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Abstract

Allogeneic hematopoietic cell transplantation (HCT) effectively treats high-risk hema-

tologic diseases but can entail HCT-specific complications, which may be minimized

by appropriate patient management, supported by accurate, individual risk estima-

tion. However, almost all HCT risk scores are limited to a single risk assessment

before HCT without incorporation of additional data. We developed machine learn-

ing models that integrate both baseline patient data and time-dependent laboratory

measurements to individually predict mortality and cytomegalovirus (CMV) reactiva-

tion after HCT at multiple time points per patient. These gradient boosting machine

models provide well-calibrated, time-dependent risk predictions and achieved areas

under the receiver-operating characteristic of 0.92 and 0.83 and areas under the

precision–recall curve of 0.58 and 0.62 for prediction of mortality and CMV reactiva-

tion, respectively, in a 21-day time window. Both models were successfully validated

in a prospective, non-interventional study and performed on par with expert hema-

tologists in a pilot comparison.
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1 | INTRODUCTION

Allogeneic hematopoietic cell transplantation (HCT) is an effective

and potentially curative treatment for patients suffering from high-risk

hematological malignancies and other non-malignant and congenital

disorders.1 Despite its success and continuous improvement over the

past decades,2,3 the treatment-related non-relapse mortality (NRM)

after HCT remains high. HCT recipients are at risk for multiple poten-

tially life-threatening complications, such as graft-versus-host disease

(GVHD) or cytomegalovirus (CMV) reactivation. Accurate risk assess-

ment and an appropriate choice of prophylactic and pre-emptive

treatments are crucial to minimize these risks.4,5 Registries such as the

databases of the European Society for Blood and Marrow Transplan-

tation (EBMT) or of the Center for International Blood and Marrow

Transplant Research (CIBMTR) collect individual patients' pre-HCT

and outcome data from centers via standardized reporting forms.6,7

Using these databases, the prevalence and risk factors of HCT compli-

cations can be analyzed on a large scale. Due to the data collection

process, registry data per patient is limited to a set of categorical vari-

ables. While time-dependent endpoint data are available regarding

the time of relapse or death, continuously measured laboratory values

from electronic health records (EHR), or unstructured data from

reports cannot yet be integrated into these registries. Since the

2000s, a number of relevant predictive risk scores have been devel-

oped utilizing static registry data to improve outcome assessment

before HCT and to adjust the toxicity of the intervention by reducing

the conditioning intensity. The hematopoietic cell transplantation-

specific comorbidity index (HCT-CI)8 is to date the most relevant and

utilized score to predict NRM. Other Cox-regression models based on

categorical, pre-HCT variables, such as the EBMT risk score9 or the

disease risk index,10 have additionally improved pre-HCT and relapse

risk assessment for different hematologic malignancies. However, the

overwhelming majority of existing methods for assessing such HCT-

specific risks offer only a single risk assessment before HCT.

Across medical areas, machine learning (ML) techniques have

proven their value as powerful tools for diagnosis11–14 or risk

assessment.15–17 ML models are ideally suited to discover associa-

tions in large datasets and can automatically identify important param-

eters and relationships between them without the need for a

predefined model shape. In recent years, several ML models have

been proposed for HCT-specific risk assessment at a single point in

time.18–20 For instance, an alternating decision tree model produced

more accurate predictions of 100-day mortality after HCT than the

EBMT score for acute leukemia patients,18 demonstrating that ML

can improve standard scores for pre-HCT risk assessment.

The endothelial activation and stress index (EASIX) measured

before conditioning therapy is associated with overall survival after

HCT, highlighting the potential of including laboratory parameters in

pre-HCT risk assessment.21 Additionally, EASIX measured at the onset

of acute GVHD predicts overall survival after GVHD onset.22 Despite

its added value, EASIX is calculated from a limited set of three param-

eters (creatinine, platelets, LDH) using a predefined formula, and each

study only evaluated its prognostic value at a single point in time.

Integrating time-dependent measurements into ML models can

not only improve predictive performance but also allows to update

risk assessments whenever new data become available. For instance,

early-warning systems developed for intensive care units (ICU) contin-

uously monitor patient data and predict critical events such as acute

kidney injury16 or circulatory failure,17 which may help physicians to

react earlier to critical events or to prevent them. Given the high vari-

ability of individual outcomes after HCT and the importance of opti-

mal patient management, we hypothesized that ML-based models for

precise, time-dependent risk prediction after HCT may provide a valu-

able tool to support treatment decisions. Compared with the large,

annotated, public EHR datasets of ICU patients,17,23 time-dependent

HCT data are scarce. Their use in ML models is further challenged by

high variability in laboratory measurement frequencies and a charac-

teristic nonlinear development of laboratory values after HCT, which

requires context-dependent evaluation of identical numerical results.

In addition, longer observation times may entail missing values and

censored data. Major national and international efforts are currently

directed toward digitizing medicine,24,25 developing unified standards

for data management, and facilitating the increasingly widespread use

of EHR systems. As a consequence, we expect the accessibility and

usability of health data to improve, with impacts on different fields of

medicine including HCT care.

In this article, we describe the development and prospective vali-

dation of ML models, which accurately predict death and early CMV

reactivation at multiple time points after HCT. These are the first

models for continuous time-dependent risk assessment of these out-

comes after HCT.

2 | METHODS

2.1 | Patients

Between January 2005 and June 2020, 2191 patients with hemato-

logic malignancies, inherited stem cell disorders, or acquired bone

marrow failure underwent allogeneic HCT in the Department of

Hematology and Stem Cell Transplantation of the West-German Can-

cer Center at University Hospital Essen (UHE). Patients with HCT

before September 1, 2017 were included in the retrospective cohort.

