
This is the author accepted version of: Y. Zhou et al., "Multi-misconfiguration Diagnosis via Identifying
Correlated Configuration Parameters," in IEEE Transactions on Software Engineering, doi: 10.1109/
TSE.2023.3308755. The final published version can be accessed at: https://ieeexplore.ieee.org/
document/10247646

© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

1

Multi-misconfiguration Diagnosis via Identifying
Correlated Configuration Parameters

Yingnan Zhou, Xue Hu, Sihan Xu∗, Yan Jia∗, Yuhao Liu, Junyong Wang, Guangquan Xu, Member, IEEE ,
Wei Wang, Shaoying Liu, Fellow, IEEE , Thar Baker, Senior Member, IEEE

Abstract—Software configuration requires that the user sets appropriate values to specified variables, known as configuration
parameters, which potentially affect the behaviors of software system. It is an essential means for software reliability, but how to
ensure correct configurations remains a great challenge, especially when a large number of parameter settings are involved. Existing
studies on misconfiguration diagnosis treat all configurations independently, ignoring the constraints and correlations among different
configurations. In this paper, we reveal the phenomenon of multi-misconfigurations and present a tool, MMD, for multi-misconfigurations
diagnosis. Specifically, MMD consists of two modules: Correlated Configurations Analysis and Primary Misconfigurations Diagnosis.
The former determines the correlation among each pair of configurations by analyzing the control and data flows related to each
configuration. The latter is responsible for collecting a list of configurations ranked according to their suspiciousness. Combining the
outputs of two modules, MMD is able to assist the user in multi-misconfigurations diagnosis. We evaluate MMD on seven popular Java
projects: Randoop, Soot, Synoptic, Hdfs, Hbase, Yarn, and Zookeeper. MMD identifies 510 configuration correlations with a 4.9% false
positive rate. Furthermore, it effectively diagnoses 22 multi-misconfigurations collected from StackOverflow, outperforming two state-of-
the-art baselines.

Index Terms—Configuration, correlation, multi-misconfiguration, parameters, diagnosis

✦

1 INTRODUCTION

IN modern software engineering, there is a growing trend
to use a large number of configuration parameters to

improve software flexibility and customizability. Users are
supposed to customize values of configuration parameters,
which is usually in a configuration file, to fit their own needs
without recompiling programs [1]. Typically, a configuration
parameter is a key-value pair, where the key is a string
that defines configurable software behaviors, and the value
is a user-definable variable that designates the expected
behaviors. As the software scale grows, so do the number of
configuration parameters. For instance, Apache Hadoop [2]
has more than 2200 configuration parameters.

Although configuration parameters can improve the cus-
tomizability of software, how to ensure the correctness of
configuration remains a great challenge, especially when

• Yingnan Zhou and Xue Hu are co-first authors of the article.
• Sihan Xu and Yan Jia are the corresponding authors.
• Yingnan Zhou, Yuhao Liu, Junyong Wang and Wei Wang are with

the School of Computer and Information Technology, Beijing Jiaotong
University, Beijing, China.
E-mail: yingnanzhou@bjtu.edu.cn, 20120474@bjtu.edu.cn, juny-
ong.wang@bjtu.edu.cn, wangwei1@bjtu.edu.cn.

• Xue Hu and Guangquan Xu are with the Tianjin Key Laboratory of
Advanced Networking (TANK), College of Intelligence and Computing,
Tianjin University, Tianjin, China.
E-mail: huxue00@tju.edu.cn, losin@tju.edu.cn.

• Sihan Xu and Yan Jia are with DISSec, College of Cyber Science, Nankai
University, Tianjin, China.
Email: xusihan@nankai.edu.cn, jiay@nankai.edu.cn.

• Shaoying Liu is with the Graduate School of Advanced Science and En-
gineering, Hiroshima University, Higashihiroshima 739-8511, Japan.
Email:sliu@hiroshima-u.ac.jp.

• Thar Baker is with the School of Architecture, Technology and En-
gineering, University of Brighton, Brighton BN2 4GJ, UK E-mail:
t.shamsa@brighton.ac.uk

Manuscript received December 16, 2022; revised June 25, 2023.

a large number of configuration parameters are involved.
Software misconfiguration has been one of the major threats
to software reliability, especially in large-scale systems [3],
[4], [5]. Generally, software misconfigurations happen when
configuration parameters are set by inappropriate values,
leading to unexpected software behaviors and even failures.
Figure 1a shows an instance in Jchord where the config-
uration parameter chord.reflect.kind, which speci-
fies the algorithm to resolve reflection, only accepts none,
dynamic, static, and static_cast as the configuration
value [6]. When a user sets a value beyond the acceptable
list, a fatal error is raised in JChord.

The challenges of misconfiguration diagnosis arise not
only from a large number of configuration parameters
but also from their complex correlations. Figure 1b illus-
trates a real-world misconfiguration in Yarn [7], which
was caused by two configuration parameters related to
resource allocation. When the configuration parameter
yarn.nodemanager.resource.cpu_vcores is set to -1
and yarn.nodemanager.resource.detecthardware-
capabilities is set to True [7], Yarn [7] is capable of
automatically allocating the number of CPU Vcores. How-
ever, if a user only sets the first configuration to -1 and
ignores the second one, i.e., using the default value False,
Yarn can not allocate the number of CPU Vcores, a software
misconfiguration occurs.

In addition to the aforementioned direct correlations,
which is explicitly written in source code, there may also
exist some indirect configuration correlations. Figure 1c
shows an example in Hadoop Hdfs [8], where the con-
figuration parameter dfs.hosts sets the path name of
the file that specifies a list of hosts permitted to connect
to the namenode, and dfs.hosts.exclude specifies the

2

1 check(reflectKind, new String[]{“none”, “static”, “dynamic”,

“static_cast”}, “chord.reflect.kind”);

1 Public static void check(String val,String []legalVals,String key){

2 String []var6 = legalVals;

3 int var5 = legalVals.length;

4 …

5 for(var5 = 0;var5 <var9;++var5){

6 String s = var7[var5];

7 Str = Str + s + “ ”;

8 }

9 Messages.fatal("ERROR: Unknown value '%s' for system property

'%s’;expected: %s", new Object[]{val, key, Str});

10 }

//NOT “none”, “static”, “dynamic”, “static_cast”
//Throwing an error

Configuration parameter

(a) Misconfiguration Caused by a Single Con-
figuration parameter

1 if (! isHardwareDetectionEnable (conf)) {

2 int core;

3 if (cores == -1)

4 cores = 8 ;

5 }

6 } else {

7 if (cores == -1) {

8 cores = physicalCores * multiplier;

9 }

10 }

//Error: default cores not enough

‘yarn.nodemanager.resource.detect-hardware-capabilities’ default value: false

‘yarn.nodemanager.resource.cpu_vcores’

//true

//user sets cores to -1

//cores to -1

//automatic allocation

//default: false

(b) Misconfiguration Caused by Multiple
Configurations with Direct correlation

dfs.hosts dfs.hosts.exclude

1. hostA
2. hostB
……

1. hostA
2. hostC
……

host namenode

(c) Misconfiguration Caused by
Multiple Configurations with
Indirect correlation

Fig. 1: Three Types of Misconfigurations

file of the forbidden hosts. Theoretically, these two lists of
hosts are supposed to be mutually exclusive. However, if
a user defines the same host in both files, the host cannot
be connected to the namenode, which leads to an indirect
correlation and results in undesired software behaviors.

Despite the correlations among multiple configuration
parameters, most studies on misconfiguration diagnosis as-
sume that there is only one configuration parameter that
leads to a failure [9], [10], [11], [12], [13]. To diagnose
multi-misconfigurations, it is desirable to figure out corre-
lated configurations to assist diagnosis. Correlations have
also proven to be very common [14]. Nevertheless, the
correlations of configuration parameters cannot be easily
identified. First, not all configuration correlations are listed
in user manuals. For example, the user manual of Yarn
does not remind users of the correlations between differ-
ent configurations. Second, when a failure occurs due to
multi-misconfiguration, users can hardly associate the error
with correlations among different configuration parameters.
Although Chen et al. [15] proposed cDep to identify the
dependencies (correlations) among different configuration
parameters, cDep relies on the manually-defined code pat-
terns to identify correlated configurations, which lead to
high false negatives (e.g. Figure 1b and 1c) due to the
limitation of expertise experience.

To address these challenge, in this paper, we propose
a novel method to identify configuration correlations for
multi-misconfiguration dagnosis. Specifically, we first ana-
lyze the data and control flows related to each configuration.
Through program slicing we generate the profile vectors for
each configuration and then calculate the distance between
the vectors. By this means, we measure the correlations
between multiple configurations for multi-misconfiguration
diagnosis. We implement a tool named MMD (i.e., Multi-
Misconfigurations Diagnosis).

MMD consists of two modules, i.e., Correlated Config-
urations Analysis and Primary Misconfiguration Diagnosis.
During diagnosis, MMD first obtains a list of configuration
parameters ranked by their suspiciousness of causing the
configuration error. Then, it analyzes the data and control
flows related to each configuration parameter and calculates
the correlation between each pair of configurations. Finally,
by reordering the outputs of two modules, MMD is able to
diagnose multi-misconfigurations, taking into consideration
both the suspiciousness and the correlations of configura-
tions. MMD aims to assist software users in the diagnosis

of multi-misconfigurations. Developers can integrate MMD
with the software and users would get valuable feedback if
multi-misconfigurations occur.

Finally, we evaluated MMD on seven real-world projects,
i.e., Randoop [16], Soot [17], Synoptic [18], Hdfs [2],
Hbase [2], Yarn [2], and Zookeeper [2], compared with
two baselines (i.e., cDep [15] and ConfDiagnoser [10]).
The experimental results show that MMD is capable of
identifying 510 configuration correlations and effectively
diagnosing 22 real-world multi-misconfigurations collected
from StackOverflow [19], outperforming the baseline by a
large margin.

In summary, this paper makes the next contributions.

• Our research has identified a previously unknown
phenomenon called multi-misconfigurations, which
result from configuration correlations and can poten-
tially affect the precision of misconfiguration diagno-
sis. In Section 2, we provide a detailed explanation
of the different categories of multi-misconfigurations
that we have identified.

• In this study, we have introduced a novel ap-
proach for the methodical diagnosis of multi-
misconfiguration software errors via the develop-
ment of a tool, namely Multi-Misconfiguration Diag-
nosis (MMD). The principal functionality of MMD
entails performing slicing analysis of each configu-
ration parameter according to the data and control
flows, and subsequently measuring their distances
to establish their correlations. When a software er-
ror occurs due to multiple misconfigurations, MMD
outputs the problematic correlated configuration pa-
rameters to assist users diagnosing the error. The
description of this part mentioned in Section 3

• We evaluated MMD on seven popular Java projects
(i.e., Randoop, Soot, Synoptic, Hdfs, Hbase, Yarn,
and Zookeeper) and a set of real-world multi-
misconfigurations collected from StackOverflow [19].
The experimental results, shown in Section 4, exhibit
the capability of MMD to assist users in diagnosing
multi-misconfigurations.

