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Abstract

The Knuth-Bendix completion procedure can be used to transform an equational
system into a convergent rewrite system. This allows to prove equational and
inductive theorems. The main draw back of this technique is that in many cases
the completion diverges and so produces an infinite rewrite system. We discuss
a method to embed the given specification into a bigger one such that the
extended specification allows a finite "parameterized” description of an infinite
rewrite system of the base specification. Examples show that in many cases
the Knuth-Bendix completion in the extended specification stops with a finite
rewrite system though it diverges in the base specification. This indeed allows
to prove equational and inductive theorems in the base specification.






1. Introduction

Term rewriting systems constitute an important tool to compute and reason 1n
systems defined by equations. Given a set E of equations, the validity problem
for E is to decide for any two given terms s, t whether or not the equation
s = t follows from the equations in E. We write s =g t in this case and call
s = t an equational theorem of E. The rewrite approach to decide this problem
is to transform E by the Knuth-Bendix completion procedure into a convergent
rewriting system R such that =g = =p. Then R defines for every term t a unique
normal form tV and we have s = t iff s¥ = t. The major draw back of this
approach is that no finite convergent term rewriting system R for E may exist.
So the "preprocessing” of E into R will not stop.

Another application is to prove inductive theorems. It is well-known that
s =g t iff s = t holds in all models of E. For abstract data types one is usually
interested in the initial model J(E] of E. We have s = t in J(E) iff so =g to for
every ground substitution o. We call s = t an inductive theorem in this case.
Given a convergent rewriting system R for E one can try to compute R, for
E v {s = t}. Then s = t is an inductive theorem iff for every rule 1 = r in R,
the term 1 is inductively reducible by R [JKo]. Again, if R, is infinite then this

approach fails.

There are various proposals of how to circumvent divergence of the Knuth-
Bendix completion procedure, see [Her] for suggestions. But in general,
divergence is one of the most important problems when using rewriting and
completion techiques. In [Kir] it is proposed to describe an infinite set of
rewrite rules by a finite set of meta rules containing parameters to describe the
infinite set of rules. The problem is how to deal with such a parameterized
system, e.g. how to test confluence. In [Kir] a rather complicated framework
using order-sorted rewriting is developed. Under some strong restrictions
completion of parameterized rewrite systems seems possible.

In this paper we discuss a rather simple approach to deal with structures
defined by infinite rewrite systems. It is well known that structures allowing
only complicated systems of defining equations may be embedded into structures
with a rather simple defining equational system. As a consequence, problems
in the base structure can be shifted into the extended structure and so may
become easier to solve. In general one has to know algebraic properties of the
base structure to find an appropriate extension. But when dealing with the
completion process in many cases an infinite set of rules (i.e. directed equations)
is generated that has some regularities and allows finite descriptions with
natural numbers as parameters. So it seems reasonable to extend the base
structure one is interested in by a copy NAT of natural numbers. In the
extended structure the “parameters” are ordinary variables, so the well
developed rewriting techniques can be used to reason in the extended structure
and hence in the base structure, too, see [TJa]
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In this paper we study what is needed to make this approach work. We point
out the problems and give sufficient conditions under which one can overcome
these problems. The research was motivated by - but is not restricted to - the
extension of a structure by a copy of NAT to get a finite convergent rewriting
system as set of defining equations. We will not study the problem how to get
the extension automatically from the completion process. There are some
proposals to learn by inductive inference generalizations of sequences of terms
and this can be used to find an extension of the base structure in which all
defining equations of the base structure are valid, see [TJa], [Lan]. In [BKR]
general-state-machines are used to describe infinite rewrite systems produced
by the completion procedure for string rewriting.