Patients with HCT between September 2017 and June 2020 were

prospectively recruited into the non-interventional XplOit validation

study (Figure S1). We excluded patients with multiple allogeneic

HCTs, with hemoglobinopathies or without data on relevant labora-

tory tests, resulting in retrospective and prospective cohort sizes of

1310 EISENBERG ET AL.

 10968652, 2022, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ajh.26671 by U

niversitaet D
es Saarlandes, W

iley O
nline L

ibrary on [25/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1710 and 403 patients, respectively. For models and analyses related

to CMV reactivation, we additionally excluded patients without CMV

data before day +30 after HCT. Donors were HLA-matched related

donors (MRD, 23.0%), haploidentical related donors (haplo, 3.8%),

10/10 HLA-A-, -B, -C, -DRB1, -DQB1 matched unrelated donors

(MUD, 53.6%), or mismatched unrelated donors (MMUD, 19.6%;

Table S1). HLA-DPB1 was not considered for donor–recipient match-

ing. Typically, patients were followed up for 60 months after trans-

plantation. Long-term surviving patients were censored. Early

supportive and follow-up care was identical for all patients. In the ret-

rospective cohort, the predominant calcineurin inhibitor based GVHD

prophylaxis consisted of Ciclosporin A plus Methotrexate. Patients

with higher GVHD risk were assigned to additional in vivo T cell

depletion using anti-T-Lymphocyte globulin (ATG) based on standard-

ized clinical treatment protocols.

2.2 | Ethics

This study was conducted in accordance with German legislation and

the revised Helsinki Declaration. Study design and data acquisition

were evaluated by the institutional review board (IRB) of the Univer-

sity Duisburg-Essen (Protocol No. 17-7576-BO) and by the IRB of the

medical association of the Saarland (Protocol No. 33/17). All patients

included in the prospective, non-interventional XplOit study (regis-

tered in the German Clinical Trials Register (DRKS), registration

No. DRKS00026643) have given written consent to collection, elec-

tronic storage, and scientific analysis of pseudonymized HCT-specific

patient data.

2.3 | Data preparation, endpoint assessment, and
statistical analysis

The sections on data preparation, endpoint assessment, and statistical

analysis are detailed in the supplementary material.

2.4 | Preprocessing

We selected 60 features for model development, including all static fea-

tures available in structured format, the prediction day, and 34 of the

most frequently performed laboratory tests (Table S3). For time-

dependent laboratory tests, we only used the most recent value of each

parameter at the time point of prediction. Static and time-dependent fea-

tures were preprocessed separately and concatenated directly before

model training. Preprocessing is detailed in the supplement.

2.5 | Prediction times and classification target

We aimed for the application scenario where models are executed

once per day whenever new time-dependent data become available.

Therefore, we considered all days between HCT and the event of

interest (or censoring) where any laboratory measurements were

reported as potential prediction days.

For each event (death or CMV reactivation), we defined binary

classification targets based on two different window sizes d of 7 and

21 days, respectively. Each time point was labeled with 1 (positive) if

the event occurred within the following d days and 0 (negative) other-

wise. We excluded time points where patients were censored in this

time window or where more than 30% of time-dependent features

were missing after forward filling. For prediction of CMV reactivation,

we considered only events in the first 100 days and excluded predic-

tion days after day 100 � d. The final number of time points is listed

in Table S5 for each prediction task.

2.6 | Machine learning models and training

We trained gradient boosting machine (GBM) models using

LightGBM, which provides an efficient implementation of a gradient

boosted ensemble of decision trees.26 For the comparative L2-regu-

larized logistic regression (LR) model and baseline we used the Logisti-

cRegressionCV class in scikit-learn.27

For both model types, we optimized hyperparameters with grid

search and five-fold cross-validation (CV). CV folds were defined on

patient level to ensure their independence and were stratified by the

maximum label per patient. We selected the parameters producing

the highest mean sample-AUPRC and retrained on the full training set

with these parameters. For GBM models, we used early stopping dur-

ing CV to determine the number of boosted trees in the ensemble.

For each combination of hyperparameters, model training was

stopped early when the mean logistic loss over CV folds did not

improve for 50 iterations. When retraining on the full training set, we

used the number of boosted trees, which produced the lowest logistic

loss during CV. The exact parameter choices, grids, and optimal values

are provided in Table S6.

To evaluate model performance and variability on retrospective

data, we repeatedly split the patients of the retrospective cohort into

two-thirds training and one-third test set (stratified by the maximum

label per patient). We ran the entire training process, including impu-

tation, normalization, and hyperparameter search, on each training set

independently and evaluated model performance on the correspond-

ing test set using AUROC, sample-AUPRC, and event-AUPRC. Here,

sample-AUPRC is the standard area under the precision–recall curve,

where recall is defined as the fraction of correctly predicted samples

(i.e., time points) with positive label (sample recall). In contrast, event-

AUPRC defines recall as the fraction of events, which were correctly

predicted on at least one of the positive labeled time points (event

recall) and was previously introduced for time-dependent event pre-

diction.17 Unless specified otherwise, model performance on retro-

spective data is reported as mean and SD over 10 random splits into

training and test set. Using the same methodology, we additionally

trained a final model on the entire retrospective cohort for prospec-

tive validation.

EISENBERG ET AL. 1311
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2.7 | Models with additional features

We evaluated whether additional information from unstructured med-

ical letters or information on the history of laboratory values improved

the performance of survival and CMV prediction. For this purpose, we

trained two further GBM models per task, which received additional

input features (Table S8). Since the added features led to little or no

performance improvement on the retrospective data (Figure S15), we

F IGURE 1 Legend on next page.
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selected only the simpler models with the initial feature set for pro-

spective validation. An overview of all developed models and the

included features is provided in Table S9.

2.8 | Model calibration

We calibrated all trained models as a postprocessing step using iso-

tonic regression. For this purpose, we trained a separate calibrator

for each split of the retrospective cohort into training and test set,

using the raw model predictions on the test set. To apply calibra-

tion to any of the models trained for these splits, we averaged the

output of the nine calibrators trained on the remaining splits

(Figure 1C). The predicted probabilities of the final model trained

on the entire retrospective cohort were calibrated using the aver-

age over all 10 calibrators.

