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Zusammenfassung

Maschinelles Lernen (ML) hat enorme Fortschritte gemacht, und Daten sind der
Schlüsselfaktor, um diese Entwicklung voranzutreiben. Es gibt jedoch zwei große Her-
ausforderungen bei der Erfassung der Daten und deren Handhabung mit ML-Modellen.
Erstens kann die Erfassung qualitativ hochwertiger beschrifteter Daten aufgrund der
Notwendigkeit umfangreicher menschlicher Anmerkungen schwierig und teuer sein.
Zweitens wurden Graphen genutzt, um die komplexe Beziehung zwischen Entitäten, z.
B. sozialen Netzwerken oder Molekülstrukturen, zu modellieren. Herkömmliche ML-
Modelle können Diagrammdaten jedoch aufgrund der nichtlinearen und komplexen Natur
der Beziehungen zwischen Knoten möglicherweise nicht effektiv handhaben. Um diesen
Herausforderungen zu begegnen, wurden jüngste Entwicklungen im halbüberwachten
Lernen und im selbstüberwachten Lernen eingeführt, um unbeschriftete Daten für ML-
Aufgaben zu nutzen. Darüber hinaus wurde eine neue Familie von ML-Modellen, bekannt
als Graph Neural Networks, vorgeschlagen, um die Herausforderungen im Zusammen-
hang mit Graphdaten zu bewältigen. Obwohl sie leistungsfähig sind, sollte auch das
potenzielle Datenschutzrisiko berücksichtigt werden, das sich aus diesen Paradigmen
ergibt.

In dieser Dissertation führen wir die Datenschutzrisikobewertung der aufkommenden
Paradigmen des maschinellen Lernens durch. Erstens untersuchen wir die Datenschut-
zlecks der Mitgliedschaft, die sich aus halbüberwachtem Lernen ergeben. Konkret schla-
gen wir den ersten auf Datenaugmentation basierenden Mitgliedschafts-Inferenz-Angriff
vor, der auf das Trainingsparadigma halbüberwachter Lernmethoden zugeschnitten ist.
Zweitens quantifizieren wir das Durchsickern der Privatsphäre des selbstüberwachten
Lernens durch die Linse von Mitgliedschafts-Inferenz-Angriffen und Attribut-Inferenz-
Angriffen. Drittens untersuchen wir die Datenschutzauswirkungen des Trainings von
GNNs auf Graphen. Insbesondere schlagen wir den ersten Angriff vor, um einen Graphen
aus den Ausgaben eines GNN-Modells zu stehlen, das auf dem Graphen trainiert wird.
Schließlich untersuchen wir auch mögliche Verteidigungsmechanismen, um diese Angriffe
abzuschwächen.
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Abstract

Machine learning (ML) has progressed tremendously, and data is the key factor to
drive such development. However, there are two main challenges regarding collecting
the data and handling it with ML models. First, the acquisition of high-quality labeled
data can be difficult and expensive due to the need for extensive human annotation.
Second, to model the complex relationship between entities, e.g., social networks or
molecule structures, graphs have been leveraged. However, conventional ML models
may not effectively handle graph data due to the non-linear and complex nature of
the relationships between nodes. To address these challenges, recent developments in
semi-supervised learning and self-supervised learning have been introduced to leverage
unlabeled data for ML tasks. In addition, a new family of ML models known as graph
neural networks has been proposed to tackle the challenges associated with graph data.
Despite being powerful, the potential privacy risk stemming from these paradigms
should also be taken into account.

In this dissertation, we perform the privacy risk assessment of the emerging machine
learning paradigms. Firstly, we investigate the membership privacy leakage stemming
from semi-supervised learning. Concretely, we propose the first data augmentation-based
membership inference attack that is tailored to the training paradigm of semi-supervised
learning methods. Secondly, we quantify the privacy leakage of self-supervised learning
through the lens of membership inference attacks and attribute inference attacks.
Thirdly, we study the privacy implications of training GNNs on graphs. In particular,
we propose the first attack to steal a graph from the outputs of a GNN model that is
trained on the graph. Finally, we also explore potential defense mechanisms to mitigate
these attacks.
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1.1. OUR CONTRIBUTIONS

Machine learning (ML) has progressed tremendously, and data is the key factor to
drive such development. However, there are two main challenges regarding collecting
the data and handling it with ML models. First, high-quality data, in particular labeled
data, is often hard and expensive to collect as this relies on large-scale human annotation.
Second, to model the complex relationship between entities, e.g., social networks or
molecule structures, graphs have been leveraged. However, conventional ML models
fall short of handling graph data properly as the relationships between the nodes are
non-linear and complex.

To address the first challenge, researchers are exploring the use of unlabeled data
for ML tasks, as unlabeled data is being generated at every moment. To this end,
semi-supervised learning [98, 117, 121] and self-supervised learning [17, 48, 18] have
been introduced. For semi-supervised learning, a small set of labeled data is used to
train the ML model alongside a much larger set of unlabeled data. For self-supervised
learning, it aims to learn useful features or representations from the input data itself,
without any explicit labeling or supervision. By leveraging unlabeled data, the model
can learn better representations, leading to improved performance.

To address the second challenge, a new family of ML models known as graph neural
networks [61, 41, 130, 65, 128, 115] has been proposed. Unlike traditional neural
networks that operate on fixed-size inputs, graph neural networks can handle graphs
with different numbers of nodes and edges. A graph neural network typically works by
passing messages between nodes in the graph, where each node aggregates messages
from its neighboring nodes to update its own representation. By learning the structural
and relational information present in the graph, graph neural networks show remarkable
performance on various tasks such as node classification, link prediction, and graph
classification.

Despite being powerful, ML models have been demonstrated to be vulnerable to
various privacy attacks, represented by membership inference attacks [97, 94], attribute
inference attacks [76, 102], and reconstruction attacks [93, 125]. For membership
inference attacks, the adversary aims to infer whether a data sample is part of a target
ML model’s training dataset. For attribute inference attacks, the adversary leverages
the overlearning property of a machine learning model to infer the sensitive attribute
of a data sample. Regarding reconstruction attacks, the adversary aims to rebuild the
original data by exploiting vulnerabilities in the ML model’s output (e.g., prediction
probability or embeddings). So far, most of the efforts on privacy attacks concentrate on
models trained by supervised learning and data with conventional forms such as images
and texts. However, as the emerging ML paradigms (i.e., semi-supervised learning,
self-supervised learning, and graph neural networks) handle the training data in their
unique ways, it is important to quantify whether such unique training paradigms would
lead to more severe privacy leakage of the training data.

1.1 Our Contributions

In this dissertation, we take the first step toward quantifying the privacy risks stemming
from the emerging ML paradigms. Concretely, we focus on semi-supervised learning,
self-supervised learning, and graph neural networks. We first explore the possible privacy
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CHAPTER 1. INTRODUCTION

threats against each paradigm. Then, we develop defense mechanisms to mitigate the
potential risks. Our work is based on the following peer-reviewed publications [P1, P2,
P3], each exploring the privacy threats of an ML paradigm from a different angle.

Membership Inference Attacks Against Semi-supervised Learning: We start
with [P1] by investigating the privacy risks stemming from semi-supervised learning
(SSL). In this work, we focus on membership inference attacks (MIA), which is one of
the most severe privacy attacks against ML models. As SSL treats labeled and unlabeled
data differently during the training phase, we are curious whether this training paradigm
would cause different membership leakage to the data samples. Concretely, we propose
the first data augmentation-based membership inference attack that is tailored to SSL
methods. Our evaluation shows that the proposed attack can consistently outperform
existing membership inference attacks and achieves the best performance against the
model trained by SSL. Moreover, we uncover that the reason for membership leakage in
SSL is different from the commonly believed one in supervised learning, i.e., overfitting
(the gap between training and testing accuracy). We observe that the SSL model is
well generalized to the testing data (with almost 0 overfitting) but “memorizes” the
training data by giving a more confident prediction regardless of its correctness. We
also explore possible countermeasures and find that early stopping achieves the best
trade-off between model utility and membership inference performance.

Quantifying and Mitigating The Privacy Risk of Self-supervised Learning:
In our second work [P2], we perform the first privacy analysis of contrastive learning,
one of the most representative self-supervised learning mechanisms, through the lens
of membership inference and attribute inference. Our experimental results show that
contrastive models are less vulnerable to membership inference attacks but more vulner-
able to attribute inference attacks compared to supervised models. The former is due to
the fact that contrastive models are less prone to overfitting, while the latter is caused
by contrastive models’ capability of representing data samples expressively. To remedy
this situation, we propose the first privacy-preserving contrastive learning mechanism,
namely Talos, relying on adversarial training. Empirical results show that Talos can
successfully mitigate attribute inference risks for contrastive models while maintaining
their membership privacy and model utility.

Link Stealing Attacks Against Graph Neural Network: In our last work [P3],
we focus on graph data. In this work, we propose the first attack to steal a graph
from the outputs of a GNN model that is trained on the graph. Specifically, given
the black-box access to a GNN model, our attacks can infer whether there exists a
link between any pair of nodes in the graph used to train the model. We call our
attacks link stealing attacks. We propose a threat model to systematically characterize
an adversary’s background knowledge along three dimensions which in total leads to a
comprehensive taxonomy of 8 different link stealing attacks. We propose multiple novel
methods to realize these 8 attacks. Extensive experiments on 8 real-world datasets show
that our attacks are effective at stealing links, e.g., AUC (area under the ROC curve) is
above 0.95 in multiple cases. Our results indicate that the outputs of a GNN model
reveal rich information about the structure of the graph used to train the model.
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1.2 Organization

The rest of this dissertation is organized as follows. We first present the preliminaries
and background in Chapter 2. In Chapter 3, we explore the potential membership
leakage from the models trained with semi-supervised learning. Next, we quantify the
privacy leakage of self-supervised learning through the lens of membership inference and
attribute inference in Chapter 4. We then explore a unique attack, namely link stealing
attacks stemming from GNN models in Chapter 5. Finally, we present the related work
in Chapter 6 and conclude the dissertation in Chapter 7. Kindly be informed that the
material showcased in Chapter 3 to Chapter 5 is based on the original publications [P1,
P2, P3]. Therefore, there may be slight variations in the terminology and notation
used in different chapters. Moreover, the introduction of different chapters may exhibit
similarities in their argumentation and covered material due to the same reason.
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2.1. SUPERVISED LEARNING

2.1 Supervised Learning

Supervised learning, represented by classification, is one of the most common and
important ML applications. We first denote a set of data samples by X and a set of
labels by Y . The objective of a supervised ML model M is to learn a mapping function
from each data sample x ∈ X to its label/class y ∈ Y . Formally, we have

M : x 7→ y (2.1)

Given a sample x, its output fromM, denoted by p =M(x), is a vector that represents
the probability distribution of the sample belonging to a certain class. In Chapter 4,
we refer to p as the prediction posteriors. To train an ML model, we need to define a
loss function L(y,M(x)) which measures the distance between a sample’s prediction
posteriors and its label. The training process is then performed by minimizing the
expectation of the loss function over a training dataset Dtrain, i.e., the empirical loss.
We formulate this as follow:

arg min
M

1
|Dtrain|

∑
(x,y)∈Dtrain

L(y,M(x)) (2.2)

Cross-entropy loss is one of the most common loss functions used for classification tasks,
it is defined as the following.

LCE(y, p) = −
k∑

i=1
yi log pi (2.3)

Here, k is the total number of classes, yi equals to 1 if the sample belongs to class i
(otherwise 0), and pi is the i-th element of the posteriors p. In this dissertation, we use
cross-entropy as the loss function to train all the supervised models.

2.2 Semi-Supervised Learning

Semi-supervised learning (SSL) [64, 77, 8, 98, 117, 121] aims to train accurate models
via exploiting a large amount of unlabeled data when the labeled data is scarce. In
Chapter 3, we focus on the vision domain since most advanced SSL methods are designed
for it. Generally speaking, state-of-the-art SSL techniques [98, 117, 121] produce “pseudo
labels” for the unlabeled samples when the model’s predictions are confident enough
based on pre-defined threshold strategies. For example, Lee [64] first proposed to produce
the class label that has the highest confidence score output by the classifier for unlabeled
samples during training. After assigning pseudo labels to unlabeled samples, they can
train classifiers in a supervised fashion with labeled and unlabeled samples. Recently,
FixMatch [98] achieves state-of-the-art classification accuracy via assigning the strongly
augmented unlabeled samples with the pseudo labels produced from the corresponding
weakly augmented samples when the highest confidence score exceeds a certain threshold.
While UDA [117] was proposed to treat the classifier’s “sharpen” output confidence
scores as the ‘pseudo labels’ rather than one class label. Similar to FixMatch, UDA
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trains strongly augmented unlabeled samples with the pseudo labels produced from
the corresponding weakly augmented samples. FlexMatch [121] updates FixMatch by
introducing the curriculum learning-based method to flexibly adjust the threshold for
different classes during the training. Existing studies on SSL mainly focus on how to
improve the performance, however, we are the first to show that state-of-the-art SSL
methods are vulnerable to our tailored membership inference attacks, which exploit the
strong/weak data augmentations used by state-of-the-art SSL methods.

2.3 Contrastive Learning

Supervised learning is powerful, but its success heavily depends on the labeled training
dataset. In the real world, the high-quality labeled dataset is hard and expensive
to obtain as it often relies on human annotation. For instance, the ILSVRC2011
dataset [92] contains more than 12 million labeled images that are all annotated by
Amazon Mechanical Turk workers. Meanwhile, unlabeled data is being generated
at every moment. To leverage large-scale unlabeled data, self-supervised learning is
introduced.

The goal of self-supervised learning is to get labels from an unlabeled dataset for
free so that one can train an unsupervised task on this unlabeled dataset in a supervised
manner. Contrastive learning/loss [43, 82, 53, 17, 119, 48, 60] is one of the most
successful and representative self-supervised learning paradigms in recent years and
has received a lot of attention from both academia and industry. Oord et al. [82]
propose contrastive predictive coding, which leverages autoregressive models to predict
future observations for data samples. Wu et al. [114] utilize a memory bank to save
instance representation and k-nearest neighbors to conduct prediction. He et al. [48]
introduce MoCo, which relies on momentum to update the key encoder with the query
encoder to maintain consistency. Chen et al. [17] propose SimCLR, which leverages data
augmentation and the projection head to enhance the performance of contrastive models.
SimCLR is the most prominent contrastive learning paradigm at the moment [72], thus
we concentrate on it in Chapter 4. In general, contrastive learning aims to map a sample
closer to its correlated views and more distant to other samples’ correlated views. In
this way, contrastive learning is able to learn an informative representation for each
sample, which can then be leveraged to perform different downstream tasks. Contrastive
learning relies on Noise Contrastive Estimation (NCE) [43] as its objective function,
which can be formulated as:

L = − log( esim(f(x),f(x+))

esim(f(x),f(x+)) + esim(f(x),f(x−)) ) (2.4)

where f is an encoder that maps a sample into its representation, x+ is similar to x
(referred to as a positive pair), x− is dissimilar to x (referred to as a negative pair), and
sim is a similarity function. The structure of the encoder and the similarity function can
vary from different tasks. In Chapter 4, we focus on one of the most popular contrastive
learning frameworks [72], namely SimCLR [17]. This framework is assembled with the
following components.
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Data Augmentation: SimCLR first uses a data augmentation module to transform a
given data sample x to its two augmented views, denoted by x̃i and x̃j , which can be
considered as a positive pair for x. In our work, we follow the same data augmentation
process used by SimCLR [17], i.e., first random cropping and flipping with resizing,
second random color distortions, and third random Gaussian blur.

Base Encoder f : Base encoder f is used to extract representations from the augmented
data samples. The base encoder can follow various neural network (NN) architectures.
In Chapter 4, we apply the widely used ResNet [49] (ResNet-18 and ResNet-50) and
MobileNetV2 [95] to obtain the representation hi = f(x̃i) for x̃i.

Projection Head g: Projection head g is a simple neural network that maps the
representations from the base encoder to another latent space to apply the contrastive
loss. The goal of the projection head is to enhance the encoder’s performance. Following
Chen et al. [17], we implement it with a 2-layer MLP (multilayer perceptron) to obtain
the output zi = g(hi) for hi.

Contrastive Loss Function: The contrastive loss function is defined to guide the
model to learn the general representation from the data itself. Given a set of augmented
samples {x̃k} including a positive pair x̃i and x̃j , the contrastive loss maximizes the
similarity between x̃i and x̃j and minimizes the similarity between x̃i (x̃j) and other
samples. For each mini-batch of N samples, we have 2N augmented samples. The loss
function for a positive pair x̃i and x̃j can be formulated as:

ℓ(i, j) = − log esim(zi,zj)/τ∑2N
k=1,k ̸=i esim(zi,zk)/τ

(2.5)

where sim(zi, zj) = zi
⊤zj/∥zi∥∥zj∥ represents the cosine similarity between zi and zj

and τ is a temperature parameter. The final loss is calculated over all positive pairs in
a mini-batch, which can be defined as the following.

LContrastive = 1
2N

N∑
k=1

[ℓ(2k − 1, 2k) + ℓ(2k, 2k − 1)] (2.6)

Here, 2k − 1 and 2k are the indices for each positive pair.
Training classifiers with SimCLR can be partitioned into two phases. In the first

phase, we train a base encoder as well as a projection head by the contrastive loss
using an unlabeled dataset. After training, we discard the projection head and keep the
base encoder only. In the second phase, to perform classification tasks, we freeze the
parameters of the encoder, add a trainable linear layer at the end of the encoder, and
fine-tune the linear layer with the cross-entropy loss (see Equation 2.3) on a labeled
dataset. The linear layer serves as a classifier, with its input being the representations
generated by the encoder. We refer to this linear layer as the classification layer. In
Chapter 4, we call a model trained with supervised learning as a supervised model and
a model trained with contrastive learning as a contrastive model. Also, we consider
contrastive models trained on image datasets, as most of the current development of
contrastive learning focus on images.
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Compared to supervised learning, contrastive learning can learn more informative
representations for data samples. Previous work shows that supervised models are
vulnerable to various privacy attacks [97, 118, 94, 76, 15, 102, 13]. However, to the best
of our knowledge, privacy risks stemming from contrastive models have been left largely
unexplored. In this work, we aim to fill this gap.

2.4 Graph Neural Networks

Many important real-world datasets come in the form of graphs or networks, e.g., social
networks, knowledge graph, and chemical networks. Therefore, it is urgent to develop
machine learning algorithms to fully utilize graph data. To this end, a new family of
machine learning algorithms, i.e., graph neural networks (GNNs), has been proposed
and shown superior performance in various tasks [5, 25, 61, 108].

Training a GNN Model: Given a graph, attributes for each node in the graph, and
a small number of labeled nodes, GNN trains a neural network to predict labels of
the remaining unlabeled nodes via analyzing the graph structure and node attributes.
Formally, we define the target dataset as D = (A,F), where A is the adjacency matrix
of the graph and F contains all nodes’ attributes. Specifically, Auv is an element in A:
If there exists an edge between node u and node v, then Auv = 1, otherwise Auv = 0.
Moreover, Fu represents the attributes of u. V is a set containing all nodes in the graph.
Note that we consider undirected graphs in Chapter 5, i.e., ∀u, v ∈ V,Auv = Avu.

A GNN method iteratively updates a node’s features via aggregating its neighbors’
features using a neural network, whose last layer predicts labels for nodes. Different
GNN methods use slightly different aggregation rules. For instance, graph convolutional
network (GCN), the most representative and well-established GNN method [61], uses
a multi-layer neural network whose architecture is determined by the graph structure.
Specifically, each layer obeys the following propagation rule to aggregate the neighboring
features:

H(k+1) = σ(Q̃− 1
2 ÃQ̃− 1

2 H(k)W (k)), (2.7)

where Ã = A+ I is the adjacency matrix of the graph with self-connection added, i.e.,
I is the identity matrix. Q̃− 1

2 ÃQ̃− 1
2 is the symmetric normalized adjacency matrix and

Q̃uu = ∑
u Ãuv. Moreover, W (k) is the trainable weight matrix of the kth layer and σ(·)

is the activation function to introduce non-linearity, such as ReLU. As the input layer,
we have H(0) = F . When the GCN uses a two-layer neural network, the GCN model
can be described as follows:

softmax(Q̃− 1
2 ÃQ̃− 1

2 σ(Q̃− 1
2 ÃQ̃− 1

2FW (0))W (1)). (2.8)

Note that in most parts of Chapter 5, we focus on two-layer GCN. Later, we show that
our attack can be also performed on other types of GNNs, including GraphSAGE [45]
and GAT [108] (see Section 5.4).

Prediction in a GNN Model: Since all nodes’ attributes and the whole graph have
been fed into the GNN model in the training phase to predict the label of a node, we
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Table 2.1: List of notations.

Notation Description

D Target dataset
A Graph of D represented as adjacency matrix

A∗ Partial graph of D
F Nodes’ attributes of D
V Set of nodes of D
f Target model
g Reference model

f(u) u’s posteriors from the target model
g(u) u’s posteriors from the reference model

D′ Shadow dataset
f ′ Shadow target model
g′ Shadow reference model
K Adversary’s knowledge

d(·, ·) Distance metric
Ψ(·, ·) Pairwise vector operations

e(f(u)) Entropy of f(u)

only need to provide the node’s ID to the trained model and obtain the prediction
result. We assume the prediction result is a posterior distribution (called posteriors)
over the possible labels for the node. Our work shows that such posteriors reveal rich
information about the graph structure: As mentioned before, a GNN essentially learns
a node’s features via aggregating its neighbors’ features, if two nodes are connected,
then their posteriors should be similar. We leverage this to build our attack models.
We further use f to denote the target GNN model and f(u) to represent the posteriors
of node u. For presentation purposes, we summarize the notations introduced here and
in the following sections in Table 2.1.
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3.1. INTRODUCTION

3.1 Introduction

Machine learning (ML) has made tremendous progress in the past decade. One of
the key reasons for the great success of ML models can be credited to the large-scale
labeled data. However, such labeled datasets are often hard to collect as they rely on
human annotations and expertise in the specific domain. Meanwhile, unlabeled datasets
are easy to obtain. To better leverage the unlabeled data, semi-supervised learning
(SSL) has been proposed. Concretely, SSL uses a small set of labeled data and a large
set of unlabeled data to jointly train the ML model. In recent years, SSL shows its
effectiveness on different tasks by leveraging much fewer labeled data [98, 117, 121]. For
instance, by only using 250 labeled samples, FlexMatch [121] can achieve about 95%
accuracy on CIFAR10.

Different from supervised learning where every data sample is treated equally in the
training procedure, SSL takes different ways to handle the labeled and unlabeled data
samples during the training. Concretely, the state-of-the-art SSL methods [98, 117, 121]
leverage weak augmentation to the labeled samples and trains them in a supervised
manner. For each unlabeled sample, it would generate a weakly-augmented view and
a strongly-augmented view (by weak and strong augmentations), and the goal is to
leverage the model’s prediction probability (referred to as prediction or posteriors) of
the weakly-augmented view to guide the training of the strongly-augmented view of the
sample. Instead of directly using the posteriors as a “soft” label, those SSL methods
switch the posteriors into a “sharpen” [117] or “hard” label [98, 121]. Note that the
sample is not used to train the model until the highest probability of the prediction on
the weakly-augmented view exceeds a pre-defined threshold τ . In this way, the model
trained by SSL can gradually learn more accurate predictions.

Despite being powerful, ML models are shown to be vulnerable to various privacy
attacks [33, 97, 102], represented by membership inference attacks [97, 94, 78, 103]. The
goal of membership inference attack is to determine whether a data sample is used to
train a target ML model. Successful membership inference attacks can raise privacy
concerns as they may reveal sensitive information of people. For instance, if an ML
model is trained on the data for people with a certain sensitive attribute (e.g., diseases),
identifying the person in the training dataset directly reveals this individual’s sensitive
attribute. So far, most of the efforts on membership inference attacks concentrate on
models trained by supervised learning. Also, there are some exploratory researches
investigating the privacy risks in self-supervised learning [71, 52]. However, in SSL,
the labeled and unlabeled samples are treated differently during the training. It is
important to quantify whether this unique training paradigm would lead to different
privacy risks for labeled and unlabeled samples. Also, as the different augmented views
instead of the original samples are used to train the model, we are curious whether a
more effective membership inference attack mechanism can be proposed against SSL.
To be best of our knowledge, this is largely unexplored.

In this work, we fill the gap by proposing the first data augmentation-based member-
ship inference attack method against SSL. A key advantage for SSL is that it only needs
a small amount of labeled data and leverages the unlabeled data itself to guide the
training. Concretely, for the labeled data, the model is trained in a supervised manner.
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For the unlabeled data, SSL leverages the data itself as the supervision. In particular,
for each unlabeled training sample, a weakly augmented and a strongly augmented views
will be fed into the target model and the training objective is to minimize the distance
of the model’s prediction on these two views. Our proposed data augmentation-based
attack is based on the intuition that the model’s prediction of these two views should
be more similar if the sample belongs to the model’s training set.

We conduct our evaluation on three SSL methods (FixMatch, FlexMatch, and
UDA) and three commonly used SSL datasets (SVHN, CIFAR10, and CIFAR100). Our
empirical results show that our proposed attack can consistently outperform baseline
attacks and reaches the best performance. For instance, for FixMatch trained on
CIFAR10 with 500 labeled samples, our attack achieves 0.780 AUC while the best
baseline attack only has 0.722 AUC. This indicates that our attack can better unleash
the membership information in SSL.

Moreover, we find that, unlike supervised learning where the membership leakage
can be credited to the overfitting nature of the model [97, 94] (i.e., the model predicts the
training data more accurately than the testing data), models trained by SSL methods
are well generalized and have almost no overfitting but still suffer high membership
inference risk. Our analysis reveals that the model indeed “memorizes” the training
data, but such memorization does not present as a more accurate prediction, but a more
confident prediction. We show that the prediction entropy distribution of members and
non-members has a large gap in models trained by SSL (measured by Jason-Shannon
(JS) Distance).

