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NOTATIONS AND SYMBOLS 

 
 

Operator  Meaning 

D   Differential operator 

X   Scalar 

x
�

  Vector with components ix  

[ ]X   Matrix 

{ }X   Column vector 
•

X   Time derivative of X  ( dtdX / ) 

TX   Transpose of X  

( )xSgn   + or – sign of scalar x  

x   xx =  if 0>x ; 0=x  if 0<x  

YX :   Double contracted product of X  with Y  

IX   First invariant of X : ( )XTrX I =  

IIX   Second invariant of X : 2 21
[ ( ) ( )]

2
II

X Tr Tr= −X X  

IIIX   Third invariant of X : det( )IIIX = X  

X'   Deviator of X : I  -XX' IX
3

1
=  

δ   Kronecker delta 1=ijδ  if i=j, 0=ijδ  if i≠j 

X
~

  
A quantity with tilt bar is assumed in natural (isoparametric) 

coordinate system or physical coordinate system 
 

 

Scalar  Meaning 

uA   Boundary along which displacements are specified 

Aσ   Boundary along which surface tractions are specified 

L   Contour line 

π   Functional 
µ , λ   Lamé coefficients 
ρ   Mass density 

ν   Poisson ratio 

G   Shear modulus 

ijγ   Shear strain 

A   Surface of a body 

t   Time 

V   Volume of a body 

W   Work 

)(ESW   Stored energy function of a hyperelastic material 
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1st order 

Tensor 
 Meaning 

ie   Basic unit vector 

b   Body force per unit mass 

u   Current displacement vector 

extF   External force vector 

intF   Internal force vector 

( )321 ,, XXXX   Material coordinate vector 

( )321 ,, ξξξξ   Natural (isoparametric) coordinate vector 
hU   Nodal displacement vector, [ ]1 1 1, , ,... , ,h

n n nu v w u v w=U  

n   Outward normal vector to the surface A  

( )321 ,, xxxx   Spatial coordinate vector 

*t   Specific tractions along Aσ  

*u   Specific displacements along uA  

t   Traction vector, stress vector 

   

   

2nd and higher 

order Tensor 

 Meaning 

ε   Cauchy’s strain tensor 

σ   Cauchy’s stress tensor 

F   Deformation gradient tensor 

UGrad   Material displacement gradient tensor, UU 0∇=Grad  

ugrad   Spatial displacement gradient tensor, uu ∇=grad  

P   First Piola-Kirchhoff stress tensor  

E   Green-Lagrange tensor 

E   
Green-Lagrange vector (Voigt notation):      

 
T

EEEEEE ]2  2  2      [ 312312332211=E  

J   Jacobian matrix  

b   Left Cauchy-Green tensor (Finger deformation tensor), 
TFFb =  

v   Left stretch deformation tensor, -1=v FR  

C
4

  Constitutive moduli tensor 

C4
  Constitutive moduli matrix, dimension (6x6) 

C   Right Cauchy-Green tensor, FFC T=  

U   Right stretch tensor, -1=U R F  

R   Rotation tensor, 
-1FUR =  

S   Second Piola-Kirchhoff stress (PK2) tensor  

S   Second Piola-Kirchhoff stress vector (Voigt notation):        

             
T

SSSSSS ]          [ 312312332211=S  

K   Tangent stiffness matrix 

I   Unity second order tensor 
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Chapter 1. INTRODUCTION 
 

 

INTRODUCTION 

 

 Since the sixties of the 20
th

 century, the development of numerical methods has 

been the base for developing various advanced engineering simulation tools. Still 

nowadays, at the beginning of the 21
st
 century, applications of numerical methods in 

simulation and prediction of industrial problems and/or technological processes become 

more and more important The most popular numerical methods is the finite element 

method with applications for simulation of biomechanic problems [HOL96], 

elastoplasticity problems [SIM88a], thermalmechanic problems [HOG76] and contact 

problems [PON99], etc. 

 Thin shell structures, whose numerical analysis is the target of this thesis, appear 

in many products, such as the outer-body of a car, the fuselage and wings of an airplane, 

etc. Modeling these parts with standard solid elements would require a huge number of 

elements and leads to prohibitive computational costs. For instance, to prevent locking 

effects, i.e. artificial stiffness in the model, modeling a beam with hexahedral solid 

elements requires a minimum of about 3 - 5 elements through the thickness. In such 

cases, a low-order shell element can replace 3 - 5 or more solid elements, which improves 

computational efficiency immensely. Furthermore, modeling thin structures with 

standard solid elements often leads to elements with high aspect ratios, which degrades 

the conditioning of the equations and the accuracy of the solution. However, for certain 

problems in structural analysis displacement degrees of freedom (DOF) at the nodes of 

the element are more advantageous for analysis than displacement and rotational DOF’s. 

For example, consider complex structures which consist of both thin and thick walls. For 

the sake of effectiveness, shell elements should be used for thin-walled parts and solid 

elements should be used for thick-walled parts. If both solid and shell elements have the 

same DOF’s (e.g. only displacements at nodes), the analysis process exhibits one type of 

DOF only, no requirement on transition elements exhibiting displacement and rotational 

DOF, e.g. Figure 1.0.1. 

 

 

 

 

 

 

 

 

 

Figure 1.0.1: Connection of solid-shell element (white  

                     color) with standard solid element (grey color) 

Solid-shell 

element 
Standard solid 

element 



2 

The deformation processes also with contact and friction of shell elements, such as 

happening in metal forming, are easier to consider if shell elements have those 

configuration displacement DOF. Motivated by these arguments, the thesis concentrates 

on developing an element that has simple kinematics (only displacement DOF’s at nodes) 

as solid elements but is as effective in computation as shell elements. A class of those 

finite elements called solid-shell has been recently investigated by many researchers 

([HAU98], [HAU00], [QUO03a,b], [TAN05], [JET08]) because that element is not only 

capable of modeling complicated structures but it can also be used to simulate metal 

forming problems. Literature shows indeed that solid-shell element is the most suitable 

choice for the above mentioned tasks. 

