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A B S T R A C T

This paper presents a numerical method for modelling cell migration and aggregation due to chemotaxis where
the cell is attracted towards the direction in which the concentration of a chemical signal is increasing. In the
model presented here, each cell is represented by a system of springs connected together at node points on
the cell’s membrane and on the boundary of the cell’s nucleus. The nodes located on a cell’s membrane are
subject to a force which is proportional to the gradient of the concentration of the chemical signal which
mimics the behaviour of the chemical receptors in the cell’s membrane. In particular, the model developed
here will consider what happens when two (or more) cells collide and how their membranes connect to each
other to form clusters of cells. The methods described in this paper will be illustrated with a number of typical
examples simulating cells moving in response to a chemical signal and how they combine to form clusters.
1. Introduction

A typical cell consists of an outer membrane which encloses the
cytoplasm that makes up the majority of the interior of the cell. The
nucleus of the cell is located within the cytoplasm and is a lot stiffer
than the cytoplasm. This means that the cytoplasm will deform more
than nucleus. Moreover, the size of the nucleus has an impact on the
cell displacement, and a cell will move further when the nucleus is
smaller (Hervas-Raluy et al., 2019).

The shape and size of the part of the cell membrane that forms
the leading edge of a cell that is reacting to a chemical signal has
a significant effect on the motion of the cell. Further, changes in the
cell shape due to migration or deformation in response to a signal are
known to have an impact on the shape and location of the nucleus
inside the cell (Ben-David and Weihs, 2021). Therefore, to be able to
efficiently model the cell, we need to develop a system of equations to
model the motion of both the membrane and the nucleus, and how the
motion of one affects the motion of the other.

Cell invasion is a crucial step in the process of metastasis formation
which leads to the often lethal spread of cancer in the body (Ben-
David and Weihs, 2021). Cell invasion requires the cell’s cytoskeleton
to remodel in order to account for dynamic changes and applied forces.
During the invasion process, the cells squeeze through dense tissues to
migrate to the desired site. The cytoskeleton can be dynamically gen-
erated, restructured and concentrated at specific locations to facilitate
force application where it is advantageous to do so (Alvarez-Elizondo
et al., 2021; Ben-David and Weihs, 2021). When considering cancer
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cells, it has been shown that they apply stronger adhesive and traction
forces when compared to benign cells, and that they also are stiffer
and maintain their shape more during migration (Ben-David and Weihs,
2021; Massalha and Weihs, 2017). The ability of cells to change shape,
modify their internal structure (cytoskeleton and nucleus) and alter
adhesion and migratory states is directly correlated with their ability
to invade surrounding tissue (Massalha and Weihs, 2017).

Lamellipodia are tentacle like structures that drive cell migration.
These structures reach out and probe the environment so that they can
attach to another cell, and help draw the cell in closer and promote
movement. The motion of a typical group of cells is shown in Fig. 1.
The cells which are on the right of the image can be seen to form a
lamellipodia towards the cells on the left which provides a mechanism
for the cells to come together and form a cluster. Once the cells have
collided they can adhere to each other by physically attaching their cell
membranes using surface proteins like cadherins.

It is well-known that a cell can be guided by different stimuli such
as mechanotaxis, thermotaxis, chemotaxis and/or electrotaxis (Mousavi
and Doweidar, 2015). Since chemotaxis and mechanotaxis are the most
common causes of cell motion (Peng and Vermolen, 2020) they are the
ones that will be considered in this paper.

Chemotaxis is the process where cells move in response to chemical
signals in their environment (Mousavi and Doweidar, 2015). These
signals are usually in the form of proteins that can stimulate receptors
in the cells outer membrane and cause the membrane to extend in the
direction in which the concentration of the signal is increasing, often
vailable online 16 October 2023
022-5193/© 2023 Published by Elsevier Ltd.

https://doi.org/10.1016/j.jtbi.2023.111646
Received 24 October 2022; Received in revised form 10 August 2023; Accepted 12
 October 2023

https://www.elsevier.com/locate/yjtbi
http://www.elsevier.com/locate/yjtbi
mailto:p.j.harris@brighton.ac.uk
https://doi.org/10.1016/j.jtbi.2023.111646
https://doi.org/10.1016/j.jtbi.2023.111646
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2023.111646&domain=pdf


Journal of Theoretical Biology 575 (2023) 111646A. Farmer and P.J. Harris
Fig. 1. Still images taken from a time-lapse video showing the development of lamellipodia from the cells on the right and how the resulting motion of the cells cause them to
come together to form a small cluster. Images courtesy of the Brighton Center for Regenerative Medicine and Devices.
forming lamellipodia. In some cases the chemical signal, with a known
concentration gradient, simply exists in the environment containing the
cells. However, in other cases the chemical signal may secreted by a
cell in order to attract other nearby cells to form clusters of cells, and
it is the latter case that we concerned about in this paper. Typically
a cell will emit a burst of the protein that is the chemical signal and
this will spread into the surrounding environment, often via a diffusion
type process.