Contributions: (1) We are the first to study the privacy risk of SSL through the lens
of membership inference attacks and we propose a data augmentation-based attack that
is tailored to SSL methods. (2) We conduct extensive experiments on SVHN, CIFAR10,
and CIFAR100 datasets. Our results show that our proposed attack outperforms
baseline attacks that are extended from existing works to SSL settings. (3) We show
that the effectiveness of membership inference attacks against SSL is not credited to the
model’s overfitting level but credited to the model prediction’s distinguishable entropy
distributions for members and non-members (measured by Jason-Shannon Distance).
(4) We study an early-stopping-based defense against our proposed attack. We show
that this defense can decrease the attack AUC of our attack but sacrifice the testing
accuracy of the trained models.

3.2 Conventional Membership Inference Attacks

In membership inference attacks, the adversary aims to determine whether a given data
sample x belongs to the target model T ’s training dataset or not given the adversary’s
background knowledge K. A data sample x is called member (or non-member) if it
belongs to (or does not belong to) the training dataset of the target model T . Formally,
we define the membership inference attack as A : x, T ,K → {0, 1}, where the attack A
is essentially a mapping function and 1 (or 0) means the data sample x is a member (or
non-member).
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3.2.1 Threat Model

Given a target model T , we first assume that the adversary only has black-box access to
it, which means that the adversary can only query the target model with a data sample
x and obtain the target model’s prediction on it (denoted as posteriors). Note that in
this work we consider the black-box attack since it is the most difficult and practical
real-world scenario.

Following previous work [97, 52, 103], we assume that the adversary has a shadow
dataset Dshadow that has the same distribution as the target model T ’s training dataset
Dtrain

target. The adversary can use the shadow dataset Dshadow to train a shadow model S,
which mimics the behavior of the target model T to better conduct the attacks. Also, we
assume that the shadow model S has the same architecture as the target model. Such
an assumption is realistic as: (1) The adversary can leverage the same machine learning
service to train the shadow model and (2) The adversary can perform hyperparameter
stealing attacks [81, 109] to obtain the target model’s architecture.

3.2.2 Methodology

Generally speaking, the membership inference attack pipeline usually consists of three
major components, i.e., shadow training, constructing the attack training dataset, and
attack model training or performing the attack.

Shadow Training: Shadow training [97, 78, 94] aims to train shadow models to
mimic the behavior of the target model based on the adversary’s background knowledge.
Specifically, the adversary first evenly splits the shadow dataset Dshadow into two disjoint
parts, i.e., shadow training data Dtrain

shadow and shadow testing data Dtest
shadow. The adversary

then uses the Dtrain
shadow to train a shadow model S that mimics the behavior of the target

model T .

Constructing Attack Training Dataset: To construct the training dataset for
the attack model, the adversary first uses Dtrain

shadow (contains members) and Dtest
shadow

(contains non-members) to query the shadow model S and obtain the corresponding
posteriors. Following Salem et al. [94], we leverage the descendingly sorted posteriors as
the inputting features for the attack model. Finally, we assign the membership status
1/0 for members/non-members as labels.

Training Neural Network-based Attack Model: For neural network-based at-
tacks [97, 94] (denoted as ANN ), the adversary aims to train a neural network-based
attack model to distinguish members and non-members given the posteriors generated by
the target model T . After constructing the attack training dataset, the adversary trains
an NN-based attack model on the constructed training dataset. Following previous
works [97, 94, 52, 71], we consider a multi-layer perceptron (MLP) as the neural network
architecture for the attack model. Once the attack model is trained, it can be used by
the adversary to predict whether a given data sample x is a member or non-member.

Metric-based Attacks: Metric-based attacks [118, 104, 66, 103] also require the
adversary to train a shadow model S. Unlike NN-based attacks that require training an
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attack model, metric-based attacks design a specific metric and calculate a threshold over
the metrics by querying the shadow model S with Dtrain

shadow and Dtest
shadow. We adopt four

state-of-the-art metric-based attacks following Song and Mittal. [103]: (1) Prediction
correctness (ACorr) which considers a sample as a member if the label is correctly
predicted by the target model; (2) Prediction confidence (AConf ) which judges a sample
as a member if the prediction probability at the ground truth class is larger than a
pre-defined threshold (learned from the shadow model); (3) prediction entropy (AEnt)
which considers a sample as a member if the entropy of the prediction is smaller than a
pre-defined threshold (learned from the shadow model); and (4) Modified prediction
entropy (AMent) which is similar to (3) but modifies the entropy function and combines
the ground truth label as a new metric.

3.3 Our Method

The main difference between SSL methods and supervised learning methods is that SSL
methods leverage a large amount of unlabeled samples together with a small amount of
labeled samples to train the model. Recall that state-of-the-art SSL methods [116, 98,
121] leverage both weak and strong data augmentations to the unlabeled samples during
the training. The key idea of these SSL methods is to train the model that maximizes
the model’s prediction agreement on weakly and strongly augmented views that come
from the same unlabeled sample. In other words, for an unlabeled training sample, the
trained model may tend to output more similar posteriors for its weakly and strongly
augmented views. While for labeled training samples, the trained model may output
similar posteriors for different weakly augmented views from the same sample since
those posteriors result in the same predicted label. This observation may also hold for
unlabeled samples since the posteriors of the same training unlabeled sample tend to
produce the same “pseudo label”. Intuitively speaking, the target model T may output
similar (or dissimilar) posteriors for different weakly and/or strongly augmented views
of member (or non-member).

Based on the above intuition, we propose a data augmentation-based membership
inference attack (denoted as ADA) tailored to state-of-the-art SSL methods. ADA

follows the similar pipeline as NN-based attack ANN , i.e., shadow training and training
an NN-based attack model.

However, our attack ADA extracts membership features (i.e., the input for the attack
model) in a different way from the attack ANN . Specifically, given a data sample x, we
first generate K weakly augmented and K strongly augmented views of it, respectively.
Then we use the augmented views to query the shadow model to obtain output posteriors.
After that, we calculate three similarity matrices among: (1) K posteriors of weakly
augmented views themselves, (2) K posteriors of strongly augmented views themselves,
and (3) K posteriors of weakly augmented views and K posteriors of strongly augmented
views, based on a predefined similarity metrics (e.g., JS Distance, Cosine Distance, etc.).
Then we obtain three similarity matrices where each of them contains K2 similarity
values. We expand each similarity matrix into a vector and sort the values in each vector
in descending order, respectively. Then we concatenate them together and finally obtain
a vector with 3K2 values. The obtained vectors are then assigned with the membership
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Figure 3.1: Overview of our data augmentation based attack ADA.

status as the labels. Once the attack model is trained, to determine whether a sample
belongs to the target model’s training dataset, we again generate K weakly and K
strongly augmented views of it to query the target model, generate the attack input to
query the attack model and obtain its membership prediction. Figure 3.1 shows the
overview of ADA and the detailed algorithm is shown in Algorithm algorithm 1 in the
supplemental material.

3.4 Evaluation

3.4.1 Experimental Setup

Dataset Configuration: We evaluate the performance of target models and member-
ship inference attacks on three commonly used SSL datasets, i.e., SVHN, CIFAR10, and
CIFAR100. For each dataset, we first randomly split it into four equal parts, i.e., Dtrain

target,
Dtest

target, Dtrain
shadow, and Dtest

shadow. We leverage Dtrain
target to train the target model and consider

the samples from Dtrain
target as the members of the target model. Samples in Dtest

target are
considered as the non-members of the target model. Dtrain

shadow is used to build up the
shadow model. Both Dtrain

shadow and Dtest
shadow are used to train the attack model. Note

that the Dtrain
target is smaller than the original training dataset (e.g., for CIFAR10, Dtrain

target
contains 15,000 samples while the original training dataset contains 50,000 samples),
which may lead to lower target model performance.

Metric: We follow previous work [98, 117, 121, 97, 52] and adopt testing accuracy
as the evaluation metric for target model performance. Regarding the attack, we
leverage AUC as the evaluation metric [112, 69] as we aim to quantify both the general
membership privacy risk for members vs. non-members and the separate privacy risks
for labeled/unlabeled members vs. non-members (unbalanced).

Target Model: For a fair comparison, we apply the same hyperparameters for FixMatch,
UDA, and FlexMatch. Specifically, we apply SGD optimizer. The initial learning rate is
set to 0.03 with a cosine learning rate decay which sets the learning rate to η cos( πk

2N ),
where η is the initial learning rate, k is the current training step, and N is the total
number of training steps. We set N = 100× 210. We leverage an exponential moving
average of model parameters with the momentum of 0.999. The labeled batch size
(i.e., the batch size of the labeled data) is set to 64 and the ratio of unlabeled batch
size to the labeled batch size is set to 7. Note that the threshold τ is set to 0.8
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for UDA and 0.95 for FixMatch and FlexMatch following the original papers. We
apply RandAugment [23] as the strong augmentation method in our experiments (see
Section 3.7.1 in the supplementary material). Regarding the model architectures, we
leverage Wide ResNet (WRN) [120] with a widen factor of 2 as the target model
architecture and we also investigate different widen factors in our ablation studies (see
Section 3.4.6).

Attack Model: We apply a 3-layer MLP with 64, 32, and 2 hidden neurons for each
layer as the attack model’s architecture. We train the attack model for 100 epochs
using Adam optimizer with the learning rate of 0.001 and the batch size of 256. For our
proposed attack, we set the number of augmented views used to query the target model
to 10 and leverage JS Distance as the similarity function. Note that we also evaluate
different numbers of augmented views and different similarity functions in our ablation
studies (see Section 3.4.5).

3.4.2 Target Model Performance

We first evaluate the performance of the supervised models and the SSL models on the
original classification tasks using Dtest

target. We use the full Dtrain
target to train the supervised

models, while we use a small portion of labeled samples and treat the remaining samples
as unlabeled ones in Dtrain

target when training the SSL models. We observe that SSL with
more labeled samples can achieve better performance on the original classification tasks.
For instance, on Figure 3.2b, when the target model is FixMatch trained on CIFAR10,
the classification accuracy is 0.866, 0.896, 0.903, and 0.904 with 500, 1,000, 2,000, and
4,000 labeled samples, respectively. This is expected as more labeled samples help
the target model to better learn the decision boundary at the early stage. Another
observation is that for a more complicated task, it may require more labeled samples
to achieve comparable performance as the supervised models. We consider SVHN,
CIFAR10, and CIFAR100 to have increasing difficulty levels. Take models trained by
UDA as a case study (green bar in Figure 3.2), on SVHN, with only 500 labeled samples,
the testing accuracy is 0.953, which is even better than the supervised model (0.951).
We suspect the reason is that 500 labeled samples are enough to learn a relatively
accurate decision boundary and the strong data augmentation used in SSL methods
can better help the model to generalize to the unseen data. On the other hand, on
CIFAR10 and CIFAR100, it may require 1,000 and 4,000 labeled samples to catch up
with the performance of the supervised model. Such observation indicates that a larger
portion of labeled data is still helpful for a more complicated task.

3.4.3 Membership Inference Attack Performance

We then evaluate the performance of different membership inference attacks on SSL
models. The results are summarized in Figure 3.3. Note that we leverage AUC as the
attack evaluation metric to better quantify the privacy leakage of all training data (first
row) as well as the separate privacy leakage of labeled (second row) and unlabeled (third
row) training data. We find that for the baseline attacks (i.e., except our ADA), ANN

and AEnt perform the best, while other attacks like ACorr, AConf , and AMent are less
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(a) SVHN (b) CIFAR10 (c) CIFAR100

Figure 3.2: Testing accuracy on the original classification tasks. Note that the red dash
line denotes the performance of supervised models.

(a) Attack AUC

(b) Attack AUC (Labeled)

(c) Attack AUC (Unlabeled)

Figure 3.3: The AUC of membership inference attacks against models trained by different
SSL methods with 500 labeled samples. The first to third columns denote the models
trained by FixMatch, FlexMatch, and UDA, respectively.

effective. For instance, on FlexMatch trained on CIFAR10 with 500 labeled samples
(the middle one of Figure 3.3a), the attack AUC is 0.726 for both ANN and AEnt, while
only 0.497, 0.643, and 0.642 for ACorr, AConf , and AMent. To better investigate the
reason behind this, we further measure the attack AUC for labeled data and unlabeled
data, respectively. We find that AConf and AMent achieve even better performance
on labeled training samples than ANN and AEnt. For instance, for FlexMatch trained
on CIFAR100, the AUC (labeled) for AConf and AMent are both 0.955, while only
0.944 and 0.941 for ANN and AEnt. This is expected as the labeled sample has a
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higher confidence score on its ground-truth label, which facilitates the attacks that
leverage such information. However, this is not the case for the unlabeled samples.
As we can observe that, for FlexMatch trained on CIFAR100, the AUC (unlabeled) is
only 0.370 and 0.341 for AConf and AMent, but 0.899 and 0.894 for ANN and AEnt.
This indicates that, for the unlabeled samples, the model may give similar correctness
predictions on both unlabeled training samples and testing samples, which makes it
harder to differentiate them. However, the model will give more confident predictions on
unlabeled training samples than on testing samples, which results in better performance
for ANN and AEnt.

On the other hand, we also observe that the data augmentation-based attack ADA

achieves consistently better overall performance on all datasets and SSL methods than
those baseline attacks. Moreover, ADA works better in determining the membership
of unlabeled training samples. For instance, on FixMatch trained on CIFAR10, the
unlabeled AUC is 0.780 for ADA while only 0.722 for the best baseline attack (ANN ).
This is because ADA unveils the pattern that the predictions of a sample’s weak and
strong augmented views should be closer if the sample is an unlabeled sample used
during the training.

3.4.4 What Determines Membership Inference Attack in SSL

The effectiveness of membership inference attacks has been largely credited to the
intrinsic overfitting phenomenon of the ML model [97, 94]. Here overfitting denotes the
model’s training accuracy minus its testing accuracy. Such assumption has been verified
on various ML models [97, 78, 94, 52]. However, it is unclear whether such assumption
still holds for SSL. If not, what is the reason for models trained by SSL to be vulnerable
to membership inference attacks?

From Figure 3.3, we find that AEnt achieves good performance in predicting the
membership status of a sample, which gives us the hint that the members’ and non-
members’ predictions may have different entropy distributions. Here we leverage the JS
Distance to quantify the difference between the entropy distribution of members’ and
non-members’ predictions (we denote this measure as JS Distance (Entropy)).

To better quantify the correlation between different factors (e.g., overfitting, JS
Distance (Entropy)) and the attack performance, we measure them under different
training steps of the target models. Note that here we consider the ADA as it performs
the best in membership inference. Figure 3.4 shows the results of models trained by
different SSL methods on the CIFAR100 with 500 labeled samples. The results for
models trained on different datasets and with different numbers of labeled samples are
shown in Section 3.7.3 in supplementary materials.

In Figure 3.4, we observe that during the whole training procedure, the models
trained by SSL have nearly 0 overfitting, which means that the models can always
generalize well to the unseen data. However, we find that the attack AUC keeps
increasing during the training. This indicates that the success of membership inference
attacks is not necessarily related to the high overfitting level, which is overlooked by
previous research. On the other hand, we observe that the JS Distance (Entropy) does
increase during the training, which means that although the model does not predict more
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(a) FixMatch (b) FlexMatch (c) UDA

Figure 3.4: The overfitting/JS Distance (Entropy) and attack AUC with respect to different
training steps. The target model is trained on CIFAR100 with 500 labeled samples. Note
that we consider the attack AUC of ADA, which is the strongest attack.

accurately to the member samples (mainly unlabeled samples) than the non-member
samples, the model indeed makes a more confident prediction on member samples (i.e.,
with lower entropy of prediction). Our observation reveals that the models trained by
SSL indeed “memorize” the training data. However, such memorization does not reflect
in the overfitting, i.e., the gap between training and testing accuracy. Instead, it reflects
in the more confident prediction of the members than the non-members.

3.4.5 Ablation Study (Attack Model)

Number of Views: We first investigate how the attack performance would be affected
by different numbers of views generated by the weak and strong augmentations to query
the target model. To this end, for the SSL methods trained on different datasets with
only 500 labeled samples, we range the number of views from 1 to 100 and the attack
performance is shown in Figure 3.5. Note that we also show the results with 1,000,
2,000, and 4,000 labeled samples in Section 3.7.4 in the supplementary material. A
clear trend is that more views lead to better attack performance. For instance, for
FixMatch trained on CIFAR10 with 500 labeled samples (Figure 3.5b), the attack AUC
is 0.780 with 10 augmented views, while 0.806 for 100 augmented views. However, we
find that the attack performance increases rapidly when the number of augmented views
increases from 1 to 10, but plateaus from 10 to 100. Moreover, more views lead to more
queries to the target model and higher computational cost. We consider 10 as a suitable
number of views since it achieves comparable performance to 100 while spending less
query budget.

Similarity Function: Note that in our attack ADA, we can apply different similarity
functions to measure the distance between the posteriors generated from different aug-
mented views. Here we evaluate 4 distance metrics, i.e., Cosine Distance, Correlation
Distance, Euclidean Distance, and JS Distance. The result for FixMatch, FlexMatch,
and UDA trained on three different datasets with 500 labeled samples are summarized
in Figure 3.6. Note that we also show the results with 1,000, 2,000, and 4,000 labeled
samples in Section 3.7.5 in the supplementary material. We find that JS Distance consis-
tently outperforms the other three distance metrics and achieves the best performance.
For instance, FixMatch trained on CIFAR10, the attack AUC is 0.679, 0.682, 0.749, and

25



CHAPTER 3. SEMI-SUPERVISED LEARNING

(a) SVHN (b) CIFAR10 (c) CIFAR100

Figure 3.5: The attack AUC of ADA with different numbers of augmented views to query
the target model. The target model is trained with 500 labeled samples.

(a) FixMatch (b) FlexMatch (c) UDA

Figure 3.6: The attack AUC of ADA with different similarity functions. The target model is
trained with 500 labeled samples.

0.780 for Cosine Distance, Correlation Distance, Euclidean Distance, and JS Distance.
We suspect the reason is that JS Distance is designed to calculate the difference between
two probabilities’ distributions, which may better fit our scenario as the prediction
posteriors are probability as well.

Moreover, we also find that the magnitude of data augmentation and the shadow
model architecture only have limited impact on the attack performance (see Section 3.7.6
in the supplementary material for more details).

3.4.6 Ablation Study (Target Model)

We also investigate whether the target model’s capacity and the unlabeled ratio (i.e.,
batchsize(unlabeled)

batchsize(labeled) during each training step) would affect the performance. Note that
here we select FixMatch trained on CIFAR100 with 500 labeled data as a case study,
since the target model’s capacity and the unlabeled ratio are general to different SSL
methods, and CIFAR100 with 500 labeled data is the most challenging setting to train
the target model (see Figure 3.2). We consider an adaptive adversary [58] who is aware
of the training details of the target model and can train the shadow model in the same
way.

Model Capacity: The target model architecture we leverage in our work is WRN28-2.
To better quantify the impact of model capacity on the target and attack performance,
we vary the width of WRN28 from 1 to 8 and the results are shown in Table 3.1. We
can observe that a larger model capacity, in general, leads to a better target model’s
performance on the original classification task, but also increases the membership risk
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Table 3.1: The target model performance and attack performance (ADA) when the
target model has different capacities. The target model is trained by FixMatch on
CIFAR100 with 500 labeled samples. (⋆) denotes the default setting.

Architecture Test ACC Attack AUC Attack AUC (Labeled) Attack AUC (Unlabeled)
WRN28-1 0.217 0.726 0.954 0.718
WRN28-2 (⋆) 0.276 0.874 0.896 0.873
WRN28-4 0.299 0.917 0.910 0.917
WRN28-8 0.305 0.927 0.918 0.927

Table 3.2: The target model performance and attack performance (ADA) when the
target model leverages different unlabeled ratios during each training step. The target
model is trained by FixMatch on CIFAR100 with 500 labeled samples. (⋆) denotes the
default setting.

Ratio Test Acc Attack AUC Attack AUC (Labeled) Attack AUC (Unlabeled)
1 0.210 0.578 0.965 0.565
2 0.263 0.646 0.942 0.636
4 0.273 0.785 0.946 0.779
7 (⋆) 0.276 0.874 0.896 0.873
8 0.269 0.886 0.924 0.884
16 0.247 0.909 0.913 0.909

(especially for unlabeled samples). For instance, when the model capacity increase from
WRN28-1 to WRN-28-8, the target testing accuracy increases from 0.217 to 0.305, while
the attack AUC increases from 0.726 to 0.927. One reason is that, with larger model
capacity, the model can “memorize” more different views of data samples, which not
only facilitate target tasks, but also raise the membership risk.

Ratio of Unlabeled Samples in Each Training Step: We then investigate whether
the unlabeled ratio (URatio) during each training step affects the attack performance.
Concretely, we vary the unlabeled ratio from 1 to 16 while training the target model and
Table 3.2 summarizes the results. We have two findings. First, the best target model
performance reaches with the default setting (7). Second, the membership inference
risk, in particular for the unlabeled data, keeps increasing when the ratio increases.
On the other hand, the membership inference risk for labeled data slightly decreases
(but still in a high level) while increasing the ratio. Therefore, a better choice may be
leveraging a relatively small unlabeled ratio to achieve good target performance while
reducing the membership risk for unlabeled samples.

3.5 Discussion on Defenses

We observe that the attack performance increases sharply at the late training steps (see
Figure 3.4), which indicates that early stopping may be a good strategy to mitigate
membership inference attacks. We take CIFAR100 with 4,000 labeled samples as a case
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study and show the target/attack model performance with respect to different training
steps in Figure 3.7 (in the supplementary material). We find that there is a trade-off
between model utility and membership inference performance, i.e., it may reduce both
the attack performance and the target model’s utility. We note that previous work [71,
103] also observe such a trade-off. Besides early stopping, we also evaluate three other
defenses, i.e., top-k posteriors [97], model stacking [94], and DP-SGD [4]. Our case study
(see Section 3.7.7 in the supplementary material) shows that early stopping achieves the
best trade-off between model utility and membership inference performance.

3.6 Conclusion

In this work, we perform the first training data privacy quantification against models
trained by SSL through the lens of membership inference attack. Empirical evaluation
shows that our proposed data augmentation-based attacks consistently outperform
the baseline attacks, in particular for unlabeled training data. Moreover, we have an
interesting finding that the reason leading to membership leakage in SSL is different
from the commonly believed overfitting nature of ML models trained in supervised
manners. The models trained by SSL are well generalized to the testing data (i.e.,
with almost 0 overfitting level). However, our attack can still successfully break the
membership privacy. The reason is that the models trained by SSL “memorize” the
training data by giving more confident predictions on them, regardless of the ground
truth labels. We also find that early stopping can serve as a countermeasure against
the attacks, but there is a trade-off between membership privacy and model utility.

3.7 Appendix

3.7.1 Data Augmentation

Models trained by FixMatch, FlexMatch, and UDA apply both weak and strong
augmentation to the unlabeled samples. For the weak augmentation, we apply random
cropping with a padding of 4 and random horizontal flipping to each sample following [63,
120]. For the strong augmentation, we apply random augmentation [23] to each training
sample, which consists of a group of augmentation operations. Specifically, we set N = 2
and M = 10 where N is the number of transformations to a given sample and M is the
magnitude of global distortion.

3.7.2 Attack Performance with Different Numbers of Labeled Samples

Figure 3.8, Figure 3.9, and Figure 3.10 show the attack performance with 1,000, 2,000,
and 4,000 labeled training data. We observe that our proposed data augmentation-based
attack ADA still consistently outperforms baseline attacks.
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3.7.3 What Determines Membership Inference Attack in SSL with Differ-
ent Numbers of Labeled Samples.

Figure 3.11, Figure 3.12, Figure 3.13, and Figure 3.14 shows the results of models
trained by different SSL methods on the three datasets with 500, 1,000, 2,000, and
4,000 labeled samples. We has the similar finding as Section 3.4.4, i.e., the models
trained by SSL has almost no overfitting, but the JS Distance (Entropy) and the attack
performance do increase during the training.

3.7.4 Ablation Study: Number of Views

For the SSL methods trained on different datasets with 1,000, 2,000, and 4,000 labeled
samples, we range the number of views from 1 to 100 and the attack performance is
shown in Figure 3.15, Figure 3.16, and Figure 3.17, respectively. We have the similar
observation as Section 3.4.5 that more number of views leads to better performance.

3.7.5 Ablation Study: Similarity Function

The results for FixMatch, FlexMatch, and UDA trained on different datasets with 1,000,
2,000, and 4,000 labeled samples are shown in Figure 3.18, Figure 3.19, and Figure 3.20,
respectively. We observe that the JS Distance still consistently outperforms the other
three distance metrics and achieves the best performance.

3.7.6 Ablation Study: Data Augmentation and Shadow Model Architec-
ture

Data Augmentation: In the previous evaluation of ADA, we assume the adversary
knows the data augmentation used to train the target model and can apply the same data
augmentation to conduct the attack. We then relax this assumption to see whether ADA

is still effective with different levels of data augmentations. We take FixMatch trained
on CIFAR10 with 500 labeled samples as a case study amd the results are shown in
Table 3.3. We find that ADA is still effective even with the weakest augmentation (Aug-
Level is 0) and the attack performance can be improved with stronger augmentations
added. For instance, the attack AUC is 0.876 and 0.882 when the Aug-Level is 0 and 4,
respectively. This implies that a successful attack can still be launched even without
the exact knowledge of the data augmentation used to train the target model.

