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Abstract: Several ternary rare-earth metals containing titanium aluminum intermetallics in the
RE2TiAl3 series (RE = Y, Gd–Lu) have been synthesized from the elements using arc-melting tech-
niques. All compounds crystallize in the trigonal crystal system with rhombohedral space group
R3m (Z = 3) and lattice parameters ranging between a = 582–570 and c = 1353–1358 pm. They adopt
the Mg2Ni3Si-type structure, which is an ordered superstructure of the cubic Laves phase MgCu2

and has been observed for Al intermetallics for the first time. Tetrahedral [TiAl3] entities that are
connected over all corners form a network where the empty [TiAl3] tetrahedra exhibit a full Ti/Al
ordering based on the single crystal results. The Al atoms are arranged into 63 Kagomé nets, while
the Ti atoms connect these nets over the triangular units. In the cavities of this three-dimensional
arrangement, the RE cations can be found forming a distorted diamond-type substructure. Magnetic
measurements revealed that Y2TiAl3 and Lu2TiAl3 are Pauli paramagnetic substances, in line with
the metallic character. The other compounds exhibit paramagnetism with antiferromagnetic ordering
at a maximum Néel temperature of TN = 26.1(1) K for Gd2TiAl3.

Keywords: intermetallics; rare-earth elements; titanium; aluminum; physical properties

1. Introduction

The Laves phases of general composition AB2, named after Fritz Laves, belong to
the most prominent structure types in the field of intermetallic compounds [1–3]. The
Pearson database [4] lists over 4000 (pseudo) binary compounds in the cubic MgCu2 (Fd3m)
or the hexagonal MgZn2 and MgNi2 (both P63/mmc)-type structures [5]. The majority
of these compounds contain a rare-earth element; therefore, the magnetic properties of
these materials have been studied in great detail [6]. Their structures usually do not show
larger homogeneity ranges and can be regarded as packing dominated as illustrated by
the fact that, for example, NeHe2 [7] and ArNe2 [8] can be observed under high-pressure
conditions and adopt the MgZn2-type structure. Moreover, Ar(H2)2 was reported to
form the hexagonal Laves phase at high pressure [9], while Xe(N2)2 adopts the cubic
MgCu2-type structure [10]. The ideal size ratio of the constituent elements A and B is
rA/rB = (3/2)1/2 ≈ 1.225. In all three binary Laves phases, the B atoms form empty B4
tetrahedra that exhibit different connectivities, always forming a network, with the A atoms
in the respective cavities. In the MgCu2-type structure, however, only corner-sharing Cu4
tetrahedra are present; in the MgZn2-type structure, two tetrahedra are connected over a
common face, and the remaining corners are used to form strands [001]. Finally, in MgNi2,
both connection modes can be found. In addition to these basic types, different (highly
complex) stacking variants have been reported [11]. Based on these binary structure types,
ordered ternary compounds can be derived. The Mg2Cu3Si (P63/mmc)-type structure [12],
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for example, allows for an ordering on the two crystallographic Zn sites of the hexagonal
MgZn2-type structure. Besides the prototype, aluminum compounds (e.g., Ce2RuAl3 [13],
the RE2TAl3 series with RE = Y, La–Nd, Sm, Gd–Lu and T = Ru, Rh, Ir [14], U2Cu3Al [15]
or the solid solution Ti2Ni1–xAl3+x [16]) along with gallides (U2Fe3Ga [17], Eu2IrGa3 [18],
Nb2Cu1.1Ga2.9 [19], and Ho2Ru2Ga2 [20]), silicides (e.g., the Sc2T3Si and Ti2T3Si series
with T = Cr, Mn, Fe, Co, and Ni [21–23]), and germanides (U2T3Ge series with T = Mn, Fe,
Co [24–27], Mn2Cu3Ge [28], and Mn2Co3Ge [29]) have been reported. The cubic MgCu4Sn-
type structure (F43m) [30] is a ternary ordered variant of the cubic MgCu2 type, where
magnesium/tin ordering takes place on the former Mg site. Exemplarily, the rare-earth-
containing series RENi4In (RE = Sc, Y, La–Nd, Sm, Gd–Tm) [31], RENi4Au (RE = Sc, Y,
Gd–Lu) [32,33], RECu4Ag (RE = La–Nd, Sm, Gd–Tm) [34], and RECu4Au (RE = Gd–Er) [35]
should be mentioned. Furthermore, Yb6Ir5Ga7 [36] represents a