Mechanotaxis is the movement of a cell and/or deformation of the
shape of a cell due to a mechanical process, such as when one cell
collides with another cell. When two cells collide the sections of their
membranes that are in contact will adhere to each other and deform so
that the forces across parts of the membrane that are in contact are in
equilibrium.

The shape of a cluster (or clusters) of cells obtained by chemotaxis
and mechanotaxis will depend on the initial locations of the cells
involved. Conversely, it may be desirable to determine the initial loca-
tions of the cells which leads to the formation of a cluster which has a
particular shape. The number of laboratory experiments that would be
needed to determine the initial locations of the cells which ultimately
form a cluster with the desired shape could be very large and so would
be costly and extremely time consuming to carry out. An alternative
is to use a mathematical/computational model which can simulate
the shape of the cluster (or clusters) obtained from a given initial
configuration relatively quickly, and so can be used to analyse a large
number of initial configurations in much less time than is possible with
experiments, and at almost zero financial cost. In this paper we present
a mathematical/computational method for determining the shape of
the cluster (or clusters) formed through chemotaxis and mechanotaxis
for cells which can be in any initial configuration.

We have two choices for the type of model that we use to simulate
the motion of cells: Particle models or cell-based models. In particle
based models the cells are represented by simple geometric shapes
such as in the models proposed by Eyiyurekli et al. (2008), Thompson
et al. (2012) and Kim et al. (2014) for example. Harris (2017) has
developed a particle based model of how small clusters of cells combine
to form larger clusters. Whilst there is some experimental evidence
that the cells can be treated as rigid particles as they move (see the
images in Nitta et al. (2007) for example) there is a growing body
of experimental evidence that the cells change shape as they move,
as shown in Fig. 1. However, the advantage of particle based models
is that they are computationally cheap and can model the motion of
thousands of individual cells relatively quickly (Harris, 2017).

The alternative is to use cell based models where the changes in
the shape of each cell in response to a chemical signal and/or colliding
with its neighbours is simulated. Elliott et al. (2012) developed a finite
element model of a cell moving in response to a chemical signal.
However, the methods proposed in Elliott et al. (2012) would be
computationally expensive to apply to situations with a large number
of cells.

Sfakianakis et al. (2018) and Löbor et al. (2015) developed models
where cells move in close vicinity to each other using a system of po-
tentials to model the attractive and repulsive forces between the cells.
However, their simulations do not include cells connecting together and
forming clusters.

A method based on representing a cell as a system of springs has
been proposed in Vermolen (2015) and Chen et al. (2018). In these
2

Fig. 2. An illustration of the nodal points on the cell boundary membrane and surface
of the nucleus. The cytoskeleton is represented as a collection of springs.

model the nodes on a cells membrane detect and move in response to
the chemical signal deforming the cell. The interior of the cell then
moves in order to keep the forces due to the springs in equilibrium. In
addition, if the chemical decays and disappears, the spring-based model
ensures that the cells will return to their original shape provided that
they have not collided. It is this model that we shall use as the basis
for our model of cell collisions.

In Section 2 we will introduce our model using a spring system
to represent the deformations of each cell. In Sections 2.1 and 2.2
we introduce the differential equations that describe the deformations
of the cell membrane and nucleus respectively. Sections 2.3 and 2.4
describe how the centre of mass of each cell is calculated and how
we model the spread of the chemical signal respectively. How cell
collisions are detected, and how the differential equations need to be
modified to account for the cells now being connected, is discussed
in Section 2.5. Finally, in Section 2.6 we describe the time-stepping
scheme used here. The methods described in this paper are illustrated
for a number of typical examples in Section 3.

2. Mathematical model

Let 𝐦𝑖 be the position of the 𝑖th nodal point on the cell membrane,
𝐧𝑖 be the position of the 𝑖th nodal point on the nucleus, and 𝐜 be the
position of the centre of the nucleus, as shown in Fig. 2. Let 𝐱𝑖 be the
original position vector of 𝐧𝑖 relative to 𝐦𝑖 (that is, 𝐱𝑖 = 𝐧𝑖 −𝐦𝑖 when
𝑡 = 0) and similarly let �̂�𝑖 be the original position vector of 𝐧𝑖 relative
to 𝐜.