Shadow Model Architecture: We then relax the assumption that the shadow model
has the same architecture as the target model. Given the target model (WRN28-2
trained by FixMatch on CIFAR100 with 500 labeled samples), we train shadow models
with WRN28-2, WRN28-1, WRN28-4, WRN28-8, and ResNet50 as the architectures,
and the corresponding attack AUCs are 0.880, 0.875, 0.839, 0.835, and 0.859, respectively.
Our attack achieves the highest attack AUC when the shadow and target models use the
same architecture. However, our attack is still effective even if the shadow model has
a different model architecture (e.g., the attack AUC is 0.859 when the shadow model
architecture is ResNet50).
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Table 3.3: The attack performance with respect to different augmentation levels. For
Aug-Level=0, we only apply random cropping with flipping as both weak and strong
augmentation. For 1-4, we gradually apply 1-4 transformation methods for the strong
augmentation to each image from the general augmentation pools. The target model
is trained by FixMatch on CIFAR100 with 500 labeled samples. (⋆) denotes our default
setting in the work.

Aug-Level 0 1 2 (⋆) 3 4
Attack AUC 0.876 0.880 0.880 0.881 0.882

(a) FixMatch (b) FlexMatch (c) UDA

Figure 3.7: The target model performance and attack AUC with respect to different
training steps. The target model is trained on CIFAR100 with 4,000 labeled samples,
which has the highest performance on its original classification task. The attack model
is ADA, which has the best attack performance.

3.7.7 Defense Evaluation

Besides early stopping (ES), we evaluate three more defenses, i.e., top-k posteriors
(top-k) [97], model stacking (MS) [94], and DP-SGD [4]. We evaluate both the target
model’s utility (test acc) and the effectiveness of defenses (attack auc). The results
are shown in Table 3.4. We observe that DP-SGD is the most effective defense since it
achieves the lowest attack AUC with 0.598. However, DP-SGD suffers from unacceptable
utility drop (with only 0.034 test acc). Existing work [56, 67] on DP also show that
DP-SGD sacrifices the model’s utility substantially in order to achieve good privacy
guarantee. Therefore, we consider early stopping as the best defense since it achieves
the best privacy-utility trade-off, i.e., it reduces the membership leakage to a large
extent (from 0.918 to 0.695) while maintaining the utility (from 0.530 to 0.490).
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Table 3.4: Target model accuracy and attack AUC for different defenses. The target
model is WRN28-2 trained by FixMatch on CIFAR100 with 4,000 labeled samples (same
setting as the paper). For early stopping (ES), we stop at 70 ×210 training steps. For
top-k, we set k=1 as it leaks the least information. For model stacking (MS), we train four
models, i.e., WRN28-{1,2,4,8}, using the same dataset and average their posteriors. For
DP-SGD, the noise scale is set to 10−5 and the gradient norm is set to 1. Note that we
use the Opacus library [1] to implement DP-SGD.

Defense None ES Top-k MS DP-SGD
Test ACC 0.530 0.490 0.530 0.549 0.034
Attack AUC 0.918 0.695 0.906 0.905 0.598

Algorithm 1: Our Data Augmentation Based Attack ADA

1 Input: Given sample x, target model T , NN-based attack model ADA, weak
data augmentations Augweak, strong data augmentations Augstrong, similarity
function Sim, number of augmented views K

2 Output: Member or non-member
/* Generate augmented views. */

3 {x1
weak, x2

weak, · · · , xK
weak} ← Augweak(x, K)

4 {x1
strong, x2

strong, · · · , xK
strong} ← Augstrong(x, K)

/* Query the target model and obtain posteriors. */
5 {p1

weak, p2
weak, · · · , pK

weak} ← {T (x1
weak), T (x2

weak), · · · , T xK
weak}

6 {p1
strong, p2

strong, · · · , pK
strong} ← {T (x1

strong), T (x2
strong), · · · , T xK

strong}
/* Obtain similarity vectors. */

7 Similarity vector vw(x)← SORTED({Sim(pi
weak, pj

weak)|i ∈ [1, K], j ∈ [1, K]})
8 Similarity vector vs(x)← SORTED({Sim(pi

strong, pj
strong)|i ∈ [1, K], j ∈ [1, K]})

9 Similarity vector
vws(x)← SORTED({Sim(pi

weak, pj
strong)|i ∈ [1, K], j ∈ [1, K]})

/* Concatenate similarity vectors and perform the attack.

*/
10 Merged vector v(x)← CONCATENATE(vw(x), vs(x), vws(x))
11 Return ADA(v(x))
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(a) Attack AUC

(b) Attack AUC (Labeled)

(c) Attack AUC (Unlabeled)

Figure 3.8: The AUC of membership inference attacks against models trained by different
SSL methods with 1,000 label samples. The first to third columns denotes the model
trained by FixMatch, FlexMatch, and UDA, respectively.
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(a) Attack AUC

(b) Attack AUC (Labeled)

(c) Attack AUC (Unlabeled)

Figure 3.9: The AUC of membership inference attacks against models trained by different
SSL methods with 2,000 label samples. The first to third columns denotes the model
trained by FixMatch, FlexMatch, and UDA, respectively.
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(a) Attack AUC

(b) Attack AUC (Labeled)

(c) Attack AUC (Unlabeled)

Figure 3.10: The AUC of membership inference attacks against models trained by
different SSL methods with 4,000 label samples. The first to third columns denotes the
model trained by FixMatch, FlexMatch, and UDA, respectively.
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(a) SVHN

(b) CIFAR10

(c) CIFAR100

Figure 3.11: The overfitting/JS Distance (Entropy) and attack AUC with respect to
different training steps. The first to third columns denotes the model trained by FixMatch,
FlexMatch, and UDA with 500 labeled samples, respectively. Note that we consider the
attack AUC of ADA, which is the strongest attack.
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(a) SVHN

(b) CIFAR10

(c) CIFAR100

Figure 3.12: The overfitting/JS Distance (Entropy) and attack AUC with respect to
different training steps. The first to third columns denotes the model trained by FixMatch,
FlexMatch, and UDA with 1,000 labeled samples, respectively. Note that we consider
the attack AUC of ADA, which is the strongest attack.
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(a) SVHN

(b) CIFAR10

(c) CIFAR100

Figure 3.13: The overfitting/JS Distance (Entropy) and attack AUC with respect to
different training steps. The first to third columns denotes the model trained by FixMatch,
FlexMatch, and UDA with 2,000 labeled samples, respectively. Note that we consider
the attack AUC of ADA, which is the strongest attack.
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(a) SVHN

(b) CIFAR10

(c) CIFAR100

Figure 3.14: The overfitting/JS Distance (Entropy) and attack AUC with respect to
different training steps. The first to third columns denote the model trained by FixMatch,
FlexMatch, and UDA with 4,000 labeled samples, respectively. Note that we consider
the attack AUC of ADA, which is the strongest attack.

(a) SVHN (b) CIFAR10 (c) CIFAR100

Figure 3.15: The attack AUC of ADA with different numbers of augmented views to
query the target model. The target model is trained with 1,000 labeled samples.
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(a) SVHN (b) CIFAR10 (c) CIFAR100

Figure 3.16: The attack AUC of ADA with different numbers of augmented views to
query the target model. The target model is trained with 2,000 labeled samples.

(a) SVHN (b) CIFAR10 (c) CIFAR100

Figure 3.17: The attack AUC of ADA with different numbers of augmented views to
query the target model. The target model is trained with 4,000 labeled samples.

(a) FixMatch (b) FlexMatch (c) UDA

Figure 3.18: The attack AUC of ADA with different similarity functions. The target model
is trained with 1,000 labeled samples.

(a) FixMatch (b) FlexMatch (c) UDA

Figure 3.19: The attack AUC of ADA with different similarity functions. The target model
is trained with 2,000 labeled samples.
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(a) FixMatch (b) FlexMatch (c) UDA

Figure 3.20: The attack AUC of ADA with different similarity functions. The target model
is trained with 4,000 labeled samples.
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4.1. INTRODUCTION

4.1 Introduction

Machine learning (ML) has progressed tremendously, and data is the key factor to drive
such development. However, high-quality data, in particular labeled data, is often hard
and expensive to collect as this relies on large-scale human annotation. Meanwhile,
unlabeled data is being generated at every moment. To leverage unlabeled data for
machine learning tasks, self-supervised learning has been introduced [72]. The goal
of self-supervised learning is to derive labels from an unlabeled dataset and train an
unsupervised task in a supervised manner. A trained self-supervised model serves as an
encoder transforming data samples into their representations which are then used to
perform supervised downstream ML tasks. One of the most prominent self-supervised
learning paradigms is contrastive learning [43, 82, 53, 17, 119, 48, 60], with SimCLR [17]
as its most representative framework [72].

Different from supervised learning which directly optimizes an ML model on a
labeled training dataset, referred to as a supervised model, contrastive learning aims to
train a contrastive model, which is able to generate expressive representations for data
samples, and relies on such representations to perform downstream supervised ML tasks.
The optimization objective for contrastive learning is to map different views derived
from one training sample (e.g., through data augmentation) closer in the representation
space while different views derived from different training samples more distant. By
doing this, a contrastive model is capable of representing each sample in an informative
way.

Recently, machine learning models have been demonstrated to be vulnerable to
various privacy attacks against their training dataset [97, 101, 76, 94, 47, 102, 15, 13,
50]. The two most representative attacks in this domain are membership inference
attack [97, 94] and attribute/property inference attack [76, 102]. The former aims to
infer whether a data sample is part of a target ML model’s training dataset. The latter
leverages the overlearning property of a machine learning model to infer the sensitive
attribute of a data sample. So far, most of the research on the privacy of machine
learning concentrates on supervised models. Meanwhile, informative representations for
data samples learned by contrastive models may cause severe privacy risks as well. To
the best of our knowledge, this has been left largely unexplored.

Our Contributions: In this work, we perform the first privacy quantification of
contrastive learning, the most representative self-supervised learning paradigm. More
specifically, we study the privacy risks of data samples in the contrastive learning setting,
with a focus on SimCLR, through the lens of membership inference and attribute
inference, and we concentrate on contrastive models trained on image datasets.

We adapt the existing attack methodologies for membership inference (neural
network-based, metric-based, and label-only) and attribute inference against supervised
models to contrastive models. Our empirical results show that contrastive models are
less vulnerable to membership inference attacks than supervised models. For instance,
considering the neural network-based attacks, we achieve 0.620 membership inference
accuracy on a contrastive model trained on STL10 [21] with ResNet-50 [49], while
the result is 0.810 on the corresponding supervised model. The reason behind this is
contrastive models are less prone to overfitting.
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On the other hand, we observe that contrastive models are more vulnerable to
attribute inference attacks than supervised models. For instance, on the UTKFace [127]
dataset with ResNet-18, we can achieve 0.701 attribute inference attack accuracy on
the contrastive model while only 0.422 on the supervised model. This is due to the fact
that the representations generated by a contrastive model contain rich and expressive
information about their original data samples, which can be exploited for effective
attribute inference.

To mitigate the attribute inference risks stemming from contrastive models, we
propose the first privacy-preserving contrastive learning mechanism, namely Talos,
relying on adversarial training. Concretely, Talos introduces an adversarial classifier into
the original contrastive learning framework to censor the sensitive attributes learned
by a contrastive model. Our evaluation reveals that Talos can successfully mitigate
attribute inference risks for contrastive models while maintaining their membership
privacy and model utility. Our code and models will be made publicly available.

In summary, we make the following contributions:

• We take the first step towards quantifying the privacy risks of contrastive learning.

• Our empirical evaluation shows that contrastive models trained on image datasets
are less vulnerable to membership inference attacks but more prone to attribute
inference attacks compared to supervised models.

• We propose the first privacy-preserving contrastive learning mechanism, which is
able to protect the trained contrastive models from attribute inference attacks
without jeopardizing their membership privacy and model utility.

4.2 Membership Inference Attack

We first quantify the privacy risks of contrastive models through the lens of membership
inference. Note that our goal here is not to propose a novel membership inference attack,
instead, we aim to quantify the membership privacy of contrastive models. Therefore,
we follow existing attacks and their threat models [97, 94, 103, 69, 20].

4.2.1 Attack Definition and Threat Model

Membership inference attack is one of the most popular privacy attacks against ML
models [97, 94, 58, 47, 15, 66, 69, 103, 20, 16]. The goal of membership inference
is to determine whether a data sample x is part of the training dataset of a target
model T . We formally define a membership inference attack model AMemInf : x, T 7→
{member, non-member}. Here, the target model is the contrastive model introduced in
Section 2.3. A successful membership inference attack can cause severe privacy risks.
For instance, if a model is trained on data samples collected from people with certain
sensitive information, then successfully inferring a sample from a person being a member
of the model can directly reveal the person’s sensitive information.

Following previous work [97, 94, 103, 69, 20], we assume that an adversary only has
black-box access to the target model T , i.e., they can only query T with their data
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samples and obtain the outputs. In addition, the adversary also has a shadow dataset
Dshadow, which comes from the same distribution as the target model’s training dataset.
The shadow dataset Dshadow is used to train a shadow model S, the goal of which is to
obtain the necessary information to perform the attack. We further assume that the
shadow model shares the same architecture as the target model [97]. This is realistic as
the adversary can use the same machine learning service as the target model owner to
train their shadow model. Alternatively, the adversary can also learn the target model’s
architecture first by applying model extraction attacks [107, 109, 81, 83].

4.2.2 Methodology

We adapt the previous membership inference attacks, which are designed for supervised
models, to contrastive models [97, 94, 20, 103]. Concretely, we consider three types of
membership inference attacks, i.e., NN-based attacks [97, 94], metric-based attacks [103],
and label-only attacks [20].

NN-based Attacks (Neural Network-based Attacks): In NN-based attacks, the
adversary aims to train an attack model to differentiate members and non-members
using the posteriors generated from the target model and their predicted labels. Given
a shadow dataset Dshadow, the adversary first splits it into two disjoint sets, namely
shadow training dataset Dtrain

shadow and shadow testing dataset Dtest
shadow. Dtrain

shadow is used
to train the shadow model S, which mimics the behavior of the target model. This
means the shadow model is trained to perform the same task as the target model. Then,
the adversary uses Dshadow (including both Dtrain

shadow and Dtest
shadow) to query the shadow

model S and obtains the corresponding posteriors and prediction labels. For each data
sample in Dshadow, the adversary ranks its posteriors in descending order and takes
the largest two posteriors (classification tasks considered in this work have at least
two classes) as part of the input to the attack model. The other part is an indicator
representing whether the prediction is correct or not. Thus, the dimension of the input
to AMemInf is 3. If a sample belongs to Dtrain

shadow, the adversary labels its corresponding
input to the attack model as a member, otherwise as a non-member. Then, this obtained
dataset is used to train the attack model, which is a binary machine learning classifier.
To determine whether a target data sample x is used to train the target model, the
adversary first queries the target model T with x and obtains the input to the attack
model for this sample. Then, the adversary queries this input to the attack model and
gets its membership prediction.

Metric-based Attacks: Song and Mittal [103] propose several metric-based attacks.
Similar to NN-based attacks, metric-based attacks need to train shadow models. However,
instead of training an attack model, metric-based attacks leverage a certain metric
and a predefined threshold on that metric (calculated over the shadow model) to
determine a sample’s membership status. Song and Mittal [103] propose four metrics,
i.e., prediction correctness (metric-corr), prediction confidence (metric-conf), prediction
entropy (metric-ent), and modified prediction entropy (metric-ment).

Label-only Attacks: Label-only attacks [20] consider a more restrict scenario where
the target model only exposes the predicted label instead of posteriors. Similar to
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Figure 4.1: The performance of original classification tasks for both supervised models
and contrastive models with MobileNetV2, ResNet-18, and ResNet-50 on 8 different
datasets. The x-axis represents different datasets. The y-axis represents original classifi-
cation tasks’ accuracy.

previous attacks, this attack requires the adversary to train a shadow model. Label-only
attacks focus more on the input samples instead of the model’s outputs, relying on the
adversarial example techniques. The key intuition is that the magnitude of perturbation
to change the predicted label of member samples is larger than that of non-member
samples. The adversary can exploit the magnitude of the perturbation to distinguish
members and non-members.

4.2.3 Experimental Settings

Datasets: We utilize 8 different image datasets to conduct our experiments for mem-
bership inference.

• CIFAR10 [2]. This dataset contains 60,000 images in 10 classes. Each class
represents one object and has 6,000 images. The size of each image is 32× 32.

• CIFAR100 [2]. This dataset is similar to CIFAR10, except it has 100 classes,
with each class containing 600 images. The size of each image is also 32× 32.

• STL10 [21]. This dataset is composed of 10 classes of images. Each class has
1,300 samples. The size of each image is 96 × 96. Besides the labeled image,
STL10 also contains 100,000 unlabeled images, which we use for pretraining the
encoder for the contrastive model (detailed later). These images are extracted
from a broader distribution compared to those with labeled classes.

• CelebA [74]. This dataset is composed of more than 200,000 celebrities’ facial
images. Note that in CelebA, we randomly select 60,000 images for our experiments.
We set its target model’s classification task as gender classification.

• UTKFace [127]. This dataset consists of over 23,000 facial images labeled with
gender, age, and race. We set its target model’s classification task as gender
classification as well.
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Figure 4.2: The performance of different membership inference attacks against both
supervised models and contrastive models with MobileNetV2 on 8 different datasets.
The x-axis represents different datasets. The y-axis represents membership inference
attacks’ accuracy.

• Places365 [129]. This dataset is composed of more than 1.8 million images with
365 scene categories. We randomly select 100 scene categories and randomly select
400 images per category to form the Places100 dataset. Besides, we randomly
select 50 (20) scene categories and randomly select 800 (2,000) images per category
to form the Places50 (Places20) dataset. Each dataset contains 40,000 images in
total. We follow Song and Shmatikov [102] and set its target model’s classification
task as predicting whether the scene is indoor or outdoor.

All the datasets are used to evaluate membership inference attacks, while UTKFace,
Places100, Places50, and Places20 are also used to evaluate attribute inference attacks
since they have extra labels that can be used as sensitive attributes (see Section 4.3.3).
For all the datasets, we rescale their images to the size of 96×96. Note that we concentrate
on image datasets as it is the most prominent domain for applying contrastive learning
at the moment [48, 43, 82, 17, 119, 60]. We leave our investigation in other data domains
as future work.

Datasets Configuration: For each dataset, we first split it into four equal parts, i.e.,
Dtrain

target, Dtest
target, Dtrain

shadow, and Dtest
shadow. Dtrain

target is used to train the target model T , the
samples of which are thus considered as members of the target model. We treat Dtest

target
as non-members of the target model T . Dtrain

shadow is used to train the shadow model S,
and Dtrain

shadow and Dtest
shadow are used to create the attack model AMemInf.

Metric: Since the attack model’s training and testing datasets are both balanced
with respect to membership distribution, we adopt accuracy as our evaluation metric
following previous work [97, 94].

Attack Model: For NN-based attacks, the attack model is a 3-layer MLP, and the
number of neurons for each hidden layer is set to 32. We use cross-entropy as the loss
function and Adam as the optimizer with a learning rate of 0.05. The attack model is
trained for 100 epochs. For metric-based attacks, we follow the implementation of Song
et al. [103]. For label-only attacks, we leverage the implementation of ART [3].
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Target Model (Contrastive Model): We adopt three popular neural network
architectures as the contrastive model’s base encoder f in our experiments, including
MobileNetV2 [95], ResNet-18 [49], and ResNet-50 [49]. Specifically, we discard the last
classification layer of MobileNetV2, ResNet-18, and ResNet-50 and use the remaining
parts as f . Then, a 2-layer MLP is added after f as the projection head g. For ResNet-
18, the dimensions for the output of f , the first-layer of g, and the second-layer of g are
set to 512, 512, and 256, respectively. For ResNet-50, the corresponding dimensions are
2,048, 256, and 256. For MobileNetV2, the corresponding dimensions are 1,280, 256,
and 256.

After training the base encoder with the contrastive loss, we ignore the projection
head g and add a new linear layer to the base encoder f as its classification layer. For
all datasets, we first use the unlabeled dataset of STL10 to pretrain the base encoder f
for 100 epochs. Then, we fine-tune the base encoder f with the corresponding training
dataset (without label) for 100 epochs. In the end, we freeze the parameters of f and
use the corresponding training dataset to only fine-tune the classification layer for 100
epochs to establish the contrastive model. In all cases, Adam is utilized as the optimizer.

Baseline (Supervised Model): To fully understand the privacy leakage of contrastive
models, we further use supervised models as the baseline. We train three models
including MobileNetV2, ResNet-18, and ResNet-50 from scratch for all the datasets.
The models are trained for 100 epochs. Cross-entropy is adopted as the loss function,
and we again use Adam as the optimizer. Our code is currently implemented in Python
3.6 and PyTorch 1.6.0, and run on an NVIDIA DGX-A100 server with Ubuntu 18.04.

4.2.4 Results

We first show the performance of supervised models and contrastive models on their
original classification tasks in Figure 4.1. We observe that contrastive models perform
better than supervised models on most of the datasets. For instance, on STL10 with
ResNet-18 as the base encoder, the contrastive model achieves 0.726 accuracy while the
supervised model achieves 0.538 accuracy.

Regarding membership inference against supervised models and contrastive models,
the results for MobileNetV2 are shown in Figure 4.2. We also summarize the results for
ResNet-18 (Figure 4.15) and ResNet-50 (Figure 4.16) in Appendix. In Figure 4.2, we see
that all the supervised models have higher attack accuracy than the contrastive models.
E.g., when the supervised model is MobileNetV2 trained on CIFAR100, the accuracy of
NN-based attack is 0.931, while the accuracy for the corresponding contrastive model is
only 0.625.

We observe that NN-based, metric-conf, and metric-ment attacks achieve the best
performance in all cases. The reason metric-conf and metric-ment achieving better
performance than metric-corr and metric-ent is that metric-conf and metric-ment
consider both prediction correctness and confidence while metric-corr (metric-ent) only
considers prediction correctness (confidence). Interestingly, for supervised models,
metric-corr and metric-ent perform similarly, while for contrastive models, metric-ent
is worse than metric-corr. This reason is that the posteriors generated by contrastive
models are more smooth compared to supervised model, which makes it harder to
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Figure 4.3: The distribution of loss with respect to original classification tasks for member
and non-member samples for both the supervised model and the contrastive model
with ResNet-18 on CIFAR10. The x-axis represents each sample’s classification loss. The
y-axis represents the number of member and non-member samples.

Figure 4.4: Randomly selected images from STL10 and their augmented views used
during the process of contrastive learning. The first and fourth columns show the original
images (bounded by orange boxes), and the rest columns show their augmented
views.

distinguish members and non-members through the posterior entropy. Label-only
attacks perform worse than NN-based attacks. This is expected since the adversary has
less information in these cases. Note that label-only attacks do not perform well on
binary classifiers, we will investigate the reason in the future.1

To further investigate why contrastive models are less vulnerable to membership
inference, we analyze the loss distribution between members and non-members in both
supervised models and contrastive models. Due to space limitations, we only show the
results of ResNet-18 trained on the CIFAR10 dataset in Figure 4.3. A clear trend is

1Choquette-Choo et al. [20] also only perform label-only membership inference attacks against
datasets with more than two classes.
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Figure 4.5: The performance of membership inference attacks against both supervised
models and contrastive models with MobileNetV2, ResNet-18, and ResNet-50 on 5 differ-
ent datasets under different overfitting levels. The x-axis represents different overfitting
levels. The y-axis represents membership inference attacks’ accuracy.
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Figure 4.6: The performance of NN-based, metric-ent, and metric-ment attacks against
both supervised models and contrastive models with MobileNetV2, ResNet-18, and
ResNet-50 on CIFAR100 under different numbers of posteriors given by the target mod-
els. (S) and (C) denotes the supervised and contrastive models, respectively. The
x-axis represents different numbers of posteriors. The y-axis represents membership infer-
ence attacks’ accuracy. Note that we do not report the performance of metric-corr,
metric-conf, and label-only attacks since the number of posteriors does not affect their
performance.

that compared to the contrastive model, the supervised model has a larger divergence
between the classification loss (cross-entropy) for members and non-members. Recall
that contrastive learning uses two augmented views of each sample in each epoch to
train its base encoder and the original sample to train its classification layer. This
indicates that each sample is generalized to multiple views during the contrastive model
training process. In this way, the contrastive model reduces its memorization of the
original sample itself.

Interestingly, Song et al. [104] observe that defense mechanisms for mitigating
adversarial examples [9, 88, 106, 14] increase the membership inference performance.
This means such defense and contrastive learning have different effects on membership
privacy. On the one hand, these defense mechanisms for adversarial examples use
original samples and their visually imperceptible adversarial examples to train a model;
in this way, the model learns to remember each original sample more accurately. On the
other hand, the augmented samples in contrastive learning are very different from their
original samples (see Figure 4.4 for some examples). Therefore, membership inference is
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Figure 4.7: The performance of NN-based and label-only membership inference attacks
against contrastive models with ResNet-50 on 8 different datasets under different num-
bers of epochs for classification layer training. The x-axis represents different numbers
of epochs. The y-axis represents membership inference attacks’ accuracy. Each line
corresponds to a specific dataset.

less effective against contrastive models.
We notice that the attack performance varies on different models and different

datasets. We relate this to the different overfitting levels. Similar to previous work [97,
94], we measure the overfitting level of a target model by calculating the difference
between its training accuracy and testing accuracy. In Figure 4.5, we see that the
overfitting level is highly correlated with the attack performance: if a model is more
overfitted, it is more vulnerable to membership inference attacks. For instance, in
Figure 4.5a, on CIFAR100, the contrastive model (upper right orange cross) has an
overfitting level of 0.249, and the NN-based attack accuracy is 0.625, while the supervised
model (upper right blue dot) has a larger overfitting level (0.678) and higher attack
accuracy (0.931). Another observation is that compared to the supervised models, the
overfitting levels of the contrastive models reside in a smaller range.

NN-based method as well as some of the metric-based ones (metric-ent and metric-
ment) require the target model to provide posteriors to launch the attacks. We further
investigate whether the number of posteriors provided by the target model can influence
the attack performance. Concretely, we vary the number of posteriors from 2 to 100
on CIFAR100 for both supervised and contrastive models. Figure 4.6 shows that the
number of posteriors does not have a strong influence on the attack performance. We
further measure the influence of the number of epochs used for training each contrastive
model’s classification layer on the attack performance. Figure 4.7 shows that the attack
accuracy is rather stable (the performance of metric-based attacks are summarized
in Figure 4.17 in Appendix). These results show that contrastive models consistently
reduce the membership threat.