√
3 ×
√

3 superstructure of
the hexagonal MgZn2-type structure, allowing for a coloration of the tetrahedral strands of
the prototype. To date, the iridium gallides RE6Ir5Ga7 (RE = Sc, Y, Nd, Sm, Gd–Lu) [36,37]
and the RE6T5Al7 series (RE = Sc, Y, Ce–Nd, Sm, Gd–Lu, T = Ru, Ir) [38] have been reported.
Finally, a rhombohedral ordered variant of the MgCu2 type is observed for the Mg2Ni3Si
(R3m) type structure [39], realized, e.g., for the gallides RE2Rh3Ga (RE = Y, La–Nd, Sm, Gd–
Er) [40], the silicides RE2Rh3Si (RE = Ce, Pr, Er) [41–43] and U2Ru3Si [44], or the germanides
RE2T3Ge (RE = Y, Pr, Sm, Er) [41,45], U2Ru3Ge [44], and Ca2Pd3Ge [46]. More information
on superstructures of the Laves phases can be found in a recent review article [47].

With respect to application, titanium and aluminum-based materials are of great
interest since they belong to the group of light-weight alloys [48]. Therefore, the binary
phase diagram Ti/Al is probably one of the best investigated ones [49–53]. Several binary
intermetallics have been identified in this system, of which TiAl2 and TiAl3 are too brittle
to be of technical importance; however, α2-Ti3Al and γ-TiAl are of crucial importance to
the field of titanium-based alloys [54,55].

Here, we report on the synthesis and structural and magnetic characterization of
the RE2TiAl3 series (RE = Y, Gd–Tm, Lu), the first aluminum intermetallics adopting the
rhombohedral Mg2Ni3Si-type structure. However, as seen for many aluminum series, they
form an anti-type arrangement within the network in comparison to the [Ni3Si] one, that is,
the prototype.

2. Materials and Methods

Synthesis: The compounds of the RE2TiAl3 (RE = Y, Gd–Tm, Lu) series were synthe-
sized by arc-melting the elements, using rare-earth ingots (Onyxmet, 99.9%), titanium chips
(Onyxmet, 99.9%), and aluminum turnings (Onyxmet, 99.99%). All starting materials were
weighed in the ideal stoichiometry of 2:1:3 (RE:Ti:Al). The reactants were arc-melted under
an argon atmosphere of about 800 mbar [56]. The obtained buttons were remelted several
times to increase the homogeneity. All samples were weighed after arc-melting; the mass
loss is <0.5%. The samples were subsequently enclosed in evacuated quartz tubes and
annealed in a second step (923 or 1123 K, 7 to 12 d) to increase their overall phase purity
and homogeneity. The Tm2TiAl3 sample was transferred to an Al2O3 crucible and annealed
for 3 h in an induction furnace (Trumpf Hüttinger, TruHeat 5010, Freiburg, Germany). The
annealing led to X-ray pure samples, suitable for physical property measurements. All
samples obtained by these processes show metallic luster and are stable under ambient
conditions over months.