We assume the reader to be familiar with rewriting and completion techniques
as developed in [KBe] and [Hue]. For a survey see [AMa]. We use the standard
notations as in [Hue] If R is a rewrite system then =>g denotes the rewrite
relation induced by R. We call R convergent if =g 1s confluent and well-
founded. We will need rewriting modulo a congruence defined by a set A of
equations and denote by = , , the relation =, o = o =,. We say R/A is a
convergent rewrite system for the equational system E [or R is convergent
modulo A] iff (iJ R/A is terminating, i.e. there is no infinite sequence
to = r,/a '1 =R, a~ and (ii) F/:\A is Church-RossAer modulo A, i'f‘ S roa !
implies 5 =, t for some terms s, t with s éR/A s and t £>R/A t and (iii) E
is equivalent to R v A, ie. s =g t iff s =p , t. For completion procedures that
try to transform E into R,A see [PSt], [JKi], [BDe]. Here one can also find
other rewriting relations =, with =, ¢ =, ¢ =, for condition (ii) which
have some practical advantages.

We denote by = the identity of terms, by Th(E] the set of equational theorems
and by ITh(E] the set of inductive theorems of E. The paper is organized as
follows. We start in section 2 with a motivating example. In sections 3 and 4
the embedding strategy is presented and applications to prove equational and
inductive theorems are discussed. In section 5 we show how to test the
conditions which are necessary for the approach to work and give in
section 6 some examples to show the power of the method.






2 An example
As a motivating example for our approach let us consider the specification NAT
of the natural numbers with the gcd-function, see e.g. [Herl.

glx.y]
glx.y)

X glx+y.y)
y glx,y+x)

X g(x,0]
s(x+y) glo.y]

E: x+0
x+s(y)

One may transform this equational system into a rewrite system R, by
orienting the equations from left to right. Unfortunately R, is not confluent, so
it cannot be used to compute the gcd of two numbers i and j. Notice that
g(si(o), si(o]) is irreducible in R, We would like to have a convergent rewrite
system R for E, this would allow to compute g[s'(o). si(o)] and to prove
equational theorems of E. Furthermore, we would like to prove inductive
theorems of E, e.g. g(x.x]) = x.

Completion of E using the ordering RPO (see [Der]) with precedence + > s
results in four infinite sequences of rules

gls™(x), s™(o)] — glx,s™(0]]
gls™(o), s™(y]] — gls™(ol.y]
gls™(x+y), s™(y)] = glx.s(y])
gls™(x]), s™(y+x]] = gls™(x]y]

It is natural to look for an embedding that contains a copy of the natural
numbers and to express s®(x] by S[n,x] where S is a new function symbol. To
do so we specify the copy of natural numbers by the operators 1 and + and the
equations

(AC) us+v=v:u (usv) + w = u + (vew)
Now we define the new operator S by

(s) s(x) = s(1.x)
S(u,S(v,x)) = S(u*v,x)

If we start the completion procedure with E, consisting of E and (S) and (AC)
then the completion process again diverges. But from the set of rules being
produced one can see that the following equation is missing.

(s1) x+S(u,y) = S[u,x+y)
Note that this equation generalizes x+s(y) = s(x+y) to x+s®(y]) = s®(x+y) which

for every n € N is an equational theorem of E and so is valid. If we add the
equation (S1) then the completion procedure stops successfully with






R: x+0 - x s(x) - S(1,x)

x+S(u,y] = S(u,x+y) S(u,S(v,x])] — S[usv,x)
glx,0) — x glx+y.yl = glxy)
gloyl] —=vy aglx.y+x] —= glxy)
g(S(u,x+y), S(u,y]) = g(x.5(u,y])

g(S(u,x), s(u,0})] — g(x,5(u,0])

g(S(u,x]), S(u,y+x]) = g(s(u,x].y]

g(S(u,0)), S(u,y)] — g(S(u,0)y)

g(S(usv,x), S(u,0])) = g(s(v,x], s(v,0]]

g(s(u,0]), s(usv,x]))— g(S(u,0), S(v,x]]

+ is AC

Using this finite rewrite system R we can prove the inductive theorem
g(x.x) = x of E by the method "proof by consistency”, see [JKo]: We complete
R u {g(x,x]) = x} and get as result the system R and the rule g(x,x] = x. Since
g(x,x) is inductively reducible by R we have proved that g(x,x) = x is indeed
an inductive theorem of E.

We are going to make these ideas precise in the rest of the paper.






