
F
o

ch
b

e
re

l c
h

In
fo

rm
a

t i
k

U
n

i v
e

rs
i t

ä
t

K
a

i s
e

rs
l a

u
te

rn
P

o
s i

f a
ch

30
49

D
—

6
7

5
0

K
a

i s
e

rs
l a

u
te

rn

SE
KI

-
R

EP
O

R
T

KNOWLEDGE BASE MAINTENANCE AND
CONSISTENCY CHECKING IN MOLTKE

Frank Maurer

SEKI Report SR—91—10 (SFB)

Knowledge. Base Maintenance and

Consistency Checking in

Frank Maurer2

University of Kaiserslautem

Dept of Computer Science

P.O. Box 3049

D-6750 Kaiserslautem

Germany

e-Mail: maurer@informatik.uni-kl.de

ABSTRACT

This paper deals with special problems of knowledge base maintenance which have to
be solved within the knowledge acquisition process. We illustrate that aspects of
maintenance must be taken into account by the design model construction because
dependencies between pieces of knowledge can result in inconsistent states of a
knowledge base. We describe a Knowledge Dependency Network which extends
ideas from truth maintenance systems to detect and manage these inconsistencies. The
network allows formal definitions of inconsistency conditions and checks them auto
matically preserving the integrity of the knowledge base. As a fundamental part of the
acquisition and maintenance environment the knowledge dependency network
supports the conventional development and editing of a knowledge base.

KEYWORDS

knowledge acquisition, knowledge maintenance, consistency checking, expert system

1	 also: Proc. of the 6th Banff Knowledge Acquisition for Knowledge-Based Systems Workshop,
Banff, Canada, 1991

2	 The work presented herein was partially supported by the Deutsche Forschungsgemeinschaft,
Sonderforschungsbereich 314: "KI - Wissensbasierte Systeme", projects X6 and X9.

1

Knowledge Base Maintenance and
Consistency Checking in

[||| I 1:1
Frank Maurer2

University of Kaiserslautern
Dept. of Computer Science

PO. Box 3049
D-6750 Kaiserslautern

Germany
e-Mail: maurer@ informatik.uni—kl.de

ABSTRACT

This paper deals with special problems of knowledge base maintenance which have to
be solved within the knowledge acquisition process. We illustrate that aspects of
maintenance must be taken into account by the design model construction because
dependencies between pieces of knowledge can result 1n inconsistent states of a
knowledge base. We describe a Knowledge Dependency Network which extends
ideas from truth mintenance systems to detect and manage these inconsistencies. The
network allows formal definitions of inconsistency conditions and checks them auto-
matically preserving the integrity of the knowledge base. As a fundamental part of the
acquisition and maintenance environment the knowledge dependency network
supports the conventional development and editing of a knowledge base.

KEYWORDS

knowledge acquisition, knowledge maintenance, consistency checking, expert system

1 also: Proc. of the 6th Banff Knowledge Acquisition for Knowledge-Based Systems Workshop,
Banfl, Canada, 1991

2 The work presented herein was partially supported by the Deutsche Forschungsgemeinschaft,
Sonderforschungsbereich 314: "KI - Wissensbasiene Systeme", projects X6 and X9.

mailto:maurer@informatik.uni-kl.de

1. OVERVIEW

This paper deals with aspects of knowledge acquisition, knowledge base maintenance
and consistency checking. Our experience in expert system projects showed that
aspects of knowledge maintenance must be considered while constructing the design
model of the domain. After defining appropriate knowledge structures, there are often
troubles with inconsistencies in the knowledge base because of dependencies between
knowledge objects. Often only the co-existence of a few objects results in an
inconsistent state.

Our general approach to knowledge acquisition and maintenance is described in
chapter 2. We illustrate the approach by following the development of the MOLTKE
shell for technical expert systems. In paragraph 2.1 we introduce the basic
representation language for which an interpreter is presented in 2.2. Then we present
our general approach to knowledge maintenance (2.3). We define the knowledge
dependency network (2.4) and the concept of graph consistency (2.5). The network
enables the knowledge engineer to specify conditions of consistency for knowledge
bases. It manages the dependencies of knowledge objects and automatically maintains
the consistency of a knowledge base. The network is an extension and a new
application of the ideas of truth maintenance systems «de Kleer, 86), (Doyle, 79».
The resulting maintenance component supports the user while inserting and deleting
objects preserving the consistency of the knowledge base. Paragraph 2.6 gives some
complexity estimations. Chapter 3 of this paper presents an overview on the other
parts of the MOLTKE workbench for technical diagnosis. The workbench is a
complex, fully implemented expert system toolbox which integrates several second
generation expert system techniques. In chapter 4 we discuss results and compare our
approach with related work. Chapter 5 gives an overview on our ongoing work and
the state of realization.

2.	 SOME REQUIREMENTS OF KNOWLEDGE
ACQUISITION AND MAINTENANCE

In general the building ofexperts systems consists of two main parts. First a model of
the domain has to be constructed. The.expert(s) and the knowledge engineer usually
work together in· this phase. This model is implemented on a computer by the
knowledge engineer who usually has a background in computer science and artificial
intelligence. The second part includes the ftlling of the model with the expert's
knowledge. Ideally, the domain expert himself fills the knowledge base because:

only he can guarantee for the correctness of the system,

he is able to test whether the system acts appropriately,

he often has to lna.intain the knowledge base (in fact: he is the only person who
can decide whether the represented knowledge has to be changed).

A problem is that experts usually do nm have any background knowledge concerning
expert systems. Therefore, the representation formalism must reflect the experts' own
terminology. This observation was our reason to develop the design model for
technical diagnosis described in 2.1 and 2.2.

2

1. OVERVIEW

This paper deals with aspects of knowledge acquisition, knowledge base maintenance
and consistency checking. Our experience in expert system projects showed that
aspects of knowledge maintenance must be considered while constructing the design
model of the domain. After defining appropriate knowledge structures, there are often
troubles with inconsistencies in the knowledge base because of dependencies between
knowledge objects. Often only the co-existence of a few objects results in an
inconsistent state.

Our general approach to knowledge acquisition and maintenance is described in
chapter 2. We illustrate the approach by following the development of the MOLTKE
shell for technical expert systems. In paragraph 2.1 we introduce the basic
representation language for which an interpreter is presented in 2.2. Then we present
our general approach to knowledge maintenance (2.3). We define the knowledge
dependency network (2.4) and the concept of graph consistency (2.5). The network
enables the knowledge engineer to specify conditions of consistency for knowledge
bases. It manages the dependencies of knowledge objects and automatically maintains
the consistency of a knowledge base. The network is an extension and a new
application of the ideas of truth maintenance systems ((de Kleer, 86), (Doyle, 79)).
The resulting maintenance component supports the user while inserting and deleting
objects preserving the consistency of the knowledge base. Paragraph 2.6 gives some
complexity estimations. Chapter 3 of this paper presents an overview on the other
parts of the MOLTKE workbench for technical diagnosis. The workbench i s a
complex, fully implemented expert system toolbox which integrates several second
generation expert system techniques. In chapter 4 we discuss results and compare our
approach with related work. Chapter 5 gives an overview on our ongoing work and
the state of realization.

2 . SOME REQUIREMENTS OF KNOWLEDGE
ACQUISITION AND MAINTENANCE

In general the building of experts systems consists of two main parts. First a model of
the domain has to be constructed The expert(s) and the knowledge engineer usually
work together'1n this phase. This model rs implemented on a computer by the
knowledge engineer who usually has a background 1n computer science and artificial
intelligence. The second part includes the filling of the model with the expert 's
knowledge. Ideally, the domain expert himself fills the knowledge base because:

- only he can guarantee for the correctness of the system,

- he is able to test whether the system acts appropriately,

- he often has to maintain the knowledge base (in fact: he is the only person who
can decide whether the represented knowledge has to be changed).

A problem is that experts usually do mu have any background lmowledge concerning
expert systems. Therefore, the representation formalism must reflect the experts own
terminology. This observation was our reason to develop the design model for
technical diagnosis described in 2.1 and 2.2.

To summarize the above mentioned one can say that if the representation formalism
uses the terminology of the domain, the understanding of the knowledge base and the
process of inference is simplified for the expert. Therefore, maintenance is made
easier. At least the testing and debugging of the knowledge base may better be
supported by the expert then.

