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Abstract

Positioning is a fundamental issue in mobile robot applications, and it can be achieved in
multiple ways. Among these methods, triangulation based on angle measurements is widely
used, robust, and flexible. In this thesis, we present an original beacon-based angle mea-
surement system, an original triangulation algorithm, and a calibration method, which are
parts of an absolute robot positioning system in the 2D plane. Also, we develop a theoretical
model, useful for evaluating the performance of our system.

In the first part, we present the hardware system, named BeAMS, which introduces several
innovations. A simple infrared receiver is the main sensor for the angle measurements, and
the beacons are common infrared LEDs emitting an On-Off Keying signal containing the
beacon ID. Furthermore, the system does not require an additional synchronization channel
between the beacons and the robot. BeAMS introduces a new mechanism to measure angles:
it detects a beacon when it enters and leaves an angular window. This allows the sensor to
analyze the temporal evolution of the received signal inside the angular window. In our case,
this feature is used to code the beacon ID. Then, a theoretical framework for a thorough
performance analysis of BeAMS is provided. We establish the upper bound of the variance
and its exact evolution as a function of the angular window. Finally, we validate our theory
by means of simulated and experimental results.

The second part of the thesis is concerned with triangulation algorithms. Most triangu-
lation algorithms proposed so far have major limitations. For example, some of them need a
particular beacon ordering, have blind spots, or only work within the triangle defined by the
three beacons. More reliable methods exist, but they have an increasing complexity or they
require to handle certain spatial arrangements separately. Therefore, we have designed our
own triangulation algorithm, named ToTal, that natively works in the whole plane, and for
any beacon ordering. We also provide a comprehensive comparison between other algorithms,
and benchmarks show that our algorithm is faster and simpler than similar algorithms. In
addition to its inherent efficiency, our algorithm provides a useful and unique reliability mea-
sure, assessable anywhere in the plane, which can be used to identify pathological cases, or
as a validation gate in data fusion algorithms.

Finally, in the last part, we concentrate on the biases that affect the angle measurements.
We show that there are four sources of errors (or biases) resulting in inaccuracies in the
computed positions. Then, we establish a model of these errors, and we propose a complete
calibration procedure in order to reduce the final bias. Based on the results obtained with
our calibration setup, the angular RMS error of BeAMS has been evaluated to 0.4 deg with-
out calibration, and to 0.27 deg, after the calibration procedure. Even for the uncalibrated
hardware, BeAMS has a better performance than other prototypes found in the literature
and, when the system is calibrated, BeAMS is close to state of the art commercial systems.
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Résumé

Le positionnement constitue un problème fondamental dans les applications de robots mobiles. Il peut
être réalisé selon plusieurs méthodes. Parmi celles-ci, la triangulation basée sur des mesures d’angles
est largement utilisée, car robuste et flexible. Dans cette thèse, nous présentons un système de mesure
d’angles original reposant sur des balises, un algorithme de triangulation original et un procédé de
calibration qui font partie d’un système de positionnement absolu dans le plan 2D. En outre, nous
développons un cadre théorique utile afin d’évaluer les performances de notre système.

Dans la première partie, nous présentons le système matériel, nommé BeAMS, lequel introduit
plusieurs innovations. Un simple récepteur infrarouge constitue le capteur principal pour les mesures
d’angles, les balises sont de simples diodes infrarouges émettant un signal tout ou rien contenant un
identifiant. En outre, le système ne nécessite aucun canal de synchronisation entre les balises et le
robot. BeAMS introduit aussi un nouveau mécanisme pour mesurer les angles: il détecte une balise
quand il entre et sort d’une fenêtre angulaire. Ceci permet au capteur d’analyser l’évolution temporelle
du signal à l’intérieur de la fenêtre angulaire. Dans notre cas, ce mécanisme est utilisé pour coder
l’identifiant de la balise. Ensuite, nous développons un cadre théorique pour une étude approfondie des
performances de BeAMS. Nous établissons la limite supérieure de la variance ainsi que son évolution
exacte en fonction de la fenêtre angulaire. Enfin, nous validons notre théorie au moyen de simulations
et de résultats expérimentaux.

La deuxième partie de la thèse porte sur les algorithmes de triangulation. La majorité des algo-
rithmes de triangulation proposés jusqu’ici présentent des limites importantes. Par exemple, certains
d’entre eux nécessitent un agencement particulier des balises ou fonctionnent seulement à l’intérieur
du triangle défini par les trois balises. Des méthodes plus fiables existent, mais celles-ci présentent
une complexité accrue ou impliquent la gestion de certains agencements spatiaux séparément. Par
conséquent, nous avons conçu notre propre algorithme de triangulation, nommé ToTal, qui fonctionne
nativement dans tout le plan et pour tout agencement de balises. Nous fournissons également une
comparaison exhaustive avec d’autres algorithmes et des tests montrent que notre algorithme est plus
rapide et plus simple que ses concurrents. En plus de son efficacité inhérente, notre algorithme fournit
une mesure de fiabilité unique et très utile, évaluable n’importe où dans le plan, et qui peut être utilisée
soit pour identifier des cas pathologiques, soit en tant que seuil de validation pour les algorithmes de
fusion de données.

Enfin, dans la dernière partie, nous nous concentrons sur les erreurs qui affectent les mesures
d’angles. Nous montrons qu’il existe quatre sources d’erreurs (ou biais) entrainant des imprécisions
sur les positions calculées. Ensuite, nous établissons un modèle de ces erreurs et proposons une
procédure de calibration afin de réduire l’erreur finale. Sur base des résultats obtenus avec notre
dispositif de calibration, l’erreur quadratique moyenne affectant les angles fournis par BeAMS a été
évaluée à 0.4 deg sans calibration, et à 0.27 deg, après calibration. Même pour la version non calibrée,
BeAMS a une meilleure performance que les autres prototypes décrits dans la littérature et, lorsque
le système est calibré, BeAMS est proche des systèmes commerciaux définissant l’état de l’art.

iii





Acknowledgments

First, I would like to sincerely thank my supervisor, Marc Van Droogenbroeck, for the con-
fidence he has placed in me, his encouragement, and his pertinent suggestions. I thank also
everyone who reads this thesis, and in particular the members of the jury.

I am also grateful to Bernard Boigelot for the Eurobot project he started at the Mon-
tefiore institute. This project has been an extraordinary opportunity to apply my ideas to
real robots, to work with a great team, and to stay in touch with electronics, mechanics, and
many other interesting fields.

I would like to thank Sébastien Piérard, who has always helped me with various infor-
matics fields, especially with C programming and Latex/Lyx editing. I also appreciate the so
numerous and helpful conversations I had with him. In the same way, I thank Jean-François
Degbomont for the numerous interesting discussions we had during lunch time. Thanks also
to Guy Lejeune for the mate breaks and lively discussions.

I would like to thank Olivier Barnich, Sébastien Piérard, and Antoine Lejeune for collab-
orating with me over the past years. I also thank the students I have supervised throughout
their master thesis for the good times spent with them, in particular Laurent Sibila, Pierre
Tassin, Maxime Urbin-Choffray, and Thi Tuyet Minh Nguyen.

I also thank the members of the Montefiore institute for the good atmosphere. In par-
ticular, I thank the other members of the eurobot Montefiore team for the very good times
I spent with them. I think about Guy Lejeune, Etienne Michel, Stéphane Lens, Maxime
Urbin-Choffray, and Matthieu Remacle.

Thanks to Pascal Harmeling and Angel Calderon Jimenez for their help in the design of
the hardware components.

Thanks also to my family and my friends for their encouragements. A special thanks to
Aline and Marylou for reading over parts of this thesis.

And last but not least, I thank Alexandra for always supporting me and encouraging me
during the last years of my thesis.

v





List of Symbols

fX (x) probability density function of the random variable X
fXY (x, y) joint probability density function of the random variables X and Y
U(a,b) (x) uniform probability density function between a and b
δ (x) Dirac delta function
E {X}, µX expectation of the random variable X
var {X}, σ2

X variance of the random variable X
E {X, Y } joint expectation of the random variables X and Y
C {X, Y } covariance of the random variables X and Y
Bi beacon i
{xi, yi} coordinates of the beacon i
φi angle for beacon i
φij bearing angle between beacons Bi and Bj
Tij cot (φij)
Cij circle passing through Bi, Bj , and the robot position
Rij radius of the circle Cij
{xij , yij} coordinates of the center of Cij
{xR, yR} coordinates of the robot position
θ, θR orientation of the robot
PIR(φ) infrared power collected at the receiver
Pth infrared power threshold
Φr random variable of the first rising edge
Φf random variable of the last falling edge
Φb random variable of the beacon angle
Φw random variable of the angular window
Tb duration of a bit
N0 number of zeros in a code
N1 number of ones in a code
Nb number of bits in a code
Nc number of codes
Ci code number i
ω angular speed of the turret
T0 OFF duration
φ0 OFF angle
p0 probability of 0 symbols
p1 probability of 1 symbols

vii





Abbreviations

AGC Automatic Gain Control
AGV Autonomous Guided Vehicle
CCW Counterclockwise
CW Clockwise
EKF Extended Kalman Filter
GDOP Geometric Dilution of Precision
IR Infrared
OOK On-Off Keying
PDF Probability Density Function
RMS Root Mean Square
SNR Signal to Noise Ratio
SVD Singular Value Decomposition

BeAMS BEacon Angle Measurement System
ToTal Three Object Triangulation ALgorithm

ix





Contents

1 Introduction 1

2 Design of BeAMS, a new angle measurement sensor 5
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Commercial systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Non-commercial systems . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2.1 Rotating lasers . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2.2 Static receivers . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2.3 Panoramic cameras for detecting beacons . . . . . . . . . . . 8
2.2.2.4 Most closely related systems . . . . . . . . . . . . . . . . . . 9

2.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Hardware description of a new system . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Architecture of BeAMS . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Description of the beacons . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 Description of the sensor . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Measurement principles of BeAMS . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1 Software description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Stepper motor control . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.3 Angle measurement mechanism . . . . . . . . . . . . . . . . . . . . . . 15
2.4.4 Beacon identifier and infrared codes . . . . . . . . . . . . . . . . . . . 17
2.4.5 Multiple beacon detection . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Practical considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.1 Parameters and trades-off . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.2 System deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Error analysis 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Description of the errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Probability density functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Probability density function of Φr . . . . . . . . . . . . . . . . . . . . 30
3.4.2 Probability density function of Φf . . . . . . . . . . . . . . . . . . . . 31
3.4.3 Characteristics of the estimators Φr and Φf . . . . . . . . . . . . . . . 31

3.5 Characterization of the estimator Φb . . . . . . . . . . . . . . . . . . . . . . . 32

xi



xii Contents

3.5.1 Mean of Φb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5.2 Variance of Φb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5.3 Computation of the upper bound of σ2

Φb . . . . . . . . . . . . . . . . . 33
3.5.3.1 Modified random variables . . . . . . . . . . . . . . . . . . . 34
3.5.3.2 Towards a more realistic upper bound on σ2

Φb . . . . . . . . . 35
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Code statistics 39
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Evolution of the variance of Φb with respect to the angular window . . . . . . 39

4.2.1 Introduction to several situations . . . . . . . . . . . . . . . . . . . . . 40
4.2.2 Study of the different cases . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.2.1 The case A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.2.2 The case 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.2.3 The case D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.2.4 The case E . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.2.5 The case B . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.2.6 The case C . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.3 Summary of the variance value for all the cases . . . . . . . . . . . . . 56
4.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 The time stationarity hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Performance analysis 67
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Adding codes for tests only . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 Modifying the angular window . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.6 Discussions of the experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.7 Measuring the accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 ToTal: a new triangulation algorithm 81
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2.1 Triangulation algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2.2 Brief discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2.3 Other aspects of triangulation . . . . . . . . . . . . . . . . . . . . . . . 85

6.3 Description of a New Three Object Triangulation Algorithm . . . . . . . . . . 86
6.3.1 First part of the algorithm: the circle parameters . . . . . . . . . . . . 87
6.3.2 Second part of the algorithm: the circles intersection . . . . . . . . . . 89
6.3.3 First (naive) version of the algorithm . . . . . . . . . . . . . . . . . . . 91
6.3.4 Final version of the algorithm . . . . . . . . . . . . . . . . . . . . . . . 92
6.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.4.1 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



Contents xiii

6.4.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7 System calibration 101
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.3 The calibration method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.3.1 The calibration setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.3.2 Power bias correction . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.3.3 Rotation bias correction . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.3.4 Beacon positions calibration . . . . . . . . . . . . . . . . . . . . . . . . 114
7.3.5 Global calibration method . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8 Conclusions 125

A Theoretical developments related to the code statistics 131
A.1 Mean and variance of a random variable whose PDF is expressed as a weighted

sum (mixture) of PDFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
A.2 Means and variances of Φr and Φf . . . . . . . . . . . . . . . . . . . . . . . . 133

A.2.1 Mean and variance of Φr . . . . . . . . . . . . . . . . . . . . . . . . . 133
A.2.2 Mean and variance of Φf . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.3 Details for the different cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
A.3.1 Details for the case A . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
A.3.2 Details for the case 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.3.3 Details for the case D . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
A.3.4 Details for the case E . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
A.3.5 Details for the case B . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
A.3.6 Details for the case C . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

A.4 Local Minima of the variance of Φb . . . . . . . . . . . . . . . . . . . . . . . . 151

B Theoretical developments related to the triangulation algorithm 153
B.1 The circle equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
B.2 The parameter kij . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
B.3 Position sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

List of publications 157

Bibliography 159





Chapter 1

Introduction

Mobile robot positioning

Over the past years, the use of mobile robots has increased in various fields. Most of the time,
they are used to transport materials in workstations, manufacturing industry, warehouses,
harbors, airports, etc. These mobile robots are generally named “Autonomous Guided Ve-
hicles” (AGVs). In order to be totally autonomous, navigate, avoid obstacles, and execute
their actions correctly, mobile robots need some form of positioning, which is the process of
determining the robot position in a given reference frame. Therefore, positioning is a crucial
issue and an essential component in mobile robot applications. Depending on the authors,
the concept of positioning may also includes the computation of the robot orientation. In
this thesis, positioning refers to the process of determining both the position and orientation
(pose) in the 2D plane.

Some fundamental papers, such as the ones of Betke and Gurvits [13], Borenstein et al. [15],
Briechle and Hanebeck [18], Font-Llagunes and Batlle [34], Hu and Gu [43], Shimshoni [75],
discuss mobile robot positioning. In particular, Betke and Gurvits [13] and Esteves et al. [32]
highlight that sensory feedback is essential in order to position the robot in its environment.
Some surveys (see Borenstein et al. [16], Demetriou [24], Gu et al. [38], or Muthukrishnan [60])
discuss several techniques used for positioning: odometry, inertial navigation, magnetic com-
passes, active beacons, natural landmark navigation, map-based positioning, and vision-based
positioning.

We can identify two main families encompassing these methods [15]: (1) relative position-
ing (or dead-reckoning), and (2) absolute positioning (or reference-based). Relative position-
ing is the process of determining the pose with respect to its last estimate by using internal
measurements, while absolute positioning uses measurements with respect to some references
in the environment. Techniques belonging to the first family mainly operate by odometry,
which consists of counting the number of wheel revolutions (e.g. with optical encoders) and
integrating them to compute the offset from a known position. Relative positioning based
on odometry is accurate for small offsets, but can lead to an increasing drift resulting from
the unbounded accumulation of errors over time (due to the integration step, uncertainty
about the wheelbase, wheel slippage, etc). Another important relative positioning technique
is the inertial navigation, which is based on gyroscopes (measuring the angular velocity) and
accelerometers (measuring the linear acceleration). Therefore, the measurements have to be
integrated to compute the position, and as a result, errors accumulate over time. As for the
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2 Chapter 1. Introduction

φ1

φ2

φ3

θB3

x

y

yR

xR

R

B2

B1

Figure 1.1: Triangulation setup in the 2D plane. R denotes the robot. Bi are the beacons. φi
are the angle measurements for Bi, relative to the robot reference orientation θ. These angles
may be used by a triangulation algorithm in order to compute the robot position {xR, yR}
and orientation θ.

odometry, inertial sensors have the advantage to be self-contained, to the contrary of absolute
positioning. Also, inertial sensors do not need wheels to estimate the pose and therefore, they
are used in applications such as submarines, ships, aircrafts, spacecrafts, etc. A good survey
about inertial sensors and applications can be found in the work of Borenstein et al. [15].
Since relative positioning techniques can lead to an increasing drift, an absolute positioning
system is thus generally required to recalibrate the position of the robot periodically (in order
to maintain the positioning error to a low level). This is why both methods are essential and
complementary to each other [5, 13, 17]. These two informations are generally combined in
a Kalman filter or other data fusion algorithm [22, 33, 44]. For example, in [37], odometry
with a gyroscope is combined with GPS data. Odometry is also merged with range mea-
surements from ultrasound sensors in [48,87], with angle measurements from a laser scanner
in [6,33,34,74], with angle measurements from a rotating camera in [26], and with range and
angle measurements from a panoramic camera in [44].

As explained by Borenstein et al. [16], no universal indoor positioning system exists,
contrasting with the widespread use of GPS for outdoor applications. This explains the
large variety of existing systems depending on the target application and constraints such
as cost, accuracy, available volume, coverage area, and usable technologies. Most absolute
positioning techniques rely on beacons, whose locations are known, and perform positioning
by triangulation (see Figure 1.1) or trilateration with respect to these beacons. Note that,
most of the time, the robot evolves on a 2D plane, and therefore, it is characterized by its
position and its orientation. The combination of the position and the orientation is generally
termed pose. In the context of absolute positioning, a beacon is a discernible object in the
environment, which may be natural or artificial, passive or active. Discernible means that it
contrasts with the surrounding environment. Natural beacons are generally termed landmarks
and are associated to particular geometrical shapes of the environment (e.g. horizontal or
vertical lines, doors, stairs, etc). Artificial means that the environment has been modified on
purpose to increase the contrast at a particular location. Active means that the beacon needs
a source of energy (e.g. lights), to the contrary of passive beacons (e.g. retroreflectors).

Triangulation is the process of determining the robot pose (position and orientation) based
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Figure 1.2: Framework of the thesis. Each element of the scheme is a part of an absolute
robot positioning system in the 2D plane. The corresponding chapter is indicated at the
upper left corner of each box.

on angle measurements (see Figure 1.1). This contrasts with the trilateration technique which
determines the robot position by measuring distances from the robot to known locations [83].
While the techniques differ in principle, it has been shown by Niculescu and Nath [61] that
any triangulation problems of size n (n measured angles) can be reduced to a trilateration
problem of size

(n
2
)
, which requires the computing of the intersection of at least three circles

in the 2D plane. Because of the availability of angle measurement systems, its robustness,
accuracy, and flexibility, triangulation with active beacons has emerged as a widely used,
robust, accurate, and flexible technique for mobile robots [30, 75]. Another advantage of
triangulation versus trilateration is that the robot can compute its orientation (heading) in
addition to its location [32, 34, 67], so that the complete pose of the robot can be found.
Computing the orientation can be as important as the robot position for many applications.
Moreover, the orientation is especially downgraded by the odometry [17].

Overview

In this thesis, we present an original angle measurement system, as well as original methods
and algorithms, which are parts of a complete robot positioning system in the 2D plane. The
framework of the thesis is illustrated in Figure 1.2, in which the number of the corresponding
chapter is indicated at the upper left corner of each box. The content of each chapter is
detailed hereafter:

Chapter 2 presents our original angle measurement system, named BeAMS. We detail our
specific application and explain our motivation for the design of a new system. BeAMS
is based on a rotating receiver located on the robot, and beacons sending On-Off Keying
(OOK) infrared signals. We detail all the hardware components and explain the angle
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measurement principle. Also, we discuss the parameters and trades-off involved in our
system, as well as a more general and practical deployment of BeAMS.

Chapter 3 provides a theoretical framework to analyze the errors affecting the measured
angles, due to the use of an OOK modulation mechanism. In particular, we establish
the theoretical upper bound of the variance affecting the angle measurements.

Chapter 4 complements the results of Chapter 3 by going into further details related to the
code statistics of modulated signals in general, with an emphasis on BeAMS. We also
present simulated results, in order to validate the theory established in both Chapters
3 and 4.

Chapter 5 compares the theoretical model to simulation data and real measurements. Val-
ues for the actual precision (variance) and for the accuracy (bias) of the measured
angles are provided. Then, we discuss the relevance of several comparison criteria, and
compare our system to other similar systems.

Chapter 6 presents our original three object triangulation algorithm, named ToTal. We
discuss the limitations of the existing algorithms and explain our motivation for a new
algorithm. Also, we provide a comprehensive comparison with similar algorithms, and
benchmarks show that our algorithm is faster and simpler.

Chapter 7 presents a calibration method, dedicated to positioning systems based on three
beacons. We identify and detail four sources of errors (biases) resulting in inaccuracies
in the computed positions. We establish models of these biases, and propose a complete
calibration procedure in order to improve the accuracy of the computed positions and
orientations.

Chapter 8 concludes our thesis. We summarize the results of each chapter, and detail our
main contributions. We also discuss the performance of BeAMS, as well as a larger sys-
tem deployment. Finally, we detail how our works take part into a complete positioning
system, and we give some hints for future improvements.

Publications
In this thesis, we present original works, which are parts of a complete robot positioning
system in the 2D plane. Some of these works have been published in conference articles:
(1) the description of the angle measurement system [65] (Chapter 2), (2) a part of the
theoretical framework and performance analysis [66] (Chapters 3 and 5), and (3) our three
object triangulation algorithm [67] (Chapter 6). The whole theoretical framework (Chapters 3
and 4) has been published as an internal report, since it is mainly composed by mathematical
developments. An extended version of the angle measurement system and its theoretical
analysis, as well as an extended version of the triangulation algorithm are under publication
in journal papers. The complete list of publications may be found on page 157. Finally, the
C source code of all triangulation algorithms, including ToTal, as well as the code for the
benchmarks, are made available to the scientific community1.

1http://www.ulg.ac.be/telecom/triangulation



Chapter 2

Design of BeAMS, a new angle
measurement sensor

2.1 Motivation

Our motivation for the design of a new angle measurement sensor has been initiated by our
involvement in the Eurobot contest1. This contest opposes two autonomous mobile robots
in a playing field of (2× 3) m2 area. Although the rules change every year, the background is
always the same: each robot must execute specific actions, or pick up some objects and place
them in some containers, the winner being the one who accumulates the most points in 90 s.

In this kind of contest, positioning is also a critical issue, as the robots have to plan
trajectories, avoid obstacles, and grab objects. Moreover, the Eurobot contest is a harsh
environment for robot positioning, as collisions between robots and shocks are numerous. As
explained in Chapter 1, the odometry is mandatory but not sufficient, and each robot should
implement some kind of absolute recalibration.

To help the absolute positioning, three beacon supports per robot are available around
the playing field. Therefore, this naturally allows the use of the triangulation or trilateration
techniques. Also, the precise knowledge of the robot orientation is an asset for this kind of
contest, and for robot positioning in general. Therefore, as the triangulation technique is
also able to compute the robot orientation in addition to its position, we decided to use an
angle-based positioning system.

While there are many angle measurement systems, none of them was suited for our ap-
plication, because of the numerous constraints imposed by the Eurobot contest. As a
consequence, we decided to create our own angle measurement system, named BeAMS2. The
hardware of BeAMS consists of a sensor located on the robot, and several active beacons
emitting infrared light in the horizontal plane, located at known positions. In order to iden-
tify beacons and to increase robustness against noise, each beacon sends out a unique binary
sequence encoded as an On-Off Keying (OOK) amplitude modulated signal. The principle is
illustrated in Figure 2.1.

Note that this chapter describes our new angle measurement system, independently of
any positioning algorithm. We do not describe a complete positioning system, just a sensor
that can be used in a positioning algorithm. The description of an algorithm that uses angle

1http://www.eurobot.org
2BeAMS: Beacon Angle Measurement System.
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IR signal

RobotBeacon

Figure 2.1: Presentation of BeAMS, a new angle measurement system for mobile robots
based on two principles: (1) beacons send On-Off Keying coded infrared signals, and (2) the
receiver on the robot turns at constant speed to measure angles of beacons. These angles can
be combined to compute the robot position.

measurements to compute a position or to navigate can be found in many papers, but is not
our focus in this chapter. Triangulation methods using three angle measurements can be found
in [21,28,32,34,59,67], and methods using more than three angle measurements are described
in [13, 75]. More than three angles can be used to increase precision in some pathological
geometrical setups or to deal with harsh environments where some beacons might be out of
sight of the sensor [13, 53, 75, 89]. Finally, a method for navigating with angle measurements
without computing the position of the robot is described in [11]. For our application, we
developed a new triangulation algorithm, described in Chapter 6.

This chapter is organized as follows. Section 2.2 presents some of the numerous angle
measurement systems developed for robot positioning. The hardware of our new angle mea-
surement system is described in Section 2.3. The angle measurement principle is explained in
Section 2.4. Then, we discuss the parameters and trades-off involved in our system in Section
2.5, and discuss a practical system deployment. Finally, we conclude the chapter in Section
2.6.

2.2 Related work

As explained by Borenstein et al. [16], no universal indoor positioning system exists, contrast-
ing with the widespread use of GPS for outdoor applications. This explains the large variety
of existing systems depending on the target application and constraints such as cost, accu-
racy, available volume, coverage area, usable technologies, and safety (e.g. laser class). Some
surveys on indoor positioning systems may be found in [2,3,15,16,38,60]. Technologies used
in these systems may be as varied as lasers [69,89], IR [1,85], Ultrasound [14,36], RF [8,64,70]
including RFID [57], WLAN, Bluetooth and UWB [25], magnetism, vision-based [13, 44, 55],
and even audible-sound [50]. In this study, we concentrate mostly on angle measurement
systems, although some of the systems include other forms of measurement, such as range.
Hereafter, we present a selection of popular commercial systems and then some “home-made”
systems found in the literature, all based on beacons.

2.2.1 Commercial systems

Most commercial systems are described by Borenstein et al. in [15], and also by Zalama
et al. in [89] (NAMCO LaserNet, DBIR LaserNav, TRC Beacon Navigation System, SSIM
RobotSense, MTI Research CONAC, SPSi Odyssey, LS6 from Guidance Control Systems
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Ltd., NDC LazerWay, and SICK NAV200 ). Almost all of these systems use an on-board
rotating laser beam sweeping the horizontal plane to illuminate retro-reflective beacons. The
horizontal sweeping is generally performed with a fixed laser emitter and receiver combined
with a 45 deg tilt mirror mounted on a motor. The angular position of the motor is given by an
angular encoder attached to the motor shaft. The beacons are generally simple passive retro-
reflectors reflecting the light back to the sensor on the mobile robot. Systems using passive
retro-reflectors cannot differentiate between beacons, which makes the task of positioning
harder. Furthermore a positioning algorithm working with indistinguishable beacons needs
an initial position in order to work properly [43, 89]. In addition, if the beacons are not
identifiable, the algorithm could fail in the following two cases: at the wake-up (robot start
up or reboot) or when the robot is kidnapped (i.e. displaced).

To overcome these issues, some systems use variants such as bar-coded reflective tapes to
identify the beacons (for example LaserNav, as used by Loevsky and Shimshoni [53], or robot
HILARE [10]). Another technique for identifying beacons consists of using networked active
beacons with an additional communication channel (typically an RF channel). When they
are hit by the rotating laser, the beacons communicate to compute the angles between them
and send the angles back to the mobile through an RF link (MTI Research CONAC ). The
difficulty with this system is the setup of the networked beacons. The SPSi Odyssey system
(used by Beliveau et al. [12]) is different, since it can position a mobile in 3D. The beacons
are laser transmitters and the receiver is located on the mobile. This system is not able to
compute the heading of the mobile (unlike on-board angle measuring systems), except while
the system is moving (as in the case of the GPS). Moreover, the field of view of the emitters
is limited to 120 deg horizontally and 30 deg vertically, which makes the positioning possible
within a limited volume of space. Nowadays, positioning systems have a full 360 deg coverage,
except for the Odyssey and the older LaserNet (90 deg) systems.

It turns out that most commercial systems use rotating lasers combined with retro-
reflective beacons. They generally have a good accuracy and working range, but they cannot
differentiate between beacons, apart from the LaserNav system, which is no longer manufac-
tured. Finally, they are expensive and take up too much space, which makes them inappro-
priate for small educational robots. We will now describe home-made systems found in the
literature.

2.2.2 Non-commercial systems

2.2.2.1 Rotating lasers

One particular famous non-commercial system is the Imperial College Beacon Navigation
System [69]. The principle involved in this system appears to be exactly the same as for the
CONAC system. This system uses a rotating laser and networked active beacons connected to
a base station that sends position back to the mobile via an RF channel. The main drawback
of these systems is the wiring and setup of the beacons. To overcome this issue, a more recent
system, similar to the Imperial College Beacon Navigation System and CONAC, is presented
by Zalama et al. [89]. It uses an on-board rotating laser and active beacons that send their
identifier back to the mobile with some RF coded pulses when they are hit by the rotating
laser. The beacons are totally independent and stand-alone (no network, communication
cables or base station), which makes the setup easier.

Even if these systems solve the beacon identification problem, there still exist an open
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issue: how do such systems behave when multiple robots use the same setup of beacons?
A beacon would send its identifier back to all robots even if only one of them has hit that
beacon, causing false angle measurements to the other robots. So we guess that these systems
are inadequate to be used by multiple robots simultaneously.

2.2.2.2 Static receivers

In general, the 360 deg horizontal field of view is covered by a single receiver combined with a
rotating system. However, it is possible to cover the whole field of view without mechanical
part, as explained hereafter. The first type of static sensor system uses multiple static receivers
uniformly distributed on the perimeter of a circle. These systems measure the angles to the
beacons by simply “looking” at which receiver receives the signal from a beacon. Since more
than one receiver can receive the same signal, an interpolation can be performed to improve
the angular position of a beacon, as highlighted by Gutierrez et al. [40] and Roberts et al. [73].
These systems generally also compute the distance to the beacons. For example, some of these
systems [39, 40, 46, 71–73] use the infrared received signal strength to compute the distance
to the beacon, in addition to the bearing information. In [41], Hernandez et al. compute the
distance by using the aperture angle of the received signal (time taken to sweep the receiver).
In [27], Durst et al. use Nintendo Wii cameras instead of infrared receivers to localize and
identify the different beacons. Bergbreiter et al. present PhotoBeacon, which also consists in
a circular array of photodiodes. But, unlike the previous systems, the 256 photodiodes are
located on a miniaturized custom CMOS chip. The 360 deg horizontal field of view is ensured
by a 190 deg field of view fisheye lens, placed horizontally on top of the CMOS chip. Lee
et al. [51], and Arai and Sekiai [4] use infrared light from beacons and measure the incident
angle of the infrared light with two fixed photodiodes and a specialized circuit. Another
similar idea consists in the use of only one static receiver or laser emitter. The 360 deg field
of view is obtained by the rotation of the robot itself, which is expected to move to see the
beacons [62, 80]. The main drawback is that the position update rate depends on the robot
movements and is generally low compared to other systems.

These systems have the benefit of being small, lightweight, and simple (no moving part).
Unfortunately, it turns out that these systems are less accurate (5 → 10 deg) than rotating
sensors (0.05 → 0.5 deg), and that the accuracy of the angles depends on the number of
receivers. They are often used by swarm of robots for relative positioning and communication,
but not for precise absolute positioning.

2.2.2.3 Panoramic cameras for detecting beacons

The second type of static sensor systems uses panoramic cameras to measure angles or dis-
tances. A common way to measure angles with a static camera and without moving parts is
to transform it into an omni-directional camera via a catadioptric mirror, fisheye lens, or a
reflecting ball, as proposed by Betke and Gurvits [13]. With this configuration, a 360 deg hor-
izontal field of view of the scene is taken in one image. The angular positions of the beacons
are computed through image processing by searching the beacon patterns within a circular
region of the image. The authors of [44] base their system on the same principle with only one
beacon, but they also compute the distance to that beacon. Yamamoto et al. [86] describe
a system called NorthStar. This system is composed of a fixed projector which creates two
distinguishable infrared spots on the ceiling and a camera mounted on the mobile robot. The
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position of the robot is computed according to the positions of these spots in the image.
One distinctive feature of panoramic cameras is that angles to beacons are measured at

the same time, in one image. This can be an advantage if the positioning algorithm uses
a triangulation technique directly. This advantage is useless if the angles are fed into an
Extended Kalman Filter (EKF), which can take advantage of one angle at a time. Panoramic
cameras also need a more complicated image processing algorithm, and they depend highly
on lightning conditions. Finally, like the multiple static receivers, they are less accurate than
rotating systems.

2.2.2.4 Most closely related systems

Finally, we present systems that are closely related to ours. One of the oldest systems is
described by McGillem and Rappaport in [59]. That system is made up of beacons emitting
infrared modulated signals and a rotating infrared detector mounted on a turntable to measure
the angles to the beacons. Another recent and similar system is proposed by Brkic et al.
in [19]. This system relies on infrared beacons and a rotating receiver; a brushless DC motor
with rotary transformer overcomes the problem of contact-less power supply, and ensures
signal transfer. Unfortunately, no information about motor control, infrared codes, or angle
calculation is provided in that paper. Finally, the accuracy of the system is given in terms
of distance errors on the moving area, and no information about the accuracy of measured
angles is given. Kemppainen et al. [47] also describe a system similar to ours for multi-robot
spatial coordination, the system being used for inter-robot relative positioning, not absolute
positioning. The difference with the previous systems is that the infrared emitting beacons
are located onto the robots themselves, instead of being at fixed locations. In addition to the
angle measurement, the system estimates the range by the received signal strength. Using
the bearing and the range, a robot can compute the relative position of all other robots.

These systems (emitting beacons, and rotating receiver) are able to identify the beacons
while using only one communication channel (the beacon signal itself). Due to the nature of
this unidirectional channel, multiple receivers (robots) can receive the signals from the same
beacons at the same time without disturbing each other (like for the GPS system). But,
unlike simple reflective tapes, the beacons have to be powered up.

2.2.3 Summary

There is a large variety of angle measurement systems and the choice of a particular system
has to take into account the target application and constraints such as cost, accuracy, available
volume, coverage area, usable technologies, and safety (e.g. laser class). Some systems do
not identify the beacons, and others require more than one communication channel. Some
systems cannot position multiple robot simultaneously. If we compare the values found in
the literature, it turns out that rotating sensors are more accurate than fixed sensors, but
have the disadvantage that information and power have to be transmitted to the sensors, if
these are located on the turning part of the system. A fixed sensor can be used, if combined
with a mirror and a motor to sweep the horizontal plane and cover a 360 deg field of view.
With a mirror, the light rays are redirected to cross the rotation center of the turning system.
In general, the mirror is mounted on a hollow gear, which is driven by the motor through a
gear or belt, allowing light rays to pass and reach the sensor. This solution tends to make
the mechanical part of rotating systems more complicated and cumbersome. It turns out
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that the most flexible solutions are rotating lasers with passive bar-coded reflective tapes or
active emitting beacons with a rotating receiver. This last solution requires to power-up the
beacons. Most of the time, implementation characteristics are missing or incomplete, such
as the working distance, power consumption, dimensions, etc. Finally, evaluation criteria
such as precision (variance), accuracy (bias) and resolution (number of steps for one turn)
are sometimes confused during the performance analysis. Also, some systems are evaluated
through a positioning algorithm, and therefore it is a hard task to evaluate the quality of the
underlying angle measurements to compare systems. A recap chart of some commercial and
home-made systems and their performances is provided later (see Table 5.2 on page 77).

2.3 Hardware description of a new system

While there are many angle measurement systems, none of them was suited for our application,
as explained hereafter. Our first motivation for this work was to create a new system for the
Eurobot contest3, which imposes many constraints. For the positioning part, the most
important constraints are: (1) the available volume for the hardware on the robot is limited
to (8×8×8) cm3, (2) home-made laser systems are prohibited except if they are manufactured
and kept in their house cases. The Eurobot contest is a harsh environment for robot position.
Firstly, as collisions and shocks are numerous, the knowledge of beacon IDs is an advantage
to be robust to the wake-up or kidnapped issues. Secondly, the environment is polluted by
many sources of noise including infrared, lasers, radio waves, and ultrasound signals. Also
the lightning conditions are very bad and there are lots of shiny or reflective surfaces. Finally,
more than one robot per team may evolve on the field.

Considering all these constraints, the system has to identify the beacons, use coded signals,
and allow multiple robots. Commercial system are unsuitable because of their sizes, their
high prices, and because they cannot identify the beacons. Home-made laser systems are
prohibited. Static receivers do not provide the accuracy needed for this contest. Finally we
wanted to use a triangulation based positioning to estimate the robot heading precisely (this
is important since the heading is highly downgraded by odometry). So, we designed an angle
measurement system based on beacons emitting infrared coded signal and a rotating receiver.
Note that, to our knowledge, there is only one very similar system, designed by Brkic et
al. [19], also for the Eurobot contest. But, according to the authors, their system is not
accurate enough to position the robot (see Table 5.2 on page 77).