In conclusion, contrastive models are less vulnerable to membership inference attacks
compared to supervised models. The reason is that contrastive models are less overfitted
to their training samples than supervised models due to the design of the contrastive
learning paradigm.
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Figure 4.8: The performance of attribute inference attacks against both supervised
models and contrastive models with MobileNetV2, ResNet-18, and ResNet-50 on 4
different datasets. The x-axis represents different models. The y-axis represents attribute
inference attacks’ accuracy.

4.3 Attribute Inference Attack

In this section, we take a different angle to measure the privacy risks of contrastive
learning using attribute inference attack [76, 102]. Similar to membership inference
attacks, we use existing attribute inference attacks [76, 102] to measure the contrastive
model’s privacy risks instead of inventing new methods.

4.3.1 Attack Definition and Threat Model

In attribute inference, the adversary’s goal is to infer a specific sensitive attribute of a
data sample from its representation generated by a target model. This sensitive attribute
is not related to the target ML model’s original classification task. For instance, a target
model is designed to classify an individual’s age from their social network posts, while
attribute inference aims to infer their educational background.

Attribute inference attacks have been successfully performed on supervised mod-
els [76, 102]. The reason behind this is the intrinsic overlearning property of ML models.
Overlearning means that an ML model trained for a certain task may also learn to
represent other characteristics of data samples. Such representation capability, in some
cases, can be exploited by an adversary to infer data samples’ sensitive attributes.

Once a contrastive model is trained, it can generate a representation for each sample
with its base encoder f . For a supervised model, we consider the whole model without
the classification layer as its base encoder to generate a representation for each sample.
Note that the base encoder of contrastive model and supervised model has the same
architecture.

For attribute inference, given a data sample’s representation from a target model,
denoted by h, to conduct the attribute inference attack, the adversary trains an attack
model AAttInf : h 7→ s, where s represents the sensitive attribute.

We follow the same threat model as previous work [76, 102]: the adversary only has
access to the target sample’s embedding (representation), but not the target sample
itself. The adversary is also assumed to have a set of samples’ embeddings and their
sensitive attributes; this dataset is termed as an auxiliary dataset Daux. As shown by
previous work, attribute inference can be applied in both federated learning [76] and
model partitioning [102] settings.
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Figure 4.9: The representations for 200 randomly selected samples generated by both
the supervised model and the contrastive model with ResNet-18 on UTKFace projected
into a 2-dimension space using t-SNE. (S) and (C) denotes the supervised and con-
trastive models, respectively. Each point represents a sample.

4.3.2 Methodology

We generalize the methodology of attribute inference attacks against supervised mod-
els [76, 102] to contrastive models. The attack process can be partitioned into two
stages, i.e., attack model training and attribute inference.

Attack Model Training: For each (h, s) ∈ Daux, the adversary takes the representation
h as the input and the corresponding sensitive attribute s as the label to train the
attack model.

Attribute Inference: To determine the sensitive attribute of a data sample’s rep-
resentation h, the adversary queries the attack model AAttInf with h and obtains the
result.

4.3.3 Experimental Setting

Datasets: We utilize UTKFace, Places100, Places50, and Places20 to evaluate attribute
inference attacks as they contain extra attributes that can be considered as sensitive
attributes for our experiments (see Section 4.2.3). In UTKFace, the target model’s
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Figure 4.10: The performance of attribute inference attacks against contrastive models
on 4 different datasets under different percentages of the attack training dataset.
The x-axis represents different percentages of the attack training dataset. The y-axis
represents attribute inference attacks’ accuracy.

classification task is gender classification, and the sensitive attribute is race (Black, White,
Asian, Indian, and Other). In Places100, Places50, and Places20, the target classification
task is whether the scene is indoor or outdoor, and the sensitive attribmaxcute is scene
categories. Similar to Song and Shmatikov [102], we take Dtrain

target to generate the auxiliary
dataset and train the attack model, and take Dtest

target to test the attack performance.

Metric: We adopt accuracy as the metric to evaluate attribute inference attacks
following previous work [76, 102].

Models: All the target models’ architectures are the same as those for membership
inference attacks. For the attack model, we leverage a 3-layer MLP with the number
of neurons in the hidden layer set to 128. We use cross-entropy as the loss function
and SGD as the optimizer with a learning rate of 0.01. The attack model is trained for
100 epochs. The dimension of each sample’s representation from the base encoder, i.e.,
the attack model’s input, is 1,280 for MobileNetV2, 512 for ResNet-18, and 2,048 for
ResNet-50.
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Figure 4.11: The performance of attribute inference attacks against contrastive models
on 4 different datasets under attack models with different layers. The x-axis represents
attack models’ layers. The y-axis represents attribute inference attacks’ accuracy.

Table 4.1: The baseline accuracy (random guessing based on majority class labels) of
attribute inference attack on different datasets.

Dataset #. Class Baseline Accuracy
UTKFace 5 0.421
Places100 100 0.012
Places50 50 0.023
Places20 20 0.053

4.3.4 Results

The performance of attribute inference attacks is depicted in Figure 4.8. First, we
observe that, in general, attribute inference achieves effective performance except for
the supervised model trained on UTKFace dataset (close to the prior sensitive attribute
distribution in the attack training dataset as shown in Table 4.1). Second, compared to
the supervised models, the contrastive models are more vulnerable to attribute inference
attacks. For instance, on the UTKFace dataset with ResNet-18, we can achieve an
attack accuracy of 0.701 on the contrastive model while only 0.422 on the supervised
model. To better understand this, we extract samples’ representations (512-dimension)
from ResNet-18 on UTKFace for both the supervised model and the contrastive model
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and project them into a 2-dimension space using t-Distributed Neighbor Embedding
(t-SNE) [75]: Figure 4.9a shows the results for the supervised model on the original
classification task, i.e., gender classification; Figure 4.9b shows the results for the
supervised model on attribute inference, i.e., race. We see that in Figure 4.9a, male
samples (blue) and female samples (orange) reside in completely different regions, which
can be separated perfectly (the gender classification accuracy is 0.875 in Figure 4.1).
However, for the sensitive attribute (Figure 4.9b), samples of different classes are
clustered tightly, which increases the difficulty for attribute inference. Figure 4.9c and
Figure 4.9d show the corresponding results for the contrastive model. We observe that
different samples’ representations on the contrastive model are less separable with respect
to the original classification task compared to the supervised model (see Figure 4.9c
and Figure 4.9a), but we can still successfully separate most of them correctly (the
gender classification accuracy is 0.858 in Figure 4.1) since most of the male samples
(blue) lie in the upper area while the female samples (orange) are in the lower area.
On the other hand, for the sensitive attribute, compared to the supervised model
(Figure 4.9b), representations generated by the contrastive model (Figure 4.9d) are
more distinguishable. Our finding reveals that the representations generated by the
contrastive model are more informative, which can be exploited not only for the original
classification tasks but also for attribute inference.

To study the effect of training dataset size on the attack model AAttInf, we randomly
select from 10% to 90% of the training dataset to train the attack model and evaluate
the performance using all the testing dataset; the results for contrastive models are
summarized in Figure 4.10. By jointly considering Figure 4.8 and Figure 4.10, we can
observe that, in most of the cases, even using 10% of the training dataset, the contrastive
models are still more vulnerable to attribute inference attack than the supervised models
when the attack model is trained with its full training dataset. On the other hand, the
attack performance on supervised models is not significantly influenced by the training
dataset size (see Figure 4.18). This further shows the privacy risks of contrastive
learning.

Recall our attack model is a 3-layer MLP. We further investigate whether more
complex attack models would improve the attack performance. To this end, we in-
crease the attack model’s layer from 3 to 6 and summarize the corresponding attack
performance for contrastive and supervised models in Figure 4.11 and Figure 4.19 (in
Appendix), respectively. The results show that 3-layer attack models can achieve the
best performance in most of the cases. With more layers, the attack performance
may degrade or keep stable, which indicates that even simple models are enough to
launch effective attacks. This further shows that informative representations learned by
contrastive models can be easily exploited by the adversary to infer samples’ attributes.

We also observe that attribute inference attacks over contrastive models are more
effective against smaller embedding size (see Figure 4.8 and Figure 4.10). For instance,
ResNet-18 (512) leak more information than MobileNetV2 (1,280) and ResNet-50 (2,048).
We conjecture that a larger embedding size represents each sample in a more complex
space in the contrastive setting, which is harder for the attack model to decode. However,
the effect of embedding size on attribute inference attacks against the supervised models
is less pronounced (see Figure 4.8 and Figure 4.18 in the Appendix). This further
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shows the difference between supervised models and contrastive models with respect to
representing samples.

In conclusion, contrastive models are more vulnerable to attribute inference attacks
compared to supervised models.

4.4 Defense

So far, we have demonstrated that compared to supervised models, contrastive models
are more vulnerable to attribute inference attacks (Section 4.3) but less vulnerable to
membership inference attacks (Section 4.2). In this section, we propose the first privacy-
preserving contrastive learning mechanism, namely Talos, which aims to reduce the
risks of attribute inference for contrastive models while maintaining their membership
privacy and model utility.

4.4.1 Methodology

Intuition: As shown in Section 4.3, the reason for a contrastive model to be vulnerable
to attribute inference attacks is that the model’s base encoder f learns informative
representations for data samples, which can be exploited by an adversary. To mitigate
such a threat, we aim for a new training paradigm for contrastive learning which can
eliminate data samples’ sensitive attributes from their representations. Meanwhile, the
base encoder of the contrastive model still needs to represent data samples expressively
for preserving model utility. These two objectives are in conflict, and our defense
mechanism should consider both simultaneously.

Methodology: Our defense mechanism, namely Talos, can be modeled as a mini-max
game, and we rely on adversarial training [40, 29, 116, 30, 22] to realize it. Similar to
the original contrastive model, Talos also leverages a base encoder and a projection
head to learn informative representations for data samples. Besides, Talos introduces an
adversarial classifier C, which is used to censor sensitive attributes from data samples’
representations.

The adversarial classifier of Talos is essentially designed for attribute inference.
Similar to the original contrastive learning process, Talos is trained with mini-batches.
Given a mini-batch of 2N augmented data samples (generated from N original samples),
we define the loss of the adversarial classifier C as follows.

LC = 1
2N

N∑
k=1

[LCE(sk, C(f(x̃2k−1))) + LCE(sk, C(f(x̃2k)))] (4.1)

where x̃2k−1 and x̃2k are the two augmented samples of an original sample xk, sk

represents xk’s sensitive attribute, f is the base encoder, and LCE is the cross-entropy
loss (Equation 2.3). We consider x̃2k−1 and x̃2k sharing the same sensitive attribute as
xk. Note that we take the output of the base encoder instead of the projection head as
the input to the adversarial classifier. Since the projection head is discarded after the
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Algorithm 2: The training process of Talos.
1 Input: Target training dataset Dtrain

target with sensitive attribute s, base encoder f ,
projection head g, adversarial classifier C, and adversarial factor λ.

2 Initialize f , g, and C’s parameters.
3 for each epoch do
4 for each mini-batch do
5 Sample a mini-batch with N training data samples and its corresponding

sensitive attributes {(x1, s1), (x2, s2), ..., (xN , sN )} from Dtrain
target

6 Generate augmented data samples: {(x̃1, s1), (x̃2, s1), ..., (x̃2N , sN )},
where x̃2k−1 and x̃2k are the two augmented views of xk

7 Feed augmented data samples into the base encoder f and the projection
head g to calculate the contrastive loss:
LContrastive = 1

2N

∑N
k=1[ℓ(2k − 1, 2k) + ℓ(2k, 2k − 1)]

8 Feed the representations generated by the base encoder f into the
adversarial classifier C to calculate the adversarial classifier loss:
LC = 1

2N

∑N
k=1[LCE(sk, C(f(x̃2k−1))) + LCE(sk, C(f(x̃2k)))]

9 if epoch mod 2 ̸= 0 then
10 Optimize adversarial classifier C’s parameters with the adversarial

classifier loss: LC

11 else
12 Optimize projection head g’s parameters with the contrastive loss:

LContrastive
13 Optimize base encoder f ’s parameters with adversarial training loss:

LTalos = LContrastive − λLC

14 end
15 end
16 end
17 Return: Base encoder f

first phase of training the contrastive model, directly optimizing the base encoder with
the adversarial classifier loss would maintain the effect of adversarial training.

Talos also adopts the original contrastive loss LContrastive (Equation 2.6). By jointly
considering the adversarial classifier loss and the contrastive loss, Talos’s loss function
is defined as follows:

LTalos = LContrastive − λLC (4.2)

where λ is the adversarial factor to balance the two losses. We refer to a model trained
with Talos as a Talos model.

algorithm 2 presents the training process of Talos. In each mini-batch, given N
training samples, we first generate 2N augmented views (Line 6) and feed them into
the base encoder. The generated representations are then fed into the projection head
(Line 7) and the adversarial classifier (Line 8) simultaneously. Note that the adversarial
classifier and contrastive model are updated alternately by epoch. We First optimize
the adversarial classifier with the cross-entropy loss (Line 10). Then we optimize the
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Figure 4.12: The performance of original classification tasks against original contrastive
models, Talos, MemGuard, Olympus, and AttriGuard with MobileNetV2, ResNet-18, and
ResNet-50 on 4 different datasets. The x-axis represents different models. The y-axis
represents the accuracy of original classification tasks.

projection head with the contrastive loss (Line 12) and the base encoder with the loss
function of Talos, i.e., Equation 4.2 (Line 13).

To implement this in practice, we utilize the gradient reversal layer (GRL) proposed
by Ganin et al. [35]. GRL is a layer that can be added between the base encoder f
and the adversarial classifier C. In the forward propagation, GRL acts as an identity
transform that simply copies the input as the output. During the backpropagation,
GRL takes the gradients passed through it from the adversarial classifier C, multiplies
the gradients by −λ, and passes them to the base encoder f . Such operation lets the
base encoder receive the opposite direction of gradients from the adversarial classifier.
In this way, the base encoder f is able to learn informative representations for samples
while censoring their sensitive attributes.

Note that our adversarial training is performed only on the process of training the
base encoder f . The training for the classification layer of the contrastive model remains
unchanged. As we show in Section 4.2, the classification layer generalizes well on the
contrastive models, i.e., less overfitting. Therefore, models trained by Talos should be
robust against membership inference attacks as well. Our evaluation shows that this is
indeed the case (see Figure 4.13).

Adaptive Attacks: An adversary needs to establish a shadow model to mount
membership inference attacks. To evaluate membership privacy risks of Talos, we
consider an adaptive (and stronger) adversary [58]. Concretely, we assume that the
adversary knows the training details of Talos and trains their shadow model in the same
way. For attribute inference, the attack model is trained on embeddings generated by
Talos, thus, our attribute inference attack considered in the evaluation of Talos is also
adaptive.

4.4.2 Experimental Setting

We follow the same experimental setting, including datasets, metrics, target models,
and attack models (both attribute inference and membership inference), as those in
Section 4.2.3 and Section 4.3.3. As mentioned before, both membership inference and
attribute inference attacks are performed in an adaptive way. Regarding the adversarial
classifier of Talos, we leverage a 3-layer MLP with 64 neurons in the hidden layer, which
is smaller than the attribute inference attack model.
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Figure 4.13: The performance of NN-based membership inference attacks against origi-
nal contrastive models, Talos, MemGuard, Olympus, and AttriGuard with MobileNetV2,
ResNet-18, and ResNet-50 on 4 different datasets. The x-axis represents different models.
The y-axis represents the accuracy of NN-based membership inference attacks.
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Figure 4.14: The performance of attribute inference attacks against original contrastive
models, Talos, MemGuard, Olympus, and AttriGuard with MobileNetV2, ResNet-18, and
ResNet-50 on 4 different datasets. The x-axis represents different models. The y-axis
represents the accuracy of attribute inference attacks.

Baseline: We consider three state-of-the-art defenses, one for membership inference
(MemGuard [58]) and two for attribute inference (Olympus [90] and AttriGuard [57])
as the baseline models. MemGuard, Olympus, and AttriGuard are originally designed
for supervised models, here, we adapt them to contrastive models. Since the input to
the attribute inference attack is each sample’s representation, we further consider a
sample’s representation as the input to Olympus and AttriGuard.

MemGuard is a two-phase defense for membership inference. In phase I, the defender
generates a noise vector to perturb the posteriors of a target sample, so that the
adversary’s membership classifier is likely to give a random guess for the perturbed
posteriors. In phase II, the defender adds the noise vector to the posteriors with certain
probability.

Olympus, designed for attribute inference, has three basic components: an autoen-
coder to transfer the original representation into the perturbed one, a classifier to
perform the original task over the perturbed representation, and an adversarial classifier
to infer the sensitive attribute from the perturbed representation. Olympus optimizes
the three components using adversarial training to preserve the model utility while
protecting samples’ sensitive attributes. To perform Olympus on contrastive models, we
first train a base encoder following the original contrastive learning process. Then, we
add an autoencoder between the base encoder and the classification layer, and fine-tune
the whole model using the original training samples with Olympus’s losses.

AttriGuard is a two-phase defense for attribute inference. In phase I, for each
representation, the defender generates an adversarial example for each possible value of
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the sensitive attribute by adapting the existing evasion attack techniques. In phase II,
the defender samples one sensitive attribute value based on a probability distribution and
selects the corresponding adversarial example found in phase I as the new representation.

The adversarial classifier used in AttriGuard and Olympus shares the same ar-
chitecutre as the one in Talos. For MemGuard, we follow Jia et al. [58] to generate
the noise in Phase I. For the autoencoder of Olympus, we set its encoder (decoder)
as a 2-layer MLP with 256 and 128 (128 and 256) neurons in the hidden layers. For
AttriGuard, we leverage the C&W attack [14] with the Linf norm in phase I.

4.4.3 Results

We compare the performance of the original classification tasks, NN-based membership
inference attacks, and attribute inference attacks for the original contrastive model and
the models defended by Talos, MemGuard, Olympus, and AttriGuard. The results are
depicted in Figure 4.12, Figure 4.13, and Figure 4.14, respectively. Note that we also
perform metric-based and label-only membership inference attacks and the results are
summarized in Figure 4.20, Figure 4.21, Figure 4.22, Figure 4.23, and Figure 4.24 in
Appendix.

In Figure 4.14, we find that Talos indeed reduces the attribute inference accuracy
compared to the original contrastive learning. For instance, the attribute inference
accuracy is 0.701 on the original contrastive model with ResNet-18 on the UTKFace
dataset, while only 0.602 on the Talos model. Meanwhile, the testing accuracy of the
original classification task for the Talos model is also preserved (Figure 4.12).

For different defense mechanisms, we find that Olympus reduces attribute inference
attacks the most (see Figure 4.14). However, it jeopardizes the membership privacy to
a large extent (see Figure 4.13). For instance, the membership inference accuracy of
the Talos model (ResNet-50) on Place100 is 0.513 while the corresponding Olympus
model’s value is 0.631. The reason is that Olympus’s training process utilizes the original
training samples to fine-tune the whole model, which leads to the model memorizing
these samples with the model’s full capacity. On the other hand, as mentioned in
Section 4.4.1, Talos is only performed on the training process of the base encoder f
which considers each sample’s augmented views. The original samples are only used to
fine-tune the final classification layer, the same as training a normal contrastive model.
In other words, the Talos model memorizes its training samples with only its one-layer
capacity. Therefore, Talos models are less prone to membership inference. In addition,
Olympus jeopardizes the target model’s utility in multiple cases (see Figure 4.12b,
Figure 4.12c, and Figure 4.12d), the reason again lies in the training process of Olympus.
More specifically, Olympus needs to fine-tune the whole model in a supervised way,
this reduces the effect of contrastive learning in the final model. Meanwhile, Talos
preserves the contrastive learning process to a large extent as its adversarial loss is
applied together with the contrastive loss during the training of the base encoder. Since
membership privacy, attribute privacy, and model utility are equally important, we
believe Talos is a better choice than Olympus.

We also find that Talos, MemGuard, and AttriGuard models can achieve similar
utility as the original contrastive models (see Figure 4.12). However, Talos can mitigate
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attribute inference attacks to a larger extent than AttriGuard and MemGuard (see
Figure 4.14). For instance, the attribute inference accuracy is only 0.132 on the Talos
model with ResNet-18 on the Places100 dataset, while 0.176 and 0.178 on the AttriGuard
and MemGuard models. Also, as the contrastive learning procedure is preserved for
Talos, AttriGuard, and MemGuard, we observe that all these defenses are robust against
membership inference attacks (see Figure 4.13).

We also investigate the effect of the adversarial factor λ on the performance of
original classification tasks, membership inference attacks, and attribute inference
attacks. The results are summarized in Figure 4.25, Figure 4.26, and Figure 4.27. First
of all, we observe that the performance of original classification tasks (Figure 4.25) and
membership inference attacks ( Figure 4.26) are relatively stable with respect to different
adversarial factors. However, for different datasets or different model architectures,
the best λ to defense attributes inference attack may vary (Figure 4.27). In general,
we notice that setting λ to 2 or 3 can achieve nearly the best defense performance
on most datasets and model architectures. To perform Talos in practice, we believe
the model owner needs to tune the λ on their validation dataset. During the process,
concentrating more on model utility or defense effectiveness depends on the ML model
owner’s purpose.

In conclusion, Talos can successfully defend attribute inference attacks for contrastive
models without jeopardizing their membership privacy and model utility.

4.5 Discussion

Other Types of Datasets: In this work, we only focus on image datasets, as most
of the current efforts on contrastive learning concentrate on the image domain. For
other types of datasets like texts or graphs, the main challenge is to define a suitable
augmentation method for the input sample. There indeed exist some preliminary works
of contrastive learning over texts or graphs [37, 119]. However, the effectiveness of these
methods still needs to be further evaluated. We believe it is straightforward to extend
our analysis to contrastive models trained on other types of data.

Novel Membership Inference Attacks Against Contrastive Models: Traditional
membership inference attacks use the original data samples to query the model and
get the corresponding posteriors to launch the attacks. However, such attacks is less
effective on contrastive models as shown in the siddertation. Since the contrastive
model is trained with some augmented views of each data sample, the model itself
may remember these augmented views as well. This inspires us to use the augmented
views of the original training sample to query the contrastive model to obtain multiple
posteriors (one for each augmented version), and aggregate these posteriors as the input
to the membership inference attack model. However, our initial attempt in this direction
does not achieve a stronger attack. One reason might be our aggregation method is
not optimal (we have tried averaging and concatenation). In the future, we plan to
investigate more advanced aggregation operations to establish a membership inference
attack tailored to contrastive models.
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4.6 Conclusion

In this work, we perform the first privacy quantification of the most representative
self-supervised learning paradigm, i.e., contrastive learning. Concretely, we investigate
the privacy risks of contrastive models trained on image datasets through the lens
of membership inference and attribute inference. Empirical evaluation shows that
contrastive models are less vulnerable to membership inference attacks compared to
supervised models. This is due to the fact that contrastive models are normally less
overfitted. Meanwhile, contrastive models are more prone to attribute inference attacks.
We posit this is because contrastive models can generate more informative representations
for data samples, which can be exploited by an adversary to achieve effective attribute
inference.

To reduce the risks of attribute inference stemming from contrastive models, we
propose the first privacy-preserving contrastive learning mechanism, namely Talos.
Specifically, Talos introduces an adversarial classifier to censor the sensitive attributes
learned by the contrastive models under the adversarial training framework. Our
evaluation shows that Talos can effectively mitigate the attribute inference risks for
contrastive models while maintaining their membership privacy and model utility.

4.7 Appendix
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Figure 4.15: The performance of different membership inference attacks against both
supervised models and contrastive models with ResNet-18 on 8 different datasets. The
x-axis represents different datasets. The y-axis represents membership inference attacks’
accuracy.
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Figure 4.16: The performance of different membership inference attacks against both
supervised models and contrastive models with ResNet-50 on 8 different datasets. The
x-axis represents different datasets. The y-axis represents membership inference attacks’
accuracy.
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Figure 4.17: The performance of metric-based membership inference attacks against
contrastive models with ResNet-50 on 8 different datasets under different numbers of
epochs for classification layer training. The x-axis represents different numbers of epochs.
The y-axis represents membership inference attacks’ accuracy. Each line corresponds
to a specific dataset.
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Figure 4.18: The performance of attribute inference attacks against supervised models
on 4 different datasets under different percentages of the attack training dataset.
The x-axis represents different percentages of the attack training dataset. The y-axis
represents attribute inference attacks’ accuracy.
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Figure 4.19: The performance of attribute inference attacks against supervised models
on 4 different datasets under attack models with different layers. The x-axis represents
attack models’ layers. The y-axis represents attribute inference attacks’ accuracy.
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Figure 4.20: The performance of metric-corr membership inference attacks against orig-
inal contrastive models,Talos, MemGuard, Olympus, and AttriGuard with MobileNetV2,
ResNet-18, and ResNet-50 on 4 different datasets. The x-axis represents different models.
The y-axis represents the accuracy of metric-corr membership inference attacks.
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Figure 4.21: The performance of metric-conf membership inference attacks against orig-
inal contrastive models, Talos, MemGuard, Olympus, and AttriGuard with MobileNetV2,
ResNet-18, and ResNet-50 on 4 different datasets. The x-axis represents different meth-
ods. The y-axis represents the accuracy of metric-conf membership inference attacks.
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Figure 4.22: The performance of metric-ent membership inference attacks against origi-
nal contrastive models, Talos, MemGuard, Olympus, and AttriGuard with MobileNetV2,
ResNet-18, and ResNet-50 on 4 different datasets. The x-axis represents different models.
The y-axis represents the accuracy of metric-ent membership inference attacks.
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Figure 4.23: The performance of metric-ment membership inference attacks against
original contrastive models, Talos, MemGuard, Olympus, and AttriGuard with Mo-
bileNetV2, ResNet-18, and ResNet-50 on 4 different datasets. The x-axis represents
different models. The y-axis represents the accuracy of metric-ment membership infer-
ence attacks.
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Figure 4.24: The performance of label-only membership inference attacks against origi-
nal contrastive models, Talos, MemGuard, Olympus, and AttriGuard with MobileNetV2,
ResNet-18, and ResNet-50 on 4 different datasets. The x-axis represents different models.
The y-axis represents the accuracy of label-only membership inference attacks.
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Figure 4.25: The performance of original classification tasks for the Talos models with
MobileNetV2, ResNet-18, and ResNet-50 on 4 different datasets under different adver-
sarial factor λ. The x-axis represents different λ. The y-axis represents the corresponding
performance.
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Figure 4.26: The performance of membership inference attacks for the Talos models
with MobileNetV2, ResNet-18, and ResNet-50 on 4 different datasets under different
adversarial factor λ. The x-axis represents different λ. The y-axis represents the corre-
sponding performance.
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Figure 4.27: The performance of attribute inference attacks for the Talos models with
MobileNetV2, ResNet-18, and ResNet-50 on 4 different datasets under different adver-
sarial factor λ. The x-axis represents different λ. The y-axis represents the corresponding
performance.
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5.1. INTRODUCTION

5.1 Introduction

Graph is a powerful tool to model the complex relationships between entities. For
instance, in healthcare analytics, protein-protein interactions can be modeled as a graph
(called a chemical network); and a social network can be modeled as a graph, where
nodes are users and edges indicate certain social relationships among them. A graph
may be treated as a data owner’s intellectual property because the data owner may
spend a lot of resources collecting the graph, e.g., collecting a chemical network often
involves expensive and resource-consuming chemical experiments. Moreover, a graph
may also contain sensitive user information, e.g., private social relationships among
users.