Furthermore, a development tool has to support the editing and maintenance of the
knowledge base, especially if used by a domain expert who is usually not used to
work with computer systems. A knowledge maintenance component has to include
facilities which easily allow to create and test knowledge bases. It has to satisfy the
following requirements:

incremental input of the knowledge in an user-<1eteonined order (this is the natural
way of editing a knowledge base for an expert),

managing the changes which follow an insertion or deletion of an object,

showing dependencies of the represented pieces of knowledge,

showing the effects of changes in the knowledge base (often the overview is lost
if much knowledge is represented),

checking the syntactic correctness and the semantic consistency (see 2.4) of the
knowledge base.

Watching the knowledge acquisition process we find several steps which possibly
must be repeated. At first we construct a conceptual and a design-model of the domain
(see also KADS (Breuker, Wielinga, 87» which collect all relevant concepts of the
domain (within the MOLTKE project for diagnosis we developed the representation
language described below)3. The model does not include all facts of the domain. It is
only a frame which will be filled in a later step. But it is immediately refined to the
implementation level4.

Extending the KADS framework we now ask for dependencies between the relevant
aspects of the domain and for inconsistency conditions (Chapter 4 includes a
discussion of the use of a truth maintenance system for managing the dependencies).
The next step is to implement a domain-dependent acquisition interface which is used
to fill the knowledge base. Thereby' the consistency of the entered knowledge is
automatically preserved by the knowledge dependency network described below.

We now illustrate the knowledge acquisition process described above by tracing the
development of the MOLTKE shell for technical diagnosis. Thereby we concentrate
on the knowledge base maintenance component

3	 These steps will be supported by our hypennedia-based knowledge engineering environment
HyperCAKE which is briefly described in chapter 5.

4	 So our view combines a KADS-like approach with a rapid-prototyping one.

3

To summariZe the above mentioned one can say that if the representation formalism
uses the terminology of the domain, the understanding of the knowledge base and the
process of inference rs simplified for the expert. Therefore, maintenance is made
easier. At least the testing and debugging of the knowledge base may better be
supported by the expert then.

Furthermore, a development tool has to support the editing and maintenance of the __
knowledge base, especially if used by a domain expert who is usually not used to
work with computer systems. A lmowledge maintenance component has to include
facilities which easily allow to create and test knowledge bases. It has to satisfy the
following requirements:

— incremental input of the knowledge in an nserfietennined order (this i s the natural
way of editing a knowledge base for an expert),

- managing the changes which follow an insertion or deletion of an object,

- showing dependencies of the represented pieces of knowledge,

- showing the effects of changes in the knowledge base (often the overview is lost
if much knowledge is represented),

- checking the syntactic correctness and the semantic consistency (see 2.4) of the
knowledge base.

Watching the knowledge acquisition process we find several steps which possibly
must be repeated. At first we construct a conceptual and a design model of the domain
(see also KADS (Breuker, Wielinga, 87)) which collect all relevant concepts of the
domain (within the MOLTKE project for diagnosis we developed the representation
language described below)3. The model does not include all facts of the domain. It is
only a frame which will be filled in a later step. But it is immediately refined to the
implementation level“.

Extending the KADS framework we now ask for dependencies between the relevant
aspects of: the domain and for inconsistency conditions (Chapter 4 includes a
discussion of the use of a truth maintenance system for managing the dependencies).
The next step is to implement a domain-dependent acquisition interface which is used
to fill the knowledge base. Thereby'the consistenCy of the entered knowledge is
automatically preserved by the knowledge dependency network described below.

We now illustrate the knowledge acquisition process described above by tracing the
development of the MOLTKE shell for technical diagnosis. Thereby we concentrate
on the knowledge base maintenance component.

3 These steps will be supported by our hypermedia- based knowledge engineering environment
HyperCAKE which IS briefly descn’bed'1n chapter 5.

4 So our View combines a KADS-like approach with a rapid-prototyping one.

2.1. Basic Definitions

In the MOLTKE project we developed a design model for technical diagnosis5• We
believe that diagnosis can be described as follows:

Dia~nosis = Classification + Test Selection.

A knowledge base represents the knowledge about the technical system divided into
these two parts. Now we describe the basic vocabulary:

A symptom class relates a name to a list of possible values, its type, (e.g.Valve -->
{open, closed}) whereas symptom instances reflect the actual state of a part of the
technical device (e.g. Valve 21Y5 --> open). The actual value may be either unknown
or an element of the list of possible values in the corresponding class.

The set of all symptom instances is called a situation. Within the context of predicate
calculus the actual situation is the base for the interpretation of a language of
formulas. It stores the variable bindings6• For the evaluation of formulas we use a
three-valued logic with true,false and unknown.

A test ascertains the value of one or more symptom instances7. Usually, a test asks
the user for the value of the symptom instance. The sequence of testing is determined
by a set of ordering rules where the left hand side is a formula and the right part
contains the symptom instance to test (e.g. (if (= Valve 21Y5 open) then relais test».

To express relations between symptom values shortcut rules are 1,lsed (e.g. (if (= light
room-Ion) then wires := working». '

Contexts are one of the means for modularization in MOLTKE. A context represents a
rough, intermediate, or final diagnosis. If its precondition is true, the associated
failure is said to be proven and the related correction is executed8. Any context
contains a set of ordering rules which locally prescribe the strategy of testing.
Additionally, a context includes a set of shortcut rules. A correction describes what
has to be done when a special fault occurs. For example, a context (without rules) is
defined by the following statement:

Context name: LIGHT-BULB
precondition: (SWITCH =CLOSED) & (LIGHT =OUT)
correction: "Change the light-bulb"

The contexts are organized in a context graph. Its arcs have the semantics "is
refinement-of' (e.g. the contextfailure-in-electric is a refinementoffailure-in-car.).

5 The design model was developed by the mechanical engineers of the WZL (machine tool
laboratory) from the RWTH Aachen and our knowledge engineers.

6 Every symptom instance is a variable in the calculus.
7 In the formal sense of modal logic a test describes the transition from one world to another where

the interpretation of the formulas differs in the bindings of the examined variables.
8 Normally only a text is printed on the screen.

4

2 .1 . Basic Definit ions

In the MOLTKE project we developed a design model for technical diagnosis5. We
believe that diagnosis can be described as follows.

D in i= ifi 'n+T l 'n .

A knowledge base represents the knowledge about the technical system divided into
these two parts. Now we describe the basic vocabulary:

A symptom class relates a name to a list of possible values, its type, (e. g. Valve -->
{open, closed}) whereas symptom instances reflect the actual state of a part of the
technical device (e. g. Valve 21Y5 --> open). The actual value may be either unknown
or an element of the list of possible values in the corresponding class.

The set of all symptom instances is called a situation. Within the context of predicate
calculus the actual situation i s the base for the interpretation of a language of
formulas. It stores the variable bindings‘. For the eValuation of formulas we use a
three-valued logic with true, false and unknown.

A test ascertains the value of one or more symptom instances7. Usually, a test asks
the user for the value of the symptom instance. The sequence of testing is determined
by a set of ordering rules where the left hand side i s a formula and the right part
contains the symptom instance to test (e.g. (if (= Valve 21Y5 open) then relais test)).

To express relations between symptom values shortcut rules are used (e. g. (if (= light
room-1 on) then wires: = working».

Contexts are one of the means for modularization in MOLTKE. A context represents a
rough, intermediate, or final diagnosis. If its precondition is true, the associated
failure is said to be proven and the related correction is executeds. Any context
contains a set of ordering rules which locally prescribe the strategy of testing.
Additionally, a context includes a set of shortcut rules. A correction describes what
has to be done when a special fault occurs. For example, a context (without rules) is
defined by the following statement:

Context name: LIGHT-BULB
precondition: (SWITCH = CLOSED) & (LIGHT = OUT)
correction: "Change the light~bulb"

The contexts are organized in a context graph. Its arcs have the semantics "is-
mfinement—of“ (e.g. the eontextfailure-in—electric is a refinement'offailure—in-car.).

5 The design model was developed by the mechanical engineers of the WZL (machine tool
laboratu'y) from the RWTH Aachen and our knowledge engineers.

6 Every symptom instance is a variable in the calculus.
7 In the formal sense of modal logic a test describes the transition from one world to another where

the interpretation of the formulas differs in the bindings of the examined variables.
8 Normally only a text is printed on the screen.

1 : 1

2.2. The Interpreter

A global interpreter, which is easy to adapt and to maintain because it is organized in
small modules, processes the knowledge base. The interpreter uses an establish-and
refine strategy.

The diagnostic process goes through the context graph by testing symptoms
according to the ordering rules of the actual context and switching to a refinement
when its precondition becomes (the logical value) true. Ifa leaf of the context graph is
reached the system prints the diagnosis and terminates.