In the model presented here the nodes are consecutively numbered
around the membrane and the boundary of the nucleus in an anticlock-
wise direction starting at the positive 𝑥-axis. It is noted that both the
cell membrane and the boundary of its nucleus are closed curves and
so the first and last nodes on both curves will be adjacent to each other.
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This means that if there are 𝑁 nodes on the cell membrane then when
deriving the equations for the first and last nodes on the membrane we
have 𝐦−1 = 𝐦𝑁 and 𝐦𝑁+1 = 𝐦1. Similarly if there are 𝑁 nodes on the
boundary of the nucleus then 𝐧−1 = 𝐧𝑁 and 𝐧𝑁+1 = 𝐧1. This needs to be
taken into account when substituting 𝑖 = 1 and 𝑖 = 𝑁 into the general
equations derived in the sections below.

2.1. Forces acting on nodes on the membrane

Consider the forces acting on a nodal point on the cell membrane.
There are a number of different forces acting on each node on the
membrane and we shall consider each of these in turn.

The nodal points on the membrane can detect and react to the
gradient of an incoming signal. This can be accounted for this in
the equations by having a force proportional to the gradient of the
concentrations acting on each node on the membrane. Thus the first
contribution to the force on a node on the membrane is

𝑑𝐦𝑖(𝑡) = 𝛽∇𝑐(𝑡,𝐦𝑖(𝑡)) 𝑑𝑡 (1)

where ∇𝑐(𝑡,𝐦𝑖(𝑡)) is the gradient of the signal concentration and the
variable 𝛽 is used to control the magnitude of the cells response to
external stimuli and helps to define how sensitive the cell is to the
concentration gradient. The concentration of the chemical signal is
discussed in Section 2.4.

The model also needs to account for the forces due to the motion
of the nodes that are adjacent to the current node. The extension or
compression of the spring that represents the connection between 𝐧𝑖(𝑡)
and 𝐦𝑖(𝑡) can be expressed as

𝐧𝑖(𝑡) −𝐦𝑖(𝑡) − 𝐱𝑖

where 𝐱𝑖 is the original position vector of 𝐧𝑖 relative to 𝐦𝑖 when 𝑡 = 0.
hat is, 𝐱𝑖 = 𝐧𝑖(0) − 𝐦𝑖(0). Introducing the parameter 𝛼, the Internal
ell Membranes Relaxation Coefficient, we can vary how stiff the
ytoskeleton is and how deformed the cell can get. This is analogous to
he stiffness of a spring. Hence the second contribution to the equation
f motion of the 𝑖th node on the membrane is

𝐦𝑖(𝑡) = 𝛼(𝐧𝑖(𝑡) −𝐦𝑖(𝑡) − 𝐱𝑖) 𝑑𝑡 (2)

We also need to account for the changing relative position of the
djacent nodal points on the membrane by including springs between
odal points on the cell’s membrane. For this, we introduce a new
arameter 𝛿, which is the External Cell Membranes Relaxation Coeffi-
ient. The extension (or compression) of the spring that represents the
onnection between 𝐦𝑖(𝑡), 𝐦𝑖+1(𝑡) (which is the next nodal point from
in a clockwise direction), and 𝐦𝑖−1(𝑡), (which is the next nodal point

rom 𝑖 in the counter-clockwise direction). Let 𝐲𝑖 denote the original
osition vector of 𝐦𝑖 relative to 𝐦𝑖−1 (so 𝐲𝑖 = 𝐦𝑖(0) −𝐦𝑖−1(0)). At time
the compression or tension of the springs connecting the 𝑖th node to

he adjacent nodes is given by

𝑖 − (𝐦𝑖−1 −𝐦𝑖) − 𝐲𝑖+1 + (𝐦𝑖 −𝐦𝑖+1).

ence the contribution to the force acting on the 𝑖th node is

𝐦𝑖(𝑡) = 𝛿
[

𝐲𝑖 − (𝐦𝑖−1 −𝐦𝑖) − 𝐲𝑖+1 + (𝐦𝑖 −𝐦𝑖+1)
]

𝑑𝑡. (3)

Summing the contributions given by (1), (2) and (3) gives the total
orce acting on the 𝑖th node on the membrane as

𝑑𝐦𝑖(𝑡) = 𝛽∇𝑐(𝑡,𝐦𝑖(𝑡))𝑑𝑡
+ 𝛼(𝐧𝑖(𝑡) −𝐦𝑖(𝑡) − 𝐱𝑖)𝑑𝑡
+ 𝛿

[

𝐲𝑖 − (𝐦𝑖−1 −𝐦𝑖) − 𝐲𝑖+1 + (𝐦𝑖 −𝐦𝑖+1)
]

𝑑𝑡.
(4)