 

 

1.1 OBJECTIVES OF THE THESIS 

 The use of low-order elements in finite element computations remains a popular 

feature in solid mechanics because of the following reasons. First, they require a simpler 

manipulation for meshing, especially, for a distorted configuration. Second, these 

elements facilitate more convenient manipulations in the adaptive h-type of mesh 

refinement. Finally, using low-order elements will remarkably save computation time, 

especially, for simulation with large number of DOF’s such as in nonlinear problems. In 

this thesis, high-order elements are therefore not considered. They would, in addition, 

exhibit more difficulties to deal with at contact surface interfaces. From now on, for the 

sake of briefness, let’s call the low-order standard solid element in three-dimension (3D) 

is the eight-node hexahedral element and the low-order standard solid element in two-

dimension (2D) is the four-node quadrilateral element. 

 Although the structure of the low-order standard displacement elements is 

straightforward, they should not be used directly in the following situations:  

• The elements tend to be too stiff in bending, e.g. for slender beams or thin plates 

under bending. 

• The elements are too stiff in nearly incompressible or incompressible behavior. 

In other words, four-node quadrilateral elements and eight-node hexahedral 

element in two and three dimensions, respectively, have a major drawback since they 

lead to locking in the incompressible limit. It means they do not possess the property of 

being uniformly convergent. In addition, even in compressible problems the use of these 

standard elements leads to poor accuracy particularly in bending-dominated problems, 

when coarse meshes are used.  

 The linear and nonlinear finite element analysis of plates and shells has attracted 

much attention in recent decades.  It is necessary to capture the bending-stretching 

coupling of thin shell behavior. Hence, one of the motivations for designing new 

elements is their potential ability to capture the membrane-bending coupling correctly. So 

far, there are two ways in which this could be done. One is to use elements based on 

specific shell theories (e.g. the Vlasov [VLA49], Flugge [FLU73] theories, etc.). There 

are considerable controversies regarding the relative merits and drawbacks of these 

theories. Each theory has been obtained by carrying out approximations to different 

degrees when the 3D field equations are reduced to the particular class of shell equations. 
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The second approach is called degenerated shell approach – 3D solid elements can be 

reduced (degenerated) into shell elements having only mid-surface nodal variables - these 

are no longer dependent on the various forms of shell theories proposed and should be 

simple to use. They are in fact equivalent to a Mindlin type curved shell element 

(equivalent to a shear deformable theory), see [PRA01], [STO95]. With the standard 

procedure, a plate or shell theory is used as a basis for the finite element formulation. It 

begins with the field equations of the 3D theory and makes various assumptions, which 

lead to the plate or shell theory. Meanwhile, in the reduction from the three to two 

dimensions, an analytical integration over the thickness was included. The mid-surface 

geometry (in the case of shells) and the field variables are approximated using discretized 

nodal values and suitable interpolation functions. Integration of various element stiffness 

and force terms is carried out over the reference surface. Examples of such an approach 

include the simple facet element and many elements derived from the classical thin plate 

theory: the Mindlin-Reissner plate theory, shallow shell theory or even high-order shell 

theories. Currently, we can introduce the solid-shell theory as the third approach for 

capturing the bending-stretching coupling of thin shell behavior. The low-order solid-

shell element has two nodes along vertical sides. Naturally, the low-order solid-shell 

element obeys the straight normal assumption of Mindlin-Reissner theories. Without any 

assumptions because of possessing solid configuration, integration of the solid-shell 

element stiffness is carried out over the element’s physical volume. 

 The solid-shell elements are combinations of solid elements with shell elements. 

The elements are generally used for nonlinear problems (finite strain, contact, etc.) so 

they have to satisfy some requirements, e.g. free from all locking types, simple 

kinematics, etc. The following features of the solid elements and shell elements are found 

in the solid-shell elements: 

 Features from the solid elements: 

- Same DOF’s as solid; 

- Integrating directly 3D material model (versus plane stress assumption); 

- In contrast to the degenerated shell concept the complete 3D strain 

tensor and stress tensor are used (strains and stresses in thickness 

direction are also included). 

 Features from the shell elements: 

- Use of a shell element method to remove transverse shear locking. The 

solid-shell elements, hence, are applicable to thin-walled structures. 

- The normal to the mid-surface remains straight. 

 Through investigating the literatures, there are two assumed strain methods that 

have been exploited so far to develop solid-shell elements. They are the Assumed Natural 

Strain (ANS) of Dvorkin and Bathe [DVO84] and the Enhanced Assumed Strain (EAS) 

proposed by Simo and Rifai [SIM90]. The strain field of the EAS element is additionally 

modified to be a complete polynomial field. The strain field of the ANS element is 

replaced by an incompatible strain field that satisfies the pure bending requirement. 

Otherwise, there is a sound variational method: Mixed Enhanced Strain (MES) method 

proposed by Kasper and Taylor [KAS00b] where stresses are independent from the strain 

field. The MES method requires more variables (apart from the displacement field and 

strain field as required by the EAS and ANS methods, the MES further considers the 

stress field as variables) than the EAS and the ANS, thus is not an attractive approach.  
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Objective of the thesis is to develop a finite element that is effective for simulation 

of thin-walled behavior in metal forming processes. It means the element gives precise 

results while proposing a low computational cost. Application of that element is mainly 

exploited in springback simulation. Springback relates to the change in shape between the 

fully loaded and subsequent unloaded configurations. The springback effect is 

encountered during a stamping operation. This can result in the formed component being 

out of tolerance and thus creates major problems in assembly or installation. Accurate 

description of the contact is one of the main factors which renders metal forming 

simulation predictive or not. Let’s consider the solid-shell element. Contact algorithms 

are more easily applied for solid like elements, thanks to the geometrical description of 

the lower and upper surfaces than for shell elements where nodes lie in the mid-plane. 

