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A small remark on Bernstein’s theorem
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Abstract. We investigate splitting-type variational problems with some
linear growth conditions. For balanced solutions of the associated Euler–
Lagrange equation, we receive a result analogous to Bernstein’s theorem
on non-parametric minimal surfaces. Without assumptions of this type,
Bernstein’s theorem cannot be carried over to the splitting case, which
follows from an elementary counterexample. We also include some modi-
fications of our main theorem.
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1. Introduction. A famous theorem of Bernstein (see [1]) states that a smooth
solution u = u(x), x = (x1, x2), of the non-parametric minimal surface equa-
tion

div

(
∇u√

1 + |∇u|2

)
= 0 (1)

defined on the whole plane must be an affine function. Letting f0(P ) :=√
1 + |P |2, P ∈ R

2, the validity of (1) on some domain Ω ⊂ R
2 just expresses

the fact that u is a solution of the Euler–Lagrange equation associated to the
area functional

J0[u,Ω] :=
∫
Ω

f0(∇u) dx. (2)

For a general overview on minimal surfaces, variational integrals with linear
growth, and for a careful analysis of Bernstein’s theorem, the reader is referred
for instance to [4–6,8,11,12] and the references quoted therein.

We ask the following question: does Bernstein’s theorem extend to the case
when the area integrand f0(∇u) is replaced by the energy density

√
1 + (∂1u)2+
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√
1 + (∂2u)2 being also of linear growth with respect to |∇u| but without any

obvious geometric meaning?
We like to mention that in the case of superlinear growth it is a familiar

question to study problems with anisotropic behaviour, see, e.g., the coun-
terexample of [7] or the discussion of anisotropic stiff materials in [9], while
there are only few contributions to linear growth energies of splitting type, see
[10]. An extension to the mixed linear-superlinear splitting type case is given
in [2].

Here we let for P = (p1, p2) ∈ R
2,

f(P ) := f1(p1) + f2(p2) (3)

with functions fi ∈ C 2(R), i = 1, 2, satisfying

0 < f ′′
i (t) ≤ Ci(1 + t2)−µi

2 , t ∈ R, (4)

for numbers Ci > 0 and with exponents

μi > 1. (5)

Note that (4) implies the strict convexity of f and on account of (5), the
density f is of linear growth in the sense that

|fi(t)| ≤ a|t| + b, t ∈ R,

for some constants a, b > 0. For a discussion of the properties of densities f
satisfying (3)–(5), we refer to [10]. We then replace (1) by the equation

div (Df(∇u)) = 0 (6)

and observe that the non-affine function (α, β, γ, δ ∈ R)

w(x1, x2) := αx1x2 + βx1 + γx2 + δ (7)

is an entire solution of Eq. (6), in other words: the classical version of Bern-
stein’s theorem does not extend to the splitting case. The behaviour of the
function w defined in (7) is characterized in

Definition 1.1. A function u ∈ C 1(R2), u = u(x1, x2), is called unbalanced if
and only if both of the following conditions hold:

lim sup
|x|→∞

|∂1u(x)|
1 + |∂2u(x)| = ∞, (8)

lim sup
|x|→∞

|∂2u(x)|
1 + |∂1u(x)| = ∞. (9)

Otherwise we say that u is of balanced form.

Remark 1.2. Condition (8) for example means that there exists a sequence of
points xn ∈ R

2 such that |xn| → ∞ and for which

lim
n→∞

|∂1u(xn)|
1 + |∂2u(xn)| = ∞.
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Remark 1.3. If for instance (8) is violated, no such sequence exists. Thus we
can find constants R,M > 0 such that |∂1u(x)| ≤ M (1 + |∂2u(x)|) for all
|x| ≥ R. Since u is of class C 1(R2), this just shows

|∂1u(x)| ≤ m|∂2u(x)| + M, x ∈ R
2, (10)

with suitable new constants m,M > 0.

Now we can state the appropriate version of Bernstein’s theorem in the
above setting:

Theorem 1.4. Let (3)–(5) hold and let u ∈ C 2(R2) denote a solution of (6) on
the entire plane. Then u is an affine function or of unbalanced type.