In Section 2 we present several definitions and classifica-
tions of configuration errors. Section 3 details our approach,
and Section 4.1 reveals the information of implementation.
In Section 4, we evaluate the MMD and compare it with
other work, cDep and ConfDiagnoser. Sections 4.1, 4.2, and

3

4.3 reveal the experiments setup, dataset, and evaluation,
respectively. Section 5 provides a summary of the short-
comings of the proposed MMD.. Section 6 discusses related
work, and Section 7 states our conclusions.

2 BACKGROUND

In this section, we first define configuration correla-
tions and multi-misconfigurations and then describe the
motivation of the proposed method to diagnose multi-
misconfigurations. Some topics are well-explored in soft-
ware product lines (SPLs), we will declare the similarities
and differences in Section 6.
2.1 Configuration Correlation
Chen et al. [15] classifies configuration dependencies (or
correlation) into two types, i.e., functional dependency and
behavioral dependency. The former denotes the correlations
where a configuration can influence another configuration,
and the latter describes the cases where a set of config-
urations altogether influence the same system behavior.
Although some correlations could be successfully identified,
cDep relies on manually defined code patterns and ignores
correlations that are not directly reflected in the source
code. Next, we classify configuration correlations into two
groups and present the method to automatically estimate
correlations based on the classification.

2.1.1 Direct configuration correlations

We define direct configuration correlations as those that
can be directly captured from source code, and further
classify these correlations into three groups, i.e., control flow
correlation, data flow correlation, and functional correlation.
Control flow correlation. If the value of one con-
figuration determines whether the other one will be
executed or not, a control flow correlation occurs
between two configuration groups. Figure 2 shows
an example of the control flow correlation for two
configurations, where this.minDiskCheckGapMs and
this.diskCheckTimeout are two variables that store
the values of dfs.datanode.disk.check.min.gap and
dfs.datanode.disk.check.timeout, respectively. It
can be seen that this.minDiskCheckGapMs determines
whether this.diskCheckTimeout will be executed,
which relationship could be captured in control flows. In
many cases, a single configuration parameter is able to
control the values of multiple configurations, forming a
one-to-many control flow correlation. Just as some ”enable”
configuration parameters will determine whether a series of
configurations are enabled or not.
Data flow correlation. If the value of one configuration
parameter is influenced by the value of the other one,
a data flow correlation occurs between them. Figure 3
shows an example of the data flow correlation, where
this.heartbeatInterval and this.stateInterval
are two variables that store the values of the
configuration parameters dfs.heartbeat.interval
and dfs.namenode.stale.datanode.interval,
respectively. if the value of this.heartbeatInterval is
changed, this.stateInterval will change too, which
relationship could be captured in data flows.

1 if (this.minDiskCheckGapMs < 0L) {

2 … // DiskErrorException for Invalid value

3 } else {

4 if (this.diskCheckTimeout < 0L) {

5 … // DiskErrorException for Invalid value

6 } else {

7 … // Complete disk check

8 }

9 }

‘dfs.datanode.disk.check.min.gap’

‘dfs.datanode.disk.check.timeout’

//Boolean expression for gap&timeout
control flow correlation

Fig. 2: An Example of the Control Flow Correlation

1 this.Expire =(2*this.heartbeatRecheck)+10000L*this.heartbeatInterval;

2 this.staleInterval = getStaleIntervalFromConf(conf, this.Expire);

‘dfs.namenode.stale.datanode.interval’
‘dfs.heartbeat.interval’

//Numerical change for heartbeat&datanode
data flow correlation

Fig. 3: An Example of the Data Flow Correlation

Functional correlation. Besides the correlation where
one configuration influences the other one, in some
cases, multiple configurations work together to provide
software functionality. Figure 4 shows an example of
functional correlation, where this.heartbeatInterval
and this.namenodeReplication are two vari-
ables that store the values of the configuration
parameters dfs.heartbeat.interval and
dfs.namenode.replication.interval, respectively.
It can be seen that although these configurations are not
influenced by each other, the combination of their values
determines the value of the variable sleeptime, which
influences the function of moving blocks. As illustrated in
this example, functional correlation is usually captured on
both data and control flows.

1 long sleeptime =this.heartbeatInterval*2000L+this.namenodeReplication*1000L;

2 connectors = newNameNodeConnectors(…,…,sleepltime,…,…);

3 While (connectors.size() > 0) {

4 // move blocks

5 Thread.sleep(sleeptime);

6 }

‘dfs.heartbeat.interval’
‘dfs.namenode.replication.interval’

//heartbeat & replication → “sleeptime” Control the move block function

Fig. 4: An Example of the Functional Correlation

2.1.2 Indirect configuration correlations

In addition to the configuration correlations that can be
directly observed from source code, there are also indirect
ones hidden in the logic of software behaviors. Figure 1c is
an example of such a case. Although this kind of correlation
is more complex or undefined in source code, the logical
functions of software also are reflected through data and
control flows.

In other words, all the above correlations are reflected in
data and control flows. Therefore, we could abstract config-
uration parameters in data and control flows to estimate the
correlations.

4

2.2 Multi-misconfigurations

Previous studies treat each configuration parameter
independently and consider software misconfigurations
caused only by one configuration [10], [12], [13]. However,
due to the correlations described in Section 2.1, some
misconfigurations cannot be fixed only by one repaired
configuration. Figure 1b shows an example of multi-
misconfiguration. Based on the comparison of execution
paths, ConfDiagnoser [10] is able to assign the configuration
parameter yarn.nodemanager.resource.cpu_vcores
a high score of suspiciousness. However, due
to the violation of the correlation between
yarn.nodemanager.resource.cpu_vcores
and yarn.nodemanager.resource.detect-
hardwarecapabilities, the multi-
misconfiguration can not be fixed only by
yarn.nodemanager.resource.cpu_vcores be
corrected. Users need to locate both configurations
and fix them to satisfy their correlations. Since the
second configuration has no effect on the execution path,
ConfDiagnoser fails to identify it and the misconfiguration
remains unresolved.

As a consequence, identifying correlations among mul-
tiple configurations is a fundamental step into diagnose the
aforementioned multi-misconfigurations. To the best of our
knowledge, only Chen et al. [15] proposed cDep to identify
dependencies in configurations. They manually defined a
set of code patterns and utilized static taint analysis to
identify dependencies. However, cDep relies on manually-
defined code patterns to identify dependencies, which is
limited by expert expertise. On the other hand, cDep only
takes direct correlations into consideration, ignoring indirect
correlations, as in Figure 1c. Finally, cDep may also ignore
some direct correlations reflected in source code (e.g., the
case in Figure 1b) due to incomplete definition of the code
pattern and prevent over-contamination.
Motivation example. To overcome the aforementioned lim-
itations and identify the common functionalities of differ-
ent configurations, we propose a novel method that com-
bines the statistic method and program slicing to identify
configuration correlations. Figure 5 shows a part of inter-
procedural control flow graph related to the configuration
parameters mentioned in Figure 1b and Figure 1c. First, it
can be seen that while the configuration dfs.host and
dfs.host.exclude have no direct correlations such as
the control flow or data flow dependencies, they share
many functions (e.g., registerDatanode, getHostName,
and refreshNodes) in their execution paths. The rea-
son is that dfs.host and dfs.host.exclude operate
similar functionalities that manage the hosts to connect
to the namenode. It can also be seen that the configu-
ration heartbeatExpireInterval has only one com-
mon function with dfs.host.exclude, indicating that
there are few overlapping functionalities between them. For
this reason, we propose a statistic-based method of multi-
misconfiguration diagnosis, which exploits program slicing
to extract the control flow and data flow information for a
configuration parameter and then mines the configuration
correlations based on their similarities. Given a list of sus-
picious configurations, the proposed method reorders them

according to their suspiciousness scores and the correlations
among multiple configurations. A higher level of suspicion
indicates a greater likelihood of causing a configuration
error, while a lower level of suspicion suggests a lower
likelihood.

registerDatanode

getHostName

Include exclude

getDatanode removedatanode

refreshHostsReader

refreshDatanodes

refreshNodes isDatanodeDead

removeDeadDatanode

heartbeatExpireInterval

dfs.host

dfs.host.exclude

overlap

Fig. 5: An illustration of the correlations between two con-
figurations dfs.hosts and dfs.hosts.exclude

3 APPROACH

In this section, we present MMD, a statistically-based tool
for the automatic diagnosis of multi-misconfigurations. Its
workflow is first illustrated, followed by a description of the
two main modules, i.e. Correlated Configurations Analysis
and Primary Misconfigurations Diagnosis.

3.1 System Overview
Figure 6 illustrates the workflow of MMD, which consists of
two main modules: Correlated Configurations Analysis (CCA)
and Primary Misconfigurations Diagnosis (PMD). The CCA
module takes the source code of the target software as in-
put to analyze the correlations of configuration parameters
and generates a list of correlated configurations. When a
configuration error occurs, the PMD module calculates the
suspiciousness of all configuration parameters and outputs
a ranked list of configurations in descending order of their
suspiciousness. Combining the outputs of both modules
(i.e., CCA and PMD), MMD reorders the configuration
parameters and assists users in multi-misconfigurations di-
agnosis.

Specially, during preprocessing, MMD first identifies
the configuration class and locates the reading points of
configuration parameters. Then, using the reading points
as the seeds, the CCA module performs program slicing,
extracts the block structures, and generates a vector for
each configuration. Next, it calculates the distance between
the representations of configurations to obtain a list of
correlated configurations. In the phase of misconfiguration
diagnosis, when a configuration error occurs, the PMD mod-
ule calculates the suspiciousness of each statement affected
by configuration, slicing backward in descending order to
find configuration parameters and obtains a list of them
ranked in terms of suspiciousness. Finally, MMD combines
the outputs of PMD and CCA, and reorders the checklist of

5

Source
code

Block
structures

Vector
structures

Calculating
distance

Generating
Test cases

Jaccard

Correlated configurations list

· c.A
· c.C

…

first root cause list

Correlated Configurations Analysis (CCA)

Primary Misconfigurations Diagnosis (PMD)

Error list

S.C.R.
·c.A

—c.1

—c.2
·c.B —c.3…

·c.A

—c.1
—c.2
—c.3

·c.C
—c.4
—c.5Calculating

suspiciousness

Fig. 6: the Workflow of MMD.
The abbreviation c. refers to a configuration parameter

The abbreviation S.C.R. refers to the step of Suspicious Configurations Recommendation

configuration parameters, according to the suspiciousness
and correlations of configurations as an error list. In the case
that the error still exists, MMD recommends a correlated
configuration to the user who fixes a configuration param-
eter with high suspiciousness, which may be a second root
cause of the misconfiguration.