3. The embedding strategy

Assume we have two specifications spec; and spec, such that spec, is a
subspecification of spec, (for definitions see below]. In this section we study
how to use spec, to compute and prove equational theorems in spec,. This
will need a careful definition of what it means that spec, is a consistent
enrichment of spec,. Note that by the theorem of Birkhoff s = t is an equational
theorem of spec, iff s = t holds in all models of spec;. We will use equational
reasoning in spec, but do not consider all models of spec,. This allows to add
"valid equations”, and in many applications these additional valid equations
help to get a finite convergent rewrite system in spec, to reason in the given
base specification spec,.

A specification spec = (Z,F,;E) consists of a signature sig = (Z,F) and a set E of
defining equations. Here X is a set of sorts and F is a set of operators, each
operator f with a fixed arity t(f): s;,..,s, — s where s;, s € =. For each sort s
we assume to have a denumerable set V_ of variables such that V_ n V_, = @
for s #+ s'. Then V is the union of all Vs and Term(F,V) is the set of terms over
the set F of operators and the set V of variables.

It spec, = (Z,F;E;) and spec, = (2, F,E,) = (2, v 25, F; u Foi E; u Eg) then
spec, is a subspecification of spec,. Let V, be the set of variables of sorts
s € 2, and V, the set of variables of sorts s € £, Then the elements of Vo are
called parameters. An order-preserving substitution ¢: Vo = Term[Fo,Ql is
called a parameter substitution. A term t € Term[F1 U Fo, V1] in the extended
specification spec, is reachable if there is a term t' € Term(F,,V,) in the base
specification spec, such that t' =g, t. We say t is reachable from t' in this case.

We call spec, a consistent enrichment of spec, if the following holds:

If t, =t, isin E;, ¢ is a parameter substitution and ¢(t;) is reachable from
t; for i = 1,2, then t} =g, t,.

In other words, spec, is a consistent enrichment of spec, if the equations in
E, do not introduce new equalities among the terms in the base specification
spec,.

In our gcd-example of the previous section we have spec, = (INAT), {0,s,+ g} E1]
with E; consisting of the six equations in E. To get spec, we add the sort
NAT, and the operators in F, = {1,+S} with (S] = NAT,, NAT — NAT. (Notice
that we are dealing with many sorted signatures so that NAT and NAT, are
completely different sorts). Finally, we add the set E of defining equations
consisting of the equations (AC) and (S). It is easy to see that (1) every term
t € Term(F, v F,, V,] is reachable and (2) spec, is a consistent enrichment of
spec,. For (2] see section 5.






If a term t € Term[F‘1 u Fo, V1 U Vo] contains parameters x € Vo- then t
describes all the terms ¢(t) € Term(F, v F,, V,] with ¢ a parameter substitution.
So an equation t; = t, describes all the equations ¢(t,) = ¢(t,). This allows in
many situation the finite description of an infinite set of spec,-equations in
spec,.

To make this precise we define an equation t, = t, with t;t, € Term[F1 v F
V; v V] to be valid with respect to spec, and spec, if (t,] =g, [t ) for each
parameter substitution ¢ such that q)[t1] or ¢(t,) is reachable. This gives
immediately

Fact 3.: If spec, is a consistent enrichment of spec; and each equation in E is
valid with respect to spec, and spec,, then specy = [ZZ,FZ; E, v E) is a
consistent enrichment of spec,. .

Coming back to our gcd-example, we have x + s®(y] = s™(x+y) for all n > 1,
S0

x + S(u,y) = S(u,x+y)
is valid with respect to spec, and spec,.

Now assume spec, is a consistent enrichment of spec,. We may run the
completion procedure with input E, and an appropriate reduction ordering,
thereby regarding both the "variables” in spec, and the "parameters” in spec,
as variables. Then new equations are produced by equational reasoning. These
equations are automatically wvalid, so all specifications produced by the
completion procedure are consistent enrichments by Fact 3.1 In many cases
one needs rewriting and completion modulo a set A of unorientable equations.
This gives

Fact 3.2: Assume spec, = [ZZ,FZ;EZ] is a consistent enrichment of spec, and E
is a set of equations that are valid with respect to spec, and spec,. If
completion of E, v E results in R v A such that R is convergent modulo
A then specy = [(£,,F,; R u A is a consistent enrichment of spec;. .