Remark 1.5. We do not know if (7) is the only entire unbalanced solution of
(6).

Before proving Theorem 1.4, we formulate some related results: in Theorem
1.7 below, we can slightly improve the result of Theorem 1.4 by adjusting the
notation introduced in Definition 1.1 and by taking care of the growth rates
of the second derivatives f ′′

i (compare (4)).

Definition 1.6. Let μ := (μ1, μ2) with numbers μi > 1, i = 1, 2. A function
u ∈ C 1(R2) is called μ-balanced if we can find a positive constant c and a
number ρ > 0 such that at least one of the following inequalities holds:

|∂1u| ≤ c(|∂2u|ρμ2 + 1), (11)
|∂2u| ≤ c(|∂1u|ρμ1 + 1), (12)

where in case (11) we require ρ ∈ (1/μ2, 1), whereas in case (12) ρ ∈
(1/μ1, 1) must hold.

Note that for example (11) is a weaker condition in comparison to (10).
The extension of Theorem 1.4 reads as follows:

Theorem 1.7. Let (3)–(5) hold and let u ∈ C 2(R2) denote an entire solution
of (6). If the function u is μ-balanced, then it must be affine.

In Theorem 1.8, we suppose that |∂1u| is controlled in x2-direction and from
this, we derive a smallness condition in x1-direction—at least for a suitable
sequence satisfying |x1| → ∞. The idea of proving Theorem 1.8 again is of
Bernstein-type in the sense that the proof follows the ideas of Theorem 1.4
combined with a splitting structure of the test functions.

Theorem 1.8. Let (3)–(5) hold and let u ∈ C2(R2) denote a solution of (6) on
the entire plane. Suppose that there exist real numbers κ1 > 0, 0 ≤ κ2 < 1
such that

μ1 > 1 +
1
κ1

κ2

1 − κ2
(13)
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and such that, with a constant k > 0,

sup
|∂1u(x1, x2)|

|x2|κ2
≤ k. (14)

Then we have

lim inf
|∂1u(x1, x2)|

|x1|κ1
= 0. (15)

More precisely, by (13), we choose ρ such that

κ2

1 − κ2
< ρ < κ1(μ1 − 1). (16)

Then the sup in (14) is taken in the set

M2,ρ :=
{

(x1, x2) : |x1| ≤ 2|x2|1/(1+ρ), 1 ≤ |x2|
}

and the lim inf in (15) is taken with respect to sequences

(x(n)
1 , x

(n)
2 ) ∈ M1,ρ :=

{
(x1, x2) : |x2| ≤ 2|x1|1+ρ, 1 ≤ |x1|

}
such that |x(n)

1 | → ∞.

Our final Bernstein-type result is given in Theorem 1.9. Here a formulation
in terms of the densities fi is presented without requiring an upper bound for
the second derivatives f ′′

i in terms of some negative powers (see (4)).

Theorem 1.9. Suppose that fi ∈ C 2(R), i = 1, 2, satisfies f ′′
i (t) > 0 for all

t ∈ R and f ′
i ∈ L∞(R). Let u ∈ C 2(R2) denote an entire solution of (6),

i.e., it holds

0 = div (Df(∇u)) = f ′′
1 (∂1u)∂11u + f ′′

2 (∂2u)∂22u on R
2.

If

Θ :=
f ′′
2 (∂2u)

f ′′
1 (∂1u)

∈ L∞(R2) or
1
Θ

∈ L∞(R2),

then u is an affine function.

In the next section, we prove our main Theorem 1.4 while in Section 3 the
variants mentioned above are established.

