.72 313.51 0.86
none 97.46 309.77 0.31

churn auto 92.34 310.80 0.78
none 91.58 310.98 0.69

creditcard auto 99.00 353.04 0.15
none 98.54 335.31 0.12

diabetes auto 84.00 308.05 3.40
none 82.34 309.66 3.20

hotel auto 100 320.04 0.11
none 100 313.88 0.08

machine17 auto 67.64 311.27 0.58
none 66.77 311.50 0.31

machine22 auto 72.35 311.23 0.57
none 76.45 319.92 0.31

machine83 auto 67.20 310.67 0.61
none 72.32 311.30 0.32

machine98 auto 58.69 311.97 0.55
none 64.54 310.90 0.30

machine99 auto 71.22 310.98 0.57
none 65.27 311.46 0.37

road_safety auto 98.72 825.81 0.09
none 98.75 310.91 0.08

Median auto 84.13 311.86 0.57
none 85.47 311.42 0.31

F1

machines auto 30.09 315.87 0.08
none 19.99 292.77 0.01

cmc auto 51.55 31.34 0.63
none 53.35 28.58 0.26

dmft auto 19.06 25.86 0.26
none 19.62 26.25 1.13

mfeat auto 71.96 59.47 0.54
none 71.77 57.76 0.51

Median auto 41.73 45.50 0.23
none 37.09 44.20 0.21

automation, we performed a substantial computational experiment,
using a total of 26 distinct datasets. Overall, interesting results
were provided by the AI4CITY “auto” default mode, particularly
for multi-class classification and regression tasks.
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