3.2 Correlated Configurations Analysis

Considering the correlations among different configura-
tions, MMD identifies the correlated configurations in the
CCA module. As discussed in Section 2, correlated con-
figuration parameters with the same functionality usually
share more execution paths than unrelevant configurations.
Based on this intuition, we extract the code statements
influenced by each configuration and generate a vector for
each configuration. By calculating the distance between a
pair of configurations, we estimate the degree of the corre-
lation between configuration parameters. The CCA module
generates a static library through a one-time correlation
analysis, and the resulting library can be reused as long as
the code remains unchanged.

Getting the reading points of configuration parame-
ters as the seeds, we perform program slicing and ob-
tain a set of code statements to generate a vector for
each configuration. However, there are often too many
statements influenced by a configuration, resulting in
very high-dimensional vectors. For instance, in Hdfs there
are nearly 30,000 sliced statements for the configuration
dfs.heartbeat.interval [8], which brings a great chal-
lenge to effectively estimate the distances among configura-
tions.

3.2.1 Block structure extraction
To reduce the dimensions of configuration vectors while
maintaining effectiveness, we optimize the notion of basic
block [20], which indicates a straight-line code sequence
with no branches. Specifically, we merge these methods
into a single block, which are not directly relevant to the
implementation of the functionality and do not differentiate
the execution path of the configuration parameters. These
methods are invoked by all configuration parameters, such
as variable assignment (e.g., getInt, etc.). And these methods
are not to call other methods within the software, except for
library functions like java methods. Additionally, they are
not directly related to the core functions of the software,
such as logging and exception handling. These methods

have a relatively minimal impact on the execution path of
the functionality, as most of the configuration parameters
invoke them without significant distinction in the distance
calculation.

public int[] getInts(String name) {

int[] ints = new int[name.length()];

for(int i = 0; i < strings.length; ++i) {

ints[i] = Integer.parseInt(strings[i]);

}

return ints;

} Single Block

block1

block2

block3

Fig. 7: Example of a Get Method Construct into a Single
Block

Figure 7 shows a method getInts, which was written
to get a value of the type int in Hadoop. In the first basic
block of getInts, it sequentially declares a variable. The
second block is a loop structure, which assigns values
to these variables. The third block declares the return
statement. It can be seen that the method getInts is a
method that performs a simple functionality for variable
assignment. It only invokes Java methods and is called by
all configuration parameters. While there may be variations
in assignment for different types, the function primarily
focuses on assignment. For this reason, we merge three basic
blocks into a single block to address the high-dimensional
problem of configuration vectors. For instance, given the
running example in Figure 1b with cpu vcores and hard-
warecapabilities, the CCA module takes the source code of
Yarn as input and extracts the block structure to represent
the source code.

3.2.2 Vector representation

After obtaining the aforementioned block structures for
the target software, we then represent the configurations
with the control and data flows influenced by them.
Procedure dependency graph is represented as PDG =
(V,D,C, S,E), where V = {ni|i ∈ 0, ..., n} is node (can
be basic block), D = {ni → nj |i, j ∈ 0, ..., n} , → de-
notes the direction of the data dependency edge, C =
{ni → nj |i, j ∈ 0, ..., n}, → denotes the direction of the
control dependency edge, S is the entry of program and E
is the exit of program. The PDGs are connected at call sites,
consisting of a call node cn that is connected with the entry

6

node e of the called procedure through a call edge cn→ cn.e.
All of these form system dependency graph, which can be
used for slicing.

Specifically, using target software and the read point of
a configuration parameter, we conduct program slicing and
obtain n blocks (bi). We use blocki to denote the number
of statements in the block ith. Slicing is represented as
Slice = (seed, cop, dop, v), where seed ∈ V , cop = {0, 1}.
If cop =1 and C (node → seed), node is added to v.
dop = {0, 1}, if dop =1 and D (node → seed), node is
added to v. v is a subset of the node in program. Next, we
slice the program with data and control flow to analyze the
source code from the reading points of each configuration
parameter (the program slicing strategies can be seen in
Section 4.3.2). By this means, we get a set of statements that
are directly affected by each configuration.

For each configuration cj , we use slicej to denote the
slicing results of cj , taking into consideration both control
and data flow. We also use sliceji to represent the number
of statements in bi for cj . Then, the influence score of cj in bi
can be calculated by vji =

sliceji
blocki

, which indicates how the cj
influences the bi. Finally, by calculating the influence scores
for all blocks, we obtain a vector V ectorj that encodes how
the configuration parameter cj influences the control and
data flows of the whole program as follows.

V ectorj = (vj1, vj2, ..., vji, ..., vjn) i = 1, ..., n (1)

Despite encoding the influences of each configuration,
the statements sliced from configuration parameters are not
always closely related to the features of the target software.
Therefore, we heuristically prune the slices to ensure that
the slicing results are highly correlated with software func-
tionalities. The pruning strategies are described as follows.

First, we only focus on the source code of the target soft-
ware, ignoring the implementation details of external meth-
ods such as the library and system methods which are un-
related to configurations. Second, we prune the statements
that have no effects on the data flow or control flows, such
as the output statements and exceptions. Third, for function
calls, we ignore the call statements and jump to the code
statements which are called. Based on the above strategies,
MMD is not only able to reduce the statements related to
the above configuration dfs.heartbeat.interval from
30,000 to 5,000, but also to maintain the semantics of the
vector representation. Following the example in figure 1b,
the CCA module using the block structures to represent the
source code as a vector. In the given example, the resultant
vector has a length of 412,157. Furthermore, the CCA mod-
ule constructs vectors for all configuration parameters like
V ectorcpu vcores and V ectorhardwarecapabilities.

3.2.3 Distance calculation

After obtaining the vector representation for each con-
figuration parameter, we estimate the correlations among
different configurations. Since the vector of each config-
uration reflects the functionality that the configuration is
involved in, we estimate the correlation between a pair
of configurations by calculating the distance between their
vectors. Specifically, we calculate the distance between the
configurations cx and cy by Dist(V ectorx, V ectory) =

√∑n
i=1(vxi − vyi)2, where Vx and Vy denote the vectors

for cx and cy , vxi and vyi denote the influence scores of Vx

and Vy in blocki.
Note that when the number of sliced statements is too

small, the corresponding vector becomes too sparse and
even might be a zero vector, indicating that there are no
statements sliced by the seed. Similarly, given a block bi, if
both vxi and vyi are zeros, their distance in bi (calculated by
vxi−vyi) would be zero too. However, it does not mean that
they are very close in terms of influencing the functionalities
of the target software or block. For this reason, we add
a bias to the Euclidean Distance by bias = m

n , where m
denotes the numbers of blocks where the influence scores of
both configurations are zeros, and n denotes dimension of
each configuration vector (i.e., the number of blocks). Then,
the distance between two configurations cx and cy can be
calculated as follows.

Dist(V ectorx, V ectory) =

√√√√ n∑
i=1

(vxi − vyi)2 + bias (2)

A smaller distance Dist(V ectorx, V ectory) indicates
that the configurations cx and cy involve more com-
mon functionalities, and might be more correlated
to each other. Continuing with the illustration de-
picted in Figure 1b, the CCA module calculates the
distance between two configuration parameter vec-
tors, like Dist(V ectorcpu vcores, V ectorhardwarecapabilities)
These distances are then sorted in ascending order, yielding
a static correlation result set for each configuration parame-
ter. cpu vcores exhibits a high rank in the correlation result
set, with a distance of 0.293 from hardwarecapabilities.

3.3 Primary Misconfigurations Diagnosis
This module is based on the idea of Fault Localization [21].
First of all, the target software is executed against many test
cases (TCs). A test case is a set of all value of configuration
parameters. We generate the test cases through ConfErr [22],
a tool to generates realistic configuration parameters. Con-
fErr automatically generates wrong parameters which have
semantic errors and so on, randomly selects parameters
to keep the default value. And information on the target
software’s execution is collected, which records the cov-
erage of program statements and their status (success or
failure). Then, Jaccard [23], a formula for fault location,
is used to calculate the suspiciousness of each statement.
Finally, MMD slices backward from the statement with the
highest suspiciousness, in order to locate the configuration
parameter as the root cause.

First, we randomly generate test cases in this paper.
The range of configuration parameters is obtained from
official user manuals, which are used to specify the value of
random generation. If the range of configuration parameters
is not depicted, a larger range of values will be randomly
generated. The test cases are injected into the software and
the collected information is represented, which is a matrix
and a result vector. The value in the matrix is 1 if the test
case covers the statements and 0 otherwise. The resulting
vector is represented as 0 if the program runs successfully
and 1 otherwise.

7

we get the following notations from the matrix:
Ncf (si): number of failed test cases covering si
Nuf (si): number of failed test cases not covering si
Ncs(si): number of successful test cases covering si
Then, the suspiciousness of each statement is given by

formula 3, and sorted in descending order of it.

Jaccard(si) =
Ncf (si)

Ncf (si) +Nuf (si) +Ncs(si)
i = 1, ..., n

(3)
Finally, a slicing set is obtained by slicing backward from

every suspicious statement. If the set contains read points
for configuration parameters, we consider those parameters
to be the root cause of the configuration error. The PMD
module generates a list of configuration parameters with er-
ror rankings based on the distance between the read points
and seed statements in the system dependency graph. If
not, continue looking for the set of the next suspicious
statements until a configuration is included. A first root
cause list of suspicious configuration parameters is formed.
Following the running example, during the occurrence of
a configuration error, test cases are generated and injected
into the software. After identifying the location of the error,
the root cause configuration parameter is obtained from the
slice.

3.4 Suspicious Configurations Recommendation

Getting the outputs of two modules (i.e., Correlated Con-
figurations Analysis and Primary Misconfigurations Diag-
nosis), we reorder the configurations considering both their
suspiciousness and correlations. Specifically, we select the
correlation results from CCA module based on the results
of PMD module. If the CCA module outputs the first root
cause of misconfiguration, we prioritize the configuration
parameters, which are the most correlated configurations
for it according to the output of the PMD module. For the
running example, MMD then reports the root cause along
with the correlation set as an error list. In this scenario, the
second configuration parameter, hardwarecapabilities, from
the correlation set is identified as the cause of the error.

4 EVALUATION

In this paper, we evaluate the effectiveness of MMD by
answering the following questions.

• RQ1: How effective is MMD to diagnosis multi-
misconfiguration compared with single configura-
tion error diagnosis tool?

• RQ2: How do the slicing strategies affect the effec-
tiveness of the CCA module?

• RQ3: How does the effectiveness of the CCA module
for mining correlated configurations compare with
state-of-the-art baselines?