2. Proof of Theorem 1.4. Our arguments make essential use of a Caccioppoli-
type inequality involving negative exponents. This result was first introduced
in [10]. We refer to the presentation given in [3, Section 6], where Proposition
6.1 applies to the situation at hand. Let us assume that the conditions (3)–(5)
hold and that u is an entire solution of equation (6) being not necessarily of
balanced type.
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Lemma 2.1 (see [3, Prop. 6.1]). Fix l ∈ N and suppose that η ∈ C∞
0 (Ω),

0 ≤ η ≤ 1, where Ω is a domain in R
2. Then the inequality∫

Ω

D2f(∇u)(∇∂iu,∇∂iu)η2lΓα
i dx

≤
∫
Ω

D2f(∇u)(∇η,∇η)η2l−2Γα+1
i dx, Γi := 1 + |∂iu|2, (17)

holds for any α > −1/2 and for any fixed i = 1, 2.

Here and in what follows, the letter c denotes finite positive constants whose
value may vary from line to line but being independent of the radius.

Assume next that the solution u is balanced and without loss of generality
let u satisfy (10). In order to show that u is affine, we return to inequality
(17), choose i = 1 and fix some function η ∈ C∞

0 (B2R(0)) according to η ≡ 1
on BR(0), |∇η| ≤ c/R. Then (17) yields for any exponent α ∈ (−1/2,∞) and
with the choice l = 1 (Br := Br(0), r > 0),∫

B2R

D2f(∇u)(∇∂1u,∇∂1u)η2Γα
1 dx

≤ c

∫
B2R

D2f(∇u)(∇η,∇η)Γα+1
1 dx

(3)
= c

∫
B2R−BR

(
f ′′
1 (∂1u)|∂1η|2 + f ′′

2 (∂2u)|∂2η|2) Γα+1
1 dx

≤ cR−2

⎛
⎝ ∫

B2R−BR

f ′′
1 (∂1u)Γα+1

1 dx +
∫

B2R−BR

f ′′
2 (∂2u)Γα+1

1 dx

⎞
⎠

(4)

≤ cR−2

⎛
⎝ ∫

B2R−BR

Γα+1−µ1
2

1 dx +
∫

B2R−BR

Γ−µ2
2

2 Γα+1
1 dx

⎞
⎠ . (18)

Recall (5) and choose α according to

α ∈
(
−1/2,min

{
−1 +

μ1

2
,−1 +

μ2

2

})
. (19)

Here we note that – depending on the values of μ1 and μ2 – actually a negative
exponent α can occur. It follows from (10) that

cR−2

⎛
⎝ ∫

B2R−BR

Γα+1−µ1
2

1 dx +
∫

B2R−BR

Γ−µ2
2

2 Γα+1
1 dx

⎞
⎠

≤ cR−2

∫
B2R−BR

cdx ≤ c < ∞, (20)
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recalling that c is independent of R. Combining (20) and (18), it is obvious
that (by passing to the limit R → ∞)∫

R2

D2f(∇u)(∇∂1u,∇∂1u)Γα
1 dx < ∞ (21)

for α satisfying (19).
As in the proof of [3, Proposition 6.1] from (with l = 1) and by applying

the Cauchy–Schwarz inequality, we get∫
B2R

D2f(∇u)(∇∂1u,∇∂1u)η2Γα
1 dx

≤
∣∣∣∣∣
∫

B2R

D2f(∇u)(∇∂1u,∇η2)∂1uΓα
1 dx

∣∣∣∣∣

≤ c

⎡
⎣ ∫

spt∇η

D2f(∇u)(∇∂1u,∇∂1u)η2Γα
1 dx

⎤
⎦

1
2

⎡
⎣ ∫

spt∇η

D2f(∇u)(∇η,∇η)Γα+1
1 dx

⎤
⎦

1
2

. (22)

The second integral on the right-hand side is bounded on account of our
previous calculations. Because of the validity of (21), the limit of the first
integral for R → ∞ is 0. Thus (22) implies

∇∂1u ≡ 0. (23)

In particular, (23) guarantees the existence of a number a ∈ R such that

∂1u ≡ a. (24)

From (24), we obtain

u(x1, x2) − u(0, x2) =

x1∫
0

d
dt

u(t, x2) dt =

x1∫
0

adt = a x1,

implying

u(x1, x2) = u(0, x2) + a x1. (25)

Considering (24) again, equation (6) reduces to

∂2 (f ′
2(∂2u)) = 0. (26)