2.3. Knowledge Maintenance in MOLTKE

Symptom
value

t1:n

T,'
Symptom

class

i["
Symptom

1:1/ instance~:1 \

Ordering. 0 : n ~Shortcut

role action . mle action
;> 1

Fountula 1:1 1
1: 1

Ordering Precondi • Shorteut

M"'I,/M

Context

Figure 2.1: Dependencies of MOLTKE objects

After developing the basic representation language and implementing the appropriate

5

2.2. The Interpreter

A global interpreter, which is easy to adapt and to maintain because it is organized in
small modules, processes the knowledge base. The interpreter uses an establish-and-
refine strategy.

The diagnostic process goes through the context graph by testing symptoms
according to the ordering rules of the actual context and switching to a refinement
when its precondition becomes (the logical value) true. If a leaf of the context graph is
reached the system prints the diagnosis and terminates.

2.3. Knowledge Maintenance in MOLTKE

Symptom

Context

Figure 2.1: Dependencies ofMOLTKE objects

After developing the basic representation language and implementing the appropriate

parsers for the domain-dependent acquisition interface we asked our engineers for the
dependencies of the defined structures. The answers are shown in figure 2.1.

Extending the acquisition interface which uses the parsers for checking the syntactic
correctness of a knowledge base we built the MOLTKE maintenance component
which checks two further aspects of consistency:

node consistency: a piece of knowledge is used in the inference process only if all
referred objects are correctly defined

graph consistency: the knowledge base must not contain redundancies and
contradictions

In the following paragraphs we illustrate these concepts of consistency.

2.4. Knowledge Dependency Network

To ensure the integrity of a knowledge base we build up a knowledge dependency
network. which supervises dependencies between knowledge chunks.

For each kind of knowledge objects (e.g. in MOLTKE types, rules, contexts, etc.) a
node class is defined which is used as a pattern for the definition of instances for the
knowledge base. Figure 2.2 shows two examples for node class definitions.

(l)	 Symptom-Instance-Node
needs: (Symptom-Oass-Node(l:l»
needed-by: 0
is-a-source: 0

(2) Context-Node
needs: (Precondition-Node(l :1)

Shorteut-Rule-Nodes(O:n)
Ordering-Rule-Nodes(O:n)....)

needed-by: 0
is-a-source: ()

Figure 2.2: Node class definitions of the knowledge dependency network for MOLTKE objects

Instances of these classes are used to represent all knowledge objects defined by the
user. But only "correct"objects (e. g. objects which are consistent with the rest) will
be inserted into the knowledge base. E. g. example (1) above states that a symptom
instance node is only correctly defined if the needed symptom class was inserted into
the knowledge base before.

The instances are the nodes of the knowledge dependency network. For each node
exists an unambigous identifier, usually the name of the corresponding knowledge
object. Arcs represent three different relations: needs, needed-by and is-a-source.
The needs-relation expresses the necessary preconditions for a' correct object. The
creator of a node is referred to by the is-a-source-relation. The needed-by-relation
shows where a node is used. '

Each node instance stores three lists (needs-, needed-by- and is-a-source-list) which

6

parsers for the domain-dependent acquisition interface we asked our engineers for the
dependencies of the defined structures. The answers are shown in figure 2.1.

Extending the acquisition interface which uses the parsers for checking the syntactic
correctness of a knowledge base we built the MOL'I'KE maintenance component
which checks two further aspects of consistency:

— node consistency: a piece of knowledge is used in the inference process only if all
referred objects are correctly defined

— graph consistency: the knowledge base must not contain redundancies and
contradictions

In the following paragraphs we illustrate these concepts of consistency.

2.4. Knowledge Dependency Network

To ensure the integrity of a knowledge base we build up a knowledge dependency
network, which supervises dependencies between lmowledge chunks.

For each kind of knowledge objects (e.g. in MOLTKE types, rules, contexts, etc.) a
node class is defined which is used as a pattern for the definition of instances for the
knowledge base. Figure 2.2 shows two examples for node class definitions.

(1) Symptom-Instance—Node
needs: (Symptom-Class-Node(1:1))
nwded—by: ()
is—a—source: ()

(2) Context-Node
nwds: (Pmcondition—Nodeüzl)

Shortcut-Rule-Nodes(0:n)
Ordering-Rule-Nodes(0:n)....)

nwded-by: 0
is—a-source: ()

Figure 2.2: Node class definitions of the knowledge dependency network for MOLTKE objects

Instances, of these classes are used to represent all knowledge objects defined by the
user. But only “correct“objects (e. g. objects which are consistent with the rest) will
be inserted into the knowledge base. E. g. example (1) above states that a symptom.
instance node is only correctly defined if the needed symptom class was inserted into
the knowledge base befm'e.

The instances are the nodes of the knowledge dependency network. For each node
exists an unambigous identifier, usually the name of the corresponding knowledge
object. Arcs represent three different relations: needs, needed-by and is-a-source.
The needs-relation expresses the necessary preconditions for a correct object. The
creator of a node is referred to by the is-a-source-relation. The needed-by-relation
shows where a node is used. ‘

Each node instance stores three lists (needs-, needed-by- and is-a-source-list) which

contain the anchors of the above described relations9• These lists are filled by the
insertion of new nodes into the network (see below).

The knowledge dependency network separates the knowledge base from the
developer of the expert system (see figure 2.3). It stores all syntactically correct object
definitions. But objects are only inserted into the knowledge base if their defmition is
consistent with the rest of the knowledge base. Only objects in the knowledge base
are used in the inference process. In fact the network supervises the non-monotonic
process of fIlling a knQwledge base10• Additionally, an agenda stores objects which
are needed but not defined. Entries in the agenda contain the name of the needed
object, its type and the node where it is referred

Put in
consistent

objects

Remove
inconsistent

objects

..------t Consistent
knowledge

base
Knowledge dependency network

Agenda

r:rn-----'O

Deletes
objects

DerIDes
objects

Figure 2.3: Separating the expert from the knowledge base

The approach of knowledge dependency networks may always be used in domain
dependent models because we also found the defined relations when we talked with
our experts in construction and planning domains. Also, the algorithms for the
creation and deletion of new knowledge objects are general and not domain specific.
They do not use references to the.special kind of objects used in diagnosis.

2.4.1. Defining new Knowledge Objects

If the user wants to create a new object for the knowledge base the system first checks
the syntax of the defmition. Then all entries of the needs-list must be fIlled with an
object corresponding to the type used in the node class (e.g. a symptom-instance
node needs a symptom-class-node as the corresponding anchor).

If all referred objects are already included in the knowledge base, the new object will
also be put in. Otherwise the user is informed and the needed anchors are put on the
agenda of objects which must be defined in the future. In this case the new object is
not put into the knowledge base (preserving its consistency). This feature allows the

FCX' the relation rel(A,B) we define object B as the anchor of object A and the other way around.
1°Inserting or deleting an object may result in an inconsistent state of the knowledge base.

Conclusions drawn from a prior state may then be faulty. In fact. dependencies of objects may be
viewed also as inferences (e.g. from the existence of one object the system may infere that
another object has to exist too).,

7

9

contain the anchors of the above described relations9. These lists are filled by the
insertion of new nodes into the network (see below).

The knowledge dependency network separates the knowledge base from the»
developer of the expert system (see figure 2.3). It stores all syntactically correct object
definitions. But objects are only inserted into the knowledge base if their definition is
consistent with the rest of the knowledge base. Only objects in the knowledge base
are used in the inference process. In fact the network supervises the non-monotonic
process of filling a knowledge base“). Additionally, an agenda stores objects which
are needed but not defined. Entries in the agenda contain the name of the needed
object, its type and the node where it is referred.

Agenda

I I I _ I
Defines
object! pm in

consistent
Deletes objects

objects Consistent
Rmove knowledge

inconsistent base
Knowledge dependency network objects

Figure 2.3: Separating the expert from the knowledge base

The approach of knowledge dependency networks may always be used in domain-
dependent models because we also found the defined relations when we talked with
our experts in construction and planning domains. Also, the algorithms for the
creation and deletion of new knowledge objects are general and not domain specific.
They do not use references to thespecial kind of objects used in diagnosis.

2.4.1. Defining new Knowledge Objects

If the user wants to create a new object for the knowledge base the system first checks
the syntax of the definition. Then all entries of the needs-list must be filled with an
object corresponding to the type used in the node class (e.g. a symptom-instance-
node needs a symptom-class—node as the corresponding anchor).