Recently, a family of machine learning techniques known as graph neural networks
(GNNs) was proposed to analyze graphs. We consider GNNs for node classification.
Specifically, given a graph, attributes of each node in the graph, and a small number of
node labels, a GNN model is trained and can predict the label of each remaining unlabeled
node. Due to their superior performance, we have seen growing applications of GNNs
in various domains, such as healthcare analytics [36, 31], recommender systems [32],
and fraud detection [111]. However, the security and privacy implications of training
GNNs on graphs are largely unexplored.

Our Contributions: In this work, we take the first step to study the security and
privacy implications of training GNNs on graphs. In particular, we propose the first
attacks to steal a graph from the outputs of a GNN model trained on the graph. We call
our attacks link stealing attacks. Specifically, given a black-box access to a target GNN
model, our attacks aim to predict whether there exists a link between any pair of nodes
in the graph used to train the target GNN model. Our attacks reveal serious concerns
on the intellectual property, confidentiality, and/or privacy of graphs when training
GNNs on them. For instance, our attacks violate the intellectual property of the data
owner when it spends lots of resources collecting the graph; and our attacks violate user
privacy when the graph contains sensitive social relationships among users [38, 6].
Adversary’s Background Knowledge: We refer to the graph and nodes’ attributes used
to train the target GNN model as the target dataset. We characterize an adversary’s
background knowledge along three dimensions, including the target dataset’s nodes’
attributes, the target dataset’s partial graph, and an auxiliary dataset (called shadow
dataset) which also contains its own graph and nodes’ attributes. An adversary may
or may not have access to each of the three dimensions. Therefore, we obtain a
comprehensive taxonomy of a threat model, in which adversaries can have 8 different
types of background knowledge.
Attack Methodology: We design an attack for each of the 8 different types of background
knowledge, i.e., we propose 8 link stealing attacks in total. The key intuition of our
attacks is that two nodes are more likely to be linked if they share more similar attributes
and/or predictions from the target GNN model. For instance, when the adversary
only has the target dataset’s nodes’ attributes, we design an unsupervised attack by
calculating the distance between two nodes’ attributes. When the target dataset’s
partial graph is available, we use supervised learning to train a binary classifier as our
attack model with features summarized from two nodes’ attributes and predictions

71



CHAPTER 5. GRAPH NEURAL NETWORKS

obtained from the black-box access to the target GNN model. When the adversary has
a shadow dataset, we propose a transferring attack which transfers the knowledge from
the shadow dataset to the target dataset to mount our attack.
Evaluation: We evaluate our 8 attacks using 8 real-world datasets. First, extensive
experiments show that our attacks can effectively steal links. In particular, our attacks
achieve high AUCs (area under the ROC curve). This demonstrates that the predictions
of a target GNN model encode rich information about the structure of a graph that is
used to train the model, and our attacks can exploit them to steal the graph structure.
Second, we observe that more background knowledge leads to better attack performance
in general. For instance, on the Citeseer dataset [61], when an adversary has all the
three dimensions of the background knowledge, our attack achieves 0.977 AUC. On the
same dataset, when the adversary only has nodes’ attributes, the AUC is 0.878. Third,
we find that the three dimensions of background knowledge have different impacts on our
attacks. Specifically, the target dataset’s partial graph has the strongest impact followed
by nodes’ attributes, the shadow dataset, on the other hand, has the weakest impact.
Fourth, our transferring attack can achieve high AUCs. Specifically, our transferring
attack achieves better performance if the shadow dataset comes from the same domain
as the target dataset, e.g., both of them are chemical networks. We believe this is due
to the fact that graphs from the same domain have similar structures, which leads to
less information loss during transferring. Fifth, our attacks outperform conventional
link prediction methods [70, 39], which aim to predict links between nodes based on a
partial graph.

In summary, we make the following contributions.

• We propose the first link stealing attacks against graph neural networks.

• We propose a threat model to comprehensively characterize an adversary’s back-
ground knowledge along three dimensions. Moreover, we propose 8 link stealing
attacks for adversaries with different background knowledge.

• We extensively evaluate our 8 attacks on 8 real-world datasets. Our results show
that our attacks can steal links from a GNN model effectively.

5.2 Problem Formulation

In this section, we first propose a threat model to characterize an adversary’s background
knowledge. Then, we formally define our link stealing attack.

5.2.1 Threat Model

Adversary’s Goal: An adversary’s goal is to infer whether a given pair of nodes
u and v are connected in the target dataset. Inferring links between nodes leads to
a severe privacy threat when the links represent sensitive relationship between users
in the context of social networks. Moreover, links may be confidential and viewed
as a model owner’s intellectual property because the model owner may spend lots of
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resources collecting the links, e.g., it requires expensive medical/chemical experiments to
determine the interaction/link between two molecules in a chemical network. Therefore,
inferring links may also compromise a model owner’s intellectual property.

Adversary’s Background Knowledge: First, we assume an adversary has a black-
box access to the target GNN model. In other words, the adversary can only obtain
nodes’ posteriors by querying the target model f . This is the most difficult setting
for the adversary [97, 94, 93]. An adversary can have a black-box access to a GNN
model when an organization uses GNN tools from another organization (viewed as an
adversary) or the GNN model prediction results are shared among different departments
within the same organization. For instance, suppose a social network service provider
leverages another company’s tool to train a GNN model for fake-account detection, the
provider often needs to send the prediction results of (some) nodes to the company for
debugging or refining purposes. In such a scenario, the security company essentially
has a black-box access to the GNN model. Note that the graph structure is already
revealed to the adversary if she has a white-box access to the target GNN model as the
GNN model architecture is often based on the graph structure.

Then, we characterize an adversary’s background knowledge along three dimensions:

• Target Dataset’s Nodes’ Attributes, denoted by F . This background
knowledge characterizes whether the adversary knows nodes’ attributes F in D.
We also assume that the adversary knows labels of a small subset of nodes.

• Target Dataset’s Partial Graph, denoted by A∗. This dimension charac-
terizes whether the adversary knows a subset of links in the target dataset D.
Since the goal of link stealing attack is to infer whether there exists an edge/link
between a pair of nodes, the partial graph can be used as ground truth edges to
train the adversary’s attack model.

• A Shadow Dataset, denoted by D′. This is a dataset which contains its
own nodes’ attributes and graph. The adversary can use this to build a GNN
model, referred to as shadow target model (denoted by f ′) in order to perform
a transferring attack. It is worth noting that the shadow dataset does not need
to come from the same domain of the target dataset. For instance, the shadow
dataset can be a chemical network, while the target dataset can be a citation
network. However, results in Section 5.4 show that same-domain shadow dataset
indeed leads to better transferring attack performance.

We denote the adversary’s background knowledge as a triplet:

K = (F ,A∗,D′).

Whether the adversary has each of the three items is a binary choice, i.e., yes or no.
Therefore, we have a comprehensive taxonomy with 8 different types of background
knowledge, which leads to 8 different link stealing attacks. Table 5.1 summarizes our
attack taxonomy.
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Table 5.1: Attack taxonomy. ✓ (×) means the adversary has (does not have) the
knowledge.

Attack F A∗ D′ Attack F A∗ D′

Attack-0 × × × Attack-4 × ✓ ✓
Attack-1 × × ✓ Attack-5 ✓ × ✓
Attack-2 ✓ × × Attack-6 ✓ ✓ ×
Attack-3 × ✓ × Attack-7 ✓ ✓ ✓

Table 5.2: Features adopted by our supervised attacks (Attack-3 and Attack 6) and
transferring attacks (Attack-1, Attack-4, Attack-5, and Attack-7). Here, (∗) means the
features are extracted from the shadow dataset in the training phase, and (⋆) means
the features are extracted from both the shadow dataset and the target dataset
(its partial graph) in the training phase. d(·, ·) represents distance metrics defined in
Table 5.12, Ψ(·, ·) represents the pairwise vector operations defined in Table 5.13. Note
that the features used in these attack models include all the distance metrics and
pairwise vector operations.

Attack d(f(u), f(v)) Ψ(f(u), f(v))) Ψ(e(f(u)), e(f(v))) d(g(u), g(v)) Ψ(g(u), g(v)) Ψ(e(g(u)), e(g(v))) d(Fu, Fv) Ψ(Fu, Fv)

Attack-1 ∗ ✓ × ✓ × × × × ×
Attack-3 ✓ ✓ ✓ × × × × ×
Attack-4 ⋆ ✓ × ✓ × × × × ×
Attack-5 ∗ ✓ × ✓ ✓ × ✓ ✓ ×
Attack-6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Attack-7 ⋆ ✓ × ✓ ✓ × ✓ ✓ ×

5.2.2 Link Stealing Attack

After describing our threat model, we can formally define our link stealing attack as
follows:

Definition 1 (Link Stealing Attack). Given a black-box access to a GNN model that
is trained on a target dataset, a pair of nodes u and v in the target dataset, and an
adversary’s background knowledge K, link stealing attack aims to infer whether there is
a link between u and v in the target dataset.

5.3 Attack Taxonomy

In this section, we present the detailed constructions of all the 8 attacks in Table 5.1.
Given different knowledge K, the adversary can conduct their attacks in different ways.
However, there are two problems that exist across different attacks.

The first problem is node pair order. As we consider undirected graph, when the
adversary wants to predict whether there is a link between two given nodes u and v,
the output should be the same regardless of the input node pair order.

The second problem is dimension mismatch. The shadow dataset and the target
dataset normally have different dimensions with respect to attributes and posteriors (as
they are collected for different classification tasks). For transferring attacks that require
the adversary to transfer information from the shadow dataset to the target dataset,
it is crucial to keep the attack model’s input features’ dimension consistent no matter
which shadow dataset she has.
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We will discuss how to solve these two problems during the description of differ-
ent attacks. For presentation purposes, features used in our supervised attacks and
transferring attacks are summarised in Table 5.2.

5.3.1 Attack Methodologies

Attack-0: K = (×,×,×): We start with the most difficult setting for the adversary,
that is she has no knowledge of the target dataset’s nodes’ attributes, partial graph,
and a shadow dataset. All she has is the posteriors of nodes obtained from the target
model f (see Section 2.4).

As introduced in Section 2.4, GNN essentially aggregates information for each node
from its neighbors. This means if there is a link between two nodes, then their posteriors
obtained from the target model should be closer. Following this intuition, we propose
an unsupervised attack. More specifically, to predict whether there is a link between
u and v, we calculate the distance between their posteriors, i.e., d(f(u), f(v)), as the
predictor.

We have in total experimented with 8 common distance metrics: Cosine distance,
Euclidean distance, Correlation distance, Chebyshev distance, Braycurtis distance,
Canberra distance, Manhattan distance, and Square-euclidean distance. Their formal
definitions are in Table 5.12 in Appendix. It is worth noting that all distance metrics
we adopt are symmetric, i.e., d(f(u), f(v)) = d(f(v), f(u)), this naturally solves the
problem of node pair order.

Since the attack is unsupervised, to make a concrete prediction, the adversary needs
to manually select a threshold depending on application scenarios. To evaluate our
attack, we mainly use AUC which considers a set of thresholds as previous works [34,
6, 44, 94, 58, 124]. In addition, we propose a threshold estimation method based on
clustering (see Section 5.4 for more details).

Attack-1: K = (×,×,D′): In this attack, we broaden the adversary’s knowledge with a
shadow dataset, i.e., D′. This means the adversary can train a classifier for a supervised
attack, more specifically, a transferring attack. She first constructs a shadow target
model f ′ with D′. Then, she derives the training data from f ′ to train her attack model.

The adversary cannot directly use the posteriors obtained from the shadow target
model as features to train her attack model, as the shadow dataset and the target
dataset very likely have different numbers of labels, i.e., the corresponding posteriors
are in different dimensions. This is the dimension mismatch problem mentioned before.
To tackle this, we need to design features over posteriors.

As discussed in Attack-0, for any dataset, if two nodes are linked, then their posteriors
obtained from the target model should be similar. This means if the attack model can
capture the similarity of two nodes’ posteriors from the shadow target model, it can
transfer the information to the target model.

We take two approaches together to design features. The first approach is measuring
distances between two nodes’ posteriors. To this end, for each pair of nodes u′ and
v′ from the shadow dataset D′, we adopt the same set of 8 metrics used in Attack-
0 (formal definitions are listed in Table 5.12) to measure their posteriors f ′(u′) and
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f ′(v′)’s distances, and concatenate these different distances together. This leads to an
8-dimension vector.

The second approach is to use entropy to describe each posterior inspired by previous
works [78, 58]. Formally, for the posterior of node u′ obtained from the shadow target
model f ′, its entropy is defined as the following.

e(f ′(u′)) = −
∑

i

f ′
i(u′)log(f ′

i(u′)) (5.1)

where f ′
i(u′) denotes the i-th element of f ′(u′). Then, for each pair of nodes u′ and v′

from the shadow dataset, we obtain two entropies e(f ′(u′)) and e(f ′(v′)). To eliminate
the node pair order problems for these entropies, we further take the approach of Grover
and Leskovec [42], by applying pairwise vector operation, denoted by Ψ(·, ·). In total,
we have used all the 4 operations defined in Table 5.13 (in Appendix) for our attack.
Note that these operations in Table 5.13 are applied on two single numbers, i.e., scalars,
in this attack. However, they can also be applied to vectors and we will adopt them
again on posteriors and nodes’ attributes in other attacks.

In total, the features used for training the attack model is assembled with 8 different
distances between two nodes’ posteriors from the shadow target model and 4 features
obtained from pairwise vector operations between two nodes’ posteriors’ entropies.
Regarding labels for the training set, the adversary uses all the links in D′ and samples
the same number of node pairs that are not linked (see Section 5.4 for more details).
We adopt an MLP as our attack model.

Attack-2: K = (F ,×,×): In this attack, we assume that the adversary has the
knowledge of the target dataset’s nodes’ attributes F . Since the adversary has no
knowledge of the partial graph and a shadow dataset, her attack here is also unsupervised
(similar to Attack-0). We again rely on the distance metrics to perform our attack. For
each pair of nodes u and v from the target dataset, we consider four types of information
to measure distance with all the metrics listed in Table 5.12. Similar to Attack-0, we
experimentally decide which is the most suitable distance metric for Attack-2.

• d(f(u), f(v)). The first type is the same as the method for Attack-0, i.e., distance
between posteriors of u and v from the target model f , i.e., f(u) and f(v).

• d(Fu,Fv). The second type is calculating the pairwise distance over u and v’s
attributes Fu and Fv.

• d(f(u), f(v))− d(g(u), g(v)). For the third type, since we have the target model’s
nodes’ attributes (as well as a subset of their corresponding labels), we train a
separate MLP model, namely reference model (denoted by g). Our intuition is
that if two nodes are connected, the distance between their posteriors from the
target model should be smaller than the corresponding distance from the reference
model. Therefore, we calculate d(f(u), f(v))− d(g(u), g(v)) to make prediction.

• d(g(u), g(v)). For the fourth type, we measure the distance over u and v’s posteriors
from the reference model.
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Attack-3: K = (×,A∗,×): In this scenario, the adversary has access to the partial
graph A∗ of the target dataset. For the attack model, we rely on links from the known
partial graph as the ground truth label to train an attack model (we again adopt an
MLP). Features used for Attack-3 are summarized in Table 5.2. For each pair of nodes
u and v from the target dataset, we calculate the same set of features proposed for
Attack-1 on their posteriors and posteriors’ entropies. Besides, since we can directly
train the attack model on the partial target graph (i.e., we do not face the dimension
mismatch problem), we further define new features by adopting the pairwise vector
operations listed in Table 5.13 to f(u) and f(v).

Attack-4: K = (×,A∗,D′): In this attack, the adversary has the knowledge of the
partial graph A∗ of the target dataset and a shadow dataset D′. To take both knowledge
into consideration, for each pair of nodes either from the shadow dataset or the partial
graph of the target dataset, we calculate the same set of features over posteriors as
proposed in Attack-1. This means the only difference between Attack-4 and Attack-1 is
that the training set for Attack-4 also includes information from the target dataset’s
partial graph (see Table 5.2).

Different from Attack-3, Attack-4 cannot perform the pairwise vector operations to
f(u) and f(v). This is due to the dimension mismatch problem as the adversary needs
to take both A∗ and D′ into account for her attack.

Attack-5: K = (F ,×,D′): In this attack, the adversary has the knowledge of the
target model’s nodes’ attributes F and a shadow dataset D′. As we do not have A∗

to train the attack model, we need to rely on the graph of the shadow dataset. To
this end, we first calculate the same set of features used for Attack-1. Moreover, as
we have the target dataset’s nodes’ attributes, we further build a reference model (as
in Attack-2), and also a shadow reference model in order to transfer more knowledge
from the shadow dataset for the attack. For this, we build the same set of features
as in Attack-1 over the posteriors obtained from the shadow reference model, i.e.,
the distance of posteriors (Table 5.12) and pairwise vector operations performed on
posteriors’ entropies (Table 5.13). In addition, we also calculate the 8 different distances
over the shadow dataset’s nodes’ attributes.

Attack-6: K = (F ,A∗,×): In this scenario, the adversary has the access to the target
dataset’s nodes’ attributes F and the partial target graph A∗. As a supervised learning
setting, we build an MLP considering links from the partial graph as the ground truth
label. The adversary first adopts the same set of features defined over posteriors obtained
from the target model as proposed in Attack-3. Then, the adversary builds a reference
model over the target dataset’s nodes’ attributes, and calculate the same set of features
over posteriors obtained from the reference model. In the end, we further calculate the
distances of the target dataset’s nodes’ attributes as another set of features.

Attack-7: K = (F ,A∗,D′): This is the last attack with the adversary having all three
knowledge. The set of features for this attack is the same as the ones used in Attack-5
(Table 5.2). The only difference lies in the training phase, we can use the partial graph
from the target dataset together with the graph from the shadow dataset as the ground
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truth. We expect this leads to better performance than the one for Attack-5. However,
this attack also relies on the information of the shadow dataset, thus, the features used
here are a subset of the ones for Attack-6, this is similar to the difference between
Attack-4 and Attack-3. Note that if the adversary does not take the shadow dataset
into consideration, this scenario is equivalent to the one for Attack-6.

5.3.2 Summary

We propose 8 attack scenarios with the combination of the knowledge that the adversary
could have. They could be divided into three categories.

The first category is unsupervised attacks, i.e., Attack-0 and Attack-2, where the
adversary does not have the knowledge about the partial graph from the target dataset
or a shadow dataset. In these scenarios, the adversary can use distance metrics for
posteriors or nodes’ attributes to infer the link.

The second category is the supervised attacks, including Attack-3 and Attack-6,
where the adversary has the knowledge of the partial graph from the target dataset
but does not have a shadow dataset. In these scenarios, the adversary can use different
distances and pairwise vector operations over nodes’ posteriors (and the corresponding
entropies) from the target model and their attributes to build features.

The third category is the transferring attacks (supervised), including Attack-1,
Attack-4, Attack-5, and Attack-7, where the adversary has the knowledge of a shadow
dataset. In these scenarios, the adversary can use distance metrics over posteriors/nodes’
attributes and pairwise operations over posteriors’ entropies as the bridge to transfer
the knowledge from the shadow dataset to perform link stealing attacks. It is worth
noting that for Attack-4 and Attack-7, if the adversary leaves the shadow dataset out
of consideration, they will not have the dimension mismatch problem and can take the
same attack methods as Attack-3 and Attack-6, respectively.

5.4 Evaluation

This section presents the evaluation results of our 8 attacks. We first introduce our
experimental setup. Then, we present detailed results for different attacks. Finally, we
summarize our experimental findings.

5.4.1 Experimental Setup

Datasets: We utilize 8 public datasets, including Citeseer [61], Cora [61], Pubmed [61],
AIDS [91], COX2 [105], DHFR [105], ENZYMES [26], and PROTEINS_full [12], to
conduct our experiments. These datasets are widely used as benchmark datasets for
evaluating GNNs [61, 108, 28, 31]. Among them, Citeseer, Cora, and Pubmed are
citation datasets with nodes representing publications and links indicating citations
among these publications. The other five datasets are chemical datasets, each node is
a molecule and each link represents the interaction between two molecules. All these
datasets have nodes’ attributes and labels.
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Datasets Configuration: For each dataset, we train a target model and a reference
model. In particular, we randomly sample 10% nodes and use their ground truth labels
to train the target model and the reference model.1 Recall that several attacks require
the knowledge of the target dataset’s partial graph. To simulate and fairly evaluate
different attacks, we construct an attack dataset which contains node pairs and labels
representing whether they are linked or not. Specifically, we first select all node pairs
that are linked. Then, we randomly sample the same number of node pairs that are
not linked. We note that such negative sampling approach follows the common practice
in the literature of link prediction [42, 6, 123]. Furthermore, the main metric we use,
i.e., AUC (introduced below), is insensitive to the class imbalance issue [34, 6, 86]
contrary to accuracy. Next, we split the attack dataset randomly by half into attack
training dataset and attack testing dataset.2 We use the attack training dataset to train
our attack models when the target dataset’s partial graph is part of the adversary’s
knowledge. We use attack testing dataset to evaluate all our attacks. For the attacks
that have a shadow dataset, we also construct an attack dataset on the shadow dataset
to train the attack model. Note that we do not split this attack dataset because we do
not use it for evaluation.

Metric: We use AUC (area under the ROC curve) as our main evaluation metric.
AUC is frequently used in binary classification tasks [34, 6, 86, 85, 44, 123, 58], it
is threshold independent. For convenience, we refer to node pairs that are linked as
positive node pairs and those that are not linked as negative node pairs. If we rank node
pairs according to the probability that there is a link between them, then AUC is the
probability that a randomly selected positive node pair ranks higher than a randomly
selected negative node pair. When performing random guessing, i.e., we rank all node
pairs uniformly at random, the AUC value is 0.5. Note that we also calculate Precision
and Recall for all supervised attacks (see Table 5.16, Table 5.17, Table 5.18, Table 5.19,
Table 5.20, and Table 5.21 in Appendix).

Models: We use a graph convolutional network with 2 hidden layers for both the target
model and the shadow target model, and assume they share the same architecture (see
Section 5.2). Note that we also evaluate the scenario where the target model and the
shadow model have different architectures later in this section and find the performances
of our attacks are similar. The number of neurons in the hidden layer is set to 16. We
adopt the frequently used ReLU and softmax as activation functions for the first hidden
layer and the second hidden layer, respectively. Note that we append Dropout (the rate
is 0.5) to the output of the hidden layer to prevent overfitting. We train 100 epochs
with a learning rate of 0.01. Cross-entropy is adopted as the loss function and we use
the Adam optimizer to update the model parameters. Our GNNs are implemented
based on publicly available code.3 Experimental results show that our GNNs achieve
similar performance as reported in other papers. We omit them to preserve space.

1We do not train the reference model for attacks when F is unavailable.
2We perform additional experiments and observe that training set size does not have a strong impact

on the attack performance, results are presented in Figure 5.7 in Appendix.
3https://github.com/tkipf/gcn
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Table 5.3: Average AUC with standard deviation for Attack-1 on all the 8 datasets. Best
results are highlighted in bold.

Shadow Dataset
Target Dataset AIDS COX2 DHFR ENZYMES PROTEINS_full Citeseer Cora Pubmed

AIDS - 0.720 ± 0.009 0.690 ± 0.005 0.730 ± 0.010 0.720 ± 0.005 0.689 ± 0.019 0.650 ± 0.025 0.667 ± 0.014
COX2 0.755 ± 0.032 - 0.831 ± 0.005 0.739 ± 0.116 0.832 ± 0.009 0.762 ± 0.009 0.773 ± 0.008 0.722 ± 0.024
DHFR 0.689 ± 0.004 0.771 ± 0.004 - 0.577 ± 0.044 0.701 ± 0.010 0.736 ± 0.005 0.740 ± 0.003 0.663 ± 0.010
ENZYMES 0.747 ± 0.014 0.695 ± 0.023 0.514 ± 0.041 - 0.691 ± 0.030 0.680 ± 0.012 0.663 ± 0.009 0.637 ± 0.018
PROTEINS_full 0.775 ± 0.020 0.821 ± 0.016 0.528 ± 0.038 0.822 ± 0.020 - 0.823 ± 0.004 0.809 ± 0.015 0.809 ± 0.013
Citeseer 0.801 ± 0.040 0.920 ± 0.006 0.842 ± 0.036 0.846 ± 0.042 0.848 ± 0.015 - 0.965 ± 0.001 0.942 ± 0.003
Cora 0.791 ± 0.019 0.884 ± 0.005 0.811 ± 0.024 0.804 ± 0.048 0.869 ± 0.012 0.942 ± 0.001 - 0.917 ± 0.002
Pubmed 0.705 ± 0.039 0.796 ± 0.007 0.704 ± 0.042 0.708 ± 0.067 0.752 ± 0.014 0.883 ± 0.006 0.885 ± 0.005 -
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Figure 5.1: AUC for Attack-0 on all the 8 datasets with all the 8 distance metrics. The
x-axis represents the dataset and the y-axis represents the AUC score.

