
DePaul University DePaul University

Digital Commons@DePaul Digital Commons@DePaul

College of Computing and Digital Media
Dissertations Jarvis College of Computing and Digital Media

Summer 7-20-2023

Interposition based container optimization for data intensive Interposition based container optimization for data intensive

applications applications

Rohan Tikmany
DePaul University, rtikmany@depaul.edu

Follow this and additional works at: https://via.library.depaul.edu/cdm_etd

 Part of the Databases and Information Systems Commons, and the Numerical Analysis and Scientific

Computing Commons

Recommended Citation Recommended Citation
Tikmany, Rohan, "Interposition based container optimization for data intensive applications" (2023).
College of Computing and Digital Media Dissertations. 53.
https://via.library.depaul.edu/cdm_etd/53

This Thesis is brought to you for free and open access by the Jarvis College of Computing and Digital Media at
Digital Commons@DePaul. It has been accepted for inclusion in College of Computing and Digital Media
Dissertations by an authorized administrator of Digital Commons@DePaul. For more information, please contact
digitalservices@depaul.edu.

https://via.library.depaul.edu/
https://via.library.depaul.edu/cdm_etd
https://via.library.depaul.edu/cdm_etd
https://via.library.depaul.edu/cdm
https://via.library.depaul.edu/cdm_etd?utm_source=via.library.depaul.edu%2Fcdm_etd%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=via.library.depaul.edu%2Fcdm_etd%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=via.library.depaul.edu%2Fcdm_etd%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=via.library.depaul.edu%2Fcdm_etd%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
https://via.library.depaul.edu/cdm_etd/53?utm_source=via.library.depaul.edu%2Fcdm_etd%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalservices@depaul.edu

INTERPOSITION BASED CONTAINER OPTIMIZATION FOR DATA INTENSIVE

APPLICATIONS

BY

ROHAN TIKMANY

A THESIS SUBMITTED TO THE SCHOOL OF COMPUTING, COLLEGE OF COMPUTING

AND DIGITAL MEDIA OF DEPAUL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN COMPUTER SCIENCE

DEPAUL UNIVERSITY

CHICAGO, ILLINOIS

2023

DePaul University
College of Computing and Digital Media

MS Thesis Verification

This thesis has been read and approved by the thesis committee below according to the requirements of
the School of Computing graduate program and DePaul University.

Name: Rohan Tikmany

Title of dissertation: Interposition Based Container Optimization for Data Intensive Applications

Date of Dissertation Defense: 20th of July 2023

Prof. Tanu Malik

Advisor*

Dr. Ashish Gehani

1st Reader

Prof. Alexander Rasin

2nd Reader

* A copy of this form has been signed, but may only be viewed after submission and approval of FERPA
request letter.

Acknowledgements	

I would like to extend my sincerest appreciation to those who have made this thesis possible through their
direct and indirect support.

Firstly, profound gratitude is due to my advisor, Prof. Tanu Malik. Your unwavering guidance, insightful
critiques, and relentless pursuit of excellence have fundamentally shaped this work. Your expertise and
commitment to scholarly rigor have been invaluable to my research experience and personal growth.

I would also like to thank the members of my Thesis Committee, Dr. Ashish Gehani and Prof.
Alexander Rasin. Your constructive feedback and knowledgeable perspectives have enriched the quality
of this research. Your time and expertise were critical in bringing this work to fruition.

Special thanks are extended to my colleagues—Yuta Nakamura, Aniket Modi, and Dr. Moaz Reyad. Your
collaboration and companionship throughout this process have been enlightening and motivating. Your
contributions, both academically and personally, have significantly impacted the successful completion of
this research.

I cannot conclude without expressing my heartfelt gratitude to my family and friends. Your unconditional
love, unwavering support, and endless encouragement have been the backbone of my academic journey.
It is your belief in me that has made this milestone achievable.

Thank you to all who have contributed to this endeavor. Your roles, whether large or small, have left an
indelible mark on this work and on me.

List of Tables

4.1 Sample Execution . 24

i

List of Figures

4.1 Full System Architecture . 19

4.2 Audit Phase Architecture . 25

4.3 Linked List vs BST comparison 30

4.4 Audit Phase Data Structures Snapshot 33

4.5 Dataset Creation Architecture 35

4.6 Subset Metadata in Phase 2 37

4.7 Re-Execution Architecture . 37

4.8 ReExecution Phase Data Structures Snapshot 41

6.1 Pattern 1 Visualization . 45

6.2 Pattern 1 input parameters 45

6.3 Pattern 2 visualization . 46

6.4 Pattern 2 input parameters 46

6.5 Pattern 3 visualization . 46

6.6 Pattern 3 input parameters 46

6.7 Pattern 4 visualization . 47

6.8 Pattern 4 input parameters 47

6.9 Pattern 5 visualization . 47

6.10 Pattern 5 input parameters 47

6.11 Audit Overhead for Synthetic Benchmarks 50

6.12 Data Store Creation for Synthetic Benchmarks 51

6.13 Replay Overhead for Synthetic Benchmarks 52

6.14 Dataset size reduction for Synthetic Benchmarks 54

ii

6.15 Krigging Time Overhead . 55

6.16 Krigging Time Overhead raw data 55

6.17 Visual Comparison Time Overhead 56

6.18 Visual Comparison Time Overhead raw data 56

6.19 Global precipitation Time Overhead 57

6.20 Global precipitation Time Overhead raw data 57

6.21 Krigging Size Reduction . 58

6.22 Krigging Size Reduction raw data 58

6.23 Visual Comparison Size Reduction 59

6.24 Visual Comparison Size Reduction raw data 59

6.25 Global precipitation Size Reduction 60

6.26 Global precipitation Size Reduction raw data 60

iii

Abstract:

Reproducibility of applications is paramount in several scenarios such as

collaborative work and software testing. Containers provide an easy way of

addressing reproducibility by packaging the application’s software and data

dependencies into one executable unit, which can be executed multiple times

in different environments. With the increased use of containers in industry as

well as academia, current research has examined the provisioning and storage

cost of containers and has shown that container deployments often include

unnecessary software packages. Current methods to optimize the container

size prune unnecessary data at the granularity of files and thus make binary

decisions. We show that such methods do not translate efficiently to scientific

data files, where only a subset of data may be accessed across several files. In

this thesis, we propose a method of looking at this problem at the granularity

of bytes. Instead of keeping track of which files are accessed, we keep track

of the portions of files accessed in the form of file offsets. This I/O lineage

allows us to package only relevant parts of data files, significantly reducing

the storage and sharing cost of containers. Results show the generality of

our method across different data formats and reduction approximately equal

to the amount of data fetched into memory.

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Background . 3

2 Problem Statement and Proposed Methodology 8

2.1 Problem Statement . 8

2.2 Methodology . 10

2.2.1 Proposed Solution . 10

3 Related Work 12

3.1 Containerization . 12

3.2 Debloating . 13

3.2.1 SlimToolkit . 14

3.2.2 IOSPReD . 14

3.2.3 Comparison of SlimToolkit and IOSPReD 15

4 Architecture 16

4.1 Overview . 16

4.1.1 Key Concepts . 16

4.1.2 Phase 1: Audit Phase 18

4.1.3 Phase 2: Datastore Creation Phase 18

4.1.4 Phase 3: Re-Execution Phase 18

4.2 Alternate Structure . 19

v

4.3 Proposed Workflow . 21

4.4 Step 0 . 23

4.5 Step 1: Audit Phase . 25

4.5.1 Online and Offline Approaches 26

4.5.2 Dealing with Destructive Changes 28

4.5.3 Logging Data Structure 29

4.5.4 Data Structures Maintained 31

4.5.5 Optimizations . 33

4.6 Step 2: Dataset Creation . 35

4.7 Step 3: Re-execution . 37

4.7.1 Dealing with Destructive changes to the subset 38

4.7.2 Data Structures Maintained 38

5 Guaranteeing Consistent Re-Execution 42

6 Experiments 44

6.1 Experimental Setup . 44

6.2 Experiment Details . 44

6.3 Results . 49

6.3.1 Synthetic Benchmarks 49

6.3.2 Real life Experiments 55

7 Future Work 61

7.1 Integration with SciUnit . 61

7.2 Interception of More I/O Sys Calls 61

7.3 Integration of Containerization for Multiple Traces 62

7.4 Creation of Generic Containers 62

8 Conclusion 64

vi

Chapter 1

Introduction

1.1 Motivation

In the intricate landscape of data-intensive scientific research, collaboration

and sharing of information have become fundamental yet challenging. Con-

sider the case of a scientist named Alice, who works at NASA on the Global

Precipitation Measurement (GPM) project [2]. Alice’s work involves vast

amounts of data, and she wants to share her findings with peers across the

globe. Like many of her colleagues, she faces a common problem: how to

share complex research work efficiently.