If all referred objects are already included in the knowledge base, the new object will
also be put in. Otherwise the user is informed and the needed anchors are put on the
agenda of objects which must be defined in the future. In this case the new object is
not put into the knowledge base (preserving its consistency). This feature allows the

9 Fatherelatim rel(A.B)wedefine objectB astheanchorofobjectA and theotherway around.
10 Inserting or deleting an object may result in an inconsistent state of the knowledge base.

Conclusions drawn from a prior state may then be faulty. In fact, dependencies of objects may be
viewed also as inferences (e.g. from the existence of one object the system may infere that
another object has to exist too).

user to define new pieces of knowledge in whatever order he wants and nevertheless
only consistent knowledge bases are used for inference. If all nodes are completely
anchored we call the network node consistent .

A node consistent state may also be reached by a given order of definitions, which
means that an object may only be defined if all needed objects are already existing.
The knowledge dependency network supports the construction of a knowledge base
because the developer is not unnecessarily restricted.

Then the is-a-source-list is filled with the origin of the object Usually, the source is
the expert who edits the knowledge base. The is-a-source-list is used if an object shall
be deleted Only the creator of an object may remove it.

At the end of an object's insertion into the knowledge dependency network the system
checks if it is already needed in another node (which means that a reference is
included in the agenda). If so, the needs- and needed-by-lists of the two objects are
updated. Possibly, the other object is now node consistent Then it will be put into the
knowledge base and its needed-by-list is checked for other nodes which may change
into a consistent state. Figure 2.4 shows the algorithm for inserting a new node into
the network11.

1.	 Parse the defimt10n of the new object generatmg a lIst of all referenced node
instances

1.1.	 Parsing ok: Mark. the new node as consistent
1.2.	 else: reject the new definition
2.	 For all needs-relations of the class corresponding to the new node instance do
2.1. Oteck if the referenced object is already in the network
2.1.1. If true: Create the needs- and needed-by-relations between the two

nodes;
2.1.2. If false: Enter the referenced node into the agenda and mark the new

node as inconsistent;
3.	 if the new node is consistent then put it into the knowledge base;
4. Store the source(s); .

5 For all references to the new node in the agenda do

5.1.	 Create the needs- and needed-by-relations between the two nodes; .
5.2.	 if the object from the agenda is consistent then put it into the knowledge

base (then all dependent objects must also be checked for consistency and are
possibly entered into knowled~e base);

Figure 2.4: The algoithm for insetting of a new node into the knowledge dependency network

2.4.2. Deleting Knowledge Objects

While the need-list stores the essential preconditions of an object and is f'J11ed by
insertion, checking the pattern of the node class, the dependent objects are included in
the needed-by-list which helps the developer to delete objects.

If an object is removed by the user, the system checks if it is referred to somewhere
else. If so, the user is informed about this fact and may decide if he really wants to

11 See Appendix A f<r a detailed example.

8

user to define new pieces of knowledge in whatever order he wants and nevertheless
only consistent knowledge bases are used for inference. If all nodes are completely
anchored we call the network node consistent .

A node consistent state may also be reached by a given order of definitions, which
means that an object may only be defined if all needed objects are already existing.
The knowledge dependency network supports the construction of a knowledge base
because the developer is not unnecessarily restricted.

Then the is-a-source-list'rs filled with the origin of the object. Usually, the source is
the expert who edits the knowledge base. The is-a-source-list'is used if an object shall
be deleted. Only the creator of an object may remove it.

At the end of an object 's insertion into the knowledge dependency network the system
checks if it is already needed in another node (which means that a reference is
included in the agenda). If so, the needs- and needed-by-lists of the two objects are
updated. Possibly, the other object is now node consistent. Then it will be put into the
knowledge base and its needed-by-list is checked for other nodes which may change
into a consistent state. Figure 2.4 shows the algorithm for inserting a new node into
the network“.

l . Parse the definitßn of fire newEct generating a list of all refienced node
instances

Parsing ok: Mark the new node as consistent
else: reject the new definition

For all needs-relations of the class corresponding to the new node instance do
Check if the referenced object rs already 1n the network

If true: Create the needs- and needed-by-relatio‘ns between the two
nodes;
If false: Enter the referenced node into the agenda and mark the new
node as inconsistent;

if the new node is consistent then put it into the knowledge base;
Store the source(s);
For all references to the new node' in the agenda do

Create the needs and needed-dry-relations between the two nodes;
if the object from the agenda 1s consistent then put it into the knowledge
base (then all dependent objects must also be checked for consistency and are

JossLn entered into knowledge base);

to
i—

‚ _
.— . .

|_
;

.

w
w

w
ew

P
N

N
~r

~
..

._
_.

N
N

..
.

Figure 2.4: The algaithm for inserting of a new node into the lmowledge dependency network

2.4.2. Deleting Knowledge Objects

While the need- list stores the essential preconditions of an object and 18 filled by
insertion, checking the pattern of the node class, the dependent objects are included 1n
the needed-by-list which helps the developer to delete objects.

If an object is removed by the user, the system checks if it is referred to somewhere
else. If so, the user is informed about this fact and my decide if he really wants to

11 SeeAppendifa'adetailedexample.

3

delete the object. As a result of a consequent deletion, the dependent objects are
marked as inconsistent and removed from the knowledge base. Figure 2.5 shows the
algorithm for deleting a node.

1. or a 0 ~ects sto men s- 1St do
1.2.	 Remove the needs- and needed-by-relation between the two objects;
2. .	 If the node was consistent then remove it from the knowledge base;

For all objects 0 stored in the needed-by-list do
3.1.	 Remove the needs- and needed-by-relation between the two objects;
3.2.	 Generate an entry in the agenda that the deleted node is referenced;
3.3.	 "object 0 is inconsistent"

remove 0 from the knowledge base (then all dependent objects also must·be
marked and removed)

Figure 2.5: The algorithm for deleting a node from the knowledge dependency network

2.5.	 Graph Consistency of a Knowledge Base

A node consistent network includes locally correct nodes, which means that all their
preconditions are fulfilled. Additionally, the integrity of a knowledge base must also
be guaranteed for relations between more than two objects. The system must prevent
that the combination of several objects results in an inconsistent state where the
concept "Inconsistency" may only be defined according to the domain. A MOLTKE
knowledge base for diagnosis must not contain for example

1.	 types with different names and same values,

2.	 symptom classes with the same type,

3.	 shortcut rules with the same precondition and different values for the same
symptom instance on the right hand sides,

4.	 more ~an one context with the same precondition.

Based on the knowledge dependency network these conditions may be checked by a
matching of subgraphs. This fits into our perspective of knowledge engineering
which is strongly influenced by object-oriented analysis and object-oriented design.
Therefore our approach is a little bit different from more logic-based validation
techniques.

Figure 2.6 shows the structure of inconsistent subgraphs corresponding to the above
conditions. Our default assumption is that all graphs which do not contain
inconsistency subgraphs represent consistent states of a knowledge base. A
knowledge dependency network which does not contain inconsistency graphs is
called graph consistent.

While developing a design model of the domain we also acquire knowledge about
inconsistencies and define the appropriate inconsistency subgraphs for the network.
When a new node enters the network, the system, after having checked for node
consistency, tests via graph matching if the network stays graph consistent.
Otherwise the user is informed and has to resolve the inconsistency.

9

delete the object. As a result of a consequent deletion, the dependent objects are
marked as inconsistent and removed from the knowledge base. Figure 2.5 shows the
algorithm for deleting a node.

1. For all objects stored in the needs-list do
1.2. Remove the needs- and needed-by-relation between the two objects;
2. . If the node was consistent then remove it from the knowledge base;

For all objects o stored in the needed-by—list do
. Remove the needs- and needed-by—relation between the two objects;
. Generate an entry in the agenda that the deleted node is referenced;
. "object o is inconsistent"

remove o from the knowledge base (then all dependent objects also must-be
marked and removed)

3
3.
3.
3.

un
o—

—

Figure 2.5: The algorithm for deleting a node from the knowledge dependency network

2.5. Graph Consistency of a Knowledge Base

A node consistent network includes locally correct nodes, which means that all their
preconditions are fulfilled. Additionally, the integrity of a knowledge base must also
be guaranteed for relations between more than two objects. The system must prevent
that the combination of several objects results in an inconsistent state where the
concept "Inconsistency" may only be defined according to the domain. A MOLTKE
knowledge base for diagnosis must not contain for example

1 . types with different names and same values,

2 . symptom classes with the same type,

3 . shortcut rules with the same precondition and different values for the same
symptom instance on the right hand sides.

4 . more than one context with the same precondition.

Based on the knowledge dependency network these conditions may be checked by a
matching of subgraphs. This fits into our perspective of knowledge engineering
which is strongly influenced by object—oriented analysis and object-oriented design.
Therefore our approach i s a little bit different from more logic-based validation
techniques.