Now suppose our approach was successful, i.e. we have found for spec, a
consistent enrichment spec, with a finite convergent rewrite system as set of
defining equations. Then we can decide E,-equality by the next theorem

Theorem 3.3:
It spec, = (2, F,; R u A) is a consistent enrichment of spec, = [21-F1‘E1]
and R is convergent modulo A then s =g, t iff 8 =5 { where § and f
denote R/A-normal forms of s and t. »






4. Proving inductive theorems

The method described in section 3 can easily be modified to prove inductive
theorems. To do so we use the approach of Jouannaud and Kounalis [JKo]: If R
is a rewrite system for E and Ro is a convergent rewrite system for R v EO such
that R € R, and every left-hand side 1 of a rule 1 = r in R, is inductively
reducible by R then Ej C ITh(E). Here the condition R ¢ R, can be dropped,
then R needs only be terminating, it will automatically be ground-confluent.

Theorem 4.1:
Assume spec, = (2, F;E,) is given and spec, = (£, v Z,, F, v Foi Ry u Al
is a consistent enrichment of spec, such that R,/A is terminating. Assume
also that E is a set of equations in spec,. If R/A is a convergent rewrite
system for R,u A v E such that for each rule 1 = r in R the term | is
inductively reducible by R,/A, then R v A ¢ ITh(R, v A) and E ¢ ITh(E,).

Proof: a) To prove R v A ¢ ITh(R, u A} we have to show t, =g,,s t, Whenever
t; *rua ty and ty,t, are ground terms. If t; =g, A t2 then t, and t, have a common
R/A normal form t Let t; 2 oA by such that t, is R / A- 1rreducible, i=12
Then t *rua t and t.i éR/A ti=a t for some t;, since R/A is confluent modulo
A and t is R/ A irreducible. If t; 1s different from t; then t is reducible by some
rule ] = r in R. Since 1 is 1nduct1vely reducible by R, /A this implies that t
is reducible by R,/A. But t. was a R,/A-normal form and so irreducible 1n
R,/A. This gives t; =, t =, t, and so 'L1 *RovA o

b) To prove E ¢ ITh(E,) we have to show o(s] =g, oft) for every equation s =t in
E and every ground substitution o. We have ofs] =g, , olt) since R is a rewrite
system modulo A for R, v A v E. This and a) give ofs] =g,,a olt) and since
spec, is a consistent enrichment of spec; we have os]) =g, oft). .

Let us look at an example to show how Theorem 2 is used. Assume

E1: O+y =y
s(x) + y = x + s(y)

and we want to prove that x + O = x is an inductive theorem of E, The
completion procedure with input E and the equation x + O = x diverges and
generates the rules x + s®(0] — s™(x]). So we use as extension the rules

s(x) = S(1.x]
S(u,S(v,x]))] = S(urv, x)
+ is AC

The completion with E, and these equations as input produces the convergent
rewrite system modulo (AC)






R,: O+y—y Sii,x) +y — x + S(1.y)
s(x)] — s(1,x) S(1*u, x]) + y = S(u,x) + S(1y)
+is AC S(u,s(v.x)] — S(usv, x)

Now adding x + O = x to R, and starting the completion procedure again
produce the rules

x+S(+..+1 0] —>5S[1=+. +1 %]
So we add as inductive hypothesis the equation
x + S(u,0)] = S(u,x)
and the completion procedure produces

R : R2 and x + O - X
x + S(u,0] = S(u,x)

Since both left-hand sides x + O and x + S(u,0) are inductively reducible by
R/AC we have proved x + O = x is in ITh(E).






5. Proving "consistent enrichment”

In this section we study how to deal with the conditions that are necessary for
the embedding strategy to work.

