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Abstract: Dental decay still presents a major health problem among children. Its treatment usually
requires the use of stainless steel crowns. This study compares the wear behavior of 316 L stainless
steel and polyetheretherketone (PEEK) composite under identical test conditions. The wear tests
were conducted in a reciprocating ball-on-plate tribometer (Plint TE67/R) using alumina balls as
a counterface and artificial saliva as a lubricant at 37 ◦C to faithfully mimic oral conditions. The
coefficient of friction (COF) and specific wear rate (k) values were determined and SEM/EDS ex-
aminations were performed to identify the predominant wear mechanisms. Results showed that
PEEK exhibited a significantly lower coefficient of friction (COF = 0.094 ± 0.004) and thus lower wear
volume (∆V = 0.0078 ± 0.0125 mm3) and higher wear resistance, with an average value of specific
wear rate of k = 9.07 × 10−6 mm3N−1m−1 when compared to stainless steel (COF = 0.32 ± 0.03,
∆V = 0.0125 ± 0.0029 mm3, k = 1.45 × 10−5 mm3N−1m−1). PEEK was revealed to be a potential ma-
terial for use in pediatric crowns due to its high wear resistance while overcoming the disadvantages
associated with steel at both an aesthetic and biological level.

Keywords: coefficient of friction; wear rate; stainless steel; polyetheretherketone (PEEK)

1. Introduction

Despite improvements in oral health in high-income countries, dental decay still
presents one of the most widespread and significant public health problems among chil-
dren [1]. According to the 2022 WHO Global Oral Health Status Report, over 514 million
children have primary teeth caries [2]. A survey conducted by Public Health England in
2019 on the oral health of 5-year-old children showed that one in four children of that age
have experienced dental caries [3].

Dental caries are caused by the interaction of bacteria from the plaque that forms on
the surface of a tooth and sugary foods on tooth enamel [2,4]. Untreated dental caries
can lead to odontogenic infections; these are a common dental emergency in children’s
hospitals, highlighting the consequences of primary tooth decay [1,5]. These conditions can
have an important impact on children’s health, nutrition, growth, and general health and
quality of life [4,5]. Untreated primary tooth decay can lead to pain, tissue inflammation,
infection, dental abscess, malocclusion, and chewing disorders [1,5,6].

In order to maintain the primary teeth in the dental arch preceding the eruption of the
permanent teeth, a variety of restorative solutions and materials have been used in pediatric
dentistry to provide full coverage restorations [7–9]. One of the most used methods and
restorative materials in the treatment of tooth decay in children is stainless steel crowns (SSCs),
renowned for their durability, long-term retention, and high clinical success rates in restoring
larger carious lesions on primary molars [6–8]. SSCs are prefabricated, adapted to individual
teeth, and cemented with a biocompatible luting agent. Despite the considerable amount of
literature that supports the success of SSCs, they have some drawbacks. One major drawback
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is their poor aesthetic appearance [8]. Moreover, several studies revealed severe adverse effects
of the ionic composition of SSCs in children (especially regarding the significant percentage
of nickel), including the development of local inflammation or an allergic reaction to the
systematic distribution of the ions as well as cytotoxic or genotoxic effects [10–12]. Several
alternatives have emerged to address the use of metals and the unappealing appearance
of dental restorations; these include pre-veneered stainless-steel crowns (PVSSCs), crowns
composed of polymers (mainly PMMA), pre-veneered aluminum crowns, and prefabricated
zirconia crowns, all of which aim to imitate the natural color of teeth. Nevertheless, the
use of PVSSCs carries the potential risk of nickel allergy and sensitivity, while polymer and
pre-veneered aluminum crowns have poor mechanical and wear resistance. Zirconia crowns
are costly and necessitate extensive tooth preparation for placement [6,8,13,14].

More recently, and beyond just academic investigations polyetheretherketone (PEEK)
has been used and already commercialized for several dental devices, including dental
implants, abutments, healing caps, orthodontic braces, and denture prosthetic frame-
works [15–17]. Further, PEEK composites [17–19], in particular TiO2 reinforced PEEK, have
been proposed to overcome some wear limitations and achieve color improvement. A
study conducted on the effect of nano-sized TiO2 addition on the tribological behavior
of PEEK composite [19] using a pin-on-disc test revealed the superiority of rigid TiO2
nanoparticle-loaded PEEK in terms of specific wear rate compared to neat PEEK. Addition-
ally, titanium dioxide structures are known for their superior mechanical properties and
strong antibacterial action [18].