2.9 | Prospective validation

In order to prospectively validate the developed models on an inde-

pendent cohort, we recruited 408 patients to the prospective non-

interventional XplOit study (inclusion criteria: first allogeneic HCT,

≥18 years, written informed consent) from September 2017 to June

2020. We applied the final GBM and LR models to generate predic-

tions on the prospective cohort, selecting prediction times with the

same methodology described for the retrospective cohort. Through-

out the prospective study, both physicians and patients were blinded

for the model predictions.

We compared model predictions to the observed outcome and

measured performance with the same metrics used on retrospective

data. To assess variability in performance measures, we applied boot-

strapping with 10 000 bootstrap samples on the prospective dataset.

During bootstrapping, we kept the total number of positive labeled

samples fixed at its original value and adjusted the number of negative

labeled samples to obtain the same positive fraction as observed in

the retrospective dataset to enable a direct performance comparison

between retrospective and prospective cohort.

2.10 | Head-to-head comparison to physicians'
expectations

Within the last quarter of prospectively recruited patients, we per-

formed a pilot study to compare the performance of the developed

ML models to the expectations of experienced physicians regarding

early complications after HCT. For 91 patients in the prospective

cohort, we prospectively assessed the expectations of the treating

physicians regarding overall survival and CMV reactivation between

day 0 and day +100 after HCT. Physicians were requested to esti-

mate each patient's performance status (ECOG, 0–5) and risk to have

a CMV reactivation (low, moderate, high) in 7 and 21 days after the

assessment date. Assessment was performed weekly between day �7

and day +100 after HCT by physicians of the Department of Hema-

tology and Stem Cell Transplantation at UHE. Whenever an assess-

ment was made (starting at HCT), the GBM and LR models were

executed on the most recent available data to allow for a head-to-

head comparison of the predictions. Treating and risk assessing physi-

cians were blinded for the model predictions.

To enable model predictions on the day of each assessment, we

used indefinite forward filling on laboratory measurements for this

analysis. Since the physicians' assessments were recorded as catego-

ries rather than probabilities, we binarized their answers and the

model predictions, and compared performance measures on these

binary predictions. Specifically, we compared Matthews correlation

coefficients (MCC) and F1 scores, choosing the optimal binarization

threshold for models and physicians, respectively. To assess variabil-

ity, we repeated this evaluation on 10 000 bootstrap samples drawn

from the dataset for this pilot comparison. Here, we kept the positive

fraction fixed by drawing the same number of samples with positive

and negative labels, respectively, as were originally in the dataset.

2.11 | Implementation

Preprocessing was in part performed within the XplOit platform (ver-

sion 20201130_1700) using extract–transform–load pipelines specific

to each data type. All remaining steps of preprocessing, model

F IGURE 1 Overview of model development and evaluation. (A) Data preparation. Raw data tables were pseudonymized and combined into
one coherent dataset. After patient and variable selection, sparsity in laboratory values was reduced by forward filling with variable-specific time
limits and categorical features were converted into a binary representation. (B) Time points and targets for prediction. Of the two considered
events, death was directly documented and CMV reactivation was extracted from virological tests as the first positive CMV test, which was not
an isolated positive. We selected all days between HCT and an event or censoring as prediction days where new laboratory values were
measured and <30% of them were missing. Each prediction day was labeled positive if the event occurred in a fixed subsequent time window,
and negative otherwise. (C) Machine learning. Models received static baseline data, current laboratory values, and the prediction day after HCT as

inputs. We randomly split the retrospective cohort into training and test sets 10 times, and trained a separate model on the training set of each
split and a final model on the full retrospective cohort. We defined the splits on patient level and stratified the proportion of patients with at least
one positive labeled time point. Preprocessing included a time-dependent normalization and imputation of laboratory values. We trained one
calibrator for each split into training and test set. To calibrate each model, we averaged over the calibrators trained on the remaining splits or over
all calibrators in case of the final model. (D) Model evaluation. During model development, performance was evaluated on the test set of the
10 splits of the retrospective cohort. In a prospective validation study, we additionally evaluated the performance of the final model on
403 prospectively recruited patients and, in a subset of 91 patients, performed a pilot comparison with experienced HCT physicians.
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building, and analysis were implemented in python (version 3.8.2)

using scikit-learn (version 0.22.1),27 numpy (version 1.18.1),28 and

pandas (version 1.0.3).29 GBM models were trained with LightGBM

(version 2.3.1)26 and SHAP values for these models were computed

using the TreeExplainer implemented in shap (version 0.37.0).30

3 | RESULTS

Using ML, we developed GBM and LR models to predict at multiple

time points after HCT whether an event, that is, death or CMV reacti-

vation, would occur in a subsequent time window of 21 or 7 days

(Figure 1A–C). Each model received a combination of routinely col-

lected static and time-dependent HCT data as input and was trained

to predict a continuous risk score for one specific event. We then vali-

dated these ML models in the prospective non-interventional XplOit

study, which also included a pilot comparison between ML model pre-

dictions and prospectively collected outcome expectations of experi-

enced HCT physicians (Figure 1D).

3.1 | Assembling an extensive longitudinal HCT
dataset

Utilizing the XplOit data integration platform for medical research,31

we assembled an extensive, well-annotated retrospective dataset

incorporating static and time-dependent data of 1710 HCT patients

to form the basis of model development. Based on their relevance, we

selected 60 parameters as input features for the ML models

(Figure 1), including static pre-HCT constellations, such as diagnosis,

conditioning regimen, and donor information, as well as the day of the

prediction and current laboratory values (Table S3). During the non-

interventional XplOit validation study, we additionally recruited

403 patients for prospective model validation.

Relevant baseline characteristics were balanced between the

development and validation cohort and are detailed in Table S1. As

expected, the largest fraction of patients presented with acute mye-

loid leukemia for HCT. Cyclosporin A (CSA) was the predominant

calcineurin inhibitor for baseline immunosuppression. Following

changes in HCT practices, such as the introduction of post-

transplant cyclophosphamide, the prospective cohort had a higher

proportion of patients with tacrolimus-based immunosuppression.