However, due to limitation of a thesis, only performance of the solid-shell for springback 

simulation is mainly exploited in this thesis. 

Table 1.1.1: Features of low-order solid elements 

Element Features Application domain 

Standard The standard element exhibits deficiencies as: 

•  Volumetric locking; 

• Shear locking; 

• Poisson locking. 

• Being applicable to all 

of problems but require 

very fine mesh to 

converge 

EAS The standard element, which is enhanced by 

EAS parameters, is: 

• locking free; 

• high in computational cost. 

• Metal forming  

• Incompressible 

material, etc 

ANS The standard element, which adopts the ANS 

method, is: 

• only shear locking free; 

• cheap in computational cost. 

• Thin-walled structures 

• Collapse of shells, etc 

Solid-shell The standard element, which adopts both the 

ANS and the EAS methods, is: 

• locking free; 

• cheaper in computational cost than the EAS 

element. 

• Thin-walled structures 

• Metal forming 

• Incompressible 

material, etc. 

 

 

1.2 APPLICATION DOMAIN 

  

 Nowadays, aims of the new 3D solid elements are: 

1. No locking for incompressible materials; 

2. Good bending behavior; 

3. No locking in the limit of very thin elements; 
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4. Distortion insensitivity; 

5. Good coarse mesh accuracy; 

6. Simple implementation of nonlinear constitutive laws. 

 The first two aims are essential requirements of solid structured analyses. The 

third aim is usually required for structural elements, such as plate, shell and beam 

elements. The fourth aim is important because in discretizing an arbitrary geometry the 

existence of distorted elements is inevitable. In addition, elements can get highly 

distorted during nonlinear simulations including finite deformations. The fifth aim results 

from the fact that many engineering problems have to be modeled as 3D problems. Due 

to computer limitations, quite coarse meshes have to be used often to solve these 

problems. Thus, an element which provides good coarse mesh accuracy is valuable in 

these situations. The sixth aim is associated with the fact that more and more nonlinear 

computations involving nonlinear constitutive models have to be performed to design 

engineering structures. Thus, an element formulation which allows a straightforward 

implementation of such constitutive equations is desirable. 

 The third aim becomes increasingly important since it enables the solid elements 

to simulate shell problems. This makes the simulation work become more effective, 

especially, for simulation of complicated structures. This spares the need for introducing 

finite rotations as variables in thin shell elements, results in simpler contact detection on 

upper and lower surfaces and provides the possibility to apply 3D constitutive equations 

straight away.  

The EAS elements can satisfy all requirements, except the third one. The solid-

shell elements are the ones who could satisfy all of that 6 six requirements. Due to their 

dominant performance, the solid-shell elements are applicable to various applications in 

structural analyses. The solid-shell elements could be applied for both solid and structural 

engineering problems and in both linear and nonlinear applications (finite strain, contact, 

etc.). Concretely, the solid-shell elements are suitable choice for metal forming 

simulations, civil-engineering structures, impact/crash analysis, etc.  

  

 

SUMMARY OF THE THESIS 

  

 Nowadays, in computational mechanics, there is a trend to treat plates and shells 

as a 3D continuum, using solid finite elements or 3D-like plate and shell elements, taking 

into account thickness changes throughout deformation and using 3D material laws. The 

EAS elements are very suitable to that trend; they are applicable to almost any 

engineering problems. However, the EAS elements are sensitive to distorted mesh (e.g. 

bending patch test), and they exhibit poor performances in bending for very thin-walled 

structures. Most important is the fact that the EAS elements are very time consuming for 

calculation. In contrary, Reduced Integration (RI) elements are computational time 

saving elements. They could be free from volumetric locking and shear locking. 

However, in some situations they are not stable (due to hourglass modes), see [HAN98]. 

The solid-shell elements are attractive ones. Currently, they attract much 

consideration of researchers. They possess performance of the EAS elements while they 

are insensitive to distorted mesh. Furthermore, they are stable and time saving elements. 



6 

Obviously, because of having the solid’s configuration, the solid-shell elements are 

suitable for handling contact in metal forming simulation, particularly for simulation of 

sheet metal products whose ratio between length and thickness is large. They have only 

translational DOF’s of solid elements so they can be easily combined with the standard 

solid elements in problems dealing with complex structures meanwhile they can also 

work as shell elements. For transverse shear locking removal, the elements employ the 

ANS techniques because the ANS method is cheaper (higher performance but cheaper 

computational cost) than the EAS method in removing transverse shear locking. To get 

rid of volumetric locking and membrane locking, the elements adopt techniques of the 

EAS method. Due to the use of ANS techniques, that were originally applied for plate 

and shell elements, the solid-shell elements are able to simulate thin and moderately 

thick-walled structures.   

 The thesis includes six chapters and is structured as follows. The first chapter 

presents the objects for the research. The second chapter introduces background methods 

which will be incorporated in the solid-shell elements. The third chapter develops an 

alternative ANS technique and applies it to the solid-shell elements. As a result, in that 

chapter a new solid-shell element based on the alternative ANS technique is proposed. 

Elastic applications of the just developed solid-shell element are illustrated in Chapter 4. 