BeAMS is original but it has the same limitations as any other optical system, as explained
in [16, 60, 89]. First, a line of sight between beacons and sensor has to be maintained for the
system to work. Also, the reflections of beacon signals on shiny surfaces can lead to false
detections. Finally, the sensor could be blinded by direct sunlight (causing the SNR to
decrease). This has the effect of reducing the working range in outdoor conditions.

2.3.1 Architecture of BeAMS

The hardware of BeAMS consists of a sensor located on the robot, and several active beacons
emitting infrared light in the horizontal plane, located at known positions. This configuration
is represented in Figure 2.2. As illustrated in this figure, the aim of the sensor and processing
unit is to determine the identifier of each beacon i, as well as its azimuthal angle Φi, in

3http://www.eurobot.org
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Figure 2.2: Schematic top view representation of BeAMS. The system is composed of: (1)
several active beacons Bi emitting infrared light in the horizontal plane, and (2) a sensor
located on the robot R. The aim of the sensor is to measure the azimuthal angles φi of the
beacons in the robot reference determined by θ.

the robot reference, whose orientation is given by θ. The sensor is composed of an infrared
receiver/demodulator and a motor. The beacons are infrared LEDs whose signal is modulated.
To achieve the angle measurements, the infrared receiver is combined with the motor turning
at a constant speed. In order to identify beacons and to increase robustness against noise, each
beacon sends out a unique binary sequence encoded as an On-Off Keying (OOK) amplitude
modulated signal over a 455 kHz carrier frequency. Furthermore, BeAMS only requires one
infrared communication channel; there is no synchronization channel between the beacons and
the robot, which allows multiple robots to share the same system. Finally, the mechanical
part of the system is kept as simple as possible (motor only), with no gear system or belt,
thanks to the hollow shaft, and no optical encoder for the motor control or angle measurement
is needed. These features make BeAMS a small, low power, flexible, and tractable solution
for robot positioning. BeAMS has been continually improved since its inception and has been
used successfully in the Eurobot contest for the last four years. In the next sections, we
describe the hardware components of our system.

2.3.2 Description of the beacons

The core of a beacon is composed of IR LEDs (more precisely the SFH485P component); they
emit signals in a plane parallel to the moving area and are directed towards the center of the
moving area. These LEDs have a large emission beam so that a small number of LEDs per
beacon can cover the whole area. A PIC microcontroller generates the appropriate signal to
drive the IR LEDs through the power stage. Each beacon continuously emits its own unique
IR signal so that the receiver can determine the beacon identifier (ID). This ID is determined
by switches connected to the PIC microcontroller, so that the hardware of each beacon is
identical. Figure 2.3 represents the schematic architecture of a beacon and Figure 2.4 shows
a picture of a beacon. The power consumption is 100mA at 9V , for a working distance of
up to 6m.
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Figure 2.3: Architecture of a beacon. The central element of a beacon is an infrared LED. A
PIC microcontroller (µC) generates the appropriate signal to drive the IR LEDs through the
power stage. Each beacon emits its own unique IR signal continuously so that the receiver
can determine the beacon identifier (ID). This ID is determined by switches connected to the
PIC microcontroller, so that the hardware of each beacon is identical.

Figure 2.4: Picture of a beacon. The main part of a beacon is made by IR LEDs, which are
located under the printed circuit board, parallel to the moving area and directed towards the
center of the moving area.
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Figure 2.5: Schematic representation of the receiver. Bi is a beacon emitting IR light, L is
the lens, M is the mirror, LG is the light guide, R is the receiver, SM is the stepper motor, S
is the hollow shaft, T is the turret, C is the motor controller, µC is the PIC microcontroller,
and OS is the optical switch.

2.3.3 Description of the sensor

As shown in Figure 2.5, the sensor is composed of a mini stepper motor4, a 12mm thin
plastic convergent lens, a small front surface mirror with a 45 deg tilt, a polycarbonate light
guide placed in the center of the motor shaft (which has been drilled for this purpose), an
IR receiver (a TSOP7000 from Vishay) and an optical switch5 used to calibrate the zero
angle reference θ (see Section 2.4.2). The lens and mirror are placed on a “turret”, which is
fixed to the motor shaft. The receiver is fixed to the bottom of the motor, just under the
light guide. This configuration allows IR signals from a beacon to reach the fixed receiver
through the entirely passive “rotating turret” and light guide. As a result, the receiver can
virtually turn at the same speed as the turret. By introducing this original disposition of
optical elements into our system, the system behaves as if the receiver is turning without the
mechanical constraints and inconvenience. Finally, a PIC microcontroller6 is used to drive
the motor through its controller7 and to decode the output of the receiver. Figure 2.6 shows
a picture of the sensor. The entire sensor weights 195 g, and the power consumption is 47mA
at 9V . Now that the hardware elements have been presented, we detail some elements of
the system: software architecture, stepper motor control, angle measurement principle, and
infrared codes.

2.4 Measurement principles of BeAMS

2.4.1 Software description

The software building blocks of BeAMS are drawn in Figure 2.7. The key principle of the
software is to use a common timer to drive the stepper motor at a constant speed, and to
capture the receiver output edges. The receiver output is connected to a capture module in

4MY5602/MY7001 from Astrosyn.
5HOA2001 from Honeywell.
6PIC18F2620 from Microchip.
7A3977 from Allegro.
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Figure 2.6: Picture of the sensor with the rotating turret in black (top) and the lens, the
stepper motor (middle), the optical switch (middle right), and the electronic card (bottom).
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Figure 2.7: Software organization of BeAMS. µC is the PIC microcontroller. A common timer
is used to drive the stepper motor at a constant speed and to capture the edges of the receiver
output. These captured values are used to compute the angular positions of the beacons as
well as the beacon identifiers. An I2C link is used to communicate the angle measurements
to the positioning algorithm.
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the microcontroller. On a falling or a rising edge of the receiver output, this module latches
(captures) the actual timer value to a register that may be read later by the software. This
allows us to associate a time to each incoming event (falling or rising edge). And as the
value of the timer is perfectly linked to the motor angular position, the association of an
incoming receiver event to an angular position is as accurate as possible. The captured values
serve to compute the angular position of the beacons and their IDs. An I2C link is used to
communicate the angle measurements to the positioning algorithm.

2.4.2 Stepper motor control

The stepper motor is driven in an open loop via an input square signal to advance the motor
step by step. The stepper motor has 200 real steps and is driven in a half-step mode via its
controller, which turns the number of steps into 400. The frequency of the step signal controls
the rotation speed of the motor and is derived from the common timer. Since the timer is 156
times faster than the step signal, we achieve a sub-step time resolution so that the number
of “virtual” steps is 400 × 156 = 62400 exactly. The motor turns at a constant speed ω and
the angular position of the turret/receiver φ is thus proportional to the value of this timer.
Whereas the motor is controlled step by step, the rotation is assumed to be continuous due
to the high inertia of the turret compared to the motor dynamics. Since the motor turns at
a constant speed, the common timer value can be seen as a linear interpolation of the motor
position between two real steps of the motor.

This kind of control in open loop with a stepper motor is possible since the torque is
constant and only depends on the turret inertia and motor dynamics, which are known in
advance. The advantage of this approach is that we do not need a complicated control loop or
expensive rotary encoder in order to detect the position of the turret with precision. Indeed,
the common timer acts as a rotary encoder, and the position of the turret can be obtained
by reading the value of the timer. As explained earlier, there are 62400 “virtual” steps of
the motor. The angular resolution is thus given by 360/62400 = 0.00577 deg (0.1mrad). The
timer clock runs at 625000Hz, to give an angular speed of 625000/62400 = 10.016 turn/s. Since
the motor is controlled by an open loop, the motor can start from or stop at any angular
position, meaning that there is no angle reference. To overcome this issue, we use a single
optical switch (denoted OS in Figure 2.5) to calibrate the zero angle reference θ by reading
the timer value when the turret passes through the switch.

2.4.3 Angle measurement mechanism

Let us denote by φ the current angular position of the turret/receiver, relatively to θ. As the
turret turns at a constant speed ω, the angular position φ is directly proportional to time

φ(t) = ω t. (2.1)

As a result, we can talk about either time or angular position indifferently. For convenience,
we prefer to refer to angles instead of time units.

The TSOP7000 is a miniaturized IR receiver that acts as an OOK demodulator of a
455 kHz carrier frequency. The input is a modulated signal whose carrier wave is multiplied
by the “0” or “1” binary message. The receiver outputs a value “1” when it detects the
carrier wave and “0” otherwise. The output of the receiver corresponds to the envelope of
the modulated carrier wave. No other information is given by the receiver. By design, the
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Figure 2.8: The upper curve PIR(φ) is the expected infrared power collected at the receiver
while the turret is turning. R0 represents the receiver output for a non modulated infrared
carrier wave (pure 455 kHz sine wave). The black arrows represent the measured values
respectively for φR to the left (first Rising edge) and for φF to the right (last Falling edge).

receiver combined with the optical components has a narrow field of view and, consequently,
the amount of infrared power collected at the receiver, denoted by PIR(φ), depends on the
angle. This power also depends on the power emitted by the beacon, and the distance
between the beacon and the receiver. Note also that the exact shape of PIR(φ) depends on
the hardware, that is the IR LEDs, the receiver, optical components, and the geometry of
the turret. It is impossible to derive the precise power curve from the specifications, because
we only have access to the demodulated signal, and no information about power is available.
Therefore, we make some basic assumptions regarding the shape of PIR(φ); the resulting
expected curve PIR(φ) is shown in Figure 2.8. The exact shape of this curve does not have
much importance in this study but is assumed to increase from a minimum to a maximum and
then to decrease from this maximum to the minimum (ambient noise level). In the following
theoretical developments, we make three important assumptions about the curve and the
detection process itself:

1. The maximum coincides with an angle, which is the angular position of the beacon,
denoted φB (i.e. the angle we want to measure). As a result, for any angle φ

PIR(φ) ≤ PIR(φB). (2.2)

2. The curve is supposed to be symmetric around the maximum since the turret and all
optical components are symmetric. This means that

PIR(φB − φ) = PIR(φB + φ). (2.3)

3. Finally, we assume that the receiver reacts to 0 → 1 (raising) and 1 → 0 (falling)
transitions at the same infrared power threshold Pth, respectively at angles φR and φF

PIR(φR) = PIR(φF ) = Pth. (2.4)

This hypothesis will be discussed later, in Section 5.7.
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From equations (2.3) and (2.4), we derive that φB − φR = φF − φB and that

φB = φR + φF
2 . (2.5)

This equation expresses an important innovation that has two benefits: (1) we derive the
angle of the beacon not from the maximum power, but from two angle measurements that take
the narrow receiver optical field of view into account, and (2) by measuring an angular window
(that is two angles) instead of one angle, it is possible to analyze the temporal evolution of
the signal inside this window to determine the code of the beacon (or any other kind of useful
information). Note that the angular window, defined as φF − φR, depends on the received
IR power. It increases if the received power increases, and decreases if the received power
decreases (see Figure 2.8).

First, we assume that the beacons send a non modulated IR signal, that is a pure 455 kHz
sine wave and explain the measurement principle for one beacon; the principle is the same for
any number of beacons. While the turret is turning, the receiver begins to “see” the IR signal
from that beacon when the power threshold Pth is crossed upwards (0 → 1 transition). The
receiver continues to receive that signal until Pth is crossed downwards (1 → 0 transition).
The receiver output is depicted as R0 in Figure 2.8. At these transitions, the capture module
latches values for φR and φF . The angular position of the beacon is then computed after
equation (2.5).

2.4.4 Beacon identifier and infrared codes

The convenient assumption of continuous IR signals used in the previous section is not realistic
because (1) we would not be able to distinguish between the different beacons, and (2) it is
essential to establish the beacon ID (especially in a noisy environment like the Eurobot
contest where other IR sources may exist). Moreover, the possibility of identifying beacon
IDs solves the wake-up and kidnap issues typical of robot positioning. In other words, we
propose to code the IR signal of beacons to solve these issues.

In BeAMS, each beacon emits its own code over the 455 kHz carrier wave; this emission
is continuous so as to avoid having any form of synchronization between the beacons and
the receiver. As a result, each beacon signal is a periodic signal whose period corresponds
to a particular code defining the beacon ID. The design of these codes is subject to several
constraints related to (1) the receiver characteristics, (2) the loop emission, (3) the desired
precision, (4) the system’s immunity against noise, and (5) the number of beacons. We
elaborate on these constraints below:
1. Receiver. The TSOP7000 requires that the burst length (presence of carrier wave) be
chosen between 22 and 500µs, the maximum sensitivity being reached with 14 carrier wave
periods (14/455000 = 30.8µs). The gap time between two consecutive bursts (lack of carrier
wave) should be at least 26µs.
2. Loop emission. Because of our willingness to avoid a synchronization between beacons
and the receiver, we must ensure that the periodic emission of a code does not introduce
ambiguities. For example [0101] is equivalent to [1010] when sent in a loop. Thus any
rotation of any code on itself must be different from another code.
3. Precision. The lack of synchronization between beacons and the receiver introduces
a certain amount of imprecision. Indeed, the first received IR pulse may be preceded by
a gap time corresponding to a zero symbol. This affects the estimation of φR. The same
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Figure 2.9: Temporal representation of the C1, C2, C3, C4 and C5 codes. These codes are
repeated continuously and multiply the 455 kHz carrier wave to compose the complete IR
signal.

phenomenon occurs for φF . An intuitive design rule would say that we have to reduce the
duration of zeros, as well as their frequency of appearance. Therefore, we forbid two or more
consecutive zeros, and the duration of one zero (the gap time) must be reduced as much as
possible (see Chapter 3 for further explanations about the error due to the gap time).
4. Immunity. The codes should contain enough redundancy to be robust against noise or
irrelevant IR signals.
5. Number of beacons. The codes should be long enough to handle a few beacons, but as
short as possible to be seen many times in the angular window associated to a beacon, thus
improving the robustness of the decoding.
All these constraints lead us to propose this family of codes:

Ci = [1i 01 12Nc−i 01], i = 1, . . . , Nc, (2.6)

where Nc denotes the number of codes in the system. The duration of a bit is set to Tb =
30.8µs since this value maximizes the receiver sensitivity, while respecting the minimum gap
time (Tb > 26µs). Although not mandatory, the duration of a one symbol has been chosen
to be equal to the duration of a zero. This is to simplify the implementation of the beacons
and to ease the decoding process. From expression 2.6, one can see that the number of ones
in a code is equal to N1 = i + (2Nc − i) = 2Nc, and the number of zeros is N0 = 2, for all
the codes. The number of bits in a code is Nb = N1 + N0 = 2Nc + 2, and the duration of a
code is Tc = Nb Tb. The gap time is the same for all codes and corresponds to the duration
of a unique zero symbol. The second half part of the codes can be seen as a checksum,
since it makes the number of ones constant (2Nc). In our current implementation, we have
Nc = 5 codes because this is appropriate for our application. Figure 2.9 shows the temporal
representation of the codes for Nc = 5. Note that any code meeting the second requirement
(differentiable under loop emission) would work to identify the beacons. However, they may
not meet the third requirement if the zero symbols appear in random patterns. Indeed, a
thorough analysis about the error introduced by the gap time (detailed in Chapter 3) shows
that this error increases with the frequency of zero symbols and with the square of the zero
duration. Moreover, a simulator (detailed in Chapter 4) has been created to validate this
result. This simulator helped us to compare codes with respect to the error they generate.
From our experience, the codes presented in expression (2.6) are the best ones that meet all
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Figure 2.10: Oscilloscope measurement at the receiver output for the code 1.

our requirements, but we have no formal proof of it.
The angle measurement principle still operates exactly as in Section 2.4.3 even if the IR

carrier wave is modulated by the codes. Since there are gap times in the IR signal of a
beacon, there are more than two edges in the received signal. The intermediate edges are
used to determine the beacon ID, by analyzing the durations of burst lengths and gap times.
But the first and last edges of the received signal always correspond to our measurements
of φR and φF . These two edges are isolated from all other edges due to a timeout strategy,
which relies on the fact that the separation time (or angle) between two different beacons is
much greater than the separation time between consecutive edges in a code. Actually, the
separation time is set to four bit durations, which corresponds to a separation angle equal to
0.44 deg. To illustrate this, we have performed some oscilloscope measurements at the receiver
output. The setup is made of the sensor, and one beacon, in order to ease the synchronization
in the oscilloscope. We have taken measurements for the five codes. The results are presented
in Figure 2.10 to Figure 2.14. By analyzing the burst and gap times in these graphics, one
can recognize the different codes, as defined by expression (2.6). One can notice that the
codes appear multiple times in one angular window8. Also, one can observe that the first and
last bursts may be incomplete, since there is no synchronization between beacons and the
receiver.

2.4.5 Multiple beacon detection

Note that, for the proper functioning of the system, it is important that the receiver collects
infrared light from one beacon at a time. To do this, some additional optical components are

8For this experiment, we have chosen values of the distance and emitted power, such that the angular window
has a small value (about 5.4 deg). This is to reduce the number of edges, and to ease the interpretation of the
graphics.
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Figure 2.11: Oscilloscope measurement at the receiver output for the code 2.
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Figure 2.12: Oscilloscope measurement at the receiver output for the code 3.
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Figure 2.13: Oscilloscope measurement at the receiver output for the code 4.
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Figure 2.14: Oscilloscope measurement at the receiver output for the code 5.
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used to limit the field of view of the receiver to a narrow value (a few degrees). However,
despite the narrow field of view, and the timeout strategy to separate beacons, two or more
beacons might appear in the same angular window if they are close enough (from an angular
point of view). When this situation occurs, the demodulated signal is composed of codes
from the different beacons, and they appear in the same order as the turret turns and sees
the different beacons. This means that the timeout strategy is not able to cut the different
signals. Also, at the transition points, the signal could be composed of burst or gap durations
that do not correspond to any code. The decoding algorithm simply adds (in counters) the
number of different codes it sees, as well as bad durations. Therefore, the receiver is capable
to differentiate between a pure signal from one beacon, or a compound signal from several
beacons. The system can then decide to keep or reject a compound signal; this capability
to check the consistency of codes is an important advantage of BeAMS. To illustrate this
phenomenon, we have also performed some oscilloscope measurements at the receiver output.
But this time, we have placed two beacons in the setup, emitting the code 3 and the code 5,
respectively. In the first experiment, the separation time between the two beacons is greater
than the timeout required. The result is presented in the top plot of Figure 2.15. In this
graphic, one can observe both occurrence of consecutive codes, as well as the separation gap
between the beacons. In that case, the sensor can separate both signals. In the second
experiment, the two beacons are closer than the separation angle required. The result is
presented in the bottom plot of Figure 2.15. This time, there is no separation gap and the
sensor cannot separate both signals. But, as explained earlier, one can still recognize both
codes in the received signal.

2.5 Practical considerations

2.5.1 Parameters and trades-off

The design of BeAMS implies many parameters and some trades-off that need to be explained.
First of all, we had to choose a turning speed (or acquisition rate). Lots of commercial or non
commercial systems work at 10Hz, which seems sufficient for a robot moving at moderate
speed. Also, the accuracy of these systems is more likely to be 0.1 deg, to get a reasonable
accuracy on the final position. Our system uses an OOK modulation that leads to an error
due to the gap times (T0). Our statistical analysis, as well as our simulator confirm this
result. However, it is easy to show that the maximum absolute angular error on the first
and last edges is given by φ0 = ω T0, since the turret has turned by this angle during a gap
time. Therefore, the maximum absolute error on the beacon angle is given by φ0/2 (according
to equation (2.5)). This last equation represents the most important trade-off: for a given
receiver, increasing the rotation speed would increase the error on measured angles. We
decided to choose a receiver with the smallest T0, and afterwards the maximum turning
speed according to the maximum error accepted. In our case, the TSOP7000 was the only
receiver providing the minimum gap time satisfying the pair of parameters φ0 and ω (about
0.1 deg and 10 turn/s, respectively). Then the optical field of view has been tuned with optical
components to be narrower, but large enough to receive some bits/codes from one beacon in
the angular window, for this turning speed. Typically, we receive a minimum of 20 bits (∼ 2
codes) at the maximum range, which corresponds to the smallest angular window. So, for a
given receiver, this maximum working distance depends on the emitted power combined with
the size of the lens, and the minimum number of bits we need to identify the beacons. In our
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Figure 2.15: Oscilloscope measurement at the receiver output for two beacons emitting the
code 3 and the code 5, respectively. Top plot: the separation time is greater than the timeout
and the sensor can separate both signals. Bottom plot: the separation time is lower than
the timeout and the sensor cannot separate both signals. In both cases, it is possible to
distinguish between both codes.
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case, these parameters have been chosen to meet the Eurobot rules. The lens/focal distance
has been chosen to hold in the allowed volume. Then the emitted power has been tuned to
reach the maximum distance possible on the moving area. Indeed the system works up to
6m, which is greater than required.

2.5.2 System deployment

BeAMS has been designed for the Eurobot contest. However, the system could be used
in any other application involving angle measurements based positioning. Two parameters
are important in order to use BeAMS in another context: (1) the covered area, and (2) the
number of beacons. Also, we have to consider the multiple beacon detection issue.

Obviously, the covered area is determined by the maximum working distance. The current
version of BeAMS reaches 6m with a small lens (12mm diameter) and usual LEDs. This
distance can be increased either by increasing the size of the lens, or by rising the emitted
power. In our application, the size of the lens is limited since the available volume is limited.
The emitted power can be increased either by choosing other IR LEDs or by increasing the
number of LEDs. The received power is given by

Pr = S Pe
4πd2 , (2.7)

where Pe is the emitted power, d is the distance, and S is the surface of the lens. These
parameters can be modified, while the minimum received power is unchanged. For example,
multiplying the emitted power Pe by four, and the surface of the lens S by nine (36mm
diameter) would multiply the working distance d by six, as d is proportional to

√
SPe (see

equation (2.7)). With our prototype, we would reach a distance of 36m, which is comparable
to commercial systems.

Then we have to consider the number of beacons. Although Figure 2.2 represents the
system with three beacons, it is important to note that the sensor can measure angles for
any number of beacons, three being the minimum number to achieve unequivocal positioning
(Chapter 6). We chose a code family that allows 5 beacons because it was sufficient for our
application. With the same code family and receiver, we can go up to 9 beacons since we
are limited by the maximum burst length permitted by the receiver. However, we can use
any other codes respecting the constraints of the receiver, as explained in Section 2.4.4. The
number of codes is limited by the minimum number of bits we receive at the maximum working
distance. This minimum number of bits received in the time window is fixed by the optical
field of view combined with the rotation speed, as expressed by equation (2.1). As explained
previously, there is a trade-off. Increasing the rotation speed decreases the time window, and
subsequently the number of bits and the number of possible codes. In our application, the
minimum number of bits is more or less 20, at the maximum range with a turning speed of
10 turn/s. As explained in Section 2.4.4, we use a checksum and we want to see the code many
times in the time window (minimum 2 times in our case). From a practical point of view, 10
of these 20 bits could be used to code the beacons, without jeopardizing the noise robustness.
Therefore, this would allow a maximum of 1024 beacons. Note that this is not a hard limit
of the system, but this is just an example with the current parameters of BeAMS.

Finally, we have to consider the beacon spacing and multiple beacon detection issue. As
explained in Section 2.4.4, the signals from different beacons could appear in the same time
window if they are too close (from an angular point of view). In a practical application, it
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occurs when the beacons are almost aligned (a few φ0 of angular separation). This has the
effect of corrupting the angle measurements of those beacons. Fortunately, the system is able
to detect these pathological cases and to reject measurements due to code collisions, unlike
laser systems with retro-reflective tapes. However, in the case of BeAMS, there is a way to
overcome this issue, as explained hereafter. In general, beacons are placed against walls or in
corners, where it is unlikely to find the robot. Also, some papers discuss the issue of beacon
placement. Algorithms to find the best place of a minimum number of beacons to meet a
given criterion, most often a minimum positioning error, are proposed in [23, 78, 82]. For
BeAMS, we could use such an algorithm, with only one additional constraint: anywhere on
the moving area, the robot has to “see” at least 3 beacons, not aligned with any other beacon.

2.6 Conclusions

In this chapter, we present a new angle measurement system, named BeAMS, that can be used
by an algorithm for mobile robot positioning based on angle measurements. First, we present
some of the numerous angle measurement systems developed for robot positioning. It turns
out that the most flexible solutions are rotating lasers with passive bar-coded reflective tapes
or active emitting beacons with a rotating receiver. Commercial systems use the first solution,
but in general, they do not identify beacons. The second solution is generally adopted by
home-made systems. It requires to power-up the beacons, but it is easier to identify them.
The knowledge of beacon IDs is an advantage to be robust to the wake-up or kidnapped
issues, or to feed a data fusion algorithm without requiring a data association step.

Our motivation for this work was to create a new system fitted for the Eurobot contest,
which imposes many constraints. As a consequence, it was impossible to use a commercial
sensor, and we decided to create our own system. The hardware of BeAMS consists of a sensor
located on the robot, and several active beacons emitting infrared light in the horizontal
plane, located at known positions. BeAMS has an acquisition rate of 10Hz, and the entire
sensor is contained in a (8× 8× 6) cm3 volume. While the basic ideas are similar to existing
systems, BeAMS innovates on many points. The mechanical part of the system is kept as
simple as possible (motor only, no gear system or belt) due to the hollow shaft, and it does
not need an optical encoder for the motor control or angle measurement. These features
tend to reduce considerably the volume of BeAMS. A simple infrared receiver/demodulator
is the main sensor for the angle measurements, and the beacons are common infrared LEDs.
Furthermore, the system only requires one infrared communication channel, and there is no
synchronization channel between the beacons and the robot. Each beacon emits its own code
over the 455 kHz carrier wave; this emission is continuous so as to avoid having any form of
synchronization between the beacons and the receiver. As a result, each beacon signal is a
periodic signal whose period corresponds to a particular code defining the beacon ID. Finally,
BeAMS introduces a new mechanism to measure angles: it detects a beacon when it enters
and leaves an angular window. This allows the sensor to analyze the temporal evolution of
the received signal inside the angular window. In our case, this particularity is used to decode
the beacon ID.

Finally, we analyze some practical considerations and trades-off, due to the many parame-
ters implied in the design of BeAMS. We explain how the turning speed, the angular window,
the working distance, and the number of beacons are linked together. A simple analysis of
the coding scheme of the beacons shows that the OOK modulation of the beacon signals
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induces an error in the angle measurement. We show that the maximum absolute error on
the beacon angle is given by φ0/2. An intuitive design rule would say that we have to reduce
the duration of zeros, as well as their frequency of appearance. Also, we consider a practical
system deployment. Whereas BeAMS has been designed for the Eurobot contest, it can
be used in any other positioning application involving angle measurements. In particular,
we explain how to increase the covered area and the number of beacons, by modifying some
parameters of the system.



Chapter 3

Error analysis

3.1 Introduction

Now that the hardware part of the system has been presented, we concentrate on the errors
that affect angle measurements. We can identify two kinds of noise in BeAMS: (1) the natural
noise, and (2) the artificial noise. Like for all other systems, BeAMS is affected by the natural
noise, due to the receiver output jitter, rotation jitter, electronic noise, other infrared signals,
etc. In addition to the natural noise, BeAMS is affected by another kind of noise, due to
the codes and the use of an OOK modulation mechanism. In order to identify the different
beacons, we decided that each beacon has to send its own coded signal. Unfortunately, this
strategy produces errors when no signal is sent, that is during an OFF period of the sequence.
In this chapter, this noise is interpreted as an additional (or artificial) noise due to the OOK
modulation mechanism. But, unlike the natural noise, the artificial noise can be controlled,
and it is important to evaluate the level of artificial error to guarantee the usability of BeAMS
in real conditions. Therefore, we first focus on the artificial noise to evaluate the error made
on measured angles resulting from the coding of beacon signals. The natural noise will be
discussed in the next chapter. The goal of this chapter is to develop a theoretical model,
useful for evaluating the performance of our system. We want to establish an upper bound
of the artificial variance that affects the angle measurements, and to understand the impact
of the zero symbol durations as well as their frequencies.

This chapter is organized as follows. In Section 3.2, we describe the errors due to the OOK
modulation. Then, in Section 3.3, we present some notations, which will be used extensively
in the two following chapters. In Section 3.4, we establish the probability density functions
of the angular measurements of the first and last edges of the received signal. In Section 3.5,
we characterize the estimator used for the beacon angle. In particular, we establish its mean,
and an upper bound of its variance. Finally, we conclude the chapter in Section 3.6.

3.2 Description of the errors

As the receiver captures an OOK amplitude modulated signal, it can only detect the presence
of the carrier wave (denoted by a 1 or ON period) or the absence of the carrier wave (denoted
by a 0 or OFF period). If the carrier were sent continuously (that is, if the signal sent by a
beacon was not coded), there would be no OFF periods in the signal captured by the receiver.
But the coding of the beacon signals introduces zeros into the emitted sequences.

27
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Let us now examine the influence of the OFF periods on the first rising and last falling
edges. Since there are errors in the system, there are no means to access the true values of φR
and φF . Therefore, we consider random variables instead, denoted by Φr and Φf . According
to equation (2.5), we propose the following estimator Φb for the beacon angle φB

Φb = Φr + Φf

2 . (3.1)

As illustrated in Figure 3.1, if a beacon emits a 1 when it enters into the angular window,
there is no error on Φr, meaning that the measured value φR is a correct estimate of Φr.
However, if a beacon emits a 0 when it enters the angular window, there is an error on
Φr because the receiver misses the actual 0 → 1 transition. In fact the transition occurs
later (Φr ≥ φR), at the next 1. The same consideration applies to Φf , except that the 1→ 0
transition could occur sooner (Φf ≤ φF ). All these specific situations are illustrated in Figure
3.1. We first represent the output of the receiver for a non modulated carrier wave, R0. In that
case, there are no errors in the transition times because the beacon sends out a continuous 1
symbol. The four other cases represent the output of the receiver for four different situations
using an arbitrary code (we use here a simpler code than ours for the purpose of illustration,
but this does not change the conclusions). The first case, corresponding to the received signal
R1, does not induce any error because Pth is crossed upwards and downwards when the beacon
emits a 1 symbol. The second case (R2) generates an error on Φr only. The third case (R3)
generates an error on Φf only, and the fourth case (R4) generates an error on both Φr and
Φf . From Figure 3.1, one can see that the receiver output Ri is the logical AND between
Ei and R0. Of course, this hypothesis corresponds to an ideal receiver, and will be discussed
later.

Assume now that the OFF periods of a sequence all have the same duration, denoted by T0
(this is our choice by design). Because the motor rotates at a constant speed, an OFF period
is then equivalent to an OFF angle called φ0. The worst case for estimating Φr occurs when
an OFF period starts at an angle φ = φR, delaying the next transition to an angle φR + φ0.
The same reasoning applies to Φf when an OFF period begins at an angle φ = φF − φ0. In
both cases, the maximum absolute error on Φr or Φf is equal to φ0. These are the worst
cases but there are many combinations of these two errors. In the following sections, we
establish the probability density functions (PDFs) of the random variables Φr and Φf , and
derive characteristics of the estimator Φb.

3.3 Notations

For the following developments, we need to define some notations:

• N0, N1 are the number of zeros or ones in a code, respectively. The number of bits in
a code is Nb = N0 +N1.

• p0, p1 are the probabilities of obtaining a 0 or a 1 respectively at the IR power threshold
(rising or falling edge), that is their frequencies1. By definition we have p0 = N0/Nb,
p1 = N1/Nb, and p0 + p1 = 1.

1For this, we assume that the power sent by the beacon is higher than the threshold Pth. In other words,
it means that we are in the working range of the sensor.
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Pth

φ

φBPIR(φ)

R0

R1

R2

R3

E1

E2

E4

R4

φFφR

φ0

errors

error

error

E3

Figure 3.1: The upper curve PIR(φ) is the infrared power collected at the receiver while
the turret is turning. R0 is the special case corresponding to the non modulated infrared
carrier wave (no OFF periods). Ei are examples of emitted signals from the beacons. Ri
are the corresponding received signals at the receiver output. The black arrows represent the
measured values respectively for Φr to the left (first Rising edge) and for Φf to the right (last
Falling edge). The encircled arrows emphasize errors made on Φr or Φf .
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• T0 is the OFF period (duration of a 0) in a code. The only assumption is that the OFF
periods of a code must all have the same duration.

• φ0 is the OFF angle. It corresponds to the angular displacement of the turret during
the OFF period T0:

φ0 = ω T0. (3.2)

To give an example of real values, in the original setup of our system for mobile robot
positioning, we have: N1 = 10, N0 = 2, p0 = 1/6, ω = 10.016 turn/s, T0 = 30.8µs, and
φ0 = 0.111 deg, for each code.

• The Uniform PDF is defined as

U(a,b) (x) =
{ 1
b−a if a ≤ x ≤ b,
0 otherwise.

(3.3)

Its mean is equal to a+b
2 and its variance is (b−a)2

12 .

• The symmetric Triangular PDF is defined as

T(a,b) (x) =


2
b−a −

2|2x−a−b|
(b−a)2 if a ≤ x ≤ b,

0 otherwise,
(3.4)

where |x| denotes the absolute value of x. Its mean is a+b
2 and its variance is (b−a)2

24 .
Note that with these notations, and if b− a = d− c, we have [63, page 137]

U(a,b) (x)⊗ U(c,d) (x) = T(a+c, b+d) (x) , (3.5)

where ⊗ denotes the convolution product.

3.4 Probability density functions

BeAMS introduces a new mechanism for measuring angles. To the contrary of systems that
look for a maximum to estimate the angle of a beacon, BeAMS detects a beacon when it
enters and when it leaves the angular window. Therefore, we have two random variables, Φr

and Φf , corresponding to these events. The estimator of the beacon angle, Φb, is the mean
of these two variables.

In this section, we establish the probability density functions of Φr and Φf . Obviously,
there are some symmetries for Φr and Φf ; we will use them to shorten some developments.

3.4.1 Probability density function of Φr

Errors on Φr originate if a beacon emits a 0 symbol while entering the angular window.
Assuming time stationarity and as there is no synchronization between the beacons and the
receiver, p1 is the probability of determining the correct angle φR as the measured value
for Φr, when the beacon enters the angular window. When the beacon emits a 0, the value
measured for Φr is not correct; we then assume that its value is uniformly distributed between
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fΦf
(φ)

φ

fΦb
(φ)

p1
p1

2

p0
φ0

2p1p0
φ0

2p0
φ0

φR φR + φ0 φB + φ0
2φB φFφF − φ0φB − φ0

2

fΦr
(φ)

Figure 3.2: Probability density functions of Φr (left), Φf (right) and Φb (center) in the case
of independent Φr and Φf .

φR and φR + φ0. Therefore, if we define δ (x) as the Dirac delta function, then the PDF of
Φr is given by the following mixture of PDFs

fΦr (φ) = p1δ (φ− φR) + p0 U(φR,φR+φ0) (φ) , (3.6)

for φ ∈ [−π, π). The mean and variance of Φr are, respectively,

µΦr = φR + p0
φ0
2 , (3.7)

σ2
Φr = p0

φ2
0

3 − p
2
0
φ2

0
4 . (3.8)

The details of the calculus can be found in Section A.2.1.

3.4.2 Probability density function of Φf

Because the configuration is symmetric when the beacon exits the angular window, a similar
result yields for Φf

fΦf (φ) = p1δ (φ− φF ) + p0 U(φF−φ0,φF ) (φ) , (3.9)
for φ ∈ [−π, π). The mean and variance of Φf are

µΦf = φF − p0
φ0
2 , (3.10)

σ2
Φf = p0

φ2
0

3 − p
2
0
φ2

0
4 . (3.11)

The details of the calculus can be found in Section A.2.2.

3.4.3 Characteristics of the estimators Φr and Φf

The PDFs of Φr and Φf are drawn in Figure 3.2. The expectations of Φr and Φf have a bias
given by ±p0

φ0
2 respectively (see equations (3.7) and (3.10)). The bias is proportional to the

OFF angle φ0 and the proportion of zeros in a code p0. The variances of Φr and Φf are equal,
and they are equal to zero if and only if there is no OFF period in the codes2.