Time-dependent laboratory values were available at 163 425 and

31 889 time points in the retrospective and prospective cohort,

respectively, comprising more than 5.4 million individual measure-

ments in total. In accordance with international best-practice HCT

guidelines, the measurement intervals were shortest during the inpa-

tient care of 35–40 days and were extended for outpatients

(Figure S5).

The endpoints of this study were adequately covered by the ana-

lyzed data. The time of death was known for 1134 patients (53.7%),

and 925 patients (43.8%) developed an early CMV reactivation (within

100 days after HCT), with the median first episode of CMV

reactivation at day +34. After 24 months, the overall survival

(OS) rate was 55% in the retrospective cohort (Figure S2a), which is

representative of HCT outcomes across different risk groups in real-

world data. After a median follow-up of 14.4 months, the median

overall survival was not reached in the prospective XplOit study

(Figure S2b). While the cumulative incidence of NRM was comparable

between the retrospective and prospective cohort, overall survival dif-

fered significantly consistent with reduced relapse rates in recent

HCT (Figure S2c). The GBM model predicts 21-day mortality with an

AUROC of 0.92 and an event-AUPRC of 0.58.

We evaluated model performance using the standard area under

the receiver-operating characteristic (AUROC) and two versions of

the area under the precision–recall curve (AUPRC), event-AUPRC and

sample-AUPRC. While sample-AUPRC is based on the standard recall

on individual samples, event-AUPRC defines recall as the fraction of

correctly predicted events and specifically addresses time-dependent

event prediction.17 Following data preprocessing, as detailed in the

Methods section, the retrospective dataset for the development of

21-day mortality models contained 143 669 time points of 1695

patients, 7354 of these time points (5.14%) were labeled positive

(death occurred within 21 days).

The developed GBM model for 21-day mortality prediction

achieved a very high AUROC of 0.918 and good event AUPRC of

0.584 (Figure 2A,B). It outperformed the LR model, which had an

AUROC of 0.900 and an event-AUPRC of 0.524. To assess the

value of including time-dependent data for outcome prediction, we

compared these models with a baseline LR model receiving only

static input data. The time-dependent GBM and LR models both

vastly outperformed the static LR baseline, which achieved an

AUROC of only 0.594 and event-AUPRC of 0.085. The same trend

was observed in sample-AUPRC (Figure S6). After calibration, we

obtained very close agreement between predicted and observed

risk, with areas of 0.04 and 0.06 between the line representing ideal

calibration and the calibration curve of the GBM and the LR model,

respectively (Figure S7).

We then analyzed the performance of the GBM model for 21-day

mortality prediction over time in more detail. As expected, the fraction

of correctly predicted events increased with shorter time to the event

(Figure S3a). This finding was independent of the exact threshold cho-

sen to convert continuous risks into binary event predictions. With a

threshold chosen to obtain an overall event recall of 0.8, the majority

of events was predicted at least 2 weeks in advance. The predicted

continuous risks evolved similarly with a steady increase as patients

approached an event (Figure 2C), which supports the plausibility of

the model. Compared with the average risk predicted for negatively

labeled time points, that is, without any event in the subsequent

21 days, this increase was detectable as early as 85 days before the

event. Although the GBM model recognized initial signs of an impend-

ing event much earlier than 21 days before, these were not yet suffi-

cient for a confident event prediction. Analyzing GBM model

performance as a function of the prediction day after HCT, we found

that AUROC increased slightly over time (Figure 2D). Sample-AUPRC

varied more noticeably; it was lower early after HCT and highest

1314 EISENBERG ET AL.
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F IGURE 2 Performance and feature importance of the GBM model for 21-day mortality prediction. (A) Receiver-operating characteristic of
GBM and LR model, which received a combination of static and time-dependent input features, and a baseline model which received only static
features. (B) Precision–recall curve for the same models as shown in (A), based on event recall, that is, the fraction of events that were correctly
predicted on any of the previous 21 days. (C) Mean predicted risk of the GBM model as a function of time to event. For reference, the orange
horizontal line indicates the mean predicted risk over all time points labeled negative. Dashed horizontal lines indicate the thresholds to reach the
target event recall stated in the figure legend. (D) AUROC and sample-AUPRC of the GBM model and fraction of samples with positive label as
functions of time after HCT. Bin size increases because fewer samples were available late after HCT. (A–D) Lines and shaded areas show the
mean ± SD on the test set over 10 random splits into training and test data. (E) Layered violin plot of SHAP values of the GBM model for the
20 features with highest mean absolute SHAP value. The thickness of the violins corresponds to the estimated density of each feature's SHAP
values, colors show the magnitude of feature values (percentiles). For features marked with ◇, the feature value is the time-normalized score that
the model received as input, not the raw value in its original unit. For categorical features, the colors are based on an integer representation and
should not be interpreted as ordered. All SHAP values were computed based on raw model output in log-odds space. (F–G) Scatter plots of
individual SHAP values over feature values. Shown are plots for the feature prediction day after HCT on the entire range of feature values (F) and
zoomed in on the first year after HCT (G).
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between days 80 and 150. This correlated with the fraction of posi-

tive labeled samples at different times after HCT since a small positive

fraction makes it difficult to achieve a high precision score.

3.2 | Prediction day, CRP, and urea nitrogen had
the highest impact on mortality predictions

Using SHapley Additive exPlanations (SHAP values),30 we analyzed

the impact of individual features on GBM model predictions

(Figure 2E). SHAP values indicate how much the value of a feature

has contributed to the prediction generated for a specific sample.