In Chapter 5, plasticity theory and numerical problems in plasticity deformation are 

presented. The thesis specially concentrates on treating a current industrial problem:  

spring back prediction. Results in Chapter 4 and Chapter 5 demonstrate the capabilities of 

the proposed solid-shell element. Chapter 6 withdraws conclusions and then makes some 

remarkable future developments.  
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Chapter 2. BACKGROUND ON THE 

DEVELOPMENT OF  SOLID-SHELL 

ELEMENTS 
 

 

INTRODUCTION 

 The solid-shell is a solid element that has incorporated shell features, e.g. ANS 

technique for shear locking and curvature thickness locking removals, and EAS or RI 

techniques for other locking effects. In order to better understand the solid-shell concept, 

let’s start considering some features of the low-order standard solid element and the 

obstacles that the solid element is facing. The difficulties when using the well-known 

degenerated shell elements are also investigated. Later in the chapter, all the methods that 

concern the solid-shell elements: the EAS (formulated in Green-Lagrange strain) [KLI97] 

and the classical ANS methods [DVO84] (applied for finite deformation solid elements) 

are introduced. These methods have been implemented in a MATLAB code. In this 

chapter separated performances of the ANS and EAS elements are presented. Details for 

their combination and co-operated performances are presented later in Chapter 3, where 

we also present how the solid-shell element remedies all the obstacles that the low-order 

standard solid elements have to overcome. 

 

2.1 THREE DIMENSIONAL STANDARD ELEMENT 

 In this section we investigate the low-order standard solid element. Let’s consider 

the following trilinear displacement field, which is conventionally employed for the 

eight-node standard element, Figure 2.1.1. To facilitate understanding, the analysis is 

restricted to a rectangular prismatic geometry element so that the physical system 

(X,Y,Z) and the isoparametric (natural) system (ξ
1
,ξ

2
,ξ

3
) can be used interchangeably. 

The displacement fields u, v and w are linearly interpolated with the help of coefficients 

ai, bi and ci (i = 0, ..., 7) stemming from a trilinear assumption: 

 

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

v

u a a X a Y a Z a XY a YZ a XZ a XYZ

b b X b Y b Z b XY b YZ b XZ b XYZ

w c c X c Y c Z c XY c YZ c XZ c XYZ

= + + + + + + +

= + + + + + + +

= + + + + + + +

 (2.1.1a) 

or under the form: 

 

1 2 1 2 1 2

* * * * * *

1 2 1 2 1 2

** ** ** ** ** **

1 2 1 2 1 2

( )( )( )

v ( )( )( )

( )( )( )

u X Y Z

X Y Z

w X Y Z

α α β β γ γ

α α β β γ γ

α α β β γ γ

= + + +

= + + +

= + + +

 (2.1.1b) 

where **

1 2 2, ,...α α γ  are constants. 

The Green-Lagrange strain components used in large deformation theories are 

given by: 
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2

2 v
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XX

Y Y Y Y Y Y YYY

Z Z Z Z Z Z ZZZcom

u

XY Y X X Y

ZX Z X

YZ Z Y

com

u

u u u w wE

u u w wE

w u u w wE

E u v u u

E u w

E w

+ +  
   + +  
   + +   

= = +   
+ +   

   +
   
   +   �����

E

ε

, , , ,

, , , , , ,

, , , , , ,

v v )

( v v )

( v v )

X Y X Y

X Z X Z X Z

Y Z Y Z Y Z

w w

u u w w

u u w w

nonlinear terms

 
 
 
 
 
 

+ 
 + +
 
 + + �������������

 

 (2.1.2) 

where:  

- The superscript “com” and the subscript “(u)” mean that the strain field is 

compatible with the displacement field.  

- ,        ;    , v,    ;    , ,i A i

u
u u u w A X Y Z

A

∂
≡ = =

∂
 ; 

- The infinitesimal strains are ( ) { , , , , , }com T

u X Y Z XY XZ YZε ε ε γ γ γ=ε .  

 For the sake of simplicity, locking effects are simply considered with infinitesimal 

strains. It means we consider infinitesimal strains ε  instead of Green-Lagrange strain E. 

All types of locking and their remedies for low-order solid elements will be mentioned in 

details in the following section.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.1 Difficulties with low-order standard elements 

 Low-order elements are preferred in nonlinear structural mechanics because of 

their low computational cost and simplicity in dealing with the geometry. However, in 

many cases, especially in pure bending problems, the low-order solid element exhibits a 

low-precision result due to stiffening effects known as locking.  

 Locking terminology 

 A number of different concepts to define, explain and quantify the locking effects 

have been discussed in the past. In the sequel it is tried to classify some of them in two 

different groups. 

 

2×2×2 Gauss integration points  

Figure 2.1.1: Hexahedral solid element 

nodal points  X  

Y 

Z 

1  2  

4  3  

5  6 

8  7  

1  2  

4  
3  

5  6  

8 7 
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 Mathematical point of view: 

 In the mathematical literature, the term “locking” is not as popular as in 

engineering literature. From a mathematical point of view, it is rather an ill-conditioning 

of the underlying mechanical problem, or the system of partial differential equations, to 

be more precise. The crucial property is the presence of a certain “small scale parameter” 

within the equations. This parameter leads to a high ratio of the coefficients in the 

discretized system of equations (e.g. the stiffness). Thus, the parasitic terms, evolving 

from unbalanced shape functions, are overly enlarged. The element “locks” if there is no 

uniform convergence with respect to this parameter (i.e. the rate of convergence in the 

range of coarse meshes depends on this parameter). According to Wilson et al. [WIL73], 

effect of the ill-conditioning will be minimized by the use of a computer with high 

(double, for example) precision or by restricting the application of the element to thick-

walled structures. 

 

 Mechanical point of view: 

 The simplest way to explain locking is to associate the effect with the presence of 

“parasitic” (or spurious) strains or stresses. With parasitic we mean such strains (stresses) 

that do not show up in the exact solution of a certain problem. These are, for instance, 

transverse shear strains in the case of pure bending of a plate element (transverse shear 

locking) or membrane strains in the case of inextensional bending of shells (membrane 

locking) or volumetric strain in the case of incompressible behavior (volumetric locking). 