The first problem is how to prove that spec, is a consistent enrichment of
spec,. This problem is in general undecidable, but there are sufficient conditions
for this property. Let E, = E; v E, where E; is

E .

o Slix]) = s(x) S(u,s(v,x]) = S(urv,x)

+ is AC

Notice that we have oriented the first equation from right to left to get a finite
convergent rewrite system for E,. To prove that spec, is a consistent
enrichment of spec, it is tempting to use the method of Jouannaud and
Kounalis (JKo]. This would require to orient the first equation from left to
right. But now the completion process for E, = Ej v E, will diverge in our
applications and so the method of [JKo] will not work.

We will use the S-equations of E, alone, orient then from left to right, run the
completion procedure modulo (AC]) to get a "parameter-ground confluent”
rewrite system R for Ej and so prove that spec, is a consistent enrichment of
spec, without changing E,.

To do so we use the approach of [BDP] for unfailing completion. A reduction
ordering is a ground reduction ordering that can be extended to a reduction
ordering which is total an ground terms. Many of the standard orderings are
indeed ground reduction orderings. An ordering > is A-compatible if s > t,
s =, s' and t =, t'imply s' > t'

The next result gives sufficient conditions to guarantee that spec, is a
consistent enrichment of spec;. These conditions do not depend on spec,. This
leads to "uniform consistent extensions”.

Theorem 5.1:

Let spec, = (2,F;E,), and spec, = (2,F, R v A v E,) be given with

2, =2 v 2, Fy =F v F, Assume

(1) There is an A-compatible ground reduction ordering > with 1 > r for
all'1 - r in R.

(2) R is confluent modulo A on the parameter-free spec,-terms.

(3 1fl >risin R and u = v is in A then I, u and v are F,-free and not
variables.

Then spec, is a consistent extension of spec,.
Proof: Let E; = R v A v E; and assume t;, and t, are spec,-terms with t, *E, to

We have to prove t; =g, t,. Let fi denote the term resulting from t; by replacing
the variables x; by new constants c;. We have t; =g, t, iff {, =g, t, for i = 12






It is easy to see that > is also a ground reduction ordering on the signature
sig'2 resulting from sig, = [ZZ,FZ] by adding the new constants c;. So we may
run the unfailing Knuth-Bendix completion procedure of [BDP] with input E|
and reduction ordering > Let (E®,R®) be the result and let R = R® v R, where
R_, is the set of orientable sig,-instances of equations in E®. Then R is ground
confluent on the ground sig;—terms, Since by condition (3) there are no critical
pairs between R and R or between R and A, the system R u R is ground
confluent modulo A on the sig)-terms. Since t,=g, t, this implies the existence
of some term t with t, & t €& t, where = is —(RruR),/a- Since t, are F -free
there is, by condition (3), no R-rule or A-equation used in this derivation. This
shows t,Z55 t g&= 1, , so t,=g, t, and so t; =g t,. .

Given spec, and spec, with E, = E; v E,, we do not address in detail the
problem how to transform E, into R v A such that R is confluent modulo A on
the parameter-free terms. The simplest way is to run the completion procedure
modulo A with input E. This may result in a rewrite system R such that not
every left-hand side of a rule is F,-free. Here techniques to find a ground
confluent system may help (see [Fri], [Gob], [Kue]).

To see how Theorem 5.1 is applied assume we have spec, = <Z; v 2o Fy v Fy,
E, v Ep> with F, = {51,+} and

Ey: S(1,x]) = s(x)
S(u,S(u,v]) = S(u+v,x])
u+v=vs+u (usv) + w = u + (v+w])

as above. We use the polynomial ordering [Der] with interpretation © of the
operators

e(s) (nm) = (n + m)? ef1) =1
©(¢) ([nm] =n +m
O(f) (ny,..n ) =n, +n, + .. +n, +1 for all f € F,

Running the completion procedure modulo (AC] with input E, gives the rewrite
system

R' (1) S(1,x) = s(x) (2) s(1xu,x) = s(S(u.x])
(3] S(u,S(v,x]))] = S[u+v,x] (4) S[u,s(x)]) = s[S(u,x])

Because of rule (4] the Theorem 51 does not apply. But if R consits of the
rules (1) - (3), then R is confluent modulo A on the parameter-free spec,-terms
since every such a spec,-term, which is not a spec,-term, is R/A-reducible. So
Theorem 5.1 applies and spec, is a consistent enrichment of spec,.