Containerization has emerged as a significant technological advancement

to tackle this issue. A container can be likened to a virtual box, where

everything needed to run a piece of software, including the code, system tools,

libraries, and runtime, is packaged together. This ensures that the software

will run the same way, regardless of where the container is deployed. Tools

like Docker have made this concept a reality, enabling scientists like Alice to

share their work effortlessly with minimal change in workflow.

However, Alice soon discovers a glaring problem with this approach. The

size of these containers, especially when dealing with extensive datasets as

in the GPM project, can be enormous. These unwieldy containers create a

1

significant barrier to sharing and collaboration, turning what was initially a

seamless solution into a complicated challenge.

The motivation to address this problem is clear: facilitating effective col-

laboration and dissemination of research work is key to scientific innovation

and progress. That’s where the concept of data debloating comes into the

picture. Data debloating is the process of reducing the size of datasets by

identifying and eliminating non-essential information. Unlike software de-

bloating, which focuses on trimming unnecessary code from software, data

debloating specifically targets the data itself, maintaining only the vital com-

ponents required for computation.

2

1.2 Problem Background

The example below is a pseudocode outline of the visual comparison program

referenced in chapter X.

/*

Function that takes an argument of a list of columns

Extracts those columns from the IMERG dataset and the GEOS5 dataset

and compares them using the CompareData function

*/

func visualComparison(listOfColumns)

// Open the 2 files

imergFile = Open("IMERG.HDF5")

geos5File = Open("GEOS5.HDF5")

// Read only the columns that have been passed in

imergCols = ReadColumns(imergFile, listOfColumns)

geos5Cols = ReadColumns(geos5File, listOfColumns)

// Compare the columns from the 2 files

CompareData(imergCols, geos5Cols)

This program addresses the challenge of handling large datasets when work-

ing with data-intensive applications. Specifically, it addresses the issue of

sharing and disseminating research work which is often impeded by the size

of the data involved. As an example, scientists working with satellite data

from the NASA Global Precipitation Measurement (GPM) mission might

want to share their work with their peers, but the datasets involved can be

extremely large and unwieldy.

In the pseudocode we propose, the program takes as input a list of

columns specified by the user, and only reads those columns from two HDF5

3

files - ”IMERG.HDF5” and ”GEOS5.HDF5”. HDF5 is a high-performance

data storage format optimized for storing large arrays of numerical data. In

this case, each column represents a different measurement or parameter, and

the user is interested only in a subset of them.

By focusing only on the columns of interest, the program avoids reading

in large amounts of extraneous data. This selective reading significantly re-

duces the amount of data that needs to be loaded into memory, which can be

beneficial for performance and can lower the system’s memory requirements.

Once the specified columns have been read from both files, the program

compares the corresponding rows visually by plotting graphs. This visual-

ization allows users to quickly and easily compare the data in the selected

columns from the two datasets.

The implications of this approach for data sharing and dissemination are

significant. If scientists were to share the full datasets, they would be wasting

substantial storage space, especially if the number of columns of interest is

small. Moreover, the size of the data that needs to be shared would increase,

making it more cumbersome to distribute. This is a problem that the concept

of data debloating seeks to solve.

Data debloating refers to the process of reducing the size of a dataset by

removing redundant or irrelevant data, while still maintaining the integrity

of the data necessary for a particular analysis. In this context, debloating

can be achieved by sharing only the columns that are relevant to the analysis.

This would make it much more efficient to share these programs with other

researchers.

There is a clear need for solutions that enable more efficient sharing of

relevant data in data-intensive applications. As demonstrated by the pseu-

docode, selective reading of only the necessary data from large datasets is

an effective approach to data debloating. This approach not only facilitates

easier data sharing but also improves performance by reducing the amount

of data that needs to be processed.

4

The example below shows the visualComparison program with writing

to the datasets included

/*

Function that takes an argument of a list of columns

Extracts those columns from the IMERG dataset and the GEOS5 dataset

and compares them using the CompareData function

*/

func visualComparison(listOfColumns, columnA, columnB)

// Open the 2 files

imergFile = Open("IMERG.HDF5")

geos5File = Open("GEOS5.HDF5")

// Write a new column based on existing columns

WriteNewColumn(imergFile, columnA, columnB)

WriteNewColumn(geos5File, columnA, columnB)

// Add newColumns to list of columns

listOfColumns.Add(newColumn)

// Read only the columns that have been passed in

imergCols = ReadColumns(imergFile, listOfColumns)

geos5Cols = ReadColumns(geos5File, listOfColumns)

// Compare the columns from the 2 files

CompareData(imergCols, geos5Cols)

Our enhanced program reads columns A and B from the datasets ”IMERG.HDF5”

and ”GEOS5.HDF5”, processes the data, and writes the results back into the

dataset as a new column, C. Subsequently, the program reads columns B and

5

C for further processing. This means that the program is not only extracting

information from the datasets but is also updating them with new data.

In this scenario, it may initially appear that columns A, B, and C are

all necessary for correct execution. However, upon closer examination, we

realize that column C can be recalculated from columns A and B. Therefore,

sharing column C becomes redundant. In essence, only columns A and B are

required to recreate the program, as column C can be derived from them.

The task of data debloating becomes much more complicated when the

program modifies existing data, as opposed to merely appending new data.

For example, if column B were to be overwritten instead of creating a new

column C, the original data in column B would be lost unless a backup of

the original data is created before the write operation.

Addressing this challenge requires a system capable of actively tracking

instances where data that has previously been read is subsequently modified

or overwritten. This system must create real-time backups of the destruc-

tively changed data during execution, ensuring that the necessary data is

available for recovery post-execution. By doing so, we can rebuild the data

in its original form, ensuring identical re-execution.

This process is complex, as it requires intricate tracing of data dependen-

cies and real-time monitoring of data modifications during execution. The

data that is written often depends on the data that was previously read,

making the identification of the minimal necessary data for sharing intricate.

The example with columns A, B, and C illustrates this challenge, as the in-

clusion of the written data in the shared dataset is unnecessary if it can be

recreated from the original data.

In conclusion, effective data debloating is crucial in data-intensive ap-

plications, as it facilitates data sharing and optimizes resource utilization.

However, the presence of both reading and writing operations, especially

when modifying existing data, adds complexity to the identification of the

minimum necessary data for sharing. We need a system that tracks destruc-

6

tively changed data and creates real-time backups during execution, ensuring

post-execution recovery of the original data for guaranteed re-execution. The

intricacies of data debloating in data-intensive scientific applications under-

score the importance of developing sophisticated methods for this purpose.

7

Chapter 2

Problem Statement and

Proposed Methodology

2.1 Problem Statement

The primary goal of this thesis is to identify a minimal subset of a given

dataset that still retains the capacity to reproduce the results of a specific

program execution. Formally, let us consider a program P , a dataset D,

parameters T , and results R. Our aim is to find a subset D′ of D such that

executing P on D′ with parameters T yields the same results R as running

P on D with parameters T . This problem can be mathematically formulated

as finding D′ ⊆ D such that:

P (T,D′) = P (T,D) = R

Addressing this problem involves several key elements:

1. Execution Analysis: The first step involves analyzing the original

dataset D, which could comprise multiple components, including files,

datasets, or databases. It is essential to develop techniques that can

accurately identify the critical components within the dataset used dur-

8

ing the program’s execution. Such an analysis requires understanding

the program’s data provenance to assess the relevance of all sections

of the dataset D. An integral part of this analysis is recognizing and

tracking derived data produced during the program’s execution, as well

as creating backups of original data that are modified or overwritten.

This ensures that the original data can be restored post-execution for

accurate reproduction of the program’s results.

2. Data Carving: Based on the results of the dataset analysis, the next

step is to debloat the original dataset D by removing redundant or

unnecessary components. This leads to a debloated dataset D′ that

reduces the overall size of the container image. It is crucial to ensure

that the debloated dataset still contains all the necessary components

for accurate program execution (P).

3. Re-execution: After debloating, the application must be re-executed

in a manner that is transparent to the user and requires minimal user

intervention. This re-execution should produce results consistent with

the original execution. If any divergence is detected, it is vital to inform

the user of the discrepancy.

4. Container Verification: Lastly, it is important to assess the effec-

tiveness of the data debloating techniques in terms of container com-

pleteness and system performance. The reduced container image size

should result in improved resource utilization, including reduced disk

space consumption, while still producing consistent results. Further-

more, any potential trade-offs in terms of execution time or memory

usage must be measured and considered.

9

2.2 Methodology

2.2.1 Proposed Solution

Our proposed solution to this problem is to capture the I/O lineage of a pro-

gram, which refers to the detailed execution trace of a program in terms of

input/output system calls. We capture this lineage at byte granularity, pro-

viding a fine-grained analysis of the data elements used during the program’s

execution.