In fact, the well-known locking phenomenon of displacement based finite elements for 

thin-walled beams, plates, shells and solids is caused by an unbalance of the trial 

functions.  

 It should also be mentioned, that a natural strategy to remedy locking effects is the 

design of higher order finite elements. However, they are not attractive for nonlinear 

structural analysis because of expensive computation and complicated configuration. 

Locking of certain low-order standard displacement based finite elements comes along in 

different ways, namely as volumetric locking if incompressible or nearly incompressible 

materials are used or as membrane, shear and curvature thickness locking if the stress and 

strain space is not compatible due to the spatial discretization. The phenomena presented 

hereafter are the severe locking effects that happen with the low-order standard solid 

element. Other severe locking effects which happen to the solid-shell elements are 

mentioned in the next chapter. 

 

2.1.1.1 Volumetric locking 

 If nearly-incompressible or incompressible material behavior is concerned, the 

low-order standard solid elements suffer from volumetric locking. In dealing with this 

locking, the following condition on the volumetric strain εv is required during the 

deformation process: 

 ( ) 0v

u v w
tr

X Y Z
ε

∂ ∂ ∂
= = + + ≡

∂ ∂ ∂
ε  (2.1.3) 

 With the above tri-linear displacement field (2.1.1), the volumetric strain com

v
ε  is 

correspondingly calculated as: 
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1 2 3 4 6 4 5 6 5 7 7 7( ) ( ) ( ) ( ) ( )com

v
a b c b c X a c Y a b Z c XY a YZ b ZXε = + + + + + + + + + + +  (2.1.4) 

 The volumetric strain (2.1.4) can be constrained to be zero by imposing that the 

coefficients of each term in (2.1.4) vanish as:    

 

1 2 3

4 6

4 5

0

0

0

a b c

b c

a c

+ + =

+ =

+ =

  

(2.1.5a) 

(2.1.5b) 

(2.1.5c) 

 
6 5

7 7 7

0

0   ;    0   ;   0 

a b

a b c

+ =

= = =
 

(2.1.5d) 

(2.1.5e) 

 But the volumetric strain com

v
ε  is generally non-zero, since the presence of the 

terms a7, b7 and c7 in the sense that they come from isolated terms of u or v or w, see 

(2.1.1). These isolated terms are different from zero in order to assure the completeness 

of interpolation functions. In other words, the terms a7, b7 and c7 make com

v
ε  usually 

different from zero. Forcing the incompressibility condition (e.g. for ν = 0.5 in elasticity 

or for incompressible plasticity such as J2 von Mises plasticity) will impose 

7 7 7 0a b c= = =  and thus an excessive stiffness is generated by this condition hence the 

name locking.  

Consequently, the constraint of an incompressible material, (2.1.3), cannot 

generally be fulfilled by the normal strains of the pure displacement element. The effect 

of this deficiency on the deformation behavior of an element can be explained by using 

the internal energy. The internal energy intπ  of an element consists of a deviatoric term 

d
π  and a volumetric term 

v
π . It is defined by eee uKu T

int )(
2

1
=π  and the relative 

contribution of deviatoric and volumetric deformation to the element stiffness can be 

shown to be: 

 2 : 3 : 2 : ( )

e e e e

2

int d v d d e v v e d d e e

V V V V

G dV dV G dV tr dVκ κπ π π= + = + = +∫ ∫ ∫ ∫ε ε ε ε ε ε ε  (2.1.6) 

with:  - bulk modulus G
)21(

)1(

3

2

ν

ν
κ

−

+
= ; 

- volumetric strains 
1

    
3

ii
tr( ) ; i 1,2,3ε= =v I =  ε εε εε εε ε ; 

 - deviatoric strains = −d vε ε εε ε εε ε εε ε ε . 

In contrast to all other known locking effects, which are primarily kinematic or 

geometric effects, volumetric locking depends on a material parameter, Poisson’s ratio ν. 

Therefore, also the term Poisson locking is sometimes used in the literature. It is 

straightforward to consider the bulk modulus as the critical parameter. For ν = 0 there is 

no spurious volumetric locking at all; the effect becomes more and more pronounced as ν 

� 0.5 because limκ(ν →0.5)= ∞. In solid mechanics this effect can occur, e.g. for rubber 

materials, but also for metals in the range of plastic deformations (yielding). 

 The bulk modulus κ becomes very large for 
2

1→ν  . If )(εtr  is not vanishing, the 

stiffness of one element or a group of elements will thus be much larger than the stiffness 

of the real incompressible continuum, for which the term 
v

π  is vanishing. For the 

standard solid element, since the incompressible condition (2.1.3) cannot be 

accomplished, consequently, an undesirable stiffness is added to the rigidity of the 
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element and it makes the element stiffer than the real continuum. In other words, the non-

zero volumetric strain com

v
ε  leads to volumetric locking.  

2.1.1.2 Shear locking 

 Transverse shear locking can occur in shear deformable beam, plate and shell 

elements. In principle, it is also present in solid elements if these are applied to the 

analysis of thin-walled structures. However, with solid elements, it is simply called 

“shear locking”, because there is no distinct “transverse” direction in a solid element. On 

the contrary, the solid-shell elements take the shell behavior in thickness direction hence 

the transverse direction is distinct. Shear locking in the solid elements is one of the most 

severe locking effects because it does not only slows down the convergence but also can 

essentially preclude an analysis with a reasonable  amount of numerical effort in practical 

applications. 