SEM-EDX data: Semiquantitative EDX analyses of the bulk samples were conducted
on a JEOL 7000F (Jeol, Freising, Germany) equipped with an EDAX Genesis 2000 EDX
detector (EDAX, Unterschleissheim, Germany). Investigations of the single crystals were
conducted on a Zeiss Evo MA10 (Zeiss, Jena, Germany) scanning electron microscope with
an Oxford Instrument EDX detector using REF3, TiO2, and Al2O3 as internal standards.
The crystals used for the structure determination were measured on their glass fibers in the
variable pressure (VP) mode of the instrument under 60 Pa N2 atmosphere.
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X-Ray diffraction: The annealed polycrystalline samples were analyzed by powder
X-ray diffraction. Powder X-ray diffraction (PXRD) patterns of the pulverized samples were
recorded at room temperature on a D8-A25-Advance diffractometer (Bruker, Karlsruhe,
Germany) in Bragg–Brentano θ-θ-geometry (goniometer radius 280 mm) with Cu Kα-
radiation (λ = 154.0596 pm). A 12 µm Ni foil working as Kβ filter and a variable divergence
slit were mounted at the primary beam side. A LYNXEYE detector with 192 channels was
used at the secondary beam side. Experiments were carried out in a 2θ range of 6 to 130◦

with a step size of 0.013◦ and a total scan time of 1 h.
Small fragments of the annealed and crushed samples of Y2TiAl3, Gd2TiAl3, and

Tb2TiAl3 were glued to thin quartz fibers using beeswax. The crystallite quality was checked
by Laue photographs on a Buerger precession camera (white molybdenum radiation;
imaging plate system, Fujifilm, BAS-READER 1800, Minato, Japan). Intensity data sets of
suitable single crystals were collected at room temperature, either on an IPDS-II (graphite-
monochromatized MoKα radiation; λ = 0.71073 pm; oscillation mode) or on a Bruker
D8 Venture diffractometer (graphite-monochromatized MoKα radiation; λ = 0.71073 pm)
equipped with a µ-focus source.

CCDCs 1939725-1939727 contain the supplementary crystallographic data for this
paper. The data can be obtained free of charge from The Cambridge Crystallographic Data
Centre via www.ccdc.cam.ac.uk/structures.

Physical property measurements: Annealed pieces of the respective X-ray pure
RE2TiAl3 (RE = Y, Gd–Tm, Lu) samples were attached to the sample holder rod of a
Vibrating Sample Magnetometer (VSM) using Kapton foil for measuring the magnetiza-
tion M(H,T) in a Quantum Design (San Diego, CA, USA) Physical Property Measurement
System (PPMS). All samples were investigated in the temperature range of 2.5–300 K with
applied external magnetic fields of up to 80 kOe.

3. Results and Discussion
3.1. Structure Refinement

The obtained single crystal data sets showed a rhombohedral lattice; space group R3m
was found to be correct during the structure refinement. Isotypism to the Mg2Ni3Si-type
structure was evident from both single crystal and powder X-ray diffraction experiments.
Starting values for the structure refinement were obtained using the SuperFlip [57] program
package, implemented in Jana2006 [58,59]. All atomic positions and anisotropic displace-
ment parameters were subsequently refined, again using Jana2006. Occupancy parameters
of all crystallographic sites were individually refined in separate series of least-squares
refinements to check for the correct composition. No mixing, especially of Ti and Al, was
observed. The final difference Fourier syntheses were contourless. Details on the measure-
ments, refined atomic parameters, displacement parameters, and interatomic distances can
be found in Tables 1–4.

3.2. SEM-EDX Data

EDX investigations of the bulk samples were carried out exemplarily on Er2TiAl3,
Tm2TiAl3, and Lu2TiAl3. The experimentally determined averaged element ratios (Table 5)
were obtained from five spot measurements and one area measurement and are in good
agreement with the ideal compositions. The crystals of Y2TiAl3, Gd2TiAl3, and Tb2TiAl3
measured on the diffractometer were analyzed semi-quantitatively using a SEM in combi-
nation with EDX (Table 5). No impurity elements heavier than sodium (detection limit of
the instrument) were observed. The experimentally determined averaged element ratios
were obtained from five spot measurements and are in good agreement with the ideal
compositions. Differences originate from the conchoidal fractures of the crystallites and the
non-perfect perpendicular orientation of the crystals to the beam.

www.ccdc.cam.ac.uk/structures
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3.3. Crystal Chemistry