The purpose of this article is to carry out a comparative tribological study between
PEEK composite reinforced with TiO2 nanoparticles and 316 L stainless steel to assess the
potential of PEEK composite as an alternative material to stainless steel. This alternative is
primarily for use in pediatric crowns due to its color and easier adaptation to the tooth due
to its elasticity as well as its biological advantages, including non-cytotoxicity. According
to studies in the literature about the mechanical superiority of TiO2 reinforced PEEK, it is
expected that this material presents a good response to wear.

2. Materials and Methods
2.1. Materials

This study comprises the comparison of two materials of distinct nature: a conven-
tional material used in pediatric dental restorations, 316 L stainless steel (SS), and PEEK
composite reinforced with 20 wt%-TiO2 nanoparticles acquired from the Dental Direkt
Company. The chemical composition (wt.%) of the stainless steel is Fe-62.7%, Cr-16.2%,
Ni-9.6%, C-2.4%, Si-0.7%, Mo-2.1% and Mn-1.6%. The PEEK composite has the following
elements in its chemical composition (wt.%): C-65.6% and Ti-14%.

2.2. Sample Preparation

Samples of both materials (PEEK and SS) were cut into circular pieces (∅ 8 mm × 0.2 mm
thickness) from commercial blocks. A thickness of 0.2 mm was used to simulate the thickness
of the commercialized SS pediatric crowns to ensure that there is no bias caused by the
difference in thickness regarding the results obtained from the different tests conducted on
the different samples.

To confirm that the results were not impacted by the finishing process, all specimens
underwent an identical process, similar to other studies [13,20]. Silicon carbide (SiC) papers
with grits ranging from 800 to 4000 were used to polish the samples under running water.
The final surface roughness of each material is presented in Table 1. The specimens were
subjected to a 5-min ultrasonic bath in isopropyl alcohol.
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Table 1. Mean surface roughness of stainless steel and PEEK samples.

Material Mean Surface Roughness (µm)

316 L Stainless Steel 0.677 ± 0.077
PEEK composite 0.229 ± 0.097

A study conducted by Sampaio et al. on the influence of PEEK thickness on contact
stress showed that the COF and the wear rate increased with decreasing PEEK thick-
ness, resulting from the increased contact stress with the material [21]. Considering the
importance of these factors on the long-term success of PEEK crowns, all samples, with
0.2 mm thickness, were cemented onto 2 mm thick zirconia samples in other to represent
the conditions of the use of dental crowns, where the zirconia represents human teeth. The
samples were cemented using the Bifix Hybrid Abutment, a universal luting composite,
from VOCO. The zirconia discs were previously sandblasted with 150 µm alumina sand,
at 2 bar, to create roughness on the surface, thus allowing improved cementation. During
cementation, a weight of 2 kg was placed on top of each sample to ensure that there was
the necessary load for the correct bonding of the material samples to the zirconia. Figure 1
represents the bonding of the SS and PEEK samples to the zirconia substrate.
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Figure 1. Representation of the stainless steel and PEEK samples glued to the zirconia discs and
image of samples and tooth crowns of the respective materials (the image is not to scale).

Prior to the sliding wear testing, the hardness of each material was assessed using a
nanoindenter (NanoTest—Micro Materials) equipped with a Berkovich diamond indenter
type. Nine indentations at the maximum load of 50 mN for stainless steel and 100 mN for
PEEK, with a dwell time of 10 s, were created in each specimen. The load-unloading cycles
were carried out at a loading rate of 0.1 mN/s.

2.3. Colour Measurement

The shade and whitening values of the 20 wt%-TiO2 PEEK Composite and the conven-
tional PEEK were measured for comparison purposes (Figure 1). The measurements were
performed using a digital device, the Vita Easyshade, widely used in the area of dentistry.
The final values were obtained using the Vita Classical shade guide and the Vita Bleached
guide from the device.

2.4. Wear Testing

Test conditions were selected according to a previous study conduicted by Amanda
et al. [20]. Reciprocating sliding tests were performed in a ball-on-plate configuration using
a Plint TE67/R tribometer. The tests involved loading samples of SS and PEEK against
10 mm diameter alumina balls, as shown in Figure 2. Similar to other studies [22–24],
alumina was selected as the counterpart material due to its increased and improved
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mechanical and chemical inertness qualities. The samples cemented to zirconia were
carefully mounted on a 3D-printed PLA holder attached to the specimen support.
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Figure 2. Schematic representation of the wear test.

All wear tests were conducted in lubricated conditions at 37 ± 3 ◦C [25] using
Fusayama–Meyer’s artificial saliva solution to reliably replicate human oral conditions, as
performed in previous works [26]. The composition of the artificial saliva is indicated in
Table 2. The pH was corrected to the range of normal human saliva pH values (6.2–7.6) [27].