From the classical theory of elasticity when the element is subjected to a pure 

bending situation, such as bending in 0X direction around 0Z axis (Figure 2.1.1), the 

shear strain, XYγ  in this case, must vanish. However, with the above trilinear field (2.1.1), 

the shear strain com

XYγ  in (2.1.2) is calculated as: 

 2 1 5 6 4 4 7 7( ) ( )com

XY

u v
a b a b Z a X b Y a XZ b YZ

Y X
γ

∂ ∂
= + = + + + + + + +

∂ ∂
. (2.1.7)

 That shear strain is generally non-zero. It is equal to zero only when the 

coefficients of each term vanish as:    

 
2 1 5 6

4 4 7 7

0;     0;

0;       0;       0;    0;

a b a b

a b a b

+ = + =

= = = =
 

(2.1.8a) 

(2.1.8b) 

 Equations (2.1.8a) contain coefficients from both the contributing interpolation 

functions (u  and v ) which are relevant to the description of the shear strain field com

XYγ . 

Hence, these coefficients can correctly represent a true zero condition on shear strain com

XYγ  

when 12 ba −=  and 65 ba −= . Each equation (2.1.8b) contains only an isolated term from 

u  or v ,  ( 4a  or 7a ) and ( 4b or 7b ). In general, these isolated terms are different from zero 

in order to assure the completeness of interpolation functions, see (2.1.1). As a 

consequence, these coefficients make com

XYγ  also different from zero. In other words, the 

presence of coefficients 4a , 4b , 7a  and 7b  in com

XYγ  cause shear locking, hence, they are 

called inconsistent terms [CHA89]. 

  The same arguments are applied for the other shear strain components com

YZγ , com

XZγ : 

 3 2 6 4 5 5 7 7( ) ( )com

YZ

w v
b c b c X b Y c Z b XY c XZ

y z
γ

∂ ∂
= + = + + + + + + +

∂ ∂  

 
3 1 5 4 6 6 7 7( ) ( )com

XZ

u w
a c a c Y a X c Z a XY c YZ

Z X
γ

∂ ∂
= + = + + + + + + +

∂ ∂
 

(2.1.9a) 

(2.1.9b)

 The shear strain com

YZγ  is equal to zero only when the coefficients of each terms in 

(2.1.9a) vanish as:    

 
;0   ;0      ;0      ;0

;0    ;0

7755

4623

====

=+=+

cbcb

cbcb
 

(2.1.10a) 

(2.1.10b) 

 Similarly, the shear strain com

XZγ  is equal to zero only when the coefficients of each 

terms in (2.1.9b) vanish as:    
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;0   ;0      ;0      ;0

;0    ;0

7766

4513

====

=+=+

caca

caca
 

(2.1.11a) 

(2.1.11b) 

 Consequently, non-physical effects with compatible shear strains cause the so-

called shear locking for the standard elements by introducing artificial flexural stiffness. 

This phenomenon is essential with the vanishing of the thickness of standard elements in 

the modeling of bending dominated problems.  

 

Table 2.1.1: Deformation modes of bilinear element (2D.Q1) 

c1 c2 c3 c4 c5 c6 c7 c8  

Mode 

    
 

  
  

u 1 0 X 0 Z 0 XZ 0 

w 0 1 0 X 0 Z 0 XZ 

εX 0 0 c3 0 0 0 c7Y 0 

εZ 0 0 0 0 0 c6 0 c8X 

γXZ 0 0 0  c4 c5 0 c7X c8Z 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

For the sake of more clarity, let’s investigate deformation modes of a beam in 

bending, Figure 2.1.2. Deformation of the beam is assumed to be independent of Y – the 

width direction. In that case, the displacement field (2.1.1) becomes: 

 
( , ) 1 3 5 7

( , ) 2 4 6 8

X Z

X Z

u c c X c Z c XZ

w c c X c Z c XZ

= + + +

= + + +
 (2.1.12)

It means the trilinear eight-node hexahedral element reduces to the bilinear four-

node quadrilateral element. Let’s consider deformation modes of the displacement field 

(2.1.12). All of those deformation modes are tabulated in Table 2.1.1. 

In Table 2.1.1, c1 and c2 are rigid body modes. c3 to c6 are constant strain modes 

and c7 and c8 are linear strain modes. When an in-plane bending deformation happens, it 

means bending in X-direction around Z-axis, the mode No. 7 is active – only the 

coefficient c7 is non-zero, thus leading to a parasitic linear shear strain γXZ in X-direction 

(see Table 2.1.1). In other words, it is impossible to find a linear combination of modes 

that leads to a linear variation of εX in Z-direction without being accompanied by shear 

b) FEM representative 

0XZγ ≠  in general 

a) Continuum mechanics 

0XZγ =  

Figure 2.1.2: Pure bending of a rectangle 

X 

Z 

X 

Z 

0 
0 

F 

F 
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F 

2a 

M M 

T=0 T=0 

2
b
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strain γXZ. This phenomenon is the manifestation of (transverse) shear locking. The same 

is, in turn, true for the bending in Z-direction (see Table 2.1.1 - mode 8). 

 Let’s investigate analytical solution of a beam of rectangular cross section which 

is bent by two equal and opposite couples M (Figure 2.1.2). Stress components of the 

beam are: 

 

0

Z

X XZ

MZ

I
σ

σ τ

=

= =

  (2.1.13) 

where I  is the area moment of inertia of the beam cross section. 

From (2.1.13) and stress-strain relations we attain displacement components by 

integrating strain-displacement relations, see [DUR58]. Finally, the analytical 

formulations for displacements are: 

 
( , ) 1 2

2 2

( , ) 1 3( )
2

CM

X Z

CM

X Z

M
u XZ C Z C

EI

M
w X Z C X C

EI
ν

= + +

= − + − +

  (2.1.14) 

where 1C , 2C  and 3C  are constants of integration. The superscript “CM” means that the 

displacement field is calculated by the continuum mechanics. 