Figure 2.6 shows the structure of inconsistent subgraphs corresponding to the above
conditions. Our default assumption is that all graphs which do not contain
inconsistency subgraphs represent consistent states of a knowledge base. A
knowledge dependency network which does not contain inconsistency graphs is
called graph consistent.

While developing a design model of the domain we also acquire knowledge about
inconsistencies and define the appropriate inconsistency subgraphs for the network.
When a new node enters the network, the system, after having checked for node
consistency, tests via graph matching if the network stays graph consistent.
Otherwise the user is informed and has to resolve the inconsistency.

3- Shortcut rule in<:onsistencies 4 - Context inconsistencies

Figure 2.6: Inconsistent subgraphs ofa knowledge dependency network for MOLTKE KBs

2.6. Complexity Estimations

The time needed for node insertion depends on the number n of entries into the needs
list, the size of the agenda a and the number of objects 0 which are dependent from
the new object. SO inserting a new node needs at most O(n*a+o*a) = O(a*(n+o»
steps. The algorithm for deleting a node needs O(n+o) steps.

In our applications these estimations result in small numbers. E. g. in our CNC
machining center domain (see (Richter, 92» both, n and 0, are smaller than 10.
Checking graph consistency seems more problematic because it is reduced to graph
matching. It is known that graph matching in general takes an exponential number of
steps. In MOLTKE knowledge bases this effort is in fact drastically reduced because
we ftrst take advantage of having typed nodes. Therefore not all nodes need to be
used as a starting point for a check. Secondly, the subgraphs are not very c~mplex.

For the inconsistency graphs described above we have the following upper limits:

1. types with different names and same values:

10

2 - Symptom class inconsistencies

3- Shortcut rule inconsistencies 4 - Context inconsistencies

Figure 2.6: Imonsismt subgraphs of a knowledge dependency network for MOLTKE KBs

2.6. Complexity Estimations

The time needed for node insertion depends on the numbern of entries into the needs-
list, the size of the agenda a and the number of objects 0 which are dependent from
the new object. So inserting a new node needs at most 0(n*a+o*a) = 0(a*(n+a))
steps. The algorithm for deleting a node needs 0(n+o) steps.

In our applications these estimations result in small numbers. E. g. in our CNC
machining center domain (see (Richter, 92)) both, n and o , are smaller than 10.
Checking graph consistency seems more problematic because it is reduced to graph
matching. It is known that graph matching in general takes an exponential number of
steps. In MOLTKE knowledge bases this effort is in fact drastically reduced because
we first take advantage of having typed nodes. Therefore not all nodes need to be
used as a starting point for a check. Secondly, the subgraphs are not very complex.

For the inconsistency graphs described above we have the following upper limits:

1 . types with different names and same values:

10

Or/number oftypes/ * /max. size oftypes/)

2.	 symptom classes with the same type:

O(/number of needed-by-relations of the type!), because when inserting a
symptom class the system needs to check only for the referenced type if it is used
in another symptom class

3.	 shortcut rules with the same precondition and different values for the same
symptom instance on right hand sides

O(/number ofneeded-by-relations ofthe preconditionl), because when inserting a
shorteut rule the system needs to check only if it is used in another shortcut rule
with a different value for the same symptom instance on right hand side

4.	 different contexts with the same precondition

O(/number ofneeded-by-relations ofthe precondition!), because when inserting a
context the system needs to check only if it is used in another context

All in all we have a tolerable12 time complexity for consistency checking of MOLTKE
knowledge bases.

3.	 THE MOLTKE WORKBENCH FOR TECHNICAL
DIAGNOSIS

The work reported here is only a small part of the MOLTKE project Within this
project we developed the above described conceptual model (in the sense of KADS
(Breuker, Wielinga, 87» for diagnostic expert systems in technical domains. This
model was refmed to the implementation level via a design model. Then we
supplemented the model with qualitative reasoning and machine learning techniques.
A detailed description 'of the resulting MOLTKE workbench is beyond the scope of
this paper..Therefore we only give a brief overview and refer to already published
papers.

In addition to theJacilities described, in this paper we use second generation expert
system technologies to support the knowledge acquisition process «Althoff, Maurer,
Rehbold, 90». These include a model compiler which generates the core of a
knowledge base out of a deep model of the technical system «Rehbold 89),
(Rehbold, 91». This basic expert system is improved and extended by machine
learning methods. We implemented a case-based reasoning system which supports
the diagnostic process «Althoff, Maurer, WeB, 91». (Althoff, Maurer, Traphoner,
WeB, 90) and (Althoff, 91) describe a system which learns relations between
symptom patterns, and the work of (Maurer, Ruppel, 90) covers a system which
learns diagnostic strategies based on neural network methods. The representation of
temporal knowledge in the MOLTKE system is subject of «Nokel, 89) (Nokel,91».

12 Tolerable means that an interactive development of the knowledge base is possible.

11

0(/number of types] * /max. size of types/)

2. symptom classes with the same type:

0(/number of needed-by-relations of the type/), because when inserting a
symptom class the system needs to check only for the referenced type if it is used
in another symptom class

3. shortcut rules with the same precondition and different values for the same
symptom instance on right hand sides

0(/number of needed-by-relations of the precondition/L because when mserting a
shortcut rule the system needs to check only i f 'it is used 1n another shortcut rule
with a different value for the same symptom instance on right hand side

4 . different contexts with the same precondition

0011e of needed-by-relations of the precondition/L because when inserting a
context the system needs to check only if it is used in another context.

All in all we have a tolerable12 time complexity for consistency checking of MOLTKE
knowledge bases.

3 . THE MOLTKE WORKBENCH FOR TECHNICAL
DIAGNOSIS

The work reported here is only a small part of the MOLTKE project. ’Within this
project we developed the above described conceptual model (in the sense of KADS
(Breuker, Wielinga, 87)) for diagnostic expert systems in technical domains. This
model was refined to the implementation level via a design model. Then we
supplemented the model with qualitative reasoning and machine learning techniques.
A detailed description ‘of the resulting MOLTKE workbench is beyond the scope of
this paper. Therefore we only give a brief overview and refer to already published
papers

In addition to the facilities described. m this paper we use second generation expert
system technologies to support the knowledge acquisition process ((Althoff, Maurer,
Rehbold, 90)). These include a model compiler which generates the core of a
knowledge base out of a deep model of the technical system ((Rehbold 89),
(Rehbold, 91)). This basic expert system is improved and extended by machine
learning methods. We implemented a case--based reasoning system which supports
the diagnostic process ((Althoff, Maurer, Weß, 91)). (Althoff, Maurer, Traphöner,
WeB, 90) and (Althoff, 91) describe a system which learns relations between
symptom patterns, and the work of (Maurer, Ruppel, 90) covers a system which
learns diagnostic strategies based on neural network methods. The representation of
temporal knowledge in the MOLTKE system is subject of ((Nökel, 89) (Nökel, 91)).

12 Tolerable means tim m interactive development of the knowledge base is possible.

l l

4. DISCUSSION AND RELATED WORK

The MOLTKE workbench was developed in cooperation with the WZL, a mechanical
engineering institute of the technical university of Aachen, following a pragmatic
approach. Because of the integration of several advanced expen system techniques,
the workbench contributes to the state of an in knowledge acquisition (following the
requirements of (van Sorneren, Zheng, Post, 90».

In this paper we described the maintenance component which supports the elicitation
and coding of the knowledge by a knowledge dependency network. The network is
especially helpful if

serveral persons work together to build the knowledge base,

the knowledge base is filled directly by the domain expen.

The network fulfills the above stated requirements on a maintenance component.
Based on the network we are developing an interface which shows the effects of
changes in the knowledge base. The network: shows and supervises the dependencies
of the pieces of knowledge and allows the user to define objects in an arbitrary order.
Additionally, it checks the represented knowledge for inconsistencies. Therefore, it
supports the construction of a knowledge base, especially if the builder of the domain
model is different from the one who has to ftll it.

Seeking in knowledge acquisition literature we find many contributions which are
concerned with the more or less automatic acquisition of the domain models itself
(e.g. (Morik, 86), (Breuker, Wielinga, 87». We agree with the KADS group that a
methodology for knowledge acquisition exists. We extend their approach by
emphasizing aspects of maintenance which are very important if the expert system is
supposed to live for a longer period of time.

The MOLTKE workbench can be used !it least for every technical system of a similar
complexity as a CNC machining center, which was our first application13• So we
followed a "more generic approach than (Musen, Fagan, Combs, Shoncliff, 86).