Table 2. Fusayama–Meyer’s artificial saliva solution composition.

NaCl
(g) KCl (g) CaCl2·2H2O

(g)
NaH2PO4

(g)
Na2S·9H2O

(g)
Urea
(g)

Distilled
Water
(mL)

0.4 0.4 0.906 0.69 0.005 1 1000

To mimic clinical loads within the acceptable range, a normal load of 30 N was
chosen [28] along with a reciprocating sliding frequency of 1 Hz and a 4 mm stroke length.
Each test lasted 1 h and involved a total sliding distance of 28.8 m. To determine the
average value, each test condition was performed three times. To quantify the running-in
period and evaluate the friction coefficient in the steady-state friction regime, the COF was
continually measured during sliding.

A 3D optical profilometer (Filmetrics Inc., San Diego, CA, USA) was used to assess the
profile of the wear tracks. The wear width and wear depth, measured using the profilometer,
were used to calculate the wear volume of the samples. The wear track model used to
calculate the wear volume is represented in Figure 3.
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Figure 3. Wear track volume calculation model [29].

Empirical mathematical equations were used to perform the calculations, based on the
assumption that wear tracks result from a perfect ball geometry. The calculation for the mid-
zone area of the track was conducted according to the schematic representation illustrated in
Figure 4. The total wear track volume was determined using the following equation:

∆V = L×
[

1
2
× R2 × 2sin−1

( a
R

)
− b× h′

2

]
+

π × b4

64R
(1)

where the ∆V is the total volume loss of the wear track in mm3, R is the radius of the
alumina ball in mm, a is half of the width of the wear track (a = b/2) in mm, L is the stroke
length in mm, and h′ is the height of the triangle in mm (see Figure 4B). This method has
been reported in previous similar studies [29,30].
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the triangle, and (C) real area of the wear track [29].

The following equation was used to calculate the specific wear rate (k):

k =
∆V

W × L
(2)

where ∆V is the worn volume in mm3, L is the total sliding distance in m, and W is the
normal applied load in N.

After coating the worn samples with gold via sputter-coating, SEM/EDS characteriza-
tion was conducted to identify the primary friction and wear mechanisms.

3. Results and Discussion

Regarding the shade and whiteness measurements of both PEEK samples, the results
revealed that the 20 wt%—TiO2 PEEK composite presented a shade in the lighter tooth
shade zone of the Vita Classical shade guide and an adequate whitening level; the conven-
tional PEEK sample presented a significantly darker shade and a much higher value on the
whitening scale. This is in line with the fact that it is a darker material. The Vita Bleached
guide is composed of a scale from 1 to 29, where 1 represents the whitest shade and 29 the
darkest. This guide is used to plan and monitor the tooth whitening processes. The results
are presented in Table 3.
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Table 3. Shade guide and bleach guide of TiO2 PEEK composite and conventional PEEK according
to Vita.

Material

20 wt%—TiO2 PEEK Composite
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The evolution of the COF of the thin disc samples (stainless steel and PEEK) was
characterized by two distinct behaviors. In the case of the SS, the friction coefficient showed
a lower value (about 0.075) up to 3 m, when it then increased to a value of 0.35 between the
distance of 3 and 5 m. After this sliding distance, the stainless steel reached a steady-state
regime with the COF value stabilizing around 0.32. The lower value of the COF until 3 m
might be explained by the formation of an oxide film on the stainless steel. However, that
oxide film was then torn, which allowed the alumina ball to completely touch the substrate,
translating into higher values of COF (0.32 ± 0.03). This behavior of SS in wear tests has
already been verified in previous studies [24].

Conversely, in the case of the PEEK composite, a well-defined stationary phase was
achieved almost instantly at the beginning of the test; the COF value remained practically
unchanged during both the running-in phase and in the steady-state regime. The friction
coefficient of both materials was well stabilized at the end of the 1 h of sliding of the wear test.

Figure 6 illustrates the measured steady-state friction coefficient values for the recipro-
cating sliding of SS and PEEK against alumina while using synthetic saliva. As previously
presented, the COF value for SS was around 0.32 ± 0.03, while the mean values for PEEK
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are much lower, at around 0.094 ± 0.004. The COF of SS is ≈3.4 times higher than PEEK.
The values are in line with those in the literature [29].
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The hardness values obtained from both materials are recorded in Table 4, with stain-
less steel having the highest value. The load and lubrication conditions for the investigated
materials with varying hardness were the same across all experiments. A linear correlation
between steady-state COF and hardness values could not be established, as the material
with the highest hardness did not exhibit the highest COF. PEEK with the lowest hardness
presented COF values ≈3.4 times lower than SS. This behavior has already been observed
in other studies [21].