If we impose the boundary conditions as: symmetric plane of the beam is the plane 

which goes through X=0; vertical displacement at the 4 corners is equal to zero. Then, the 

analytical solution of the problem in Figure 2.1.2 is: 

 
( , ) 1

2 2 2 2 2 2 2 2

( , ) 1 2

1
( ) ( ) ( ) ( )

2 2 2

CM

X Z

CM

X Z

M
u XZ XZ

EI

M M
w a X b Z a X b Z

EI EI

α

ν α α

= =

= − − − = − − −

  (2.1.15) 

where 1
M

EIα =  and 22
M

EI
να =  are constants. The constant 2α  is a function depends on 

material properties, for Poisson’s ratio equal to zero that constant is 02 =α . 

 The analytical strains calculated from (2.1.15) are:            

 

1

2

   0              if        0

2 Z         if        0

0

CM

X

CM

Z

CM

XZ

Z

u w

Z X

ε α

ν
ε

α ν

γ

=

=
= 

− ≠

∂ ∂
= + =

∂ ∂

 
 (2.1.16) 

 Obviously, the solution (2.1.15) satisfies the pure bending condition – zero shear 

strain constraint. 

 For finite element solution, when pure bending occurs, only the mode 7 (Table 

2.1.1) is active, it means: 

 
( , ) 7

( , ) 0

X Z

X Z

u c XZ

w

=

=
  (2.1.17) 

 Hence, compare with the analytical solution, the form of error in the numerical 

solution is: 
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 2 2 2 2

( , ) 1 2( ) ( ) ( )X ZError w a X b Zβ β= − + −   (2.1.18) 

    

 

 

 

 

 

 

 

 

 

 

 

Therefore, the errors in strains are followed by the errors in displacement as:            

 2

7

   0              if        0
( )

2 Z        if        0

( )

Z

XZ

Error

Error c X

ν
ε

β ν

γ

=
= 

− ≠

=

  (2.1.19) 

 These errors cause parasitic stresses as shown in Figure 2.1.3. In fact, the 

Error( XZγ ) causes shear locking, the Error( Zε ) causes Poisson thickness locking (will be 

discussed in the next section). 

In conclusion, shear locking happens because normal strains of linear elements are 

coupled by shear strains. Elements do not have pure bending modes to behave correctly 

for pure bending load cases. The consequence is there are parasitic shear strains appear 

simultaneously with normal strains, which are physical in pure bending cases. These 

shear strains are important compared to the normal strains. 

Consider the pure bending problem under the point of view of the continuum 

mechanics theory. In pure bending, the applied moment is constant and then shear stress 

must vanish since the shear stress is the derivative of the bending moment with respect to 

the axial coordinate. When solving the pure bending problem by the finite element 

method, since the shear stiffness is often significantly greater than the bending stiffness, 

the spurious shear absorbs a large part of the energy induced by the external forces and 

the predicted deflections and strains are much too small. In other words, the additional 

shear stress in the element (which does not occur in the actual beam) causes the element 

to reach equilibrium with smaller displacements, i.e., it makes the element appear to be 

stiffer than it actually is and gives bending displacements smaller than they should be. 

Long, slender structures in bending have greater curvature than do short, deep ones, and 

when modeled with low-order elements, will be affected more by shear 

locking. Increasing the number of elements will allow a more accurate modeling of the 

curvature, and reduce the effects of shear locking. Shear locking is prevented through the 

use of high order elements. 

0

x

y

0

x

y

b) σZ (υ ≠ 0) a) σXZ 

Figure 2.1.3: Errors in stresses – in pure bending 

z 
z 
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2.1.1.3 Poisson thickness locking 

 Also in bending problems, e.g. bending in 0X direction around 0Z axis (Figure 

2.1.2), a linear distribution of strain CM

Zε  over the thickness in the 0Z direction, see 

(2.1.16b) 22 ZCM

Zε α= − , is theoretically expected. However, the standard element (2.1.12) 

gives only a constant strain (with respect to Z) as: 

 6 8

com

Z

w
c c X

z
ε

∂
= = +

∂
 (2.1.20)

 This constant (with respect to Z) approximation of the strain com

Zε  in the thickness 

direction is contrary to the linear variation along 0Z of CM

Zε . In the real structure, due to 

Poisson effect the normal strain ( CM

X

MZ

EI
ε = ), which linearly vary in the 0Z direction, 

would cause a transverse normal strain also linearly varies along 0Z ( CM CM

Z Xε νε= − ). 

However, it is not the case with com

Zε  calculated by the low-order interpolation function, 

see (2.1.20). Consequently, the transverse normal stress in 0Z direction, which is 

calculated as  

 [(1 ) ]
(1 )(1 2 )

com com com

Z Z X

E
σ ν ε νε

ν ν
= − +

+ −
 (2.1.21)

is not equal to the analytical solution along the thickness when bending occurs. It leads to 

an undesired locking, which is known as Poisson thickness locking phenomenon.  

 In general, Poisson thickness locking is due to the resulting incorrect-linear 

distribution of the normal stress in thickness direction. That locking effect does not 

diminish with mesh refinement in all directions except the thickness direction (layers). 

 

2.1.2 Solution for a locking free element 

As discussed above, the low-order standard solid element suffers from locking 

effects. It has been pointed out that the stiffening in the case of incompressibility is 

caused by redundant terms in the normal strains. Using the SRI method, will be discussed 

at the end of this chapter, is one of the best way for eliminating volumetric locking. 

Restriction of the SRI method is that the applied material laws must allow a decoupling 

stress and also strain into volumetric parts and deviatoric parts. Volumetric locking could 

also be vanished by inserting suitable enhancing components in order that the 

incompressible condition (2.1.3) be satisfied. The use of the EAS method with nine 

volumetric modes (see Section 2.4), as proposed by Andelfinger and Ramm [AND93], 

assures that all three normal strains iiε  consist of the same polynomial fields, then no 

spurious constraint is produced. Disadvantage of this way is highly computational cost 

for each element because the enhancing strains making the element system of equations 

larger. In the thesis, only three EAS internal parameters are used to remove volumetric 

locking for solid-shell element, see Chapter 3.  