2OFF periods correspond to the absence of any signal. The presence of OFF periods is nevertheless
necessary because we need to code the signal to identify beacons. If the identifier is not contained inside the
signal (in-band signaling), then we need an additional signal to obtain the beacon ID (out-band signaling).
Out-band signaling systems are more complex and have their own problems, not easy to solve for mobile robot
positioning. BeAMS uses in-band signaling.
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3.5 Characterization of the estimator Φb

3.5.1 Mean of Φb

The aim of the system being to estimate the beacon angle φB, we are now interested in
finding the mean and variance of Φb. Generally the mean and variance of a random variable
are calculated with the help of the PDF . In the case of Φb, it is not necessary to derive them
from the PDF since the estimator is a function of Φr and Φf (equation (3.1)), whose PDFs
are known. Let us first consider the mean of Φb. For any random variables X and Y , we have
E {X + Y } = E {X}+ E {Y } (see for example [63, page 152]). Therefore, the mean of Φb is
given by

µΦb = E {Φr}+ E {Φf}
2 ,

=

(
φR + p0

φ0
2

)
+
(
φF − p0

φ0
2

)
2 ,

= φR + φF
2 = φB. (3.12)

As can be seen, the mean of Φb is unbiased, despite that both the entering angle Φr and
leaving angle Φf estimators are biased. This justifies the construction of a symmetric receiver
and the use of that estimator.

3.5.2 Variance of Φb

Let us now derive the variance of Φb. The variance of the sum of two random variables can
be expanded as [63]

σ2
Φb = var

{Φr + Φf

2

}
= var {Φr + Φf}

4 =
σ2

Φr + σ2
Φf + 2C {Φr, Φf}

4 , (3.13)

where C{Φr,Φf} denotes the covariance of Φr and Φf . If Φr and Φf are uncorrelated, we
have that [63, page 155]

σ2
Φb =

σ2
Φr + σ2

Φf
4 =

σ2
Φr
2 =

σ2
Φf
2 , (3.14)

since σ2
Φr = σ2

Φf . This could also have been derived from the PDF of Φb, that is given by, in
the case of independent Φr and Φf ,

fΦb (φ) = p2
1δ (φ− φB) + 2p1p0 U(φB−φ0

2 , φB+φ0
2

) (φ) + p2
0 T(φB−φ0

2 ,φB+φ0
2

) (φ) . (3.15)

This result is obtained by convolving the PDFs of Φr and Φf [63, page 136], using equation
(3.5) and rescaling the result by using these properties [63]: 1) if Y = αX, then fY (y) =
1
|α|fX

( y
α

)
, and 2) δ (αx) = 1

|α|δ (x). This probability density function is also depicted in Figure
3.2 (center). However, the non correlation or independence of Φr and Φf are questionable in
our case; this is discussed hereafter.

As explained earlier, four situations are possible in one angular window: (1) no error is
encountered, (2) an error occurs for Φr only, (3) an error occurs for Φf only, or (4) an error
occurs for both angles. But the codes are deterministic and not random, and the durations
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between OFF periods are fixed and known. So, depending on the rotating speed and the code,
it is not sure that an error is possible on Φr and Φf simultaneously. These remarks show
that the Φr and Φf variables are not independent, and that the nature of the relationship
depends on the angular window and the coding scheme. To establish this relationship, we
should analyze, in full details, the four previous cases in function of the angular window and
the different codes. However, the mean of Φb is always given by equation (3.12), and despite
the relationship between Φr and Φf , Φb remains unbiased. To the contrary, the variance of
Φb is no longer given by equation (3.14) when Φr and Φf are correlated.

Fortunately, it is possible to derive an upper bound for σ2
Φb for a practical use, as we did

in [66]. Indeed, the square of the covariance is upper bounded [63, page 153]

C2{Φr, Φf} ≤ σ2
Φrσ

2
Φf . (3.16)

Given that σ2
Φr = σ2

Φf , we combine equations (3.13) and (3.16) to establish the following
limits for σ2

Φb

0 ≤ σ2
Φb ≤ σ

2
Φr . (3.17)

The upper bound of σ2
Φb is given by

σ2
Φb ≤ σ

2
Φr = σ2

Φf = p0
φ2

0
3 − p

2
0
φ2

0
4 . (3.18)

The upper bound for C {Φr, Φf} is a universal bound because it does not make any guess
about a possible relationship between the random variables. This result is confirmed by the
simulations but it seems to over estimate the real upper bound of σ2

Φb . Indeed, this first upper
bound does not take into account the particular nature of the committed errors. The purpose
of the following section is to provide a more accurate result.

3.5.3 Computation of the upper bound of σ2
Φb

With respect to the relationship between Φr and Φf , four important points should be noted:

1. the PDFs of Φr and Φf remain correct, as well as their means and variances.

2. the estimator Φb remains unbiased, since the expectation does not depend on the rela-
tionship between variables.

3. the upper bound computed in the last section also remains correct, even if it tends to
over estimate the variance of Φb.

4. the support of the PDF of Φb is always equal to
[
φB − φ0

2 , φB + φ0
2

]
, whatever the

relationship between Φr and Φf .

In order to understand the link between Φr and Φf , and to find out a more accurate result
on the upper bound of σ2

Φb , we have to analyze the four previous cases more cautiously in
function of the angular window and the different codes. From a mathematical point of view,
we need to compute the covariance C {Φr, Φf} for all possible cases, and put the result back
into equation (3.13). Note that the covariance can be expanded as [63, page 152]

C {Φr, Φf} = E {Φr, Φf} − E {Φr}E {Φf} . (3.19)
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Since E {Φr} and E {Φf} are known (see equations (3.7) and (3.10)), we need to compute
the joint expectation E {Φr, Φf}. And to compute the joint expectation, we need to express
the joint PDF fΦrΦf (φr, φf ).

3.5.3.1 Modified random variables

In order to simplify the calculus, we define the modified random variables Er and Ef as follows

Er = Φr − φR, (3.20)
Ef = Φf − φF . (3.21)

Er and Ef are shifted versions of Φr and Φf , by an amount equal to φR, or φF respectively,
and, as a result, they represent the errors committed on these measurements. The PDFs of
these new random variables are

fEr (εr) = p1δ (εr) + p0 U(0, φ0) (εr) , (3.22)

fEf (εf ) = p1δ (εf ) + p0 U(−φ0, 0) (εf ) , (3.23)

and their expectations are

µEr = p0
φ0
2 , (3.24)

µEf = −p0
φ0
2 . (3.25)

The variances are unaltered since

σ2
Er = var {Er} = var {Φr − φR} = var {Φr} = p0

φ2
0

3 − p
2
0
φ2

0
4 = σ2

Ef . (3.26)

Finally, we have

C {Er, Ef} = C {Φr − φR, Φf − φF } = C {Φr, Φf} . (3.27)

The variance of Φb, expressed in terms of these new random variables Er and Ef , is then
given by

σ2
Φb =

σ2
Φr + σ2

Φf + 2C {Φr, Φf}
4

=
σ2
Er + σ2

Ef + 2C {Er, Ef}
4

=
2σ2
Er + 2C {Er, Ef}

4

=
σ2
Er + C {Er, Ef}

2 . (3.28)

By definition, the covariance of Er and Ef is given by

C {Er, Ef} = E {Er, Ef} − E {Er}E {Ef} . (3.29)

Therefore, we obtain
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φ0

εr

εf

−φ0

φ0

εr

−φ0

εf

Figure 3.3: Left hand side: possible support of the joint PDF of Er and Ef in the general
case. Right hand side: support of the joint PDF of Er and Ef when no error is possible on
Φr and Φf simultaneously.

σ2
Φb =

σ2
Er + E {Er, Ef} − E {Er}E {Ef}

2 (3.30)

=
σ2
Er
2 + E {Er, Ef}

2 − E {Er}E {Ef}
2 (3.31)

= p0
φ2

0
6 − p

2
0
φ2

0
8 + E {Er, Ef}

2 + p2
0
φ2

0
8 (3.32)

= p0
φ2

0
6 + E {Er, Ef}

2 . (3.33)

The challenge is to compute the joint expectation E{Er, Ef}

E {Er, Ef} =
¨ +∞

−∞
εr εf fErEf (εr, εf ) dεr dεf . (3.34)

For this, we need to express fErEf (εr, εf ) for the different codes and angular windows.

3.5.3.2 Towards a more realistic upper bound on σ2
Φb

In order to compute a more realistic upper bound, we have to take into account the particular
nature of the errors Er and Ef , and, more specifically, their bounds. A closer look onto the
Er and Ef definitions, or their PDFs shows that we have

0 ≤ Er ≤ φ0, (3.35)
−φ0 ≤ Ef ≤ 0. (3.36)

Graphically, it means that the joint PDF of Er and Ef is not null only inside a square of side
φ0, as shown in Figure 3.3 (left). Moreover, their product is always negative or null

ErEf ≤ 0, (3.37)

and so must be their joint expectation

E {Er, Ef} ≤ 0. (3.38)
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first upper bound on σΦb new upper bound on σΦb

expression σΦb ≤ φ0

√
p0
3 −

p2
0
4 σΦb ≤ φ0

√
p0
6

numerical value 0.0245 deg 0.0185 deg

Table 3.1: Comparison of two bounds on σΦb .

Therefore
max E {Er, Ef} = 0, (3.39)

regardless of the relationship between Er and Ef .
We can therefore derive the following upper bound from expression (3.33), which is re-

minded hereafter
σ2

Φb = p0
φ2

0
6 + E {Er, Ef}

2 . (3.40)

Theorem 3.1 (Upper bound of σ2
Φb). For all codes, the variance of Φb is bounded by p0

φ2
0

6 ,
as long as the OFF periods of the codes all have the same duration

σ2
Φb ≤ p0

φ2
0

6 . (3.41)

As expected, the variance is related to the presence of OFF periods in the codes. More
precisely, the variance is proportional to the probability of having a zero p0, and to the square
of the OFF angle φ0. It is equal to zero if and only if there is no OFF period in the codes. So,
this expression establishes that p0 and φ0 should be kept as small as possible to minimize the
effects of the OOK modulation. Note that this variance is an upper bound, since it represents
the worst case (no error on Φr and Φf simultaneously), and that this upper bound is the
same for all codes (since they all have the same p0 and φ0 by design). Note also that this is
a general result, as long as the OFF periods of the codes all have the same duration.

Numerical values. In our case, p0 = 1/6 and φ0 = 0.111 deg, for each code. Previously,
according to expression (3.18), the standard deviation was lower than 0.0245 deg. This new
upper bound implies that σΦb ≤ 0.0185 deg; this is a decrease of about 25 %. These results
are summarized in Table 3.1.

Finally, it is interesting to interpret the condition E {Er, Ef} = 0, that is the maximum
of the joint expectation. This constraint, combined with constraint (3.37) means that either
Er or Ef must be null. In other terms, it is impossible to make an error on both Φr and
Φf simultaneously. Intuitively, it is logical that the variance is maximum in that case since
an error committed on Φr is not balanced by an error on Φf , and vice versa. Graphically,
it means that the support of the joint PDF reduces to the axes in that case. The possible
support of the joint PDF is represented in Figure 3.3 (right). In the next section, we show
that it can be composed of uniform PDFs along the axes (the horizontal and vertical line
segments) and a two dimensional Dirac PDF (the black dot).

3.6 Conclusions
In this chapter, we provide a theoretical framework to analyze the artificial errors on the
measured angles, resulting from the use of an On-Off Keying modulation mechanism. The
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advantage of having a model is that we can understand and predict the use of other codes
in the system. We establish the probability density functions of Φr and Φf , the estimators
used for the entering and leaving angles, respectively. Then, a statistical estimator Φb for
the angular localization of a beacon is proposed. We demonstrate that this estimator is
unbiased and that its variance is upper bounded by p0

φ2
0

6 . This variance represents the power
of artificial noise due to the OOK modulation. It increases with the square of the OFF angle
φ0 (the angle corresponding to the OFF duration in a code) and with the proportion of zero
symbols in a code p0. This study has also justified some practical choices made in BeAMS, in
particular: (1) the use of that particular estimator, (2) the reduction of p0 versus p1, and (3)
the reduction of T0 (or φ0). Finally, we show that the upper bound corresponds to a situation
in which it is impossible to make an error on both Φr and Φf simultaneously. This confirms
that there is a statistical relationship between these two estimators, which is studied in the
next chapter.





Chapter 4

Code statistics

4.1 Introduction

In this chapter, we complement the previous results by going into further details related
to the code statistics of modulated signals in general, with an emphasis on BeAMS. In the
previous chapter, we have computed the upper bound on the variance of Φb. This upper
bound is a general result for all codes with the sole assumption that the OFF periods of all
codes must have the same duration. We have also shown that the Φr and Φf variables are
not independent, and that the nature of the relationship depends on the angular window and
the coding scheme.

But, if we can provide the upper bound for all codes, the previous analysis does not tell
for which angular windows this upper bound is reached. To determine them, we need to
consider both the particular code and angular window. More generally, we need to express
fErEf (εr, εf ) for the different codes and angular windows. Note that we did not need to
express fErEf (εr, εf ) in order to find the upper bound. The final goal is to compute the real
variance of Φb, for any code, and for any angular window, in order to show how the variance
evolves exactly as a function of the angular window (while remaining below the upper bound).

This chapter is organized as follows. In Section 4.2, we establish the real variance of Φb

for our codes, and for all angular windows. Then, we present simulation results in Section
4.3, in order to validate our theory. In Section 4.4, we discuss an important hypothesis about
our theory, and we conclude the chapter in Section 4.5.

4.2 Evolution of the variance of Φb with respect to the angular
window

In this section, we establish the evolution of the variance of Φb with respect to the angular
window. For this, we need to understand the relationship between Er and Ef for the different
codes and angular windows. The general mechanism to do this consists in moving a particular
code from the left to the right, in front of a fixed angular window, and to report the values
of the committed errors on the first and last edges. The situation is depicted in Figure 4.1.

39
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φ0(N1 − i)φ0iφ0 φ0 iφ0φ0

φW

Figure 4.1: Illustration of the mechanism to understand the relationship between Er and Ef
for the different codes and angular windows. One has to move a particular code (defined as
Ci = [1i 01 110−i 01], for i = 1, . . . , 5) from the left to the right, in front of a fixed angular
window, and to report the values of the errors.

4.2.1 Introduction to several situations

When we move a code from the left to the right, as represented in Figure 4.1, it appears that
we have to deal with 6 different situations, corresponding to:

Case 0. This case occurs when the angular window φW is lower than φ0, the OFF angle;
that is φW = λ0φ0, with λ0 < 1. It does not depend on any particular code (see Figure
4.1, with φW < φ0). Errors are therefore bounded by the maximal value of the angular
window (φW = λ0φ0)

0 ≤ Er ≤ λ0φ0, (4.1)
−λ0φ0 ≤ Ef ≤ 0. (4.2)

The support of the joint PDF is similar to the one represented in Figure 3.3 (right),
except that the parts along the axes are smaller. The support of the joint PDF is
represented in Table 4.1, that regroups the supports of the PDFs of all the cases.

Case A. This case corresponds to the situation leading to a variance that is exactly equal
to its upper bound, as determined in Section 3.5.3.2. It means that it is impossible
to have Er 6= 0 and Ef 6= 0 simultaneously, when the value of the angular window
φW falls into given intervals, that depend on the particular code (see Figure 4.1, with
φW = (i+ 3)φ0, for example).

Case B. This case is a combination of case A and case D (see below). It appears for some
values of the angular window that depend on the code. Since this case is a combination
of two cases, its support is formed by the union of two supports.

Case C. This case is a combination of case A and case E (see below). It appears for some
values of the angular window that depend on the code. Since this case is a combination
of two cases, its support is formed by the union of two supports.

Case D. In that case, it is possible to have Er 6= 0 and Ef 6= 0 simultaneously, in addition
to the three other situations of case 0 and case A (no error, Er 6= 0 only, Ef 6= 0
only). But, when this situation occurs, the errors are totally dependent. In particular,
their difference is constant along a part of the support of the joint PDF . It appears for
values of φW , that depend on the particular code (see Figure 4.1 for an example of this
situation).
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Case 0 Case A

λ0φ0 φ0

εr

−φ0

εf

−λ0φ0

φ0

εr

−φ0

εf

Case D Case E

λdφ0 φ0

εr

−φ0

εf

−λdφ0

λeφ0 φ0

εr

−φ0

εf

−λeφ0

Case B

φ0

εr

−φ0

εf

⋃

λdφ0 φ0

εr

−φ0

εf

−λdφ0

Case C

φ0

εr

−φ0

εf

⋃

λeφ0 φ0

εr

−φ0

εf

−λeφ0

Table 4.1: Supports of the joint PDFs of Er and Ef for the 6 different Cases.
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Case E. This case is similar to case D, meaning that along a part of the support of the
joint PDF , the errors are totally dependent. But, unlike case D, this situation occurs
in another part of the joint PDF . It appears for values of φW , that depend on the
particular code.

These situations, named “Cases”, have different supports for the joint PDF (as established
later in this document); these supports are shown in Table 4.1. It is important to understand
that, while the absolute error on Er or Ef is φ0, the maximum error on Φb is not φ0 but φ0/2
(due to the algebraic mean). In other words, the errors on Er and Ef do not sum up, but they
compensate. This explains the particular shape of the domain of the different PDFs. Note
that, while the supports of the PDFs are continuous from a theoretical perspective, observed
values are generally different for each revolution of the turret, and that successive observations
move along the supports of the PDFs. We elaborate on these aspects in subsection 4.4.

From a practical point of view, BeAMS operates with the best upper bound for Φb all
over the plane (regardless of the robot position). But this practice is far from being optimal.
Indeed, we show that the real variance evolves with the position of the robot in the plane, and
therefore the upper bound overestimates the real variance unnecessarily. It would be better
to have the exact variance for each position in the plane, and for each beacon (because the
variances are related to the code and to the angular window).

It is essential to note that the variance σ2
Φb is not a function of the distance

to a beacon, but to the seen angular window. This might not be intuitive, but this is
coherent and more tractable for an angular measurement system that should not be sensitive
to the distance. The major reason is that the relationship between the physical notion of
distance and the measures is dependent on parameters, like power thresholds or propagation
laws, that are out of control. The fact that σ2

Φb is only dependent on the measured angular
window and the beacon code (which is known) is an advantage of BeAMS compared to other
angle measurement systems.

In the following, we first establish the probability density functions and variances for all
the Cases. Then, we summarize the different Cases in Section 4.2.3. Finally, we present the
simulations results in Section 4.3.

4.2.2 Study of the different cases

Before starting the detailed study, one has to remember the general results obtained so far:

1. the upper bound is always valid, and corresponds to case A.

2. the mean of Φb remains unbiased, for all cases.

3. the marginal PDFs of the joint PDF are always given by equations (3.22) and (3.23),
for all cases, except for the case 0.

In addition to these remarks, we have noted that:

1. the value of the variance of Φb is a function of the particular code, and the angular
window φW . The only constraint on φW is that it is positive or null by design (Φf ≥ Φr)

φW ≥ 0. (4.3)
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φ0 5φ0 φ0 5φ0 φ0

φW ∈ [φ0, 5φ0)

φW ∈ [7φ0, 11φ0)

Figure 4.2: Finding the intervals for the Case A, and for the code 5.

2. as the codes are periodic, the evolution of the variance with respect to φW for each code
must be periodic. But, as a consequence of constraint (4.3), the function is not periodic
in the strict mathematical sense. Indeed, we will show that this function is partially
periodic, for φW ≥ φ0 only

σ2
Φb(φW ) = σ2

Φb(φW + P ) φW ≥ φ0, (4.4)

where the period P is related to the length of a code: P = 12φ0. As a consequence, we
introduce a new notation, that will be used extensively in this chapter

φmodW = φW mod (12φ0) . (4.5)

3. in this study, we think in terms of angles instead of times since the OFF angle perceived
by the system (φ0 = ω T0) is a combination of the zero duration (T0) and the rotation
speed of the turret (ω). Again, this is suitable for an angle measurement system like
BeAMS.

4. the different cases are detailed hereafter in a different order than their logical name.
Indeed, we detail them in order of complexity, and the way they are named will become
clear later.

4.2.2.1 The case A

This case corresponds to the situation leading to the upper bound of the variance, as deter-
mined in Section 3.5.3.2. For each code, it is possible to find values for the angular window
for which it is impossible to have Er 6= 0 and Ef 6= 0 simultaneously. Firstly, we determine the
values of the angular window for which this situation occurs. We explain this reasoning with
the code 5 since it is easier, and we will generalize the result later for the other codes. To find
these values, one has to pick up a fixed value for the angular window, and to move virtually
the code from the left to the right, and to check if the entering and leaving angles can both
fall into the gaps (φ0). Figure 4.2 illustrates the idea. From this analysis, one can see that,
if the angular window φW is comprised between φ0 and 5φ0 or between 7φ0 and 11φ0, it is
impossible to commit an error on both the entering and leaving angles. These intervals can
be generalized for any code i, as given in Table 4.2. The principle is the same, but we have
to replace the first 5 by i, and the second 5 by 10− i (or N1 − i), as a consequence of how to
define the different codes

Ci = [1i 01 110−i 01], i = 1, . . . , 5. (4.6)
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Ranges for φmodW

Code 1 [3φ0, 9φ0)
Code 2 [φ0, 2φ0)

⋃
[4φ0, 8φ0)

⋃
[10φ0, 11φ0)

Code 3 [φ0, 3φ0)
⋃

[5φ0, 7φ0)
⋃

[9φ0, 11φ0)
Code 4 [φ0, 4φ0)

⋃
[8φ0, 11φ0)

Code 5 [φ0, 5φ0)
⋃

[7φ0, 11φ0)

Table 4.2: Intervals of the angular window for the Case A with respect to the codes (
⋃

denotes
the union).

φ0

εr

−φ0

?

?•

? p0

• p1 − p0

εf

Figure 4.3: Support of the joint PDF of Er and Ef for the case A.

The general case is depicted in Figure A.1, and further developed in Section A.3.1 of the
appendix. We can summarize the intervals for the case A, and for all codes in the following
compact form

φmodW ∈ [φ0, iφ0)
⋃

[(i+ 2)φ0, (10− i)φ0)
⋃

[(12− i)φ0, 11φ0), i = 1, . . . , 5, (4.7)

where
⋃

denotes the union.
Now that the intervals have been determined, we are interested in finding the joint PDF

of Er and Ef , in order to compute their joint expectation. We can represent the possible joint
values of Er and Ef on a 2D graphic where the abscissa εr represents a possible value of Er
(εr ∈ [0, φ0]) and the ordinate εf represents a possible value of Ef (εf ∈ [−φ0, 0]). Indeed,
this graphic is the support of the joint PDF of Er and Ef . It is represented in Figure 4.3. The
support of this joint PDF is composed of an horizontal line segment from 0 to φ0 (Er 6= 0
only), a vertical line segment from −φ0 to 0 (Ef 6= 0 only), and a black dot at the origin (no
errors). The black dot represents a two dimensional Dirac PDF , and the line segments are
uniform PDFs, as explained later. There is no part of the support outside the axes which
means that is impossible to have Er 6= 0 and Ef 6= 0 simultaneously. The line segments are
denoted by a black star (?), and the origin by a black dot (•).

Now, we have to associate probabilities and PDFs to these three parts. Assuming time
stationarity and as there is no synchronization between the beacons and the receiver, we then
assume that the value of Er is uniformly distributed between 0 and φ0, when Ef = 0. By
symmetry, we assume that the value of Ef is uniformly distributed between −φ0 and 0, when
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Er = 0. Therefore, the joint PDF of Er and Ef is given by the following mixture of joint PDFs

fErEf (εr, εf ) = p•δ (εr) δ (εf ) + p?δ (εr) U(−φ0,0) (εf ) + p?δ (εf ) U(0,φ0) (εr) , (4.8)

where:

• p• is the probability to commit no error, and

• p? is the probability to have Er 6= 0 only. By symmetry, we show that the probability
to have Ef 6= 0 only is also given by p?, explaining why the notation p? is the same for
both.

The complete explanation about the computation of these probabilities is give in the appendix
(Section A.3.1). Their values are given below{

p• = p1 − p0,

p? = p0.
(4.9)

We can check that the probabilities for the case A sum up to 1

p• + p? + p? = p1 − p0 + p0 + p0 = p1 + p0 = 1. (4.10)

As another verification, we can also compute the marginal PDF for Er

fEr (εr) =
ˆ +∞

−∞
fErEf (εr, εf ) dεf

= (p1 − p0) δ (εr)
ˆ +∞

−∞
δ (εf ) dεf

+p0δ (εr)
ˆ +∞

−∞
U(−φ0,0) (εf ) dεf

+ p0 U(0,φ0) (εr)
ˆ +∞

−∞
δ (εf ) dεf

= (p1 − p0) δ (εr) + p0δ (εr) + p0 U(0,φ0) (εr)
= p1δ (εr) + p0 U(0,φ0) (εr) , (4.11)

which is the same as equation (3.22). Likewise, the marginal PDF for the random variable
Ef is identical to equation (3.23). Now that we have the joint PDF , we can compute the joint
expectation E {Er, Ef}

E {Er, Ef} =
¨ +∞

−∞
εr εf fErEf (εr, εf ) dεr dεf

= (p1 − p0)
¨ +∞

−∞
εr εf δ (εr) δ (εf ) dεr dεf

+ p0

¨ +∞

−∞
εr εf δ (εr) U(−φ0,0) (εf ) dεr dεf

+ p0

¨ +∞

−∞
εr εf δ (εf ) U(0,φ0) (εr) dεr dεf

= 0 + 0 + 0 = 0. (4.12)
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The joint expectation is null, meaning that random variables Er and Ef are orthogonal for
the case A. Then, we can compute C {Er, Ef} for the case A

C {Er, Ef} = E {Er, Ef} − E {Er}E {Ef}

= 0−
(
p0
φ0
2

)(
−p0

φ0
2

)
= p2

0
φ2

0
4 , (4.13)

and, finally, we can compute the variance of Φb for the case A

σ2
Φb =

σ2
Er + C {Er, Ef}

2

=

(
p0

φ2
0

3 − p
2
0
φ2

0
4

)
+
(
p2

0
φ2

0
4

)
2

= p0
φ2

0
6 . (4.14)

Note that this value corresponds to the upper bound defined in Section 3.5.3.2. As long as
the angular window φW belongs to admissible ranges for the case A, the variance of Φb does
not depend on the angular window.

4.2.2.2 The case 0

The case 0 occurs when the angular window φW is comprised between 0 and φ0, for all codes

φW ∈ [0, φ0). (4.15)

This case is similar to the case A in that it is impossible to have Er 6= 0 and Ef 6= 0
simultaneously. But, unlike the case A, the intervals for the committed errors range from 0
to φW in absolute value

0 ≤ Er ≤ φW , (4.16)
−φW ≤ Ef ≤ 0. (4.17)

Furthermore, there are parts where there is no detection at all, when the angular window is
entirely comprised in a zero symbol duration. These comments show that the probabilities
depend on the angular window. Since we have φW ∈ [0, φ0) for the case 0, let us introduce a
parameter to express φW in function of φ0

φW = λ0φ0, λ0 ∈ [0, 1). (4.18)

The support of the joint PDF is represented in Figure 4.4. The support of this joint PDF
is composed of an horizontal line segment from 0 to λ0φ0 (Er 6= 0 only), a vertical line
segment from 0 to −λ0φ0 (Ef 6= 0 only), and a black dot at the origin (no errors). The black
dot represents a two dimensional Dirac PDF , and the line segments are uniform PDFs, as
explained hereafter. There is no part of the support outside the axes which means that is
impossible to have Er 6= 0 and Ef 6= 0 simultaneously. The line segments are denoted by an
asterisk (∗), and the origin by a black dot (•).

Now, we have to associate probabilities and PDFs to these three parts. Assuming time
stationarity and, as there is no synchronization between the beacons and the receiver, we
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Figure 4.4: Support of the joint PDF of Er and Ef for the case 0.

then assume that the value of Er is uniformly distributed between 0 and λ0φ0, when Ef = 0.
By symmetry, we assume that the value of Ef is uniformly distributed between −λ0φ0 and
0, when Er = 0. Therefore, the joint PDF of Er and Ef is given by the following mixture of
joint PDFs

fErEf (εr, εf ) = p•δ (εr) δ (εf ) + p∗δ (εr) U(−λ0φ0,0) (εf ) + p∗δ (εf ) U(0,λ0φ0) (εr) , (4.19)

where:

• p• is the probability to commit no error, and

• p∗ is the probability to have Er 6= 0 only. By symmetry, we show that the probability
to have Ef 6= 0 only is also given by p∗, explaining why the notation p∗ is the same for
both.

The complete explanation about the computation of these probabilities is given in the ap-
pendix (Section A.3.2). Their values arep• = p1−p0λ0

p1+p0λ0
,

p∗ = p0λ0
p1+p0λ0

.
(4.20)

We can check that the probabilities for the case 0 sum up to 1

p• + p∗ + p∗ = p1 − p0λ0
p1 + p0λ0

+ 2 p0λ0
p1 + p0λ0

= p1 + p0λ0
p1 + p0λ0

= 1. (4.21)

Like for the case A, the joint PDF of Er and Ef , as well as the support of the joint PDF
(Figure 4.4), show that Er and Ef are orthogonal (see appendix A.3.2 for the details)

E {Er, Ef} =
¨ +∞

−∞
εr εf fErEf (εr, εf ) dεr dεf = 0. (4.22)
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But, unlike the case A (and all other cases), the marginal PDF of Er and Ef have changed,
as well as their expectations and variances. The marginal PDF of Er is given by (see ap-
pendix A.3.2 for more details)

fEr (εr) =
ˆ +∞

−∞
fErEf (εr, εf ) dεf

= p1
p1 + p0λ0

δ (εr) + p0λ0
p1 + p0λ0

U(0,λ0φ0) (εr) . (4.23)

The marginal PDF of Ef is given by

fEf (εf ) = p1
p1 + p0λ0

δ (εf ) + p0λ0
p1 + p0λ0

U(−λ0φ0,0) (εf ) . (4.24)

Their expectations are given by, using result A.7,

E {Er} = p0λ0
(p1 + p0λ0)

λ0φ0
2 = −E {Ef} , (4.25)

and their variances are given by, using result A.9,

var {Er} = var {Ef} = (λ0φ0)2

12
p0λ0 (4p1 + p0λ0)

(p1 + p0λ0)2 . (4.26)

Then, we can compute C {Er, Ef} for the case 0

C {Er, Ef} = E {Er, Ef} − E {Er}E {Ef}

=
(

p0λ0
(p1 + p0λ0)

λ0φ0
2

)2
= (p0λ0)2

(p1 + p0λ0)2
(λ0φ0)2

4 , (4.27)

and, finally, we can obtain the variance of Φb for the case 0 (see appendix A.3.2)

σ2
Φb =

σ2
Er + C {Er, Ef}

2

= p0
φ2

0
6

λ3
0

(p1 + p0λ0)

= p0
φ2

0
6 P0 (λ0) , (4.28)

where the first part is the same as for the case A, and the second part is a function (polynomial
ratio) of the parameter λ0

P0 (λ0) = λ3
0

p1 + p0λ0
. (4.29)

Note that P0 (λ0) satisfies

0 ≤ P0 (λ0) < 1, for λ0 ∈ [0, 1). (4.30)

This function is equal to 0 when λ0 = 0 (angular window reduced to 0), monotonically
increases with λ0, and is equal to 1 when λ0 = 1. Note that the case 0 represents a particular
situation. Indeed, the decoded signal is composed of one rising edge, and one falling edge
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Figure 4.5: Support of the joint PDF of Er and Ef for the case D.

only. It means that there is not enough information to compute the beacon ID, even if an
angle could be computed for this signal. The hardware then discards this information, so that
the high level positioning algorithm does not even need to deal with this situation. This case
appears when the received power is sufficiently low, or equivalently when the distance is high
enough. Therefore, this case could seem uninteresting, but we study this case in order to be
comprehensive in our study of the variance with respect to the angular window. Moreover,
we could consider sending this angle to the high level positioning algorithm if it can deal with
unidentified beacons.

4.2.2.3 The case D

In that case, it is possible to have Er 6= 0 and Ef 6= 0 simultaneously. When this occurs, it
can be shown that their difference is constant (see Figure A.3, lines 4 and 8, or red parts, in
the appendix A.3.3). This situation occurs for values of the angular window such that

φmodW ∈ [11φ0, 12φ0). (4.31)

However, this constant difference depends on the particular value of the angular window
(εr − εf = λdφ0, where λd is defined hereafter). Therefore, the support of the joint PDF
depends on the value of the angular window, and as a consequence, we introduce a parameter
to express φW in that interval

φmodW = 11φ0 + λdφ0, λd ∈ [0, 1). (4.32)

The support of the joint PDF is represented in Figure 4.5. It is composed of an horizontal
line segment from λdφ0 to φ0 (Er 6= 0 only), a vertical line segment from −φ0 to −λdφ0
(Ef 6= 0 only), a slanted segment (Er 6= 0 and Ef 6= 0) joining the previous ones, and a black
dot at the origin (no errors). The black dot represents a two dimensional Dirac PDF , and
the line segments are uniform PDFs, as explained hereafter. The horizontal and vertical line
segments are denoted by an asterisk (∗), the slanted line segment is denoted by a circle (◦)
and the origin by a black dot (•).
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Now, we have to associate probabilities and PDFs to these four parts. Again, we assume
the time stationarity, and we assume that the pairs of errors are uniformly distributed along
the line segments. Therefore, the joint PDF of Er and Ef is given by the following mixture
of joint PDFs

fErEf (εr, εf ) = p•δ (εr) δ (εf ) (4.33)
+ p∗δ (εr) U(−φ0,λdφ0) (εf )
+ p∗δ (εf ) U(λdφ0,φ0) (εr)
+ p◦2δ ((εr − εf )− λdφ0) U(−λdφ0,λdφ0) (εr + εf ) ,

where:

• p• is the probability to commit no error,

• p∗ is the probability to have Er 6= 0 only. By symmetry, we show that the probability
to have Ef 6= 0 only is also given by p∗, explaining why the notation p∗ is the same for
both, and

• p◦ is the probability to have Er 6= 0 and Ef 6= 0.

The complete explanation about the computation of these probabilities is provided in Section
A.3.3 of the appendix. Their values are given below

p• = p1 − p0 (1− λd) ,
p◦ = p0λd,

p∗ = p0 (1− λd) .
(4.34)

We can check that the probabilities for the case D sum up to 1

p• + p◦ + 2p∗ = p1 − p0 (1− λd) + p0λd + 2p0 (1− λd) = p1 + p0 = 1. (4.35)

The joint expectation is (see appendix A.3.3)

E {Er, Ef} = −p0λ
3
d

φ2
0

6 . (4.36)

Then, we can compute C {Er, Ef} for the case D

C {Er, Ef} = E {Er, Ef} − E {Er}E {Ef} = −p0λ
3
d

φ2
0

6 + p2
0
φ2

0
4 , (4.37)

and, finally, we can obtain the variance of Φb for the case D (see appendix A.3.3)

σ2
Φb =

σ2
Er + C {Er, Ef}

2

= p0
φ2

0
6 PD (λd) , (4.38)

where the first part is the same as for the case A, and the second part is a polynomial function
of the parameter λd

PD (λd) = 1− λ3
d

2 . (4.39)

Note that, again, PD (λd) is inferior to 1 when λd ∈ [0, 1).
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Figure 4.6: Support of the joint PDF of Er and Ef for the case E.

4.2.2.4 The case E

In that case, it is also possible to have Er 6= 0 and Ef 6= 0 simultaneously. When it happens,
it can be shown that their difference is constant (see Figure A.4, lines 3 and 7, or red parts,
in the appendix A.3.4). It occurs for values of the angular window such that

φmodW ∈ [0, φ0), φW ≥ 12φ0. (4.40)

Note that, there is a condition on φW , in order to differentiate this case from the case 0
(compare equations (4.15) and (4.40)). However, this constant difference depends on the
particular value of the angular window (εr − εf = (1 + λe)φ0, where λe is defined hereafter).
Therefore, the support of the joint PDF depends on the value of the angular window, and as
a consequence, we introduce a parameter to express φW in that interval

φmodW = 12φ0 + λeφ0, λe ∈ [0, 1). (4.41)

The support of the joint PDF is represented in Figure 4.6. It is composed of an horizontal
line segment from 0 to λeφ0 (Er 6= 0 only), a vertical line segment from −λeφ0 to 0 (Ef 6= 0
only), a slanted segment (Er 6= 0 and Ef 6= 0), and a black dot at the origin (no errors).
The black dot represents a two dimensional Dirac PDF , and the line segments are uniform
PDFs, as explained hereafter. The horizontal and vertical line segments are denoted by an
asterisk (∗), the slanted line segment is denoted by a circle (◦) and the origin by a black dot
(•).

Now, we have to associate probabilities and PDFs to these four parts. Again, we assume
the time stationarity, and we assume that the pairs of errors are uniformly distributed along
the line segments. Therefore, the joint PDF of Er and Ef is given by the following mixture
of joint PDFs

fErEf (εr, εf ) = p•δ (εr) δ (εf ) (4.42)
+ p∗δ (εr) U(−λeφ0,0) (εf )
+ p∗δ (εf ) U(0,λeφ0) (εr)
+ p◦2δ ((εr − εf )− (1 + λe)φ0) U(−(1−λe)φ0,(1−λe)φ0) (εr + εf ) ,
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where:

• p• is the probability to commit no error,

• p∗ is the probability to have Er 6= 0 only. By symmetry, we show that the probability
to have Ef 6= 0 only is also given by p∗, explaining why the notation p∗ is the same for
both, and

• p◦ is the probability to have Er 6= 0 and Ef 6= 0.