To facilitate this, we employ function interposition through the LD PRELOAD

keyword to dynamically insert our library into the user’s application. This

method necessitates minimal changes to the user’s workflow, making it a

user-friendly approach.

During the Execution Analysis phase, our solution leverages the captured

I/O lineage to identify the data components actively used by the program.

We analyze the data provenance to comprehend the relationships between

different parts of the dataset and the program’s interactions with them. A

critical part of this analysis is identifying and tracking derived data created

during execution and creating backups for any data that is modified or over-

written. This ensures the original data can be restored post-execution.

In the Data Carving phase, we debloat the original dataset D based on

insights from the execution analysis. We remove redundant or unnecessary

components, retaining only the necessary data. The resulting dataset D′

is a minimized version of the original dataset but still allows for accurate

program execution.

During the Re-execution phase, the application is rerun using the de-

bloated dataset. This re-execution should be transparent to the user and

produce consistent results. If any divergence occurs, the user is notified

about the discrepancy.

Finally, in the Container Verification phase, we assess the effectiveness

10

of our debloating techniques. We measure the reduction in container image

size and evaluate the impact on resource utilization. We ensure that the

debloated dataset produces consistent results and consider any trade-offs in

execution time or memory usage.

Our solution combines the benefits of byte-granularity I/O lineage cap-

ture, a lightweight user-friendly approach, and effective debloating of datasets.

By providing precise data debloating while maintaining a seamless and ef-

ficient workflow, we aim to enhance resource utilization and efficiency in

containerized environments.

11

Chapter 3

Related Work

3.1 Containerization

Containerization is a technology that packages, distributes, and deploys ap-

plications within containers. This thesis focuses on data debloating within

containers, examining how three major containerization platforms – Docker

[7], Podman [10], and SciUnit [3] – operate and the unique features they

offer.

1. Docker is a widely adopted containerization platform known for its ease

of use. It enables developers to create, deploy, and manage containers

quickly and easily. By packaging applications and their dependencies

into container images, Docker ensures consistent execution across dif-

ferent environments. Docker’s extensive library of pre-built images and

its powerful command-line interface make it a popular choice among

developers and system administrators.

2. Podman, an open-source containerization tool, offers a unique feature of

rootless containers. These containers can be run without requiring root

privileges, improving security and ease of use in multi-user and shared

environments. Podman is also compatible with Docker’s command-line

12

interface, providing a familiar experience for Docker users.

3. SciUnit is designed for scientific applications and reproducible research.

It enables researchers to package and share their experiments in self-

contained containers, capturing the entire environment, including code,

data, and dependencies. This promotes consistent execution across

systems and fosters collaborative research and result verification.

These containerization platforms cater to different needs. While Docker

and Podman are suited for general-purpose application deployment, SciUnit

addresses the unique requirements of scientific research and analysis. As we

explore data debloating for containers, these platforms serve as the foun-

dation for our research into optimizing container performance and resource

efficiency.

3.2 Debloating

Containerization enables efficient sharing of applications. However, as appli-

cations and datasets become more data-intensive, efficiently sharing contain-

ers becomes a challenge. To address this, data debloating focuses on creating

smaller datasets by pruning unused data. Additionally, software debloating

reduces container sizes by optimizing application code and libraries. This

thesis explores data debloating for containers, aiming to identify a subset of

the original dataset sufficient for efficient program execution.

Efficiently sharing containers with large datasets is crucial for collabora-

tive research and resource optimization. Data debloating reduces the burden

of distribution and storage without sacrificing functionality or accuracy by

creating compact subsets of datasets. This thesis examines data debloating

for containers, proposing innovative approaches to creating efficient dataset

subsets and contributing to streamlined containerization.

13

Software debloating [5] [11] [13] and data debloating are vital in mod-

ern containerization. While software debloating optimizes container sizes by

refining application code and libraries, data debloating focuses on efficiently

managing and sharing datasets within containers. This thesis explores data

debloating for containers, aiming to create compact subsets of datasets to

advance efficient container sharing and distribution in data-intensive appli-

cations.

Two notable examples of data debloating research are the SlimToolkit

[12] for Docker and the IOSPReD framework [8].

3.2.1 SlimToolkit

SlimToolkit, designed for Docker container optimization, offers both soft-

ware debloating and data debloating capabilities. It improves containerized

application efficiency and resource utilization by removing unnecessary com-

ponents, reducing the container’s overall size and memory footprint.

SlimToolkit operates at a file level, analyzing individual files within the

container to determine if they have been accessed during runtime. It then de-

cides whether to include or exclude the file from the container. This file-level

granularity aims to eliminate unnecessary files and components, streamlining

the container image and improving resource efficiency.

However, SlimToolkit does not consider scenarios where large files are

partially accessed or where only metadata has been read. This limitation

may lead to overprovisioning, with containers including files that are only

partially accessed or contain relevant metadata.

3.2.2 IOSPReD

IOSPReD is a data debloating framework that focuses solely on data debloat-

ing. It uses the LLVM [6] toolchain to produce, analyze, and transform the

bitcode of targeted applications, allowing fine-grained analysis and transfor-

14

mation of data elements.

While IOSPReD offers granular byte-level debloating, it introduces a

more involved workflow due to its reliance on the LLVM toolchain, which

may require a higher level of expertise. Additionally, IOSPReD is designed

for read-only applications, restricting its applicability to a specific subset of

use cases.

3.2.3 Comparison of SlimToolkit and IOSPReD

In the context of the first program, where data is partially read from two files,

data debloating at a fine granularity offers significant advantages over coarser

approaches like SlimToolkit. By focusing on more granular data sharing, we

can optimize the amount of data included in the container, reducing its size

and the resources required for sharing it.

In the second program, where data is read, combined, written back into

the dataset, and read again, it is crucial to track derived data. IOSPReD

falls short in this regard. Our proposed system addresses these challenges by

tracking derived data and ensuring relevant data is included in the shared

container. It processes data in real-time, identifying destructively changed

data and creating backups, enabling recovery of original data for post-execution

analysis or replication. Moreover, our system does not rely on the LLVM

toolchain, making it more accessible for scientists. By addressing these chal-

lenges, our system enables efficient data debloating in scenarios involving

reading, writing, and modifying data, facilitating sharing and replication of

data-intensive scientific applications.

15

Chapter 4

Architecture

4.1 Overview

Our proposed tool tackles the challenge of data debloating in container-

ized environments by breaking the problem into three distinct yet intercon-

nected phases: the Audit Phase, the Datastore Creation Phase, and the

Re-Execution Phase. Each phase serves a vital function in the data debloat-

ing process, contributing to an overall system that is both systematic and

efficient. In this section, we provide an overview of each phase and highlight

the key concepts that underpin the entire architecture.

4.1.1 Key Concepts

Before diving into the individual phases, let us first establish some funda-

mental concepts that will recur throughout the explanation of our system.

Definition 4.1.1. Event. An event is a six-tuple < id, t, c, l, sz, h > con-

sisting of the following elements:

• id identifies the subject that generated the event and the object or

subject it affects,

16

• t represents the logical timestamp of affecting o,

• c signifies the type of system call,

• l marks the start offset location in object o which the event affects,

• sz denotes the size of the affected object o starting from l, and

• h represents the SHA-256 hash of the buffer contents during read and

write events.

Definition 4.1.2. Audit Trace. An audit trace, denoted as A, is an ordered

set of events that fully captures all events during an execution of a given

program P . Formally, AP = {e0, e1, e2, ..., en}.

Definition 4.1.3. Merge. Two events, e1 and e2, with the same id, type,

and dependency, are considered merged if:

• e2(t) < e1(t), and

• e2(l1) ≤ e1(l1) < e2(l1) + e2(sz).

Definition 4.1.4. Program State. The program state, within the context

of execution and I/O, refers to the instantaneous condition and data of a pro-

gram at a given moment during its execution. This encompasses its memory,

variables, I/O streams, file descriptors, and control flow.

Definition 4.1.5. Complete Audit Trace. An Audit Trace, represented

by A, is deemed complete for a program P if it captures all Read/Write I/O

calls for the specified program.

17

4.1.2 Phase 1: Audit Phase

The initial phase, known as the Audit Phase, involves monitoring the exe-

cution of the application and capturing the I/O lineage at a byte-level gran-

ularity, forming the Audit Trace. By employing function interposition (via

LD PRELOAD), our tool dynamically inserts a library into the application.

This allows us to meticulously track and record the details of input/output

system calls, giving us a comprehensive audit trail that details the applica-

tion’s data interactions.

4.1.3 Phase 2: Datastore Creation Phase

Following the Audit Phase, the tool uses the recorded I/O lineage data to

create a dedicated datastore. In this phase, the tool analyzes the I/O lineage,

identifies the relevant data, and constructs a new dataset (D’) that contains

only the necessary data elements while excluding those that are redundant

or unused. The datastore is a compact representation of the data elements

required for the accurate execution of the application. Alongside the new

datastore, this phase also generates a mapping structure to map the original

dataset (D) to the newly created datastore (D’).