Notice that this argument works also if we have Fy = {5,..S,.1.#} and the
equations of E; with S replaced by S, , i = 1,.,n.
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Now we address another problem we have to solve for our method to work:
Given a consistent enrichment spec, of spec; and an equation t, = t, of spec,.
Is t, = t, valid with respect to spec, and spec, ? In our applications it is very
often the case that a parameter-free spec,-term t is E,-equal to at most one
spec,-term s. This leads to the following lemma which is directly a consequence
of the definition of a valid equation.

Lemma 5.3
Let spec, = (£, v £, F, v F,; E; v E;] be a consistent enrichment of
spec; = [Zl,Fl;EI]. The equation t; = t, is valid with respect to spec, and
spec, if for every parameter substitution ¢ there are spec;-terms s,, s,
such that ¢(t;) =g;,Es S; “Eq S5 “EquEe Ylto) "

As an example, let E, contain the equations

s(p(x])) = x pls(x]) = x
and Eo is
Eq: s(x) = S(1,x) S(u,S(v,x]) = Slu+v, x)
p(x) = P(1,x] P(u,P(v,x]] = Plusv, x]
+ is AC

Then the following equations are valid

P(u,S(v,x)) = S(v,P(u,x])

S(u,P(u,x])] = x
S(u+v,P(v,x)) = S(u,x]
S(u,P(u*v,x)) = P(v,x)

Using these equations one can prove [(along the lines in section 4) that
X + O = x is an inductive theorem of

"
»S

E; O~y y s(p(x))
s(x] +y =x + sly) p(s(x])
p(x) + y=x + ply]

"
e
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6. Examples

a) As a starting example we use
Eg: a(b(a[x]])) = bla(b(x]])

This is an example of Kapur and Narendran. They show in [KNa] that over the
signature using F, = {a,b} no finite convergent R for E, exists. We propose two
extensions to get a convergent R for solving E,-equality. Let us write aba(x)
for a(bla(x]]).
The first extension is an intelligent one, it uses a new function symbol ¢ and
the extension

E: aba(x]) = bab(x]
c(x) = ab(x)

Clearly, the results of section 5 prove that spec, is a consistent enrichment of
spec,. Here we have no parameters. Completion of E, gives

ab(x) = c(x) beb(x) = ¢3(x)
ca[x) = be(x) ¢2b(x) = ac?

R2:

The second extension uses the general method to finitely describe all a®(x]
and b™(x]). Starting the completion procedure with E, the following rules are
produced

aba(x] — bab(x]
ab™*lab(x) — babZ2a?(x] n =1

The first rule gives aba™(x] =g, b™ab(x] for all n = 0. So we use the extension
described by

E a(x] = A(lLx) Alu, A [v,x])) = Alurv,x)
b(x]) = B(1,x) B(u,B(v,x])] = B(u:v,x]
+ is AC

and add the valid equations

AlLB(xu,AlLB(1,x))]]) = B(LA[1,B(1+1,A(u,x]]])

A(1,B(1,A(ux])]] = Blu,AQ1B(1x]]]
To enhence readability we write AY(x) instead of A(u,x). With this notation

the last equation becomes A!'B'AY(x) = BRAIB!(x).
Now completion leads to the finite convergent system

= 12 =






R: a(x)] —= Allx) AYAV(x] — AWV(x)
b(x)] — Bl(x] BYBV(x] — BY'V(x)
+ is AC
AB!1AY(x] — BUA!B!(x]
AT*VBIAY(x] - AVBUA!IB!(x)
A'B"uA!'B!(x) — B'A'B1AY(x)
A’lB‘l+uA'lB1+W[X] Y B1A1B1+1AUBW[X]
A1+VB1*UA1B1[X] - AVBiA’lB'l*'lAu[X]
A1+VB1*uA1B1*W[X] =5 AVB1A1B1+1AuBW[X]

b) The second example is

E .