Our approach based on the knowledge dependencynetwork is to fIJland maintain a
given domain model preserving formally defmed consistency co~ditions. Scanning
knowledge acquisition literature we did not find many papers on knowledge
dependency supervising and consistency checking. Comparing our maintenance
component with the approach of (Jansen, Compton, 89) we find two main
differences. First, we use dependencies between pieces of knowledge for consistency
checking; they mainly build cross references (which is only the first step of our
approach). Secondly, they want to integrate different general representation
formalisms (e.g. production rules, semantic nets, frames, etc.) whereas we want to
ease the development of a.knowledge base within a domain-dependent representation.

Supervising dependencies and backtracking to consistent states is the subject of truth

13	 Additionaly, we implemented expert systems for fault diagnosis in heterogenous computer
networks. driving machines in mining, and CNC measuring machines.

12

4.‘ DISCUSSION AND RELATED WORK
The MOLTKE workbench was developed in cooperation with the WZL, a mechanical
engineering institute of the technical university of Aachen, following a pragmatic
approach. Because of the integration of several advanced expert system techniques,
the workbench contributes to the state of art in knowledge acquisition (following the
requirements of (van Someren, Zheng, Post, 90)).

In this paper we described the maintenance component which supports the elicitation
and coding of the lmowledge by a lmowledge dependency network. The network is
especially helpful if

- serveial persons work together to build the knowledge base,

- the knowledge base is filled directly by the domain expert.

The netw0rk fulfills the above stated requirements on a maintenance component.
Based on the network we are developing an interface which shows the effects of
changes in the knowledge base. The network shows and supervises the dependencies
of the pieces of knowledge and allows the user to define objects in an arbitrary order.
Additionally, it checks the represented knowledge for inconsistencies. Therefore, it
supports the construction of a knowledge base, especially if the builder of the domain
model is different from the one who has to fill it.

Seeking in knowledge acquisition literature we find many contributions which are
concerned with the more or less automatic acquisition of the domain models itself
(e.g. (Morik, 86), (Breuker, Wielinga, 87)). We agree with the KADS group that a

' methodology for knowledge acquisition exists. We extend their approach by
emphasizing aspects of maintenance which are very important if the expert system is
supposed to live for a longer period of time.

The MOLTKE workbench can be used at least for every technical system of a similar
complexity as a CNC machining center, which was our first application”. So we
followed a “more generic approach than (Musen, Fagan, Combs, Shortcliff, 86).

Our approach based on the knowledge dependency. network is to filland maintain a
given domain model preserving formally defined consistency conditions. Scanning
knowledge acquisition literature we did not find many papers on knowledge
dependency supervising and consistency checking. Comparing our maintenance
component with the approach of (Jansen, Compton, 89) we find two main
differences. First, we use dependencies between pieces of knowledge for consistency
checking; they mainly build cross references (which is only the first step of our
approach). Secondly, they want to integrate different general representation
formalisms (e.g. production rules, semantic nets, frames, etc.) whereas we want to
ease the development of aknowledge base within a domain~dependent representation.

Supervising dependencies and backtracking to consistent states is the subject of truth

‘3 Additionaly, we implemented expert systems for fault diagnosis in heterogenous computer
networks, driving machines in mining. and CNC measuring machines.

12

maintenance systems (ATMS (de Kleer, 86), TMS (Doyle, 79». Usually truth
maintenance systems are used within one (dynamic) inference process. We need it for
preserving a consistent state of a (static) knowledge base. So our system would be at
least a new application of TMS.

Although we took a lot of inspirations from TMS approaches, we had to extend them.
We have to deal with consistent and inconsistent states of the knowledge base. A
currently inconsistent state may be consistent in the next step and then again become
inconsistent (e.g the user defmes an object, removes it and then redefines it). This
swapping between consistency and inconsistency is not well handled by truth
maintenance systems. Furthermore, a 1¥S does not fmd the inconsistencies. It is
externally told that the actual state is inconsistent and then backs up to a consistent
state. We need a system where we can define what is inconsistent and which then
checks this by itself. Therefore we developed the knowledge dependency network.

A problem in the discussion of the MOLTKE workbench is that it consists of several
complex components which deal with different topics out of the field of expert
systems (e.g. deep modelling, qualitative reasoning, representation, acquisition,
machine learning, knowledge maintenance and compilation). The integration of the
components is an advantage over any stand-alone solutionl4• But this advantage can
not be presented successfully within a paper dealing with special aspects of the whole
system.

s. STATE OF REALIZATION AND ONGOING WORK

The MOLTKE base system for diagnosis (Le. the above described representation
formalism) is fully implemented in Smalltalk-80. Its graphic:':oriented acquisition
interface uses different parsers for checking the syntactic correctness of an object's
definition. The deep modelling and machine learning facilities are implemented too.

Based on our experience we are developing a hypermedia-based knowledge
engineering environment (called CAKE or HyperCAKE) which supports the
knowledge acquisition process (Maurer, 91). The maintenance network will be
integrated in this environment to support multiple experts and multiple knowledge
engineers working together to built an expert system. It will support the process of
model construction by allowing a smooth transition from informal (data level)
descriptions via a semi-formal conceptual model to formal design models.

The HyperCAKE system uses the hypertext abstract machine (HAM) for storing and
retrieving the informations (following the ideas of (Campbell, Goodman, 88». We
extend the HAM by facilities for typing nodes. links and contexts. Additionally, we
integrate a rule interpreter into the hypertext machine.

We fmished the implementation of the HAM and integrated it with a rule interpreter.

, The implementation of the maintenance component (which includes the described

knowledge dependency network and consistency checkers) will be finished this year.

We are re-implementing the MOLTKE shell based on the HyperCAKE system until
the beginning of 1992.

14 in the sense of: "The whole is more than the sum of its parts".

13

maintenance systems (ATMS (de Kleer, 86), TMS (Doyle, 79)). Usually truth
maintenance systems are used within one (dynamic) inference process. We need it for.
preserving a consistent state of a (static) knowledge base. So our system would be at
least a new application of TMS.

Although we took a lot of inspirations from TMS approaches, we had to extend them.
We have to deal with consistent and inconsistent states of the knowledge base. A
currently inconsistent state may be consistent in the next step and then again become
inconsistent (e.g the user defines an object, removes i t and then redefines it). This
swapping between consistency and inconsistency is not well handled by truth
maintenance systems. Furthermore, a TMS does not find the inconsistencies. It is
externally told that the actual state is inconsistent and then backs up to a consistent
state. We need a system where we can define what is inconsistent and which then
checks this by itself. Therefore we developed the knowledge dependency network.

A problem in the discussion of the MOLTKE workbench is that it consists of several
complex components which deal with different topics out of the field of expert
systems (6. g. deep modelling, qualitative reasoning, representation, acquisition,
machine learning, knowledge maintenance and cOmpilation). The integration of the
components is an advantage over any stand-alone solution“. But this advantage can
not be presenwd successfully within a paper dealing with special aspects of the whole
system.

5. STATE OF REALIZATION AND ONGOING WORK

The MOLTKE base system for diagnosis (i.e. the above described representation
formalism) is fully implemented in Smalltalk-80. Its graphicion'ented acquisition
interface uses different parsers for checking the syntactic correctness of an object’s
definition. The ®ep modelling and machine learning facilities are implemented too.

Based on our experience we are developing a hypermedia-based knowledge
engineering environment (called CAKE or HyperCAKE) which supports the
knowledge acquisition process (Maurer, 91). The maintenance network will be
integrated in this environment to support multiple experts and multiple knowledge
engineers working together to built an expert system. It will support the process of
model construction by allowing a smooth transition from informal (data level)
descriptions via a semi-formal conceptual model to formal design models.

The HyperCAKE system uses the hypertext abstract machine (HAM) for storing and
retrieving the informations (following the ideas of (Campbell, Goodman, 88)). We
extend the HAM by facilities for typing nodes, links and contexts. Additionally, we
integrate a rule interpreter into the hypertext machine.

We finished the implementation of the HAM and integrated it with a rule interpreter.
' The implementation of the maintenance corriponent (which includes the described

knowledge dependency network and consistency checkers) will be finished this year.

We are re-implementing the MOLTKE shell based on the HyperCAKE system until
the beginning of 1992.

14 inthesenseof:"'l‘hewholeismorethanthesumofits'pans".