4.1 Experiments Setup

We conduct the experiments on the a computer machine
with the Intel i5-7300HQ CPU (2.5Ghz) and 16GB physical
memory. We construct block structure, perform slicing and

TABLE 1: Information of Test Cases

Program Number of test cases Average of code coverage

Randoop 12 92.5%
Soot 16 87.6%

Synoptic 10 91.4%
Hdfs 64 52.8%

Hbase 75 58.6%
Yarn 63 51.1%

Zookeeper 10 49.3%

instrumentation via WALA [24], a bytecode analysis frame-
work for Java. First, we add a forward slicing function to
WALA, in order to get the statements influenced by con-
figuration parameters. Then, the slicing results performed
in CCA and PMD module can be shared, which reduces
the running time of MMD and significantly improves the
efficiency of it. As for pruning, Intermediate Representation
(IR) is used to denote statements, which is the language
of an abstract machine and is easier to character matching.
In our dataset, we observed only slight differences in the
suspiciousness values of statements when utilizing different
formulas [25], [26], [27], [28], [29]. Furthermore, the Jaccard
demonstrated a better result. What’s more, to get the first
root cause, the PMD module can be integrated with any
formula used to derive suspiciousness scores for statements,
because the process of locating the first root cause and iden-
tifying correlated configurations are two separate modules.
We use the error injection tool ConfErr [22] to randomly

generate test cases and inject them into the software based
on the number of profiles generated by ConfDiagnoser. For
other objects not covered in ConfDiagnoser, we use the
number of test cases according to the line of code. If the
test cases for injection cover more sliced code, they can be
more accurately located to the statement, and thus to the
configuration parameters. Thus, the quality of the test case
is determined by the coverage of sliced code. Table 1 shows
the information of test cases. Due to the large size of Hadoop
components, many functions are not covered in our tests.
Therefore the code coverage is lower compared to Randoop,
Soot, and Synoptic.

Three authors manually checked the correlations in-
ferred by CCA module, during labeling, and we took Fleiss’
Kappa to assess the reliability of agreement among the
raters [30]. The result is 0.83, indicating that the raters reach
high agreement.

4.2 Subject Projects and Dataset
We conduct experiments on seven popular Java projects
to evaluate the effectiveness of MMD, i.e., Randoop, Soot,
Synoptic, Hdfs, HBase, Yarn, and ZooKeeper. These subject
projects have been widely used in previous works [10], [11],
[12], [15]. The statistics of the subject projects can be seen
in Table 2. Since there exists no standard datasets for multi-
misconfiguration diagnosis, we created the dataset from two
aspects, i.e., StackOverflow [19] and error injection.

First, we collected real-world multi-misconfigurations
from StackOverflow [19]. Specifically, we search issues from
January 2012 to December 2022 with a set of keywords
(i.e., configuration, configure, config, multi-configuration,

8

TABLE 2: Subject Projects and Dataset

Project # Config LOC # Error Source of errors

Randoop 57 18587 3 manually crafted
Soot 49 159273 3 manually crafted

Synoptic 37 19153 2 manually crafted
Hdfs 431 644K 5 [31], [32], [33], [34], [35]

HBase 202 755K 4 [36], [37], [38], [39]
Yarn 397 639K 4 [40], [41], [42], [43]

ZooKeeper 51 105K 1 [44]

configuration correlation, multiple configuration, and op-
tion correlation). We found 86 issues for the components of
Hadoop (i.e., Hdfs, HBase, Yarn, and ZooKeeper). Then, we
manually checked these issues and filtered out issues that
are either irrelevant to configuration errors or only relevant
to single-configuration errors. We manually reproduced the
issues and maintained the cases that could be reproduced
for diagnosis. Finally, we obtained 14 real-world multi-
misconfiguration cases from StackOverflow.

Since there exist few relevant issues about Randoop,
Soot, and Synoptic on StackOverflow, we manually crafted
the multi-misconfigurations for these three projects fol-
lowing previous works on injecting errors into configura-
tions [22]. Specifically, we first analyze the configuration
files to obtain the configuration options. Then, We randomly
select a set of correlated configurations from the dataset
in a previous study [15], and manually check the presence
of correlations between these configurations. We randomly
change the values of correlated configuration parameters by
introducing spelling, structural, and semantic errors. Finally,
if the software crashes or experiences a silent error due to
the change of configuration values, we add it into the multi-
misconfiguration dataset.

4.3 Results
In this section, we display the experimental results, so as to
evaluate the effectiveness of MMD.

4.3.1 Answers to RQ1
This section intends to evaluate the effectiveness of PMD
module and MMD. PMD and MMD are both focused on
diagnosing configuration errors. Specifically, PMD is used to
diagnose single configuration parameter errors, while MMD
is used for multi-misconfiguration errors. We evaluated the
effectiveness of both methods in diagnosing these types
of errors. Meanwhile, MMD is compared with an existing
classic diagnosis tool named ConfDiagnoser [10]. Most of
configuration error diagnosis tools output an error list with
configuration parameters in order. The higher ranking of
configurations, the higher suspiciousness of causing an er-
ror. Therefore, the rank of real configuration parameter in
the error list that leads to an error is usually used as a criteria
to judge the effectiveness of tools. The smaller this rank is
(the higher it is), the better the tool is at diagnosing.

Injecting errors from the multi-misconfiguration dataset,
which consists of a total of 22 errors, into target projects
and simultaneously running MMD, we obtain the error list.
Additionally, within our multi-misconfiguration dataset,
two configuration parameters (”1st” and ”2nd”) contribute
to the occurrence of multi-misconfigurations. The rank of

the real configuration parameter that caused the error is
summarised in Table 3. The 1st error is the rank of the
actual misconfiguration parameter in the first root cause
list given by PMD module, the 2nd error records the rank
of the second actual configuration parameter in the error
list given by MMD. ConfDiagnoser is a single configuration
error diagnostic tool, so it can only diagnosis 1st error and
cannot list the other suspected configuration parameters in
a multi-misconfiguration. Therefore, in the 2nd error we
record the rank of the second actual configuration parameter
in the error list given by ConfDiagnoser that causes multi-
misconfiguration.

As for the 1st error, it can be seen that MMD has
an average rank of 1 for single configuration errors and
ConfDiagnoser has an average rank of 1.22, which is a small
difference between them. First of all, ConfDiagnoser only
takes the predicates (control flow) affected by the configura-
tion parameters into consideration, which makes it possible
to reduce the content of analysis, but ignores another part
of the program execution path, the data flow. Meanwhile,
ConfDiagnoser requires a database for profiles in advance,
and the completeness of the database limits its diagnostic
effectiveness. MMD adds the data flow to the analysis pro-
cess, making it more comprehensive. Furthermore, MMD
performs spectrum analysis and fault location calculations
by randomly generating test cases, abandoning the database
comparison and making the method more practical. MMD
has improved the diagnosis of single configuration errors
in both aspects and has resulted in an average ranking
improvement of 0.22.

When comes to the 2nd error, it can be seen that the
average rank of the real configuration parameters in the
correlation list given by MMD reaches 1.13. However, the
average ranking of ConfDiagnoser is 7.13, which is an
increase of 6 compared to MMD. The difference comes from
the assumption of ConfDiagnoser, which is the error caused
by single parameter. For highly suspicious statements it
only adds the first configuration parameter found by DFS
to the error list, and the error list is linear and does not take
correlations among configuration parameters into consider-
ation. MMD improves the rank of multi-misconfigurations
by 6 through CCA module, and reduces the complexity of
checking and fixing the error. Overall, MMD is very effective
in diagnosing multi-misconfigurations. MMD successfully
finds all the actual root causes of program errors and assists
users in fixing problems.

We conducted an analysis of the “1st Parameter,” “2nd
Parameter,” and “Sum” of MMD and ConfDiagnoser using
the Wilcoxon signed-rank test [45] and Cliff’s delta effect
size [46]. In Table 3, the “p-value” column represents the p-
value obtained from the Wilcoxon signed-rank test, while
the “cliffs delta” column displays the statistic for Cliff’s
delta.

From the results, it is evident that the p-values for all
three groups of data are less than the commonly used
significance level of 0.05, indicating a significant difference
between the paired samples at the 0.05 significance level.
Regarding the “1st Parameter,” the p-values are compara-
tively larger than the other group due to close rank values
in this experiment. Nevertheless, MMD still exhibits an
average improvement of 0.22 compared to ConfDiagnoser.

9

TABLE 3: Comparison with ConfDiagnoser

Project ID 1st Paramater 2nd Parameter Sum
MMD ConfD. MMD ConfD. MMD ConfD.

Randoop
1 1 1 1 5 2 6
2 1 2 1 3 2 5
3 1 1 1 4 2 5

Soot
4 1 1 1 5 2 6
5 1 1 1 3 2 4
6 1 2 1 5 2 7

Synoptic 7 1 1 1 4 2 5
8 1 1 1 5 2 6

Hdfs

9 1 1 1 19 2 20
10 1 1 1 7 2 8
11 1 1 2 13 3 14
12 1 2 1 15 2 17
13 1 1 1 6 2 7

Hbase

14 1 1 1 6 2 7
15 1 2 1 9 2 11
16 1 1 2 4 3 5
17 1 1 1 9 2 10

Yarn

18 1 1 2 8 3 9
19 1 1 1 11 2 12
20 1 2 1 7 2 9
21 1 1 1 5 2 6

Zookeeper 22 1 1 1 4 2 5

Average 1 1.22 1.13 7.13 2.13 8.36

p-value 0.025 4.77E-07 4.77E-07

cliffs delta -0.227 -1.000 -1.000

ConfD. represents ConfDiagnoser.

All three Cliff’s delta data are negative, suggesting that in
each case, the median of the MMD tends to be smaller
than the median of the ConfDiagnoser. The second and
third data points show larger effect sizes, indicating a more
substantial difference between the “2nd Parameter” and
“Sum” in comparison. The effect size of the “1st Parameter”
is smaller, and the difference is less pronounced, but it still
shows statistical significance.

For the “2nd Parameter” and “Sum,” the results of
Wilcoxon signed-rank test and Cliff’s delta demonstrate a
significant difference between MMD and ConfDiagnoser,
reinforcing the superiority of MMD over ConfDiagnoser in
multi-misconfiguration diagnosis.

On average, MMD takes approximately 5 minutes and 14
seconds for Randoop, Soot, and Synoptic, while the larger
software projects such as Hdfs, Hbase, Yarn, and Zookeeper
require an average of 88 minutes and 47 seconds. It is
important to note that program analysis of larger software
projects naturally takes more time due to their complexity.
To mitigate the time overhead, MMD leverages result reuse,
which significantly reduces the execution time of the tool by
utilizing previously computed results.