.2. Forces acting on nodes on the nucleus

Each node on the boundary of the nucleus will interact with the
3

orresponding node on the membrane, the node at the centre of the s
ell and the two nodes on the boundary on the nucleus that are either
ide of the current node. Recall that 𝐧𝑖 is the location of the 𝑖th node
n the boundary on the nucleus, and 𝐜 is the location of the centre of
he nucleus. Following a similar analysis to that carried out above for
odes on the membrane, we obtain

𝑑𝐧𝑖(𝑡) = 𝛼𝑛(𝐜(𝑡) − 𝐧𝑖(𝑡) − �̂�𝑖)𝑑𝑡
− 𝛼(𝐧𝑖(𝑡) −𝐦𝑖(𝑡) − 𝐱𝑖)𝑑𝑡
+ 𝛿𝑛

[

�̂�𝑖 − (𝐧𝑖−1 − 𝐧𝑖) − �̂�𝑖+1 + (𝐧𝑖 − 𝐧𝑖+1)
]

𝑑𝑡.
(5)

here 𝛼𝑛 and 𝛿𝑛 are the Internal Nucleus Relaxation Coefficient and
ucleus Boundary Relaxation coefficient respectively; �̂�𝑖 is the position
ector of 𝐧𝑖 relative to 𝐜 when 𝑡 = 0 and �̂�𝑖 is the position vector of 𝐧𝑖
elative to 𝐧𝑖−1 when 𝑡 = 0.

.3. Centre of mass

To accurately model the cell, we need to account for the movement
f the centre of mass of the cell. Here the shape of both the outer
embrane of the cell and its nucleus are represented by the polygons

hat are obtained by connecting the nodes on each boundary by straight
ines. Then the centre of mass of the cell 𝐜 = (�̄�, �̄�)𝑇 is given by

̄ =
𝑀𝑥
𝐴

, �̄� =
𝑀𝑦

𝐴
where

𝑀𝑥 =
𝜌1
6

𝑁
∑

𝑖=1
[(𝑥𝑖 − 𝑥𝑖+1)[(𝑦𝑖 + 2𝑦𝑖+1)𝑥𝑖+1 + (2𝑦𝑖 + 𝑦𝑖+1)𝑥𝑖]]

+
𝜌2 − 𝜌1

6

𝑁
∑

𝑖=1
[(�̂�𝑖 − �̂�𝑖+1)[(�̂�𝑖 + 2�̂�𝑖+1)�̂�𝑖+1 + (2�̂�𝑖 + �̂�𝑖+1)�̂�𝑖]]

𝑀𝑦 =
𝜌1
6

𝑁
∑

𝑖=1
[(𝑥𝑖 − 𝑥𝑖+1)(𝑦2𝑖 + 𝑦𝑖𝑦𝑖+1 + 𝑦2𝑖+1)]

+
𝜌2 − 𝜌1

6

𝑁
∑

𝑖=1
[(�̂�𝑖 − �̂�𝑖+1)(�̂�2𝑖 + �̂�𝑖�̂�𝑖+1 + �̂�2𝑖+1)]

𝐴 =
𝜌1
2

𝑁
∑

𝑖=1
(𝑦𝑖 + 𝑦𝑖+1)(𝑥𝑖 − 𝑥𝑖+1) +

𝜌2 − 𝜌1
2

𝑁
∑

𝑖=1
(�̂�𝑖 + �̂�𝑖+1)(�̂�𝑖 − �̂�𝑖+1).

(6)

ere (𝑥𝑖, 𝑦𝑖) and (�̂�𝑖, �̂�𝑖) are the coordinates of the nodes on the mem-
rane and nucleus respectively, 𝜌1 is the density of the cytoplasm and
2 is the density of the nucleus. We note that it is possible to use the
elative densities of the cytoplasm and nucleus in (6) instead of the
ensity.

.4. Concentration gradient

In Chen et al. (2018) the concentration of the chemical signal was
odelled by a time-dependent Poisson type equation. In reality, the

oncentration of the chemical signal will spread out from its source
ocation and decay over time. Such processes can be modelled using
he linear diffusion equation

𝜕𝑐
𝜕𝑡

= 𝜇
(

𝜕2𝑐
𝜕𝑥2

+ 𝜕2𝑐
𝜕𝑦2

)

(7)

where 𝑐 is the concentration of the chemical signal and 𝜇 > 0 is the
iffusion constant. It is straight-forward to show that the solution to
he differential equation (7) due to a point source located at (𝑥𝑠, 𝑦𝑠) is

(𝑡, 𝐱𝑖(𝑡)) =
𝐴

𝜇(𝑡 + 𝑡𝜖)
exp

(

−
(𝑥(𝑡) − 𝑥𝑠)2 + (𝑦(𝑡) − 𝑦𝑠)2

4𝜇(𝑡 + 𝑡𝜖)

)

(8)

here 𝑡𝜖 = 1 × 10−6 is a small parameter to avoid computational
roblems when 𝑡 = 0, and 𝐴 is the source intensity. The source intensity
ontrols the size of the chemical signal secreted by the cell and the
iffusion constant controls how quickly the signal spreads out from the
ource.