13

6. ACKNOWLEDGEMENTS

I would like to thank the research group of Prof. Richter for the excellent working
climate. Especially, I want to thank Prof. Richter for a lot of advices to this paper and
Klaus Althoff, Alvaro de la Ossa, Hans Lamberti, Erica Melis, Scarlet Nokel, Jiirgen
Paulokat, Reinhard Praeger, Robert Rehbold, Mike Stadler and Holger Wache for
discussing preliminary versions of this paper written in a really ugly English. Last but
not least I would like to say a big "thank you" to Claudia Dell for the time she spent in
maintaining me when I was writing this paper on knowledge base maintenance.

APPENDIX A

In the following we give an example how the editing of a knowledge base is
supported by a knowledge dependency network. First, we define the node classes.
For checking graph consistency the inconsistent subgraphs of figure 2.6 are used.
Then, we define a few objects and show how the knowledge dependency network
developes. The description of the needed parsers is left out.

Node class defmitions:

Type-Node needs: 0

Symptom-Class-Node needs: (fype-Node (1:1»

Symptom-Instance-Node needs: (Symptom-Class-Node (1:1»

Definin& objects for the knowled&e base:

Step I: Symptom-Instance new_with_name: SWITCH-l
for_class: SWITCH

What happens? A symptom instance node is put in the empty knowledge
dependency network and marked as inconsistent. An entry for the
needed symptom class is put into the agenda.

--e
Symptom-Instance-Node:
SWITCH-l

o Consistent nodes • Inconsistent nodes

Figure A.1: Step 1 - The resulting knowledge dependency network

14

6. ACKNOWLEDGEMENTS
' I would like to thank the research group of Prof. Richter for the excellent working

climate. Especially, I want to thank Prof. Richter for a lot of advices to this paper and
Klaus Althoff, Alvaro de la Ossa, Hans Lamberti, Erica Melis, Scarlet Nökel, Jürgen
Paulokat, Reinhard Praeger, Robert Rehbold, Mike Stadler and Holger Wache for
discussing preliminary versions of this paper written in a really ugly English. Last but
not least I would like to say a big "thank you" to Claudia Dell for the time she spent in
maintaining me when I was writing this paper on knowledge base maintenance.

APPENDIX A

In the following we give an example how the editing of a knowledge base i s
supported by a knowledge dependency network. First, we define the node classes.
For checking graph consistency the inconsistent subgraphs of figure 2.6 are used.
Then, we define a few objects and show how the knowledge dependency network
developes. The description of the needed parsers i s left out.
111] iE i " '

Type-Node needs: ()
Symptom—Class—Node needs: (Type-Node (1:1))
Symptom-Instance-Node needs: (Symptom-Class—Node (1:1))
Dfi ' l ' fi l l 111 '

Step 1: Symptom-Instance new_with_name: SWITCH-1
for_class: SWITCH"

What happens? A symptom instance node is put in the empty knowledge
dependency network and marked as inconsistent. An entry for the
needed symptom class i s put into the agenda.

——o
Symptom-Instance-Node:
SWITCH-l

O Consistentnodes . lnconsistentnodes

Figure A.]: Step 1 - The resulting knowledge dependency network

14

Step 2: Symptom-Class	 new_with_name: SWITCH
with_Type: SWITCH-TYPE

What happens?	 A symptom class node is put in the knowledge dependency network:
and marked as inconsistent. An entry for the needed type is put into
the agenda. Then the system fmds out that the new node is already
referenced in the agenda and the appropriate connections are
established.

-~e~~e
Symptom-Class-Node: Symptom-Instance-Node:
SWITCH SWITCH-l

Figure A.2: Step 2 - The resulting knowledge dependency network

Step 3: Type	 new_with_name: SWITCH-TYPE
values: (open closed) "

What happens?	 A type node is put in the knowledge dependency network and
marked as consistent. Then the system checks the agenda for an
entry which matches the new type. This entry is removed from the
agenda and the (referenced) symptom class node is marked as
consistent. From this results that also the symptom instance node is
consistent All nodes enter the knowledge base.

-Apb
Symptom-Class-Node: Symptom-Inst2nce-Node:
SWITCH SWITCH-l

Figure A.3: Step 3 - The resulting knowledge dependency network

Step 4: Symptom-Class new_with_name: POWERSWITCH
with_type: SWITCH-TYPE

What happens? The user tries to define a symptom class node. The system checks

15

Step 2: Symptom-Class new_with_name: SWITCH
with_Type: SWITCH-TYPE

What happens? A symptom class node is put in the knowledge dependency network
and marked as inconsistent. An entry for the needed type is put into
the agenda. Then the system finds out that the new node is already
referenced in the agenda and the appropriate connections are
established.

& O
SymptomClass—Node: Symptom-Instame-Node:
swrrCH SWITCH-1

Figure A.2: Step 2 - The resulting knowledge dependency network

Step 3: Type new_with_name: SWITCH-TYPE
values: (open closed)

What happens? A type node is put in the knowledge dependency network and
marked as consistent. Then the system checks the agenda for an
entry which matches the new type. This entry is removed from the
agenda and the (referenced) symptom class node is marked as
consistent. From this results that also the symptom instance node is
consistent. All nodes enter the knowledge base.

f'\\} O
Type-Node: SymptoIn-Class-Node: Symptan-Instance-Node:

l l SWITCH-TYPE SWITCH SWITCH-l

Figure A3: Step 3 - The resulting knowledge dependency network

Step 4: Symptom—Class nvfiw_with__:name POWERSWITCH
th__:type SWITCH—TYPE

What happens? The user tries to define a symptom class node. The system checks

15

I

SWITCH-I

the inconsistency graphs and detects a contradiction to graph 2 of
figure 2.6. So, the new node is rejected.

,,·,..,.,',,.,,· ,.,·,,,,•......,.,:..,.,'..,' ..",,,,,,.. ,.,,.",..,,..".,•.:..,.,.:....•...•......•...:,."•.....,.,..,., H.::......,..:: ',•.•.•,.,:.•.•.•..••••.•.•...•.•.•.••.•.......•...•.••...•• ,.,•.•..•.•..•.•..,."•..•.•..•.•...,,,,,,•..,.·"•..•., .. !!.!!. i ,•..•..,.',.,..,••.'",•...,., ,,'.,•.., :.... •..,.,...••.....•......,: •...•..•..•... •..•...•..•.,,,,..•....:.,.:•...•.:·::.,:::::::::::::,·:::1.·:.:·::•........,::,,•..:.. A~
•. •....... •.. •. ,,,, •. ::::...:l,.:.,:..•.,·::,.: , ,,,,, •. ',.i .., ,.' :.: " ••.... •......
.. ~ri~i!j)i.)i))))j)~i;~:: ~\;[~~~;~:~:~~;:;[::!m{r)ii~t~~~:::;.·r.:\:.{~}i! .:,:.:::;.:.,:~:i.. :': ':'.:·.~.~.f~ , :::~::;::::: rfr):n}iffrr.rrf ~-..a ,..... :~f~ .~:~.:,~:~.·:f::.·.:~.:!:·:~::.•:·::.::••:.. .:.:.:.:::.

:::::::::::::::::::~:~:~::.:.~:;:~:~:~:~:;/..;:::::;:::;:;:;:)(~{: ~:rf~: rr.~:.:i.\.~;.::.ii,m~ ::::;:::::::::::::: ~.~.:.\[.[;...::.;.!.;.;.!.~.!;.!.!.;.!.i!.!!.!.!.!.!.!i.!.!.!.!.!;.ii.!,! ~{::::{{:~~rr~:r:: . .:...:.:.:.:.:.:.:.....:.....:.;.:.:.:.>

Inconsistent subgraph

Symptom-Instance-Node:
SWITCH-I

Figure A4: Step 4- The knowledge dependency network and the inconsistent subgraph

Step 5: Type new_with_name: POWERSWITCH-TYPE
values: (open closed)

What happens? The user tries to define a type node. The' 'system checks the
inconsistency graphs and detects a contradiction to graph 1 of figure
2.6. So, the new node is rejected.

Symptom-Instance-Node:

Figure AS: Step S- The knowledge dependency network and the inconsistent subgraph

16

the inconsistency graphs and detects a contradiction to graph 2 of
figure 2.6. so, the new node is rejected.