Although MMD can only provide an error list without a
specific fixing advice, we briefly describe how error fixing
can be performed using the error list based on evaluation.
For the example of Figure 6, users can modify Top-1 configu-
ration in PMD by prioritizing, if the software runs smoothly,
then a single configuration error has occurred; if the error
still exists, then multi-misconfiguration is considered to
have occurred and an extended part of the error list should
be checked. Troubleshoot correlated configurations in turn.
If the error still exists after checking all the configurations
correlated with Top-1 first root cause, go back to check the

following configuration in PMD list. This is a rare situation,
and you can see in Table 3 the first root causes ranking first.
Repeat the above steps until the error is fixed.

Answer to RQ1: On average, MMD diagnosed the multi-
misconfigurations by only checking 2.13 configurations,
which exhibits the superiority of MMD compared to the
baseline which needs to check 8.36 configurations for
multi-misconfiguration diagnosis.

4.3.2 Answers to RQ2

Our intuition for determining whether there is a correlation
among configuration parameters is to calculate the distance
between the vectors represented by the execution paths
they affect. The closer the distance, the more similar their
behaviour is likely to be, and the more likely they are to
be correlated. The execution path refers to data flow and
control flow, where changes in the data flow can represent
the transfer of values of variables and the iterative process,
and changes in the control flow can represent the jumping
path of statements. We argue that both data flow and control
flow can respectively detect the different types of correla-
tions mentioned in Section 2. Therefore, in this section we
focus on the impact of using three slicing strategies on the
accuracy and efficiency of the correlation analysis results.

We construct vectors according to three slicing strategies,
data flow, control flow and a combination of both, and then
record the number of correlations under the three strategies.
As can be seen in Table 4, using the data flow strategy
identifies 89% of the correlations, but there are some false
positives. The control flow strategy has no false positives,
but the number of correlations extracted is 11%. We have
analyzed the results by comparing the results and codes
within the two strategies.

Control flow explicitly represents the execution path of
a program through jump statements, so correlations like the
one in Figure 2 will be identified easily. Such control flow
correlations are relatively simple, even when jumping into
other functions, only the jump statements are fetched into
vector, so the false positive is very low when just using a
control flow strategy. However, the number of correlations
with it is low. Data flow can track the transformation of
variables and it also works when configuration parameters
contain iterations of values in jump statements. This is the
reason why data flow strategies can get a higher number
of correlations, which cause false positives. These false
positives are briefly described in RQ2, and we will explain
them in terms of data flow. As in Figure 3, in order to
ensure a high degree of code reusability, many simple
value changes among configuration parameters need to be
passed as arguments to other functions. Such functions are
common to many configuration parameters and can lead to
false positives if the configuration parameters have a short
execution path, i.e. a sparse vector.

The combination of data and control flow slicing strategy
identifies more correlations, and keeps false positives to
a low level by adopting a heuristic approach during the
experiment. Although the slicing strategy with the two
combinations takes longer to identify correlations, we need
to find as many correlations as possible, and the results
of CCA can be retained until the next update of program

10

TABLE 4: Comparison of Three Slicing Strategies

Project Data flow Control flow Data flow & Control flow
Identify Known TP New TP FP Identify Known TP New TP FP Identify Known TP New TP FP

Randoop 29 0 27 2 7 0 7 0 33 0 31 2
Soot 42 0 40 2 6 0 6 0 47 0 45 2

Synoptic 13 0 13 0 5 0 5 0 15 0 15 0
Hdfs 98 37 56 5 20 3 17 0 111 38 68 5

HBase 68 8 57 3 17 5 12 0 74 10 61 3
Yarn 182 40 130 12 34 15 19 0 203 45 146 12

ZooKeeper 22 4 17 1 5 3 2 0 27 4 22 1

Overall 454 89 340 25 94 26 68 0 510 97 388 25

without having to analyze it multiple times. Therefore, the
runtime does not affect the choice of slicing strategy.

Answer to RQ2: With the data flow analysis, MMD
identified 360 more configuration correlations compared
to the control flow analysis, with slightly higher false
positive rate. However, combining the data and control
flow analysis, MMD achieved the best performances
compared with other settings.

4.3.3 Answers to RQ3
We record the result of CCA module in the seven Java
projects and count the total number of correlations (as
shown in Table 5) for each project according to 2 configu-
ration parameters as 1 correlation combining the data and
control flow analysis. Then, manually go through the source
code and user manual to check whether these correlations
follow the notion of correlation described in Section 3.2 . If it
does not, it is a False Positive (FP) (as shown in Table 5 FP).
TP indicates the true number of correlations at the end of
our manual checks. We also reproduced the previous work,
cDep, as a benchmark for comparison.

As shown in Table 5, CCA module effectively identified
510 correlations in total with a low FP rate (i.e., 4.9%). CCA
can be seen to be highly accurate and effective in correlation
analysis. MMD’s FP rate is 4.9%, which is acceptable. It
is mainly due to the fact that the execution path of some
configuration parameters will go through a large number
of inevitable statements and methods, such as entering
the same constructor declaration function and initialization
function. In addition, the infrequent use of these configura-
tion parameters makes the distance between the execution
paths very close, resulting in false positives.

As Chen et al. [15] constructs a correlated dataset by
manual observation in order to evaluate cDep. However,
FP is not recorded according to the classification of the
software, we re-run cDep and count it against the manual
dataset. As Table 5 shows, the cdep has an FP rate of 15.6%,
which is higher than the MMD. The precision of MMD is
precision = TP

TP+FP = 485
485+25 = 95.1%. Because of the

huge amount of software code, it is difficult to construct
an accurate dataset of correlations for the configuration pa-
rameters. The correlation between configuration parameters
can be relatively complex. Despite the software being small
in scale, its functionality complexity makes it challenging
to determine the absence of correlation between the two
parameters. At the same time, the number of correlations
between configuration parameters is much larger than the
number of configuration parameters. For instance, in the

case of the Synoptic, although it only has 37 configuration
parameters, the maximum number of correlations is 666.
Therefore, it is also hard to count TN and FN. Using the
results of cDep as a benchmark for comparison, FN is 237 in
MMD, it did not miss any reports. In other words, the recall
rate of MMD compared to cDep is 100%.

The reason for MMD to have a good performance
in TP is that it is a statistics-based method, which
allows more correlated configurations to be found than
a code pattern-based method. Specifically, the code
patterns defined by cDep rely on the knowledge and
expertise of experts, which leads to limitations in its
flexibility. An example is two configuration parameters
dfs.datatransfer.server.fixedwhitelist.file
and dfs.datatransfer.client.fixedwhitelist.
file in Hdfs [8] (hereinafter referred to as server and
client). The configuration server overrides the value
of client by using object passing. This is a complex
transfer relationship through other basic blocks and objects,
which is difficult for cDep to discover. The configuration
server overrides the value of client by using object
passing, which is a complex execution path through other
basic blocks, making it a mismatch with the code pattern
of cDep. What’s more, cDep makes efforts to prevent
over-contamination are also responsible for their omissions.

In addition to the undefined code patterns, CCA module
of MMD is able to find covert correlations of configuration
parameters, all of which affect a certain function of the
software but cannot be easily connected in source code. For
example in Figure 1c, the intersection of values specified by
the two configurations should be empty, but we did not find
out how the two configuration parameters are related by
examining the code. These correlations cannot be detected
by using cDep, as it does not match any common code pat-
tern. However, they can be discovered by the CCA module
in MMD is based on a statistics method. This is mainly
because the correlated configuration parameters both in-
fluence many of the same methods and statements, which
means all of them work on closely related functionality in
the software. MMD uses program slicing to extract the con-
trol flow and data flow of configuration parameters, which
could reflect configuration parameters’ behavior. The higher
overlap of the same method and statements, the higher
the likelihood configuration parameters work together and
correlate with others. MMD effectively complements the
dependency in cDep’s ”one-off” code pattern.

This experiment suggests that we cannot only focus on
the configuration correlations at the code level, but also

11

TABLE 5: Results of Mining Correlated Configurations

Project LOC MMD cDep
FP TP FP TP

Randoop 18.6K 2 31 0 0
Soot 159K 2 45 0 0

Synoptic 19.1K 0 15 0 0
Hdfs 644K 5 106 26 68

Hbase 755K 3 71 6 33
Yarn 639K 12 191 10 120

Zookeeper 105K 1 26 2 16

Overall 25 485 44 237

should pay more attention to the correlations hidden in deep
functionalities.

Answer to RQ3: MMD successfully identified 510 con-
figuration correlations in seven popular Java projects
with a 4.9% false positive rate, which demonstrated the
superiority of MMD compared with the baseline.

5 LIMITATIONS AND THREATS TO VALIDITY

5.1 Limitations

The types of multi-misconfigurations diagnosed by MMD
are limited. MMD provides a correlation list of each con-
figuration parameter. However, the number of parameters
that cause multi-misconfiguration in the real world is likely
to be smaller than the correlation one, and there may be
multi-misconfigurations that are not due to correlation at
all. Therefore, MMD has false positives and false negatives
by diagnosing multi-misconfigurations based on the corre-
lation among configuration parameters.
MMD does not generate fine-grained correlation cate-
gories. Compared with cDep, MMD is more general because
it does not require an additional definition of the code
pattern. When encountering a wide variety of Java software,
MMD can keep low false positive rate, which is not limited
to pattern definition. Unfortunately, our current work is
only focused on identifying whether there is a correlation
among configurations, MMD cannot further specify the
exact type of correlation like cDep.
MMD advises the user to fix the error according to the
error list, but the process of fixing could be long. MMD
outputs a list of suspicious error list which has been proven
that the actual root cause ranks pretty high. However, how
to fix the error is quite complex that can consume a lot of
time.

5.2 Threats to Validity

The dataset of multi-misconfigurations is not large. Since
it is the first work to concentrate on multi-misconfiguration,
there exists no multi-misconfiguration dataset that can be
used in the evaluation. Thus, we construct a dataset in-
cluding 22 multi-misconfigurations for evaluating MMD.
According to the definition of multi-misconfigurations, the
number of configuration parameters causing errors should
be variable. However, our dataset may not be large enough
due to the manual cost of reproducing multi-configuration
errors. In addition, we only take into consideration 2-
configuration parameter-errors, ignoring the errors caused

by more then two configurations, which can be rarely seen
in the real world.

A small part of the misconfiguration dataset is not
from the real world. As we mentioned in Section 4, we
collected part of dataset from StackOverflow. In order to
compare with previous work, we have to take Randoop,
Soot and Synoptic into consideration. However, due to
their infrequent use of them, we did not find any multi-
misconfiguration issues about them. Therefore, manually
crafted multi-misconfigurations were added to dataset as
mentioned in Section 4.2, making part of our result unrepre-
sentative in the real world. At the same time, the multi-
misconfiguration dataset were obtained through manual
observation and verification, making it difficult to find all
indirect correlations, as shown in Fig. 1c. Consequently, the
experiments may not effectively capture indirect configura-
tion correlations in Randoop, Soot, and Synoptic.