We use an MLP with 2 hidden layers as the reference model and the shadow reference
model. Hyperparameters, including the number of neurons in the hidden layer, activation
functions, loss function, optimizer, epochs, and learning rate are the same as those of
the target model.

We use an MLP with 3 hidden layers as our attack model. The number of neurons
for all hidden layers is 32. ReLU is adopted as the activation function for hidden layers
and softmax is used as the output activation function. We append Dropout (the rate is
0.5) to each hidden layer to prevent overfitting. We train 50 epochs with a learning rate
of 0.001. The loss function is cross-entropy and the optimizer is Adam.

We run all experiments with this setting for 5 times and report the average value
and the standard deviation of AUC scores. Note that for Attack-0 and Attack-2, the
AUC scores keep the same since these two attacks are unsupervised.

5.4.2 Attack Performance

Attack-0: K = (×,×,×): In this attack, the adversary only relies on measuring
the distance of two nodes’ posteriors obtained from the target model. We compare
8 different distance metrics and Figure 5.1 shows the results. First, we observe that
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Figure 5.2: The Correlation distance distribution between nodes’ posteriors for positive
node pairs and negative node pairs on all the 8 datasets. The x-axis represents Correla-
tion distance and the y-axis represents the number of node pairs.
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Figure 5.3: The last hidden layer’s output from the attack model of Attack-1 for 200
randomly sampled positive node pairs and 200 randomly sampled negative node pairs
projected into a 2-dimension space using t-SNE. (a) Cora as the shadow dataset and
Citeseer as the target dataset, (b) Cora as the shadow dataset and ENZYMES as the
target dataset.

Correlation distance achieves the best performance followed by Cosine distance across
all datasets. In contrast, Canberra distance performs the worst. For instance, on the
Citeseer dataset, the AUC scores for Correlation distance and Cosine distance are 0.959
and 0.946, respectively, while the AUC score for Canberra distance is 0.801. Note that
both Correlation distance and Cosine distance measure the inner product between two
vectors, or the “angle” of two vectors while other distance metrics do not. Second, we
find that the performance of the same metric on different datasets is different. For
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Table 5.4: AUC in different Correlation distance levels for Attack-0 on Pubmed.

Correlation Distance AUC Correlation Distance AUC

0.00-0.01 0.608 0.02-0.03 0.407
0.01-0.02 0.535 0.03-0.04 0.399

instance, the AUC of Correlation distance on Citeseer is 0.959 compared to 0.635 on
ENZYMES.

As mentioned in Section 5.3, unsupervised attacks could not provide a concrete
prediction. To tackle this, we propose to use clustering, such as K-means. Concretely,
we obtain a set of node pairs’ distances, and perform K-means on these distances with
K being set to 2. The cluster with lower (higher) average distance value is considered
as the set of positive (negative) node pairs. Our experiments show that this method is
effective. For instance, on the Citeseer dataset, we obtain 0.788 Precision, 0.991 Recall,
and 0.878 F1-Score. The complete results are summarized in Table 5.14 in Appendix.
Another method we could use is to assume that the adversary has a certain number of
labeled edges, either from the target dataset or the shadow dataset. The former follows
the same setting as our Attack-3, Attack-4, Attack-6, and Attack-7, and the latter is
equivalent to Attack-1 and Attack-5. The corresponding results will be shown later.

Figure 5.2 shows the frequency of Correlation distance computed on posteriors
obtained from the target model for both positive node pairs and negative node pairs in
attack testing datasets. The x-axis is the value of Correlation distance and the y-axis is
the number of pairs. A clear trend is that for all datasets, the Correlation distance for
positive node pairs is much smaller than negative node pairs. We select the top 50% of
node pairs with lowest Correlation distance, group them, and calculate the AUC for
each group. Due to the space limit, we only show the result on Pubmed (Table 5.4).
We can see that the AUC drops when the Correlation distance increase, which indicates
that Attack-0 works better on node pairs with lower Correlation distance. In general,
the posteriors for positive node pairs are “closer” than that for negative node pairs.
This verifies our intuition in Section 5.3: GNN can be considered as an aggregation
function over the neighborhoods, if two nodes are linked, they aggregate with each
other’s features and therefore become closer.

Attack-1: K = (×,×,D′): In this attack, the adversary can leverage a shadow dataset.
In particular, for each dataset, we use one of the remaining datasets as the shadow
dataset to perform the attack. Table 5.3 summarizes the results. We leave the blank in
the diagonal because we do not use the target dataset itself as its shadow dataset.

As we can see from Table 5.3, the AUC scores from the best-performing shadow
dataset have a consistent improvement on almost all datasets compared to Attack-0.
One exception is the COX2 dataset in which the AUC score decreases by 0.02. The
results indicate that the adversary can indeed transfer the knowledge from the shadow
dataset to enhance her attack.

An interesting finding is that for a chemical dataset, the best shadow dataset is
normally a chemical dataset as well. Similar results can be observed for citation datasets.
This shows that it is more effective to transfer knowledge across datasets from the
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Figure 5.4: Average AUC for Attack-2 on all the 8 datasets with all the 4 types of
information considered. The x-axis represents the dataset and the y-axis represents the
AUC score.

same domain. To better understand this, we extract the attack model’s last hidden
layer’s output (32-dimension) for positive node pairs and negative node pairs and project
them into a 2-dimension space using t-Distributed Stochastic Neighbor Embedding
(t-SNE) [75]. Figure 5.3a shows the results for Citeseer when using Cora as the shadow
dataset, both of which are citation datasets. We can see that the positive (negative)
node pairs from both the target dataset and the shadow dataset can be clustered into
similar position, which indicates the positive (negative) node pairs from both datasets
have similar distributions. This means if the attack model learns a decision boundary
to separate positive nodes pairs from the negative node pairs on the shadow dataset,
this decision boundary can be easily carried over to the target dataset.

In contrast, Figure 5.3b shows the results for ENZYMES (a chemical dataset) when
using Cora (a citation dataset) as the shadow dataset. We see that the positive (negative)
node pairs from the shadow dataset and the target dataset are distributed differently in
the 2-dimension space. For example, the positive node pairs for Cora are clustered into
the outer space of the circle area whereas the positive node pairs for ENZYMES are
clustered into the inner space of the circle area. Therefore, it is hard for the adversary
to perform an effective transferring attack. The underlying reason for this to happen is
that graphs from the same domain have analogous graph structures and similar features.
This leads to less information loss for our transferring attack.

Attack-2: K = (F ,×,×): In Attack-2, the adversary has the knowledge of the target
dataset’s nodes’ attributes. As discussed in Section 5.3, she trains a reference model
g by herself from F . We compare four types of information mentioned in Section 5.3,
and the results are shown in Figure 5.4. Note that we only show the results calculated
with Correlation distance out of the 8 distance metrics (Table 5.12) since Correlation
distance achieves the best performance in almost all settings. We can see that in all
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Table 5.5: Average AUC with standard deviation for Attack-3 on all the 8 datasets.

Dataset AUC Dataset AUC

AIDS 0.961 ± 0.001 PROTEINS_full 0.958 ± 0.000
COX2 0.939 ± 0.002 Citeseer 0.973 ± 0.000
DHFR 0.934 ± 0.001 Cora 0.954 ± 0.001
ENZYMES 0.882 ± 0.001 Pubmed 0.947 ± 0.001

Table 5.6: Average AUC with standard deviation for Attack-4 on all the 8 datasets. Best
results are highlighted in bold.

Shadow Dataset
Target Dataset AIDS COX2 DHFR ENZYMES PROTEINS_full Citeseer Cora Pubmed

AIDS - 0.750 ± 0.009 0.763 ± 0.010 0.733 ± 0.007 0.557 ± 0.009 0.729 ± 0.015 0.702 ± 0.010 0.673 ± 0.009
COX2 0.802 ± 0.031 - 0.866 ± 0.004 0.782 ± 0.012 0.561 ± 0.030 0.860 ± 0.002 0.853 ± 0.004 0.767 ± 0.023
DHFR 0.758 ± 0.022 0.812 ± 0.005 - 0.662 ± 0.030 0.578 ± 0.067 0.799 ± 0.002 0.798 ± 0.009 0.736 ± 0.005
ENZYMES 0.741 ± 0.010 0.684 ± 0.024 0.670 ± 0.008 - 0.733 ± 0.019 0.624 ± 0.002 0.627 ± 0.014 0.691 ± 0.012
PROTEINS_full 0.715 ± 0.009 0.802 ± 0.025 0.725 ± 0.041 0.863 ± 0.010 - 0.784 ± 0.031 0.815 ± 0.012 0.867 ± 0.003
Citeseer 0.832 ± 0.078 0.940 ± 0.005 0.914 ± 0.007 0.879 ± 0.062 0.833 ± 0.088 - 0.967 ± 0.001 0.955 ± 0.003
Cora 0.572 ± 0.188 0.899 ± 0.003 0.887 ± 0.014 0.878 ± 0.045 0.738 ± 0.168 0.945 ± 0.001 - 0.924 ± 0.005
Pubmed 0.777 ± 0.056 0.893 ± 0.001 0.90 ± 0.006 0.866 ± 0.002 0.806 ± 0.042 0.907 ± 0.004 0.902 ± 0.001 -

chemical datasets and one citation dataset, using the distance of target dataset’s nodes’
attributes leads to the best performance. For the other two citation datasets, using the
distance between posteriors of the target model can get better performance. Nodes’
attributes’ dimensions are higher in citation datasets than in chemical datasets. In other
words, the node attributes for citation datasets are sparser. For instance, we observe
that most attributes are 0 in citation datasets. Therefore, we conclude that the attack
can get better performance using the Correlation distance between posteriors of the
target model when the target dataset’s nodes’ attributes are in high dimension.

Attack-3: K = (×,A∗,×): Table 5.5 shows the results for this attack. With the
knowledge of the target dataset’s partial graph, the average AUC score for all cases
is over 0.9. Compared to Attack-2, the AUC scores on chemical datasets have an
improvement over 10% and the AUC scores on citation datasets have an improvement
over 2%.4

Compared to Attack-1 and Attack-2, Attack-3 achieves the best performance, this
indicates the target dataset’s partial graph is the most important component for an
adversary for performing a link stealing attack. The reason is that the partial graph
contains the ground truth links in the target dataset, which can be directly exploited
by the attack model.

We further investigate the contribution of each feature set to the final prediction
following the methodology of Dong et al. [27]. Concretely, when studying one feature
set, we set other features’ value to 0. As shown in Figure 5.5, the features extracted
by applying pairwise operation over posteriors are most useful for the final prediction,
followed by the features based on posteriors with different distance metrics. We note
that our attack also achieves over 0.70 AUC on average when only using pairwise
operation over entropy of posteriors as features. Moreover, our attack achieves the
best performance when taking all the three feature sets together, which implies the

4Attack-2 achieves relatively high AUC scores on citation datasets.
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Figure 5.5: Average AUC for Attack-3 on all the 8 datasets with different set of features.
The x-axis represents the dataset and the y-axis represents the AUC score.

combination of different features indeed improves the overall performance.

Attack-4: K = (×,A∗,D′): Table 5.6 shows the results for Attack-4. First, compared
to Attack-1 (K = (×,×,D′)), the overall performance of Attack-4 improves with the
help of target dataset’s partial graph A∗. This is reasonable since the target dataset’s
partial graph contains some ground truth links from the target dataset. Second, we note
that the performances of Attack-4 are worse than Attack-3 (K = (×,A∗,×)). Intuitively,
the performance should be better since Attack-4 has more background knowledge. The
reason for the performance degradation is that we do not take the pairwise vector
operation (Table 5.13) over posteriors as the input for Attack-4 since we want to learn
information from both the target dataset and the shadow dataset, and need to eliminate
the dimension mismatch issue (as discussed in Section 5.3). Moreover, the results also
indicate that compared to the shadow dataset, the target dataset’s partial graph is more
informative.

Attack-5: K = (F ,×,D′): In Attack-5, the adversary has the knowledge of target
dataset’s nodes’ attributes as well as a shadow dataset, evaluation results are shown in
Table 5.7. We observe that Attack-5 performs better than both Attack-1 (only with
D′) and Attack-2 (only with F). This shows the combination of F and D′ can lead
to a better link stealing performance. Furthermore, we observe similar trends as for
Attack-1, that is the attack performs better if the shadow dataset comes from the same
domain as the target dataset.

Attack-6: K = (F ,A∗,×): The result of Attack-6 on all datasets is shown in Table 5.9.
We can see that for almost all datasets (except ENZYMES), the AUC scores are over
0.95, which means this attack achieves excellent performance. In particular, the AUC
score is nearly 1 on PROTEINS_full. Moreover, Attack-6 consistently outperforms
Attack-2 (K = (F ,×,×)). This further validates the effectiveness of A∗ in helping the
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Table 5.7: Average AUC with standard deviation for Attack-5 on all the 8 datasets. Best
results are highlighted in bold.

Shadow Dataset
Target Dataset AIDS COX2 DHFR ENZYMES PROTEINS_full Citeseer Cora Pubmed

AIDS - 0.841 ± 0.003 0.846 ± 0.009 0.795 ± 0.016 0.875 ± 0.002 0.839 ± 0.006 0.793 ± 0.015 0.787 ± 0.008
COX2 0.832 ± 0.036 - 0.977 ± 0.002 0.874 ± 0.020 0.946 ± 0.003 0.911 ± 0.004 0.908 ± 0.004 0.887 ± 0.004
DHFR 0.840 ± 0.018 0.988 ± 0.001 - 0.757 ± 0.032 0.970 ± 0.004 0.909 ± 0.010 0.911 ± 0.009 0.860 ± 0.004
ENZYMES 0.639 ± 0.005 0.581 ± 0.010 0.587 ± 0.005 - 0.608 ± 0.001 0.685 ± 0.005 0.674 ± 0.007 0.663 ± 0.002
PROTEINS_full 0.948 ± 0.007 0.981 ± 0.004 0.968 ± 0.014 0.818 ± 0.017 - 0.970 ± 0.002 0.876 ± 0.010 0.885 ± 0.003
Citeseer 0.773 ± 0.048 0.666 ± 0.018 0.652 ± 0.020 0.860 ± 0.049 0.794 ± 0.009 - 0.969 ± 0.002 0.967 ± 0.001
Cora 0.743 ± 0.017 0.587 ± 0.012 0.568 ± 0.009 0.778 ± 0.052 0.686 ± 0.018 0.956 ± 0.001 - 0.936 ± 0.002
Pubmed 0.777 ± 0.030 0.661 ± 0.018 0.645 ± 0.008 0.786 ± 0.041 0.741 ± 0.008 0.938 ± 0.007 0.941 ± 0.007 -

Table 5.8: Average AUC with standard deviation for Attack-7 on all the 8 datasets. Best
results are highlighted in bold.

Shadow Dataset
Target Dataset AIDS COX2 DHFR ENZYMES PROTEINS_full Citeseer Cora Pubmed

AIDS - 0.925 ± 0.001 0.913 ± 0.005 0.784 ± 0.010 0.848 ± 0.010 0.538 ± 0.022 0.520 ± 0.011 0.849 ± 0.004
COX2 0.954 ± 0.007 - 0.982 ± 0.001 0.874 ± 0.010 0.898 ± 0.030 0.947 ± 0.003 0.940 ± 0.007 0.875 ± 0.034
DHFR 0.982 ± 0.002 0.992 ± 0.00 - 0.871 ± 0.017 0.966 ± 0.008 0.933 ± 0.008 0.947 ± 0.012 0.937 ± 0.003
ENZYMES 0.698 ± 0.007 0.691 ± 0.008 0.671 ± 0.003 - 0.610 ± 0.001 0.657 ± 0.009 0.662 ± 0.006 0.677 ± 0.001
PROTEINS_full 0.984 ± 0.002 0.962 ± 0.010 0.986 ± 0.002 0.993 ± 0.001 - 0.840 ± 0.013 0.823 ± 0.006 0.987 ± 0.005
Citeseer 0.816 ± 0.048 0.791 ± 0.033 0.702 ± 0.025 0.880 ± 0.057 0.902 ± 0.026 - 0.977 ± 0.000 0.964 ± 0.000
Cora 0.746 ± 0.068 0.680 ± 0.038 0.574 ± 0.038 0.888 ± 0.014 0.695 ± 0.10 0.960 ± 0.001 - 0.935 ± 0.001
Pubmed 0.807 ± 0.016 0.712 ± 0.025 0.710 ± 0.006 0.881 ± 0.009 0.739 ± 0.012 0.956 ± 0.001 0.949 ± 0.001 -

Table 5.9: Average AUC with standard deviation for Attack-6 on all the 8 datasets.

Dataset AUC Dataset AUC

AIDS 0.979 ± 0.001 PROTEINS_full 0.999 ± 0.000
COX2 0.987 ± 0.001 Citeseer 0.981 ± 0.000
DHFR 0.992 ± 0.001 Cora 0.964 ± 0.000
ENZYMES 0.891 ± 0.001 Pubmed 0.970 ± 0.000

adversary to infer links. Another finding is that for chemical datasets, the information
of the target dataset’s partial graph brings a larger improvement than the citation
datasets. One possible explanation is that the nodes’ attributes in chemical datasets
contain less information (they are in lower dimension), thus the target dataset’s partial
graph contributes more to the final prediction performance.

Attack-7: K = (F ,A∗,D′): The results of Attack-7 are summarized in Table 5.8.
Compared to Attack-5 (K = (F ,×,D′)), the overall performances improve with the
help of A∗. We would expect the adversary’s accuracy is better than that of Attack-6
(K = (F ,A∗,×)) since she has more background knowledge. However, we observe that
the performance drops from Attack-6 to Attack-7. We suspect this is due to the fact
that we want to learn information from both the target dataset and the shadow dataset,
to avoid the dimension mismatch problem, Attack-7 uses fewer features than Attack-6
(similar to the reason that Attack-4 performs worse than Attack-3).

Comparison with Link Prediction: We further compare all our attacks with a
traditional link prediction method [70]. More specifically, we build an MLP with features
summarized from the target model’s partial graph, including Common neighbor, Jaccard
index, and Preferential attachment [70]. As we can see from Figure 5.6, most of our
attacks outperforms the link prediction method. For instance, on the COX2 dataset, all
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our 8 attacks outperform the link prediction model, the best attack (Attack-6) achieves
more than 20% performance gain. This demonstrates that GNNs lead to more severe
privacy risks than traditional link prediction.

Effect of Different GNN Structures: In our experiments, we adopt the same
architecture for both the target model and the shadow target model by default for
transferring attack scenarios. We further evaluate the impact of the shadow target
model using different architectures. Note that for space reasons, we only report the
results of Attack-1. Results for other attacks are similar. We set the number of hidden
layers to 3 for the shadow target model (the target model has 2 hidden layers). The
results are summarized in Table 5.15 in Appendix. We find the average AUC scores of
our attack are maintained at the same level or even higher for certain datasets compared
with the scenario where the shadow target model and the shadow model have the same
architecture. For instance, on the Citeseer dataset, we obtain 0.924 AUC, while the
original attack achieves 0.965. In other words, our attacks are still effective when the
shadow target model and the target model have different architectures.

Attacks on Other GNNs: We further investigate whether our attacks are applicable
to other GNN models besides GCN. Concretely, we focus on GraphSAGE [45] and
GAT [108]. We implement GraphSAGE5 and GAT6 based on publicly available code
and only report the results of Attack-6. Table 5.10 shows that our attack has similar
AUC scores on GraphSAGE and GAT compared to GCN. For instance, on the COX2
dataset, our attack against GraphSAGE and GAT achieves AUC of 0.982 and 0.984,
respectively (the corresponding AUC for GCN is 0.987). This further demonstrates that
our attacks are generally applicable.

5https://github.com/williamleif/GraphSAGE
6https://github.com/PetarV-/GAT
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Table 5.10: Average AUC with standard deviation for Attack-6 when using GraphSAGE
or GAT as the target model on all the 8 datasets.

Dataset AUC (GraphSAGE) AUC (GAT)

AIDS 0.977 ± 0.002 0.968 ± 0.001
COX2 0.982 ± 0.001 0.984 ± 0.001
DHFR 0.990 ± 0.001 0.995 ± 0.000
ENZYMES 0.747 ± 0.001 0.766 ± 0.004
PROTEINS_full 0.999 ± 0.000 0.999 ± 0.000
Citeseer 0.938 ± 0.000 0.972 ± 0.000
Cora 0.883 ± 0.001 0.958 ± 0.000
Pubmed 0.923 ± 0.000 0.965 ± 0.000

Table 5.11: Average AUC with standard deviation for Attack-3 when only reporting
top-2 posteriors on all the 8 datasets.

Dataset AUC Dataset AUC

AIDS 0.855 ± 0.004 PROTEINS_full 0.954 ± 0.001
COX2 0.839 ± 0.005 Citeseer 0.958 ± 0.000
DHFR 0.851 ± 0.003 Cora 0.945 ± 0.001
ENZYMES 0.876 ± 0.002 Pubmed 0.946 ± 0.001

Possible Defense: We try to restrict the GNN model to output k largest posteriors
as a defense mechanism to mitigate our attacks. The intuition is that the smaller k
is, the less information the model reveals. Here, we fix k = 2 and report the results
for Attack-3. Note that we have similar observations for other attacks. Experimental
results in Table 5.11 show that this defense indeed reduces the performance of our attack.
However, the performance drop is not very big, i.e., our attack still achieves relatively
high AUC scores. For instance, on the Citeseer dataset, this defense reduces Attack-3’s
performance by less than 2%. On the AIDS dataset, the attack’s performance drop is
higher but AUC being 0.855 still indicates our attack is effective. We also note that the
defense will impact the utility of the model. In other words, it is a trade-off between
utility and privacy. In conclusion, the top-k defense is not effective enough to defend
against our attacks.

We can also leverage differential privacy (DP) and adversarial examples to mitigate
our attacks. In detail, we can adopt edge-DP developed for social networks [46, 122] to
defend against our attacks. Borrowing the idea from previous work [57, 58], we can also
add carefully crafted noise to the prediction of GNN to fool the adversary. We plan to
explore both of them in the future.

Summary of Results: In summary, we have made the following observations from
our experimental results.

• Our attacks can effectively steal the links from GNNs. For instance, our Attack-6
can achieve average AUC scores over 0.95 on 7 out of 8 datasets, which demon-
strates that the GNNs are vulnerable to our attacks.

• Generally speaking, the performances of the attack are better if there is more
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background knowledge as shown in Figure 5.6. However, we find the impact of
different knowledge is different. In particular, the target dataset’s partial graph
is the most informative. For instance, Attack-3 (K = (×,A∗,×)) significantly
outperforms Attack-1 (K = (×,×,D′)) and Attack-2 (K = (F ,×,×)).

• Our transferring attack can achieve good performance. Furthermore, we find that
our transferring attack achieves better performance when the shadow dataset and
the target dataset are from the same domain as validated by experimental results
for Attack-1 and Attack-5.

5.5 Conclusion and Future Work

In this work, we propose the first link stealing attacks against GNNs. Specifically, we
show that, given a black-box access to a target GNN model, an adversary can accurately
infer whether there exists a link between any pair of nodes in a graph that is used
to train the GNN model. We propose a threat model to systematically characterize
an adversary’s background knowledge along three dimensions. By jointly considering
the three dimensions, we define 8 link stealing attacks and propose novel methods to
realize them. Extensive evaluation over 8 real-world datasets shows that our attacks
can accurately steal links. Interesting future work includes generalizing our attacks to
GNNs for graph classification and defending against our attacks.

5.6 Appendix

Table 5.12: Distance metrics, fi(u) represents the i-th component of f(u). Note that
these metrics can be applied to nodes’ attributes as well.

Metrics Definition

Cosine 1 − f(u) · f(v)
∥f(u)∥2 ∥f(v)∥2

Euclidean ∥f(u) − f(v)∥2

Correlation 1 − (f(u) − f(u)) · (f(v) − f(v))
∥(f(u) − f(u))∥2∥(f(v) − f(v))∥2

Chebyshev maxi |fi(u) − fi(v)|

Braycurtis
∑

|fi(u) − fi(v)|∑
|fi(u) + fi(v)|

Manhattan
∑

i
|fi(u) − fi(v)|

Canberra
∑

i

|fi(u) − fi(v)|
|fi(u)| + |fi(v)|

Sqeuclidean ∥f(u) − f(v)∥2
2
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Table 5.13: Pairwise vector operations, fi(u) represents the i-th component of f(u). Note
that these operations can be applied to nodes’ attributes and entropies summarized
from posteriors as well.

Operator Definition Operator Definition

Average fi(u) + fi(v)
2 Weighted-L1 |fi(u) − fi(v)|

Hadamard fi(u) · fi(v) Weighted-L2 |fi(u) − fi(v)|2

Table 5.14: Prediction results for Attack-0 on all the 8 datasets with Correlation distance.