The complete explanation about the computation of these probabilities is given in the ap-
pendix (Section A.3.4). Their values are

p• = p1 − p0λe,

p◦ = p0 (1− λe) ,
p∗ = p0λe.

(4.43)

We can check that the probabilities for the case E sum up to 1

p• + p◦ + 2p∗ = p1 − p0λe + p0 (1− λe) + 2p0λe = p1 + p0 = 1. (4.44)

The computation of the joint expectation gives (see appendix A.3.4)

E {Er, Ef} = −p0
φ2

0
6 (1− λe)

(
1 + 4λe + λ2

e

)
. (4.45)

Then, we can compute C {Er, Ef} for the case E

C {Er, Ef} = E {Er, Ef} − E {Er}E {Ef} = −p0
φ2

0
6 (1− λe)

(
1 + 4λe + λ2

e

)
+ p2

0
φ2

0
4 , (4.46)

and, finally, we can obtain the variance of Φb for the case E (see appendix A.3.4)

σ2
Φb =

σ2
Er + C {Er, Ef}

2

= p0
φ2

0
6 PE (λe) , (4.47)

where the first part is the same as for the case A, and the second part is a polynomial function
of the parameter λe

PE (λe) = 1− 3λe + 3λ2
e + λ3

e

2 . (4.48)

Note that, again, PE (λe) is inferior to 1 when λe ∈ [0, 1).

4.2.2.5 The case B

When analyzing the possible pairs of values (Er, Ef ) (see Figure A.5 in the appendix A.3.5),
it appears that the case B is a combination of the case A and the case D. This case occurs
for values of the angular window such that

φmodW ∈ [iφ0, (i+ 1)φ0)
⋃

[(10− i)φ0, (11− i)φ0), i = 1, 2, 3, 4. (4.49)
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Figure 4.7: Support of the joint PDF of Er and Ef for the case B. The complete support is
obtained by the superimposition of both parts.

Note that this case does not occur for the code 5, as a consequence of its particular shape.
Like for the case D, the support of the joint PDF depends on the value of the angular window,
and as a consequence, we introduce a parameter λb to have an analytical expression of φW

φmodW = iφ0 + λbφ0, λb ∈ [0, 1), i = 1, 2, 3, 4, (4.50)

in the first part of the interval, or

φmodW = (10− i)φ0 + λbφ0, λb ∈ [0, 1), i = 1, 2, 3, 4, (4.51)

in the second part of the interval. The support of the joint PDF is represented in Figure
4.7. Indeed, the support of the joint PDF is obtained by the superimposition of both parts.
However, we chose to represent this support with separate parts for two reasons: 1) we want
that each line segment represents a uniform PDF , and 2) we can use all the previous results
about the cases that we have already studied. The joint PDF of Er and Ef is given by the
following mixture of joint PDFs

fErEf (εr, εf ) = p•δ (εr) δ (εf ) (4.52)
+ p?δ (εr) U(−φ0,0) (εf )
+ p?δ (εf ) U(0,φ0) (εr)
+ p∗δ (εr) U(−φ0,λbφ0) (εf )
+ p∗δ (εf ) U(λbφ0,φ0) (εr)
+ p◦2δ ((εr − εf )− λbφ0) U(−λbφ0,λbφ0) (εr + εf ) ,

where the different probabilities have the same meaning as previously defined. The complete
explanation about the computation of these probabilities is given in the appendix (Section
A.3.5). Their values are 

p• = p1 − p0
2 (2− λb)

p◦ = p0
2 λb

p? = p0
2

p∗ = p0
2 (1− λb) .

(4.53)
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We can check that the probabilities for the case B sum up to 1

p• + p◦ + 2p? + 2p∗ = p1 −
p0
2 (2− λb) + p0

2 λb + 2p0
2 + 2p0

2 (1− λb) = p1 + p0 = 1. (4.54)

The computation of the joint expectation gives (see appendix A.3.5)

E {Er, Ef} = −p0λ
3
b

φ2
0

12 . (4.55)

Then, we can compute C {Er, Ef} for the case B

C {Er, Ef} = E {Er, Ef} − E {Er}E {Ef} = −p0λ
3
b

φ2
0

12 + p2
0
φ2

0
4 , (4.56)

and, finally, we can obtain the variance of Φb for the case B (see appendix A.3.5)

σ2
Φb =

σ2
Er + C {Er, Ef}

2

= p0
φ2

0
6 PB (λb) , (4.57)

where the first part is the same as for the case A, and the second part is a polynomial function
of the parameter λb

PB (λb) = 1− λ3
b

4 . (4.58)

Note that, again, PB (λb) is inferior to 1 when λb ∈ [0, 1).

4.2.2.6 The case C

When analyzing the possible pairs of values for (Er, Ef ) (see Figure A.6 in the appendix A.3.6),
it appears that the case C is a combination of the case A and the case E. This happens for
values of the angular window such that

φmodW ∈ [(i+ 1)φ0, (i+ 2)φ0)
⋃

[(11− i)φ0, (12− i)φ0), i = 1, 2, 3, 4. (4.59)

Note that this case does not occur for the code 5, as a consequence of its particular shape.
Like for the case E, the support of the joint PDF depends on the value of the angular window,
and as a consequence, we introduce a parameter to express φW in terms of φ0

φmodW = (i+ 1)φ0 + λcφ0, λc ∈ [0, 1), i = 1, 2, 3, 4, (4.60)

in the first part of the interval, or

φmodW = (11− i)φ0 + λcφ0, λc ∈ [0, 1), i = 1, 2, 3, 4, (4.61)

in the second part of the interval. The support of the joint PDF is represented in Figure
4.8. Indeed, the support of the joint PDF is obtained by the superimposition of both parts.
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Figure 4.8: Support of the joint PDF of Er and Ef for the case C. The complete support is
obtained by the superimposition of both parts.

However, we chose to represent this support with separate parts for the same reasons as for
the case B. The joint PDF of Er and Ef is given by the following mixture of joint PDFs

fErEf (εr, εf ) = p•δ (εr) δ (εf ) (4.62)
+ p?δ (εr) U(−φ0,0) (εf )
+ p?δ (εf ) U(0,φ0) (εr)
+ p∗δ (εr) U(−λcφ0,0) (εf )
+ p∗δ (εf ) U(0,λcφ0) (εr)
+ p◦2δ ((εr − εf )− (1 + λc)φ0) U(−(1−λc)φ0,(1−λc)φ0) (εr + εf ) ,

where the different probabilities have the same meaning as previously defined. The complete
explanation about the computation of these probabilities is given in the appendix (Section
A.3.6). Their values are 

p• = p1 − p0
2 (1 + λc) ,

p◦ = p0
2 (1− λc) ,

p? = p0
2 ,

p∗ = p0
2 λc.

(4.63)

We can check that the probabilities for the case C sum up to 1

p• + p◦ + 2p? + 2p∗ = p1 −
p0
2 (1 + λc) + p0

2 (1− λc) + 2p0
2 + 2p0

2 λc = p1 + p0 = 1. (4.64)

The computation of the joint expectation gives (see appendix A.3.6)

E {Er, Ef} = −p0
φ2

0
6

(1− λc)
(
1 + 4λc + λ2

c

)
2 . (4.65)

Then, we can compute C {Er, Ef} for the case C

C {Er, Ef} = E {Er, Ef} − E {Er}E {Ef} = −p0
φ2

0
6

(1− λc)
(
1 + 4λc + λ2

c

)
2 + p2

0
φ2

0
4 , (4.66)
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and, finally, we can obtain the variance of Φb for the case C (see appendix A.3.6)

σ2
Φb =

σ2
Er + C {Er, Ef}

2

= p0
φ2

0
6 PC (λc) , (4.67)

where the first part is the same as for the case A, and the second part is a polynomial function
of the parameter λc

PC (λc) = 3− 3λc + 3λ2
c + λ3

c

4 . (4.68)

Note that, again, PC (λc) is inferior to 1 when λc ∈ [0, 1).

4.2.3 Summary of the variance value for all the cases

In the previous section, we have established the value of σ2
Φb in function of φW , for all the cases.

It appears that σ2
Φb is always equal to a fraction of p0

φ2
0

6 (the upper bound). This fraction is
a polynomial function of a parameter λ, which represents a fraction of φ0 : λφ0, λ ∈ [0, 1). If
we define an appropriate λ for each case (see the previous section), then we can summarize
the polynomial functions as follows

P0 (λ0) = λ3
0

p1 + p0λ0
, (4.69)

PA (λa) = 1, (4.70)

PB (λb) = 1− λ3
b

4 , (4.71)

PC (λc) = 3− 3λc + 3λ2
c + λ3

c

4 , (4.72)

PD (λd) = 1− λ3
d

2 , (4.73)

PE (λe) = 1− 3λe + 3λ2
e + λ3

e

2 , (4.74)

where each parameter satisfies λi ∈ [0, 1). For example, for the case D, Φb is expressed as
the product of the theoretical bound

(
p0

φ2
0

6

)
, and

(
1− λ3

d
2

)
, which is smaller than 1, for the

admissible values of its parameter.
Then, we can express the evolution of the variance with respect to φW , and for each code.

To do this, we have to find which case is appropriate for a particular value of φW , when
φW increases from 0 to 13φ0 (in order to observe the case 0, followed by a full period of the
variance). This can be done by observing equations 4.7, 4.15, 4.31 4.40 4.49, and 4.59. When
the angular window increases, the different cases appear in an order related to their logical
names (the situation is slightly different for the code 5, and is treated later). Therefore, the
evolution of the variance with respect to φW is defined as a partially periodic and piecewise
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function

Ci, i = 1, 2, 3, 4 : σ2
Φb (φW ) =



p0
φ2

0
6 P0 (λ0) 0 ≤ φW < φ0

p0
φ2

0
6 φ0 ≤ φmodW < iφ0

p0
φ2

0
6 PB (λb) iφ0 ≤ φmodW < (i+ 1)φ0

p0
φ2

0
6 PC (λc) (i+ 1)φ0 ≤ φmodW < (i+ 2)φ0

p0
φ2

0
6 (i+ 2)φ0 ≤ φmodW < (10− i)φ0

p0
φ2

0
6 PB (λb) (10− i)φ0 ≤ φmodW < (11− i)φ0

p0
φ2

0
6 PC (λc) (11− i)φ0 ≤ φmodW < (12− i)φ0

p0
φ2

0
6 (12− i)φ0 ≤ φmodW < 11φ0

p0
φ2

0
6 PD (λd) 11φ0 ≤ φmodW < 12φ0

p0
φ2

0
6 PE (λe) 0 ≤ φmodW < φ0, φW ≥ 12φ0,

(4.75)
where each parameter satisfies λi ∈ [0, 1), and where a complete period is defined for φW ∈
[φ0, 13φ0). Also, note that the values of these functions at the transition points (from one
case to the next) are consistent

P0 (1) = PA (0) = 1,
PA (1) = PB (0) = 1,
PB (1) = PC (0) = 3/4,

PC (1) = PA (0) = 1,
PA (1) = PD (0) = 1,
PD (1) = PE (0) = 1/2,

PE (1) = PA (0) = 1,

where we have introduced PA (λa), which is the constant function 1. Therefore, the evolution
of the variance with respect to φW is continuous. Note that some intervals associated to the
case A may be reduced to zero (for i = 1, and i = 4) in the variance expression, without
harming its general form. Because of the particular shape of the code 5, the period of its
variance is reduced to 6φ0 instead of 12φ0. Also, it does not contain the cases B and C.
Therefore, the evolution of the variance with respect to φW for the code 5 is expressed in a
separate, but similar way

C5 : σ2
Φb (φW ) =


p0

φ2
0

6 P0 (λ0) 0 ≤ φW < φ0

p0
φ2

0
6 φ0 ≤ φW mod (6φ0) < 5φ0

p0
φ2

0
6 PD (λd) 5φ0 ≤ φW mod (6φ0) < 6φ0

p0
φ2

0
6 PE (λe) 0 ≤ φW mod (6φ0) < φ0, φW ≥ 6φ0.

(4.76)

Note that the evolution of the variance with respect to φW contains local minima, en-
countered in PC (λc) and PE (λe), for values of their arguments equal to (see appendix A.4
for details)

λc = λe =
√

2− 1. (4.77)
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The corresponding values of these polynomials are

PC
(√

2− 1
)

= 2−
√

2 ' 0.5858, (4.78)

PE
(√

2− 1
)

= 3− 2
√

2 ' 0.1716. (4.79)

Finally, the local minima are encountered when the angular windows are equal to

C5 : φW = 6φ0 +
(√

2− 1
)
φ0 + k 6φ0, k ∈ N, (4.80)

for the code 5, and when the angular windows are equal to

Ci, i = 1, 2, 3, 4 :


φW = (i+ 1)φ0 +

(√
2− 1

)
φ0 + k 12φ0, k ∈ N,

∨φW = (11− i)φ0 +
(√

2− 1
)
φ0 + k 12φ0, k ∈ N,

∨φW = 12φ0 +
(√

2− 1
)
φ0 + k 12φ0, k ∈ N,

(4.81)

for the other codes.

4.3 Simulations
In order to validate our theory about the code statistics, we developed a simulator. The four
parameters considered by the simulator are:

1. the angular window φW ,

2. the code (symbols and durations),

3. the turret period, and

4. the number of turret turns.

The simulations have been performed for the five codes used by BeAMS, and for values of
φW ranging from 0 to 13φ0, in order to observe the case 0 (φW ∈ [0, φ0)), followed by a full
period of the variance evolution (φW ∈ [φ0, 13φ0)). The values used for the turret period and
the number of turret turns are discussed in the next section.

Simulation results are presented in Figure 4.9 to Figure 4.13. From these figures, one can
see that the simulations perfectly match the theory. So, in order to distinguish both curves,
the theoretical variance is represented by a continuous line, and the simulated variance is
represented by small unconnected circles. For convenience, we have plotted the normalized
variance (σ2

Φb/p0
φ2

0
6 ) in function of the normalized angular window (φW/φ0). We have also

reported the encountered case on the bottom of the graphs. Obviously, for all the codes, the
case 0 only appears on the left, when φW < φ0. For other angular window values, the relevant
case is one of the possible A, B, C, D, or E cases.

In complement to the variance graphs, we have reported the pairs of observations of Er
and Ef for the different cases of the code 11, in order to visualize the simulated supports of the
joint PDFs of Er and Ef . These supports obtained by simulation are presented in Table 4.3

1Note that we could have used another code to observe all the different cases, except the code 5, since it
does not contain the cases B and C.
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Figure 4.9: Variance of Φb in function of φW for the code 1: simulations versus theory.
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Figure 4.10: Variance of Φb in function of φW for the code 2: simulations versus theory.
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Figure 4.11: Variance of Φb in function of φW for the code 3: simulations versus theory.
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Figure 4.12: Variance of Φb in function of φW for the code 4: simulations versus theory.
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Figure 4.13: Variance of Φb in function of φW for the code 5: simulations versus theory.

(for all the cases, except for the case A, we have chosen values for the angular window, such
that λ0 = λb = λc = λd = λe = 0.5). Because the pairs of Er and Ef values are superimposed
on these graphs, it is impossible to distinguish the 2D Dirac PDF (except for the case D),
and the separate parts of the cases B and C, but it appears that simulated supports also
match the theory.

4.4 The time stationarity hypothesis

To establish all the theoretical results presented in this chapter, we have assumed the time
stationarity. In other words, these theoretical results are consistent if we can observe all the
possible values for the pairs (Er, Ef ), for all angular windows and codes. This implies that
we can observe all the possible shifted versions of a code with respect to the angular window
(like we did in the appendix to compute all the probabilities associated to the different cases).

So, in order to produce the previous figures showing the variance evolution with respect to
the angular window, and to confirm the adequacy between theory and simulations, we had to
“simulate” the time stationarity as explained hereafter. As mentioned, the simulator requires
four parameters: the angular window, the code (symbols and durations), the turret period,
and the number of turret turns. The two first parameters are variables of the study. However,
the values of the turret period and the number of turret turns can be adjusted2 to “simulate”
the time stationarity. To do so, one has to choose a value for the turret period such that
the code duration and the turret period are relatively prime (or coprime3). As a result, the

2It means that we can set these parameters to values that are different from the real system.
3Two integers are said to be relatively prime (or coprime) if their greatest common divisor is equal to 1.
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Table 4.3: Simulations for the supports of the joint PDFs of Er and Ef for the 6 different
Cases (λ0 = λb = λc = λd = λe = 0.5).
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code will shift from one unit with respect to the angular window, for each new observation,
or turret turn. Finally, if the number of turret turns is equal to the code duration, we will
observe all the possible shifted versions of the code, and the time stationarity hypothesis will
be met.

In the simulator, as well as in the real system, the bit durations and the turret period
are represented by integers, whose one unit is equal to 100ns. Therefore, the bit duration is
represented by 308 (30.8µs), and the code duration is equal to 12× 308 = 3696. The turret
period is equal to 998400 (0.09984 s). With these values, the code duration and the turret
period are not relatively prime, and this would induce some artifacts on the data. So, we
changed the value of the turret period to 9984014, which is relatively prime with 3696, in
order to meet the time stationarity hypothesis, and to generate the previous graphics.

However, the turret period of BeAMS does not correspond to the one used to generate
the previous graphics. The real turret period and the code duration are not relatively prime,
and therefore, the time stationarity hypothesis is not met. It means that, in practice, we do
not observe all the possible shifted versions of a code with respect to the angular window.
In other terms, the simulator, and the real system, act as a “bad” pseudo random number
generator. As a consequence, the pairs of observed values (Er, Ef ) are not well balanced,
and finally the computed variance of Φb can oscillate (slightly) around its theoretical value.
To enlighten this phenomenon, we have performed additional simulations, with four different
turret periods (998400, 999000, 999200, and 999300 respectively), all not relatively prime
with the code duration. The results are presented in Figure 4.14 to Figure 4.17. From these
figures, one can observe the oscillations of the variance of Φb. As a consequence, the variance
may exceed the theoretical bound established in this document. Unfortunately, it is difficult
to formalize how the variance can exceed the theoretical bound, since it depends on the code
symbols, the code duration, and the turret period. However the simulator can always help in
finding all these characteristics. In the case of BeAMS, this variance can exceed the theoretical
bound by up to 14 % for the code 2 and 4. Finally, note that the number of turret turns has
been chosen such that we cover a complete period of observations of the code through the
angular window

number of turret turns = code duration

gcd(code duration, turret period) , (4.82)

where gcd(a, b) is the greatest common divisor of a and b. Also, one can observe from
these figures, that the oscillations in the simulated variances decrease if the number of turret
turns required to cover a complete period of observations increases. The theoretical time
stationarity condition is reached when gcd(code duration, turret period) is equal to 1, that
is, when the code duration and the turret period are relatively prime. To the contrary, it is
mandatory to avoid that the turret period be a multiple of the code duration. If it happens, it
means that there is one unique observation of the code through the angular window (no code
shifting). So, the variance would be null, but the estimator Φb would be no longer unbiased.

4Note that we chose the closest relatively prime integer, but we could have chosen any other relatively
prime integer.
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Figure 4.14: Variance of Φb in function of φW for the code 3: simulations versus theory (turret
period = 998400, number of turret turns = 77).
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Figure 4.15: Variance of Φb in function of φW for the code 3: simulations versus theory (turret
period = 999000, number of turret turns = 154).
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Figure 4.16: Variance of Φb in function of φW for the code 3: simulations versus theory (turret
period = 999200, number of turret turns = 231).
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Figure 4.17: Variance of Φb in function of φW for the code 3: simulations versus theory (turret
period = 999300, number of turret turns = 308).
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4.5 Conclusions
This chapter complements the previous chapter by going into further details related to the
code statistics of modulated signals in general, with an emphasis on BeAMS. BeAMS intro-
duces a new mechanism to measure angles: it detects a beacon when it enters and leaves an
angular window. One of the major challenges of such a system is to be able to model its
behavior from a statistical point of view in order to both have an adequate measure of its
efficiency and appropriate values to feed a tracking system (a Kalman filter for instance).

In the previous chapter, we have established the upper bound on the variance of Φb. In
this chapter, we show how the variance evolves exactly as a function of the angular window
(while remaining below the upper bound). The fact that the variance is a function of the
angular window is essential for any system that measures angles. Often, authors consider
that the variance evolves with the distance. However, our analysis is preferable, because the
angular window is measurable by the system even if the robot position is unknown. Our
analysis has a direct usage for any practical situation.

In our current implementation of BeAMS for the Eurobot contest (which relies on an
Extended Kalman filter), we use the best upper bound of the variance of Φb all over the plane
(regardless of the robot position). But this practice is far from being optimal. Indeed, we show
that the variance evolves with the angular window (or indirectly with the position of the robot
in the plane), and therefore the upper bound overestimates the real variance unnecessarily.
In order to feed a tracking system, it would be better to have the exact variance for each
position in the plane, and for each beacon/code.

Then, we present simulated results, in order to validate our theory about the code statis-
tics. It appears that the simulated results perfectly match the theory. In this chapter, we
also discuss an important hypothesis that we use all over our developments, that is, the time
stationarity hypothesis. We show that this hypothesis is necessary to match the theory per-
fectly. However, if this hypothesis is not fully met in a practical situation, we show that the
variance may exceed the theoretical bound (14 % in the case of BeAMS).

Because the developments given in this document are complete, it is possible to really
understand the behavior of the system and to improve the design of BeAMS. It is important
to mention that, although this study is carried on to understand and improve BeAMS, the
theoretical framework is larger than that of BeAMS. It is applicable to any estimator that is
built like BeAMS. In particular, it is applicable to any measurement system that estimates a
value by taking the mean of a previous event and a later event, based on the reception of an
On-Off Keying modulated signal. For example, the study of the different “Cases” could be
generalized and extended to other codes.



Chapter 5

Performance analysis

5.1 Introduction

The goal of this chapter is to provide an error measure for BeAMS. In particular, we want
to provide values for the precision (variance) and for the accuracy (bias) of the measured
angles. In practice however, angle measurement systems are developed almost exclusively for
positioning, as the process of triangulation requires angle measurements. This explains why
most authors only evaluate positioning algorithms or present complete systems (hardware
and software), and express quality results in meters. As a consequence, it is rare that authors
evaluate the performance of the underlying angle measurement system, and there is a lot of
confusion about the evaluation criteria (accuracy, precision, resolution, etc). This is unfortu-
nate because the knowledge of these characteristics is useful for the data fusion algorithms
to properly take measures into account, with respect to other measurements. They are also
useful to compare systems.

It is a well known fact that a positioning process based on angles, regardless of its im-
plementation, depends on the relative configuration of beacons and the robot [21,28,32]. So,
we believe that an angle measurement system should not be evaluated through a positioning
algorithm, unless a common procedure is described and used by everyone (to our knowledge,
this work has never been carried out). Moreover, this evaluation procedure is difficult to
implement in practice, and due to the setup it adds errors, especially errors on measurements
and on the real location of beacons [53]. For that reason, we want to evaluate BeAMS directly,
and not through a positioning algorithm.

In Chapter 3, we have provided the upper bound for the additional variance on Φb due
to the codes, and showed that the estimator Φb is unbiased. In the previous chapter, we
have computed the exact evolution of the variance of Φb, in function of the angular window.
But, in a practical situation, we have to take into account the natural (noise) variance of the
system by taking real measurements. This noise is inherent to the hardware, even for a non
modulated carrier wave (with no OFF periods). This noise originates from the quartz jitter,
rotation jitter, etc, and, to a larger extent, from the receiver jitter at the 0 → 1 and 1 → 0
transitions. From a theoretical point of view, it is acceptable to consider that both noises are
independent and, therefore, that the total noise is the sum of the natural noise and σ2

Φb , the
power of additional noise induced by the OOK modulation.

The purpose of this chapter is fourfold: (1) analyze the impact of the code (via the p0
and φ0 parameters) on the variance of Φb, (2) validate the upper bound and the evolution of
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the variance of Φb, (3) verify if the artificial noise is independent of the natural noise, and (4)
provide values for the precision and accuracy. In order to complete these analyses, simulations
and measurements are performed with one beacon for several codes and angular windows.

5.2 Adding codes for tests only

We have shown that the upper bound of σ2
Φb depends on p0 and φ0. By design, the codes

all have the same p0 and φ0. This is an important advantage because this implies that the
additional variance is not related to any particular code. As a consequence, we have to create
other codes to observe the influence of p0 and φ0. Also, in order to measure the natural
variance, we have to use a special code with no OFF period. So, the codes used for testing
purposes are the constant code Ck (no OFF period), the real C5 code (111110111110), and two
variations of code C5 with increasing OFF durations (11111001111100, 1111100011111000).
These four codes have a zero symbol probability p0 respectively equal to 0, 1/6, 2/7, and 3/8,
and an OFF angle φ0 respectively equal to 0, 0.111, 0.222, and 0.333 deg. These variations
have been chosen to emphasize the noise due to the OOK modulation, with increasing p0 and
φ0. In the following section, these four codes are referred to, respectively, as Ck, C5, C5b, and
C5c. Note that Ck, C5b, and C5c are used for experiments only, but we do not use them in
practice.

5.3 Modifying the angular window

In the last chapter, we have shown that the variance of Φb depends on the angular window.
So, we also need to modify the angular window in the experiments. In practice, the value of
the angular window φW = φF − φR depends on the received power and the threshold (see
Figure 2.8 on page 16). So, for a constant threshold, the angular window decreases if the
power curve goes down (less received power), and increases if the power curve goes up (more
received power). Then, for a given receiver and optical components, the angular window only
depends on the received power. There are two practical ways to modify the received power
(or angular window): (1) change the distance between the beacon and the receiver, or (2)
change the power emitted by the beacon. But, in any case, the receiver only has access to the
angular window via the demodulated signal and it is thus not capable of detecting whether
the distance or the emitted power have been modified.

In a practical situation, the emitted power of the beacons is expected to be constant, while
the distance can change. So we could measure the variance for all possible distances in the
working range. However the experiment would be extremely tedious and time-consuming since
the number of distances should be huge to appreciate the variations in the measurements. So,
we choose to modify the emitted power, for a fixed working distance of 1m. For each code,
a hundred different emitted power values were taken in the 4mW to 150mW power range
to obtain an approximately linear increase of the angular window. These power values and
angular windows are values that correspond to distances ranging from 1m to 6m. Finally,
1000 angle measurements are taken for each code and power value to compute the mean and
variance of Φb (to be precise, only Φr and Φf are recorded and Φb is computed after equation
(3.1)). As explained earlier, the receiver is not capable of detecting whether the distance or
the emitted power have been modified and, as a consequence, all the following graphics are
plotted with respect to the angular window.
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The angular window has to be estimated from the measurements. To be more precise
and formal, the true angular window φW is defined as φF − φR (see Figure 2.8 on page 16).
Therefore, we propose an estimator of the angular window given by

Φw = Φf − Φr. (5.1)

The mean of Φw is equal to

µΦw = E {Φf} − E {Φr} ,

=
(
φF − p0

φ0
2

)
−
(
φR + p0

φ0
2

)
,

= φW − p0φ0. (5.2)

The mean of Φw has a bias given by −p0φ0. Fortunately, we know the value of p0φ0, in order
to remove the bias from the measurements. But, as the bias of Ck is null since p0 = 0, it is
also possible to derive φW by taking µΦw for the constant code Ck.

5.4 Simulator
Again, we use our simulator to validate the upper bound and evolution of the variance of
Φb, as well as the bias of the mean angular window µΦw . The four parameters considered by
the simulator are the angular window, the code (symbols and durations), the turret period,
and the number of turns. The codes, the turret period, and the number of turns are known
precisely in our experiments. So, in order to compare the simulated results with the measure-
ments, the angular windows used in the simulator have been extracted from the experimental
measurements of Ck, so it covers exactly the same range.

The simulated angular windows and variances are presented in Figure 5.1. Simulations
confirm our theoretical results as bounds on variances (maximum of the curves) correspond
to predicted bounds computed with equation (3.41). Also, the angular windows have a bias
corresponding to values predicted by equation (5.2) (the numerical values are given in Table
5.1). The simulator confirms our theoretical results about the variance added by the codes.
However, the simulator does not take into account the natural noise of the system. So we
have to use the real system to measure this natural noise. The results are presented in the
next section.

5.5 Experiments
The angular windows for each code are shown in the top plot of Figure 5.2 and the values
of the biases are given in Table 5.1. As expected, the curves are linear with the angular
window. But the biases observed for the angular windows are larger (in absolute value) than
the theoretical biases. On the other hand, they increase with p0 and φ0, and the increments
between the experimental biases are consistent with the theory.

The variances of the measurements for Φb are shown in the bottom plot of Figure 5.2. One
can observe that the variance increases with p0 and φ0, respectively for Ck (the lowest), C5,
C5b, and C5c (the highest), for all angular windows. One also sees large variations, especially
for C5b and C5c. This validates the existence of a dependency between Φr and Φf in function
of the angular window. Examining the variances of Φr and Φf separately helps in this analysis
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Figure 5.1: Results of simulations: values for the mean of the angular window Φw (top), and
for the variance of the beacon angular position Φb (bottom).
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Figure 5.2: Results of Measurements: values for the mean of the angular window Φw (top),
and for the variance of the beacon angular position Φb (bottom).
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Figure 5.3: Results of Measurements: variance of the beacon angular rising Φr (top) and
falling Φf (bottom) edges.



5.6. Discussions of the experiments 73

Theory Simulations Experiments

Φw bias
( deg)

Ck 0 0 0
C5 −1.85 10−2 −1.78 10−2 −4.85 10−2

C5b −6.35 10−2 −6.33 10−2 −9.53 10−2

C5c −1.25 10−1 −1.22 10−1 −1.56 10−1

Φb variance
( deg2)

Ck 0 0 3.93 10−3

C5 3.43 10−4 3.36 10−4 5.49 10−3

C5b 2.35 10−3 2.35 10−3 1.00 10−2

C5c 6.94 10−3 6.80 10−3 1.82 10−2

Table 5.1: Comparison of the theoretical, simulated, and experimental values for the biases
of Φw, and the maximum variances of Φb, for the different codes. Note that the experimental
variances are higher than the theoretical and simulated variances, since they include the
natural noise, inherent to the physical system. The value displayed in bold is the variance of
the real system, with the real codes.

(see Figure 5.3). Whereas Φr and Φf variances are quasi linear with respect to the angular
window, Φb is not linear despite the fact that the estimator Φb is a linear function of the
estimators Φr and Φf . This confirms that a statistical relationship exists between Φr and Φf .

Of course, there is a difference with the simulations since the measurements include the
natural noise of the system and, as a result, the variances of the measurements are higher than
the simulations. If the artificial noise due to the codes was independent of the natural noise,
the measured variances could be obtained by adding the natural noise (measured with Ck) to
the simulated variances. However, this is not the case since the variances obtained with this
hypothesis (not shown here) still remain lower (but close) than the real variances. This result
indicates that the natural and artificial noises are not independent, and that the real noise is
higher than their sum. But, despite this discrepancy, the general shape of the simulated and
experimental curves is similar. In particular, the large variations in the curves, the locations
of the extrema, as well as their relative distances match our experiments perfectly (compare
bottom plots of Figure 5.1 and Figure 5.2). For example, the local minima of the variance
associated to C5 are located at

φW = {5.38 deg, 6.04 deg, 6.71 deg} , (5.3)

in that range. These values are obtained by using equation (4.80), for k = 7, 8, 9, and
φ0 = 0.111 deg. The positions of the minima for C5 are indicated by vertical dashed lines in
the bottom plots of Figure 5.1 and Figure 5.2.

Finally, note that we are interested in finding the variance of the measured angles in
BeAMS, in the whole working range. The maximum of the curve measured for C5 yields a
variance equal to 5.49 10−3 deg2, or equivalently a standard deviation equal to 7.41 10−2 deg.

5.6 Discussions of the experiments
Our simulator provides values for the variances of Φb and biases of the angular window
that match that of our theoretical model. However, they are some discrepancies between
the experimental and simulated results. Amongst these discrepancies, the hypothesis that
the natural variance is independent of the variance added by a code, as implemented in
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Figure 5.4: Illustration of the “AND hypothesis”. The upper curve PIR(φ) is the infrared
power collected at the receiver while the turret is turning. R0 is the special case corresponding
to the non modulated infrared carrier wave (no OFF periods). E1 is an example of emitted
signal from a beacon. R1 is the corresponding received signal at the receiver output, for an
ideal receiver (R1 = E1 ANDR0). R′1 is the corresponding received signal at the receiver
output, for a practical receiver (R′1 6= E1 ANDR0). The black arrows represent the measured
values respectively for Φr to the left (first Rising edge) and for Φf to the right (last Falling
edge). The encircled arrows emphasize errors made on Φr or Φf .

the simulator, is most subject to questioning. The reason for this is as follows. A detailed
analysis of the receiver hardware shows the presence of an “Automatic Gain Control” (AGC)
loop between the input and the demodulator. Typically, the gain is set to a high value when
no signal is present for a “long time”, resulting in a noisy first transition (Φr in our case).
This gain then decreases over time, resulting in sharper transitions (especially the last one,
Φf in our case). This characteristic is clearly identifiable from the variances of Φr and Φf

for a non modulated signal Ck (see Figure 5.3). Indeed, for Ck, the variance of Φr stretches
from about 0.0018 to 0.0137 deg2 whereas the variance of Φf stretches from about 0.000066 to
0.0023 deg2. It appears that the gain value depends on the past values of the received signal
and the duration of the OFF periods, and this produces a non constant natural variance over
time. So, we have to consider this effect in tightening the agreement between theoretical
and practical results. But it is no small task to consider this effect because it relates to the
hardware.

Also, we have to consider another effect of the receiver hardware. In Section 3.2, we
supposed that the received signal Ri could be modeled as the logical AND between the
emitted signal Ei and R0. However, it is not sure that a short leading or tailing burst
(shorter than a bit) could trigger the receiver. This phenomenon is depicted in Figure 5.4.
R0 is the special case corresponding to the non modulated infrared carrier wave (no OFF
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periods). E1 is an example of emitted signal from a beacon (we use here a simpler code
than ours for the purpose of illustration, but this does not change the conclusions). R1 is
the corresponding received signal at the receiver output, for an ideal receiver (i.e. R1 is
the logical AND between E1 and R0). R′1 is the corresponding received signal at the receiver
output, for a practical receiver. In that case, the first and last bursts are not detected because
they are too short. This has the effect of virtually increasing the OFF period by a quantity
equal to the minimum burst duration required to trigger the receiver. In our case, we have
determined experimentally that this minimum duration is equal to about 56 % of T0. In order
to validate this hypothesis (called “AND hypothesis”), we have implemented this effect in our
simulator. Figure 5.5 presents the new simulation results obtained by taking into account the
natural noise (extracted from the measures of Ck), as well as the “AND hypothesis”. With
these modifications, the simulations are closer to the experiments (compare both graphics in
Figure 5.5). From a practical point of view, it means that we have to modify the actual values
of φ0 and p0 in order to use the upper bound (equation (3.41)) adequately (φ0 and p0 have
to be increased by 56 % from their theoretical values).

5.7 Measuring the accuracy

In the previous sections, we have analyzed the variance of the measures of BeAMS. This
variance represents the precision of the system. But we also want to evaluate the accuracy,
that is the difference between the mean of the measures, and the actual (true) value of the
beacon angular position. In contrast with the ease of measuring the precision of the system,
the accuracy is difficult to measure in practice (because it would require a precise optical
setup). However, there is one way to determine the accuracy for BeAMS. In order to do
that, we note that the position computed by any triangulation algorithm depends only on
the difference between pairs of angles [32,67], whereas the orientation depends directly on the
angles. So, a constant bias in the angles does not affect the position, but only the orientation,
which has to be calibrated with the robot heading, anyway. It means that a problem arises
if the biases are not the same for all angles. To verify this in BeAMS, we can plot the mean
of the angle measurements versus the angular window (see Figure 5.6). This figure clearly
shows some fluctuations of the mean angle in function of the angular window (or the received
power); this indicates that there is a non constant bias in the measures, in the whole working
range. This bias also has its origin by the presence of the AGC in the receiver. Biases in the
measurements are due to delayed response times at the receiver. These delays are subject to
the natural noise, and we have shown earlier that the natural noise depends on the code. It
means that the PDFs of the noises at the beginning and at the end of the angular window
are different, and so are their expectations, explaining that the bias changes with the angular
window (or the received power). We can observe that the fluctuations of the bias occur within
a range of 0.23 deg (see Figure 5.6), and that this range does not depend on the code. This
value is our measure for the accuracy.