We set ϕ(t) := u(0, t) and interpret the PDE (26) as the ODE

d
dt

(f ′
2(ϕ

′(t))) = 0 (27)

implying

f ′
2(ϕ

′(t))) = const.
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Since f ′
2 is strictly monotonically increasing, this just means

ϕ′(t) = b, t ∈ R,

for some real number b, which consequently gives

u(x1, x2) = a x1 + b x2 + c, a, b, c ∈ R, (28)

completing our proof. �

3. Remaining proofs. Ad Theorem 1.7. Let the assumptions of Theorem 1.7
hold and assume without loss of generality that we have inequality (11) from
Definition 1.6. Consider the mixed term in the last line of (18) and note that
on account of (11), we may estimate

Γ−µ2
2

2 Γα+1
1 ≤ cΓ−µ2

2 (1−2ρ(α+1))
2 . (29)

The validity of ρ < 1 allows us to choose α sufficiently close to −1/2 such that
1 − 2ρ(α + 1) > 0 which again yields (21) and allows us to proceed as before
giving our claim.

�
Ad Theorem 1.8. Suppose by contradiction that there exists a real number

ĉ > 0 such that, with respect to the set M1,ρ,

ĉ ≤ lim inf
|x1|→∞

|∂1u(x1, x2)|
|x1|κ1

. (30)

For intervals I1, I2 ⊂ R we let

SI1;I2 := {x ∈ R
2 : |x1| ∈ I1, |x2| ∈ I2}.

We fix 0 < R1 < R2 and consider

η ∈ C∞
0 (S[0,2R1);[0,2R2)), 0 ≤ η ≤ 1, η ≡ 1 on S[0,2R1);[0,2R2) ,

spt∂1η ⊂ S(R1,2R1);[0,2R2) , spt∂2η ⊂ S[0,2R1);(R2,2R2) , (31)
|∂1η| ≤ c/R1 , |∂2η| ≤ c/R2. (32)

Exactly as in (18), one obtains, using (31) and (32),∫
S[0,2R1);[0,2R2)

D2f(∇u)(∇∂1u,∇∂1u)η2Γα
1 dx

≤
∫

S[0,2R1);[0,2R2)

D2f(∇u)(∇η,∇η)η2Γ1+α
1 dx

≤ c

R2
1

∫
S(R1,2R1);[0,2R2)

Γα+1−µ1
2

1 dx +
c

R2
2

∫
S[0,2R1);(R2,2R2)

Γ−µ2
2

2 Γα+1
1 dx. (33)

By definition, we have

|S[0,2R1);(R2,2R2)| ≤ cR1R2.
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Moreover, our assumption κ2 < 1 implies that α can be chosen such that, in
the case κ1 > 0,

− 1
2

< α <
1

2κ2
− 1. (34)

In the case κ2 = 0, we do not need an additional condition. We apply assump-
tion (14), which leads to

1
R2

2

∫
S[0,2R1);(R2,2R2)

Γ−µ2
2

2 Γα+1
1 dx ≤ c

R2
2

∫
S[0,2R1);(R2,2R2)

|x2|2κ2(α+1) dx

≤ cR1R
2κ2(α+1)−1
2 . (35)

Let us consider the first integral on the right-hand side of (33) recalling that
α + 1 − μ1/2 < 0. Assumption (30) implies

1
R2

1

∫
S(R1,2R1);[0,2R2)

Γα+1−µ1
2

1 dx ≤ c

R2
1

∫
(R1,2R1);[0,2R2)

|x1|2κ1(α+1−µ1
2 ) dx

≤ cR2R
−κ1(μ1−2(α+1))−1
1 , (36)

where we suppose that μ1 > 2(α + 1) by choosing α sufficiently close to −1/2.
If we further suppose that

R2 = R1+ρ
1 with a positive real number ρ < κ1(μ1 − 1), (37)

then by decreasing α, if necessary, still satisfying α > −1/2, we obtain from
(36),

1
R2

1

∫
S(R1,2R1);[0,2R2)

Γα+1−µ1
2

1 dx → 0 as R1 → ∞. (38)