Journal of Theoretical Biology 575 (2023) 111646A. Farmer and P.J. Harris
Fig. 3. During a collision one (or more) nodes on the membrane of one cell (shown in red) will pass into one of the triangles formed by each pair of nodes on the membrane
and centroid of a second cell (shown in black).
The gradient of the concentrations, required in (4), can be found by
simply differentiating (8) to give

𝜕𝑐
𝜕𝑥

= −
𝐴(𝑥 − 𝑥𝑠)
2𝜇2(𝑡 + 𝑡𝜖)2

exp
(

−
(𝑥(𝑡) − 𝑥𝑠)2 + (𝑦(𝑡) − 𝑦𝑠)2

4𝜇(𝑡 + 𝑡𝜖)

)

𝜕𝑐
𝜕𝑦

= −
𝐴(𝑦 − 𝑦𝑠)
2𝜇2(𝑡 + 𝑡𝜖)2

exp
(

−
(𝑥(𝑡) − 𝑥𝑠)2 + (𝑦(𝑡) − 𝑦𝑠)2

4𝜇(𝑡 + 𝑡𝜖)

)

.
(9)

Although it is possible for the source point to be any point in the fluid,
the signal is often secreted by one (or more) of the cells to attract other
nearby cells. To simulate such problems, the source point is chosen to
be at the centre of mass of one of the cells. Further, it is possible to
define sources at the centre of more than one of the cells, and that
each cell can start secreting the signal at different times. If a cell starts
secreting the chemical signal when 𝑡 = 𝑡0 instead of when 𝑡 = 0 then
(8) can be modified to give

𝑐(𝑡, 𝐱𝑖(𝑡)) =
⎧

⎪

⎨

⎪

⎩

𝐴
𝜇(𝑡 − 𝑡0 + 𝑡𝜖)

exp
(

−
(𝑥(𝑡) − 𝑥𝑠)2 + (𝑦(𝑡) − 𝑦𝑠)2

4𝜇(𝑡 − 𝑡0 + 𝑡𝜖)

)

𝑡 ≥ 𝑡0

0 𝑡 < 𝑡0
.

2.5. Detecting cell collisions and cell clustering

To model collisions, we need to detect when a node on cell A has
moved inside of cell B, as illustrated in Fig. 3 where cell A is shown
in red and cell B (which has been divided into triangles) is shown in
black.

Let the coordinates of the centroid of cell B be (𝑥1, 𝑦1) and let (𝑥2, 𝑦2)
and (𝑥3, 𝑦3) be the coordinates of two adjacent nodes on the membrane
of cell B. Further let (𝑥𝑎, 𝑦𝑎) be the coordinates of one of the nodes on
the membrane of cell A. Solve the equations

𝑥𝑎 = (1 − 𝑢 − 𝑣)𝑥1 + 𝑢𝑥2 + 𝑣𝑥3
𝑦𝑎 = (1 − 𝑢 − 𝑣)𝑦1 + 𝑢𝑦2 + 𝑣𝑦3

for 𝑢 and 𝑣. If 𝑢 > 0, 𝑣 > 0 and 𝑢+𝑣 < 1 then (𝑥𝑎, 𝑦𝑎) is inside the triangle
formed from cell B and hence the two cells have collided but if at least
one of the three conditions on 𝑢 and 𝑣 is not satisfied then the node
on cell A has not collided with the triangle on cell B. This procedure is
repeated for each node on the membrane of cell A and each triangle in
cell B. If at least one node on cell A is inside a triangle of cell B then the
two cells have collided. If a collision is detected for a particular triangle
in cell B, then the nodal point on cell A will lock on to the closest of
either (𝑥2, 𝑦2) or (𝑥3, 𝑦3). If 𝑁 is small, then this may be noticeable, as
the distance between two nodal points is visible, however the larger
the value of 𝑁 , the more negligible this becomes.
4

Suppose that the 𝑖th node from cell A needs to be combined with
the 𝑗th node from cell B. The single combined equation for both nodes
is (where subscripts 𝑖 and 𝑗 refer to nodes on the membrane of the
appropriate cell and the superscripts denote which cell the nodes are
on)