To be comprehensive, we present a comparison of different angle measurement systems in
Table 5.2. Only the rotating systems similar to BeAMS are presented. As explained earlier,
it is difficult to compare systems because the performance criterion and test condition, as well
as the available information are different. Some authors mention absolute maximum error
values or RMS values, while others provide standard deviation values. Most of the time,
authors ignore the notion of the accuracy, and sometimes the angular resolution is expressed
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Figure 5.5: Results of simulations: values for the variance of the beacon angular position Φb

by taking into account the natural noise and the “AND hypothesis” (bottom plot). The top
plot is the result of the measurements, reminded here for the comparison (same as Figure
5.2).
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Figure 5.6: Variation in the mean beacon angular positions versus the angular window.

Commercial systems performance acquisition rate
SICK Nav2000 0.1 deg 8Hz

GCS LS6 a fraction of a degree 8Hz
NDC LazerWay 0.1 deg 6Hz
DBIR LaserNav 0.03 deg 10Hz

TRC Beacon Nav. Sys. 0.125 deg 1Hz
SSIM RobotSense 0.17 deg 10− 40Hz
Prototypes performance acquisition rate

Zalama et al. [89] 0.6 deg max. 1− 10Hz
Kemppainen et al. [47] 1.5 deg not available

Brkic et al. [19] 5− 10 cm (2 deg) 10Hz
BeAMS 0.24 deg 10Hz

Table 5.2: Comparison of different angle measurement systems.
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in the terms of the precision or of the accuracy. Also, some authors express the performance
of the positioning algorithm in meters, and nothing is said about angles (e.g. for the system
of Brkic et al., we guess an angular precision of 2 deg). Finally, some systems have a variable
rotating speed, leading to a non constant performance (e.g. for the system by Zalama et al.,
we give the precision at 10Hz for the comparison). For BeAMS, we have provided values
either for the variance and for the accuracy. But, if we have to provide a single error value,
we can combine both measures using this general result:

√
var + bias2 = 0.24 deg. Table 5.2

shows that BeAMS has a better performance than other prototypes and is close to state of the
art commercial systems (except for the DBIR LaserNav which is no longer manufactured).
It should be noted that the performance of BeAMS are mainly downgraded by the accuracy,
despite the low value of the variance. But, the performance is still good and it was sufficient
in our application (Eurobot contest). However, for a large deployment of the system, we
would recommend the design and use of a new fitted receiver, in which we can fully control
(or have access to) the AGC, in order to cancel the bias and reach the highest performance
(limited by the variance only).

Until now, we have assumed that the sensor (robot) does not move during measurement,
and of course, this is an unrealistic situation. In a practical situation, there are additional
errors due to robot motion, vibrations, shocks, uneven floors, etc. Unlike the last ones
(which cannot be predicted), the robot motion is controlled by the robot and can be taken
into account by the positioning algorithm. The robot motion can be decomposed into a
translation and a rotation, and it appears that the rotation is responsible for the most part
of the error [53]. It should be noted that all rotating systems are subjects to this error since
the robot motion has the effect of modifying the real turning speed of the sensor, and that
the measurement principle relies on a constant speed. Taking into account the robot motion
should be done, especially rotations because it can lead to high improvements in the computed
position [53]. However, applying the corrections to the angles due to the robot motion is the
task of the positioning algorithm. Nevertheless, the characteristics when the robot does not
move (precision, accuracy) are still useful for data fusion algorithms, and should be the only
ones to compare different systems.

5.8 Conclusions

In this chapter, we provide simulated and experimental results for the variance of the beacon
angle estimator Φb. It appears that the results of the simulator are coherent with our theo-
retical results, but not entirely with the experimental results. Experimental results enlighten
that the natural variance of the system is not independent on the artificial variance added
by the codes because of the Automatic Gain Control (AGC) loop of the receiver, which is re-
sponsible for a small mismatch between the experimental and simulated results. But, despite
this discrepancy, the general shape of the simulated and experimental curves is similar. Also,
we enlighten another particularity of the receiver, called the “AND hypothesis”. Indeed, it is
not sure that a short leading or tailing burst (shorter than a bit) could trigger the receiver.
This has the effect of virtually increasing the OFF period by a quantity equal to the minimum
burst duration required to trigger the receiver. In our case, we have determined experimen-
tally that this minimum duration is equal to about 56 % of T0. If we take into account the
natural noise, as well as the “AND hypothesis”, it appears that the simulations are closer to
the experiments.
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In a practical situation, we would want to limit the variance added by the codes compared
to the natural variance of the system. The theoretical bound, as well as the simulator are
useful tools to help in this purpose. Note that our system achieves a low variance level on
angles. The experimental values encountered in our system for the standard deviation of Φb

range from 0.023 to 0.063 deg without codes and from 0.032 to 0.074 deg with codes, meaning
that the noise added by our codes is small compared to the natural noise.

In addition to the variance, the accuracy is evaluated to 0.23 deg. If we combine the
variance and the bias, the final error measure is evaluated to 0.24 deg (

√
var + bias2). The

comparison with other systems shows that BeAMS has a better performance than other
prototypes and is comparable to state of the art commercial systems. It appears that the
bias, due to the variations of the received power and the AGC, is responsible for the bigger
part of the error. We think that the use of a dedicated receiver, in which we have full control
of (or have access to) the AGC, would result in a far more precise system, limited mainly
by the variance. Note that the error measure provided in this chapter is a first attempt to
characterize our hardware system. Further details about the error measure are provided in
Chapter 7.





Chapter 6

ToTal: a new triangulation
algorithm

6.1 Introduction

In the previous chapters, we have described our new angle measurement sensor, and we have
elaborated a mathematical model for the variance of the measured angles. In order to compute
the pose (position and orientation) of the robot in the 2D plane, we have to combine these
angle measurements into a positioning algorithm. The process of determining the robot pose
based on angle measurements is generally termed triangulation. The word triangulation is
a wide concept, which does not specify if the angles are measured from the robot or the
beacons, neither imposes the number of angles used. In this work, we are interested in
self position determination, meaning that the angles are measured from the robot location.
Figure 6.1 illustrates our triangulation setup. Moreover, if only three beacons are used in self
position determination, triangulation is also termed Three Object Triangulation by Cohen
and Koss [21]. Here the general term object refers to a 2D point. A positioning algorithm
based on more than three angles is termed multiangulation.

The fact that self position triangulation requires a minimum of three beacons to com-
pute the pose unequivocally in a 2D plane (except on the circumference defined by the three
beacons) explains why Three Object Triangulation algorithms take an important place in
mobile robot positioning. More than three angles can be used to increase the precision in
some pathological geometrical setups or to deal with harsh environments where some beacons
might be out of sight of the sensor [13, 53, 75, 89]. Because of the availability of angle mea-
surement systems, triangulation has emerged as a widely used, robust, accurate, and flexible
technique [30, 75] for mobile robot positioning. It is important to note that a positioning al-
gorithm based on angles is totally independent of the underlying angle measurement system,
and both parts should be analyzed separately.

As explained earlier, our system has been designed for the Eurobot contest. This contest
allows a maximum of three fixed beacons around the moving area. As a consequence, we
decided to develop our own Three Object Triangulation algorithm, for the following reason.
Most of the many triangulation algorithms proposed so far have major limitations. For
example, some of them need a particular beacon ordering, have blind spots, or only work
within the triangle defined by the three beacons. More reliable methods exist, but they have
an increasing complexity or they require to handle certain spatial arrangements separately.
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Figure 6.1: Triangulation setup in the 2D plane. R denotes the robot. Bi are the beacons. φi
are the angle measurements for Bi, relative to the robot reference orientation θ. These angles
may be used by a triangulation algorithm in order to compute the robot position {xR, yR}
and orientation θ.

In this chapter, we present a simple and new three object triangulation algorithm, named
ToTal1, that natively works in the whole plane, and for any beacon ordering. We also pro-
vide a comprehensive comparison with seventeen comparable algorithms, and show that our
algorithm is faster and simpler than these algorithms. In addition to its inherent efficiency,
our algorithm provides a useful and unique reliability measure, assessable anywhere in the
plane, which can be used to identify pathological cases, or as a validation gate in data fusion
algorithms.

The chapter is organized as follows. Section 6.2 reviews some of the numerous triangula-
tion algorithms found in the literature. Our triangulation algorithm is described in Section
6.3. Section 6.4 presents simulation results and benchmarks. Then, we conclude the chapter
in Section 6.5.

6.2 Related Work

6.2.1 Triangulation algorithms

The principle of triangulation exists for a long time, and many methods have been proposed
so far. One of the first comprehensive reviewing work has been carried out by Cohen and
Koss [21]. In their paper, they classify the triangulation algorithms into four groups: (1)
Geometric Triangulation, (2) Geometric Circle Intersection, (3) Iterative methods, and (4)
Multiple Beacons Triangulation.

The first group could be named Trigonometric Triangulation, because it makes an inten-
sive use of trigonometric functions. Algorithms of the second group determine the parameters
(radius and center) of two (of the three) circles passing through the beacons and the robot,
then they compute the intersection between these two circles. Methods of the first and second

1ToTal: Three object Triangulation algorithm.
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groups are typically used to solve the three object triangulation problem. The third group
linearizes the trigonometric relations to converge to the robot position after some iterations,
from a starting point (usually the last known robot position). In the iterative methods, they
also present Iterative Search, which consists in searching the robot position through the possi-
ble space of orientations, and by using a minimization procedure of a closeness measure. The
fourth group addresses the more general problem of finding the robot pose from more than
three angle measurements (usually corrupted by errors), which is an overdetermined problem.

Several authors have noticed that the second group (Geometric Circle Intersection) is
the most popular for solving the three object triangulation problem [34, 59]. The oldest
Geometric Circle Intersection algorithm was described by McGillem and Rappaport [58, 59].
Font-Llagunes and Batlle [34] present a similar method, but they first change the reference
frame so to relocate beacon 2 at the origin and beacon 3 on the X axis. They compute the
robot position in this reference frame and then, they apply a rotation and translation to return
to the original reference frame. Zalama et al. [88, 89] present a hardware system to measure
angles to beacons and a method to compute the robot pose from three angle measurements.
A similar hardware system and method based on the work of Zalama et al. [88,89] is described
by Tsukiyama [84]. Kortenkamp [49] presents a method which turns to be exactly the same
as the one described by Cohen and Koss [21]. All these methods compute the intersection of
two of the three circles passing through the beacons and the robot. It appears that they are
all variations or improvements of older methods of McGillem and Rappaport, or Cohen and
Koss. The last one is described by Lukic et al. [19,54], but it is not general, as it only works
for a subset of all possible beacon locations.

Some newer variations of Geometric/Trigonometric triangulation algorithms are also de-
scribed in literature. In [30], Esteves et al. extend the algorithm presented earlier by Cohen
and Koss [21] to work for any beacon ordering and to work outside the triangle formed by the
three beacons. In [31,32], they describe the improved version of their algorithm to handle the
remaining special cases (when the robot lies on the line joining two beacons). They also ana-
lyze the position and orientation error sensitivity in [32]. Whereas Easton and Cameron [28]
concentrate on an error model for the three object triangulation problem, they also briefly
present an algorithm belonging to this family. It turns out that their simple method works
in the whole plane and for any beacon ordering. The work of Hmam [42] is based on Esteves
et al., and Cohen and Koss. He presents a method, valid for any beacon ordering, that di-
vides the whole plane into seven regions and handles two specific configurations of the robot
relatively to the beacons. In [55], Madsen and Andersen describe a vision based positioning
system. Such an algorithm belongs to the trigonometric triangulation family as the vision
system is used to measure angles between beacons.

It should be noted that the “three object triangulation problem” is also known as the
“three point resection problem” in the surveying engineering research area. In this field,
the beacons are often called stations, and the angles (or azimuths) are measured with a
goniometer. As it is a basic operation for decades in the surveying field, there are many
procedures (more than 500) to solve this problem, numerically as well as graphically [35].
Surprisingly, there is almost no link between these two fields, except the recent work of Font-
Llagunes and Batlle [35], and the older one of McGillem and Rappaport [58, 59]. Therefore,
it appears that some algorithms from the two fields are similar, but have different names.
One of the most famous and oldest procedures is called the Kaestner-Burkhardt method, also
known as the Pothonot-Snellius method [20]. It appears that this method is similar to the
one described by McGillem and Rappaport [58,59], which is a trigonometric approach. Then,
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there is the Collins method [20], which is a trigonometric solution, close to the one described
by Esteves et al. [32], or Cohen and Koss [21]. Also, there is the Cassini method [20], similar
to the method of Easton and Cameron [28], both being a trigonometric approach. Finally,
there is the Tienstra method [20,68], which is a completely different approach, as it makes use
of the barycentric coordinates in order to express the robot position as a weighted sum of the
beacons coordinates. This method is known for a long time, but has been concisely proofed
in the recent work of Porta and Thomas [68]. Despite that the three point resection problem
is known for a long time and has many solutions, some newer works are still emerging. For
example, Font-Llagunes and Batlle [35] have published a new method, which uses straight
lines intersection and similar triangle property. To our knowledge, the most recent work has
been carried out by Ligas [52]. It turns out that both Ligas’s method and ToTal rely on the
idea of using the radical axis of two circles. However, Ligas intersects one radical axis and
one circle, whereas our algorithm intersects the three radical axis of the three pairs of circles2.
Likewise, Ligas also uses only two trigonometric functions (like our method ToTal), and as a
consequence, it is one of the most efficient methods (with ToTal), as shown is Section 6.4.2.

Some of the Multiple Beacons Triangulation (multiangulation) algorithms are described
hereafter. One of the first work in this field was presented by Avis and Imai [7]. In their
method, the robot measures k angles from a subset of n indistinguishable landmarks, and
therefore they produce a bounded set a valid placements of the robot. Their algorithm runs
in O(kn2) if the robot has a compass (i.e. if the orientation is known) or in O(kn3) otherwise.
One of the most famous algorithm was introduced by Betke and Gurvits [13]. They use an
efficient representation of landmark 2D locations by complex numbers to compute the robot
pose. The landmarks are supposed to have an identifier known by the algorithm. The authors
show that the complexity of their algorithm is proportional to the number of beacons. They
also perform experiments with noisy angle measurements to validate their algorithm. Finally,
they explain how the algorithm deals with outliers. A newer interesting approach is proposed
by Shimshoni [75]. He presents an efficient SVD based multiangulation algorithm from noisy
angle measurements, and explains why transformations have to be applied to the linear system
in order to improve the accuracy of the solution. The solution is close to the optimal solution
computed with nonlinear optimization techniques, while being more than a hundred times
faster. Moreover, his method seems easier to implement, compared to the one of Betke and
Gurvits [13]. Briechle and Hanebeck [18] present a new localization approach in the case of
relative bearing measurements by reformulating the given localization problem as a nonlinear
filtering problem.

Siadat and Vialle [77] describe a multiangulation method based on the Newton-Raphson
iterative method to converge to a solution, by minimizing an evaluation criterion. Lee et
al. [51] present another iterative method similar to Newton-Raphson. Their algorithm was
first designed to work with three beacons, but it can be generalized to a higher number of
beacons. The initial point of the convergence process is set to the center of the beacons and
good results are obtained after only four steps.

Sobreira et al. [80] present an hybrid triangulation method working with two beacons only.
They use a concept similar to the running-fix method introduced by Bais in [9], in which the
robot has to move by a known distance to create a virtual beacon measure and to compute
the robot pose after it has stopped to take another angle measurement. In [79], Sobreira
et al. perform an error analysis of their positioning system. In particular, they express the

2Note that the paper of Ligas [52] is posterior to ours [67].
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position uncertainty originated by errors on measured angles in terms of a surface. Sanchiz
et al. [74] describe another multiangulation method based on Iterative Search and circular
correlation. They first compute the robot orientation by maximizing the circular correlation
between the expected beacons angles and the measured beacons angles. Then, a method
similar to Iterative Search is applied to compute the position. Hu and Gu [43] present a
multiangulation method based on Kohonen neural network to compute the robot pose and to
initialize an extended Kalman filter used for navigation.

6.2.2 Brief discussion

It is difficult to compare all the above mentioned algorithms, because they operate in different
conditions and have distinct behaviors. In practice, the choice is dictated by the application
requirements and some compromises. For example, if the setup contains three beacons only or
if the robot platform has a low computing power, methods of the first and second groups are
the best candidates. Methods of the third and fourth groups are appropriate if the application
must handle multiple beacons and if it can accommodate to a higher computational cost. The
main drawback of the third group is the convergence issue (existence or uniqueness of the
solution) [21]. The main drawback of the fourth group is the computational cost [13,18,75].

The drawbacks of the first and second group are usually a lack of precision related to
the following elements: (1) the beacon ordering needed to get the correct solution, (2) the
consistency of the methods when the robot is located outside the triangle defined by the three
beacons, (3) the strategy to follow when falling into some particular geometrical cases (e.g.
when computing trigonometric functions with arguments like 0 or π, division by 0, etc), and
(4) the reliability measure of the computed position. Simple methods of the first and second
groups usually fail to propose a proper answer to all of these concerns. For example, to work
in the entire plane and for any beacon ordering (for instance, Esteves et al. [32]), they have to
consider a set of special geometrical cases separately, resulting in a lack of clarity. Finally, to
our knowledge, none of these algorithms gives a realistic reliability measure of the computed
position.

6.2.3 Other aspects of triangulation

For now, we have focused on the description of triangulation algorithms which are used to
compute the position and orientation of the robot. Other aspects of triangulation have to be
considered as well to achieve an optimal result on the robot pose in a practical situation. These
are: (1) the sensitivity analysis of the triangulation algorithm, (2) the optimal placement of
the landmarks, (3) the selection of some landmarks among the available ones to compute the
robot pose, and (4) the knowledge of the true landmark locations in the world and the true
location of the angular sensor on the robot.

Kelly [45] uses the famous Geometric Dilution of Precision (GDOP) concept, used in
GPS error analysis, and applies it to range based and angle based positioning techniques. He
derives two useful formulas in the case of two beacons. Madsen et al. [56] perform a sensitivity
analysis of their triangulation algorithm. They use the classical first order propagation of
angle measurement errors through covariance matrix and Jacobian to derive the precision of
location. Easton and Cameron [28] present the same error analysis as that of Madsen et al.
but, in addition to the angle uncertainty, they also take into account the beacon location
uncertainty. They also present some simulations for various beacons configurations as well as
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some metrics to evaluate their model’s performance.
Optimal landmark placement has been extensively studied. Sinriech and Shoval [76, 78]

define a nonlinear optimization model used to determine the position of the minimum number
of beacons required by a shop floor to guarantee an accurate and reliable performance for
automated guided vehicles (AGVs). Demaine et al. [23] present a polynomial time algorithm
to place reflector landmarks such that the robot can always localize itself from any position
in the environment, which is represented by a polygonal map. Tedkas and Isler [81, 82]
address the problem of computing the minimum number and placement of sensors so that the
localization uncertainty at every point in the workspace is less than a given threshold. They
use the uncertainty model for angle based positioning derived by Kelly [45].

Optimal landmark selection has been studied by Madsen et al. [55, 56]. They propose an
algorithm to select the best triplet among several landmarks seen by a camera, yielding to
the best position estimate. The algorithm is based on a “goodness” measure derived from an
error analysis which depends on landmarks and on the robot relative pose.

Having a good sensor providing precise angle measurements as well as a good triangula-
tion algorithm is not the only concern to get accurate positioning results. Indeed, the angle
sensor could be subject to non linearities in the measuring angle range (a complete revo-
lution). Moreover, the beacon locations that are generally measured manually are subject
to inaccuracies, affecting directly the positioning algorithm. In their paper, Loevsky and
Shimshoni [53] propose a method to calibrate the sensor and a method to correct the mea-
sured beacon locations. They show that their procedure is effective and mandatory to achieve
a good positioning performance.

In the remainder of this chapter, we concentrate on three object triangulation methods.
We present a new three object triangulation algorithm that works in the entire plane (except
when the beacons and the robot are concyclic or collinear), and for any beacon ordering.
Moreover, it minimizes the number of trigonometric computations, and provides a unique
quantitative reliability measure of the computed position.

6.3 Description of a New Three Object Triangulation Algo-
rithm

Our motivation for a new triangulation algorithm is fourfold: (1) we want it to be independent
of the beacon ordering, (2) the algorithm must also be independent of the relative positions
of the robot and the beacons, (3) the algorithm must be fast and simple to implement in a
dedicated processor, and (4) the algorithm has to provide a criterion to qualify the reliability
of the computed position.

Our algorithm, named ToTal, belongs to the family of Geometric Circle Intersection al-
gorithms (that is, the second group). It first computes the parameters of the three circles
passing through the robot and the three pairs of beacons. Then, it computes the intersection
of these three circles, by using all the three circles parameters (not only two of them, to the
contrary of other methods).

Our algorithm relies on two assumptions: (1) the beacons are distinguishable (a mea-
sured angle can be associated to a given beacon), and (2) the angle measurements from the
beacons are taken separately, and relatively to some reference angle θ, usually the robot
heading (see Figure 1.1). Note that the second hypothesis simply states that angles are given
by a rotating angular sensor. Such sensors are common in mobile robot positioning using
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Figure 6.2: Left-hand side drawing: the locus of points R that see two fixed points B1 and
B2 with a constant angle φ, in the 2D plane, is formed by two arcs of circle. Right-hand side
drawing: the ambiguity is removed by taking the following convention: φ12 = φ2 − φ1.

triangulation [15, 16, 51, 59, 65, 88]. By convention, in the following, we consider that angles
are measured counterclockwise (CCW), like angles on the trigonometric circle. Inverting the
rotating direction to clockwise (CW) would only require minimal changes of our algorithm.

6.3.1 First part of the algorithm: the circle parameters

In a first step, we want to calculate the locus of the robot positions R, that see two fixed
beacons, B1 and B2, with a constant angle φ, in the 2D plane. It is a well-known result that
this locus is an arc of the circle passing through B1 and B2, whose radius depends on the
distance between B1 and B2, and φ (Proposition 21 of Book III of Euclid’s Elements). More
precisely, this locus is composed of two arcs of circle, which are the reflection of each other
through the line joining B1 and B2 (see the left-hand side drawing of Figure 6.2).

A robot that measures an angle φ between two beacons can stand on either of these two
arcs. This case occurs if the beacons are not distinguishable or if the angular sensor is not
capable to measure angles larger than π (like a vision system with a limited field of view, as
used by Madsen et al. [55]). To avoid this ambiguity, we impose that, as shown in the right-
hand drawing of Figure 6.2, the measured angle between two beacons B1 and B2, denoted
φ12, is always computed as φ12 = φ2 − φ1 (this choice is natural for a CCW rotating sensor).
This is consistent with our measurement considerations and it removes the ambiguity about
the locus, but it requires that beacons are indexed and that the robot is capable to establish
the index of any beacon. As a result, the locus is a single circle passing through R, B1, and
B2. In addition, the line joining B1 and B2 divides the circle into two parts, one for φ12 < π
and the other for φ12 > π. In the following, we compute the circle parameters.

The circle equation may be derived by using the complex representation of 2D points
(Argand diagram), and by expressing angles as the argument of complex numbers. In
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particular, the angle of (B2 −R) is equal to that of (B1 −R) plus φ12. Equivalently,

arg
{
B2 −R
B1 −R

}
= φ12, (6.1)

⇒ arg
{

(B2 −R) (B1 −R)
}

= φ12. (6.2)

Then, if we substitute R, B1, B2, respectively by (x+ iy), (x1 + iy1), (x2 + iy2), we have that

arg
{

(x2 + iy2 − x− iy) (x1 − iy1 − x+ iy) e−iφ12
}

= 0, (6.3)

⇒ − sinφ12 (x2 − x) (x1 − x) + sinφ12 (y2 − y) (y − y1)
+ cosφ12 (x2 − x) (y − y1) + cosφ12 (y2 − y) (x1 − x) = 0, (6.4)

where i =
√
−1. After lengthy simplifications (see appendix B.1 for details), we find the locus

(x− x12)2 + (y − y12)2 = R2
12, (6.5)

which is a circle whose center {x12, y12} is located at

x12 = (x1 + x2) + cotφ12 (y1 − y2)
2 , (6.6)

y12 = (y1 + y2)− cotφ12 (x1 − x2)
2 , (6.7)

and whose squared radius equals

R2
12 = (x1 − x2)2 + (y1 − y2)2

4 sin2 φ12
. (6.8)

The three last equations may also be found in the work of Font-Llagunes and Batlle [34], in
an alternate formulation. The replacement of φ12 by π + φ12 in the above equations yields
the same circle parameters (Figure 6.2, right), which is consistent with our measurement
considerations. For an angular sensor turning in the CW direction, these equations are
identical except that one has to change the sign of cot(.) in equations (6.6) and (6.7).

Hereafter, we use the following notations:

• Bi is the beacon i, whose coordinates are {xi, yi},

• R is the robot position, whose coordinates are {xR, yR},

• φi is the angle for beacon Bi,

• φij = φj − φi is the bearing angle between beacons Bi and Bj ,

• Tij = cot(φij),

• Cij is the circle passing through Bi, Bj , and R,

• cij is the center of Cij , whose coordinates are {xij , yij}

xij = (xi + xj) + Tij (yi − yj)
2 , (6.9)

yij = (yi + yj)− Tij (xi − xj)
2 , (6.10)
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Figure 6.3: Triangulation setup in the 2D plane, using the geometric circle intersection. R is
the robot. B1, B2, and B3 are the beacons. φij are the angles between Bi, R, and Bj . Cij are
the circles passing through Bi, R, and Bj . Rij and cij are respectively the radii and center
coordinates of Cij . θR is the robot heading orientation.

• Rij is the radius of Cij , derived from

R2
ij = (xi − xj)2 + (yi − yj)2

4 sin2 φij
. (6.11)

All the previous quantities are valid for i 6= j, otherwise the circle does not exist. Also, we
have to consider the case φij = kπ, k ∈ Z. In that case, the sin(.) and cot(.) are equal to
zero, and the circle degenerates as the BiBj line (infinite radius and center coordinates). In
a practical situation, it means that the robot stands on the BiBj line, and measures an angle
φij = π when being between the two beacons, or φij = 0 when being outside of the BiBj
segment. These special cases are discussed later.

6.3.2 Second part of the algorithm: the circles intersection

In the previous section, we showed that each bearing angle φij between beacons Bi and Bj
constraints the robot to be on a circle Cij , passing through Bi, Bj , and R. The situation is
illustrated in Figure 6.3. The parameters of the circles are given by equations (6.9), (6.10),
and (6.11). Common methods use two of the three circles to compute the intersections (when
they exist), one of which is the robot position, the second being the common beacon of the two
circles. This requires to solve a quadratic system and to choose the correct solution for the
robot position (see Font-Llagunes and Batlle [34], for instance). Moreover the choice of the
two circles is arbitrary and usually static, whereas this choice should depend on the measured
angles or beacons and robot relative configuration to have a better numerical behavior.
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Figure 6.4: The black point is the power center of three circles for various configurations. It
is the unique point having the same power with respect to the three circles. The power center
is the intersection of the three power lines.

Hereafter, we propose a novel method to compute this intersection, by using all of the
three circles, and by reducing the problem to a linear problem3. To understand this elegant
method, we first introduce the notion of power center (or radical center) of three circles.
The power center of three circles is the unique point of equal power with respect to these
circles [29]. The power of a point p relative to a circle C is defined as

PC,p = (x− xc)2 + (y − yc)2 −R2, (6.12)

where {x, y} are the coordinates of p, {xc, yc} are the circle center coordinates and R is
the circle radius. The power of a point is null onto the circle, negative inside the circle,
and positive outside the circle. It defines a sort of relative distance of a point from a given
circle. The power line (or radical axis) of two circles is the locus of points having the same
power with respect to both circles [29]; in other terms, it is also the locus of points at which
tangents drawn to both circles have the same length. The power line is perpendicular to the
line joining the circle centers and passes through the circle intersections, when they exist.
Monge demonstrated that, when considering three circles, the three power lines, defined by
the three pairs of circles are concurring in the power center [29]. Figure 6.4 shows the power
center of three circles for three configurations. The power center is always defined, except
when at least two of the three circle centers are equal, or when the circle centers are collinear
(parallel power lines).

The third case of Figure 6.4 (right-hand drawing) is remarkable as it perfectly matches
our triangulation problem (Figure 6.3). Indeed, the power center of three concurring circles
corresponds to their unique intersection. In our case, we are sure that the circles are concurring
since we have

φ31 = −(φ12 + φ23), (6.13)
3The idea of using all the parameters from the three circles is not new, and has been used at least by

the authors of the following report: Fuentes, O.; Karlsson, J.; Meira, W.; Rao, R.; Riopka, T.; Rosca, J.;
Sarukkai, R.; Van Wie, M.; Zaki, M.; Becker, T.; Frank, R.; Miller, B. and Brown, C. M.; Mobile Robotics
1994, Technical Report 588, The University of Rochester Computer Science Department, Rochester, New York
14627, June 1995 (see http://www.cs.cmu.edu/afs/.cs.cmu.edu/Web/People/motionplanning/papers/sbp_
papers/integrated2/fuentas_mobile_robots.pdf). However, they did not simplify their algorithm as far as
we do in our developments.
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by construction (only two of the three bearing angles are independent), even in presence of
noisy angle measurements φ1, φ2, and φ3. It has the advantage that this intersection may
be computed by intersecting the power lines, which is a linear problem. The power line of
two circles is obtained by equating the power of the points relatively to each circle (equation
(6.12)). In our problem, the power line of C12 and C23 is given by

(x− x12)2 + (y − y12)2 −R2
12 = (x− x23)2 + (y − y23)2 −R2

23

⇒ x (x12 − x23) + y (y12 − y23) = x2
12 + y2

12 −R2
12

2 − x2
23 + y2

23 −R2
23

2
⇒ x (x12 − x23) + y (y12 − y23) = k12 − k23,

where we introduce a new quantity kij which only depends on Cij parameters

kij =
x2
ij + y2

ij −R2
ij

2 . (6.14)

In our triangulation problem, we have to intersect the three power lines, that is to solve this
linear system 

x (x12 − x23) + y (y12 − y23) = k12 − k23

x (x23 − x31) + y (y23 − y31) = k23 − k31

x (x31 − x12) + y (y31 − y12) = k31 − k12

(6.15)

As can be seen, any of these equations may be obtained by adding the two others, which is
a way to prove that the three power lines concur in a unique point: the power center. The
coordinates of the power center, that is the robot position is given by

xR =

∣∣∣∣∣ k12 − k23 y12 − y23
k23 − k31 y23 − y31

∣∣∣∣∣
D4

, (6.16)

yR =

∣∣∣∣∣ x12 − x23 k12 − k23
x23 − x31 k23 − k31

∣∣∣∣∣
D4

. (6.17)

The denominator D4, common to xR and yR, is equal to

D4 =
∣∣∣∣∣ x12 − x23 y12 − y23
x23 − x31 y23 − y31

∣∣∣∣∣ =

∣∣∣∣∣∣∣
x12 y12 1
x23 y23 1
x31 y31 1

∣∣∣∣∣∣∣ , (6.18)

which is the signed area of the triangle defined by the circle centers, multiplied by two. This
result shows that the power center exists, if the circle centers are not collinear, that is if
D4 6= 0. The special case (D4 = 0) is discussed later.

6.3.3 First (naive) version of the algorithm

A first, but naive version of our algorithm consists in applying the previous equations to get
the robot position. This method is correct, but it is possible to further simplify the equations.
First, note that the squared radii R2

ij only appear in the parameters kij . If we replace the
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expression of R2
ij (equation (6.11)) and the expressions of xij and yij (equations (6.9) and

(6.10)) into the expression of kij (equation (6.14)), we find, after many simplifications that
(see appendix B.2 for details)

kij = xixj + yiyj + Tij(xjyi − xiyj)
2 , (6.19)

which is much simpler than equations (6.11) and (6.14) (no squared terms anymore). In
addition, the 1/2 factor involved in the circle centers coordinates (equations (6.9) and (6.10))
as well as in the parameters kij (equation (6.14)) cancels in the robot position coordinates
(equations (6.16) and (6.17)). This factor can thus be omitted. For now, we use these modified
circle center coordinates {x′ij , y′ij}

x′ij = (xi + xj) + Tij (yi − yj) , (6.20)
y′ij = (yi + yj)− Tij (xi − xj) , (6.21)

and modified parameters k′ij

k′ij = xixj + yiyj + Tij(xjyi − xiyj). (6.22)

6.3.4 Final version of the algorithm

The most important simplification consists in translating the world coordinate frame into one
of the beacons, that is solving the problem relatively to one beacon and then add the beacon
coordinates to the computed robot position (like Font-Llagunes and Batlle [34], without the
rotation of the frame). In the following, we arbitrarily choose B2 as the origin (B′2 = {0, 0}).
The other beacon coordinates become: B′1 = {x1 − x2, y1 − y2} = {x′1, y′1} and B′3 = {x3 −
x2, y3 − y2} = {x′3, y′3}. Since x′2 = 0 and y′2 = 0, we have k′12 = 0, k′23 = 0. Also, we can
compute the value of one cot(.) by referring to the two other cot(.) because the three angles
are linked (equation (6.13))

T31 = 1− T12T23
T12 + T23

. (6.23)

The final algorithm is given in Algorithm 6.1.

6.3.5 Discussion

The ToTal algorithm is very simple: computations are limited to basic arithmetic operations
and only two cot(.). Furthermore, the number of conditional statements is reduced, which
increases its readability and eases its implementation. Among them, we have to take care of
the cot(.) infinite values and the division by D, if equal to zero. If a bearing angle φij between
two beacons is equal to 0 or π, that is the robot stands on the BiBj line, then cot(φij) is
infinite. The corresponding circle degenerates to the BiBj line (infinite radius and center
coordinates). The robot is then located at the intersection of the remaining power line and
the BiBj line; it can be shown that the mathematical limit limTij→±∞ {xR, yR} exists and
corresponds to this situation.

Like for other algorithms, our algorithm also has to deal with these special cases, but the
way to handle them is simple. In practice, we have to avoid Inf or NaN values in the floating
point computations. We propose two ways to manage this situation. The first way consists
in limiting the cot(.) value to a minimum or maximum value, corresponding to a small angle
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Algorithm 6.1 Final version of the ToTal algorithm.
Given the three beacon positions {x1, y1}, {x2, y2}, {x3, y3}, and the three angles φ1, φ2, φ3:

1. compute the modified beacon coordinates:

x′1 = x1 − x2,

y′1 = y1 − y2,

x′3 = x3 − x2,

y′3 = y3 − y2,

2. compute the three cot(.):

T12 = cot(φ2 − φ1),
T23 = cot(φ3 − φ2),

T31 = 1− T12T23
T12 + T23

,

3. compute the modified circle center coordinates:

x′12 = x′1 + T12 y
′
1,

y′12 = y′1 − T12 x
′
1,

x′23 = x′3 − T23 y
′
3,

y′23 = y′3 + T23 x
′
3,

x′31 = (x′3 + x′1) + T31 (y′3 − y′1),
y′31 = (y′3 + y′1)− T31 (x′3 − x′1),

4. compute k′31:
k′31 = x′1x

′
3 + y′1y

′
3 + T31(x′1y′3 − x′3y′1),

5. compute D (if D = 0, return with an error):

D = (x′12 − x′23)(y′23 − y′31)− (y′12 − y′23)(x′23 − x′31),

6. compute the robot position {xR, yR} and return:

xR = x2 + k′31(y′12 − y′23)
D

,

yR = y2 + k′31(x′23 − x′12)
D

.
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that is far below the measurement precision. For instance, we limit the value of the cot(.) to
±108, which corresponds to an angle of about ±10−8 rad; this is indeed far below the existing
angular sensor precisions. With this approximation of the mathematical limit, the algorithm
remains unchanged. The second way consists in adapting the algorithm when one bearing
angle is equal to 0 or π. This special case is detailed in Algorithm 6.2, in which the indexes
{i, j, k} have to be replaced by {1, 2, 3}, {3, 1, 2}, or {2, 3, 1} if φ31 = 0, φ23 = 0, or φ12 = 0
respectively.

The denominator D is equal to 0 when the circle centers are collinear or coincide. For
non collinear beacons, this situation occurs when the beacons and the robot are concyclic;
they all stand on the same circumference, termed the critical circumference by Font-Llagunes
and Batlle [34]. In that case, the three circles are equal as well as their centers, which causes
D = 0 (the area defined by the three circle centers is equal to zero). For collinear beacons,
this situation is encountered when the beacons and the robot all stand on this line. For these
cases, it is impossible to compute the robot position. This is a restriction common to all three
object triangulation, regardless of the used algorithm [30,34,59].

The value of D, computed in the final algorithm, is the signed area delimited by the circle
centers, multiplied by height4. |D| decreases to 0 when the robot approaches the critical
circumference (almost collinear circle center, almost parallel power lines). Therefore, it is
quiet natural to use |D| as a reliability measure of the computed position. In the next
section, we show that 1/|D| is a good approximation of the position error. In practice, this
measure can be used as a validation gate after the triangulation algorithm, or when a data
fusion algorithm is used. Finally, it should be noted that the robot orientation θR may be
determined by using any beacon Bi and its corresponding angle φi, once the robot position
is known:

θR = atan2(yi − yR, xi − xR)− φi, (6.24)

where atan2(y, x) denotes the C-like two arguments function, defined as the principal value
of the argument of the complex number (x+ iy).