Table 4. Mean hardness of stainless steel and PEEK samples.

Material Mean Hardness (GPa)

316 L Stainless steel 2.56 ± 0.26
PEEK composite 1.26 ± 0.32

Figure 7 displays the 3D profiles of the wear track for both tested materials, as obtained
through profilometry analysis. It should be noted that the figure only shows a segment
of the wear track rather than the entire track, as, in the case of the stainless steel, the wear
products obtained during the test and the crystallization of the saliva prevented the clear
measurement of the track in its entirety. In the case of PEEK, even after gold plating, it was
also not possible to read the complete track.

It should also be noted that these images may not reflect reality accurately since the
depth of the wear track appears to be much greater due to the distinct numerical scaling
in the different axes automatically implemented in the software. However, it is possible to
observe, through the graphs of the track profiles of both materials (Figure 7B,D), that there is
a considerable difference in the depth of the wear track between steel and PEEK; the depth of
the stainless steel track is about 2.1 times greater than that of PEEK. While the mean depth of
the wear track of the SS sample is 5.9 ± 0.3 µm, the mean depth of the wear track of the PEEK
sample is considerably lower, at around 2.8 ± 1.1 µm. This difference is also reflected in the
wear volume value of each material and is in accordance with specific wear rate values, as
seen in Figure 8. The mean width of the wear track is similar for both materials; the SS track
width (610 ± 79.4 µm) was only slightly greater than PEEK (583.3 ± 57.7 µm). It is worth
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mentioning that due to the X-axis compression that emphasizes possible small unevenness
caused by the accumulation of wear products and saliva crystallization, the wear track may
appear uneven. However, this does not represent the truth.
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Wear volume and specific wear rate are presented in Figure 8. PEEK showed a signif-
icantly lower wear volume (0.0078 ± 0.0125 mm3) and specific wear rate (k = 9.07 × 10−6

mm3N−1m−1), being ≈1.6 times lower when compared to SS. PEEK presents substantially
higher wear resistance than SS. A similar study conducted by Jacobs et al. [31] revealed values
in the same order of magnitude for the specific wear rate of PEEK compounds containing
carbon fibers, glass fibers, PTFE, and graphite against alumina (k = 7 × 10−6 mm3N−1m−1).
No specific wear rate values were found in the literature for validation purposes for TiO2
PEEK composite under the same test conditions as in the present study. Additionally, Gao
et al. [32] reported a specific wear rate value of k = 21.32 × 10−5 mm3N−1m−1 for SS.

SEM micrographs depicting the morphological characteristics of the worn surfaces of
the tested samples of stainless steel and PEEK are presented in Figures 9 and 10, respectively.
Additional SEM images of a portion of the SS and PEEK samples without catching the wear
track were also obtained for comparison reasons (Figures 9A and 10A).
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Figure 10. SEM micrographs of the: (A)—PEEK sample surface without the wear track; and worn
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The worn surface of the SS denoted the formation of an outer layer of passive oxide
with multiple detachments in a “puzzlelike” morphology, as well as adhered tribo-layers
(Figure 9C area Z2). The development of these tribo-layers was ascribed to the following
mechanism: in the presence of artificial saliva, the wear debris separated from the surfaces
were compressed at the sliding interface, producing layers of clustered material that ad-
hered to the plate and formed a substantial tribo-layer. The formation of the passive oxide
layer has already been documented in previous studies [33]. Due to crack growth caused
by the layers becoming thick and unstable, and during the sliding motion, these layers
start to delaminate, revealing a damaged material surface that indicates the loss of material
from the substrate underneath (Figure 9C area Z1). Similar to what occurred in comparable
studies [34], the tribo-layer formed during the SS wear test did not add a protective layer
to the material; this is in line with the high values of coefficient of friction and specific-wear
rate obtained when compared to PEEK.

Regarding the chemical composition of the layers formed on the stainless steel speci-
men, EDS analysis confirmed the existence of components of artificial saliva (Na, Ca, P, and
K) in significantly higher quantities in area Z2, where the tribo-layer is present, compared
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to area Z1 where this tribo-layer was removed, making the underneath material visible;
this justifies the low values of saliva components and the high values of stainless steel
components (Fe, Cr, C, Mo, Mn, Ni, and Si) in that zone. High contents of Fe and Cr, as
well as lower Ni, Mn, and Mo content, also represent the typical chemical composition of
the oxide layer of SS [33].