4.1.4 Phase 3: Re-Execution Phase

The final phase, referred to as the Re-Execution Phase, leverages the created

datastore (D’) to re-execute the application. In this phase, the container-

ized application is launched using the newly constructed datastore, which

contains the essential data components. Using function interposition (via

LD PRELOAD), the tool dynamically inserts a library into the application

to intercept all I/O calls and redirect them to the optimized datastore (D’).

This ensures the accurate and efficient execution of the application, resulting

in improved resource utilization and performance.

18

By breaking down the process into these three well-defined phases, our

tool adopts a systematic approach to data debloating. The Audit Phase cap-

tures fine-grained data usage, the Datastore Creation Phase constructs an

optimized datastore, and the Re-Execution Phase guarantees the accurate

execution of the containerized application. This structured workflow leads

to precise data debloating, reduced resource consumption, and enhanced ef-

ficiency in containerized environments.

Data Carving Phase

Subset
D’

Subset B
Tree

Trace

Carver

Audit Phase

Logging Library

Program P

User Parameters T

Results
R

Backups

Trace

Dataset
D

Re-Execution Phase

Re-Execution Library

Program P

User Parameters T

Results
R

Write
Cache

Figure 4.1: Full System Architecture

4.2 Alternate Structure

In the alternative approach being considered, the system undergoes a simplifi-

cation by consolidating the first two phases—Audit and Datastore Creation—

into a single phase. Although this streamlined process may have some ad-

vantages, it is essential to weigh the pros and cons before deciding which

approach is more appropriate.

Advantages of combining the Audit Phase and Datastore Cre-

ation Phase into a single phase:

1. Efficiency : Combining the Audit and Datastore Creation Phases elim-

inates the need for separate iterations for capturing I/O lineage and

creating the subsetted dataset, resulting in a more efficient and less

time-consuming process.

2. Simplicity : The consolidated approach reduces the number of steps in-

volved in the workflow, making it less complex and easier to understand

19

and implement.

Disadvantages of combining the Audit Phase and Datastore

Creation Phase:

1. Storage Requirements : With this combined approach, users must store

each I/O lineage alongside the preserved datasets, regardless of whether

they plan to create the subsetted dataset immediately. This require-

ment can result in increased storage needs.

2. Increased Execution Overhead : The process of combining the phases

might introduce computational overhead for applications with exten-

sive I/O lineages, as it entails processing and analyzing the entire I/O

lineage, including unused data, which can extend the overall execution

time.

While merging the Audit Phase and Datastore Creation Phase into a

single phase could offer benefits in terms of efficiency and simplicity, it also

brings up considerations related to storage requirements and potential exe-

cution overhead. Therefore, the choice between the two-phase or three-phase

approach should take into account the specific needs of the application and

weigh the trade-offs associated with storage usage and computational over-

head.

Our decision to utilize a three-phase approach for our data debloating

system was based on a careful assessment of multiple factors and require-

ments. Here are the reasons behind our choice:

1. Flexibility and Selective Data Subset Creation: The three-phase ap-

proach enables users to capture the I/O lineage in the Audit Phase

without immediate pressure to create the subsetted dataset. This flex-

ibility allows for the capture of detailed data usage information with-

out imposing the obligation of creating an optimized dataset. Users

can generate the subsetted dataset when sharing their work becomes

necessary or when optimizing resources becomes a priority.

20

2. Efficient Storage Management : The three-phase approach separates

the creation of the I/O lineage from the subsetted dataset in the Data-

store Creation Phase, providing a lazy creation scheme. Users can

maintain multiple I/O lineages without needing to store each subsetted

dataset separately. This approach efficiently manages storage resources

by eliminating the need for potentially redundant or unused datasets,

leading to optimized storage utilization.

3. Workflow Modularity and Reusability : The three-phase approach of-

fers modular components that can be reused independently. The Au-

dit Phase captures the I/O lineage, providing insights into data usage

patterns that can be stored and used for various purposes beyond data

debloating, such as performance analysis or debugging. The Datastore

Creation Phase leverages the captured I/O lineage to construct opti-

mized datasets. This modularity allows for flexibility in utilizing the

captured lineage and encourages reusability in different contexts.

In conclusion, we selected the three-phase approach for its flexibility,

efficient storage management, modular workflow, and preservation of exe-

cution state. It offers users the ability to capture the I/O lineage without

immediately creating the subsetted dataset, optimizes storage usage, fosters

modularity and reusability, and ensures the data debloating process’s accu-

racy.

4.3 Proposed Workflow

The proposed three-phase approach for data debloating is a comprehensive

process that builds upon the advantages and considerations previously dis-

cussed. The approach comprises the following steps:

1. Step 0: Whitelisting Data Files Before initiating the debloating

process, the paths of the data files utilized by the application need to

21

be whitelisted. This crucial preparatory step ensures the inclusion of

the data files in the subsequent debloating phases.

2. Step 1: Capturing I/O Lineage (Audit Phase) In this phase, the

audit library shared object is loaded into the application’s execution

environment using the LD PRELOAD directive. For instance:

LD_PRELOAD=../Audit/auditLib.so␣python3␣global_prec.py

By setting the LD PRELOAD environment variable to the audit library,

the library is loaded before the program’s execution. This step captures

the program’s I/O lineage and records data usage patterns during ex-

ecution, fulfilling the objectives of the Audit Phase.

3. Step 2: Creating Optimized Dataset (Datastore Creation Phase)

The captured I/O lineage from Step 1 is utilized to generate the opti-

mized subsetted dataset. This is achieved by running the createDatastore.py

Python script, as shown below:

python3␣createDatastore.py

This script analyzes the I/O lineage and identifies the essential data

components required by the application. Based on this analysis, the

optimized subsetted dataset is constructed, in line with the objectives

of the Datastore Creation Phase.

4. Step 3: Re-executing with Optimized Dataset (Re-execution

Phase) In this final phase, the application is re-executed using the

optimized dataset created in Step 2. The repeatLib.so shared ob-

ject is loaded into the application’s execution environment using the

LD PRELOAD directive, as illustrated below:

LD_PRELOAD=../ReExecute/repeatLib.so␣python3␣global_prec.py

22

The application is then launched with the optimized dataset, ensuring

accurate execution with improved resource utilization, as per the goals

of the Re-execution Phase.

By following these systematic steps, the three-phase approach facilitates

efficient data debloating. It captures the I/O lineage, constructs the opti-

mized subsetted dataset, and re-executes the application using the optimized

dataset. This process addresses the considerations discussed earlier and op-

timizes storage utilization, promotes modularity and reusability, and ensures

accurate data debloating.

4.4 Step 0

In our data debloating approach, we exploit the LD PRELOAD method to

intercept system calls made during the entire execution cycle. This in-

cludes both the user application and other components of the system. While

LD PRELOAD allows us to effectively intercept syscalls, it can inadvertently

intercept syscalls made by unrelated system components. To refine and fo-

cus our analysis on the relevant I/O calls for data debloating, we utilize a

whitelist and blacklist system.

The whitelist comprises paths of data files or directories used by the

application. These paths represent the files and directories we wish to mon-

itor and include in the debloating process. Logging and analyzing I/O calls

specifically related to paths in the whitelist allows us to discern the critical

data interactions.

Concurrently, we use a blacklist to exclude particular files or directories

from being logged and considered for data debloating. This provides the flex-

ibility to unmark all files in a directory, except for specific ones. By prioritiz-

ing the blacklist over the whitelist, we can efficiently filter out non-pertinent

I/O calls and ensure only the necessary data interactions are considered.

23

Combining the whitelist and blacklist allows us to selectively intercept

and log relevant I/O calls while excluding unrelated system calls. This tar-

geted approach optimizes the data debloating process by focusing on the files

and directories of interest. It ensures that the logged I/O calls are in line

with the data usage patterns we aim to analyze and optimize.

To summarize, while LD PRELOAD intercepts all system calls made during

the execution cycle, our whitelist and blacklist system filters and differen-

tiates the relevant I/O calls. This mechanism ensures that we capture and

process only the I/O interactions specific to the data files and directories of

interest, thereby enhancing the precision and efficacy of our data debloating

approach.

Table 4.1: Sample Execution

Event Number Type Offset
1 R 0–110
2 R 70–100
3 R 130–150
4 W 80–100
5 R 90–120
6 W 70–130

24

4.5 Step 1: Audit Phase

Audit Phase

Logging Library

Program P

User Parameters T

Results RDataset D

Backups Trace

Figure 4.2: Audit Phase Architecture

The goal of this step is to capture the I/O lineage of the application intended

for containerization and sharing. The I/O lineage provides a detailed record

of the data interactions made by the application during its execution. To

achieve this, we utilize the LD PRELOAD mechanism to intercept all I/O

calls made by the application. L PRELOAD allows us to dynamically load

a library that intercepts and modifies system calls, enabling us to capture

the I/O lineage at a fine-grained level. Each I/O call made to files is logged

individually, creating a lineage that tracks the interactions per file rather

than per application.