6.4 Simulations

6.4.1 Error Analysis

The problem of triangulation given three angle measurements is an exact calculus of the
robot pose, even if these angles are affected by noise. This contrasts with multiangulation,
which is an overdetermined problem, even with perfect angle measurements. It turns out
that the sensitivity of triangulation with respect to the input angles is unique and does not
depend on the way the problem is solved, neither on the algorithm. In this chapter, we
focus on the presentation of a new three object triangulation algorithm and the comparison
with seventeen other algorithms of the same family. So, we do not elaborate on the error
analysis for triangulation, as it has been studied in many papers; the same conclusions, as
found in [28, 32, 34, 45, 55, 76], also yield for our algorithm. However, in order to validate
our algorithm and to discuss the main characteristics of triangulation sensitivity, we have
performed some simulations. The simulation setup comprises a square shaped grid area
(4 × 4m2), with three non collinear beacons forming a regular triangle (B1 = {0m, 1m},

4Note that the quantity D computed in the final algorithm is different from the quantity D4 defined in
Section 6.3.2, since the centers coordinates have been multiplied by two.
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Algorithm 6.2 Special case φki = 0 ∨ φki = π.
Given the three beacon positions {xi, yi}, {xj , yj}, {xk, yk}, and the three angles φi, φj , φk:

1. compute the modified beacon coordinates:

x′i = xi − xj ,
y′i = yi − yj ,
x′k = xk − xj ,
y′k = yk − yj ,

2. compute Tij = cot(φj − φi),

3. compute the modified circle center coordinates:

x′ij = x′i + Tij y
′
i,

y′ij = y′i − Tij x′i,
x′jk = x′k + Tij y

′
k,

y′jk = y′k − Tij x′k,
x′ki = (y′k − y′i),
y′ki = (x′i − x′k),

4. compute k′ki = (x′iy′k − x′ky′i),

5. compute D (if D = 0, return with an error):

D = (x′jk − x′ij)(y′ki) + (y′ij − y′jk)(x′ki),

6. compute the robot position {xR, yR} and return:

xR = xj +
k′ki(y′ij − y′jk)

D
,

yR = yj +
k′ki(x′jk − x′ij)

D
.
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B2 = {−0.866m, −0.5m}, and B3 = {0.866m, −0.5m}). The distance step in the grid is
2 cm in each direction. For each point in this grid, we compute the exact angles φi seen by
the robot (the robot orientation is arbitrarily set to 0 deg). Then we add Gaussian noise to
these angles, with zero mean, and with three different standard deviations (σ = 0.01 deg,
σ = 0.1 deg, and σ = 1 deg). The noisy angles are then used as inputs of our algorithm to
compute the estimated position. The position error ∆dR is the Euclidean distance between
the exact and estimated positions:

∆dR =
√

(xtrue − xR)2 + (ytrue − yR)2, (6.25)

and the orientation error ∆θR is the difference between the exact and estimated orientations:

∆θR = θtrue − θR. (6.26)

The experiment is repeated 1000 times for each position to compute the standard deviation
of the position error

√
var {∆dR} and of the orientation error

√
var {∆θR}. The standard

deviations of the position and orientation errors are drawn in Figures 6.5 and 6.6. The beacon
locations are represented by black and white dot patterns. The first, second, and third column
provide the result for σ = 0.01 deg, σ = 0.1 deg, and σ = 1 deg respectively. The first, second,
and third rows show the standard deviation of the position error, the standard deviation
of the orientation error, and the mean error measure 1/|D| respectively. In Figure 6.5, the
graphics are plotted by using a logarithmic scale, and by removing 1 % of the largest values
(because the errors are unbounded as we get closer to the critical circumference). In Figure
6.6, the graphics are plotted by using an histogram equalization in order to enhance the visual
representation, and to point out the similarities between the position and orientation error,
and our new error measure.

Our simulation results are consistent with common three object triangulation algorithms.
In particular, we can easily spot the critical circumference where errors are large, the error
being minimum at the center of this circumference. Also, one can see that, outside the critical
circumference, the error increases with the distance to the beacons. It is also interesting to
note that 1/|D| has a similar shape than the position or orientation errors. It can be proven
(starting from equations (6.16) and (6.17), by a detailed sensitivity analysis of the robot
position error with respect to angles, that (see appendix B.3 for the details)

∆dR '
1
|D|
|∆φ| f(.), (6.27)

where ∆φ is the angle error (assumed to be the same for the three angles), and f(.) is some
function of all the other parameters. This confirms our claim that 1/|D| can be used as an
approximation of the position error5. Furthermore, one can observe from the graphic scales,
that the position or orientation errors almost evolve linearly with angle errors, when they are
small (look at the scale of the different graphics).

5Note that this is a strong analogy with the Geometric Dilution of Precision (GDOP) concept, used in GPS
error analysis. It is shown that the GDOP, based on four satellites, is related to the volume of the tetrahedron
defined by these four satellites. In our case, the error is related to the area of the triangle defined by the three
circle centers.



6.4. Simulations 97
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Figure 6.5: Simulation results giving the position and orientation errors for noisy angle mea-
surements. The beacon positions are represented by black and white dot patterns. The first,
second, and third columns provide the results for σ = 0.01 deg, σ = 0.1 deg, and σ = 1 deg
respectively. Position errors are expressed in meters, the orientation error is expressed in
degrees, and the error measure 1/|D| is in 1/m2. The graphics are displayed by using a loga-
rithmic scale, and by removing 1 % of the largest values (because the errors are unbounded
as we get closer to the critical circumference).
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σ = 0.01 deg σ = 0.1 deg σ = 1 deg
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Figure 6.6: Simulation results giving the position and orientation errors for noisy angle mea-
surements. The beacon positions are represented by black and white dot patterns. The first,
second, and third columns provide the results for σ = 0.01 deg, σ = 0.1 deg, and σ = 1 deg
respectively. Position errors are expressed in meters, the orientation error is expressed in
degrees, and the error measure 1/|D| is in 1/m2. The graphics are displayed by using an
histogram equalization to enhance its visual representation and interpretation.
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Algorithm + × /
√
x trigo time (s) †

ToTal 1 30 17 2 0 2 0.1633
[52] Ligas 1 29 22 2 0 2 0.1707
[34] Font-Llagunes 1 23 17 2 0 5 0.2278
[20] Cassini 2 19 8 3 0 4 0.2491
[21] Cohen 1 37 15 3 2 4 0.2718
[28] Easton 2 22 24 1 0 5 0.2976
[59] McGillem 1 37 18 5 2 8 0.3403
[42] Hmam 2 29 11 3 3 9 0.4277
[21] Cohen 2 26 11 3 2 11 0.4374
[32] Esteves 2 43 14 2 2 11 0.4705
[20] Collins 2 34 10 2 2 11 0.4852
[59] McGillem 2 29 9 3 2 11 0.5013
[20] Kaestner-Burkhardt 2 28 10 3 2 11 0.5044
[84] Tsukiyama 1 52 22 3 5 14 0.5963
[88] Zalama 1 52 21 4 5 14 0.6092
[68] Tienstra 2 33 18 8 3 9 0.6396
[35] Font-Llagunes 1 62 25 6 1 8 0.6475
[55] Madsen 2 38 24 5 3 15 0.7072

† For 106 executions on an Intel(R) Core(TM) i7 920 @ 2.67GHz.
1 Geometric circle intersection
2 Trigonometric solution

Table 6.1: Comparison of various triangulation algorithms to our ToTal algorithm.

6.4.2 Benchmarks

We have also compared the execution time of our algorithm to seventeen other three object
triangulation algorithms similar to ours (i.e. which work in the whole plane and for any beacon
ordering). These algorithms have been introduced in Section 6.2, and have been implemented
after the author’s guidelines6. Each algorithm has been running 106 times at random locations
of the same square shaped area as that used for the error analysis. The last column of Table 6.1
provides the running times on an Intel(R) Core(TM) i7 920 @ 2.67GHz (6GB RAM, Ubuntu
11.04, GCC 4.5.2). We used the C clock_gettime function to measure the execution times,
in order to yield reliable results under timesharing. It appears that our algorithm is the fastest
of all (about 30 % faster than the last best known algorithm of Font-Llagunes and Batlle [34],
and 5 % faster than the recent algorithm of Ligas [52]). In addition to the computation
times, we have also reported the number of basic arithmetic computations, squared roots, and
trigonometric functions used for each algorithm. This may help to choose an algorithm for
a particular hardware architecture, which may have a different behavior for basic arithmetic
computations, or complex functions such as square roots or trigonometric functions. One can
see that our algorithm has the minimum number of trigonometric functions, which is clearly
related to the times on a classical computer architecture (see Table 6.1). A fast algorithm

6The C source code used for the error analysis and benchmarks is available at http://www.ulg.ac.be/
telecom/triangulation. The C source codes of all algorithms, including ToTal, are also provided.



100 Chapter 6. ToTal: a new triangulation algorithm

is an advantage for error simulations, beacon placement, and beacon position optimization
algorithms (see the next chapter). Note that the algorithm of Ligas, as for ToTal, also uses
the minimum number of trigonometric functions (two cot(.) computations), explaining why
both algorithms are basically similar in terms of efficiency. However, the algorithm of Ligas
does not provide a reliability measure, contrarily to our algorithm ToTal.

6.5 Conclusions
Most of the many triangulation algorithms proposed so far have major limitations. In this
chapter, we present a new three object triangulation algorithm based on the elegant notion
of power center of three circles. Our new triangulation algorithm, named ToTal, natively
works in the whole plane (except when the beacons and the robot are concyclic or collinear),
and for any beacon ordering. Furthermore, it only uses basic arithmetic computations and
two cot(.) computations. Comprehensive benchmarks show that our algorithm is faster than
comparable algorithms, and simpler in terms of the number of operations. We also compare
the number of basic arithmetic computations, squared roots, and trigonometric functions used
for seventeen known triangulation algorithms.

In addition, we propose a unique reliability measure of the triangulation result in the
whole plane, and we establish by simulations that 1/|D| is a natural and adequate criterion
to estimate the error of the positioning. To our knowledge, none of the algorithms of the
same family does provide such a measure. This error measure can be used to identify the
pathological cases (critical circumference), or as a validation gate in data fusion algorithms
based on triangulation.

For all these reasons, ToTal is a fast, flexible, and reliable three object triangulation
algorithm. Such an algorithm is an excellent choice for many triangulation issues related
to the performance or optimization, such as error simulations, beacon placement or beacon
position optimization algorithms. A fast and inexpensive algorithm is also an asset to initialize
a more complex positioning algorithm, that internally relies on a Kalman filter for instance.



Chapter 7

System calibration

7.1 Introduction

In this manuscript, we have described our new angle measurement sensor. Then we have
elaborated a mathematical model for the variance of the measured angles, and we have eval-
uated this model through simulations and experiments. Finally, in the previous chapter, we
have described our new three object triangulation algorithm. The combination of these two
parts, the hardware and the positioning algorithm, are the necessary first steps for building a
complete positioning system. One could think that combining these two parts is sufficient to
achieve good results. However, even with the most carefully designed hardware and the most
accurate positioning algorithm, experiments show that it is not sufficient to achieve the most
accurate results. Until now, we have focused mainly on the variance. However, many sources
of biases (also denoted errors in this chapter) are unavoidable in a real world situation and a
good positioning system should deal with them.

The angles measured by our system BeAMS are corrupted by different sources of errors.
We can identify four sources of errors resulting in inaccuracies in the computed positions.
The first one is due to a non constant bias in the angle measurements with respect to the
received power; in other words, it means that the angle measurements are sensitive to the
distance. The second source of errors is caused by the sensor mechanics and optics, leading
to a non constant bias affecting the measurements during a complete revolution of the sensor.
The third source of errors is caused by an inaccurate knowledge of the beacon positions in the
environment, because their coordinates are measured manually. The fourth source of errors
is caused by an inaccurate knowledge of the real rotation center of the turret, from which the
angles are measured.

In this chapter, we focus on these four situations and explain how to deal with them.
The final goal consists in providing a complete calibration procedure in order to improve the
accuracy of the computed positions and orientations.

This chapter is organized as follows. Section 7.2 presents the calibration methods found in
the literature. The different sources of errors are detailed in Section 7.3.2, Section 7.3.3, and
Section 7.3.4. In Section 7.3.5, we detail our complete calibration procedure, and we discuss
it in Section 7.3.6. Finally, we conclude the chapter in Section 7.4.

101
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7.2 Related work

In Chapter 2 and Chapter 6, we have shown that there are many works discussing mobile robot
positioning. In particular, there are several papers about new angle measurement systems,
positioning algorithms including triangulation and multiangulation, error models and error
sensitivity analysis, optimal beacon placement and beacon selection algorithms. Surprisingly,
there are almost no papers discussing the calibration of such systems.

To our knowledge, there is only one paper discussing the calibration of a complete posi-
tioning system similar to ours. This work has been carried out by Loevsky and Shimshoni [53],
and we present it in details hereafter. In their experiments, they use a Denning MRV4 mobile
robot equipped with the LaserNav commercial angle measurement system, which has been
presented in Section 2.2.1. It uses a rotating laser, combined with passive reflective beacons.
These reflective beacons are bar-coded in order to allow their identification. Moreover they
use more than three beacons and, as a consequence, they use a multiangulation algorithm.
This algorithm has been designed by Shimshoni, and presented in a previous paper [75]. As
explained in [53], a calibration step is necessary to achieve accurate results in a complex
measuring system. In their paper, they identify four possible causes leading to inaccurate
computed positions. The first one is due to the hardware mechanics, causing biased measure-
ments. The second one is due to inaccurate manual measurements of the beacon coordinates
in the reference frame, affecting the multiangulation algorithm directly. The third reason is
due to the robot motion itself, combined with the rotation of the sensor. The last reason is
caused by misidentified beacons, causing large errors in the computed position, even if their
corresponding angles are accurate. These four sources of errors are detailed hereafter.

The first source of errors can be observed when the robot rotates around its own center
at a fixed location. It is not said in the paper, but we suppose that the rotation center of
the robot corresponds to the one of the sensor. As explained in Section 5.7 and Section
6.3, the position computed by any angle-based positioning algorithm depends on the angle
differences, and not on the absolute angles. As a result, a rotation of the sensor should not
influence the position, only the orientation. But, with a real sensor, one can observe that
the computed positions spread over a large area of the 2D plane, instead of being normally
distributed around the rotation center, with a small variance and bias. This suggests that
the angles are affected by a bias depending on the sensor orientation. The authors propose to
correct these biased angles with a periodic correction function depending on four parameters.
The parameters have been tuned by using the Nelder-Mead simplex method1, in order to
minimize an error measure (detailed later). Their method seems to achieve good results as
the dispersion of the positions is reduced from about 10 cm to 1 cm2. This method is called
“hardware calibration”, and is applied to BeAMS in Section 7.3.3.

The second source of errors is caused by inaccurate beacons coordinates, due to manual
measurements performed by the user. As these coordinates are direct inputs of the multian-
gulation algorithm, it directly affects the computed positions, even in presence of noise free
angles. Again, Loevsky and Shimshoni [53] propose a method based on the Nelder-Mead
simplex, in order to find the optimal set of beacons coordinates that minimizes an error
measure.

The third source of errors is due to the robot motion as explained hereafter. The angle
1The Nelder-Mead simplex method is an unconstrained nonlinear minimization method.
2The absolute values are not important, as they depend on the particular calibration setup. What is

important is the reduction ratio (10 : 1) achieved by their method.



7.3. The calibration method 103

measurements are based on the rotation of a mirror deflecting the outgoing laser beam and
incoming reflected beam. But, because of the robot motion, the absolute rotation speed of
the mirror (with respect to the reference frame) may change, causing biased measurements
(because the angles are deduced from the position of the mirror, which is related to the
rotation speed). As the robot motion is known and can be decomposed in a translation
and a rotation, the authors propose two methods to compensate these effects. The first one
uses the Nelder-Mead simplex, and the second one uses Brent’s method3. It appears that the
correction for rotation is mandatory to achieve a good accuracy during fast rotations, whereas
the correction for translation is negligible compared to the increase in complexity.

The last source of errors comes from the misidentification of beacons. Like for the beacons
coordinates, it directly affects the computed position, resulting in large errors. Due to the
different nature of this noise source, it has to be addressed differently. This problem can be
solved in three steps: 1) detect the presence of a misidentified beacon, 2) remove this beacon
from the set, and 3) recompute the position with the new set. The authors propose to use
the RANSAC algorithm4, which is suited for this kind of problem.

For each source of errors, the authors propose a dedicated correction method. The two
first correction methods are named “calibration of the localization system components” since
they are the first necessary steps to achieve a good accuracy in static conditions. The authors
propose a “combined calibration procedure” to find the optimal parameters associated to each
method (the correction function and the beacons coordinates). This “combined calibration
procedure” is detailed further in Section 7.3.5.

Finally, it should be noted that the methods presented by Loevsky and Shimshoni do not
require ground truth references (i.e. fixed positions and orientations) to work, which is an
advantage to avoid time-consuming placements of the robot at given positions. Instead, the
minimization methods of each step are based on a mean square error calculation, which is
derived from their multiangulation algorithm. Indeed, the computed position based on angle
measurements is an exact calculus for three angles [21, 32, 67]. Therefore, methods based on
more than three angles are overdetermined problems, and they compute the position according
to a particular minimization criterion [13,75]. The computed position is then associated to an
error measure, which serves as a basis for the methods presented by Loevsky and Shimshoni.
Unfortunately, it is important to note that these methods cannot be applied to systems using
only three beacons, as pointed by the authors. In our case, we need to use ground truth
references, as explained in the next section.

7.3 The calibration method

Like for any angle-based positioning system, our system BeAMS is subject to the errors
described by Loevsky and Shimshoni. So, in order to improve the localization results, we
need to calibrate our system. But, despite that BeAMS can measure angles for any number
of beacons, it has initially been designed for the Eurobot contest, which limits the number
of beacons to three. Since an angle based algorithm requires a minimum of three beacons
to compute the position unequivocally (except on the circumference defined by the three
beacons), the number of beacons has been set to three. As a consequence, the calibration

3Brent’s method is a root-finding algorithm.
4RANSAC (RANdom SAmple Consensus) is a model parameter estimation algorithm, known to be robust

to outliers contained in the data.
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XB Y B

B1 1.151 0.049
B2 0.600 0.907
B3 0.049 0.049

Table 7.1: Coordinates of the beacons, expressed in (m). These coordinates are the supposed
prior beacon positions. The expected accuracy of the measurements is about 1mm.

method proposed by Loevsky and Shimshoni cannot be applied directly, as explained earlier.
Moreover, our hardware system is different from the one they use and, in a consequence, the
proposed solutions need to be adapted.

To our knowledge, no method has been proposed so far to calibrate a system using three
beacons. The most important difference of our method compared to that of Loevsky and
Shimshoni lies in the minimization criterion. As explained earlier, we cannot base our method
on a mean square error calculation derived from a multiangulation algorithm, because trian-
gulation is an exact calculus. As a consequence, we have no choice but to use some ground
truth references. It means that we have to place the robot/sensor at known locations, in order
to create our own error criterion.

7.3.1 The calibration setup

As explained previously, we need to use some ground truth references, in order to produce
an error measure. Since the sensor measures angles that are affected by errors, we could
use absolute angles as the ground truths, in order to find the adequate correction functions.
However, as explained in Section 5.7, in which we have evaluated the bias, it is difficult to
measure absolute angles accurately, compared to the ease of measuring the variance. More-
over, the beacons coordinates are expressed in terms of distances, as well as the result of the
triangulation algorithm, which is the final goal of a positioning system. Also, it is easier to
place the robot at known positions, as well as measuring distances.

So, in order to provide accurate ground truth positions, and to validate our new calibration
procedure, we have designed a test setup, as represented in Figure 7.1. The reference frame
is represented by the two orthogonal axis denoted (x, y). It is composed of a grid of 15 ×
12 squares with a side length of 8 cm, which defines an area of 120 cm by 96 cm. These
dimensions are about the third of the ones used in the Eurobot contest, in order to ease the
manipulations. Each square of the grid has a side of 8 cm, which corresponds exactly to the
size of the structure of BeAMS. This eases the placement of the sensor on the grid. A picture
of the calibration setup is displayed in Figure 7.2.

The set of beacons is denoted B, and contains three elements

B = {B1, B2, B3} , (7.1)

where Bi denotes the coordinates of the beacon i

Bi =
(
XB
i , Y

B
i

)
. (7.2)

The three beacons (represented by encircled black points in Figure 7.1) have been placed at
coordinates given in Table 7.1, at the borders of the grid. The positions of the beacons (i.e.
the IR LEDs) have been measured manually, and the expected accuracy is about 1mm. Note
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Figure 7.1: Calibration setup used for the experiments. The encircled black points are the
beacons. The crosses are the reference positions. The dashed circle is the critical circumfer-
ence. The grid measures 120 cm by 96 cm, and is composed of 15 × 12 squares with a side
length of 8 cm.
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Figure 7.2: Picture of the calibration setup.

that we have tried to estimate the position of the emitting part of the LED, inside its 5mm
body. Then, we have chosen 12 reference positions Pi (represented by crosses in Figure 7.1),
whose coordinates are given in Table 7.2. The reference positions are well distributed over
the grid. The expected accuracy of the grid and the placement of the sensor at the reference
positions is about 2mm. Also, the orientation of the sensor/robot is important, and it has
to be calibrated as well. So, we have to define some reference orientations for each reference
position. Due to the shape of the grid and the square structure of the sensor, it is easy to align
the sensor with the grid axis. As a consequence, we have chosen four reference orientations
Oi as follows

Oi ∈
{

0, π2 , π, −
π

2

}
. (7.3)

So, the combination of a particular reference position and orientation defines a set of n =
48 = 12× 4 reference configurations (poses) of the sensor, denoted C

C =
{−→
C1,
−→
C2, . . . ,

−→
Cn
}
, (7.4)

where each element −→Ck is defined as
−→
Ck =

(
XP
k , Y

P
k , Ok

)
, (7.5)

where
(
XP
k , Y

P
k

)
is one of the 12 reference positions, and Ok is one of the 4 reference orien-

tations.
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XP Y P

P1 0.12 0.84
P2 1.08 0.84
P3 0.36 0.76
P4 0.84 0.76
P5 0.20 0.52
P6 0.44 0.52
P7 0.76 0.52
P8 1.00 0.52
P9 0.60 0.36
P10 0.28 0.20
P11 0.92 0.20
P12 0.60 0.12

Table 7.2: Coordinates of the reference positions, expressed in (m).

The first step of the calibration procedure consists in recording the angles to the three
beacons, for each configuration. The set of angle measurements, denoted A, contains n
elements

A =
{−→
φ1,
−→
φ2, . . . ,

−→
φn
}
, (7.6)

where each element is a triplet of the measured angles5 to the beacons

−→
φk =

(
φ1
k, φ

2
k, φ

3
k

)
. (7.7)

From these angle measurements and the manual measurements of the beacons coordinates,
the estimated positions are computed as follows(

X̂k, Ŷk
)

= T (
−→
φk, B), (7.8)

where T (
−→
φk, B) denotes a three object triangulation algorithm, which computes the robot

position from three angles and the beacon positions. In our experiments, we use our algorithm
ToTal. Also, one can compute the sensor/robot orientation by using any beacon i and its
corresponding angle, once the robot position is known (see Section 6.3.5)

Ôk = atan2(Y B
i − Ŷk, XB

i − X̂k)− φik. (7.9)

In our experiments, we use the beacon i = 1, but this choice is arbitrary (we discuss this
choice later). Now that the calibration setup has been presented, we define the different error
measures used later in the chapter. The position RMS error is defined as

perrRMS =

√√√√ 1
n

n∑
k=1

[(
XP
k − X̂k

)2
+
(
Y P
k − Ŷk

)2
]
, (7.10)

5Indeed, each angle is computed as the mean of 100 angle measurements, in order to decrease the noise due
to the variance, and to concentrate on the biases. In other words, it means that each pose is maintained for a
duration of 10 s.
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and the orientation RMS error is defined as6

oerrRMS =

√√√√ 1
n

n∑
k=1

(
Ok − Ôk

)2
. (7.11)

But, as we are interested in improving the results for both the position and the orientation, we
need to define an additional error measure, which depends on both errors. The configuration
RMS error is defined as

errRMS =

√√√√ 1
n

n∑
k=1

[(
XP
k − X̂k

)2
+
(
Y P
k − Ŷk

)2
+
(
η
(
Ok − Ôk

))2
]
, (7.12)

and is the error measure we want to minimize in our calibration method. In order to be
consistent with respect to the units, we have introduced a coefficient η. Moreover, this
coefficient allows to weight differently the position and orientation errors (this will be discussed
later). For now, this coefficient is set to η = 1m/rad.

The results obtained with the raw measurements and the a priori beacons positions (i.e.
without calibration) are presented in Table 7.5 on page 119, line 1. It shows a position RMS
error equal to 8.7mm and an orientation RMS error equal to 0.43 deg. In this chapter, we
propose a complete calibration procedure in order to improve the localization results. In the
next sections, we detail each separate correction and, in Section 7.3.5, we present our final
calibration method.

7.3.2 Power bias correction

The first correction we propose follows the conclusions of Section 5.7. We have shown that
the measured angles depend on the angular window (or received power). This is illustrated
in Figure 5.6 on page 77. This phenomenon has an effect of applying a non constant bias
to the angles, causing localization errors. In other words, it means that if we move along a
radius starting from a beacon (while keeping the orientation constant), the measured angles
slightly change. This is illustrated in Figure 7.3. From a theoretical point of view, along the
beacon to the sensor line, the angles are identical

φ1 = φ2, (7.13)

whereas, in a practical situation, the sensor measures different angles

φ̂1 6= φ̂2. (7.14)

A first solution to tackle this problem consists in fitting a curve to the measures of Figure 5.6
on page 77 (that is our first attempt to measure the power bias), and use this curve as a
correction function. Unfortunately, this curve does not cover the whole range of angular
windows. As explained in Section 5.7, this curve has been obtained by modifying the emitted
power, for a constant distance, in order to modify the angular window. But, the current

6Note that the difference
(
Ok − Ôk

)
between the expected and computed orientations in equations (7.11)

and (7.12) has to be normalized to fit in the [−π, π) range, to avoid huge artificial errors.
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θ

Bi θ

φ2

φ1

Figure 7.3: Illustration of the “power bias” experiment. Bi is a beacon. The robot is rep-
resented by a circle, and θ is the robot orientation. When the robot moves along a radius
starting from a beacon (while keeping the orientation constant), we should have φ1 = φ2.
But, in a real situation, these angles are slightly different.

hardware of the beacons does not allow to cover the full range of angular windows7. So, we
have carried on with the same experiment with two additional distances, in order to cover
the full range. The results are presented in Figure 7.4. But, as a consequence of the physical
displacement of the turret during the experiment, we have lost the angle reference, and the
curves are not connected together. For their representation on the graphic, we have centered
each curve around zero. Different attempts have been made to merge these curves into one
global curve, but the results were not effective (the correction function obtained by this
method did not improve the localization results). Anyway, these results are valuable, as they
indicate how the bias evolves with the angular window. From the graphic, one can observe
that the bias decreases with the angular window in the lower range, then it slightly increases
with the angular window in the middle range, and finally, it decreases again with the angular
window in the higher range. So, we tried another method, as explained hereafter. Instead of
using the results from a static experiment (as in Section 5.7), we chose to use the measures of
our calibration setup directly. Note that, in our calibration procedure, we have also recorded
the angular windows associated to each angle. The set of angular windows is denotedW, and
contains also n elements

W = {−→w1,
−→w2, . . . ,

−→wn} , (7.15)

where each element is the triplet of angular windows for each measured angles

−→wk =
(
w1
k, w

2
k, w

3
k

)
. (7.16)

Indeed, the different reference positions are located at various distances from the three bea-
cons, and it appears that the measures contain enough values of the angular window to cover
its whole range. So, we propose to use our calibration setup to find the bias correction func-
tion that affects the angles. We suppose that an angle φreal is affected by a bias, which is a
function fcorr1(w) of its associated angular window w

7Indeed, the hardware has changed over the years since it was in constant evolution. It appears that the
current sensor has a better SNR than the one used for the first bias measurements. One of the consequences
is that the angular window evolves over a bigger range that the previous versions, as well as the bias.
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Figure 7.4: Variation of the mean beacon angular position with respect to the angular window,
for three different ranges of angular windows. Each curve is obtained by modifying the
emitted power of a beacon, for three different distances. To ease the comparison, each curve
is centered around zero, as the angle reference has been lost during the physical displacement
of the sensor.

φbiased = φreal + fcorr1(w). (7.17)
The goal is to find an approximation of this function f̂corr1(w), in order to correct the angle,
and to reduce the bias

φcorr1 = φbiased − f̂corr1(w). (7.18)
The evolution of the bias in function of the angular window (see Figure 7.4) would suggest
to approximate this function by a third order polynomial

f̂corr1(w) = aw3 + bw2 + cw + d, (7.19)

where the coefficients {a, b, c, d} are determined by minimizing the configuration RMS error
(equation (7.12))

{a, b, c, d} = arg min (errRMS) . (7.20)
We used the Nelder-Mead Simplex method for the minimization, with starting coefficients
equal to zero. Of course, the angles of equations (7.8) and (7.9) have been corrected according
to equations (7.18) and (7.19)8. The correction function is represented in Figure 7.5. The

8Note that the beacon angles, which are computed as a function of two angles (the algebraic mean), are
corrected by a value, which is a function of these same angles (their difference). Indeed, it is difficult to proceed
differently in our case, except if we use different datasets. So, we focus on the resubstitution error, that is the
evaluation of the model in the same dataset. In order to compute the generalization error, we need to evaluate
the model in another dataset. However, this technique is generally used for more complex systems with lots of
variables (like machine learning), to prevent the over fitting of the data. In our case, it is not necessary since
the model is quite simple, and the generalization is validated visually by moving the sensor in other poses.
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Figure 7.5: Power bias correction function applied to the angles, with respect to the angular
window (a = −89.93, b = 36.64, c = −4.93, d = 0.22).

global shape of this function seems to corresponds to our observations. The results obtained
with this correction function are presented in Table 7.5, line 2. Now, we obtain a position
RMS error equal to 6.7mm (improvement by 23 %) and an orientation RMS error equal to
0.33 deg (improvement by 23 %).

7.3.3 Rotation bias correction

This correction has been suggested by Loevsky and Shimshoni [53], and can be applied to any
rotating sensor. They suggest that a measured angle is affected by a non constant bias, which
depends on the orientation on the sensor. In other words, it means that if we turn around the
rotation center of the sensor, the difference between the measured angles are slightly different
than the real rotation angle. This is illustrated in Figure 7.6. From a theoretical point of
view, we should have

φ1 = φ2 + (θ2 − θ1), (7.21)

whereas, in a practical situation, we measure angles such that

φ̂1 6= φ̂2 + (θ2 − θ1). (7.22)

This is due to the sensor mechanics (e.g. non uniform distribution of the steps/magnets in the
stepper motor9), optics (e.g. non uniform refraction of the acrylic protection of the turret),
etc. This phenomenon can be observed in an experiment where we apply a complete rotation
of the sensor/robot at the same reference position. For this particular experiment, we used

9The datasheet of the stepper motor (MY5602/MY7001) reports a maximum angular deviation equal to
5 % of one step, that is 0.09 deg. This deviation is not negligible as it is almost equal to φ0, the OFF angle.
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θ1

θ2

φ1

φ2

Bi

Figure 7.6: Illustration of the “rotation bias” experiment. Bi is a beacon. The robot is
represented by a circle, and θi is the robot orientation. When the robot rotates around its
center, we should have φ1 = φ2 + (θ2 − θ1). But, in a real situation, these two values are
slightly different.

the reference position P9 and a modified set of 24 reference orientations

Oi ∈
{
k
π

12 | k = 0, . . . , 23
}
. (7.23)

The results are displayed in Figure 7.7, which is the area around the reference position (rep-
resented by a cross). The computed positions are represented by stars, and are scattered
around the reference position. The position RMS error is equal to 1.8mm. This experiment
suggests that the measured angles are not independent of the sensor rotation. To address this
problem, we also suppose that an angle φreal is affected by a bias, represented by the function
fcorr2(φ). The goal is to find an approximation of this function f̂corr2, in order to correct the
angle, and to reduce the bias

φcorr2 = φbiased − f̂corr2(φbiased). (7.24)

As this function has to be periodic with respect to the angle, Loevsky and Shimshoni [53]
suggest to approximate it by its Fourier coefficients, up to the second order:

f̂corr2(φ) = A cos(φ) +B sin(φ) + C cos(2φ) +D sin(2φ) + E. (7.25)

As the last coefficient E adds a constant value to the angles, we have to set its value to zero:
E = 0. If not, it would change the orientation by adding a constant value to the angles, and
this effect has already been addressed by the coefficient d of equation (7.19). In addition to
this correction function proposed by Loevsky and Shimshoni, we add another refinement. A
closer look into the sensor structure shows that its real rotation center is not exactly located
at the center of the structure. We expect a difference of at most 1mm in BeAMS, due to the
mounting holes and fixing screws. Indeed, the problem is more general and can be applied
to any robot equipped with this kind of sensor. From our experience, it is always difficult
to measure the real position of the sensor on the robot, and this introduces localization
inaccuracies. If the real rotation center of the sensor is different from the rotation center of
the structure/robot, the computed positions will evolve over a circumference centered at the
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Figure 7.7: Area around the reference position used for the rotation experiment. The graph
has a square aspect ratio (the side is equal to 6mm, and one graduation is equal to 1mm).
The reference position is represented by a cross and is located at the center of the graph. The
positions computed before calibration are represented by stars, and the positions computed
after calibration are represented by circles.
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Figure 7.8: Scheme of the real position of the sensor (denoted by T ) with respect to the struc-
ture/robot (denoted by R). The orientation of the structure/robot is denoted by θ. During
a rotation of the structure/robot, the position of the sensor evolves over a circumference.
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Figure 7.9: Rotation bias correction function applied to the angles (A = 8.79 × 10−4, B =
−1.01× 10−3, C = −1.03× 10−3, D = −1.74× 10−3).

rotation center of the structure/robot. The situation is depicted in Figure 7.8. R denotes
the structure/robot, T denotes the sensor, θ denotes the orientation of the structure/robot.
The local reference frame of the structure/robot is denoted by (x′, y′), and (∆x, ∆y) is the
position of the sensor in this local frame. Therefore, the position of the sensor (XT , YT ) in
the reference frame (x, y) is given by(

XT

YT

)
=
(
XR

YR

)
+
(

cos θ − sin θ
sin θ cos θ

)(
∆x
∆y

)
. (7.26)

Again, the coefficients {A, B, C, D} and {∆x, ∆y} are determined by minimizing the con-
figuration RMS error (7.12)

{A, B, C, D, ∆x, ∆y} = arg min (errRMS) . (7.27)

We used the Nelder-Mead Simplex method for the minimization, with starting coefficients
equal to zero10. But this time, the angles of equations (7.8) and (7.9) are corrected according
to equation (7.25), and the positions are corrected according to equation (7.26). The correc-
tion function is represented in Figure 7.9, and the values found for (∆x, ∆y) are equal to
(−1, −1.1) mm. The new position RMS error is equal to 1mm (improvement by 44 %). The
positions computed after calibration are represented by circles in Figure 7.7.