The rare-earth compounds of the RE2TiAl3 series (RE = Y, Gd–Tm, Lu) crystallize in the
trigonal Mg2Ni3Si-type structure with space group R3m and Z = 3. The lattice parameters
and unit cell volumes (Table 6) decrease from the gadolinium to the lutetium compound,
as expected due to the lanthanide contraction (Figure 1, Table 6). Y2TiAl3 exhibits lattice
parameters similar to those of Tb2TiAl3, in line with the comparable ionic radii of the
trivalent cations (Y3+: 106 pm; Tb3+ 104 pm; CN = 8 [60]). In Figure 2, a comparison of the
Rietveld fit of the experimental diffraction pattern of Y2TiAl3 using the trigonal Mg2Ni3Si
type and the cubic MgCu2-type structure is shown. The rhombohedral distortion is easily
visible in the diffraction patterns due to the splitting of the reflections (Figures S1–S6,
Tables S1–S6).

Table 1. Crystallographic data and structure refinement information for Y2TiAl3, Gd2TiAl3, and
Tb2TiAl3, space group R3m, Z = 3, Mg2Ni3Si type determined from single crystal X-ray diffraction
data. All data sets were collected at room temperature.

Formula Y2TiAl3 Gd2TiAl3 Tb2TiAl3

CCDC number 1939725 1939727 1939726
Molar mass, g mol−1 306.6 443.3 446.7

Lattice parameters see Table 6
Density calc., g cm−3 4.04 5.77 5.90

Crystal size, µm 50 × 40 × 35 30 × 25 × 10 40 × 40 × 20
Diffractometer IPDS-II IPDS-II Bruker CCD

Wavelength; λ, pm MoKα; 71.073 MoKα; 71.073 MoKα; 71.073
Transmission ratio (min/max) 0.2943/0.4102 0.5295/0.7673 0.3054/0.5561

Detector distance, mm 60 70 40
Exposure time, min 10 30 0.167

Integr. param. A, B, EMS 14.0; −1.0; 0.030 16.0; –4.0; 0.030 –
F(000), e 417 567 573

Range in hkl ±9; −8, +9, ±21 ±8; ±8, ±20 ±7; ±8, −17, +20
θmin, θmax, deg 4.4/34.9 4.4/33.3 4.4/32.0

Linear absorption coeff., mm−1 24.7 27.6 29.7
Total no. of reflections 2889 1579 826

Independent reflections/Rint 229/0.0510 212/0.0696 190/0.0143
Reflections with I ≥ 3σ(I)/Rσ 191/0.0168 175/0.0275 181/0.0122

Data/parameters 229/11 212/11 190/11
R1/wR2 for I ≥ 3σ(I) 0.0177/0.0357 0.0208/0.0214 0.0105/0.0259
R1/wR2 for all data 0.0286/0.0393 0.0317/0.0221 0.0111/0.0260

Goodness-of-fit on F2 1.23 1.16 1.03
Extinction scheme Lorentzian isotropic [61]

Extinction coefficient 160(50) 58(19) 350(20)
Diff. Fourier residues /e– Å−3 −1.32/+1.01 −1.81/+1.40 −0.37/+1.06

The following discussion of the crystal structure and the interatomic distances is
based on the single crystal data obtained for Y2TiAl3. As the crystal structure (Figure 3) can
be derived from the cubic Laves phase (MgCu2 type, Fd3m), the structural relationship is
fairly obvious. A group–subgroup scheme according to the Bärnighausen formalism for the
structural relationship of CeRh2 and Ce2Rh3Ga has been provided in the literature [40]. As
in the MgCu2-type structure, only two crystallographic positions are occupied (Mg on 8a,
0,0,0; Cu on 16c, 3/8, 3/8, 3/8) and no distinct ordering is possible. A translationengleiche
transition of index 4 leads to the structure of Mg2Ni3Si in the rhombohedral crystal system
and space group R3m. This allows for a decoupling of the lattice parameters along with
the possibility of atomic ordering (16c splits into 3a and 9d). In addition, Mg atoms (6c)
gain a free z parameter allowing the adjustment of interatomic distances. A recent review
article [47] summarizes the information on the superstructures of Laves phases.
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Table 2. Atom positions and equivalent isotropic displacement parameters (pm2) for Y2TiAl3,
Gd2TiAl3, and Tb2TiAl3 determined from single crystal X-ray diffraction data. Ueq is defined as
one-third of the trace of the orthogonalized Uij tensor.