Inconsistent subgraph

Symptom-Instance-Node:
SWITCH-l

Figure A.4: Step 4- The knowledge dependency network and the inconsistent subgraph

Step 5: Type new_with_name: POWERSWITCH—TYPE
values: (open closed)

What happens? The user tries to define a type node. The ‘system checks the
inconsistency graphs and detects a contradiction to graph 1 of figure
2.6. So, the new node isrejected.

ymptom-Class—Node: Symptom-Instance-Node:
SWITCH SWITCH-l

Figure A5: Step 5- The knowledge dependency network and the inconsistent substaph

16

http:f::.�.:~.:!:�:~::.�:�::.::��
http:�..,.,...��.....�......,:�...�..�..�
http:�..�..,.',.,..,��.'",�
http:�.�..�.�..�.�..,."�..�.�..�.�...,�..,.�"�..�
http:�.�.�,.,:.�.�.�..����.�.�...�.�.�.��.�.......�...�.��

REFERENCES

Althoff, K. D. (91). A case-based learning component as an integrated part of the
MOLTKE3 workbench for the diagnosis of technical systems (in german: Eine
fallbasierte Lernkomponente als ein integrierter Bestandteil der MOLTKE3
Werkbank fUr die Diagnose technischer Systeme), Diss. University of
Kaiserslautem, 1991 (to appear)

Althoff, K.D., Maurer, F., Rehbold, R. (90). Multiple Knowledge Acquisition
Strategies in MOLTKE, in: Proc. EKAW 90

Althoff, K. D., Maurer, F., Traphoner, R., WeB, S. (90). The learning component
of the MOLTKE3 workbench for the diagnosis of technical systems (in german:
Die Lernkomponente der MOLTKE3 Werkbank fUr die Diagnose technischer
Systeme), KI, special edition on Machine Learning, Munich: Oldenbourg
Verlag, No. 1, 1991

Althoff, K. D., Maurer, F., Wess, S. (91). Case-Based Reasoning and Adaptive
Learning in the MOLTKE3 Workbench for Technical Diagnosis, Technical
Report University of Kaiserslautern, 1991

Althoff, K. D., Traphoner, R. (90). GenRule: Learning of Shortcut-Oriented
Diagnostic Problem Solving in the MOLTKE3-Workbench, Technical Report
University of Kaiserslautern, 1990

Breuker, J., Wielinga, B. (87). Model-Driven Knowledge Acquisition: Interpretation
Models, Memo 87, Deliverable task AI, Esprit Project 1098; 1987

Campbell, B. ,Goodman, J. M. (88). HAM: A General Purpose Hypertext Abstract
Machine, Communications of the ACM, July 1988, Vol. 31, No. 7

de Kleer, J. (86). An assumption-based TMS, Artificial intelligence, Vol. 28, P. 163
196, 1986 .

Doyle,1. (79). A truth maintenance system, Artificial intelligence, Vol. 12, P. 231
272, 1979

Jansen, B., Compton, P. (89). The Knowledge Dictionary: Storing Different
Knowledge Representations, in; Proc EKAW 89

Maurer, F (91). CAKE: Computer-aided Knowledge Engineering, Proc. of the
UCAI-91 Workshop on "Software Engineering for Knowledge Base Systems"

Maurer, F. , Ruppel, A. (90). Learning of diagnostic strategies with neural networks
in the MOLTKE 3.0 expert system toolbox (in german: Lernen von
Diagnosestrategien mit neuronalen Netten in der MOLTKE 3.0 Expertensystem
toolbox), Technical Report University of Kaiserslautem, 1990

Monk, K. (86). Acquiring domain models, in: Knowledge Acquisition Tools for
Expert Systems, Academic Press, 1988

17

REFERENCES

Althoff, K. D. (91). A case-based learning component as an integrated part of the
MOLTKE3 workbench for the diagnosis of technical systems (in german: Eine
fallbasierte Lernkomponente als ein integrierter Bestandteil der MOLTKE3
Werkbank für die Diagnose technischer Systeme), Diss. University of
Kaiserslautern, 1991 (to appear)

Althoff, K.D., Maurer, F., Rehbold, R. (90). Multiple Knowledge Acquisition
Strategies in MOLTKE, in: Proc. EKAW 90

Althoff, K. D., Maurer, F., Traphöner, R., Weß, S. (90). The learning component
of the MOLTKE3 workbench for the diagnosis of technical systems (in german:
Die Lernkomponente der MOLTKE3 Werkbank fiir die Diagnose technischer
Systeme), KI, special edition on Machine Learning, Munich: Oldenbourg
Verlag, No. 1, 1991

Althoff, K. D., Maurer, F., Wess, S. (91). Case-Based Reasoning and Adaptive
Learning in the MOLTIGE3 Workbench for Technical Diagnosis, Technical
Report University of Kaiserslautern, 1991

Althoff, K. D., Traphöner, R. (90). GenRule: Learning of Shortcut-Oriented
Diagnostic Problem Solving in the MOLTKE3-Workbench, Technical Report
University of Kaiserslautern, 1990

Breuker, J., Wielinga, B. (87). Model-Driven Knowledge Acquisition: Interpretation
Models, Memo 87, Deliverable task A1, Esprit Project 1098; 1987

Campbell, B. , Goodman, J . M. (88). HAM: A General Purpose Hypertext Abstract
Machine, Communications of the ACM, July 1988, Vol. 31, No. 7

de Klee,r6‚] . 9(g6). An assumption-based TMS, Artificial intelligence, Vol. 28, P. 163-
1 ‚l.. 6 - .

Doyle, J. (79). A truth maintenance system, Artificial intelligence, Vol. 12, P. 231-
272, 1979

Jansen, B., Compton, P. (89). The Knowledge Dictionary: Storing Different
Knowledge Representations, in; Proc EKAW 89

Maurer, F (91). CAKE: Computer-aided Knowledge Engineering, Proc. of the
IJCAI-91 Workshop on "Software Engineering for Knowledge Base Systems"

Maurer, F. , Ruppel, A. (90). Learning of diagnostic strategies with neural networks
in the MOLTKE 3.0 expert system toolbox (in german: Lemen von
Diagnosestrategien mit neuronalen Netzen in der MOLTKE 3.0 Expertensystem—
toolbox), Technical Report University of Kaiserslautern, 1990

Morik, K. (86). Acquiring domain models, in: Knowledge Acquisition Tools for
Expert Systems, Academic Press, 1988

17

Musen, M. A., Fagan, L. M., Combs, D. M., Shortcliff, E. H. (86). Use of a

domain model to drive an interactive knowledge-editing tool, in: Knowledge

Acquisition Tools for Expert Systems, Academic Press, 1988

Nokel, K. (89). Temporal Matching: Recognizing Dynamic Situations from Discrete

Measurements, in: Proc. UCA! 1989

NOkel, K. (91). Temporallly Distributed Symptoms in Technical Diagnosis, Springer

Verlag, Heidelberg/Berlin/New York, 1991

Rehbold, R. (89). Model-Based Knowledge Acquisition from Structure Descriptions

in ~ Technical Diagnosis Domain, Proc. Avignon 1989

Rehbold, R. (91). Integration of model-based knowledge into technical diagnostic

expert systems (in german: Integration von modellbasiertem Wissen in

technische Diagnostik-Expertensystem), Diss. University of Kaiserslautem

1991

Richter, M.M. (89). Principles of artificial intelligence (in german: Prinzipien der

kiinstlichen Intelligenz), Teubner Verlag, 1989

Richter, M. M. (92): Das MOLTKE-Buch (in German), (to appear)

van Someren, M. W., Zheng, L. L., Post, W. (91). Cases, Models or Compiled

Knowledge; a Comparative Analysis and Proposed Integration, in: Proc. EKAW

1990

18

Musen, M. A., Fagan, L. M.. Combs, D. M., Shortcliff, E. H. (86). Use of a
domain model to drive an interactive knowledge-editing tool, in: Knowledge
Aoquisition Tools for Expert Systems, Academic Press, 1988

Nökel, K. (89). Temporal Matching: Recognizing Dynamic Situations from Discrete
Measurements, in: Proc. UCAI 1989

Nöke‘l, K. (91). Temporallly Distributed Symptoms in Technical Diagnosis, Springer
Verlag, Heidelberg/Berlin/New York, 1991

Rehbold, R. (89). Model-Based Knowledge Acquisition from Structure Descriptions
in a Technical Diagnosis Domain, Proc. Avugnon 1989

Rehbold, R. (91). Integration of model-based knowledge into technical diagnostic
expert systems (in german: Integration von modellbasiertem Wissen in
tegcghnische Diagnostik-Expertensystem), Diss. University of Kaiserslautern
1 1

Richter, M.M. (89). Principles of artificial intelligence (in german: Prinzipien der
künstlichen Intelligenz), Teubner Verlag, 1989

Richter, M. M. (92): Das MOLTKE-Buch (in German), (to appear)

van Someren, M. W., Zheng, L. L., Post, W. (91). Cases, Models or Compiled
Knowledge; a Oomparative Analysis and Proposed Integration, in: Proc. EKAW
1990

18