Dataset Precision Recall F1-Score AUC

AIDS 0.524 0.996 0.687 0.691
COX2 0.523 0.987 0.684 0.867
DHFR 0.555 0.977 0.708 0.765
ENZYMES 0.501 1.000 0.667 0.630
PROTEINS_full 0.540 0.998 0.701 0.815
Citeseer 0.788 0.991 0.878 0.959
Cora 0.777 0.966 0.861 0.929
Pubmed 0.691 0.965 0.806 0.874

Table 5.15: Average AUC with standard deviation for Attack-1 with different GCN
structures on all the 8 datasets. Results with respect to the best performing shadow
dataset are reported.

Dataset Shadow Dataset AUC

AIDS PROTEINS_full 0.729 ± 0.013
COX2 Citeseer 0.760 ± 0.026
DHFR COX2 0.792 ± 0.005
ENZYMES AIDS 0.732 ± 0.009
PROTEINS_full COX2 0.808 ± 0.034
Citeseer Cora 0.924 ± 0.006
Cora Citeseer 0.916 ± 0.002
Pubmed Citeseer 0.840 ± 0.001

Table 5.16: Average Precision and Recall with standard deviation for Attack-1. Results
with respect to the best performing shadow dataset are reported.

Dataset Shadow Dataset Precision Recall

AIDS ENZYMES 0.725 ± 0.044 0.505 ± 0.110
COX2 PROTEINS_full 0.828 ± 0.013 0.686 ± 0.100
DHFR COX2 0.691 ± 0.015 0.704 ± 0.022
ENZYMES AIDS 0.639 ± 0.023 0.615 ± 0.046
PROTEINS_full Citeseer 0.750 ± 0.022 0.800 ± 0.055
Citeseer Cora 0.871 ± 0.005 0.958 ± 0.005
Cora Citeseer 0.854 ± 0.003 0.883 ± 0.008
Pubmed Cora 0.765 ± 0.009 0.897 ± 0.012
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Figure 5.7: The relationship between the ratio of attack training dataset in the attack
dataset and the attacks’ AUC scores on all the 8 datasets. The x-axis represents the
ratio and the y-axis represents the AUC score.

Table 5.17: Average Precision and Recall with standard deviation for Attack-3.

Dataset Precision Recall

AIDS 0.874 ± 0.006 0.966 ± 0.005
COX2 0.846 ± 0.004 0.922 ± 0.005
DHFR 0.847 ± 0.007 0.877 ± 0.009
ENZYMES 0.761 ± 0.003 0.871 ± 0.004
PROTEINS_full 0.856 ± 0.006 0.943 ± 0.004
Citeseer 0.895 ± 0.003 0.946 ± 0.005
Cora 0.858 ± 0.002 0.917 ± 0.008
Pubmed 0.869 ± 0.008 0.892 ± 0.014

Table 5.18: Average Precision and Recall with standard deviation for Attack-4. Results
with respect to the best performing shadow dataset are reported.

Dataset Shadow Dataset Precision Recall

AIDS DHFR 0.688 ± 0.013 0.628 ± 0.046
COX2 DHFR 0.787 ± 0.009 0.835 ± 0.033
DHFR COX2 0.726 ± 0.008 0.793 ± 0.015
ENZYMES AIDS 0.637 ± 0.025 0.683 ± 0.041
PROTEINS_full Pubmed 0.686 ± 0.045 0.955 ± 0.020
Citeseer Cora 0.874 ± 0.004 0.956 ± 0.004
Cora Citeseer 0.854 ± 0.002 0.896 ± 0.004
Pubmed Citeseer 0.790 ± 0.009 0.877 ± 0.012
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Table 5.19: Average Precision and Recall with standard deviation for Attack-5. Results
with respect to the best performing shadow dataset are reported.

Dataset Shadow Dataset Precision Recall

AIDS PROTEINS_full 0.854 ± 0.003 0.663 ± 0.005
COX2 DHFR 0.941 ± 0.004 0.923 ± 0.022
DHFR COX2 0.973 ± 0.004 0.942 ± 0.025
ENZYMES Citeseer 0.608 ± 0.005 0.675 ± 0.013
PROTEINS_full COX2 0.996 ± 0.003 0.061 ± 0.055
Citeseer Cora 0.888 ± 0.006 0.885 ± 0.005
Cora Citeseer 0.867 ± 0.006 0.892 ± 0.009
Pubmed Cora 0.824 ± 0.010 0.913 ± 0.014

Table 5.20: Average Precision and Recall with standard deviation for Attack-6.

Dataset Precision Recall

AIDS 0.907 ± 0.002 0.986 ± 0.002
COX2 0.935 ± 0.004 0.994 ± 0.001
DHFR 0.972 ± 0.001 0.995 ± 0.002
ENZYMES 0.770 ± 0.004 0.886 ± 0.009
PROTEINS_full 0.988 ± 0.002 0.998 ± 0.001
Citeseer 0.900 ± 0.008 0.933 ± 0.006
Cora 0.878 ± 0.003 0.930 ± 0.003
Pubmed 0.903 ± 0.004 0.920 ± 0.003

Table 5.21: Average Precision and Recall with standard deviation for Attack-7. Results
with respect to the best performing shadow dataset are reported.

Dataset Shadow Dataset Precision Recall

AIDS COX2 0.870 ± 0.003 0.781 ± 0.013
COX2 DHFR 0.941 ± 0.004 0.966 ± 0.009
DHFR COX2 0.972 ± 0.002 0.994 ± 0.005
ENZYMES AIDS 0.617 ± 0.012 0.693 ± 0.036
PROTEINS_full ENZYMES 0.955 ± 0.004 0.974 ± 0.010
Citeseer Cora 0.898 ± 0.003 0.913 ± 0.008
Cora Citeseer 0.874 ± 0.004 0.911 ± 0.005
Pubmed Citeseer 0.881 ± 0.006 0.901 ± 0.010
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6.1. MEMBERSHIP INFERENCE ATTACK

6.1 Membership Inference Attack

In membership inference, the adversary’s goal is to infer whether a given data sample
is used to train a target model. Right now, membership inference is one of the major
means to measure privacy risks of machine learning models [97, 118, 47, 94, 79, 104,
66, 51]. Shokri et al. [97] propose the first membership inference attack in the black-
box setting. Specifically, they rely on training multiple shadow models to mimic the
behavior of a target model to derive the data for training their attack models. Salem
et al. [94] further relax the assumptions made by Shokri et al. [97] and propose three
novel attacks. Later, Nasr et al. [79] conduct a comprehensive analysis of membership
privacy under both black-box and white-box settings for centralized as well as federated
learning scenarios. Song et al. [104] study the synergy between adversarial example
and membership inference and show that membership privacy risks increase when a
model owner applies measures to defend against adversarial example attacks. Li and
Zhang [69] and Choo et al. [20] concentrated on a more restricted attack scenario (called
label-only attack) where the target model only returns the predicted labels instead of
posteriors when the adversary queries the target model with given samples. Roughly
speaking, their proposed label-only attacks aim to infer a given sample’s membership
status via comparing a pre-defined threshold with the scale of adversarial perturbation
that needs to be added to the given sample to change the target model’s predicted label.
To mitigate membership inference, many defense mechanisms have been proposed [78,
94, 58]. Nasr et al. [78] introduce an adversarial regularization term into a target model’s
loss function. Salem et al. [94] propose to use dropout and model stacking to reduce
model overfitting, the main reason behind the success of membership inference. Jia et
al. [58] rely on adversarial examples to craft noise to add to a target sample’s posteriors.
Also, deferentially private methods [89, 80] are introduced to mitigate membership
inference.

6.2 Attribute Inference Attack

Another major type of privacy attack against ML models is attribute inference. Here, an
adversary aims to infer a specific sensitive attribute of a data sample from its represen-
tation generated by a target model [76, 102]. Melis et al. [76] propose the first attribute
inference attack against machine learning, in particular federated learning. Song and
Shmatikov [102] later show that attribute inference attacks are also effective against
another training paradigm, namely model partitioning. They further demonstrate that
the success of attribute inference is due to the overlearning behavior of ML models.
More recently, Song and Raghunathan [99] demonstrate that language models are also
vulnerable to attribute inference.

6.3 Other Attacks Against Machine Learning Models

Besides membership inference and attribute inference, there exist a plethora of other
attacks against ML models [100, 87, 55, 96, 84, 7, 93, 13, 68, 50]. One major attack
is adversarial example [9, 88, 106, 14], where an adversary aims to add imperceptible
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noises to data samples to evade a target ML model. Another representative attack
in this domain is model extraction, the goal of which is to learn a target model’s
parameters [107, 83, 54, 62] or hyperparameters [109, 81]. Model inversion attack is
another threat to the ML models [34, 33, 87, 76, 54], whereby the adversary aims to
recover the training data from target models.

6.4 Adversarial Attacks on Graph Neural Networks

Some recent studies [132, 10, 24, 133, 113, 110, 126] show that GNNs are vulnerable
to adversarial attacks. In particular, the adversary can fool GNNs via manipulating
the graph structure and/or node features. For instance, Zügner et al. [132] introduce
adversarial attacks to attributed graphs and focus on both training and testing phase.
In particular, their attacks target both node’s features and graph structure and show
that the node classification accuracy drops with a few perturbations. Bojchevski et
al. [10] analyze the vulnerability of node embeddings to graph structure perturbation via
solving a bi-level optimization problem based on eigenvalue perturbation theory. Zügner
and Günnemann [133] investigate training time attacks on GNNs for node classification
via treating the graph as a hyperparameter to optimize. Wang and Gong [110] propose
an attack to evade the collective classification based classifier via perturbing the graph
structure, which can also transfer to GNNs. Dai et al. [24] propose to fool the GNNs via
manipulating the combinatorial structure of data and try to learn generalizable attack
policy via reinforcement learning. Zhang et al. [126] propose a subgraph-based backdoor
attack to GNN-based graph classification. In particular, a GNN classifier outputs a
target label specified by an adversary when a predefined subgraph is injected to the
testing graph. These studies are different from our work since we aim to steal links
from GNNs.

To mitigate attacks, many defenses [11, 131, 113, 134] have been proposed. For
instance, Zhu et al. [131] propose to enhance the robustness of GCNs via using Gaussian
distributions in graph convolutional layers to mitigate the effects of adversarial attacks
and leveraged attention mechanism to impede the propagation of attacks. Zügner and
Günnemann [134] propose a learning principle that improves the robustness of the
GNNs and show provable robustness guarantees against nodes’ attributes perturba-
tion. Bojchevski et al. [10] propose to certify the robustness against graph structure
perturbation for a general class of models, e.g., GNNs, via exploiting connections to
PageRank and Markov decision processes. These defenses are designed to improve the
robustness of GNNs rather than prevent the privacy leakage of it. Note that there are
also some attacks and defenses on graph that focus on non-GNN models [19, 59]. For
instance, Chen et al. [19] propose attacks that mislead the behavior of the graph-cluster
algorithm and show some practical defenses. Jia et al. [59] propose a certified defense
that is based on randomized smoothing to defend against adversarial structural attacks
to community detection.
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Machine learning (ML) has achieved great success in various real-world applica-
tions. To handle the labeled data shortage and complex data form (e.g., graphs),
different ML paradigms have been proposed. Despite being popular, ML models are
threatened by various privacy attacks. In this dissertation, we investigate the poten-
tial privacy risks stemming from three ML paradigms, i.e., semi-supervised learning,
self-supervised learning, and graph neural networks. Concretely, we perform (1) a
new data augmentation-based membership inference attack against semi-supervised
learning, which outperforms existing membership inference attacks, (2) a systematic
privacy measurement against self-supervised learning through the lens of membership
inference attacks and attribute inference attacks, and (3) a new attack against graph
neural networks, namely link stealing attack, where the adversary can infer whether
two nodes in the training data are linked or not. Besides introducing the attacks, we
also introduce different defense mechanisms to mitigate the potential privacy leakage.

The three works presented in the dissertation are resulting in three peer-reviewed
publications [P2, P1, P3]. Each work investigates the privacy risk stemming from a new
ML paradigm.

Our first work [P1] investigates the privacy leakage stemming from semi-supervised
learning through the lens of membership inference attacks. In Chapter 3, we propose
the first data augmentation-based membership inference attack that is tailored to the
training paradigm of SSL methods. Extensive evaluations show that the proposed
attack outperforms existing attacks that are extended to the SSL settings. Also, we
discover that the effectiveness of membership inference attacks against SSL is not
credited to the commonly believed overfitting level of the model but is related to the
model prediction’s distinguishable entropy distributions for members and non-members.
To remedy the attacks, we investigate several defense mechanisms and discover that
early-stopping-based defense achieves the best trade-off between model utility and
membership privacy.

Our second work [P2] quantifies the privacy leakage of contrastive learning, the most
representative self-supervised learning paradigm. In Chapter 4, we consider two attacks,
i.e., membership inference attacks and attribute inference attacks. We observe that,
compared to supervised models, contrastive models are less vulnerable to membership
inference attacks. This is because contrastive models are less prone to overfitting
and the loss distribution of members and non-members is similar, which increases the
membership privacy. On the other hand, we discover that contrastive models are more
vulnerable to attribute inference attacks than supervised models. This is because the
model trained in a contrastive way can generate more informative representations that
contain rich and expressive information about the original data samples, which can
be exploited for more effective attribute inference attacks. To mitigate the attribute
inference risk, we propose the first privacy-preserving contrastive learning mechanism,
which is able to protect the trained contrastive models from attribute inference attacks
without jeopardizing their membership privacy and model utility.

Different from the first two works that focus on image data. Our third work [P3]
investigates the privacy leakage from ML models (GNNs) trained with graph data. In
Chapter 5, we propose the first attacks to steal a graph from the outputs of a GNN
model that is trained on the graph. Concretely, given a black-box access to a GNN
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model, our attacks can infer whether there exists a link between any pair of nodes in the
graph used to train the model. We call our attacks link stealing attacks. We propose
a threat model to systematically characterize an adversary’s background knowledge
along three dimensions which in total leads to a comprehensive taxonomy of 8 different
link stealing attacks. We propose multiple novel methods to realize these 8 attacks.
Extensive experiments on 8 real-world datasets show that our attacks are effective at
stealing links, e.g., AUC (area under the ROC curve) is above 0.95 in multiple cases.
Our results indicate that the outputs of a GNN model reveal rich information about
the structure of the graph used to train the model.

Future Research Directions: This dissertation conducts research that sheds some
light on the privacy risks of emerging machine learning paradigms. And we would like
to discuss some future research directions.

Firstly, in this dissertation, we mainly focus on the privacy risks of training data.
However, the privacy risk of the model itself should also be taken into account as it may
take a huge effort in terms of collecting the data and training the model. Model stealing
attacks [107, 83, 73] are a major threat to model privacy whereby the adversary aims to
reproduce the functionality of the target model with only (black-box) query access to it.
A successful model stealing attack may not only compromise the intellectual property of
the model owner but also serve as a stepping stone for further attacks. Our preliminary
work [S9, S7] shows that pre-trained image encoders and GNNs are vulnerable to model
stealing attacks. We also explore possible protection on pre-trained image encoders
against model stealing attacks [S1]. For future work, it would be worth exploring
more effective model stealing attacks as well as the countermeasures on emerging ML
paradigms.

Secondly, there exist different types of privacy attacks such as membership inference,
attribute inference, model stealing, etc. However, those attacks leverage a variety
of strategies and are conducted in different models/datasets/settings. Also, different
attacks are studied mainly in isolation, which lacks a holistic understanding of the risks
caused by these attacks. The aforementioned limitations hinder the progress of new
research in this domain and pose a challenge for practitioners to appropriately select
optimal attack or defense strategies. Hence, as a future research direction, we plan
to build the benchmark tool for different privacy attacks and defenses to have a more
comprehensive overview of a model’s privacy risk. Also, current privacy assessments
mainly rely on quantifying the performance of different attacks on the target model.
Therefore, another purpose for the benchmark tool is to develop a more simplified metric
to represent the privacy leakage of the target model. Moreover, this metric can be used
to jointly train the target model to improve its robustness against different attacks.

Thirdly, state-of-the-art ML paradigms including text-to-image generation models
(e.g., DALL·E2 and Stable Diffusion) and large language models (e.g., ChatGPT) have
shown great potential in generating realistic content. Besides privacy risks, these models
also raise concerns about the misuse of the generated content (images or texts). For
instance, people can use text-to-image generation models to generate fake but realistic
images for propaganda. Also, large language models like ChatGPT can be used to
generate assignments, scientific papers, or even dissertations, making a fair judgment
impossible. Therefore, it is essential to develop effective detection and attribution
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methods against these models. One promising direction is to build robust classifiers to
distinguish the generated contents from the real ones. Another solution is to integrate
a watermarking module into the content generation process so that every generated
content would contain a watermark that can be easily traced.

101





Bibliography

[P1] He, X., Liu, H., Gong, N. Z., and Zhang, Y. Semi-Leak: Membership Inference
Attacks Against Semi-supervised Learning. In: European Conference on Computer
Vision (ECCV). Springer, 2022, 365–381.

[P2] He, X. and Zhang, Y. Quantifying and Mitigating Privacy Risks of Contrastive
Learning. In: ACM SIGSAC Conference on Computer and Communications
Security (CCS). ACM, 2021, 845–863.

[P3] He, X., Jia, J., Backes, M., Gong, N. Z., and Zhang, Y. Stealing Links from
Graph Neural Networks. In: USENIX Security Symposium (USENIX Security).
USENIX, 2021, 2669–2686.

Other Published Papers of the Author

[S1] Cong, T., He, X., and Zhang, Y. SSLGuard: A Watermarking Scheme for Self-
supervised Learning Pre-trained Encoders. In: ACM SIGSAC Conference on
Computer and Communications Security (CCS). ACM, 2022, 579–593.

[S2] Li, Z., Liu, Y., He, X., Yu, N., Backes, M., and Zhang, Y. Auditing Membership
Leakages of Multi-Exit Networks. In: ACM SIGSAC Conference on Computer
and Communications Security (CCS). ACM, 2022, 1917–1931.

[S3] Liu, Y., Wen, R., He, X., Salem, A., Zhang, Z., Backes, M., Cristofaro, E. D.,
Fritz, M., and Zhang, Y. ML-Doctor: Holistic Risk Assessment of Inference
Attacks Against Machine Learning Models. In: USENIX Security Symposium
(USENIX Security). USENIX, 2022, 4525–4542.

[S4] Ma, Y., Zhang, Z., Yu, N., He, X., Backes, M., Shen, Y., and Zhang, Y. Generated
Graph Detection. In: International Conference on Machine Learning (ICML).
PMLR, 2023.

[S5] Qu, Y., He, X., Pierson, S., Backes, M., Zhang, Y., and Zannettou, S. On the
Evolution of (Hateful) Memes by Means of Multimodal Contrastive Learning.
In: IEEE Symposium on Security and Privacy (S&P). IEEE, 2023.

[S6] Qu, Y., Shen, X., He, X., Backes, M., Zannettou, S., and Zhang, Y. Unsafe
Diffusion: On the Generation of Unsafe Images and Hateful Memes From Text-To-
Image Models. In: ACM SIGSAC Conference on Computer and Communications
Security (CCS). ACM, 2023.

103



BIBLIOGRAPHY

[S7] Sha, Z., He, X., Yu, N., Backes, M., and Zhang, Y. Can’t Steal? Cont-Steal!
Contrastive Stealing Attacks Against Image Encoders. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE, 2023.

[S8] Shen, X., He, X., Backes, M., Blackburn, J., Zannettou, S., and Zhang, Y. On
Xing Tian and the Perseverance of Anti-China Sentiment Online. In: International
Conference on Web and Social Media (ICWSM). AAAI, 2022, 944–955.

[S9] Shen, Y., He, X., Han, Y., and Zhang, Y. Model Stealing Attacks Against
Inductive Graph Neural Networks. In: IEEE Symposium on Security and Privacy
(S&P). IEEE, 2022, 1175–1192 (The first two authors made equal contribution).

[S10] Yang, Z., He, X., Li, Z., Backes, M., Humbert, M., Berrang, P., and Zhang,
Y. Data Poisoning Attacks Against Multimodal Encoders. In: International
Conference on Machine Learning (ICML). PMLR, 2023.

[S11] Zhang, B., He, X., Shen, Y., Wang, T., and Zhang, Y. A Plot is Worth a
Thousand Words: Model Information Stealing Attacks via Scientific Plots. In:
USENIX Security Symposium (USENIX Security). USENIX, 2023.

Other Technical Reports of the Author

[T1] He, X., Li, Z., Xu, W., Cornelius, C., and Zhang, Y. Membership-Doctor: Compre-
hensive Assessment of Membership Inference Against Machine Learning Models.
CoRR abs/2208.10445 (2022).

[T2] He, X., Wen, R., Wu, Y., Backes, M., Shen, Y., and Zhang, Y. Node-Level Member-
ship Inference Attacks Against Graph Neural Networks. CoRR abs/2102.05429
(2021).

[T3] Sha, Z., He, X., Berrang, P., Humbert, M., and Zhang, Y. Fine-Tuning Is All
You Need to Mitigate Backdoor Attacks. CoRR abs/2212.09067 (2022).

Other references

[1] https://github.com/pytorch/opacus.
[2] https://www.cs.toronto.edu/~kriz/cifar.html.
[3] https : / / github . com / Trusted - AI / adversarial - robustness -

toolbox.
[4] Abadi, M., Chu, A., Goodfellow, I., McMahan, B., Mironov, I., Talwar, K., and

Zhang, L. Deep Learning with Differential Privacy. In: ACM SIGSAC Conference
on Computer and Communications Security (CCS). ACM, 2016, 308–318.

[5] Atwood, J. and Towsley, D. Diffusion-Convolutional Neural Networks. In: Annual
Conference on Neural Information Processing Systems (NIPS). NIPS, 2016, 1993–
2001.

[6] Backes, M., Humbert, M., Pang, J., and Zhang, Y. walk2friends: Inferring Social
Links from Mobility Profiles. In: ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, 2017, 1943–1957.

104

https://github.com/pytorch/opacus
https://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/Trusted-AI/adversarial-robustness-toolbox
https://github.com/Trusted-AI/adversarial-robustness-toolbox


OTHER REFERENCES

[7] Béguelin, S. Z., Wutschitz, L., Tople, S., Rühle, V., Paverd, A., Ohrimenko, O.,
Köpf, B., and Brockschmidt, M. Analyzing Information Leakage of Updates
to Natural Language Models. In: ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, 2020, 363–375.

[8] Berthelot, D., Carlini, N., Goodfellow, I. J., Papernot, N., Oliver, A., and Raffel,
C. MixMatch: A Holistic Approach to Semi-Supervised Learning. In: Annual
Conference on Neural Information Processing Systems (NeurIPS). NeurIPS,
2019.

[9] Biggio, B., Corona, I., Maiorca, D., Nelson, B., Srndic, N., Laskov, P., Giacinto, G.,
and Roli, F. Evasion Attacks against Machine Learning at Test Time. In: European
Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML/PKDD). Springer, 2013, 387–402.

[10] Bojchevski, A. and Günnemann, S. Adversarial Attacks on Node Embeddings
via Graph Poisoning. In: International Conference on Machine Learning (ICML).
PMLR, 2019, 695–704.

[11] Bojchevski, A. and Günnemann, S. Certifiable Robustness to Graph Pertur-
bations. In: Annual Conference on Neural Information Processing Systems
(NeurIPS). NeurIPS, 2019, 8317–8328.

[12] Borgwardt, K. M., Ong, C. S., Schönauer, S., Vishwanathan, S. V. N., Smola, A. J.,
and Kriegel, H.-P. Protein Function Prediction via Graph Kernels. Bioinformatics
(2005).

[13] Carlini, N., Tramèr, F., Wallace, E., Jagielski, M., Herbert-Voss, A., Lee, K.,
Roberts, A., Brown, T. B., Song, D., Erlingsson, Ú., Oprea, A., and Raffel, C.
Extracting Training Data from Large Language Models. In: USENIX Security
Symposium (USENIX Security). USENIX, 2021, 2633–2650.

[14] Carlini, N. and Wagner, D. Towards Evaluating the Robustness of Neural Net-
works. In: IEEE Symposium on Security and Privacy (S&P). IEEE, 2017, 39–
57.

[15] Chen, D., Yu, N., Zhang, Y., and Fritz, M. GAN-Leaks: A Taxonomy of Member-
ship Inference Attacks against Generative Models. In: ACM SIGSAC Conference
on Computer and Communications Security (CCS). ACM, 2020, 343–362.

[16] Chen, M., Zhang, Z., Wang, T., Backes, M., Humbert, M., and Zhang, Y. Graph
Unlearning. In: ACM SIGSAC Conference on Computer and Communications
Security (CCS). ACM, 2022.

[17] Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. E. A Simple Framework
for Contrastive Learning of Visual Representations. In: International Conference
on Machine Learning (ICML). PMLR, 2020, 1597–1607.

[18] Chen, X., Fan, H., Girshick, R. B., and He, K. Improved Baselines with Momen-
tum Contrastive Learning. CoRR abs/2003.04297 (2020).

105



BIBLIOGRAPHY

[19] Chen, Y., Nadji, Y., Kountouras, A., Monrose, F., Perdisci, R., Antonakakis, M.,
and Vasiloglou, N. Practical Attacks Against Graph-based Clustering. In: ACM
SIGSAC Conference on Computer and Communications Security (CCS). ACM,
2017, 1125–1142.

[20] Choo, C. A. C., Tramèr, F., Carlini, N., and Papernot, N. Label-Only Membership
Inference Attacks. In: International Conference on Machine Learning (ICML).
PMLR, 2021, 1964–1974.

[21] Coates, A., Ng, A. Y., and Lee, H. An Analysis of Single-Layer Networks
in Unsupervised Feature Learning. In: International Conference on Artificial
Intelligence and Statistics (AISTATS). JMLR, 2011, 215–223.

[22] Coavoux, M., Narayan, S., and Cohen, S. B. Privacy-preserving Neural Repre-
sentations of Text. In: Conference on Empirical Methods in Natural Language
Processing (EMNLP). ACL, 2018, 1–10.