Atom Wyckoff
Position x y z Ueq

Y2TiAl3
Y 6c 0 0 0.37244(4) 89(1)
Ti 3a 0 0 0 75(2)
Al 9d 1/2 0 1/2 88(3)

Gd2TiAl3
Gd 6c 0 0 0.37333(3) 81(1)
Ti 3a 0 0 0 67(5)
Al 9d 1/2 0 1/2 84(7)

Tb2TiAl3
Tb 6c 0 0 0.37348(1) 64(1)
Ti 3a 0 0 0 54(2)
Al 9d 1/2 0 1/2 69(3)

Table 3. Anisotropic displacement parameters (pm2) for Y2TiAl3, Gd2TiAl3, and Tb2TiAl3 determined
from single crystal X-ray diffraction data. Coefficients Uij of the anisotropic displacement factor
tensor of the atoms are defined by −2π2[(ha*)2U11 + . . . + 2hka*b*U12].

Atom U11 U22 U33 U12 U13 U23

Y2TiAl3
Y 86(2) U11 94(2) 43(1) 0 U13
Ti 79(3) U11 66(4) 40(1) 0 U13
Al 84(3) 86(4) 95(5) 43(2) 5(2) 10(1)

Gd2TiAl3
Gd 79(2) U11 84(2) 40(1) 0 U13
Ti 74(5) U11 54(9) 37(3) 0 U13
Al 77(6) 80(11) 95(10) 40(5) 4(6) 8(13)

Tb2TiAl3
Tb 62(1) U11 69(1) 31(1) 0 U13
Ti 55(3) U11 52(4) 28(1) 0 U13
Al 74(3) 68(5) 64(4) 34(2) 2(2) 5(3)

Table 4. Interatomic distances (pm) for Y2TiAl3, Gd2TiAl3, and Tb2TiAl3 determined from single
crystal X-ray diffraction data. All distances of the first coordination spheres are listed. All standard
uncertainties were less than 0.1 pm.

Y2TiAl3 Gd2TiAl3 Tb2TiAl3

Y: 3 Al 323.1 Gd: 3 Al 325.4 Tb: 3 Al 324.1
3 Ti 332.3 6 Al 333.1 6 Al 331.3
6 Al 332.4 3 Ti 333.8 3 Ti 332.1
3 Y 344.7 1 Gd 344.1 1 Tb 342.2
1 Y 345.1 3 Gd 346.8 3 Tb 345.1

Ti: 6 Al 278.8 Ti: 6 Al 279.9 Ti: 6 Al 278.6
6 Y 332.3 6 Gd 333.8 6 Tb 332.1

Al: 2 Ti 278.8 Al: 2 Ti 279.9 Al: 2 Ti 278.6
4 Al 284.1 4 Al 285.2 4 Al 283.7
2 Y 323.1 2 Gd 325.4 2 Tb 324.1
4 Y 332.4 4 Gd 333.1 4 Tb 331.3
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Compound RE (at.-%) Ti (at.-%) Al (at.-%) 
Ideal composition 33.3 16.7 50.0 
Single crystal data    

Y2TiAl3 36 16 48 
Gd2TiAl3 34 16 50 

Bulk sample data    
Er2TiAl3 36 14 50 
Tm2TiAl3 32 16 52 
Lu2TiAl3 37 15 48 
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Table 6. Lattice parameters of the rhombohedral RE2TiAl3 series (RE = Y, Gd–Tm, Lu), space group
R3m, Z = 3, Mg2Ni3Si type, determined by powder X-ray diffraction. P denotes powder data, SC single
crystal data.