The benchmark of correlation dataset may be not com-
plete. The one and only recognized and complete dataset
of correlation is cDep, which includes Hadoop only. To find
out if MMD could detect correlations among configuration
parameters as many as possible, we constructed a bench-
mark for Randoop, Soot and Synoptic by checking the user
manual, which inevitably results in false negative of this
benchmark.

6 RELATED WORK

Current research in the area of configuration errors includes
error diagnosis, error injection [22], [47], and repairing [48],
[49], [50]. The idea of error injection is to generate a large
number of test cases that violate the constraints of con-
figuration parameters, then inject them into the software
to detect whether the source code is robust. The repairing
realizes how to convert from the wrong to the right state
of the software after locating the error configuration. Error
diagnosis is divided into the white- and black-box-based
approaches, depending on whether software source code is
used.

6.1 Black-box Configuration Diagnosis

The core method of black-box-based diagnosis is the dis-
covery of constraint rules or repeated trial-and-error on
the historical data and auxiliary files after the software
has been run for diagnosis. Specifically, Yuan et al. [51]
identify sequences of events in the Windows registry, gen-
erate sequences of contextual rules, detect the sequence of
execution at runtime, then identify and filter the exceptions
that occur. Encore [52] considers the interaction between
configuration settings and the execution environment to
learn configuration rules. Talwadker et al. [53] implement
the Dexter, a tool that uses storage system logs for problem
detection, which ranks log messages and matches keywords
by heuristics, and later provides solutions to problems
by uncovering relevant system commands and execution
logs. PracExtractor [54] manages and detects configuration
parameters by performing natural language processing on
the text information in the user manual, extracting rele-
vant content about the configuration information in the

12

user manual, and organizing it into constraints. black-box-
based diagnosis focuses on the external output results of
the program and it does not observe how applications use
configuration parameters, so its accuracy is lower than that
of White-box-based diagnosis.

6.2 White-box Configuration Diagnosis
The white-box-based diagnosis uses the software source
code or binary code to analyze and combine statistical analy-
sis, replay techniques, dynamic staking, etc., to find the con-
figurations that may be wrong. Specifically, Sherlog [55] uses
information from runtime logs to analyze source code and
infer information about the execution path of the program
at the time of the configuration error. This approach requires
logs to be complete and accurate, and the effectiveness of log
analysis relies on the developer’s domain knowledge, which
makes this approach highly uncertain. confAid [56] per-
forms dynamic information flow analysis using binaries and
configuration files. ConfDebugger [12] and ConfDoctor [13]
diagnose configuration errors by taking the intersection of
the forward slicing of configuration parameters and the
backward slicing of program statements in the stack trace.
They all focus exclusively on configuration errors that lead
to a crash or assertion failure. However, MMD can diagnose
any type of configuration error. ConfDiagnoer [10] compares
the correct and incorrect execution profiles, finds predicates
on the incorrect execution path, and finally matches them to
the incorrect configuration parameters. ConfSuggester [11]
is a new application of ConfDiagnoer for diagnosing con-
figurations that have changed since the version update. The
two work above diagnose both crash and non-crash con-
figuration errors, like all White-box-based diagnosis, they
assume that only one configuration parameter causes the
error, whereas MMD can address multi-misconfigurations.
Configuration parameter representation in code. Few parts
of the researches in program analysis-based diagnostics
focus on the representation in configuration parameters.
SPEX [57] classifies the types of configuration parameters,
traces the data flow with configuration parameters, and
automatically records inferences of constraint rules for in-
dividual configuration parameters under that path. The
constraint rules here refer to individual configuration pa-
rameters. ConfigX [58] and cDep [15] concentrate on the rep-
resentation among configurations. ConfigX automatically
infers rules based on human definitions, and cDep detects
dependencies among configuration parameters by pattern
matching and taint propagation. Both of them require pre-
definition, which is not fully automated and the results
are dependent on the accuracy and completeness of the
pre-definition. Microsoft designed Rex [59], a tool, using
machine learning and program analysis, learns change-rules
to capture correlations. In order to scale well, Rex mine the
correlations at the file-level.

6.3 Configurations in Software Product Lines
The term of configuration is also used in the field of software
product lines (SPLs) [60], [61], but it is different from the
configuration in this paper. In SPL, a feature refers to a
functionality of a software product that meets a require-
ment [62]. By building a tree hierarchy, the interactions

between features can be modeled and analyzed, based on
which configuration analysis (also mentioned as variability
analysis [63]) is conducted to combine features in SPLs [64].
However, in this paper, a configuration refers to a key-value
pair in source code that can be configured by users, which
is not only a switch of a functionality, but also other types
of settings (e.g., diskCheckTimeout in Figure 2).

Jens et al. [65] analyze the differences between feature
flags and configuration options. Specifically, feature flags are
developer-oriented and need to be deleted when the devel-
opment process is completed, while configuration options
are user-oriented and maintained in software. Variability
bugs in SPLs refer to bugs that involves at least one fea-
ture that have to be enabled or disabled to make the bug
occur [66]. However, in the field of misconfiguration diag-
nosis, a configuration error (i.e., misconfiguration) refers to
incorrectly setting of one or multiple configuration options
(e.g., the value of a configuration is too large). To sum
up, although the terms in SPLs and this paper might have
some overlap, their definitions are different. As previous
studies in the literature [9], [10], [12], [13], [22], [53], [58],
this paper focuses on diagnosing the errors of configuration
parameters at the source-code level, which are not only a
switch of a functionality.

7 CONCLUSION AND FUTURE WORK

This paper presents MMD, a tool for diagnosing errors,
which are caused by multiple configuration parameters
of the software. It is based on program statistics analysis
and takes software source code as input. MMD generates
error lists by combining a list of configurations ranked by
suspiciousness and correlated configuration parameters to
help users diagnose multi-configurations. Our evaluations
show that it can effectively diagnose real-world multi-
misconfiguration with low false positive rate, and can find
more cases than other state-of-the-art work. In the future,
we could expand our system by adopting more effective
program analysis frameworks and apply the idea to other
software in different languages. In the future, we will
expand our system by adopting more effective program
analysis frameworks, applying the idea to other software in
different languages, and building a configuration parameter
correlation library for more software to assist developers to
inject multi-misconfigurations for adding robustness. And
generate a true positive dataset of correlated configurations
in this research area.

8 ACKNOWLEDGMENTS

The authors would like to thank the Editor and the re-
viewers for their constructive comments and valuable feed-
back. This work is supported in part by the Fundamen-
tal Research Funds for the Central Universities of China
under Grant 2020JBZ104, the National Natural Science
Foundation of China under Grant U21A20463, U22B2027,
62172297, 62202245, 62102198, 61971029, 61902276, Tian-
jin Intelligent Manufacturing Special Fund Project under
Grants 20211097, and China Postdoctoral Science Founda-
tion (No. 2021M691673, No. 2023T160335).

13

REFERENCES

[1] M. Sayagh, N. Kerzazi, B. Adams, and F. Petrillo, “Software con-
figuration engineering in practice interviews, survey, and system-
atic literature review,” IEEE Transactions on Software Engineering,
vol. 46, no. 6, pp. 646–673, 2018. (document)

[2] Apache hadoop. [Online]. Available: http://hadoop.apache.org
(document)

[3] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram, and
S. Pasupathy, “An empirical study on configuration errors in
commercial and open source systems,” in Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles, 2011, pp.
159–172. (document)

[4] A. Rabkin and R. H. Katz, “How hadoop clusters break,” IEEE
software, vol. 30, no. 4, pp. 88–94, 2012. (document)

[5] C. Tang, T. Kooburat, P. Venkatachalam, A. Chander, Z. Wen,
A. Narayanan, P. Dowell, and R. Karl, “Holistic configuration
management at facebook,” in Proceedings of the 25th Symposium
on Operating Systems Principles, 2015, pp. 328–343. (document)

[6] Jchord properties. [Online]. Available: https://www.seas.upenn
.edu/∼mhnaik/chord/user guide/properties.html (document)

[7] Yarn. [Online]. Available: https://hadoop.apache.org/docs/stabl
e/hadoop-yarn (document)

[8] Hdfs. [Online]. Available: https://hadoop.apache.org/docs/s
table/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html (doc-
ument), 3.2, 4.3.3

[9] A. Rabkin and R. Katz, “Precomputing possible configuration
error diagnoses,” in 2011 26th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2011). IEEE, 2011, pp.
193–202. (document), 6.3

[10] S. Zhang and M. D. Ernst, “Automated diagnosis of software con-
figuration errors,” in 2013 35th International Conference on Software
Engineering (ICSE). IEEE, 2013, pp. 312–321. (document), 2.2, 4.2,
4.3.1, 6.2, 6.3

[11] ——, “Which configuration option should i change?” in Proceed-
ings of the 36th International Conference on Software Engineering, 2014,
pp. 152–163. (document), 4.2, 6.2

[12] Z. Dong, M. Ghanavati, and A. Andrzejak, “Automated diagnosis
of software misconfigurations based on static analysis,” in 2013
IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW). IEEE, 2013, pp. 162–168. (document), 2.2,
4.2, 6.2, 6.3

[13] Z. Dong, A. Andrzejak, and K. Shao, “Practical and accurate
pinpointing of configuration errors using static analysis,” in 2015
IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2015, pp. 171–180. (document), 2.2, 6.2, 6.3

[14] S. Mehta, R. Bhagwan, R. Kumar, C. Bansal, C. Maddila, B. Ashok,
S. Asthana, C. Bird, and A. Kumar, “Rex: Preventing bugs and
misconfiguration in large services using correlated change anal-
ysis,” in 17th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 20), 2020, pp. 435–448. (document)

[15] Q. Chen, T. Wang, O. Legunsen, S. Li, and T. Xu, “Understanding
and discovering software configuration dependencies in cloud
and datacenter systems,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2020, pp. 362–374. (doc-
ument), 2.1, 2.2, 4.2, 4.3.3, 6.2

[16] C. Pacheco and M. D. Ernst, “Randoop: feedback-directed ran-
dom testing for java,” in Companion to the 22nd ACM SIGPLAN
conference on Object-oriented programming systems and applications
companion, 2007, pp. 815–816. (document)

[17] Soot. [Online]. Available: https://github.com/soot-oss/soot
(document)

[18] Synoptic. [Online]. Available: https://github.com/modelinferenc
e/synoptic (document)

[19] Stackoverflow. [Online]. Available: https://stackoverflow.com
(document), 4.2

[20] B. Randell and J. Xu, “The evolution of the recovery block con-
cept,” Software fault tolerance, vol. 3, pp. 1–22, 1995. 3.2.1