.~ hitg(x]) = Pg(x) n=>1

fg™k(x) = g™k(x) m =1

Here we start with two infinite sequences of equations. We use our general
method and get

E,: f(x) F(1,x) F(u,F(v.x])] = F(usv,x)
glx] G(1.x) Glu,G(v.x])] = Gluzv,x]
h(F(u,g(x])]) = F(u,g(x]]
f(Gluk(x]]) = Gluk(x]]

Now completion stops with the relevant rules

hFugl(x] — FuG!(x)
FIguk(x) — GYk(x)
h(Gk(x] — G'k(x)
Fl*ugVvk(x) — FUGVk(x])
hFug!*v(x) — Fug!*v(x)
hG1*Vk(x) — GI*Vk(x)

c] The third example taken from Hermann [Her], Example 3.15, is artificial but
technically more complex. Starting completion with

Egp dlx+(x-y)] =y

glx)+y = glx+flxy))
orients the two equations from left to right and produces the infinite set of
rules

dlg(x+flx.g(x)-y1)) =y

dlg3(x + flx.flg(x).g%(x)-y]l) = vy

d(g3(x « ilx,f[g(x).i[g*(x).g3(x]-y11)) = y

Using Fln.x,y) = f{xflg(x)...f[g"  (x),g" (x) v].]], G(nx) = g™(x) we get
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E,; E, and
f(x.g(x)-y] = Fllxy]
Flruxy] = f(xF(uglx)y))
alx]) = Gl1.x)

G(u,G(v,x)) = Glu*v,x)
d(G{ux+F(uxy))) = y

The comletion procedure with input E, orients all the equations from left to
right and stops successfully after generating the following three rules

flav(x),a*V(x])-y) = Fl(GV(x]y]

Gl*V(x]+y = G'GV(x])+{(GV(x]y]
f(GV(x),Fe(a!V(x).y)) = FI*¥(GV(x].y]

d) As a last example we show how to prove inductive theorems on Binomi
numbers b(i,j]. We use the specification spec, given by

E;: O+y =y
s(x)+y = s(x+y]
b(0,0]) = 0
b(o,s(y])] = O
b(s(x).0] = s(0]

b(s(x).s(y)) = b(x.s(y])) + b(x.y)

and want to prove that E ¢ ITh(E,) for

E: b(x,x]) = s(0) b(x,s(x])] = O

Starting the completion process with input E, v E it diverges and produces the
terms s™(x). So we use the extension described by

E §

o slx]) = s{ix)

S(u,S(v,x]) = Slu+v,x]
+ is AC

Again, the completion process with input E; v Ej v E diverges now producing
b(x,S(1+..+1,x])) = 0. So we add as inductive hypotheses the equation

b(x,S(u,x]) = 0

Now the completion procedure stops with
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R: s(x) — S!(x) SYsSV(x]) = SuxV(x]

O+y =y S'(x)+y — S!(x+y)
b(0,0] = 0 s1*V(x)+sy — S'SV(x])+y)
b(0,81(x)) = O b(0,s1*V(x])) = 0
b(s!(x),0) = S!(x) b(s!*V(x),0) — Ss(0]

b(s(x),S'(y)) = b(x.SYy))+b(x.y)

b(S!*V(x),S!(y])) — b(SV(x),s!(y)+b(SV(x),y)
b(s!(x),s1*V(y)) = b(x,sV(y]))+b(x,SV(y])
b(s'*Y¥(x),S"V(y)) = b(sY(x),sT*V(y))+b(s¥(x),5V(y))
b(x,x) — S{0)

b(x,S4(x)) — O

b(SV(x),S"2V(x]] = 0

+ is AC

Let R, denote the rewrite system R with the last three rules eliminated. Then
the specification described by R, is a consistent enrichment of that described
by E1. The left hand sides of the last three rules are RZ/AC—reducible. ]o)
these last three (directed) equations are inductive theorems of E,. This proves
E C ITh[E1].
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[AMa]

[Bac]

[BDel

[BDP]

[BKR]

[Der]

[Fri]

[Gob]

[Her]

[Hue]

[JUKi]

[JKo]

[KNa]

[KBe]

[Kir]

[Kuel

[Lan]

[PsSt]
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