High values (>0) indicate that the feature value increased the pre-

dicted risk, while low values (<0) indicate that it reduced the predicted

risk. For the GBM model predicting 21-day mortality, the most impor-

tant features were the day of the prediction (in days after HCT),

C-reactive protein (CRP), blood urea nitrogen, glutamate oxaloacetate

transaminase (GOT), and protein levels (Figure 2E). Especially high

blood levels of CRP, urea nitrogen, and GOT as compared with other

patients at the same time after HCT led the model to predict an

increased mortality risk. In contrast, high values of total protein led to

a lower predicted risk. These features are markers of inflammation or

infection, or reflect liver or kidney function. For the prediction day

after HCT, the relationship between feature value and SHAP value

was more complex. Within the first year after HCT, the prediction day

appeared to increase the predicted risk, while after 1 year the SHAP

values continuously decreased, falling below zero about 3 years after

HCT (Figure 2F). A closer inspection of the first year after HCT

revealed that prediction days up to day +40 decreased the predicted

risk, while all later prediction days of the first year had constantly high

SHAP values (Figure 2G).

For 7-day mortality prediction, the GBM and LR models both had

a higher AUROC and lower event- and sample AUPRC than the corre-

sponding 21-day models (Figure S8). As a consequence of the nar-

rower time window, fewer samples were labeled positive (1.88% for

7-day prediction), which can partially explain the lower event and

sample-AUPRC. Detailed results for the 7-day prediction models are

provided in the supplementary material (Figures S8 and S9). While

these models focused on all-cause mortality to enable prediction for

all HCT patients, independently of their relapse status, we also tested

if our modeling approach would result in comparable prediction per-

formance for NRM, which was indeed confirmed (Table S10b).

3.3 | The performance of 21-day mortality
prediction models remained high on prospective data

In the second step, we validated the developed ML models on an

independent prospectively recruited cohort (n = 403) from the same

HCT center (Table 1A). Depending on the time window for predic-

tion, we observed specific differences in the performance of mortal-

ity prediction on prospective data. The models for 21-day mortality

prediction remained relatively stable; AUROC and event-AUPRC of

the GBM model faded only slightly from 0.918 to 0.895 and from

0.584 to 0.522, respectively. Responding to changes in HCT prac-

tices, we additionally compared subgroups of the two main distinct

immunosuppressive regimens (CSA and TAC) within the prospective

cohort (Table S2), and found no major differences between these

subgroups. However, for 7-day prediction, we observed a quite pro-

nounced decrease in model performance on prospective data, with

AUROC and event-AUPRC of the GBM model dropping from 0.951

to 0.931 and from 0.525 to 0.372, respectively. Here, model perfor-

mance was noticeably higher for patients with CSA instead of TAC

immunosuppression, which were better represented in the retro-

spective cohort. Model calibration remained appropriate on prospec-

tive data (Figure S10).

Despite some differences between retrospective and prospective

patient outcomes and model performance, the AUROC of both GBM

and LR models remained high on prospective data. Event- and

sample-AUPRC were also acceptable given the low fraction of posi-

tive labeled time points. Next, we tested if the models trained to pre-

dict all-cause mortality could also be leveraged to predict NRM. The

validation of the GBM model for 21-day mortality on the subgroup of

361 prospectively recruited patients without relapse resulted in a

comparably high AUROC of 0.900, an event-AUPRC of 0.536, and a

sample-AUPRC of 0.428 (Table S10a). Thus, the developed ML

models were successfully validated on the prospective dataset for

both all-cause mortality and NRM.

3.4 | For 21-day mortality prediction the GBM
models performed similar to HCT physicians

In a pilot study, which was part of the prospective validation, we addi-

tionally compared the predictive performance of the final GBM and

LR models during the first 100 days after HCT to the outcome expec-

tations of experienced HCT physicians. Within the last year of the

prospective XplOit study, each treating physician was requested once

per week to estimate their patients' expected Eastern Cooperative

Oncology Group (ECOG) performance score and risk of CMV reactiva-

tion (low, medium, high) in 7 and 21 days. In total, we collected

649 forms containing post-HCT assessments for 91 patients. In paral-

lel, we executed GBM and LR models at the time of each assessment

with the latest available time-dependent data. All physicians were

blinded to the model predictions.

The results of this comparison are displayed in Table 1B. For

21-day mortality prediction, GBM model and physicians showed a

similar performance, as measured by MCC values of 0.461 ± 0.086

and 0.488 ± 0.089, respectively. Although the differences were small

compared with the SD derived from bootstrapping, trends showed a

slight advantage of the physicians' expectations over the GBM

model predictions and of the GBM model over the LR model. For

7-day prediction, the physicians achieved a very high MCC and F1

score of 0.796 ± 0.180 and 0.767 ± 0.214, respectively,
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outperforming both ML models. However, the dataset for comparing

predictive performance over a 7-day window in this pilot sub-study

was limited due to a low number of fatalities preceded by prospec-

tive assessments. In addition, these deceased patients were less rep-

resentative of the training cohort since they received TAC

immunosuppression.

3.5 | The GBM models for 21-day CMV prediction
had AUROC 0.83 and event-AUPRC 0.62

For two reasons, the dataset for the development of models pre-

dicting early CMV reactivation was smaller than for mortality predic-

tion: first, we focused on the first 100 days after HCT, where the

TABLE 1 Model performance on
prospective data and comparison of the
prediction performance of ML models
and treating physicians