[21] B. Liu, Lucia, S. Nejati, L. C. Briand, and T. Bruckmann, “Simulink
fault localization: an iterative statistical debugging approach,”
Software Testing, Verification and Reliability, vol. 26, no. 6, pp. 431–
459, 2016. 3.3

[22] L. Keller, P. Upadhyaya, and G. Candea, “Conferr: A tool for
assessing resilience to human configuration errors,” in 2008 IEEE
International Conference on Dependable Systems and Networks With
FTCS and DCC (DSN). IEEE, 2008, pp. 157–166. 3.3, 4.1, 4.2, 6, 6.3

[23] S. Niwattanakul, J. Singthongchai, E. Naenudorn, and S. Wanapu,
“Using of jaccard coefficient for keywords similarity,” in Proceed-
ings of the international multiconference of engineers and computer
scientists, vol. 1, no. 6, 2013, pp. 380–384. 3.3

[24] Wala. [Online]. Available: http://sourceforge.net/projects/wala
4.1

[25] W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The dstar method for ef-
fective software fault localization,” IEEE Transactions on Reliability,
vol. 63, no. 1, pp. 290–308, 2013. 4.1

[26] P. Arumuga Nainar and B. Liblit, “Adaptive bug isolation,” in Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1, 2010, pp. 255–264. 4.1

[27] E. Wong, T. Wei, Y. Qi, and L. Zhao, “A crosstab-based statistical
method for effective fault localization,” in 2008 1st international
conference on software testing, verification, and validation. IEEE, 2008,
pp. 42–51. 4.1

[28] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test
information to assist fault localization,” in Proceedings of the 24th
International Conference on Software Engineering. ICSE 2002. IEEE,
2002, pp. 467–477. 4.1

[29] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accu-
racy of spectrum-based fault localization,” in Testing: Academic
and industrial conference practice and research techniques-MUTATION
(TAICPART-MUTATION 2007). IEEE, 2007, pp. 89–98. 4.1

[30] J. L. Fleiss, “Measuring nominal scale agreement among many
raters.” Psychological bulletin, vol. 76, no. 5, p. 378, 1971. 4.1

[31] misconfiguration 9. [Online]. Available:
https://stackoverflow.com/questions/48354481/namenode-d
oesnt-detect-datanodes-failure/48354911#48354911 ??

[32] misconfiguration 10. [Online]. Available: https://stackoverflow.
com/questions/70419926/why-does-a-datanode-doesn ??

[33] misconfiguration 11. [Online]. Available:
https://stackoverflow.com/questions/37638558/is-there-any
-file-to-read-when-on-of-my-datanode-was-dead ??

[34] misconfiguration 12. [Online]. Available:
https://stackoverflow.com/questions/29712585/datanode-d
ecommisioning-vs-write/29714047#29714047 ??

[35] misconfiguration 13. [Online]. Available:
https://stackoverflow.com/questions/23878557/is-it-possibl
e-to-replicate-the-namenode-in-hadoop ??

[36] misconfiguration 14. [Online]. Available:
https://stackoverflow.com/questions/7176254/not-able-to-c
onnect-to-remote-hbase/11518026#11518026 ??

[37] misconfiguration 15. [Online]. Available:
https://stackoverflow.com/questions/22528859/hbase-sca
n-performance/22547731#22547731 ??

[38] misconfiguration 16. [Online]. Available: https://stackoverflow.
com/questions/28869180/on-master-node-failed-construction-o
f-regionserver-java-net-bindexception/30975132#30975132 ??

[39] misconfiguration 17. [Online]. Available:
https://stackoverflow.com/questions/30923351/hbase-clien
t-rpc-timeout/44684771#44684771 ??

[40] misconfiguration 18. [Online]. Available:
https://stackoverflow.com/questions/38946415/how-to-decreas
e-heartbeat-time-of-slave-nodes-in-hadoop/39012675#39012675
??

[41] misconfiguration 19. [Online]. Available: https://stackoverflo
w.com/questions/22944853/map-reduce-jobs-failed-with-virtual
-memory-beyond-limit-in-yarn-cluster/45928641#45928641 ??

[42] misconfiguration 20. [Online]. Available:
https://stackoverflow.com/questions/59863850/how-to-con
trol-the-number-of-hadoop-ipc-retry-attempts-for-a-spark-job-s
ubmissio/60011708#60011708 ??

[43] misconfiguration 21. [Online]. Available:
https://stackoverflow.com/questions/29940711/apache-spa
rk-setting-executor-instances-does-not-change-the-executors ??

[44] misconfiguration 22. [Online]. Available: https://stackoverflow.
com/questions/44587945/unable-to-start-zookeeper-server ??

[45] R. F. Woolson, “Wilcoxon signed-rank test,” Wiley encyclopedia of
clinical trials, pp. 1–3, 2007. 4.3.1

[46] G. Macbeth, E. Razumiejczyk, and R. D. Ledesma, “Cliff’s delta
calculator: A non-parametric effect size program for two groups
of observations,” Universitas Psychologica, vol. 10, no. 2, pp. 545–
555, 2011. 4.3.1

[47] S. Li, W. Li, X. Liao, S. Peng, S. Zhou, Z. Jia, and T. Wang, “Confvd:
System reactions analysis and evaluation through misconfigura-

http://hadoop.apache.org
https://www.seas.upenn.edu/~mhnaik/chord/user_guide/properties.html
https://www.seas.upenn.edu/~mhnaik/chord/user_guide/properties.html
https://hadoop.apache.org/docs/stable/hadoop-yarn
https://hadoop.apache.org/docs/stable/hadoop-yarn
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://github.com/soot-oss/soot
https://github.com/modelinference/synoptic
https://github.com/modelinference/synoptic
https://stackoverflow.com
http://sourceforge.net/projects/wala
https://stackoverflow.com/questions/48354481/namenode-doesnt-detect-datanodes-failure/48354911#48354911
https://stackoverflow.com/questions/48354481/namenode-doesnt-detect-datanodes-failure/48354911#48354911
https://stackoverflow.com/questions/48354481/namenode-doesnt-detect-datanodes-failure/48354911#48354911
https://stackoverflow.com/questions/70419926/why-does-a-datanode-doesn
https://stackoverflow.com/questions/70419926/why-does-a-datanode-doesn
https://stackoverflow.com/questions/37638558/is-there-any-file-to-read-when-on-of-my-datanode-was-dead
https://stackoverflow.com/questions/37638558/is-there-any-file-to-read-when-on-of-my-datanode-was-dead
https://stackoverflow.com/questions/37638558/is-there-any-file-to-read-when-on-of-my-datanode-was-dead
https://stackoverflow.com/questions/29712585/datanode-decommisioning-vs-write/29714047#29714047
https://stackoverflow.com/questions/29712585/datanode-decommisioning-vs-write/29714047#29714047
https://stackoverflow.com/questions/29712585/datanode-decommisioning-vs-write/29714047#29714047
https://stackoverflow.com/questions/23878557/is-it-possible-to-replicate-the-namenode-in-hadoop
https://stackoverflow.com/questions/23878557/is-it-possible-to-replicate-the-namenode-in-hadoop
https://stackoverflow.com/questions/23878557/is-it-possible-to-replicate-the-namenode-in-hadoop
https://stackoverflow.com/questions/7176254/not-able-to-connect-to-remote-hbase/11518026#11518026
https://stackoverflow.com/questions/7176254/not-able-to-connect-to-remote-hbase/11518026#11518026
https://stackoverflow.com/questions/7176254/not-able-to-connect-to-remote-hbase/11518026#11518026
https://stackoverflow.com/questions/22528859/hbase-scan-performance/22547731#22547731
https://stackoverflow.com/questions/22528859/hbase-scan-performance/22547731#22547731
https://stackoverflow.com/questions/22528859/hbase-scan-performance/22547731#22547731
https://stackoverflow.com/questions/28869180/on-master-node-failed-construction-of-regionserver-java-net-bindexception/30975132#30975132
https://stackoverflow.com/questions/28869180/on-master-node-failed-construction-of-regionserver-java-net-bindexception/30975132#30975132
https://stackoverflow.com/questions/28869180/on-master-node-failed-construction-of-regionserver-java-net-bindexception/30975132#30975132
https://stackoverflow.com/questions/30923351/hbase-client-rpc-timeout/44684771#44684771
https://stackoverflow.com/questions/30923351/hbase-client-rpc-timeout/44684771#44684771
https://stackoverflow.com/questions/30923351/hbase-client-rpc-timeout/44684771#44684771
https://stackoverflow.com/questions/38946415/how-to-decrease-heartbeat-time-of-slave-nodes-in-hadoop/39012675#39012675
https://stackoverflow.com/questions/38946415/how-to-decrease-heartbeat-time-of-slave-nodes-in-hadoop/39012675#39012675
https://stackoverflow.com/questions/38946415/how-to-decrease-heartbeat-time-of-slave-nodes-in-hadoop/39012675#39012675
https://stackoverflow.com/questions/22944853/map-reduce-jobs-failed-with-virtual-memory-beyond -limit-in-yarn-cluster/45928641#45928641
https://stackoverflow.com/questions/22944853/map-reduce-jobs-failed-with-virtual-memory-beyond -limit-in-yarn-cluster/45928641#45928641
https://stackoverflow.com/questions/22944853/map-reduce-jobs-failed-with-virtual-memory-beyond -limit-in-yarn-cluster/45928641#45928641
https://stackoverflow.com/questions/59863850/how-to-control-the-number-of-hadoop-ipc-retry-attempts-for-a-spark-job-submissio/60011708#60011708
https://stackoverflow.com/questions/59863850/how-to-control-the-number-of-hadoop-ipc-retry-attempts-for-a-spark-job-submissio/60011708#60011708
https://stackoverflow.com/questions/59863850/how-to-control-the-number-of-hadoop-ipc-retry-attempts-for-a-spark-job-submissio/60011708#60011708
https://stackoverflow.com/questions/59863850/how-to-control-the-number-of-hadoop-ipc-retry-attempts-for-a-spark-job-submissio/60011708#60011708
https://stackoverflow.com/questions/29940711/apache-spark-setting-executor-instances-does-not-change-the-executors
https://stackoverflow.com/questions/29940711/apache-spark-setting-executor-instances-does-not-change-the-executors
https://stackoverflow.com/questions/29940711/apache-spark-setting-executor-instances-does-not-change-the-executors
https://stackoverflow.com/questions/44587945/unable-to-start-zookeeper-server
https://stackoverflow.com/questions/44587945/unable-to-start-zookeeper-server

14

tion injection,” IEEE Transactions on Reliability, vol. 67, no. 4, pp.
1393–1405, 2018. 6