Compound a (pm) c (pm) V (nm3)

Y2TiAl3 P 568.29(4) 1353.0(1) 0.3784
Y2TiAl3 SC 568.22(7) 1352.9(2) 0.3783
Gd2TiAl3 P 569.81(5) 1359.6(2) 0.3823
Gd2TiAl3 SC 570.45(5) 1358.0(1) 0.3827
Tb2TiAl3 P 567.55(6) 1351.0(3) 0.3769
Tb2TiAl3 SC 567.39(6) 1352.4(2) 0.3771
Dy2TiAl3 P 565.90(6) 1349.1(2) 0.3742
Ho2TiAl3 P 564.86(3) 1347.5(1) 0.3723
Er2TiAl3 P 563.10(3) 1344.3(1) 0.3691
Tm2TiAl3 P 559.61(9) 1341.3(3) 0.3638
Lu2TiAl3 P 558.37(4) 1338.2(1) 0.3613

The tetrahedral entities in the cubic structure type are connected over all corners, form-
ing a network, however, by only one crystallographic position. In rhombohedral Y2TiAl3,
a splitting of this single position takes places, allowing full Ti/Al ordering in the empty
[TiAl3] tetrahedra. The Al atoms form 63 Kagomé nets, while the Ti atoms connect these
nets over the triangles. In the cavities of this three-dimensional arrangement, the RE cations
can be found. They form a distorted cubic diamond-type substructure, as highlighted in
Figure 3. The coordination environments of the Ti and Al atoms are depicted in Figure 4. In
the network, Ti–Al distances of 279 pm can be found, longer than the sum of the covalent
radii (Ti + Al = 132 + 125 = 257 pm [60]), suggesting moderate bonding interactions. In
the binary compounds TiAl (tetragonal CuAu type, P4/mmm [62]) and Ti3Al (hexagonal
Mg3Cd type, P63/mmc [63]), interatomic distances of 283 and 286 + 289 pm are observed,
respectively, while in the only thus far known ternary compound Y6Ti4Al43 (hexagonal
Ho6Mo4Al43 type, P63/mcm [64]), Ti–Al distances of 259–287 pm are found. The Y atoms in
Y2TiAl3 are surrounded by 16 atoms in the shape of a Frank–Kasper polyhedra [65,66] ac-
cording to Y@Al9Y4Ti3 (Figure 4, top), while Ti and Al both exhibit icosahedra coordination
environments (Figure 4, middle and bottom). The Ti atoms are surrounded octahedrally
by the Al atoms along with six Y atoms (Y@Al6Y6), the Al atoms by four Al, two Ti, and
six Y atoms (Al@Al4Ti2Y6). The Y–Ti distances are 332 pm, while the Y–Al distances range
between 323 and 332 pm, suggesting rather weak interactions when compared to the sum of
the covalent radii (Y + Ti = 162 + 132 = 294 pm; Y + Al = 162 + 125 = 287 pm [60]). In YAl2
(cubic MgCu2 type, Fd3m [67,68]), heteroatomic Y–Al distances of 325 pm can be observed,
which suggest rather low interactions. Since no binary phases in the system Y/Ti exist;
only the comparison with Y6Ti4Al43 [64] is possible. The shortest Y–Ti distance is 354 pm,
also suggesting very weak to no bonding interactions, while Y–Al distances between 308
and 344 pm are observed. In Y2TiAl3, two different Y–Y distances (344.7 and 345.2 pm) are
observed, due to the distortion of the cubic MgCu2-type structure. In cubic YAl2 [67,68],
only one distance of 340 pm is found.