[23] Cubuk, E. D., Zoph, B., Shlens, J., and Le, Q. RandAugment: Practical Auto-
mated Data Augmentation with a Reduced Search Space. In: Annual Conference
on Neural Information Processing Systems (NeurIPS). NeurIPS, 2020, 18613–
18624.

[24] Dai, H., Li, H., Tian, T., Huang, X., Wang, L., Zhu, J., and Song, L. Adversarial
Attack on Graph Structured Data. In: International Conference on Machine
Learning (ICML). PMLR, 2018, 1123–1132.

[25] Defferrard, M., Bresson, X., and Vandergheynst, P. Convolutional Neural Net-
works on Graphs with Fast Localized Spectral Filtering. In: Annual Conference
on Neural Information Processing Systems (NIPS). NIPS, 2016, 3837–3845.

[26] Dobson, P. D. and Doig, A. J. Distinguishing Enzyme Structures from Non-
Enzymes without Alignments. Journal of Molecular Biology (2003).

[27] Dong, Y., Johnson, R. A., and Chawla, N. V. Will This Paper Increase Your
h-index?: Scientific Impact Prediction. In: ACM International Conference on
Web Search and Data Mining (WSDM). ACM, 2015, 149–158.

[28] Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., and Bresson, X. Bench-
marking Graph Neural Networks. CoRR abs/2003.00982 (2020).

[29] Edwards, H. and Storkey, A. J. Censoring Representations with an Adversary.
In: International Conference on Learning Representations (ICLR). 2016.

[30] Elazar, Y. and Goldberg, Y. Adversarial Removal of Demographic Attributes
from Text Data. In: Conference on Empirical Methods in Natural Language
Processing (EMNLP). ACL, 2018, 11–21.

[31] Errica, F., Podda, M., Bacciu, D., and Micheli, A. A Fair Comparison of Graph
Neural Networks for Graph Classification. In: International Conference on Learn-
ing Representations (ICLR). 2020.

[32] Fan, W., Ma, Y., Li, Q., He, Y., Zhao, Y. E., Tang, J., and Yin, D. Graph Neural
Networks for Social Recommendation. In: The Web Conference (WWW). ACM,
2019, 417–426.

106



OTHER REFERENCES

[33] Fredrikson, M., Jha, S., and Ristenpart, T. Model Inversion Attacks that Ex-
ploit Confidence Information and Basic Countermeasures. In: ACM SIGSAC
Conference on Computer and Communications Security (CCS). ACM, 2015,
1322–1333.

[34] Fredrikson, M., Lantz, E., Jha, S., Lin, S., Page, D., and Ristenpart, T. Privacy in
Pharmacogenetics: An End-to-End Case Study of Personalized Warfarin Dosing.
In: USENIX Security Symposium (USENIX Security). USENIX, 2014, 17–32.

[35] Ganin, Y. and Lempitsky, V. S. Unsupervised Domain Adaptation by Backpropa-
gation. In: International Conference on Machine Learning (ICML). JMLR, 2015,
1180–1189.

[36] Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. Neu-
ral Message Passing for Quantum Chemistry. In: International Conference on
Machine Learning (ICML). PMLR, 2017, 1263–1272.

[37] Giorgi, J. M., Nitski, O., Wang, B., and Bader, G. D. DeCLUTR: Deep Con-
trastive Learning for Unsupervised Textual Representations. In: Annual Meeting
of the Association for Computational Linguistics and International Joint Confer-
ence on Natural Language Processing (ACL/IJCNLP). ACL, 2021, 879–895.

[38] Gong, N. Z. and Liu, B. You are Who You Know and How You Behave: Attribute
Inference Attacks via Users’ Social Friends and Behaviors. In: USENIX Security
Symposium (USENIX Security). USENIX, 2016, 979–995.

[39] Gong, N. Z., Talwalkar, A., Mackey, L. W., Huang, L., Shin, E. C. R., Stefanov,
E., Shi, E., and Song, D. Joint Link Prediction and Attribute Inference Using
a Social-Attribute Network. ACM Transactions on Intelligent Systems and
Technology (2014).

[40] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. Generative Adversarial Nets. In: Annual Conference
on Neural Information Processing Systems (NIPS). NIPS, 2014, 2672–2680.

[41] Goyal, P. and Ferrara, E. Graph embedding techniques, applications, and perfor-
mance: A survey. Knowledge Based Systems (2018).

[42] Grover, A. and Leskovec, J. node2vec: Scalable Feature Learning for Networks.
In: ACM Conference on Knowledge Discovery and Data Mining (KDD). ACM,
2016, 855–864.

[43] Gutmann, M. and Hyvärinen, A. Noise-Contrastive Estimation: A New Estima-
tion Principle for Unnormalized Statistical Models. In: International Conference
on Artificial Intelligence and Statistics (AISTATS). JMLR, 2010, 297–304.

[44] Hagestedt, I., Zhang, Y., Humbert, M., Berrang, P., Tang, H., Wang, X., and
Backes, M. MBeacon: Privacy-Preserving Beacons for DNA Methylation Data. In:
Network and Distributed System Security Symposium (NDSS). Internet Society,
2019.

[45] Hamilton, W. L., Ying, Z., and Leskovec, J. Inductive Representation Learning on
Large Graphs. In: Annual Conference on Neural Information Processing Systems
(NIPS). NIPS, 2017, 1025–1035.

107



BIBLIOGRAPHY

[46] Hay, M., Li, C., Miklau, G., and Jensen, D. D. Accurate Estimation of the Degree
Distribution of Private Networks. In: International Conference on Data Mining
(ICDM). IEEE, 2009, 169–178.

[47] Hayes, J., Melis, L., Danezis, G., and Cristofaro, E. D. LOGAN: Evaluating
Privacy Leakage of Generative Models Using Generative Adversarial Networks.
Privacy Enhancing Technologies Symposium (2019).

[48] He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. B. Momentum Contrast for
Unsupervised Visual Representation Learning. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, 2020, 9726–9735.

[49] He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual Learning for Image
Recognition. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, 2016, 770–778.

[50] He, X., Jia, J., Backes, M., Gong, N. Z., and Zhang, Y. Stealing Links from
Graph Neural Networks. In: USENIX Security Symposium (USENIX Security).
USENIX, 2021, 2669–2686.

[51] He, X., Wen, R., Wu, Y., Backes, M., Shen, Y., and Zhang, Y. Node-Level Member-
ship Inference Attacks Against Graph Neural Networks. CoRR abs/2102.05429
(2021).

[52] He, X. and Zhang, Y. Quantifying and Mitigating Privacy Risks of Contrastive
Learning. In: ACM SIGSAC Conference on Computer and Communications
Security (CCS). ACM, 2021, 845–863.

[53] Hjelm, R. D., Fedorov, A., Lavoie-Marchildon, S., Grewal, K., Bachman, P.,
Trischler, A., and Bengio, Y. Learning Deep Representations by Mutual Infor-
mation Estimation and Maximization. In: International Conference on Learning
Representations (ICLR). 2019.

[54] Jagielski, M., Carlini, N., Berthelot, D., Kurakin, A., and Papernot, N. High
Accuracy and High Fidelity Extraction of Neural Networks. In: USENIX Security
Symposium (USENIX Security). USENIX, 2020, 1345–1362.

[55] Jagielski, M., Oprea, A., Biggio, B., Liu, C., Nita-Rotaru, C., and Li, B. Manipu-
lating Machine Learning: Poisoning Attacks and Countermeasures for Regression
Learning. In: IEEE Symposium on Security and Privacy (S&P). IEEE, 2018,
19–35.

[56] Jayaraman, B. and Evans, D. Evaluating Differentially Private Machine Learning
in Practice. In: USENIX Security Symposium (USENIX Security). USENIX,
2019, 1895–1912.

[57] Jia, J. and Gong, N. Z. AttriGuard: A Practical Defense Against Attribute Infer-
ence Attacks via Adversarial Machine Learning. In: USENIX Security Symposium
(USENIX Security). USENIX, 2018, 513–529.

[58] Jia, J., Salem, A., Backes, M., Zhang, Y., and Gong, N. Z. MemGuard: Defending
against Black-Box Membership Inference Attacks via Adversarial Examples. In:
ACM SIGSAC Conference on Computer and Communications Security (CCS).
ACM, 2019, 259–274.

108



OTHER REFERENCES

[59] Jia, J., Wang, B., Cao, X., and Gong, N. Z. Certified Robustness of Commu-
nity Detection against Adversarial Structural Perturbation via Randomized
Smoothing. In: The Web Conference (WWW). ACM, 2020, 2718–2724.

[60] Jiao, Y., Xiong, Y., Zhang, J., Zhang, Y., Zhang, T., and Zhu, Y. Sub-graph
Contrast for Scalable Self-Supervised Graph Representation Learning. CoRR
abs/2009.10273 (2020).

[61] Kipf, T. N. and Welling, M. Semi-Supervised Classification with Graph Con-
volutional Networks. In: International Conference on Learning Representations
(ICLR). 2017.

[62] Krishna, K., Tomar, G. S., Parikh, A. P., Papernot, N., and Iyyer, M. Thieves
on Sesame Street! Model Extraction of BERT-based APIs. In: International
Conference on Learning Representations (ICLR). 2020.

[63] Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet Classification with
Deep Convolutional Neural Networks. In: Annual Conference on Neural Infor-
mation Processing Systems (NIPS). NIPS, 2012, 1106–1114.

[64] Lee, D.-H. Pseudo-Label: The Simple and Efficient Semi-Supervised Learning
Method for Deep Neural Networks. In: ICML Workshop on Challenges in Repre-
sentation Learning (WREPL). ICML, 2013.

[65] Lee, J. B., Rossi, R. A., Kim, S., Ahmed, N. K., and Koh, E. Attention Models
in Graphs: A Survey. ACM Transactions on Knowledge Discovery from Data
(2019).

[66] Leino, K. and Fredrikson, M. Stolen Memories: Leveraging Model Memoriza-
tion for Calibrated White-Box Membership Inference. In: USENIX Security
Symposium (USENIX Security). USENIX, 2020, 1605–1622.

[67] Li, J., Li, N., and Ribeiro, B. Membership Inference Attacks and Defenses in
Classification Models. In: ACM Conference on Data and Application Security
and Privacy (CODASPY). ACM, 2021, 5–16.

[68] Li, S., Ma, S., Xue, M., and Zhao, B. Z. H. Deep Learning Backdoors. CoRR
abs/2007.08273 (2020).

[69] Li, Z. and Zhang, Y. Membership Leakage in Label-Only Exposures. In: ACM
SIGSAC Conference on Computer and Communications Security (CCS). ACM,
2021, 880–895.

[70] Liben-Nowell, D. and Kleinberg, J. The Link-prediction Problem for Social Net-
works. Journal of the American Society for Information Science and Technology
(2007).

[71] Liu, H., Jia, J., Qu, W., and Gong, N. Z. EncoderMI: Membership Inference
against Pre-trained Encoders in Contrastive Learning. In: ACM SIGSAC Con-
ference on Computer and Communications Security (CCS). ACM, 2021.

[72] Liu, X., Zhang, F., Hou, Z., Wang, Z., Mian, L., Zhang, J., and Tang, J. Self-
supervised Learning: Generative or Contrastive. CoRR abs/2006.08218 (2020).

109



BIBLIOGRAPHY

[73] Liu, Y., Jia, J., Liu, H., and Gong, N. Z. StolenEncoder: Stealing Pre-trained
Encoders in Self-supervised Learning. In: ACM SIGSAC Conference on Computer
and Communications Security (CCS). ACM, 2022, 2115–212.

[74] Liu, Z., Luo, P., Wang, X., and Tang, X. Deep Learning Face Attributes in the
Wild. In: IEEE International Conference on Computer Vision (ICCV). IEEE,
2015, 3730–3738.

[75] Maaten, L. van der and Hinton, G. Visualizing Data using t-SNE. Journal of
Machine Learning Research (2008).

[76] Melis, L., Song, C., Cristofaro, E. D., and Shmatikov, V. Exploiting Unintended
Feature Leakage in Collaborative Learning. In: IEEE Symposium on Security
and Privacy (S&P). IEEE, 2019, 497–512.

[77] Miyato, T., Maeda, S., Koyama, M., and Ishii, S. Virtual Adversarial Training:
A Regularization Method for Supervised and Semi-Supervised Learning. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2019).

[78] Nasr, M., Shokri, R., and Houmansadr, A. Machine Learning with Membership
Privacy using Adversarial Regularization. In: ACM SIGSAC Conference on
Computer and Communications Security (CCS). ACM, 2018, 634–646.

[79] Nasr, M., Shokri, R., and Houmansadr, A. Comprehensive Privacy Analysis
of Deep Learning: Passive and Active White-box Inference Attacks against
Centralized and Federated Learning. In: IEEE Symposium on Security and
Privacy (S&P). IEEE, 2019, 1021–1035.

[80] Nasr, M., Song, S., Thakurta, A., Papernot, N., and Carlini, N. Adversary
Instantiation: Lower Bounds for Differentially Private Machine Learning. In:
IEEE Symposium on Security and Privacy (S&P). IEEE, 2021.

[81] Oh, S. J., Augustin, M., Schiele, B., and Fritz, M. Towards Reverse-Engineering
Black-Box Neural Networks. In: International Conference on Learning Represen-
tations (ICLR). 2018.

[82] Oord, A. van den, Li, Y., and Vinyals, O. Representation Learning with Con-
trastive Predictive Coding. CoRR abs/1807.03748 (2018).

[83] Orekondy, T., Schiele, B., and Fritz, M. Knockoff Nets: Stealing Functionality
of Black-Box Models. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, 2019, 4954–4963.

[84] Pan, X., Zhang, M., Ji, S., and Yang, M. Privacy Risks of General-Purpose
Language Models. In: IEEE Symposium on Security and Privacy (S&P). IEEE,
2020, 1471–1488.

[85] Pang, J. and Zhang, Y. DeepCity: A Feature Learning Framework for Mining
Location Check-Ins. In: International Conference on Web and Social Media
(ICWSM). AAAI, 2017, 652–655.

[86] Pang, J. and Zhang, Y. Quantifying Location Sociality. In: ACM Conference on
Hypertext and Social Media (HT). ACM, 2017, 145–154.

110



OTHER REFERENCES

[87] Papernot, N., McDaniel, P., Sinha, A., and Wellman, M. SoK: Towards the Science
of Security and Privacy in Machine Learning. In: IEEE European Symposium on
Security and Privacy (Euro S&P). IEEE, 2018, 399–414.

[88] Papernot, N., McDaniel, P. D., Jha, S., Fredrikson, M., Celik, Z. B., and Swami,
A. The Limitations of Deep Learning in Adversarial Settings. In: IEEE European
Symposium on Security and Privacy (Euro S&P). IEEE, 2016, 372–387.

[89] Papernot, N., Song, S., Mironov, I., Raghunathan, A., Talwar, K., and Erlings-
son, Ú. Scalable Private Learning with PATE. In: International Conference on
Learning Representations (ICLR). 2018.

[90] Raval, N., Machanavajjhala, A., and Pan, J. Olympus: Sensor Privacy through
Utility Aware Obfuscation. Privacy Enhancing Technologies Symposium (2019).

[91] Rosvall, M. and Bergstrom, C. T. Maps of Random Walks on Complex Networks
Reveal Community Structure. Proceedings of the National Academy of Sciences
(2008).

[92] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. ImageNet
Large Scale Visual Recognition Challenge. CoRR abs/1409.0575 (2015).

[93] Salem, A., Bhattacharya, A., Backes, M., Fritz, M., and Zhang, Y. Updates-Leak:
Data Set Inference and Reconstruction Attacks in Online Learning. In: USENIX
Security Symposium (USENIX Security). USENIX, 2020, 1291–1308.

[94] Salem, A., Zhang, Y., Humbert, M., Berrang, P., Fritz, M., and Backes, M.
ML-Leaks: Model and Data Independent Membership Inference Attacks and
Defenses on Machine Learning Models. In: Network and Distributed System
Security Symposium (NDSS). Internet Society, 2019.

[95] Sandler, M., Howard, A. G., Zhu, M., Zhmoginov, A., and Chen, L. MobileNetV2:
Inverted Residuals and Linear Bottlenecks. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, 2018, 4510–4520.

[96] Schuster, R., Song, C., Tromer, E., and Shmatikov, V. You Autocomplete Me:
Poisoning Vulnerabilities in Neural Code Completion. CoRR abs/2007.02220
(2020).

[97] Shokri, R., Stronati, M., Song, C., and Shmatikov, V. Membership Inference
Attacks Against Machine Learning Models. In: IEEE Symposium on Security
and Privacy (S&P). IEEE, 2017, 3–18.

[98] Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H., Raffel, C., Cubuk,
E. D., Kurakin, A., and Li, C. FixMatch: Simplifying Semi-Supervised Learning
with Consistency and Confidence. In: Annual Conference on Neural Information
Processing Systems (NeurIPS). NeurIPS, 2020.

[99] Song, C. and Raghunathan, A. Information Leakage in Embedding Models. In:
ACM SIGSAC Conference on Computer and Communications Security (CCS).
ACM, 2020, 377–390.

111



BIBLIOGRAPHY

[100] Song, C., Ristenpart, T., and Shmatikov, V. Machine Learning Models that
Remember Too Much. In: ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS). ACM, 2017, 587–601.

[101] Song, C. and Shmatikov, V. Auditing Data Provenance in Text-Generation
Models. In: ACM Conference on Knowledge Discovery and Data Mining (KDD).
ACM, 2019, 196–206.

[102] Song, C. and Shmatikov, V. Overlearning Reveals Sensitive Attributes. In:
International Conference on Learning Representations (ICLR). 2020.

[103] Song, L. and Mittal, P. Systematic Evaluation of Privacy Risks of Machine
Learning Models. In: USENIX Security Symposium (USENIX Security). USENIX,
2021.

[104] Song, L., Shokri, R., and Mittal, P. Privacy Risks of Securing Machine Learning
Models against Adversarial Examples. In: ACM SIGSAC Conference on Computer
and Communications Security (CCS). ACM, 2019, 241–257.

[105] Sutherland, J., O’Brien, L., and Weaver, D. SplineFitting with a Genetic Algo-
rithm: A Method for Developing Classification Structure Activity Relationships.
Journal of Chemical Information and Computer Sciences (2003).

[106] Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D., and McDaniel,
P. Ensemble Adversarial Training: Attacks and Defenses. In: International Con-
ference on Learning Representations (ICLR). 2017.

[107] Tramèr, F., Zhang, F., Juels, A., Reiter, M. K., and Ristenpart, T. Stealing
Machine Learning Models via Prediction APIs. In: USENIX Security Symposium
(USENIX Security). USENIX, 2016, 601–618.

[108] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y.
Graph Attention Networks. In: International Conference on Learning Represen-
tations (ICLR). 2018.

[109] Wang, B. and Gong, N. Z. Stealing Hyperparameters in Machine Learning. In:
IEEE Symposium on Security and Privacy (S&P). IEEE, 2018, 36–52.

[110] Wang, B. and Gong, N. Z. Attacking Graph-based Classification via Manipu-
lating the Graph Structure. In: ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, 2019, 2023–2040.

[111] Wang, B., Jia, J., and Gong, N. Z. Graph-based Security and Privacy Analytics
via Collective Classification with Joint Weight Learning and Propagation. In:
Network and Distributed System Security Symposium (NDSS). Internet Society,
2019.

[112] Watson, L., Guo, C., Cormode, G., and Sablayrolles, A. On the Importance of
Difficulty Calibration in Membership Inference Attacks. CoRR abs/2111.08440
(2021).

[113] Wu, H., Wang, C., Tyshetskiy, Y., Docherty, A., Lu, K., and Zhu, L. Adver-
sarial Examples for Graph Data: Deep Insights into Attack and Defense. In:
International Joint Conferences on Artifical Intelligence (IJCAI). IJCAI, 2019,
4816–4823.

112



OTHER REFERENCES

[114] Wu, Z., Xiong, Y., Yu, S. X., and Lin, D. Unsupervised Feature Learning via
Non-Parametric Instance Discrimination. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, 2018, 3733–3742.

[115] Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu, P. S. A Comprehensive
Survey on Graph Neural Networks. IEEE Transactions on Neural Networks and
Learning Systems (2020).

[116] Xie, Q., Dai, Z., Du, Y., Hovy, E. H., and Neubig, G. Controllable Invariance
through Adversarial Feature Learning. In: Annual Conference on Neural Infor-
mation Processing Systems (NIPS). NIPS, 2017, 585–596.

[117] Xie, Q., Dai, Z., Hovy, E. H., Luong, T., and Le, Q. Unsupervised Data Augmen-
tation for Consistency Training. In: Annual Conference on Neural Information
Processing Systems (NeurIPS). NeurIPS, 2020.

[118] Yeom, S., Giacomelli, I., Fredrikson, M., and Jha, S. Privacy Risk in Machine
Learning: Analyzing the Connection to Overfitting. In: IEEE Computer Security
Foundations Symposium (CSF). IEEE, 2018, 268–282.

[119] You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., and Shen, Y. Graph Contrastive
Learning with Augmentations. In: Annual Conference on Neural Information
Processing Systems (NeurIPS). NeurIPS, 2020.

[120] Zagoruyko, S. and Komodakis, N. Wide Residual Networks. In: Proceedings of
the British Machine Vision Conference (BMVC). BMVA Press, 2016.

[121] Zhang, B., Wang, Y., Hou, W., Wu, H., Wang, J., Okumura, M., and Shinozaki,
T. FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo
Labeling. In: Annual Conference on Neural Information Processing Systems
(NeurIPS). NeurIPS, 2021, 18408–18419.

[122] Zhang, J., Cormode, G., Procopiuc, C. M., Srivastava, D., and Xiao, X. Pri-
vate Release of Graph Statistics using Ladder Functions. In: ACM SIGMOD
International Conference on Management of Data (SIGMOD). ACM, 2015, 731–
745.

[123] Zhang, Y. Language in Our Time: An Empirical Analysis of Hashtags. In: The
Web Conference (WWW). ACM, 2019, 2378–2389.

[124] Zhang, Y., Humbert, M., Surma, B., Manoharan, P., Vreeken, J., and Backes, M.
Towards Plausible Graph Anonymization. In: Network and Distributed System
Security Symposium (NDSS). Internet Society, 2020.

[125] Zhang, Y., Jia, R., Pei, H., Wang, W., Li, B., and Song, D. The Secret Revealer:
Generative Model-Inversion Attacks Against Deep Neural Networks. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020,
250–258.

[126] Zhang, Z., Jia, J., Wang, B., and Gong, N. Z. Backdoor Attacks to Graph Neural
Networks. In: ACM Symposium on Access Control Models and Technologies
(SACMAT). ACM, 2021, 15–26.

113



BIBLIOGRAPHY

[127] Zhang, Z., Song, Y., and Qi, H. Age Progression/Regression by Conditional
Adversarial Autoencoder. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, 2017, 4352–4360.

[128] Zhang, Z., Cui, P., and Zhu, W. Deep Learning on Graphs: A Survey. IEEE
Transactions on Knowledge and Data Engineering (2020).

[129] Zhou, B., Lapedriza, À., Khosla, A., Oliva, A., and Torralba, A. Places: A 10
Million Image Database for Scene Recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2018).

[130] Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., and Sun, M. Graph Neural
Networks: A Review of Methods and Applications. CoRR abs/1812.08434 (2018).

[131] Zhu, D., Zhang, Z., Cui, P., and Zhu, W. Robust Graph Convolutional Networks
Against Adversarial Attacks. In: ACM Conference on Knowledge Discovery and
Data Mining (KDD). ACM, 2019, 1399–1407.

[132] Zügner, D., Akbarnejad, A., and Günnemann, S. Adversarial Attacks on Neural
Networks for Graph Data. In: ACM Conference on Knowledge Discovery and
Data Mining (KDD). ACM, 2018, 2847–2856.

[133] Zügner, D. and Günnemann, S. Adversarial Attacks on Graph Neural Networks
via Meta Learning. In: International Conference on Learning Representations
(ICLR). 2019.

[134] Zügner, D. and Günnemann, S. Certifiable Robustness and Robust Training for
Graph Convolutional Networks. In: ACM Conference on Knowledge Discovery
and Data Mining (KDD). ACM, 2019, 246–256.

114


	Introduction
	Our Contributions
	Organization

	Preliminaries and Background
	Supervised Learning
	Semi-Supervised Learning
	Contrastive Learning
	Graph Neural Networks

	Semi-supervised Learning
	Introduction
	Conventional Membership Inference Attacks
	Threat Model
	Methodology

	Our Method
	Evaluation
	Experimental Setup
	Target Model Performance
	Membership Inference Attack Performance
	What Determines Membership Inference Attack in SSL
	Ablation Study (Attack Model)
	Ablation Study (Target Model)

	Discussion on Defenses
	Conclusion
	Appendix
	Data Augmentation
	Attack Performance with Different Numbers of Labeled Samples
	What Determines Membership Inference Attack in SSL with Different Numbers of Labeled Samples.
	Ablation Study: Number of Views
	Ablation Study: Similarity Function
	Ablation Study: Data Augmentation and Shadow Model Architecture
	Defense Evaluation


	Self-supervised Learning
	Introduction
	Membership Inference Attack
	Attack Definition and Threat Model
	Methodology
	Experimental Settings
	Results

	Attribute Inference Attack
	Attack Definition and Threat Model
	Methodology
	Experimental Setting
	Results

	Defense
	Methodology
	Experimental Setting
	Results

	Discussion
	Conclusion
	Appendix

	Graph Neural Networks
	Introduction
	Problem Formulation
	Threat Model
	Link Stealing Attack

	Attack Taxonomy
	Attack Methodologies
	Summary

	Evaluation
	Experimental Setup
	Attack Performance

	Conclusion and Future Work
	Appendix

	Related Work
	Membership Inference Attack
	Attribute Inference Attack
	Other Attacks Against Machine Learning Models
	Adversarial Attacks on Graph Neural Networks

	Summary and Conclusion