𝑑𝐦𝑖(𝑡) = 𝛽∇𝑐(𝑡,𝐦𝐴
𝑖 (𝑡)) 𝑑𝑡 + 𝛼(𝐧𝐴𝑖 (𝑡) −𝐦𝐴

𝑖 (𝑡) − 𝐱𝐴𝑖 ) 𝑑𝑡
− 𝛿(𝐦𝐴

𝑖 (𝑡) −𝐦𝐴
𝑖+1(𝑡) − 𝐲𝐴𝑖 ) 𝑑𝑡 + 𝛿(𝐦𝐴

𝑖−1(𝑡) −𝐦𝐴
𝑖 (𝑡) − 𝐲𝐴𝑖−1) 𝑑𝑡

+ 𝛼(𝐧𝐵𝑗 (𝑡) −𝐦𝐵
𝑗 (𝑡) − 𝐲𝐵𝑗 ) 𝑑𝑡 − 𝛿(𝐦𝐵

𝑗 (𝑡) −𝐦𝐵
𝑗+1(𝑡) − 𝐱𝐵𝑗 ) 𝑑𝑡

+ 𝛿(𝐦𝐵
𝑗−1(𝑡) −𝐦𝐵

𝑗 (𝑡) − 𝐲𝑗−1) 𝑑𝑡

(10)

When two cells collide, they form a common boundary or edge
between them which is no longer in direct contact with the surrounding
fluid. This means that the rate at which the cell reacts to the chemical
signal or its gradient will be reduced. This is incorporated into the
model presented here by reducing the value of 𝛽 at all the nodes on
the cells membrane by a factor of 𝑘𝑛𝑐,𝑖 where 𝑘 ∈ (0, 1] is a constant
which we will refer to as the reaction damping factor, and 𝑛𝑐,𝑖 is the
number of nodes on the membrane of the 𝑖th cell that are attached to
the nodes of a different cell. In the results presented here 𝑘 = 0.21∕100 =
0.9840344433646 is used as this means 𝛽 is reduced to 20% of its original
value when 100 nodes on the cell’s membrane are in contact with nodes
on the membrane of another cell.

2.6. Time-stepping methods

Eqs. (4) (or (10) if two or more cells have collided) and (5) form
a system of ordinary differential equations which we can solve for the
locations of the nodes on the cell membranes and nuclei. However, the
equations are too complex to solve analytically and so have to be solved
numerically.

Consider the general first order ordinary differential equation
𝑑𝑦
𝑑𝑡

= 𝑓 (𝑡, 𝑦(𝑡))

subject to the initial condition 𝑦 = 𝑦0 when 𝑡 = 0. If 𝑦𝑛 denotes the
approximate solution at time 𝑡 = 𝑛ℎ where ℎ is the time-step, then the
method used here is

𝑦𝑛+1 =
4
3
𝑦𝑛 −

1
3
𝑦𝑛−1 +

2ℎ
3
𝑓 (𝑛ℎ, 𝑦𝑛), 𝑛 = 1, 2,… (11)

where Euler’s method

𝑦 = 𝑦 + ℎ𝑓 (0, 𝑦 )
1 0 0
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Fig. 4. The motion of 4 cells placed equidistant and symmetrically about a central cell (coloured grey) which is emitting the signal. All times are given in hours. The results
shown in this figure show that the motion has the expected symmetry. This shows that the method is reproducing the expected motion. All times are given in hours.
is used to compute the first time-step as 𝑦−1 is not available. At each
time-step, the above numerical scheme (11) is applied to each node on
the membrane and nucleus in turn to update the location of the cell.
Once the updated locations of the membrane and nucleus have been
found the method described in Section 2.3 are used to update 𝐜 the
location of the centre of mass of the cell.

2.7. Parameters

The parameters used in this paper are summarised in Table 1.
In the literature the radii of cells used in numerical simulations

range from 7 μm in Stonko et al. (2015) to 12.5 μm in Chen et al. (2018),
Sfakianakis et al. (2018). Since the model presented here is general and
not applied to one particular type of cell, the lengths are expressed in
terms of cell radii. Values for the relative density of cytoplasm given in
the literature range from 1 (Moran et al., 2010) to 1.3 (Kim and Guck,
2020) whilst the corresponding values for the nucleus is 1.4 (Kim and
Guck, 2020).

The times are given in hours as the cells move very slowly.
Typically a cell will secrete a very small amount of the protein that

is the chemical signal and hence the magnitude of the chemical signal
is measured in moles. The parameter 𝐴 in the solution to the diffusion
equation, given by Eq. (8), is the source intensity and is the mass of
chemical signal emitted by the cell. If 𝐴 is chosen to be too large then
the concentration of the chemical signal can overwhelm the receptors in
adjacent cells and cause them to move unrealistically fast. On the other
hand, if 𝐴 is chosen to be too small, by the time the chemical signal
5

Table 1
The values of the parameters used in the calculations presented in this paper.