A. Comparison of model performance on retrospective and prospective cohorta

Prediction task Model Performance metric Retrospective cohort Prospective cohort

Mortality 21 days GBM AUROC 0.918 ± 0.009 0.895 ± 0.005

Event-AUPRC 0.584 ± 0.046 0.522 ± 0.023

Sample-AUPRC 0.488 ± 0.042 0.414 ± 0.015

LR AUROC 0.900 ± 0.010 0.866 ± 0.006

Event-AUPRC 0.524 ± 0.048 0.549 ± 0.021

Sample-AUPRC 0.445 ± 0.043 0.413 ± 0.015

Mortality 7 days GBM AUROC 0.951 ± 0.006 0.931 ± 0.006

Event-AUPRC 0.525 ± 0.038 0.372 ± 0.029

Sample-AUPRC 0.410 ± 0.034 0.303 ± 0.021

LR AUROC 0.940 ± 0.008 0.894 ± 0.009

Event-AUPRC 0.464 ± 0.038 0.348 ± 0.026

Sample-AUPRC 0.375 ± 0.023 0.269 ± 0.020

CMV 21 days GBM AUROC 0.825 ± 0.006 0.846 ± 0.004

Event-AUPRC 0.620 ± 0.040 0.574 ± 0.011

Sample-AUPRC 0.565 ± 0.025 0.549 ± 0.009

LR AUROC 0.793 ± 0.013 0.818 ± 0.004

Event-AUPRC 0.532 ± 0.050 0.515 ± 0.012

Sample-AUPRC 0.502 ± 0.033 0.496 ± 0.009

CMV 7 days GBM AUROC 0.846 ± 0.010 0.875 ± 0.005

Event-AUPRC 0.335 ± 0.023 0.323 ± 0.015

Sample-AUPRC 0.295 ± 0.017 0.302 ± 0.012

LR AUROC 0.777 ± 0.014 0.802 ± 0.006

Event-AUPRC 0.192 ± 0.017 0.176 ± 0.007

Sample-AUPRC 0.188 ± 0.014 0.181 ± 0.006

B. Comparison of the prediction performance of ML models and treating physiciansb

Prediction task Performance metric Physicians GBM LR

Mortality 21 days MCC 0.488 ± 0.089 0.461 ± 0.086 0.417 ± 0.087

F1 score 0.453 ± 0.086 0.427 ± 0.085 0.360 ± 0.084

Mortality 7 days MCC 0.796 ± 0.180 0.377 ± 0.064 0.304 ± 0.069

F1 score 0.767 ± 0.214 0.272 ± 0.077 0.204 ± 0.069

CMV 21 days MCC 0.234 ± 0.051 0.329 ± 0.062 0.266 ± 0.023

F1 score 0.289 ± 0.055 0.322 ± 0.049 0.281 ± 0.026

CMV 7 days MCC 0.170 ± 0.067 0.147 ± 0.033 0.143 ± 0.042

F1 score 0.168 ± 0.063 0.110 ± 0.025 0.117 ± 0.030

aFor the retrospective cohort, the table displays mean ± SD on the test set over 10 random splits into

training and test data. For the prospective cohort, it shows the performance of the final models, trained

on the entire retrospective cohort, as mean ± SD over 10 000 bootstrap samples.
bPerformance of models and physicians was measured using Matthews correlation coefficient (MCC) and

F1 score after binarization with the respective optimal threshold. Displayed is the mean ± SD over

10 000 bootstrap samples.
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earliest episode of CMV reactivation almost exclusively occurs in

the absence of prophylaxis. Second, we excluded patients without

CMV testing during the first 30 days after HCT since the earliest

CMV episode could have been missed without regular tests. For

CMV prediction over 21 days, the dataset contained 52 008 time

points from 1561 patients, of which 12 413 (23.87%) were labeled

positive.

Here, the GBM model also had the best performance with an

AUROC of 0.825 compared with 0.793 and 0.779 for LR and baseline,

respectively (Figure 3A). The same trend was observed in event-

AUPRC (Figure 3B), which was 0.620, 0.532, and 0.473 for GBM, LR,

and baseline models, respectively, and in sample-AUPRC (Figure S6).

For CMV prediction, the gap between models using time-dependent

data (GBM and LR) and the static baseline was much smaller than for

mortality prediction. The primary reason is that even the CMV models

with access to time-dependent data relied on static features for their

predictions, while time-dependent laboratory values had only a minor

impact (Figure 3E). Calibrated predictions agreed closely with the

observed risk; GBM and LR models both had an area of 0.05 between

the calibration curve and the line representing perfect calibration

(Figure S11).

We performed the same analysis of GBM model performance

over time for 21-day CMV prediction as described for 21-day mortal-

ity prediction. Again, the fraction of correctly predicted events

increased while approaching the event, and this trend was indepen-

dent of the exact decision threshold chosen (Figure S3b). With a

threshold offering an event recall of 0.8, the GBM model predicted

60% of events at least 2 weeks before they occurred. For patients

approaching a CMV event, the mean predicted risk rose almost line-

arly, starting about 40 days beforehand (Figure 3C). While AUROC

remained nearly constant over time after HCT, sample-AUPRC

dropped after day +40 post-HCT as fewer events occurred

(Figure 3D).

3.6 | The CMV predictions were mainly based on
prediction day and static features

SHAP value analysis of the GBM model for 21-day CMV prediction

revealed that patient CMV serostatus had the highest impact on

model predictions, followed by prediction day after HCT and underly-

ing hematologic disorder (Figure 3E). Conditioning regimen, anti-

thymocyte globulin as GVHD prophylaxis, donor CMV serostatus, and

patient age were also relevant. Interestingly, the time-dependent labo-

ratory values had only a minor role in the predictions of this CMV

model, with the exception of the percentage of lymphocytes, which

ranked among the top 10 features. Consequently, the CMV model

relied predominantly on static data. The joint analysis of feature

values and SHAP values confirmed that a positive patient CMV seros-

tatus led to a strongly increased risk prediction, while a negative ser-

ostatus reduced the predicted risk (Figure 3F). This dichotomy was

even more pronounced among patients who received additional T cell

depletion with anti-thymocyte globulin as GVHD prophylaxis. The

SHAP values for the prediction day after HCT peaked between days

+20 and +50, indicating a typical timing for early CMV reactivation

events (Figure 3G). This peak was most pronounced for patients with

recipient-positive CMV serostatus. Interestingly, donor age did not

have a differential impact on the risk of CMV reactivation predicted

by the GBM model, except for very young donors (<17 years)

(Figure S4b). However, these samples were limited in our dataset and

were also associated with young patient age.

For prediction of CMV reactivation over 7 days, the GBM and LR

models both had a similar AUROC but considerably lower event- and

sample-AUPRC than the corresponding models for prediction over

21 days. Again, this may be influenced by the lower positive fraction

of 7.50% with the narrower 7-day time window. An analysis of model

performance over time and of the impact of individual features on

predictions of the 7-day GBM are included in the supplementary

material (Figures S12 and S13).