Definition 4.5.1. Destructive ChangeWhen there is a read-write conflict

where:

• e1(c) = Read and

25

• e2(c) = Write and

• e2(t) > e1(t) (e2 happens after e1)and

• e2(l) ≤ e1(l) < e2(l) + e2(sz) or e2(l) < e1(l) + e1(sz) ≤ e2(l) + e2(sz)

the event e2 is said to be a destructive change.

During the execution of the application, there may be destructive changes

or modifications to the dataset where the dataset in its original form might

not be available post-execution. These changes can pose challenges when

creating an appropriate subset for re-execution. It is crucial to identify and

address such destructive changes to ensure the integrity and accuracy of the

subsetted dataset.

Another point of concern is the data structure used to keep track of

offsets while minimizing lookup overhead. Efficient management of offsets

is important for accurately reconstructing the subsetted dataset during the

re-execution phase. Choosing an appropriate data structure that balances

lookup efficiency and memory usage is essential for optimizing the debloating

process.

By addressing these concerns and implementing an effective mechanism

to capture the I/O lineage, we can achieve the goal of logging the data

interactions of the application. This lineage serves as a foundation for sub-

sequent phases, enabling the creation of an optimized subsetted dataset and

facilitating the accurate re-execution of the application in a containerized

environment.

4.5.1 Online and Offline Approaches

Backup Creation: Online and Offline Approaches

In our data debloating process, we consider two approaches for MDR

creation based on the availability of the dataset D post execution in the

same state as it was pre-execution.

26

1. Online Backup Creation: When the dataset undergoes destructive changes

during execution or the pre-execution state dataset is not available

post-execution, we employ the online backup creation approach. This

method enables us to dynamically create backups during execution

to preserve the necessary data for accurate re-execution. It involves

maintaining separate data structures, such as the backup list, read

tree, and write tree, to track and capture the modified portions of the

dataset. With online backup creation, we can adapt to scenarios where

the dataset is modified, ensuring the integrity of the subset data.

2. Offline Creation of Minimum Data Requirement (MDR): In situations

where the pre-execution state dataset is available post-execution with-

out destructive changes, we can leverage the offline approach. In this

method, we focus solely on the creation of the Minimum Data Require-

ment (MDR) without the need for backups. By utilizing the available

pre-execution dataset, we generate the MDR offline, which represents

the essential subset of the original dataset required for accurate re-

execution. This approach simplifies the process by eliminating the need

for separate backup structures, reducing computational overhead. Dur-

ing the offline creation, we only require the execution trace to identify

the accessed offsets and generate the MDR.

The offline approach eliminates the need for the backup list, read tree,

and write tree data structures used in the online approach, relying solely on

the execution trace to identify accessed offsets. Although the offline method

offers simplicity and efficiency when the pre-execution state dataset is avail-

able, we chose the online backup creation method for its robustness and

ability to handle scenarios involving destructive changes during execution or

when the pre-execution dataset is inaccessible.

27

4.5.2 Dealing with Destructive Changes

In the given scenario, where a portion of a file is read and subsequently

undergoes a destructive change, the challenge arises in recovering the original

portion of the file for accurate re-execution. To address this problem, we

propose a solution that involves keeping track of the offsets of the file that are

read and creating backups for those specific portions in case any destructive

changes occur.

The solution can be implemented as follows:

1. Tracking Read Offsets: During the execution of the application, we

keep a record of the offsets within the file that are read. This can be

achieved by monitoring the read syscalls or tracking the read opera-

tions performed by the application. By recording the offsets, we have

a reference to the specific portions of the file that are accessed and

utilized.

2. Creating Backups: Upon identifying the offsets that have been read,

we create backups for those portions of the file which are about to

be overwritten by a destructive change as defined in definition 4.5.1.

These backups serve as snapshots of the original content before any

destructive changes are made. By preserving the original data, we

ensure that the necessary portions required for accurate re-execution

are available even if destructive changes occur during the execution.

3. Re-execution with Original Portions: After the execution is completed,

we can utilize the backups created in the previous step to restore the

original portions of the file. By replacing the modified sections with

the corresponding backups, we can recreate the exact state of the file

as it was during the initial read operations. This allows for accurate

re-execution of the application, as the required data is restored to its

original state.

28

By implementing this solution, we overcome the problem of destructive

changes to file portions. By tracking read offsets and creating backups, we

ensure that the original data is preserved and accessible for re-execution.

This approach guarantees the availability of the necessary portions of the file

needed for accurate re-execution, even in the presence of destructive changes

made during the application’s execution.

4.5.3 Logging Data Structure

In order to effectively track the offsets that have been read and written,

we consider two suitable data structures: Linked Lists and Interval Binary

Search Trees (BST) based on AVL trees. These data structures will assist in

maintaining a sequential record of the offsets for efficient tracking.

Linked Lists provide a straightforward approach to store the offsets in a

sequential manner. Each node in the linked list contains the offset informa-

tion along with a reference to the next node. This structure allows for easy

insertion and deletion of nodes. However, searching for a specific offset may

require traversing the entire linked list, resulting in linear time complexity.

On the other hand, Interval BSTs based on AVL trees are more ad-

vanced data structures that efficiently handle intervals. By treating the read

and write offsets as intervals, an Interval BST enables efficient searching,

insertion, and deletion of intervals. It offers logarithmic time complexity for

operations, making it an optimal choice for interval-related queries.

Additionally, in our solution, we maintain linked lists for backups and to

track the I/O lineage. These linked lists facilitate efficient management and

retrieval of backup data and the recorded I/O lineage.

To compare the effectiveness of the two data structures, we execute the

audit phase of the code using our I/O-sensitive benchmark problems. By

running the audit phase with these benchmark problems, we can analyze

and evaluate the performance and efficiency of both data structures. This

comparison will help determine which data structure provides better track-

29

ing capabilities for the offsets and ultimately assist in making an informed

decision about the most suitable structure for our specific use case.

(a) AuditPhase (b) DatastoreCreation (c) Re− Execution

Figure 4.3: Linked List vs BST comparison

The results obtained align with our expectations and validate the ef-

fectiveness of using Binary Search Trees (BST) over Linked Lists in our

implementation. Here are the additional points to address the specific obser-

vations:

1. The runtime scaling of the Audit phase with the number of I/O calls is

depicted in Figure 4.3a, where the BST approach exhibits a logarithmic

scaling while the Linked List approach shows exponential scaling. This

is due to the efficient lookup capability of BSTs and the linear search

nature of Linked Lists

2. In the Data store creation phase, the choice of data structure signifi-

cantly impacts the scaling behavior. Figure 4.3b illustrates the runtime

scaling of the Data store creation phase with the number of I/O calls.

The BST approach exhibits linear scaling, where the time taken for

Data store creation increases proportionally with the number of I/O

calls. On the other hand, the Linked List approach shows exponential

scaling, resulting in a substantial increase in runtime as the number

of I/O calls grows. This confirms that BSTs provide a more efficient

and predictable performance in the Data store creation phase, making

them the preferred choice over Linked Lists.

30

3. During the Replay phase, the performance advantage of Linked Lists is

observed, as they only need to pop elements from the front, resulting in

constant time complexity. However, when considering the overall data

debloating process, the significant slowdown in the Audit and Data

store creation phases outweighs the marginal benefits in the Replay

phase. This is illustrated in Figure 4.3c, showcasing the comparative

runtime performance of the Linked List and BST approaches.

The slower performance of Linked Lists in the Audit and Data store creation

phases is the key factor behind our decision to utilize BSTs in our imple-

mentation. The figures demonstrate that BSTs offer more efficient scaling

with logarithmic or linear behavior, while Linked Lists exhibit exponential

or constant time complexity, depending on the phase. This validates the

superiority of BSTs in terms of runtime efficiency and scalability, supporting

their selection over Linked Lists for data debloating.

4.5.4 Data Structures Maintained

To track offsets, we utilize two interval trees: R for read offsets and W for

write offsets. Interval tree R maintains the ranges of offsets that have been

read, while interval tree W tracks the ranges of offsets that have been written.

These structures enable efficient insertion, deletion, and lookup operations

for the respective offsets, providing a comprehensive record of read and write

operations on the file.

In addition to the interval trees for tracking read and write offsets (R and

W), we also maintain two linked lists. One linked list is used for backups to

store original data portions, while the other linked list tracks the I/O lineage.