Parameter Symbol Values Unit

Number of nodal points 𝑁 500
Radius of membrane 1 cell radii
Radius of nucleus 0.25 cell radii
Cell internal deformation relaxation
coefficient

𝛼 0.5 per hour

Cell membranes deformation
relaxation coefficient

𝛿 30.0 per hour

Cell nucleus deformation relaxation
coefficient

𝛼𝑛 100.0 per hour

Cell response to external signal 𝛽 2.5 per mole
Relative density of cytoplasm 𝜌1 1.2
Relative density of nucleus 𝜌2 1.4
Diffusion constant 𝜇 2.0 (cell radii)2/hour
Source intensity 𝐴 15.0 mole
Number of time-steps 𝑛 10,000
Maximum time 20 hours

reaches another cell its concentration is too small to have a significant
effect on that cell. The choice 𝐴 = 15 moles is consistent with the value
of the secretion rate (1.2 × 10−6 mole/hour/(μm)3) used in Chen et al.
(2018) after the differences due to the diffusion equation model and
the different units for distances used here are taken into account.



Journal of Theoretical Biology 575 (2023) 111646A. Farmer and P.J. Harris
Fig. 5. The motion of 8 cells placed randomly about a central cell (coloured grey) which is emitting the signal. This example shows that cells closer to the emitting cell arrive
first and that cells further away are slower to respond and may not reach the emitting cell. All times are given in hours.
The value of the diffusion parameter 𝜇 controls how quickly the
chemical signal spreads out from an emitting cell. If the value of 𝜇 is
too small then the chemical signal will take a long time to spread out
from the emitting cell and so the time that it takes for the cells to react
to the chemical signal is too long. However, if the value of 𝜇 is too
large the chemical signal will spread too quickly and decay to close
to zero before the cells have had time to react to the signal. Harris
(2017) used a simple particle model to explore how different values of
the diffusion parameter 𝜇 affects the rate at which the chemical signal
spreads out from the cells emitting the signal and hence how rapidly
the other cells are attracted to the emitting cells to form clusters.
The results in Harris (2017) indicate the using values of 𝜇 between 1
and 10 (cell radii)2/hour produce realistic results so the value 𝜇 = 2
(cell-radii)2/hour was used to obtain the results presented in this paper.

The relaxation parameters are derived from those in Chen et al.
(2018) and have been rescaled due to the different units that we have
used for lengths. The membrane relaxation parameter, which does not
appear in the model presented in Chen et al. (2018), was chosen to be
one which accurately simulated an isolated cell returning to its original
shape when its motion stopped due to the chemical signal decaying to
the level where its effect is small enough to be negligible.

The parameters used in this paper were chosen to give realistic
looking simulations. A possible method for extending this model to
match the motion of real cells captured using time lapse photograph
or video is considered in the Discussion Section (Section 4).

3. Results

In this section we present the results of simulating the motion of
circular cells in some different configurations. It is worth noting at this
point that the cells do not have to be circular and that the methods
6

discussed in Section 2 can be applied to cells with membranes and/or
nuclei which have other shapes, albeit with the minor restriction that
the boundaries should be convex in shape.

In all the figures below, the cells emitting the signal are coloured
grey and the other cells are coloured white. In both cases the outer
black curve is the cell membrane and the inner curve is the boundary
of cells the nucleus. The colouring outside of the cells shows the
concentration of the chemical signal in the surrounding medium, as
given by Eq. (8), and is displayed on a logarithmic scale.

In the first example, shown in Fig. 4, there are four cells placed
symmetrically above, below, to the left and to the right of a fifth central
cell that is emitting the chemical signal. The outer cells are initially 6
cell radii from the central cell. As the motion of the cells changes over
time we display the results at non-equal time steps to show the most
important features of the cell motion. This is because the majority of
the drastic movement happens within the first few hours of our 20 h
interval before the chemical signal from the emitting cell decays away.

In this example, we would expect the motion of the four outer cells
to have the same symmetry as the original cells, and that the central cell
will not move. The results presented in Fig. 4 show that the motion of
the four cells do have the expected symmetry, and this gives us some
confidence that our numerical method is performing as expected. In
addition, the motion of the central cell is smaller than the expected
error in the numerical method used, and so can be considered to be
zero to within the precision of the numerical methods that are being
used.

The results shown in Fig. 5 show a group of 8 cells that have been
randomly placed about a single emitting cell where a random number
generator has been used to compute the coordinates of the cells with the
only condition being that they are not allowed to overlap at the start.