3.7 | CMV models were successfully validated and
performed similar to HCT physicians

In the prospective validation cohort (n = 398), the performance of all

CMV models remained very close to their performance on retrospec-

tive data (Table 1A). Compared with the retrospective cohort, the

AUROC of the GBM model for 21-day CMV prediction increased

slightly from 0.825 to 0.846, while its event-AUPRC decreased

slightly from 0.620 to 0.574. This performance remained stable across

patient subgroups with distinct immunosuppressive regimens

(Table S2). In contrast, the 21-day LR model had a higher performance

for patients who received CSA instead of TAC immunosuppression.

For prediction over 7 days, both models demonstrated very similar

performance on retrospective and prospective data, and a trend

toward higher performance for patients with CSA immunosuppres-

sion. All CMV models remained well calibrated on prospective data,

concluding the successful prospective validation (Figure S10).

In a pilot study, we compared the predictive performance of the

ML models to the risk of CMV reactivation estimated by experienced

HCT physicians. The results are shown in Table 3B. For 21-day predic-

tion, the GBM model had the best performance, with an MCC of

0.329 ± 0.062 compared with 0.266 ± 0.023 and 0.234 ± 0.051 for

LR model and physicians, respectively. On the other hand, the physi-

cians had a small lead over both ML models for prediction over 7 days.

In both cases, these differences in average performance were not

decisive, given the limited dataset for this comparison.

4 | DISCUSSION

In response to persisting difficulties to predict relevant complications

in HCT patients and to support clinical assessment, we developed and

validated the first ML models for time-dependent prediction of mor-

tality and CMV reactivation after HCT. These ML models accurately

predict patient-specific event risks within a specified time window
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F IGURE 3 Performance and feature importance of the GBM model for 21-day prediction of CMV reactivation. (A) Receiver-operating
characteristic of GBM and LR model, which received a combination of static and time-dependent input features, and a baseline model which
received only static features. (B) Precision–recall curve for the same models shown in (A) based on event recall, i.e. the fraction of events that
were correctly predicted on any of the previous 21 days. (C) Mean predicted risk of the GBM model as a function of time to event. For reference,
the orange horizontal line indicates the mean predicted risk over all time points labeled negative. Dashed horizontal lines as in Figure 2.
(D) AUROC and sample-AUPRC of the GBM model and fraction of samples with positive label as functions of time after HCT. (A–D) Lines and
shaded areas show the mean ± SD on the test set over 10 random splits into training and test data. (E) Layered violin plot of SHAP values of the
GBM model for the 20 features with highest mean absolute SHAP value. The thickness of the violins corresponds to the estimated density of
each feature's SHAP values, colors show the magnitude of feature values (percentiles). For features marked with◇, the feature value is the time-
normalized score that the model received as input, not the raw value in its original unit. For categorical features, the colors are based on an

integer representation and should not be interpreted as ordered. All SHAP values were computed based on raw model output in log-odds space.
(F–G) Scatter plots of SHAP values over feature values. Samples are colored by the value of a second feature to reveal interactions, which show
as vertical color patterns. Displayed are plots for the feature patient CMV serostatus colored by anti-thymocyte globulin (F) and prediction day
after HCT colored by patient CMV serostatus (G).
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and at multiple time points after HCT and pave the way toward clini-

cal decision support systems for transplantation medicine. While

existing predictive models18–20 and scores8,9,32 for HCT-specific risk

assessment predominantly focus on pre-HCT assessment to support

treatment and donor selection, time-dependent risk assessment may

enable physicians to refine and individually adjust treatments and pre-

ventive measures after HCT to obtain the best possible outcome for

each patient.

Our ML models combine static patient information as used in pre-

vious HCT ML models18 with longitudinal laboratory data and update

their predictions whenever new time-dependent data become avail-

able. Although this study builds on previous research on ICU data,17

our ML models prove the applicability of this new approach in the

field of HCT and on a much larger time scale with varying data granu-

larity, which underlines the relevance of this study beyond the field of

transplantation.

Recent ML models in patients with leukemia combined static

patient data at diagnosis with time series of laboratory measurements

to predict patient outcome at a single point in time.33 While these

models included HCT as an input parameter, they neither predicted

the outcome after HCT nor at multiple time points. Another ML study

using longitudinal HCT data integrated patients' vital signs and pre-

dicted graft-versus-host disease by day +100 with a modest AUROC

of 0.66,34 allowing for a single prediction on day +10 after HCT. Per-

sonalized ML survival models for HCT patients refined prognosis at

the time of HCT but exclusively relied on static pre-HCT data as input

parameters without adapting to complications occurring after HCT.35

Most recently, the integration of multiple time-dependent variables

into an ML model improved the prediction of acute GVHD (AUROC

0.78) in HCT recipients.36

Although our final models update their predictions whenever new

data become available, they use only the most recent laboratory result

for each prediction. On large EHR databases, recurrent deep neural

networks, for example, using long short-term memory (LSTM) units,

have demonstrated high prediction performances utilizing entire time

series as model input.16,37,38 A limitation of LSTMs is, however, their

dependence on very large training data, which are not available in all

medical domains. For instance, LSTMs did not outperform GBM

models for the time-dependent prediction of circulatory failure based

on a large single-center ICU dataset.17 Since additional features

describing the history of laboratory values did not improve the perfor-

mance of our GBM models (Figure S15), we did not pursue more com-

plex approaches for time series data.