Data Structure Operations

For the ith read operation, denoted as ri, we perform the following operations:

R = R ∪ ({ri} −W)

31

In this equation, we insert into R only the offsets from the read call

that have not been written over. By subtracting the write offsets (W) from

the read offsets ({ri}), we ensure that only the offsets that have not been

modified or overwritten are included in R.

This approach allows us to dynamically obtain the offsets that have not

been written over during the audit phase. By considering only the offsets

that have not been modified, we can reduce redundancy in the offsets we

capture limiting ourselves to the original state of the file.

For the ith write operation, denoted as wi, the following operations are

performed:

1. CreateBackup({wi} ∩ R): Create a backup for any write operation

that is overwriting a previous read which has not yet been overwritten.

We identify the offsets that are both in {wi} and in R, indicating the

portion of the file that is being overwritten. A backup is created for

this section to preserve the original data.

2. W = W∪{wi}: Add the write call wi to the write interval treeW . This

ensures that the write offsets are properly tracked and maintained.

3. R = R − {wi}: Remove the section written to by wi from the read

interval tree R. This update reflects that the corresponding portion

of the file has been modified and is no longer considered part of the

original file that has been read.

By performing these operations, we create backups for writes over previous

reads, update the write interval tree, and update the read interval tree by

removing the sections that have been written to. These steps help maintain

the integrity of the data and accurately reflect the modifications made during

the write operations. To better illustrate the operations we can see the

snapshot of all the data structures in Figure 4.4 at each step of the execution

for the sample execution in Table 4.1

32

Read Tree

0-110

(a) Event 1 - R 0-110

Read Tree

0-110 130-150

(b) Event 2 - R 70-100

Read Tree

0-110 130-150

(c) Event 3 - R 130-150

Write Tree

80-100

Read Tree

0-80 130-150

100-110

Backups

80-100

(d) Event 4 - W 80-100

Write Tree

80-100

Read Tree

0-80 130-150

100-120

Backups

80-100

(e) Event 5 - R 90-120

Backups

80-100

Read Tree

0-70 130-150

70-80

100-120

Write Tree

70-130

(f) Event 6 - W - 70-130

Figure 4.4: Audit Phase Data Structures Snapshot

4.5.5 Optimizations

Definition 4.5.2. Minimum Data Requirement The minimum data re-

quirement (MDR) of a program P, with user parameters T, on dataset D, is

the minimum subset of data from the dataset D which is required to execute

the program P with user parameters T such that both produce consistent

results R.

Theorem 4.5.1. The audit created by our system produces a complete trace

33

w.r.t to the whitelist specified and the tracking mechanism used.

Proof. As we are capturing all I/O calls using LD PRELOAD, and we per-

form only merges on the I/O offsets, we can prove that the audit is complete

w.r.t to the whitelist specified and tracking mechanism used

Theorem 4.5.2. The MDR for a program P with user parameters T only

includes data from the original dataset D w.r.t to the specified whitelist for

the system

Proof. Let the original dataset be D. After the ith write event wi let the

modified dataset be Di. Let the union of all the reads between the write

event wi and wi+1 be Ri. Using this we can represent our execution trace in

the following manner.

D
w1−→
R0

D1
w2−→
R1

D2...
wn−−−→

Rn−1

Dn

As all writes can be dynamically generated during runtime we can express

the minimum data requirement as:

MDR =R0 ∪ (

R1 ∪ (

R2 ∪ (

... Rn−1

)

)− w2

)− w1

For any two consecutive version of the dataset Di and Di+1 created due to

write events wi and wi+1, if we subtract the region of impact of wi+1 which is

{wi+1(l), wi+1(l) +wi+1(sz)} from the dataset version Di+1 then the leftover

34

parts of the dataset are a subset of Di

As we subtract all wi we can recursively apply the formula above to show

that MDR contains only the data elements from D, i.e MDR ∪D

As the Minimum Data Requirement (MDR) represents a subset of the

original dataset, we leverage this optimization strategy in our data debloating

process. By tracking offsets only for the MDR, we reduce overhead and

improve efficiency. This approach ensures that the subsetted dataset contains

the necessary data for accurate re-execution while minimizing unnecessary

tracking and storage.

4.6 Step 2: Dataset Creation

Data Carving Phase

Subset
D’

Subset B
Tree

Trace

Carver

Backups

Trace

Dataset D

Figure 4.5: Dataset Creation Architecture

The goal of this phase is to utilize the backups and offset metadata ob-

tained in Phase 1 to create a subset datastore and mappings from the original

dataset to the subset datastore. These resources will be utilized during the

re-execution phase of the program.

35

To achieve this, we combine the accessed offsets from the original dataset

files during the audit phase with the corresponding backup offsets. This

combination enables us to create a condensed subset datastore that contains

only the essential data for re-execution. The mapping and condensation

process of the datastore can be visualized in Figure 4.6, where the blue

nodes represent items from the Read Tree in Phase 1, and the green nodes

represent the backups created during Phase 1.

During this process, three distinct items are created to facilitate the re-

execution phase:

1. Original I/O Trace: This component provides a blueprint for compari-

son during the re-execution phase. It allows us to check for consistency

between the original audit and the re-execution. It contains a detailed

record of I/O operations captured during the audit phase, enabling

accurate replication of the original program’s data interactions.

2. Subset Data: This item represents a condensed version of the data re-

quired for re-execution. It includes only the essential data components

extracted from the original dataset based on the accessed offsets and

corresponding backups. The subset data provides a more lightweight

and efficient representation of the original dataset, tailored specifically

for re-execution.

3. Subset Metadata: The subset metadata functions as a mapping mech-

anism that connects the subset data to specific locations within the

original file, including file offsets. This metadata includes crucial in-

formation, such as file names or identifiers, which facilitates the accu-

rate alignment of the subset data with the corresponding sections of

the original dataset. By incorporating file offsets and other necessary

details, the subset metadata ensures precise re-execution by correctly

referencing the relevant portions of the original dataset during the data

debloating process.

36

By creating these three components—Original I/O Trace, Subset Data,

and Subset Metadata—we establish the foundation for the re-execution phase.

The Original I/O Trace gives us a blueprint to check against to ensure con-

sistency with the original audit, while the Subset Data and Subset Metadata

provides a condensed dataset and the necessary mappings, respectively, for

efficient and accurate re-execution of the program.

130-1500-120

80-10070-80 100-120 0-70 130-150

Metadata

Figure 4.6: Subset Metadata in Phase 2

4.7 Step 3: Re-execution

Re-Execution Phase

Re-Execution Library

Program P

User Parameters T

Results R

Subset
D’

Subset B
Tree

Trace
Write

Cache

Figure 4.7: Re-Execution Architecture

37

The goal is to replay the original application in its original form, with the

same program definition and parameters.

To achieve this, we intercept all I/O calls using the LD PRELOAD mech-

anism. We utilize the mappings and subsets created in Step 2 to redirect all

I/O system calls accordingly. By redirecting the I/O calls, we ensure that

the application operates with the subset data and mappings, replicating the

original execution.

One concern is the potential for destructively changing the subset data,

which could corrupt the container for future executions.

4.7.1 Dealing with Destructive changes to the subset

To address this concern, we implement a caching mechanism for all writes

in a separate file. This approach allows us to preserve the original subset

data while redirecting the interval tree nodes to point to the appropriate

location where the data exists, either in the subset file or the write cache.

By effectively managing the write operations, we maintain data integrity and

avoid corruption during re-execution.

4.7.2 Data Structures Maintained

During the Re-Execution phase, we simplify the data structure by main-

taining only one metadata interval tree, denoted as M. Each node in this

tree represents a specific region of the original file, including its associated

metadata and its location within the subset file or the write cache. This

streamlined metadata structure facilitates the efficient retrieval and utiliza-

tion of the necessary data during the re-execution process.

By implementing these mechanisms, we ensure that the original appli-

cation can be replayed without any data corruption or loss. The caching of

writes and the utilization of the metadata interval tree M contribute to pre-

serving the integrity of the subset data, allowing for unlimited re-execution

38

cycles while maintaining consistency with the original trace.

Data Strcuture Operations

On the ith read operation, denoted as ri, the following operations are per-

formed:

• Required Metadata: RequiredMetadata = {ri} ∩ M This operation

gives us the set of metadata nodes that correspond to the required read

ri. By intersecting the set {ri} with the metadata tree M , we obtain

the relevant metadata nodes associated with the read operation.

Read Data Retrieval: Based on the required metadata set, we read the cor-

responding data from the specified locations indicated by the metadata. We

concatenate the retrieved data and return it to the application. This ensures

that the application receives the necessary data for the read operation.

On the ith write operation, denoted as wi, the following operations are

performed:

• M = M − {wi} We remove the portions of the metadata tree M that

overlap with the write operation wi. These overlapping portions are

being overwritten, and thus their metadata is no longer needed.