7.3.4 Beacon positions calibration

The last source of errors in the “localization system components” is due to the inaccuracies in
the beacons coordinates, which are generally manually measured. And, as these coordinates

10Whereas it is difficult to give other starting values for {A, B, C, D}, it is possible to provide manual
measurements of (∆x, ∆y) as a first guess.
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Figure 7.10: Left-hand side: simulation results giving the position errors for noisy beacons
coordinates (σ = 1 cm). Right-hand side: simulation results giving the position errors for
noisy angle measurements (σ = 0.1 deg). The beacon positions are represented by black and
white dot patterns. Position errors are expressed in meters. Both graphs are displayed by
using an histogram equalization in order to enhance the visual representation and to ease the
interpretation.

are direct inputs of the triangulation algorithm, like the angles, it generates localization
errors. In general, we study how errors on angles affect the position or the orientation (see
Section 6.4.1). However, it is also interesting to observe how errors in the beacons coordinates
propagate through the triangulation algorithm. To our knowledge, this “beacon sensitivity
analysis” has been done only once by Easton and Cameron [28], in addition to the traditional
“angle sensitivity analysis”. So, in order to complete our “angle sensitivity analysis” of Section
6.4.1, we have performed simulations in which the beacons coordinates are affected by a
zero mean Gaussian noise with a standard deviation equal to 1 cm. The simulation setup
is identical as the one used in Section 6.4.1. The results are presented in Figure 7.10 (left-
hand). To ease the comparison with the previous results of Section 6.4.1, we added one “angle
sensitivity analysis” (for σ = 0.1 deg), in the right-hand side. It is interesting to note that,
despite small details, both graphs are similar, especially in the surrounding of the critical
circumference. In other words, it means that a constant error in the beacon position is not
traduced by a constant error in the computed position. Intuitively, an error in one beacon
position can be converted to an equivalent error on the measured angle. The conclusion
of that study is that it is also important to calibrate the beacons coordinates. Here, the
method is straightforward since we have to find the beacon coordinates that minimize the
configuration RMS error. The new set B of beacon coordinates is determined as

B = arg min (errRMS) . (7.28)

Again, we use the Nelder-Mead Simplex method in our experiments. The starting values
of the method are the manual measurements of the beacon coordinates, which are the best
guesses we can provide. The values of the new coordinates are presented in Table 7.3. The
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before calibration after calibration
XB Y B XB Y B

B1 1.151 0.049 1.1504 0.0449
B2 0.600 0.907 0.6045 0.9068
B3 0.049 0.049 0.0452 0.0515

Table 7.3: Coordinates of the beacons, expressed in (m), before and after calibration.

results obtained with these new coordinates are presented in Table 7.5, line 5. We obtain a
position RMS error equal to 6.8mm (improvement by 22 %) and an orientation RMS error
equal to 0.40 deg (improvement by 7 %). Note that some coordinates are corrected up to
4mm, which is a little bit higher than the expected accuracy of our measurements (1mm).
However, the corrections are not excessive, and the results are improved. So, it is difficult to
draw conclusions about these corrections.

7.3.5 Global calibration method

Now that each separate improvement has been presented, we explain our global calibration
method. Obviously, the idea is to combine the different methods. Each single method seems
to improve the accuracy, but this improvement is limited by the remaining sources of errors.
So it seems intuitive that combining these methods is the right solution to reach accurate
results. But the question is: how do we have to combine these methods?

As explained by Loevsky and Shimshoni [53], it is difficult to elaborate a stable optimiza-
tion method to a problem with multiple variables, especially if the error function has many
local minima around the optimal solution. To tackle this problem, a useful technique consists
in separating the problem into sub-problems, apply the optimization procedure iteratively to
each problem, and then perform the global optimization with the solutions of the previous
step as the starting point. As explained in the previous sections, our problem can be divided
into three sub-problems. As a consequence, there are many ways (actually 6) to arrange the
sub-problems into the iterative loop. To the contrary of the solution proposed by Loevsky
and Shimshoni, we think that it is better to begin with the beacon coordinates calibration,
because the errors caused by bad beacons coordinates can be large, as soon as we move away
from the circle center. Then, by analyzing the corrections due to the power and rotation bias,
it appears that the range of corrections due to the power bias is larger (about ten times) than
the one for the rotation bias. So, we chose the power bias calibration as the next calibration
method, followed by the rotation bias calibration. The complete calibration procedure is
presented in Algorithm 7.1.

In our experiment, we set the convergence threshold to a value t = 0.1 to obtain good
values for the starting point of the global optimization. Also, the iterative loop is executed
one to two times, depending on the starting parameters. The power bias correction function is
displayed in Figure 7.11. The rotation bias correction function is displayed in Figure 7.12, and
the value found for (∆x, ∆y) is equal to (−0.98, −0.11) mm. The new beacons coordinates
are presented in Table 7.4 (right-hand side). Again, some coordinates (the same as earlier)
are corrected up to 4mm, which is consistent with the previous experiment. Since the body of
the LED measures 5mm, it is possible that our manual measurements of the actual emitting
part were not so accurate after all. The final position RMS error is equal to 2.16mm and
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Algorithm 7.1 Global calibration method.
1. Initialize the beacons coordinates B with manual measurements, and all the other pa-

rameters {a, b, c, d, A, B, C, D, ∆x, ∆y} to zero, if no guess can be provided.

2. do

3. Compute the optimal set of beacons coordinates B as described in Section 7.3.4, by
using the current values of the other parameters {a, b, c, d, A, B, C, D, ∆x, ∆y}.
The associated RMS error is denoted eb.

4. Compute the optimal parameters {a, b, c, d} as described in Section 7.3.2, by using
the current values of the other parameters {B, A, B, C, D, ∆x, ∆y}.

5. Compute the optimal parameters {A, B, C, D, ∆x, ∆y} as described in Section
7.3.3, by using the current values of the other parameters {B, a, b, c, d}. The
associated RMS error is denoted er.

6. until eb−ereb
< t

7. Run the global optimization procedure. The starting point is composed of the different
parameters computed in the iterative loop

{B, a, b, c, d, A, B, C, D, ∆x, ∆y} = arg min (errRMS) (7.29)
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Figure 7.11: Power bias correction function applied to the angles, with respect to the angular
window (a = −90.46, b = 35.83, c = −4.59, d = 0.19), after the global calibration.
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Figure 7.12: Rotation bias correction function applied to the angles (A = −6.69 × 10−4,
B = −1.77× 10−3, C = −1.09× 10−3, D = −1.89× 10−3), after the global calibration.

before calibration after calibration
XB Y B XB Y B

B1 1.151 0.049 1.1499 0.0455
B2 0.600 0.907 0.6048 0.9076
B3 0.049 0.049 0.0455 0.0516

Table 7.4: Coordinates of the beacons, expressed in (m), before and after the global calibra-
tion.
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Calibration method Position RMS error (mm) Orientation RMS error (deg)
1 No calibration 8.75 0.4297
2 Power bias only 6.67 0.3316
3 Rotation bias only 6.21 0.3157
4 Rotation bias only1 6.27 0.3175
5 Beacons only 6.78 0.3984
6 Power bias + beacons 6.40 0.3345
7 Power bias + rotation bias 2.95 0.1741
8 Rotation bias + beacons 2.79 0.2715
9 Global calibration1 2.49 0.1788
10 Global calibration2 2.34 0.1756
11 Global calibration 2.16 0.1806

1 Without turret translation calibration (i.e. ∆x and ∆y are forced to zero).
2 Without final combined optimization.

Table 7.5: Values of the position and orientation RMS errors for various combinations of
calibration methods.

the orientation RMS error is equal to 0.18 deg (see Table 7.5, line 11). This represents an
improvement of 75 % and 58 % in the position and orientation RMS error respectively, with
respect to the uncalibrated setup. Finally, we have represented the new computed positions
in Figures 7.13 and 7.14, which are zooms into the area around each reference position
(represented by a cross). The new computed positions are represented by circles, and the
positions before calibration are represented by stars. One can see that the new positions
are closer to their corresponding reference point, than the uncalibrated positions, which are
sometimes outside the graph (error > 7.5mm).

7.3.6 Discussion

In addition to our global calibration method, we have tried other combinations and arrange-
ments of the different methods. First, we have tried each method separately, as explained
in each corresponding section. The results have already been presented in Table 7.5, lines 2
to 5. For the rotation bias experiment, we have also tried to disable the turret translation
correction (line 4), by forcing ∆x and ∆y to zero. As expected, the position RMS error is
higher, but the difference is small. We discuss this effect later. Alone, the power bias and
rotation bias corrections lead to better improvements than the beacons coordinates calibra-
tion. In our case, this can be explained because the manual measurements of the beacons
coordinates are quite accurate.

Also, we tried combinations of two of the three calibration methods. It appears that the
rotation bias correction has an important effect on the final result, since both combinations
including this correction lead to RMS errors close to the optimal solution (lines 7 and 8).
From the orientation point of view, the best dual combination is “power and rotation bias
correction”, since both methods correct the angles.

Then, we tried other arrangements in the iterative loop of our global calibration method,
with all methods activated. In particular we tried the version of Loevsky and Shimshoni,
in which the beacon calibration appears after the hardware calibration. It appears that the
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Figure 7.13: Areas around different reference positions of the test grid. All graphs have the
same square aspect ratio (each side is equal to 1.5 cm, and one graduation is equal to 2mm).
Each reference position is represented by a cross located at the center of each graph. The
positions computed before calibration are represented by stars, and the positions computed
after calibration are represented by circles. Note that some stars (positions computed before
calibration) may be outside the visible area (error > 7.5mm).
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Figure 7.14: Areas around different reference positions of the test grid. All graphs have the
same square aspect ratio (each side is equal to 1.5 cm, and one graduation is equal to 2mm).
Each reference position is represented by a cross located at the center of each graph. The
positions computed before calibration are represented by stars, and the positions computed
after calibration are represented by circles. Note that some stars (positions computed before
calibration) may be outside the visible area (error > 7.5mm).
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method we propose seems more stable with respect to the starting point, especially for the
beacons coordinates. This can be explained because we have three beacons only and, as a
consequence, the results are more sensitive to small changes in the beacons coordinates. This
contrasts with multiangulation algorithms which are more robust to variations in the beacons
positions, since the problem is overdetermined.

We have also tried the global calibration method without the final global optimization
(line 10). In our experiment, it appears that the global optimization adds a gain of 7.7 % in
the position RMS error, while the orientation error remains almost unchanged. Finally, we
also tried to disable the turret translation correction in the global calibration method (line
9). Results show that this correction adds a gain of 13.3 % in the position RMS error, while
the orientation error remains almost unchanged. The gain added by this correction is far
more important in this case than the one observed between line 3 and 4 (0.9 %). Again, this
can be explained because, in our experiment, the correction added by the turret translation
is negligible against the corrections added by the power bias and the beacons calibration. In
other words, it means that all corrections have to be activated in order to observe the impact
of the turret translation correction.

Note that we have also tried different values for the coefficient η of the error measure
(see equation (7.12)). As explained earlier, this expression mixes the notion of distance and
angle in the same error function. This could seem inappropriate for a matter of units, but it is
difficult to proceed differently since we want to improve both the position and the orientation.
We have tried values ranging from 0.1m/rad to 10m/rad. It appears that there are almost no
differences in the final results (less than 0.1 %), and therefore, we kept using η = 1m/rad.
Also, we have tried to use the other beacons to compute the orientation (see equation (7.9)).
Again, it appears that the results are totally similar (differences less than 0.1 %). Therefore,
we kept using beacon 1 to compute the orientation.

It is important to note that our method is different in many ways to that of Loevsky and
Shimshoni. First, the hardware is different. In particular, our hardware allows the measure
of an angular window, which is an image of the received power. This particularity allowed us
to correct the bias due to the received power. Note that this could be applied to any angle
measurement system, which has access to the received power. Then, our method is fitted
for three beacons, and as a consequence, the error measures and minimization criteria are
different. The disadvantage is that we need ground truth references in order to provide an
error measure. Also, we changed the order of the methods in the iterative loop because it was
more stable in our case. Finally, we added the refinement of the turret translation correction,
which adds non negligible gain in the position RMS error.

In general, this kind of method requires lots of intuition about the underlying problem.
This is necessary to establish an adequate model of a complete positioning system. The
method then requires the help of an operator in order to check the optimized parameters. For
example, the optimization process could fail if there is not enough data (over fitting of the
data). So, it is important to check the final parameters. For example, we expect that the new
beacon coordinates are close to the manual measurements (a few millimeters in our setup).
For the angles, we expect power bias corrections of a few degrees maximum, and the rotation
bias a few tenths of degree maximum. A hint about the good use of the global optimization
step is that the final parameters should be close to the ones found in each separate step.
Therefore, we recommend to try each method separately and compare the individual results
to the global one.

Note also that some elements of the hardware may be calibrated separately. For example,
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in the Eurobot contest, the beacons are frequently mounted and unmounted for each game.
As a result, it is difficult to associate accurate coordinates to the beacons. Moreover, it is
not sure that we have the time to calibrate the beacon positions before each game. However,
the other components of the model (i.e. the angle correction functions and the position of
the turret) are worth to be calibrated, as it still adds a non negligible gain in the position
accuracy (see Table 7.5, line 7). Also, note that, except for the beacon coordinates, the other
calibration parameters are specific to one sensor, as it relates to its particular hardware. In
other words, the power bias and rotation bias corrections, as well as the real turret position
are valid for the prototype we used in our experiments.

Finally, some questions remain opened. In particular, the number of reference positions
and orientations, and their positions. In their paper, Loevsky and Shimshoni do not answer
these questions, and this remains difficult because it depends on many parameters including
the moving area, the number of beacons, and their arrangement. It also depends on the
calibration method. For example, one could give more importance to the position than the
orientation. In our case, with our hardware and number of beacons, and in our calibration
setup, we observed these elements. The reference positions and orientations have to be chosen
such that they cover the whole range of angular windows (for the power bias correction) and
the whole range of absolute angle measurements (for the rotation bias correction). Also, the
reference positions have to be uniformly distributed over the moving area, which is consistent
with the previous remark.

7.4 Conclusions

Many sources of errors (biases) are unavoidable in a real world situation and a good position-
ing system should deal with these errors. In this chapter, we propose a complete calibration
method, which is mandatory in order to achieve good positioning results. Indeed, the mea-
sured angles are corrupted by many sources of errors, and the beacons coordinates may be
inaccurate, leading to biased computed positions. We identify four possible causes for the
angles to be corrupted. These are: (1) the received power bias, (2) the rotation bias, (3)
the real turret position with respect to the robot, and (4) the real beacons coordinates with
respect to manual measurements.

Based on these observations, we propose to apply some corrections to the system, that
is, the two correction functions of the angles, the real position of the turret, and the real
positions of the beacons. A calibration setup is designed, in order to measure the angles
required by the calibration procedure, and to validate the correction functions. Then, we
describe a complete calibration procedure in order to find the parameters of the correction
functions. This procedure is based on the minimization of an RMS error measure.

There is almost no work about the calibration of such positioning systems, except the one
of Loevsky and Shimshoni. It appears that their method cannot be applied to our system,
because their method is designed for more than three beacons. So, we have extended their
work to be applicable to the case of three beacons, with some variations and improvements.
Note that the disadvantage of using three beacons is that we need some ground truth refer-
ences, which can be time consuming. One of the improvements of our method is the “turret
translation correction”. In our setup, this refinement results in an additional reduction of
13.3 % in the position RMS error.

We explain that this procedure requires to avoid the over fitting of the data, and we
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elaborate on it. Finally, we discuss two important choices of the calibration procedure. These
are the number of reference positions and their locations on the moving area. From our
experience, we would address these concerns as follows: the number of reference positions and
their locations should be such that the range of variation of the different variables involved
in the model are fully covered. In general, this should be obtained if the reference positions
are well distributed over the moving area.

Finally, it should be noted that the improvements obtained for the RMS errors (75 %
and 58 %, for the position and orientation, respectively) are valid for this calibration setup,
for these reference positions and orientations. In other words, these values should not be
understood as the final performance of our calibration method. What is important is not
the absolute values of the RMS errors, but the improvements made in the underlying angle
measurements, that lead to improved localization results. In our case, the angular RMS error
corresponding to the position RMS error for the uncalibrated case (8.7mm) is equal to about
0.4 deg. In the case of the calibrated case (2.16mm), the angular RMS error is equal to about
0.27 deg. This represents an improvement of 33 % in the angular RMS error. These values
have been derived during the calibration procedure, by converting the ground truth poses into
ground truth angles. Therefore, the final value 0.27 deg should be considered as the current
angular RMS error of BeAMS, when the system is calibrated. Note that this value is different,
but close to the error measure established in Chapter 5, during the performance evaluation
of BeAMS. As explained earlier, the hardware system evolved continuously over the years.
Moreover, we did not take into account the rotation bias, neither the real turret position in
our first analysis. However, the two values are similar when the system is calibrated, and it
does not change the conclusions of Chapter 5. Even for the uncalibrated hardware, BeAMS
has a better performance than other prototypes and, when the system is calibrated, BeAMS
is close to state of the art commercial systems (see Table 5.2 on page 77).



Chapter 8

Conclusions

Mobile robots are used increasingly in various fields, especially to transport materials in
workstations, manufacturing industry, warehouses, harbors, airports, etc. In order to be
totally autonomous, navigate, avoid obstacles, and execute their actions correctly, mobile
robots need some form of positioning. Therefore, positioning is a crucial issue and an essential
component in mobile robot applications. Relative positioning based on odometry is accurate
for small offsets, but can lead to an increasing drift resulting from the unbounded accumulation
of errors over time (due to the integration step, uncertainty about the wheelbase, wheel
slippage, etc). Therefore, an global positioning system is required to recalibrate the position of
the robot periodically. Because of the availability of angle measurement systems, triangulation
has emerged as a widely used, robust, accurate, and flexible absolute positioning technique
for mobile robots.

In this thesis, we present an original angle measurement system, as well as original methods
and algorithms, which are parts of an absolute robot positioning system in the 2D plane.
These parts are summarized hereafter.

Summary

In Chapter 2, we present our original angle measurement system, named BeAMS, that can be
used by any angle-based positioning algorithm. The hardware of BeAMS consists of a sensor
located on the robot, and several beacons emitting infrared light in a common horizontal
plane. BeAMS has an acquisition rate of 10Hz, and the entire sensor is contained in a
(8× 8× 6) cm3 volume. Also, BeAMS innovates on many points. The mechanical part of the
system is kept as simple as possible (motor only, no gear system or belt) due to the hollow
shaft, and it does not need an optical encoder for the motor control or angle measurement.
These features tend to reduce considerably the volume of BeAMS. A simple infrared receiver
is the main sensor for the angle measurements, and the beacons are common infrared LEDs
emitting an On-Off Keying signal containing the beacon ID. Furthermore, the system does not
require an additional synchronization channel between the beacons and the robot. Therefore,
the same setup of beacons can be naturally used by multiple robots.

Then, in Chapters 3 and 4, we provide a theoretical framework to analyze the errors on
the measured angles, induced by the use of an On-Off Keying modulation mechanism. In
particular, we establish the upper bound of the variance affecting the angle measurements.
Then, we complement the previous result by going into further details related to the code
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statistics of modulated signals in general, with an emphasis on BeAMS, and establish how
the variance evolves exactly as a function of the angular window. The advantage of having a
model is that we can understand and predict the use of other codes in the system. In order
to validate the upper bound of the variance and its evolution with respect to the angular
window, we perform simulations, that match the theory.

In Chapter 5, we also provide simulated and experimental results for the variance of the
beacon angle estimator. It appears that the simulations are coherent with the theory, but
not entirely with the experimental results. Experimental results enlighten that the natural
variance of the system is not independent on the variance added by the codes, because of the
Automatic Gain Control (AGC) loop of the receiver, which is responsible for a small mismatch
between the experimental and simulated results. Also, we enlighten another particularity of
the receiver, called the “AND hypothesis”. Indeed, it is not sure that a short leading or tailing
burst (shorter than a bit) could trigger the receiver. This has the effect of virtually increasing
the OFF period by a quantity equal to the minimum burst duration required to trigger the
receiver. If we take into account the natural noise, as well as the “AND hypothesis”, it appears
that the simulations are closer to the experiments.

After the description of BeAMS and its performance analysis, we present our original
three object triangulation algorithm in Chapter 6. Our algorithm, named ToTal, is based on
the elegant notion of power center of three circles. ToTal natively works in the whole plane
(except when the beacons and the robot are concyclic or collinear), and for any beacon order-
ing. Furthermore, it only uses basic arithmetic computations and two cot(.) computations.
Comprehensive benchmarks show that our algorithm is faster than comparable algorithms,
and simpler in terms of the number of operations. In addition, we propose a unique reliability
measure of the triangulation result in the whole plane, and we establish by simulations that
this reliability measure is a natural and adequate criterion to estimate the positioning error.
This reliability measure can be used to identify the pathological cases (critical circumference),
or as a validation gate in data fusion algorithms based on triangulation. For all these reasons,
ToTal is a fast, flexible, and reliable three object triangulation algorithm. Such an algorithm
is an asset for many triangulation issues related to the performance or optimization, such as
error simulations, beacon placement or beacon position optimization algorithms. A fast and
reliable algorithm is also an asset to initialize a more complex positioning algorithm, that
internally relies on a Kalman filter for instance.

Even with the most carefully designed hardware, experiments show that it is not sufficient
to achieve accurate positioning results. Indeed, many sources of biases are unavoidable in a
real situation and a good positioning system should deal with them. In Chapter 7, we identify
four possible causes of biases, and we propose a complete calibration procedure in order to
improve the positioning results. The biases are: (1) the received power bias, (2) the rotation
bias, (3) the real turret position with respect to the robot, and (4) the real beacons coordinates
with respect to manual measurements. We develop a new calibration method that is designed
for systems using three beacons, and which is based on the minimization of an RMS error,
derived from ground truth references.

Contributions
In the following, we enlighten the main contributions of each part:

BeAMS: our angle measurement sensor introduces a new mechanism to measure angles: it
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detects a beacon when it enters and leaves an angular window. This contrasts with
systems that measure angles, based on the maximum received power. Our mechanism
allows the sensor to analyze the temporal evolution of the received signal inside the
angular window. In our case, this feature is used to code the beacon ID, but it could
be used to code other kinds of information (like the beacon coordinates for example).

Theoretical framework: we provide the upper bound of the variance induced by the use of
an On-Off Keying modulation mechanism. This is a general result, as long as the OFF
periods of the codes all have the same duration. We also establish how the variance
evolves exactly in function of the angular window. Although this study is carried on
to understand and improve BeAMS, the theoretical framework is larger than that of
BeAMS. It is applicable to any measurement system that estimates a value by taking
the mean of a previous event and a later event, based on the reception of an On-Off
Keying modulated signal. The advantage of having a model is that we can understand
and predict the use of other codes in the system.

ToTal: our three object triangulation algorithm is faster than comparable algorithms, and
simpler in terms of the number of operations. We also compare the number of basic
arithmetic computations, squared roots, and trigonometric functions used for eleven
known triangulation algorithms. In addition, we propose a unique reliability measure
of the triangulation result in the whole plane, and we establish by simulations that
this reliability measure is a natural and adequate criterion to estimate the positioning
error. To our knowledge, none of the algorithms of the same family does provide such
a measure. Finally, the C source code of all algorithms, including ToTal, as well as
the code for the error analysis and benchmarks, are made available to the scientific
community1.

Calibration method: we extend the work of Loevsky and Shimshoni [53] to systems based
on three beacons. To our knowledge, such a calibration method has never been proposed.
Also, we add two refinements to their method. The first one is the correction due to
the real sensor location on the robot. The second one is the correction of the bias due
to the variation of the received power (“power bias”). This correction is possible in the
case of BeAMS, thanks to the new mechanism to measure angles based on an angular
window, which is related to the received power. However, this correction can be applied
to any system that can measure the received power.

System deployment

Our motivation for this work was to create a new system optimized for the Eurobot contest,
which imposes many constraints. As a consequence, it was impossible to use a commercial
sensor, and we have created our own system. However, BeAMS can be used in any other
mobile robot applications based on angle measurements. In particular, we explain how to
increase the covered area and the number of codes (i.e. beacons), which are the main require-
ments for a larger system deployment. Moreover, note that BeAMS identifies the beacons,
which is an asset to (re)initialize the position unequivocally (wake-up or kidnapped issues),

1http://www.ulg.ac.be/telecom/triangulation
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or to feed a data fusion algorithm without requiring a data association step. Also, multi-
ple robots can use the same setup of beacons, without disturbing each other, and without
requiring a modification of the system.

Finally, note that we have concentrated on methods and algorithms based on three bea-
cons, because the Eurobot contest allows a maximum of three beacons. However, it is
important to note that BeAMS can measure angles for any number of beacons, and it is not
limited to methods nor algorithms based on three beacons.

Performance analysis

In the following, we discuss the performance analysis of angle measurement systems in gen-
eral. Then, we present the performance of BeAMS, and explain how we have carried out its
evaluation.

All along this manuscript, we point out that an angle measurement system should not be
characterized through a positioning algorithm, because it depends on the relative configura-
tion of the robot with respect to the beacons, and the number of beacons. In practice however,
angle measurement systems are developed almost exclusively for positioning, as the process of
triangulation requires angle measurements. This explains why most authors only evaluate po-
sitioning algorithms or present complete systems (hardware and software). As a consequence,
it is rare that authors evaluate the performance of the underlying angle measurement system,
and there is a lot of confusion about the evaluation criteria. Indeed, the problem is not to use
a positioning algorithm (or any other method) to evaluate the performance, the problem is to
evaluate an angle measurement system with a distance criterion. Instead, we believe that an
angle measurement system should be characterized only by the error affecting the measured
angles, whatever the method used for the evaluation is. The advantage is that this measure is
not related to any particular setup, and therefore, it eases the comparison between hardware
systems. Moreover, this error measure combined with a simulator, is sufficient to predict
the performance (in terms of distance) of any hardware system, and for any arrangement of
beacons.

In our case, we tried to evaluate the variance and the bias affecting the angle measure-
ments, because we believe that these two values are sufficient to fully characterize the mea-
surements. But, compared to the ease of measuring the variance, it is not a simple task to
evaluate the bias. In Chapter 5, we have established a first method to measure the bias,
related to the variation of the received power. The combination of the variance and the bias
was our first try to measure the performance of BeAMS. However, after a deeper study related
to the calibration procedure, it has appeared that the bias related to the received power was
not the sole source of errors. But, as it is not easy to characterize the other sources of er-
rors separately, we decided to evaluate them through our calibration setup and triangulation
algorithm, which involves distance measurements. Therefore, in order to compute an error
measure that does not depend on our particular setup, we derived the underlying angular
RMS error corresponding to the position error observed in our setup. The advantage of this
method is that it takes into account all the possible causes of errors, even those that we do
not identify. In other words, it means that our error model is a simplified version of the
real error process. Also, this evaluation procedure introduces an additional error, due to the
manual placement of the sensor/robot at the different poses. This tends to slightly overes-
timate the real angular RMS error. In our case, this angular RMS error has been evaluated
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Figure 8.1: Scheme of a complete positioning system in the 2D plane, based on angle mea-
surements and odometry, which are merged into an Extended Kalman filter.

to 0.4 deg without calibration, and to 0.27 deg, after the calibration procedure. Even for the
uncalibrated hardware, BeAMS has a better performance than other prototypes found in the
literature and, when the system is calibrated, BeAMS is close to state of the art commercial
systems (performance around 0.1 deg).

Involvement of our work in a complete positioning system
In this thesis, we present components of a complete positioning system for mobile robots in the
2D plane. More precisely, we focus on the description of a new angle measurement system, and
its performance evaluation in static conditions. Indeed, the simple combination of the angle
measurement system with the triangulation algorithm defines a positioning system. However,
the lack of odometry, as well as the low acquisition rate of the angular sensor (compared
to odometry), make this positioning system inadequate in dynamic conditions. Therefore,
in our current implementation of BeAMS in our robots, we use an Extended Kalman filter
(EKF), which merges the odometry with the angle measurements. The scheme of the complete
positioning system is represented in Figure 8.1. In this thesis, we concentrate on each part
of this scheme, except the EKF and the odometry. In other words, our goal is to provide
accurate angle measurements to the EKF, as well as accurate data for the beacons positions
and for the real sensor position with respect to the robot. In the following, we summarize how
each part of our work is involved in the complete positioning system represented in Figure 8.1:

BeAMS: obviously, BeAMS is used as the angle measurement sensor. It can be used in
systems based on angle measurements to any number of beacons.

Theoretical framework and simulator: the theory about the code statistics has been
used to understand and improve BeAMS. In particular, the upper bound of the variance
has been used to build the beacon codes, in conjunction with the simulator. The
theoretical framework and the simulator are useful tools to predict the use of other
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codes in the system. The exact evolution of the variance with respect to the angular
window should be used to feed the EKF with adequate variance values, but it is not
used in our current implementation.

ToTal: even if it is not used as the main positioning algorithm, a stand alone triangulation
algorithm is useful in many cases. Our triangulation algorithm is used to initialize the
EKF. It is also used as a building block of our calibration method, in order to compute
the error measure necessary for the minimization process. Finally, we use it to analyze
the position error sensitivity in the moving area.

Calibration method: it is used to improve the positioning results. In particular, it com-
putes the parameters of the two correction functions, in order to provide accurate angle
measurements to the EKF. Moreover, it computes the real beacons coordinates, as well
as the real turret position (∆x, ∆y), which are also inputs of the EKF.

Improvements
In our current implementation of BeAMS in the complete positioning system (which relies
on an Extended Kalman filter), we use the best upper bound of the variance all over the
plane. But this practice is far from being optimal. Indeed, since the variance evolves with
the angular window (or indirectly with the position of the robot in the plane), the upper
bound unnecessarily overestimates the real variance. Moreover, our theory establishes how
the variance evolves exactly with respect to the angular window. In order to feed a tracking
system, it would be better to provide the exact variance for each position in the plane, and
for each beacon/code.

We have shown that the performance of BeAMS is mainly limited by the biases affecting
the measurements (a few tenths of degree). In comparison, the maximum standard deviation
encountered in BeAMS has been evaluated to 0.074 deg, which is lower than the error measure
of most similar systems (see Table 5.2 on page 77). The bigger part of the biases is due to
the variation of the received power (power bias), in conjunction with the use of an Automatic
Gain Control (AGC) loop in the receiver, which changes the receiver characteristics at the
entrance and exit of the angular window. But, despite these limitations, we have shown that
good positioning results could be obtained with such a receiver (i.e. with an AGC loop), if
the system is calibrated. All these features make BeAMS a small, low power, flexible, and
tractable solution for robot positioning. BeAMS has now been used successfully during the
Eurobot contest for four years. However, we believe that far better results could be obtained
with the use of a new dedicated receiver. For example, a read access to the AGC, or a direct
control of the gain by the system could help reducing the bias due to the received power.
Another solution is to use a cascaded filtering strategy, instead of an AGC, as proposed by
Roberts et al. [73]. The idea consists in cascading a few fixed gain filters in order to cover
the whole range of variation of the received power, and to select the adequate stage for each
incoming signal. As a consequence, the characteristics at the entrance and exit of the angular
window are similar, which should reduce considerably the power bias.



Appendix A

Theoretical developments related to
the code statistics

A.1 Mean and variance of a random variable whose PDF is
expressed as a weighted sum (mixture) of PDFs

Let X be a random variable with a probability density function (PDF) fX (x)

X ∼ fX (x) . (A.1)

Suppose that fX (x) can be written as a weighted sum (or mixture) of functions fi (x)

fX (x) =
∑
i

ki fi (x) , (A.2)

whose coefficients ki sum up to 1 ∑
i

ki = 1, (A.3)

and that the area under each fi (x) is equal to 1
ˆ +∞

−∞
fi (x) dx = 1, (A.4)

so that we have
ˆ +∞

−∞
fX (x) dx =

ˆ +∞

−∞

∑
i

ki fi (x) dx =
∑
i

ki

ˆ +∞

−∞
fi (x) dx = 1. (A.5)

The existence theorem (see [63, page 73]) states the following.

Theorem A.1. If fi (x) is nonnegative, if its area is equal to 1, if its integral Fi (x) is con-
tinuous from the right, and if, as x increases from −∞ to ∞, Fi (x) increases monotonically
from 0 to 1, then we can define a random variable Xi whose PDF is fi (x)

Xi ∼ fi (x) = fXi (x) . (A.6)
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Then the expectation of X is given by

E {X} =
∑
i

kiE {Xi} (A.7)

and the variance of X is given either by

var {X} =
∑
i

ki
[
var {Xi}+ E {Xi}2

]
− (E {X})2 , (A.8)

or by

var {X} =
∑
i

ki var {Xi}+
∑
i<j

kikj (E {Xi} − E {Xj})2 . (A.9)

Proof. For the mean, we have

E {X} =
ˆ +∞

−∞
xfX (x) dx

=
ˆ +∞

−∞
x
∑
i

ki fXi (x) dx

=
∑
i

ki

ˆ +∞

−∞
xfXi (x) dx

=
∑
i

kiE {Xi} . (A.10)

The first expression of the variance is obtained as follows

var {X} =
ˆ +∞

−∞
(x− E {X})2 fX (x) dx

=
ˆ +∞

−∞
x2fX (x) dx− (E {X})2

=
ˆ +∞

−∞
x2∑

i

ki fXi (x) dx− (E {X})2

=
∑
i

ki

ˆ +∞

−∞
x2fXi (x) dx− (E {X})2

=
∑
i

ki
[
var {Xi}+ E {Xi}2

]
− (E {X})2 , (A.11)
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and the second expression of the variance is obtained by starting from the previous result

var {X} =
∑
i

ki
[
var {Xi}+ E {Xi}2

]
− (E {X})2

=
∑
i

ki
[
var {Xi}+ E {Xi}2

]
−
(∑

i

kiE {Xi}
)2

=
∑
i

ki
[
var {Xi}+ E {Xi}2

]
−

∑
i

k2
iE {Xi}2 +

∑
i<j

2kikjE {Xi}E {Xj}


=

∑
i

kivar {Xi}+
[∑

i

kiE {Xi}2 −
∑
i

k2
iE {Xi}2

]
−
∑
i<j

2kikjE {Xi}E {Xj}

=
∑
i

kivar {Xi}+
∑
i

ki (1− ki)E {Xi}2 −
∑
i<j

2kikjE {Xi}E {Xj}

=
∑
i

kivar {Xi}+
∑
i

ki
∑
j, j 6=i

kjE {Xi}2 −
∑
i<j

2kikjE {Xi}E {Xj}

=
∑
i

kivar {Xi}+
∑
j 6=i

kikjE {Xi}2 −
∑
i<j

2kikjE {Xi}E {Xj}

=
∑
i

kivar {Xi}+
∑
i<j

kikjE {Xi}2 +
∑
j<i

kikjE {Xi}2 −
∑
i<j

2kikjE {Xi}E {Xj}

=
∑
i

kivar {Xi}+
∑
i<j

kikjE {Xi}2 +
∑
i<j

kjkiE {Xj}2 −
∑
i<j

2kikjE {Xi}E {Xj}

=
∑
i

kivar {Xi}+
∑
i<j

kikj
(
E {Xi}2 + E {Xj}2 − 2E {Xi}E {Xj}

)
=

∑
i

kivar {Xi}+
∑
i<j

kikj (E {Xi} − E {Xj})2 . (A.12)

A.2 Means and variances of Φr and Φf

A.2.1 Mean and variance of Φr

The PDF of Φr is given by

fΦr (φ) = p1δ (φ− φR) + p0 U(φR,φR+φ0) (φ) . (A.13)

By using (A.7), we can compute the mean of Φr

µΦr = p1φR + p0

(
φR + φ0

2

)
(A.14)

= φR + p0
φ0
2 . (A.15)



134 Chapter A. Theoretical developments related to the code statistics

The variance of Φr is computed after (A.9)

σ2
Φr = p10 + p0

φ2
0

12 + p1p0

(
φR −

(
φR + φ0

2

))2
(A.16)

= p0
φ2

0
12 + (1− p0) p0

(
φ0
2

)2
(A.17)

= p0
φ2

0
12 + p0

φ2
0

4 − p
2
0
φ2

0
4 (A.18)

= p0
φ2

0
3 − p

2
0
φ2

0
4 . (A.19)

A.2.2 Mean and variance of Φf

The PDF of Φf is given by

fΦf (φ) = p1δ (φ− φF ) + p0 U(φF−φ0,φF ) (φ) . (A.20)

By using (A.7), we can compute the mean of Φf

µΦf = p1φF + p0

(
φF −

φ0
2

)
(A.21)

= φF − p0
φ0
2 . (A.22)

The variance of Φf is computed after (A.9)

σ2
Φf = p10 + p0

φ2
0

12 + p1p0

(
φF −

(
φF −

φ0
2

))2
(A.23)

= p0
φ2

0
12 + (1− p0) p0

(
φ0
2

)2
(A.24)

= p0
φ2

0
12 + p0

φ2
0

4 − p
2
0
φ2

0
4 (A.25)

= p0
φ2

0
3 − p

2
0
φ2

0
4 . (A.26)

A.3 Details for the different cases

A.3.1 Details for the case A

The purpose of this section is to establish the p• and p? probabilities.
To compute these probabilities, we have to measure the total duration for which the

different events occur over a code period, and then divide by the code period (we can do this
since the codes are periodic). The situation is depicted in Figure A.1. The scheme represents
the generalized case, for any code i. We have to shift the code from left to right (for a
fixed value of the angular window), and check when the different events occur, until we have
analyzed the complete period of the code. We can distinguish between 8 different scenarios
(1→ 8) depending on the angular shift:

• 0: initial condition: the left extremity of φW coincides with the start of a code period
(no shift),



A.3. Details for the different cases 135

φ0

4

5

7

8

0

1

2

3

6

(N1 − i)φ0iφ0 φ0 iφ0φ0

φW

iφ0 − φW
φ0
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Figure A.1: Computation of the probabilities and intervals associated with the case A, and
for all codes (φW is supposed to be constant).