Attempts to extend the series of the RE2TiAl3 compounds to the larger elements
(RE = La-Nd, Sm, Eu) were not successful. For the lanthanum compound, a synthesis under
the same conditions as described above resulted in a mixture of the binary compounds
LaAl2 (MgCu2 type), LaAl (CeAl type) and elemental titanium (Mg type). The refined
powder pattern is shown in Figure S7 (Table S7).
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3.4. Physical Properties

The physical properties of the RE2TiAl3 series (Table 7; RE = Y, Gd–Tm, Lu) were deter-
mined by susceptibility and magnetization experiments. While Y2TiAl3 and Lu2TiAl3 exhibit
Pauli paramagnetism, in line with their metallic character and the absence of (unpaired)
f -electrons, all other compounds are paramagnetic. The temperature dependence of the
magnetic susceptibility of Y2TiAl3 and Lu2TiAl3 is depicted in Figure 5. The susceptibil-
ity exhibits positive values over the whole investigated temperature region and reaches
χ(300 K) = +2.48(1) × 10−4 emu mol−1 (Y2TiAl3) and χ(300 K) = +2.14(1) × 10−4 emu mol−1

(Lu2TiAl3), indicating that the Pauli paramagnetism overcompensates the intrinsic diamag-
netism.
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The magnetic data of Gd2TiAl3 is depicted in Figure 6. The ZFC (zero-field-cooled)
investigations at high field (10 kOe) were conducted in the temperature range of 3–300 K
and are shown in the top panel. From the inverse susceptibility, the effective mag-
netic moment was determined to µeff = 7.89(1) µB, well in line with the theoretical mo-
ment of µeff,calc = 7.94 µB for a free Gd3+ cation. The paramagnetic Curie temperature
is θP = +20.8(1) K, indicating dominant ferromagnetic interactions in the paramagnetic
temperature regime. From the low-field 100 Oe ZFC/FC (zero-field-cooled/field-cooled)
measurements, an antiferromagnetic ordering was derived with a Néel temperature of
TN = 26.1(1) K. The rather strong bifurcation, along with the high residual magnetization,
however, indicates that the investigated sample could contain ferromagnetic impurities.
Samples of the same composition but from different batches exhibit a similar behavior.
Therefore, homogeneity ranges within the samples are suspected. One impurity might
be GdAl2 [69], which exhibits ferromagnetic ordering below TC = 170 K. Therefore, pure
GdAl2 cannot be the impurity but the solid solution GdTixAl2–x could be responsible for the
magnetic behavior. Since these compounds crystallize in the cubic MgCu2-type structure,
trace impurities are invisible in the powder X-ray patterns, since the reflections overlap
with those of rhombohedral Gd2TiAl3 (Figure 2). However, since ferromagnetic transitions
are significantly stronger compared to antiferromagnetic ones (factor 1000 to 10,000), only
traces of the respective impurity can be present. The magnetization isotherms (Figure 6,
bottom) finally exhibit a steep increase already at low magnetic fields. This is an additional
indication of the presence of ferromagnetic impurities. The 50 and 100 K isotherms are
linear, as expected for a paramagnetic material; those measured at 3 and 10 K show a very
weak curvature that could indicate an upcoming spin-reorientation at even higher fields.
The comparatively low saturation magnetization of µsat = 3.98(1) µB reached at 3 K and
80 kOe also underlines a strong antiferromagnetic ground state. Similar effects have been
observed, e.g., for GdPtGe2 [70] or Gd3Pt4Ge6 [71]. Usually, Gd intermetallics reach (nearly)
the theoretical full saturation magnetization µsat,theo = 7 µB according to gJ × J, as seen, e.g.,
for GdAl2 [72], Gd3Al2 [72], Gd2RhAl3 [14], or GdPt6Al3 [73].