[48] A. Mahgoub, P. Wood, A. Medoff, S. Mitra, F. Meyer, S. Chaterji,
and S. Bagchi, “{SOPHIA}: Online reconfiguration of clustered
{NoSQL} databases for {Time-Varying} workloads,” in 2019
USENIX Annual Technical Conference (USENIX ATC 19), 2019, pp.
223–240. 6

[49] C.-J. Hsu, V. Nair, T. Menzies, and V. W. Freeh, “Scout: An
experienced guide to find the best cloud configuration,” arXiv
preprint arXiv:1803.01296, 2018. 6

[50] Y. Xiong, H. Zhang, A. Hubaux, S. She, J. Wang, and K. Czarnecki,
“Range fixes: Interactive error resolution for software configura-
tion,” Ieee transactions on software engineering, vol. 41, no. 6, pp.
603–619, 2014. 6

[51] D. Yuan, Y. Xie, R. Panigrahy, J. Yang, C. Verbowski, and A. Kumar,
“Context-based online configuration-error detection,” in Proceed-
ings of the 2011 USENIX conference on USENIX annual technical
conference, 2011, pp. 28–28. 6.1

[52] J. Zhang, L. Renganarayana, X. Zhang, N. Ge, V. Bala, T. Xu, and
Y. Zhou, “Encore: Exploiting system environment and correlation
information for misconfiguration detection,” in Proceedings of the
19th international conference on Architectural support for programming
languages and operating systems, 2014, pp. 687–700. 6.1

[53] R. Talwadker, “Dexter: faster troubleshooting of misconfiguration
cases using system logs,” in Proceedings of the 10th ACM Interna-
tional Systems and Storage Conference, 2017, pp. 1–12. 6.1, 6.3

[54] C. Xiang, H. Huang, A. Yoo, Y. Zhou, and S. Pasupathy, “Pracex-
tractor: Extracting configuration good practices from manuals
to detect server misconfigurations,” in 2020 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 20), 2020, pp. 265–280. 6.1

[55] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy,
“Sherlog: error diagnosis by connecting clues from run-time logs,”
in Proceedings of the fifteenth International Conference on Architectural
support for programming languages and operating systems, 2010, pp.
143–154. 6.2

[56] M. Attariyan and J. Flinn, “Automating configuration trou-
bleshooting with dynamic information flow analysis.” in OSDI,
vol. 10, no. 2010, 2010, pp. 1–14. 6.2

[57] T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng, D. Yuan, Y. Zhou,
and S. Pasupathy, “Do not blame users for misconfigurations,”
in Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, 2013, pp. 244–259. 6.2

[58] J. Zhang, R. Piskac, E. Zhai, and T. Xu, “Static detection of silent
misconfigurations with deep interaction analysis.” Proc. ACM
Program. Lang., vol. 5, no. OOPSLA, pp. 1–30, 2021. 6.2, 6.3

[59] S. Mehta, R. Bhagwan, R. Kumar, C. Bansal, C. Maddila, B. Ashok,
S. Asthana, C. Bird, and A. Kumar, “Rex: Preventing bugs and
misconfiguration in large services using correlated change analy-
sis,” in 17th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20), 2020, pp. 435–448. 6.2

[60] D. M. Weiss and C. T. R. Lai, Software product-line engineering: a
family-based software development process. Addison-Wesley Long-
man Publishing Co., Inc., 1999. 6.3

[61] J. M. Horcas, D. Struber, A. Burdusel, J. Martinez, and S. Zschaler,
“We’re not gonna break it! consistency-preserving operators for
efficient product line configuration,” IEEE Transactions on Software
Engineering, 2022. 6.3

[62] J.-M. Davril, E. Delfosse, N. Hariri, M. Acher, J. Cleland-Huang,
and P. Heymans, “Feature model extraction from large collections
of informal product descriptions,” in proceedings of the 2013 9th joint
meeting on foundations of software engineering, 2013, pp. 290–300. 6.3

[63] A. V. Rhein, J. Liebig, A. Janker, C. Kästner, and S. Apel,
“Variability-aware static analysis at scale: An empirical study,”
ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 27, no. 4, pp. 1–33, 2018. 6.3

[64] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake, “A clas-
sification and survey of analysis strategies for software product
lines,” ACM Computing Surveys (CSUR), vol. 47, no. 1, pp. 1–45,
2014. 6.3

[65] J. Meinicke, C.-P. Wong, B. Vasilescu, and C. Kästner, “Exploring
differences and commonalities between feature flags and configu-
ration options,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: Software Engineering in Practice,
2020, pp. 233–242. 6.3

[66] I. Abal, J. Melo, c. Stănciulescu, C. Brabrand, M. Ribeiro, and
A. Wasowski, “Variability bugs in highly configurable systems:
A qualitative analysis,” ACM Trans. Softw. Eng. Methodol., vol. 26,

no. 3, jan 2018. [Online]. Available: https://doi.org/10.1145/
3149119 6.3

Yingnan Zhou is a master’s student at the Col-
lege of Computer Information and Technology,
Beijing Jiaotong University, China, major in com-
puter technology. She was born in Zibo, Shan-
dong Province, China, in 1998. She graduated
from Inner Mongolia University with a bachelor’s
degree in Computer Science and Technology in
2021. Her main research direction is configura-
tion error diagnosis. She is interested in config-
uration security, program analysis and software
security.

Xue Hu is a master’s student at the College
of Intelligence and Computing, Tianjin Univer-
sity,China. She graduated from Fuzhou Univer-
sity with a bachelor’s degree in Internet of Things
Engineering in 2020. Her main research direc-
tion is cyberspace security. She is interested in
software security, program language and artifi-
cial intelligence.

Sihan Xu received the B.Sc. and Ph.D. degrees
in computer science from Nankai University in
2013 and 2018, respectively. For her research,
she spent a year with the National Uni- versity
of Singapore. She is currently a research fellow
with College of Cyber Science, Nankai Univer-
sity. Her research interests include software en-
gineering and AI security.

Yan Jia received the Ph.D. degree from the
School of Cyber Engineering, Xidian University,
Xi’an, China, in 2020. He is a Research Asso-
ciate with the College of Cyber Science, Nankai
University, Tianjin, China. His interests include
discovering and understanding new design or
logic security vulnerabilities in real-world sys-
tems, including IoT, Web/browser, mobile, and
network. His work helped many high-profile ven-
dors improve their products’ security, including
Amazon, Microsoft, Apple, and Google.

Yuhao Liu is a master’s student at the School
of Computer and Information Technology, Bei-
jing Jiaotong University, China. He was born
in Wuhan, Hubei Province, China, in 1998.
He graduated from Xi’an University of Posts &
Telecommunications with a bachelor’s degree in
Network Engineering in 2020. He majors in cy-
berspace security. He is interested in program-
ming language, reverse engineering and soft-
ware security.

https://doi.org/10.1145/3149119
https://doi.org/10.1145/3149119

15

Junyong Wang is a master’s student at the Col-
lege of Computer Information and Technology,
Beijing Jiaotong University,China. He was born
in Xinyang, Henan Province, China, in 1998. He
graduated from Guizhou University with a bach-
elor’s degree in Computer Science and Tech-
nology in 2020. His main research direction is
cyberspace security. He is interested in software
security, program language and artificial intelli-
gence.

Guangquan Xu is a Ph.D. and full profes-
sor at the Tianjin Key Laboratory of Advanced
Networking (TANK), College of Intelligence and
Computing, Tianjin University, China. He re-
ceived his Ph.D. degree from Tianjin University
in March 2008. He is a member of the CCF
and IEEE. His research interests include cyber
security and trust management.

Wei Wang is a full Professor with school of com-
puter and information technology, Beijing Jiao-
tong University, China. He received the Ph.D.
degree from Xi’an Jiaotong University, in 2006.
He was a Post-Doctoral Researcher with the
University of Trento, Italy, from 2005 to 2006. He
was a Post-Doctoral Researcher with TELECOM
Bretagne and with INRIA, France, from 2007 to
2008. He was also a European ERCIM Fellow
with the Norwegian University of Science and
Technology (NTNU), Norway, and with the Inter-

disciplinary Centre for Security, Reliability and Trust (SnT), University
of Luxembourg, from 2009 to 2011. He has authored or co-authored
over 100 peer-reviewed articles in various journals and international
conferences. His recent research interests lie in data security and
privacy-preserving computation. He is an Elsevier “highly cited Chinese
Researchers”. He is an Editorial Board Member of Computers & Security
and a Young AE of Frontiers of Computer Science.

Shaoying Liu (Fellow, IEEE) received the Ph.D.
degree in computer science from The University
of Manchester, U.K. He is currently a Professor
of software engineering in the Dependable Sys-
tems Laboratory, Graduate School of Advanced
Science and Engineering, School of Informatics
and Data Science, Hiroshima University, Japan.
He has developed the SOFL specification lan-
guage and the related Agile-SOFL method for
developing dependable systems. He has au-
thored a book entitled Formal Engineering for

Industrial Software Development: Using the SOFL Method (Springer,
2004) and over 280 refereed publications in journals and international
conferences. His research interests include software engineering, formal
engineering methods, software testing and verification, human-machine
pair programming, and trustworthy systems. He is also a BCS Fellow,
AAIA Fellow, and a member of IPSJ and IEICE.

Thar Baker (Senior Member, IEEE) (Senior Fel-
low, HEA) is Professor of Industry 4.0/5.0 in the
School of Architecture, Technology and Engi-
neering at the University of Brighton (UoB) in
the UK. He is the Chair of Board of Governors
of eSystems Engineering Society (eSES). He
was the Head of Applied Computing Research
Group (ACRG) in the Faculty of Engineering and
Technology at Liverpool John Moores University
(LJMU) in the UK. He has published numerous
refereed research papers in multidisciplinary re-

search areas, including cloud and fog computing, edge AI, IoT, sensor
networks, and federated learning.

	Introduction
	Background
	Configuration Correlation
	Direct configuration correlations
	Indirect configuration correlations

	Multi-misconfigurations

	Approach
	System Overview
	Correlated Configurations Analysis
	Block structure extraction
	Vector representation
	Distance calculation

	Primary Misconfigurations Diagnosis
	Suspicious Configurations Recommendation

	Evaluation
	Experiments Setup
	Subject Projects and Dataset
	Results
	Answers to RQ1
	Answers to RQ2
	Answers to RQ3

	Limitations and Threats to Validity
	Limitations
	Threats to Validity

	Related Work
	Black-box Configuration Diagnosis
	White-box Configuration Diagnosis
	Configurations in Software Product Lines

	Conclusion and Future Work
	Acknowledgments
	References
	Biographies
	Yingnan Zhou
	Xue Hu
	Sihan Xu
	Yan Jia
	Yuhao Liu
	Junyong Wang
	Guangquan Xu
	Wei Wang
	Shaoying Liu
	Thar Baker

	Blank Page