In this article, we considered multiple endpoints and time win-

dows for prediction. Across these tasks, GBM models consistently

outperformed LR and provided well-calibrated time-dependent risk

predictions. Prediction performance was best for prediction of 21-day

mortality, where we obtained very high AUROC and high event-

AUPRC. High predictive performance, in addition to validity and inde-

pendent replication, is a core requirement for the clinical use of

predictive models in decision support systems39 since it is the first

indicator of health impact and effectiveness. Yet, identifying the opti-

mal performance threshold for effectiveness and impact is also subject

to medical,40 technical, and ethical41 considerations relating to the

predicted outcome, potential consequences of false predictions, and

implementation issues. Our pilot comparison to physicians' expecta-

tions indicates that the developed models will likely provide relevant

practical use, for example, as a risk screening tool for post-HCT outpa-

tients. Given the possibilities of intervening via anti-infective or immu-

nosuppressive drugs and hospitalization, such warning systems might

prevent fatal outcomes. The immediate availability of the features

used by our models in most HCT centers, including both the static

HCT parameters and the continuously measured standardized labora-

tory variables, is a major advantage for its clinical application for deci-

sion support. Finally, successful implementation in clinical practice can

also be influenced by physicians' trust in ML models, which may be

increased by providing understandable explanations for individual

predictions,40 for example, via SHAP values.

Since a direct comparison to existing scores designed for pre-

HCT risk assessment is not possible, we compared our models to a

baseline model, which was trained for the time-dependent prediction

task but used only static input features. Interestingly, time-dependent

input features proved highly valuable for mortality prediction but only

offered modest improvement for CMV prediction, indicating that

time-dependent outcome prediction may improve HCT-specific risk

assessment beyond current standards, but possibly not for all end-

points in equal measure.

The final ML models were successfully validated on an indepen-

dent, prospectively recruited cohort, as shown by the overall high pre-

dictive performance of the developed models on prospective data.

For mortality prediction, model performance decreased slightly com-

pared with the retrospective cohort, which was in part explained by

changes in immunosuppression strategies. However, the slight perfor-

mance drop also in patients with identical baseline immuno-

suppression indicates a dataset shift over time. This is well in line with

a recent EBMT analysis of HCT data up to the year 2016, showing

decreasing NRM over time.3 Given the small differences in prediction

performance between the retrospective and prospective cohort, the

applicability of the mortality prediction models remains unaffected.

The importance of prospective validation has been previously

shown42 and is also reflected in our study design. Indeed, predictive

models developed for use in clinical practice require continuous moni-

toring and, if necessary, refinement. Possibly due to the large impact

of static features, the performance of models predicting CMV reacti-

vation was not affected by this dataset shift and remained stable.

Our exploratory head-to-head comparison with experienced HCT

physicians revealed that GBM models performed approximately on

par for 21-day prediction of mortality and CMV reactivation. Despite

the limitations of this pilot comparison, trends showed that the physi-

cians performed slightly better in mortality prediction while the GBM

model was better in predicting CMV reactivation. Since the physicians

had direct contact with their patients, and therefore access to more

information than the 60 input features of the ML models, these

results underline the promising potential for future use of such GBM

models in clinical practice. Integrating additional features, such as vital

signs or current medication, could potentially increase model

1320 EISENBERG ET AL.

 10968652, 2022, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ajh.26671 by U

niversitaet D
es Saarlandes, W

iley O
nline L

ibrary on [25/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



performance further. However, the current feature set used by our

final models is readily available in most HCT centers, which is a pre-

requisite for the implementation as a clinical decision support system.

Although this is a topic of active discussion in the scientific

community,43 better interpretability or explainability of ML models in

healthcare may improve trust into model predictions44 and even the

quality of decision support systems.45 Here, SHAP values provide

insight into the impact of specific features on model predictions and

offer a comprehensive approach to explore underlying biological

mechanisms. In the GBM models for mortality prediction, mainly fea-

tures related to organ function and inflammation (CRP, urea nitrogen,

GOT, protein) affected the predicted risk. In contrast, the GBM

models predicting CMV reactivation strongly relied on static patient

data (CMV serostatus, diagnosis, conditioning regimen). For both end-

points, the prediction day after HCT had a large impact on the pre-

dicted risks indicating a typical time period for potential complications

after HCT, which is in line with previous reports.1 While SHAP values

can provide valuable insight into the features contributing to individ-

ual model predictions, it is important to note that they do not repre-

sent causal relationships.

The time-dependent prediction problems we considered were

imbalanced, meaning that our data contained few samples with a posi-

tive label. In this situation, AUPRC is a more informative performance

measure than AUROC.17 However, the exact positive fraction in our

data varied across prediction tasks, and we observed that event- and

sample-AUPRC were strongly correlated with it. This made it difficult

to compare models for different endpoints and time windows directly.

Sampling methods could be used to adjust the positive fraction for

such comparisons, but then performances would no longer be mea-

sured on the data distribution of a realistic application scenario, where

the positive fraction is determined by the prevalence of events. By

design, the positive fraction for 21-day prediction tasks was higher

than for 7-day prediction. Quite unexpectedly, this made 21-day pre-

diction the easier task for ML methods, leading to more robust results

even though the distance from positive labeled prediction days to the

event was longer. In addition, the 21-day prediction models have a

greater potential clinical applicability because they may enable an ear-

lier intervention to prevent or treat complications.

This study has limitations and strengths. It included only data

from a single center, which may limit the general applicability of the

developed models. However, the models were built on a homoge-

neous and large dataset of several million data points, and the patient

characteristics and HCT practice standards reflected those of major

international centers. The precise predictions of our models using

standard laboratory features available in all HCT centers pave the way

toward the implementation of decision support systems in HCT. Ulti-

mately, its routine use as a medical device requires a prospective clini-

cal trial for safety and efficacy, according to, for example, the EU

medical device regulation (EU 2017/745). As in many previous

studies,46,47 we defined CMV reactivation events only based on

detectability, combining data of different quantitative and qualitative

CMV tests. However, more recent studies have demonstrated that

the severity of CMV disease may be revealed by viral load

kinetics.48,49 It would be interesting for future work to attempt time-

dependent prediction of CMV reactivation with a narrower event

definition based on a threshold for the viral load.

The developed ML models predict mortality and CMV reactiva-

tion for HCT patients reliably and in a time-dependent manner, and

therefore may potentially improve patient outcomes once implemen-

ted as decision support systems in post-HCT care.
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