Er2TiAl3 could be obtained in nearly pure form; the magnetic data are depicted in
Figure 7. The effective magnetic moment was determined to be µeff = 9.73(1) µB and is
slightly enhanced compared to the theoretical moment of µeff,calc = 9.58 µB for a free Er3+

cation; the paramagnetic Curie temperature is θP = −6.5(1) K, indicating antiferromagnetic
interactions in the paramagnetic temperature regime. An antiferromagnetic ordering was
derived from the low-field zero-field-cooled measurements (Figure 7, middle) with a Néel
temperature of TN = 17.6(1) K; however, again a bifurcation is visible, suggesting traces of
ferromagnetic impurities. The magnetization isotherms (Figure 7, bottom) at 50 and 100 K
isotherms are linear, as expected for a paramagnetic material; the ones measured at 3 and
10 K show an S-shape with a curvature that indicates a spin-reorientation at a critical field
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of Hcrit = 20.7(5) kOe, determined by the derived value of the 3 K isotherm. The saturation
magnetization of µsat = 4.46(1) µB reaches 3 K and 80 kOe, which is below the expected
value of µsat,theo = 9 µB according to gJ × J.
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Table 7. Physical properties of the RE2TiAl3 (RE = Y, Gd–Tm; Lu) series: TN, Néel temperature;
µexp, experimental magnetic moment; µeff, effective magnetic moment; θP, paramagnetic Curie
temperature; µsat, experimental saturation magnetization; gJ × J, theoretical saturation magnetization.

Compound TN (K) µexp (µB) µeff (µB) θP (K) µsat (µB per RE3+) gJ × J (µB per RE3+)

Y2TiAl3 Pauli-paramagnetic, non-superconducting, χ(300 K) = +2.48(1) × 10−4 emu mol−1

Gd2TiAl3 26.1(1) 7.98(1) 7.94 +20.8(1) 3.98(1) 7
Tb2TiAl3 24.0(1) 10.04(1) 9.72 +31.7(1) 3.58(1) 9
Dy2TiAl3 26.1(1) 11.14(1) 10.65 −0.29(1) 7.98(1) 10
Ho2TiAl3 10.3(1) 10.85(1) 10.61 +0.72(1) 7.36(1) 10
Er2TiAl3 17.6(1) 9.73(1) 9.58 −6.5(1) 4.46(1) 9
Tm2TiAl3 10.8(1) 7.69(1) 7.61 −7.3(1) 3.46(1) 7
Lu2TiAl3 Pauli-paramagnetic, non-superconducting, χ(300 K) = +2.14(1) × 10−4 emu mol−1

4. Conclusions

In this paper, we present the synthesis as well as structural and magnetic characteri-
zation of the RE2TiAl3 series with RE = Y, Gd–Tm, and Lu. These compounds adopt the
rhombohedral Mg2Ni3Si-type structure and are the first representations in the field of alu-
minum intermetallics. The crystal structures of Y2TiAl3, Gd2TiAl3, and Tb2TiAl3 have been
refined from single crystal X-ray diffraction data and clearly indicate the formation of the
rhombohedral structure. Powder X-ray diffraction experiments underline this observation
as the diffraction patterns exhibit the expected splitting of reflections based on the transition
from the cubic to the rhombohedral crystal system. Powder patterns of selected members
of the series have been refined using the Rietveld method. All compounds have been
characterized by magnetic susceptibility and magnetization experiments. While Y2TiAl3
and Lu2TiAl3 exhibit a nearly temperature independent behavior in line with the expected
Pauli paramagnetism, the other compounds of the series show a stable trivalent oxidation
state of the rare-earth atoms. All compounds exhibit antiferromagnetic transitions at lower
temperatures; however, sometimes traces of ferromagnetic impurities can be observed.
These originate from impurities that crystallize in the cubic MgCu2-type structure and
have to be considered solid solutions according to RETixAl2–x. Even small traces of these
compounds provide visible features in the magnetic data since ferromagnetic transitions
are significantly stronger than antiferromagnetic ones. An identification of these impurities
is impossible since their reflections overlap with those of the rhombohedral main phase.
Finally, the valence electron concentration (VEC) also shows an intriguing feature. The
title compounds exhibit a VEC of 19 e– (2× 3e– + 4e– + 3× 3e–), while all other compounds
that adopt the Mg2Ni3Si-type structure, including the prototype itself, exhibit VECs be-
tween 36 and 39. The stability of the aluminum representatives will be investigated by
quantum-chemical calculations in the future.
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