EDS analysis of the substrate outside the wear track confirmed the chemical compo-
sition of the stainless steel material without the presence of artificial saliva components;
this revealed that the layers were only formed inside the wear track. Therefore, their
development was assisted tribologically through the accumulation and adherence of saliva
components with wear debris from the specimen. SEM micrographs of the PEEK surface
revealed parallel grooves along the sliding direction resulting from abrasive wear against
the hard ceramic counterface, interspersed with polished-looking smooth areas (as shown
in Figure 10B); this represented an important role in the decrease of the mechanical compo-
nent friction. These results are in accordance with the low steady-state friction coefficient
values measured during the wear test when compared to the SS sample (Figure 6). EDS
analysis from the surface of the subtract without the wear track revealed a clean surface,
with only C and Ti present in its chemical composition (Figure 10A). In Figure 10C, the
area Z1 of the wear track showed the same chemical composition as the clean substrate;
however, areas Z2 and Z3 revealed a low percentage of Si and Al components. The presence
of these components is not due to particles from wear on the alumina ball, but rather to
particles from the used glue that could be contaminating the surface of the sample [35].
The entire sample was clean of artificial saliva components, which denotes that the wear
mechanism was pure abrasion without the formation of tribological layers.

SEM micrographs of the worn surface of the alumina ball after sliding against the
stainless steel (A) and PEEK composite (B) are presented in Figure 11. In the cases of the SS
test, the alumina ball indicated the presence of adhered tribo-layers, which were confirmed
by EDS analysis to be rich in saliva constituents (Na, Ca, P, and K). Components of the SS
(Fe, Cr, Mn, Ni, and Mo) were also seen in the EDS analysis, which indicated that the wear
materials of the SS sample were transferred onto the alumina ball. The alumina wear mark
and the stainless steel counterface (Figure 11A) both have a rougher look which supports
the obtained values of the steady-state friction coefficient shown by this tribo-pair being
the highest (Figure 6).
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Conversely, in the case of PEEK, the alumina ball exhibited a smooth surface with
only slight abrasion, indicating a mild abrasion mechanism and little to no transfer of
material from the composite counterface and artificial saliva, as shown in Figure 11B. This
result is confirmed by the low specific wear rate obtained. EDS analysis also supported
this observation, with components of the saliva (P and Ca) practically non-existent and
disregarded. As there are no tribo-layers formed, the presence of these low-content salivary
components can be justified by the crystallization of the artificial saliva after the test.
Therefore, the PEEK composite presented a lower steady-state friction coefficient compared
to the SS, and the specific wear rate was considerably reduced.

In summary, the current study used an in vitro simulation test setup, widely used and
reported in the literature, to assess the wear behavior of a common restorative material,
316 L stainless steel, and PEEK composite, against alumina while mimicking oral conditions.

The results of this study demonstrated that the PEEK material can be considered to
be promising in the future of the dental field as a complementary or alternative choice
to the traditional and established metal, stainless steel, due to its whitish color, high
elasticity/adaptability, and high mechanical and chemical-resistant properties. Besides
having higher wear resistance, PEEK offers a non-cytotoxic, electrically non-conductive,
thermally insulating, and lightweight alternative to SS [15–17,36].

Nevertheless, this study presents some limitations.
To mimic opposing teeth in a typical clinical scenario, it would be more appropriate to

utilize natural enamel or dentin as the counterpart, instead of alumina. Furthermore, other
factors, such as varying saliva compositions, pH levels [37], and temperature, along with
varied cyclic loads and patient diets, can contribute to wear result variations [38]. Although
these aspects do not appear to affect the findings of this study, it would be beneficial to
perform additional tests accounting for these factors to complement this work.

4. Conclusions

In this study, the tribological behavior of thin sheets of the 316 L stainless steel and
PEEK composite reinforced with nanoparticles of titanium were characterized and com-
pared under the same test conditions.

Based on the results, the following conclusions can be deduced:

• The PEEK composite as a thin layer over a zirconia structure had lower COF and wear
volume, and, consequently, better wear resistance when compared to stainless steel.

• The dominant wear mechanisms that occurred during the tribological test were abra-
sion in the case of PEEK and adhesion with the formation of oxide and tribo-layers in
the stainless steel.

• According to EDS analysis, the presence of adherent tribo-layers resulted from a
combination of saliva components and wear debris from the plate, with their formation
being tribologically aided.

• In the specific case of stainless steel, the oxide and tribo-layers formed did not provide
a protective layer against wear. This is in line with previous studies.
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