As expected, the cells that are closest to the emitting cell arrive at the
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Fig. 6. The motion of 25 cells where 5 of the cells (coloured grey) emit the chemical signal. Times at which the cells start emitting the signal are 𝑡 = 0, 2, 4, 6 and 8 for the cells
labelled A, B, C, D and E respectively in the time 𝑡 = 0 frame. All times are given in hours.
emitting cell first. In addition, the parts of the membranes of those cells
that are closest to the emitting cell get stretched towards to emitting
cell as the gradient in the chemical signal is larger on the sides of the
cells closest to the emitting cell. This can be seen in Figs. 5(b)–(d).

This example also shows that the cells that are further away either
attach to the outside of the cluster, such as the cell that starts at the
top in Fig. 5, or do not reach the cluster at all, such as the cell which
starts at the bottom left corner in Fig. 5.

Fig. 6 shows the results for 25 randomly positioned cells where 5
of the cells (shown in grey) are able to emit the chemical signal and
each starts emitting the signal at a different time. The emitting cells
are labelled A, B, C, D and E in Fig. 6(a) and they start emitting the
chemical signal at times 𝑡 = 0, 2, 4, 6 and 8 respectively. Fig. 6(b) shows
that up until time 𝑡 = 2 (which is when Cell B starts to emit the chemical
signal) the cells are attracted towards Cell A as this the only cell
producing a signal up until this time, and that the cells closer to Cell A
are attracted more than those further away. The subsequent Figs. 6(c)–
6(f) show how the cells are attracted towards the other emitting cells
after they have started producing a signal. Fig. 6(c) shows how the non-
emitting cell located between emitting Cells D and E forms an elongated
shape as it attracted towards the signals produced by both Cells A and
B.

4. Discussion and conclusions

This paper has presented a new mathematical model of how indi-
vidual cells can come together by chemotaxis and join to form clusters.
The model can be used to simulate different numbers of cells, different
7

numbers of cells emitting the chemical signal and at different times,
as illustrated by the examples shown in Figs. 5 and 6. Further, the
number of cells that can be simulated by this model is only limited by
the computational resources available. The memory requirements for
the method presented here are quite small as the model of a typical cell
with 500 nodes on both its membrane and nucleus will require less than
0.25Mb of memory. However, the CPU time needed is more of a issue.
The calculations for the examples given in Figs. 4–6 required approxi-
mately 12, 50 and 480 min of CPU time respectively on a Windows 10
PC equipped with a Ryzen9 5900x processor running at 4.8 GHz and
using gfortan code to carry out the calculations. The most expensive
stage of the calculations is detecting the collisions, since when there
are 𝑁 cells with 𝑛 nodes on the membrane of each cell then the CPU
time for checking for a collision is approximately proportional to (𝑛𝑁)2.
The other stages of the calculations are approximately proportional to
𝑛𝑁 where the main cost is in calculating the nodal interactions. The
computational cost of evaluating (9) for the gradient of the chemical
signal at each node point on the membranes of the cells is relatively
small.

The model presented here (and in Chen et al., 2018) are more
efficient, from a computational point of view, than models which use
methods like the finite element method, such as the one presented in
Elliott et al. (2012). The finite element method will require the forma-
tion and solution of a system of algebraic equations at each time-step
as well as a scheme to integrate the equations through time, whereas
the spring-based model presented here only requires a time-stepping
scheme to integrate the governing equations. Hence a model which
uses the finite element method will require significantly more CPU
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time and computer memory than the spring-based model presented
here. Further, the computational cost of a model which uses the finite
element method will be significantly more when it is used to simulate
the motion of more than one cell.

Previous mathematical models of how cells migrate to form clusters
have only considered very simple scenarios, such as the one proposed
by Harris (2017) which treats the cells as rigid particles, whereas the
model proposed here also simulates how the cells change shape in
the course of their motion. Other models, such as the one developed
by Chen et al. (2018), have simulated how cells move in response to
a chemical signal, but have not simulated how cells collide and join
together to form clusters. The model presented here extends the model
developed by Chen et al. (2018) to include cell collisions and adhesions
and so can simulate the shapes of cells after they have collided unlike
the models which treat the cells as rigid particles. The shapes of the
cells as they form clusters obtained using this model are very similar
to those observed in experimental work, see Fig. 1 for example.

One possible extension of the model presented here is to use it
estimate some of the parameters (such as the source intensity, diffu-
sion constant, the reaction damping factor and the various relaxation
coefficients) by minimising the difference between the locations and
shapes of the cells observed in a time lapse video and the locations and
shapes calculated using this model.
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