• Write Cache: The write operation wi is flushed to the write cache. This

involves storing the write data in the designated write cache location.

• M = M ∪ {wi} We add the metadata of the write operation wi to the

metadata tree M . This metadata entry points to the corresponding

location in the write cache, ensuring that the metadata tree correctly

reflects the updated state after the write operation.

By performing these operations, we ensure that the necessary metadata

is retrieved for reads and that writes are properly handled. The removal of

overlapping metadata, flushing of writes to the write cache, and updating the

39

metadata tree guarantee the accurate representation of the file state during

the re-execution phase.

To better illustrate the operations we can see the snapshot of all the data

structures in Figure 4.8 at each step of the execution for the sample execution

in Table 4.1

40

Subset Tree

0-120 130-150

(a) Event 1 - R 0-110

Subset Tree

0-120 130-150

(b) Event 2 - R 70-100

Subset Tree

0-120 130-150

(c) Event 3 - R 130-150

Subset Tree

0-80 130-150

80-100 100-120

(d) Event 4 - W 80-100

Subset Tree

0-80 130-150

80-100 100-120

(e) Event 5 - R 90-120

Subset Tree

0-70 130-150

70-130

(f) Event 6 - W - 70-130

Figure 4.8: ReExecution Phase Data Structures Snapshot

41

Chapter 5

Guaranteeing Consistent

Re-Execution

Definition 5.0.1. Consistent Re-Execution When two executions of the

same program P and the same user parameters T have the same data flow,

the two executions are said to be consistent

Theorem 5.0.1. Subset Data mapping (SDM) mechanism is homeomorphic

for all events e in the trace of the program P with user parameters T and

dataset D (P(D,T)) w.r.t to P and T on the spaces D and D’ i.e

SDM(e, P, T,D) = SDM(e, P, T,D′)

Proof. The SDM takes all the original offsets of the dataset D accessed by

the program and condenses it to form D’. It also creates a mapping func-

tion which maps each byte of D’ to it’s original location in D, thus having

SDM(e, P, T,D) = SDM(e, P, T,D′)

Theorem 5.0.2. Combination of MDR and SDM results in consistent re-

execution

Proof. We will prove this by induction:

Base Case:

42

Let the program state at the beginning audit phase be PA
o and at the begin-

ning of the re-execution phase be PR
o , we know that PA

o = PR
o as the program

P and user parameters T are the same.

Recursive Case::

Let the current event of both the executions be en and the state be the same

i.e. PA
n = PR

n

For event en+1 as the states are the same before it, and the SDM guarantees

that we can recreate all events. We can assume that en+1 will be same

43

Chapter 6

Experiments

6.1 Experimental Setup

In our experimentation, we conducted tests on two different sets of appli-

cations: real-life applications and synthetic benchmarks. Our experiments

were conducted on an AWS t3.xlarge instance running Ubuntu 22.04.

6.2 Experiment Details

Real-life Applications:

1. Krigging: We utilized a generalized interpolation method based on

Gaussian regression, specifically on the Ozone profile data obtained

from the Ozone Monitoring Instrument on the Aura Satellite [4]. This

application involved processing real-life atmospheric data.

2. Visual Data Comparison: We employed a visual comparison program

to compare data from the IMERG dataset with the data produced by

the GEOS-5 model [1]. This application focused on visualizing and

analyzing real-life climate and weather data.

44

3. Global Precipitation Visualization: We utilized an ipynb notebook ob-

tained from GitHub [9] , which involved using precipitation data from

an IMERG dataset file to plot precipitation for different regions of the

world. This application allowed us to visualize global precipitation

patterns.

Synthetic Benchmark: We developed a synthetic benchmark using a

C program that utilized the HDF5 library [14] . The program was designed

to access large datasets using five possible different access patterns. This

benchmark aimed to simulate and evaluate various scenarios and patterns of

dataset access, enabling us to assess the efficiency and performance of our

data debloating techniques.

Figure ??- ?? depicts the different access patterns used in the synthetic

benchmark. While presented in two dimensions, these patterns can be scaled

to three dimensions based on user-defined parameters such as stride and read

size.

sw

sh

sw

sh

Figure 6.1: Pattern 1 Visualization

Parameter Usage
sw Horizontal width of selection
sh Vertical height of selection
StrideZ Stride/Step in Z direction

Figure 6.2: Pattern 1 input parameters

45

sw

sh

sw

sh

Figure 6.3: Pattern 2 visualization

Parameter Usage
sw Horizontal width of selection
sh Vertical height of selection
StrideZ Stride/Step in Z direction

Figure 6.4: Pattern 2 input parameters

sw

sh

StrideX

StrideY

Figure 6.5: Pattern 3 visualization

Parameter Usage
sw Horizontal width of selection
sh Vertical height of selection
StrideZ Stride/Step in Z direction
StrideX Stride/Step in X direction
StrideY Stride/Step in Y direction

Figure 6.6: Pattern 3 input parameters

46

sw

sh

StrideX

StrideY

Figure 6.7: Pattern 4 visualization

Parameter Usage
sw Horizontal width of selection
sh Vertical height of selection
StrideZ Stride/Step in Z direction
StrideX Stride/Step in X direction
StrideY Stride/Step in Y direction

Figure 6.8: Pattern 4 input parameters

sw

sh

Figure 6.9: Pattern 5 visualization

Parameter Usage
sw Horizontal width of selection
sh Vertical height of selection
StrideZ Stride/Step in Z direction

Figure 6.10: Pattern 5 input parameters

By conducting experiments on both real-life applications and synthetic

benchmarks, we were able to evaluate the effectiveness and applicability of

our data debloating approach across different use cases and scenarios. With

47

these experiments, we aimed to answer the following questions:

1. What is the time overhead for all three phases of our approach?

2. How do these overheads scale and on what factors?

3. What are the reductions in size achieved by creating subsetted datasets?

To address these questions, we conducted a total of 36 different configu-

rations of our benchmarks. These configurations involved varying parameters

such as the number of images in the dataset, the access pattern, the layout

of the dataset on disk, and the amount of data subsetted from the original

dataset. This variation allowed us to explore a wide range of scenarios and

assess the impact of different factors on the performance of our approach.

The number of I/O calls in the resulting traces varied from 347 to 122,870,

providing a diverse set of data points for analysis. To ensure reliable results,

we performed each experiment 30 times, enabling us to capture variations

and calculate statistical measures.

For the analysis and visualization of the results, we utilized boxplots,

which offer a concise representation of the data distribution and facilitate

comparisons across different configurations.

By conducting these experiments and analyzing the results, we gained

insights into the time overheads of each phase, their scalability with respect

to various factors, and the reductions in dataset size achieved through subset

creation. These findings contribute to a comprehensive understanding of the

performance and efficiency of our data debloating approach.

48

6.3 Results

6.3.1 Synthetic Benchmarks

Audit Overhead

As seen in figure 6.11 the applications with a lower number of I/O calls

exhibit a higher interquartile range (IQR), indicating a greater variation

in their execution time. This is primarily due to the significant impact of

system context switching on these quick applications. As the number of

calls increases, the IQR decreases, indicating a more consistent execution

time, and the overhead converges to approximately 30%. On average, the

overhead across all applications is close to 31%. These observations highlight

the influence of system context switching on the performance of applications

with different I/O call frequencies.

49

Figure 6.11: Audit Overhead for Synthetic Benchmarks

Datastore Creation Phase

Our earlier comparison results, as seen in Figure 4.3b revealed that the time

taken by the datastore creation phase exhibits a linear relationship with

the number of I/O calls in the trace. These findings, as seen in Figure

6.12, confirm those results and suggests that as the number of I/O calls

increases, the time required for creating the subset datastore also increases

proportionally.

50

Figure 6.12: Data Store Creation for Synthetic Benchmarks

Re-Execution phase

Based on Figure 6.13, we can observe that applications with a lower number

of I/O calls have a significantly higher interquartile range (IQR). This higher

IQR is due to the substantial impact of system context switching on the

execution time of these quick applications. As the number of calls increases,

the IQR decreases, indicating a more consistent execution time. Additionally,

the overhead converges to approximately 30

The mean overhead across all applications is approximately 27

These results support our observations and further emphasize the rela-

tionship between the number of I/O calls, the IQR, and the convergence of

overheads.

51

Figure 6.13: Replay Overhead for Synthetic Benchmarks

Data Reduction

In Figure 6.14, we can observe that there is no clear correlation between the

number of I/O calls and the reduction in dataset size. This lack of relation

is expected since the system can make multiple calls of small size or a single

call reading the entire dataset.

It is worth noting that some datasets have actually increased in size.

This outcome is also anticipated as systems that read the full dataset will

include both the original dataset and the newly created mapping data in the

container, resulting in a larger overall size compared to the original dataset.