Using R2 = R1+ρ
1 (recall (37)), we return to (35) recalling that, by the choice

(34), we have 2κ2(α + 1) − 1 < 0. We calculate

R1R
(1+ρ)(2κ2(α+1)−1)
1 = R

2κ2(α+1)+ρ(2κ2(α+1)−1)
1 . (39)

If we suppose that

κ2 + ρ(κ2 − 1) < 0, (40)

then we may choose α > −1/2 sufficiently small such that the exponent on
the right-hand side of (39) is negative, hence together with (35), we have

1
R2

2

∫
S[0,2R1);(R2,2R2)

Γ−µ2
2

2 Γα+1
1 dx → 0 as R1 → ∞. (41)

By (33), (38), and (41), it follows that∫
S[0,2R1);[0,2R2)

D2f(∇u)(∇∂1u,∇∂1u)η2Γα
1 dx → 0 as R1 → ∞, (42)

provided that we have (37) and (40), i.e., provided that we have (16) which
is a consequence of (13). Hence we have (42) which exactly as in the proof of
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Theorem 1.4 shows that u has to be an affine function and this contradicts
(30) which in turn proves Theorem 1.8.

�
ad Theorem 1.9. Without loss of generality, we suppose that Θ ∈ L∞(R2)

and that u ∈ C 3(R2), f1, f2 ∈ C 3(R). Otherwise we argue in a weak sense.
Let

wi := f ′
i(∂iu), i = 1, 2.

Then we have

∂1w1 + ∂2w2 = 0 on R
2, (43)

hence

∂11w1 + ∂1∂2w2 = ∂11w1 + ∂2∂1w2 = 0 on R
2. (44)

A direct calculation shows

∂1w2 = ∂1

(
f ′
2(∂2u)

)
= f ′′

2 (∂2u)∂1∂2u = Θf ′′
1 (∂1u)∂2∂1u = Θ∂2w1

and the weak form of (44) reads as∫
R2

(
∂1w1

Θ∂2w1

)
· ∇ϕ dx = 0, ϕ ∈ C1

0 (R2). (45)

Inserting ϕ = η2w1 with suitable η ∈ C1
0 (B2R) such that 0 ≤ η ≤ 1, η ≡ 1 on

BR, and |∇η| ≤ c/R, we obtain∫
B2R

|∂1w1|2η2 dx +
∫

B2R

Θ|∂2w1|2η2 dx

= −2
∫

B2R−BR

η∂1w1 ∂1η w1 dx − 2
∫

B2R−BR

Θ η ∂2w1 ∂2η w1 dx. (46)

Applying Young’s inequality and using w1, Θ ∈ L∞(R2), we obtain that∫
R2

(
|∂1w1|2 + Θ|∂2w1|2

)
dx < ∞. (47)

We then return to (46) and apply the inequality of Cauchy-Schwarz to obtain∫
B2R

|∂1w1|2η2 dx +
∫

B2R

Θ|∂2w1|2η2 dx

≤ 2

[ ∫
B2R−BR

η2|∂1w1|2 dx

] 1
2
[ ∫

B2R−BR

|∂1η|2w2
1 dx

] 1
2

+2

[ ∫
B2R−BR

Θη2|∂2w1|2 dx

] 1
2
[ ∫

B2R−BR

Θ|∂2η|2w2
1 dx

] 1
2

. (48)
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On the right-hand side of (48), we observe that for both parts the first integral
is vanishing when passing to the limit R → ∞ since we have (47), while the
remaining integrals stay uniformly bounded.

This gives ∂1w1 = 0 and ∂2w1 = 0 since we have Θ > 0. Hence we obtain
w1 ≡ c1 for some constant c1. The monotonicity of f ′

1 then implies ∂1u ≡ c̃1

for some different constant c̃1.
By (43), we then also have ∂2w2 = 0. Since we have already observed above

that ∂1w2 = Θ∂2w1, we deduce ∂2u ≡ c̃2 for some other real number c̃2 and in
conclusion u must be an affine function which completes the proof of Theorem
1.9.

�
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