• 1: we can shift φW for iφ0 − φW with no error,

• 2: for the next φ0 shift, there is an error on Φf ,

• 3: we can shift φW for φW − φ0 with no error,

• 4: for the next φ0 shift, there is an error on Φr,

• 5: we can shift φW for (N1 − i)φ0 − φW with no error,

• 6: for the next φ0 shift, there is an error on Φf ,

• 7: we can shift φW for φW − φ0 with no error,

• 8: for the next φ0 shift, there is an error on Φr.

Note that in Figure A.1, as for all other cases (Figures A.2, A.3, A.4, A.5, A.6), we use the
following color convention:

• green: no error,

• cyan: Er = 0 and Ef 6= 0,

• blue: Er 6= 0 and Ef = 0,

• red: Er 6= 0 and Ef 6= 0 (for the cases B, C, D, and E only),

• brown: no edge detection at the receiver (for the case 0 only).

Now we add the favorable parts (lines 1, 3, 5, and 7, or green parts of the drawing) to find
the duration of the event associated to p•

φ• = (iφ0 − φW ) + (φW − φ0) + ((N1 − i)φ0 − φW ) + (φW − φ0) = N1φ0 −N0φ0. (A.27)



136 Chapter A. Theoretical developments related to the code statistics

To compute p•, we have to divide this duration by the period duration of a code Nbφ0 =
(N1 +N0)φ0

p• = N1φ0 −N0φ0
Nbφ0

= N1
Nb
− N0
Nb

= p1 − p0. (A.28)

Firstly, we can notice that this probability does not depend on the angular window φW
(if the value belongs to the intervals defined for the case A). Secondly, we notice that this
probability does not depend on the code. Of course the case A for the other codes does not
occur for the same intervals, but the probabilities, and the PDFs are the same.

Now we have to compute p?. Let us consider the errors on Φf first. We can use the same
reasoning as before and use Figure A.1 to count favorable and unfavorable situations. In this
case, the favorable parts are the cyan parts of lines 2 and 6. The counting gives

φ? = 2φ0 = N0φ0, (A.29)

and the probability p? to commit an error on Φf is obtained by dividing it by the period
duration

p? = N0φ0
Nbφ0

= N0
Nb

= p0. (A.30)

The same reasoning also applies to Φr, but for the blue parts of line 4 and 8. The probability
to commit an error on Φr is the same as for Φf , explaining why the notation p? is the same
for both. We can check that the probabilities for the case A sum up to 1

p• + p? + p? = p1 − p0 + p0 + p0 = p1 + p0 = 1. (A.31)

A.3.2 Details for the case 0

The probabilities p• and p∗ are computed as follows. To compute these probabilities, we have
to measure the total duration for which the different events occur over a code period, and
then divide by the code period (we can do this since the codes are periodic). The situation is
depicted in Figure A.2.

The scheme represents the generalized case, for any code i. One has to move virtually the
code from left to right (for a fixed value of the angular window) and check when the different
events occur, until we reach the period of the code. We can distinguish between 8 different
scenarios depending on the angular shift:

• 0: initial condition: the left extremity of φW coincides with the start of a code period
(no shift),

• 1: we can shift φW for iφ0 − φW with no error,

• 2: then we can shift φW for a duration φW , with an error on Φf only,

• 3: for the next φ0 − φW move, there is no edge detection at the receiver since there is
no 1 symbol between the rising and falling edge,

• 4: then we can shift φW for a duration φW , with an error on Φr only,

• 5: we can shift φW for (N1 − i)φ0 − φW with no error,

• 6: same as line 2,
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Figure A.2: Computation of the probabilities and intervals associated with the case 0, and
for all codes (λ0 = 0.8 in the scheme).

• 7: same as line 3,

• 8: same as line 4.

This is similar to the case A, except that there are two parts (lines 3 and 7, or brown parts
of the drawing) where there is no edge detection at all. To compute p•, we first add the
favorable parts (lines 1, and 5, or green parts of the drawing)

φ• = (iφ0 − φW ) + ((N1 − i)φ0 − φW )
= N1φ0 − 2φW = N1φ0 −N0φW = N1φ0 −N0φ0λ0. (A.32)

But unlike the case A (and all other cases), we cannot divide this duration by the code
duration. Indeed, we have to remove from the code duration the parts where there is no edge
detection (lines 3 and 7, or brown parts of the drawing)

φduration−case 0 = (N1 +N0)φ0 − 2 (φ0 − φW )
= (N1 +N0)φ0 −N0 (φ0 − φW )
= (N1 +N0)φ0 −N0φ0 (1− λ0)
= N1φ0 +N0φ0λ0. (A.33)

Now we can compute p•

p• = φ•

φduration−case 0
= N1φ0 −N0φ0λ0
N1φ0 +N0φ0λ0

= p1 − p0λ0
p1 + p0λ0

. (A.34)

Now , it remains to calculate p∗. Let us consider the errors on Φf first. We can use the same
reasoning as before and use Figure A.2 to do the counting. But in this case, the favorable
parts are the cyan parts of lines 2 and 6. The counting gives

φ∗ = 2φW = N0φW = N0φ0λ0, (A.35)
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and the probability p∗ to commit an error on Φf is obtained by dividing φ∗ by the reduced
period duration

p∗ = φ∗

φduration−case 0
= N0φ0λ0
N1φ0 +N0φ0λ0

= p0λ0
p1 + p0λ0

. (A.36)

The same reasoning also applies to Φr, but for the blue parts of line 4 and 8. The probability
to commit an error on Φr is the same as for Φf , explaining why the notation p∗ is the same
for both. Again, we can check that the probabilities for the case 0 sum up to 1

p• + p∗ + p∗ = p1 − p0λ0
p1 + p0λ0

+ 2 p0λ0
p1 + p0λ0

= p1 + p0λ0
p1 + p0λ0

= 1. (A.37)

The computation of the joint expectation is detailed hereafter

E {Er, Ef} =
¨ +∞

−∞
εr εf fErEf (εr, εf ) dεr dεf

= p•
¨ +∞

−∞
εr εf δ (εr) δ (εf ) dεr dεf

+ p∗
¨ +∞

−∞
εr εf δ (εr) U(−φ0,0) (εf ) dεr dεf

+ p∗
¨ +∞

−∞
εr εf δ (εf ) U(0,φ0) (εr) dεr dεf

= 0 + 0 + 0 = 0. (A.38)

The marginal PDF of Er and Ef have changed (unlike the case A and all other cases), as well
as their expectations and variances. The marginal PDF of Er is given by

fEr (εr) =
ˆ +∞

−∞
fErEf (εr, εf ) dεf

= p•δ (εr)
ˆ +∞

−∞
δ (εf ) dεf

+ p∗δ (εr)
ˆ +∞

−∞
U(−λ0φ0,0) (εf ) dεf

+ p∗ U(0,λ0φ0) (εr)
ˆ +∞

−∞
δ (εf ) dεf

= p1 − p0λ0
p1 + p0λ0

δ (εr) + p0λ0
p1 + p0λ0

δ (εr) + p0λ0
p1 + p0λ0

U(0,λ0φ0) (εr)

= p1
p1 + p0λ0

δ (εr) + p0λ0
p1 + p0λ0

U(0,λ0φ0) (εr) . (A.39)

Likewise, the marginal PDF of Ef is given by

fEf (εf ) = p1
p1 + p0λ0

δ (εf ) + p0λ0
p1 + p0λ0

U(−λ0φ0,0) (εf ) . (A.40)

Their expectations are given by (using result A.7)

E {Er} = p1
(p1 + p0λ0) 0 + p0λ0

(p1 + p0λ0)
λ0φ0

2 = p0λ0
(p1 + p0λ0)

λ0φ0
2 = −E {Ef} , (A.41)
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and their variances are given by (using result A.9)

var {Er} = p1
(p1 + p0λ0) 0 + p0λ0

(p1 + p0λ0)
(λ0φ0)2

12 + p1
(p1 + p0λ0)

p0λ0
(p1 + p0λ0)

(
0− λ0φ0

2

)2

= p0λ0
(p1 + p0λ0)

(λ0φ0)2

12 + p1p0λ0

(p1 + p0λ0)2
(λ0φ0)2

4

= (λ0φ0)2

12
p0λ0 (p1 + p0λ0) + 3p1p0λ0

(p1 + p0λ0)2

= (λ0φ0)2

12
p0λ0 (4p1 + p0λ0)

(p1 + p0λ0)2 = var {Ef} . (A.42)

Then, we can compute C {Er, Ef} for the case 0

C {Er, Ef} = E {Er, Ef} − E {Er}E {Ef} (A.43)

=
(

p0λ0
(p1 + p0λ0)

λ0φ0
2

)2
= (p0λ0)2

(p1 + p0λ0)2
(λ0φ0)2

4 , (A.44)

and, finally, we obtain the variance of Φb for the case 0

σ2
Φb =

σ2
Er + C {Er, Ef}

2

=

(
(λ0φ0)2

12
p0λ0(4p1+p0λ0)

(p1+p0λ0)2

)
+
(

(p0λ0)2

(p1+p0λ0)2
(λ0φ0)2

4

)
2

= (λ0φ0)2

24

[
p0λ0 (4p1 + p0λ0) + 3 (p0λ0)2

(p1 + p0λ0)2

]

= (λ0φ0)2

24
4p0λ0

(p1 + p0λ0)

= p0
φ2

0
6

λ3
0

(p1 + p0λ0) = p0
φ2

0
6 P0 (λ0) . (A.45)

A.3.3 Details for the case D

The different probabilities are computed as follows: we have to measure the total duration
for which the different events occur over a code period, and then divide by the code period.
The situation is depicted in Figure A.3. The computation of these probabilities is detailed
hereafter:

φ• = 2φW − 2 (N1 +N0)φ0 +N1φ0

= 2 [(N1 + 1)φ0 + λdφ0]−N1φ0 − 2N0φ0

= N1φ0 −N0φ0 +N0λdφ0

= N1φ0 −N0φ0 (1− λd) . (A.46)

p• = φ•

φduration
= N1φ0 −N0φ0 (1− λd)

(N1 +N0)φ0
= p1 − p0 (1− λd) . (A.47)
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Figure A.3: Computation of the probabilities and intervals associated with the case D, and
for all codes (λd = 0.6 in the scheme).

φ◦ = 2φW − 2 (N1 +N0)φ0 + 2φ0

= 2 [(N1 + 1)φ0 + λdφ0]− 2N1φ0 −N0φ0

= 2N1φ0 +N0φ0 +N0λdφ0 − 2N1φ0 −N0φ0

= N0φ0λd. (A.48)

p◦ = φ◦

φduration
= N0φ0λd

(N1 +N0)φ0
= p0λd. (A.49)

φ∗ = 2 (N1 +N0)φ0 − 2φW
= 2 (N1 +N0)φ0 − 2 [(N1 + 1)φ0 + λdφ0]
= N0φ0 −N0λdφ0

= N0φ0 (1− λd) . (A.50)

p∗ = φ∗

φduration
= N0φ0 (1− λd)

(N1 +N0)φ0
= p0 (1− λd) . (A.51)

We can check that the probabilities sum up to 1

p• + p◦ + 2p∗ = p1 − p0 (1− λd) + p0λd + 2p0 (1− λd) = p1 + p0 = 1. (A.52)
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The joint expectation is derived as follows

E {Er, Ef} =
¨ +∞

−∞
εr εf fErEf (εr, εf ) dεr dεf

= p•
¨ +∞

−∞
εr εf δ (εr) δ (εf ) dεr dεf

+ p∗
¨ +∞

−∞
εr εf δ (εr) U(−φ0,λdφ0) (εf ) dεr dεf

+ p∗
¨ +∞

−∞
εr εf δ (εf ) U(λdφ0,φ0) (εr) dεr dεf

+ p◦
¨ +∞

−∞
εr εf 2 δ ((εr − εf )− λdφ0) U(−λdφ0,λdφ0) (εr + εf ) dεr dεf

= 0 + 0 + 0 + p◦
(
−(λdφ0)2

6

)
= −p0λd

(λdφ0)2

6 = −p0λ
3
d

φ2
0

6 . (A.53)

The covariance is then given by

C {Er, Ef} = E {Er, Ef} − E {Er}E {Ef} = −p0λ
3
d

φ2
0

6 + p2
0
φ2

0
4 . (A.54)

So that we can establish the value of the variance as

σ2
Φb =

σ2
Er + C {Er, Ef}

2

=

(
p0

φ2
0

3 − p
2
0
φ2

0
4

)
+
(
−p0λ

3
d
φ2

0
6 + p2

0
φ2

0
4

)
2

=
p0

φ2
0

3 − p0λ
3
d
φ2

0
6

2

= p0
φ2

0
6

2− λ3
d

2

= p0
φ2

0
6

(
1− λ3

d

2

)
= p0

φ2
0

6 PD (λd) . (A.55)

The presence of the factor 2 in the fourth term of fErEf (εr, εf ) is explained hereafter. This
factor is necessary so that the joint PDF integrates to 1, as explain below

I =
¨ +∞

−∞
k δ ((εr − εf )− λdφ0) U(−λdφ0,λdφ0) (εr + εf ) dεr dεf = 1. (A.56)

To compute this, we apply this change of variables{
a = εr − εf
b = εr + εf

(A.57)

or, equivalently, {
εr = a+b

2
εf = b−a

2
(A.58)
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and the associated Jacobian is equal to

J =

∣∣∣∣∣∣∣
∂εr
∂a

∂εr
∂b

∂εf
∂a

∂εf
∂b

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1
2

1
2

−1
2

1
2

∣∣∣∣∣∣∣ = 1
4 −

(
−1

4

)
= 1

2 . (A.59)

So, we have

I =
¨ +∞

−∞
k δ (a− λdφ0) U(−λdφ0,λdφ0) (b) |J | da db

= k |J |
ˆ +∞

−∞
δ (a− λdφ0) da

ˆ +∞

−∞
U(−λdφ0,λdφ0) (b) db

= k × 1
2 × 1× 1 = k

2
= 1⇒ k = 2. (A.60)

The computation of the fourth term of E {Er, Ef} is detailed hereafter

K =
¨ +∞

−∞
εr εf 2δ ((εr − εf )− λdφ0) U(−λdφ0,λdφ0) (εr + εf ) dεr dεf . (A.61)

By using the same change of variables, we have

K =
¨ +∞

−∞

(
a+ b

2

)(
b− a

2

)
2δ (a− λdφ0) U(−λdφ0,λdφ0) (b) |J | da db

=
¨ +∞

−∞

(
b2 − a2

4

)
δ (a− λdφ0) U(−λdφ0,λdφ0) (b) da db

= 1
4

¨ +∞

−∞
b2δ (a− λdφ0) U(−λdφ0,λdφ0) (b) da db

− 1
4

¨ +∞

−∞
a2δ (a− λdφ0) U(−λdφ0,λdφ0) (b) da db

= K1 −K2. (A.62)

The first term K1 is equal to

K1 = 1
4

(ˆ +∞

−∞
δ (a− λdφ0) da

)(ˆ +∞

−∞
b2U(−λdφ0,λdφ0) (b) db

)

= 1
4 (1)

(
(2λdφ0)2

12

)

= (λdφ0)2

12 . (A.63)

The second term K2 is equal to

K2 = 1
4

(ˆ +∞

−∞
a2δ (a− λdφ0) da

)(ˆ +∞

−∞
U(−λdφ0,λdφ0) (b) db

)

= 1
4 (λdφ0)2 (1)

= (λdφ0)2

4 . (A.64)
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Figure A.4: Computation of the probabilities and intervals associated with the case E, and
for all codes (λe = 0.6 in the scheme).

And, finally we have

K = K1 −K2 = (λdφ0)2

12 − (λdφ0)2

4 = −(λdφ0)2

6 = −φ
2
0

6 λ
2
d. (A.65)

A.3.4 Details for the case E

The different probabilities are computed as follows: we have to measure the total duration
for which the different events occur over a code period, and then divide by the code period.
The situation is depicted in Figure A.4. The computation of these probabilities is detailed
hereafter:

φ• = (2N1 + 2N0 +N1)φ0 − 2φW
= 3N1φ0 + 2N0φ0 − 2 [(N1 +N0)φ0 + λeφ0]
= 3N1φ0 + 2N0φ0 − 2N1φ0 − 2N0φ0 − 2λeφ0

= N1φ0 −N0φ0λe. (A.66)

p• = φ•

φduration
= N1φ0 −N0φ0λe

(N1 +N0)φ0
= p1 − p0λe. (A.67)

φ◦ = (2N1 + 2N0 + 2)φ0 − 2φW
= 2N1φ0 + 3N0φ0 − 2 [(N1 +N0)φ0 + λeφ0]
= N0φ0 −N0λeφ0

= N0φ0 (1− λe) . (A.68)

p◦ = φ◦

φduration
= N0φ0 (1− λe)

(N1 +N0)φ0
= p0 (1− λe) . (A.69)
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φ∗ = 2φW − 2 (N1 +N0)φ0

= 2 [(N1 +N0)φ0 + λeφ0]− 2 (N1 +N0)φ0

= 2λeφ0

= N0φ0λe. (A.70)

p∗ = φ∗

φduration
= N0φ0λe

(N1 +N0)φ0
= p0λe. (A.71)

We can check that the probabilities sum up to 1

p• + p◦ + 2p∗ = p1 − p0λe + p0 (1− λe) + 2p0λe = p1 + p0 = 1. (A.72)

The joint expectation is derived as follows

E {Er, Ef} =
¨ +∞

−∞
εr εf fErEf (εr, εf ) dεr dεf

= p•
¨ +∞

−∞
εr εf δ (εr) δ (εf ) dεr dεf

+ p∗
¨ +∞

−∞
εr εf δ (εr) U(−λeφ0,0) (εf ) dεr dεf

+ p∗
¨ +∞

−∞
εr εf δ (εf ) U(0,λeφ0) (εr) dεr dεf

+ p◦
¨ +∞

−∞
εrεf2δ ((εr − εf )− (1 + λe)φ0)U(−(1−λe)φ0,(1−λe)φ0) (εr + εf ) dεrdεf

= 0 + 0 + 0 + p◦
(
−φ

2
0

6
(
1 + 4λe + λ2

e

))

= −p0
φ2

0
6 (1− λe)

(
1 + 4λe + λ2

e

)
. (A.73)

This leads to the expression of the covariance

C {Er, Ef} = E {Er, Ef} − E {Er}E {Ef} = −p0
φ2

0
6 (1− λe)

(
1 + 4λe + λ2

e

)
+ p2

0
φ2

0
4 . (A.74)

The variance is then given by

σ2
Φb =

σ2
Er + C {Er, Ef}

2

=

(
p0

φ2
0

3 − p
2
0
φ2

0
4

)
+
(
−p0

φ2
0

6 (1− λe)
(
1 + 4λe + λ2

e

)
+ p2

0
φ2

0
4

)
2

=
p0

φ2
0

3 − p0
φ2

0
6 (1− λe)

(
1 + 4λe + λ2

e

)
2

= p0
φ2

0
6

[
2− (1− λe)

(
1 + 4λe + λ2

e

)
2

]

= p0
φ2

0
6

(
1− 3λe + 3λ2

e + λ3
e

2

)
= p0

φ2
0

6 PE (λe) . (A.75)
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The explanation about the presence of the factor 2 in the fourth term of fErEf (εr, εf ) is
the same as for the case D. The computation of the fourth term of E {Er, Ef} gives

K =
¨ +∞

−∞
εr εf 2δ ((εr − εf )− (1 + λe)φ0) U(−(1−λe)φ0,(1−λe)φ0) (εr + εf ) dεr dεf . (A.76)

By using the same change of variables (equation (A.58)), we have

K =
¨ +∞

−∞

(
a+ b

2

)(
b− a

2

)
2δ (a− (1 + λe)φ0) U(−(1−λe)φ0,(1−λe)φ0) (b) |J | da db

=
¨ +∞

−∞

(
b2 − a2

4

)
δ (a− (1 + λe)φ0) U(−(1−λe)φ0,(1−λe)φ0) (b) da db

= 1
4

¨ +∞

−∞
b2δ (a− (1 + λe)φ0) U(−(1−λe)φ0,(1−λe)φ0) (b) da db

− 1
4

¨ +∞

−∞
a2δ (a− (1 + λe)φ0) U(−(1−λe)φ0,(1−λe)φ0) (b) da db

= K1 −K2. (A.77)

The first term K1 is equal to

K1 = 1
4

(ˆ +∞

−∞
δ (a− (1 + λe)φ0) da

)(ˆ +∞

−∞
b2U(−(1−λe)φ0,(1−λe)φ0) (b) db

)

= 1
4 (1)

(
(2 (1− λe)φ0)2

12

)

= ((1− λe)φ0)2

12 . (A.78)

The second term K2 is equal to

K2 = 1
4

(ˆ +∞

−∞
a2δ (a− (1 + λe)φ0) da

)(ˆ +∞

−∞
U(−(1−λe)φ0,(1−λe)φ0) (b) db

)

= 1
4 ((1 + λe)φ0)2 (1)

= ((1 + λe)φ0)2

4 . (A.79)

And, finally, we have

K = K1 −K2 = ((1− λe)φ0)2

12 − ((1 + λe)φ0)2

4

= φ2
0

12
[
(1− λe)2 − 3 (1 + λe)2

]
= φ2

0
12
(
−2− 8λe − 2λ2

e

)
= −φ

2
0

6
(
1 + 4λe + λ2

e

)
. (A.80)
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Figure A.5: Computation of the probabilities and intervals associated with the case B, and
for all codes, except the code 5 (λb = 0.6 in the scheme).

A.3.5 Details for the case B

The different probabilities are computed as follows: we have to measure the total duration
for which the different events occur over a code period, and then divide by the code period.
The situation is depicted in Figure A.5. The computation of these probabilities is detailed
hereafter:

φ• = φW − φ0 + (N1 − i)φ0 − φW + φW − φ0

= φW + (N1 − i− 2)φ0

= (iφ0 + λbφ0) + (N1 − i−N0)φ0

= N1φ0 −
N0
2 φ0 (2− λb) . (A.81)

p• = φ•

φduration
=
N1φ0 − N0

2 φ0 (2− λb)
(N1 +N0)φ0

= p1 −
p0
2 (2− λb) . (A.82)

φ◦ = φW − iφ0

= (iφ0 + λbφ0)− iφ0

= N0
2 φ0λb. (A.83)

p◦ = φ◦

φduration
=

N0
2 φ0λb

(N1 +N0)φ0
= p0

2 λb. (A.84)

φ? = φ0

= N0
2 φ0. (A.85)
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p? = φ?

φduration
=

N0
2 φ0

(N1 +N0)φ0
= p0

2 . (A.86)

φ∗ = (i+ 1)φ0 − φW
= (i+ 1)φ0 − (iφ0 + λbφ0)
= φ0 − λbφ0

= N0
2 φ0 (1− λb) . (A.87)

p∗ = φ∗

φduration
=

N0
2 φ0 (1− λb)

(N1 +N0)φ0
= p0

2 (1− λb) . (A.88)

We can check that the probabilities sum up to 1

p• + p◦ + 2p? + 2p∗ = p1 −
p0
2 (2− λb) + p0

2 λb + 2p0
2 + 2p0

2 (1− λb) = p1 + p0 = 1. (A.89)

The joint expectation is expressed as

E {Er, Ef} =
¨ +∞

−∞
εr εf fErEf (εr, εf ) dεr dεf

= p•
¨ +∞

−∞
εr εf δ (εr) δ (εf ) dεr dεf

+ p?
¨ +∞

−∞
εr εf δ (εr) U(−φ0,0) (εf ) dεr dεf

+ p?
¨ +∞

−∞
εr εf δ (εf ) U(0,φ0) (εr) dεr dεf

+ p∗
¨ +∞

−∞
εr εf δ (εr) U(−φ0,λbφ0) (εf ) dεr dεf

+ p∗
¨ +∞

−∞
εr εf δ (εf ) U(λbφ0,φ0) (εr) dεr dεf

+ p◦
¨ +∞

−∞
εr εf 2 δ ((εr − εf )− λbφ0) U(−λbφ0,λbφ0) (εr + εf ) dεr dεf

= 0 + 0 + 0 + 0 + 0 + p◦
(
−(λbφ0)2

6

)

= −p0
2 λb

(λbφ0)2

6 = −p0λ
3
b

φ2
0

12 . (A.90)

Then we derive the covariance of Er and Ef

C {Er, Ef} = E {Er, Ef} − E {Er}E {Ef} = −p0λ
3
b

φ2
0

12 + p2
0
φ2

0
4 . (A.91)
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Figure A.6: Computation of the probabilities and intervals associated with the case C, and
for all codes, except the code 5 (λc = 0.6 in the scheme).

This leads to the following expression of the variance:

σ2
Φb =

σ2
Er + C {Er, Ef}

2

=

(
p0

φ2
0

3 − p
2
0
φ2

0
4

)
+
(
−p0λ

3
b
φ2

0
12 + p2

0
φ2

0
4

)
2

=
p0

φ2
0

3 − p0λ
3
b
φ2

0
12

2

= p0
φ2

0
6

(
1− λ3

b

4

)
= p0

φ2
0

6 PB (λb) . (A.92)

A.3.6 Details for the case C

The different probabilities are computed as follows: we have to measure the total duration
for which the different events occur over a code period, and then divide by the code period.
The situation is depicted in Figure A.6. The computation of these probabilities is detailed
hereafter:

φ• = iφ0 + (N1 − i)φ0 − φW + iφ0

= N1φ0 + iφ0 − φW
= N1φ0 + iφ0 − ((i+ 1)φ0 + λcφ0)

= N1φ0 −
N0
2 φ0 (1 + λc) . (A.93)

p• = φ•

φduration
=
N1φ0 − N0

2 φ0 (1 + λc)
(N1 +N0)φ0

= p1 −
p0
2 (1 + λc) . (A.94)
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φ◦ = (i+ 2)φ0 − φW
= iφ0 + 2φ0 − ((i+ 1)φ0 + λcφ0)
= φ0 − λcφ0

= N0
2 φ0 (1− λc) . (A.95)

p◦ = φ◦

φduration
=

N0
2 φ0 (1− λc)

(N1 +N0)φ0
= p0

2 (1− λc) . (A.96)

φ? = φ0

= N0
2 φ0. (A.97)

p? = φ?

φduration
=

N0
2 φ0

(N1 +N0)φ0
= p0

2 . (A.98)

φ∗ = φW − (i+ 1)φ0

= ((i+ 1)φ0 + λcφ0)− (i+ 1)φ0

= λcφ0

= N0
2 φ0λc. (A.99)

p∗ = φ∗

φduration
=

N0
2 φ0λc

(N1 +N0)φ0
= p0

2 λc. (A.100)

We can check that the probabilities sum up to 1

p• + p◦ + 2p? + 2p∗ = p1 −
p0
2 (1 + λc) + p0

2 (1− λc) + 2p0
2 + 2p0

2 λc = p1 + p0 = 1. (A.101)
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The joint expectation is expressed as

E {Er, Ef} =
¨ +∞

−∞
εr εf fErEf (εr, εf ) dεr dεf

= p•
¨ +∞

−∞
εr εf δ (εr) δ (εf ) dεr dεf

+ p?
¨ +∞

−∞
εr εf δ (εr) U(−φ0,0) (εf ) dεr dεf

+ p?
¨ +∞

−∞
εr εf δ (εf ) U(0,φ0) (εr) dεr dεf

+ p∗
¨ +∞

−∞
εr εf δ (εr) U(−λcφ0,0) (εf ) dεr dεf

+ p∗
¨ +∞

−∞
εr εf δ (εf ) U(0,λcφ0) (εr) dεr dεf

+ p◦
¨ +∞

−∞
εrεf2δ ((εr − εf )− (1 + λc)φ0)U(−(1−λc)φ0,(1−λc)φ0) (εr + εf ) dεrdεf

= 0 + 0 + 0 + 0 + 0 + p◦
(
−φ

2
0

6
(
1 + 4λc + λ2

c

))

= −p0
2 (1− λc)

φ2
0

6
(
1 + 4λc + λ2

c

)
= −p0

φ2
0

6
(1− λc)

(
1 + 4λc + λ2

c

)
2 . (A.102)

Then we derive the covariance of Er and Ef

C {Er, Ef} = E {Er, Ef} − E {Er}E {Ef} = −p0
φ2

0
6

(1− λc)
(
1 + 4λc + λ2

c

)
2 + p2

0
φ2

0
4 , (A.103)

and, finally, the variance:

σ2
Φb =

σ2
Er + C {Er, Ef}

2

=

(
p0

φ2
0

3 − p
2
0
φ2

0
4

)
+
(
−p0

φ2
0

6
(1−λc)(1+4λc+λ2

c)
2 + p2

0
φ2

0
4

)
2

=
p0

φ2
0

3 − p0
φ2

0
6

(1−λc)(1+4λc+λ2
c)

2
2

= p0
φ2

0
6

2− (1−λc)(1+4λc+λ2
c)

2
2


= p0

φ2
0

6

(
4− 1− 4λc − λ2

c + λc + 4λ2
c + λ3

c

4

)

= p0
φ2

0
6

(
3− 3λc + 3λ2

c + λ3
c

4

)
= p0

φ2
0

6 PC (λc) . (A.104)
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A.4 Local Minima of the variance of Φb

The local minima are encountered in PC (λc) and PE (λe) (see Figure 4.9 to Figure 4.13). For
PC (λc), we have

∂PC (λc)
∂λc

= −3 + 6λc + 3λ2
c

4 = 0 (A.105)

⇒ λ2
c + 2λc − 1 = 0 (A.106)

⇒ λc =
√

2− 1. (A.107)

The second solution (−
√

2− 1) is rejected since it is not comprised in the interval [0, 1). The
local minimum for PC (λc) is equal to

PC
(√

2− 1
)

= 2−
√

2 ' 0.5858. (A.108)

For PE (λe), we have to note first that

PE (λe) = 2PC (λe)− 1. (A.109)

Therefore the local minimum of PE (λe) is also encountered for

λe =
√

2− 1, (A.110)

and the corresponding value of PE (λe) is equal to

PE
(√

2− 1
)

= 2
(
2−
√

2
)
− 1 = 3− 2

√
2 ' 0.1716. (A.111)





Appendix B

Theoretical developments related to
the triangulation algorithm

B.1 The circle equation

The circle equation is derived entirely hereafter

arg
{
B2 −R
B1 −R

}
= φ12 (B.1)

⇒ arg
{

(B2 −R) (B1 −R)
}

= φ12 (B.2)

⇒ arg
{

(x2 + iy2 − x− iy) (x1 − iy1 − x+ iy) e−iφ12
}

= 0 (B.3)
⇒ ={(x2 + iy2 − x− iy) (x1 − iy1 − x+ iy) (cosφ12 − i sinφ12)} = 0 (B.4)

⇒ − sinφ12 (x2 − x) (x1 − x) + sinφ12 (y2 − y) (y − y1)
+ cosφ12 (x2 − x) (y − y1) + cosφ12 (y2 − y) (x1 − x) = 0 (B.5)

⇒ − (x2 − x) (x1 − x) + (y2 − y) (y − y1)
+ cotφ12 (x2 − x) (y − y1) + cotφ12 (y2 − y) (x1 − x) = 0 (B.6)

⇒ (x− x1) (x− x2) + (y − y1) (y − y2)
+T12 (x− x2) (y − y1)− T12 (x− x1) (y − y2) = 0 (B.7)

⇒ x2 − x [x1 + x2 + T12 (y1 − y2)]
+y2 − y [y1 + y2 − T12 (x1 − x2)]

+x1x2 + y1y2 + T12x2y1 − T12x1y2 = 0 (B.8)
⇒ x2 − x (2x12) + x2

12 + y2 − y (2y12) + y2
12 − x2

12 − y2
12 + 2k12 = 0 (B.9)

⇒ (x− x12)2 + (y − y12)2 = R2
12 (B.10)

Note that we divided by sinφ12 to obtain expression B.6. Therefore, sinφ12 has to be different
from zero. In other terms, it means that we must have φ12 6= kπ, k ∈ Z. Otherwise, the circle
degenerates as the B1B2 line (infinite radius and center coordinates). Also, we introduced
the notation T12 = cotφ12, and a quantity denoted k12

k12 = x1x2 + y1y2 + T12x2y1 − T12x1y2
2 . (B.11)
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The circle center coordinates {x12, y12} are

x12 = (x1 + x2) + T12 (y1 − y2)
2 , (B.12)

y12 = (y1 + y2)− T12 (x1 − x2)
2 , (B.13)

and the squared radius equals

R2
12 = x2

12 + y2
12 − 2k12 (B.14)

= x2
12 + y2

12 − (x1x2 + y1y2 + T12x2y1 − T12x1y2) (B.15)

= (x1 + x2)2 + T 2
12 (y1 − y2)2 + 2T12 (x1 + x2) (y1 − y2)

4 (B.16)

+ (y1 + y2)2 + T 2
12 (x1 − x2)2 − 2T12 (y1 + y2) (x1 − x2)

4 (B.17)

− 4x1x2 + 4y1y2 + 4T12x2y1 − 4T12x1y2
4 (B.18)

= (x1 + x2)2 − 4x1x2 + T 2
12 (y1 − y2)2

4 (B.19)

+ (y1 + y2)2 − 4y1y2 + T 2
12 (x1 − x2)2

4 (B.20)

= (x1 − x2)2 + T 2
12 (y1 − y2)2

4 + (y1 − y2)2 + T 2
12 (x1 − x2)2

4 (B.21)

= (x1 − x2)2 (1 + T 2
12
)

+ (y1 − y2)2 (1 + T 2
12
)

4 (B.22)

= (x1 − x2)2 + (y1 − y2)2

4 sin2 φ12
, (B.23)

where we used the following trigonometric result at line B.22

1 + T 2
12 = 1 + cot2 φ12 = 1

sin2 φ12
. (B.24)

B.2 The parameter kij
The computation of the parameter kij works as follows. One has to replace the expressions
of xij and yij (equations (B.25) and (B.26)), and the expression of R2

ij (equation (B.27)) into
the expression of kij (equation (B.28))

xij = (xi + xj) + Tij (yi − yj)
2 , (B.25)

yij = (yi + yj)− Tij (xi − xj)
2 , (B.26)

R2
ij = (xi − xj)2 + (yi − yj)2

4 sin2 φij
, (B.27)

kij =
x2
ij + y2

ij −R2
ij

2 . (B.28)
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However, the computation is straightforward if we reformulate equation (B.14), and if we note
that it is equivalent to equation (B.28)

R2
12 = x2

12 + y2
12 − 2k12 (B.29)

⇒ k12 = x2
12 + y2

12 −R2
12

2 (B.30)

= x1x2 + y1y2 + T12x2y1 − T12x1y2
2 (B.31)

= x1x2 + y1y2 + T12 (x2y1 − x1y2)
2 , (B.32)

which has already been introduced in expression B.11, when computing the circle parameters.
Finally, we can generalize the previous result as

kij = xixj + yiyj + Tij(xjyi − xiyj)
2 . (B.33)

B.3 Position sensitivity analysis
In this section, we detail the sensitivity analysis of the computed position. The coordinates
of the robot position are reminded hereafter

xR = x2 + k′31(y′12 − y′23)
D

, (B.34)

yR = y2 + k′31(x′23 − x′12)
D

. (B.35)

We start by computing the derivative of xR with respect to the first angle φ1

∂xR
∂φ1

= ∂k′31
∂φ1

(y′12 − y′23)
D

+ ∂(y′12 − y′23)
∂φ1

k′31
D

+
∂
(

1
D

)
∂φ1

k′31(y′12 − y′23) (B.36)

= ∂k′31
∂φ1

(y′12 − y′23)
D

+ ∂(y′12 − y′23)
∂φ1

k′31
D
− 1
D2

∂ (D)
∂φ1

k′31(y′12 − y′23) (B.37)

= 1
D
g1(.), (B.38)

where g1(.) is some function of all the other parameters. Similar results yield for the derivative
of xR with respect to the second and third angles, φ2 and φ3 respectively

∂xR
∂φ2

= 1
D
g2(.), (B.39)

∂xR
∂φ3

= 1
D
g3(.), (B.40)

where g2(.) and g3(.) are some functions of all the other parameters. The total differential of
xR with respect to φ1, φ2, and φ3 is given by

∆xR = ∂xR
∂φ1

∆φ1 + ∂xR
∂φ2

∆φ2 + ∂xR
∂φ3

∆φ3 (B.41)

= 1
D

∆φ (g1(.) + g2(.) + g3(.)) (B.42)

= 1
D

∆φ g(.), (B.43)
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where we assumed that the three infinitesimal increments are equal ∆φ = ∆φ1 = ∆φ2 = ∆φ3.
A similar result yields for the total differential of yR

∆yR = 1
D

∆φh(.) (B.44)

where h(.) is some function of all the other parameters. Finally, we can compute ∆dR as
follows

∆dR =
√

(∆xR)2 + (∆yR)2 (B.45)

= 1
|D|
|∆φ|

√
(g(.))2 + (h(.))2 (B.46)

= 1
|D|
|∆φ| f(.) (B.47)

where f(.) is some function of all the other parameters.
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