52

These findings underscore the variability in dataset sizes and highlight

the complexities involved in determining the size reduction solely based on

the number of I/O calls.

53

Figure 6.14: Dataset size reduction for Synthetic Benchmarks

54

6.3.2 Real life Experiments

Time Overhead

In our real-life experiments, where the applications involve not only I/O

but also other calculations, we observed that the time overhead during both

the audit and re-execution phases was significantly lower compared to the

synthetic benchmarks. This disparity in overhead can be attributed to the

additional computational tasks performed by the real-life applications, which

reduce the relative impact of the I/O operations on the overall execution time.

The reduced time overhead in real-life applications suggests that the

data debloating approach can be effectively integrated into practical sce-

narios without significantly affecting the overall performance. These findings

highlight the importance of considering the specific nature of the applications

when assessing the impact of data debloating techniques.

Figure 6.15: Krigging Time Overhead

Scenario Time(s)
Base 148.32
Audit 152.71
Carving 5.07
Re-Execute 156.54

Figure 6.16: Krigging Time Overhead raw data

55

Figure 6.17: Visual Comparison Time Overhead

Scenario Time(s)
Base 112.02
Audit 112.78
Carving 1.01
Re-Execute 113.82

Figure 6.18: Visual Comparison Time Overhead raw data

56

Figure 6.19: Global precipitation Time Overhead

Scenario Time(s)
Base 14.61
Audit 15.11
Carving 0.10
Re-Execute 15.01

Figure 6.20: Global precipitation Time Overhead raw data

Real Life Experiments Dataset Reduction

In our analysis of real-life datasets, we compared the sizes of different com-

ponents: the original dataset, the subsetted dataset, the sciunit container

(without data debloating), and the sciunit container with data debloating.

The results demonstrated the impact of data debloating on dataset size

reduction. Specifically, the subsetted dataset was smaller in size compared to

the original dataset, indicating the elimination of unnecessary data. Further-

more, the sciunit container, which included the subsetted dataset, showed a

reduction in size compared to the container without data debloating.

57

Figure 6.21: Krigging Size Reduction

Scenario Size(MB)
Base 562.08
Subset 43.67
Sci-Unit 846.82
Sci-Unit with Debloat 328.41

Figure 6.22: Krigging Size Reduction raw data

58

Figure 6.23: Visual Comparison Size Reduction

Scenario Size(MB)
Base 861.03
Subset 473.89
Sci-Unit 1208.31
Sci-Unit with Debloat 821.16

Figure 6.24: Visual Comparison Size Reduction raw data

59

Figure 6.25: Global precipitation Size Reduction

Scenario Size(MB)
Base 51.69
Subset 33.77
Sci-Unit 241.83
Sci-Unit with Debloat 223.91

Figure 6.26: Global precipitation Size Reduction raw data

60

Chapter 7

Future Work

7.1 Integration with SciUnit

Integrating our system with SciUnit offers several advantages. Currently, our

system relies on the LD PRELOAD mechanism to intercept system calls,

which may result in intercepting more calls than necessary. By leveraging

SciUnit’s p-trace interception system, we can benefit from its targeted and

efficient interception capabilities. SciUnit’s interception mechanism is specif-

ically designed for tracing and intercepting system calls, ensuring that only

the relevant calls are intercepted. This integration will optimize the inter-

ception process, reducing unnecessary overhead and improving the overall

performance of our data debloating system.

7.2 Interception of More I/O Sys Calls

Expanding the interception of I/O system calls is crucial for enhancing the

versatility and applicability of our data debloating system. While our current

system focuses on intercepting specific I/O calls used by the HDF5 interface

and standard I/O operations, integrating with a comprehensive interception

tool like SciUnit allows us to intercept a broader range of I/O system calls.

61

This expanded interception capability enables us to handle files of various

sizes, shapes, and formats, making our system more adaptable and effective

in debloating datasets across different domains and applications.

7.3 Integration of Containerization for Mul-

tiple Traces

Our current system supports the conversion of a single trace into a container.

However, integrating containerization for multiple traces brings additional

flexibility and utility to our approach. By allowing the combination of mul-

tiple traces, we can create containers that encapsulate the necessary subset

of data from multiple sources. This functionality opens up possibilities for

creating more generic and multipurpose containers that can be used across

different scenarios and applications. The ability to utilize multiple traces in

a single container expands the versatility of our system and enables more

efficient sharing and distribution of debloated datasets.

7.4 Creation of Generic Containers

Our current solution is good for specific cases where we want containers to

work with specific parameters (T). However, we want to improve it for more

versatility. In the future, we aim to create generic containers that can execute

a program (P) on different datasets (D) with a wide range of parameters (T).

To achieve this, we plan to use advanced techniques like program analysis,

invariant detection, and code fuzzing. These methods will help us understand

how the program interacts with the dataset and the constraints it has on

accessing the data. With this information, we can build containers that

adapt to different parameter combinations, making them more flexible for

diverse analyses. Our goal is to enhance containerization, allowing users to

62

explore and analyze programs on various datasets and parameter sets with

ease.

63

Chapter 8

Conclusion

In conclusion, this thesis has focused on data debloating for containers,

addressing the challenge of efficiently sharing data-intensive applications.

Through novel techniques, we have successfully demonstrated the effective-

ness of data debloating in reducing container sizes and optimizing resource

usage. By identifying and removing unused data components, we have im-

proved container performance and storage utilization, facilitating easier con-

tainer sharing.

The research presented here highlights the importance of data debloating

in the future of containerization. As data generation grows, efficient con-

tainer sharing becomes crucial for collaborative research and reproducibility.

The proposed solutions contribute to the advancement of containerization

technologies, and future work could explore integrating program analysis for

more versatile containers. Data debloating offers promising possibilities for

lightweight and efficient containers that cater to the evolving demands of

data-intensive applications.

64

Bibliography

[1] Geos-5 a high-resolution global atmospheric model.

https://earthobservatory.nasa.gov/images/44246/

geos-5-a-high-resolution-global-atmospheric-model. [On-

line; accessed 8-Jun-2023].

[2] The National Aeronautics and Space Administration. Nasa global pre-

cipitation measurement. https://gpm.nasa.gov/. [Online; accessed

30-Sep-2022].

[3] Raza Ahmad, Madeline Deeds, Tanu Malik, Young-Don Choi, Jonathan

Goodall, and David Tarboton. Sciunit: A reproducible container for

EarthCube community. jul 2020.

[4] Johan De Haan and Oeoijn Veefkind. Profile 1-orbit l2 swath 13x48km

v003. 2009.

[5] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. Ef-

fective program debloating via reinforcement learning. In Proceedings of

the 2018 ACM SIGSAC Conference on Computer and Communications

Security, CCS ’18, page 380–394, New York, NY, USA, 2018. Associa-

tion for Computing Machinery.

[6] Chris Lattner and Vikram Adve. Llvm: A compilation framework for

lifelong program analysis & transformation. In Proceedings of the Inter-

national Symposium on Code Generation and Optimization: Feedback-

65

Directed and Runtime Optimization, CGO ’04, page 75, USA, 2004.

IEEE Computer Society.

[7] Dirk Merkel. Docker: lightweight linux containers for consistent devel-

opment and deployment. Linux journal, 2014(239):2, 2014.

[8] Chaitra Niddodi, Ashish Gehani, Tanu Malik, Sibin Mohan, and

Michael Lee Rilee. Iospred: I/o specialized packaging of reduced datasets

and data-intensive applications for efficient reproducibility. IEEE Ac-

cess, 11:1718–1731, 2023.

[9] Prajjwal Pathak. Global mean precipitation imerg analysis.

://github.com/pyGuru123/WinterLong-2021/tree/main/Global [On-

line; accessed 20-Mar-2023].

[10] Podman. Podman. https://podman.io/. [Online; accessed 2-Jun-

2023].

[11] Anh Quach, Aravind Prakash, and Lok Yan. Debloating software

through Piece-Wise compilation and loading. In 27th USENIX Secu-

rity Symposium (USENIX Security 18), pages 869–886, Baltimore, MD,

August 2018. USENIX Association.

[12] Kyle Quest. Slimtoolkit by slimai. https://slimtoolkit.org. [Online;

accessed 10-Jun-2023].

[13] Hashim Sharif, Muhammad Abubakar, Ashish Gehani, and Fareed Zaf-

far. Trimmer: Application specialization for code debloating. In Pro-

ceedings of the 33rd ACM/IEEE International Conference on Automated

Software Engineering, ASE ’18, page 329–339, New York, NY, USA,

2018. Association for Computing Machinery.

[14] The HDF Group. Hierarchical Data Format, version 5, 1997-NNNN.

https://www.hdfgroup.org/HDF5/.

66

	Interposition based container optimization for data intensive applications
	Recommended Citation

	tmp.1695743465.pdf.4ChYM