Shear locking for solid elements can be removed by the ANS method. Detailed 

discussions are presented in Section 3.3.  

To overcome Poisson thickness locking additional terms with linear distribution in 

thickness direction must be introduced for the transverse normal strains. This also assures 
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the stress field σz correctly varies linearly along the thickness in bending situations. 

Using the EAS method, the terms (ξ
3
, ξ

1
ξ

3
, ξ

2
ξ

3
) of EAS7 element (see Section 3.4 below) 

can be used to circumvent Poisson thickness locking.  In fact, the constant normal strain 

in thickness direction is enhanced with a linear extension over the thickness and linear in 

in-plane direction according to the EAS method. 

In general, it is quite possible to use standard solid elements for the analysis of 

shell-type structures if one can overcome the following problems as pointed out by 

Wilson et al. [WIL73]: 

1. Most solid elements have not had ability to represent accurately bending 

moments.  

2. Due to the full integration, i.e. 2×2×2 Gauss integration (see Figure 2.1.1), 

the element will behave badly for isochoric material behavior, i.e. for high 

values of Poisson's ratio or plastic behavior (due to volumetric locking, see 

SRI method at the end of this chapter for a reference solution).  

3. Errors in the transverse shear cause the element to be very stiff (transverse 

shear locking). 

4. For simulation of thin shells, because the thickness of the element is 

relatively small compared to the in-plane dimensions there are relatively 

large stiffness coefficients in the thickness direction of numerical problems 

that are introduced. This effect makes the simulation problem ill-

conditioned. 

 The design of the solid-shell elements aims to overcome these disadvantages of 

the standard solid element. Indeed, the first two problems can be solved by the use of the 

EAS method. The third and fourth problems can be minimized by applying the ANS 

method originally developed for thin shell elements. Practically, the solid-shell elements 

adopt the EAS technique for the in-plane shear strains and in-plane normal strains, and 

adopt the ANS technique for the transverse shear strains and transverse normal strain. As 

a result, the solid-shell elements may overcome all of the above difficulties. Thanks to 

intrinsic performance of the ANS method, the solid-shell element can be applied not only 

for thin but also for moderately thick shell structures. 

 

2.2 INTRODUCTION TO CONVENTIONAL SHELLS 

 In this section the conventional shell elements are briefly introduced. Some basic 

concepts mentioned here are useful for building the solid-shell elements. We will briefly 

discuss about disadvantages of the conventional shell elements compared with the solid-

shell elements, such as modified material models, variation of thickness strains, 

contradictions of assumptions for shell elements, etc.  

 Basically, the conventional shell finite elements are developed from one of the two 

following approaches: 

 1. Develop the formulation for shell elements by using classical strain, 

displacement and momentum (or equilibrium) equations for shells to develop a weak 

form of the momentum (or equilibrium) equations. 
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 2. Develop the element directly from a continuum element by imposing the 

structural assumptions on the weak form or on the discrete equations; this is called the 

continuum based approach. For example, the kinematic assumptions will be imposed on 

the discrete equations, i.e. the continuum finite element will be modified so that it 

behaves like a shell [AHM70], [DVO84]. 

 The first approach, also called classical shell theories, is difficult, particularly for 

nonlinear shells, since the governing equations for nonlinear shells are very complex and 

awkward to deal with. They are usually formulated in terms of curvilinear components of 

tensors, and features such as variations in thickness, junctions and stiffeners are generally 

difficult to incorporate. There is still a disagreement as to what are the best nonlinear 

classical shell equations [STO95]. 

 The continuum-based approach, on the other hand, is straight forward, yields 

excellent results, is applicable to arbitrarily large deformations and is widely used in 

commercial softwares and researches. The popular continuum-based method used in 

structural analysis is called the degenerated continuum approach, see e.g. Ahmad et al. 

[AHM70].  

 

2.2.1 Classical shell theories 

  Earlier, a shell was considered as a curved form of a plate and its structural action 

is a combination of stretching and bending [ZIE00b]. It is possible to perform a finite 

element analysis of a shell by using what is called a facet representation - i.e. the shell 

surface is replaced by a flat triangular and/or quadrilateral plate elements in which a 

membrane stiffness (membrane element) is superposed on a bending stiffness (plate 

bending element). Such a model is understandably inaccurate in the sense that with very 

coarse meshes, they do not capture the bending-stretching coupling of thin shell behavior. 

Hence, the motivation for designing elements is twofold: mid-surface curvature has to be 

taken into account and the element has to capture the membrane-bending coupling 

correctly. There are two types of kinematic assumptions, those that admit transverse 

shear strains and those that don't. The theory which admit transverse shear strains are 

called Mindlin-Reissner theories, whereas the theory which does not admit transverse 

shear strains is called Kirchhoff-Love theory. The essential kinematic assumptions in 

these shell theories are: 

1. The normal to the mid-surface remains straight and normal (Kirchhoff-Love 

theory). 

2. The normal to the mid-surface remains straight (Mindlin-Reissner theory). 

 Shell theories, see [ZIE00b],  proved that the Kirchhoff-Love assumptions are the 

most accurate in predicting the behavior of thin shells. For thick shells, the Mindlin-

Reissner assumptions are more accurate because transverse shear effects become 

important. Transverse shear effects are particularly important in composites. Mindlin-

Reissner theory can also be used for thin shells. In that case the normal will remain 

approximately normal and the transverse shear strains will almost vanish. 

 The assumptions for Kirchhoff-Love shell theory are: 

1) The shell is thin compared to the radius of curvature, i.e. t/R << 1. 

2) The linear and angular deformations of the shell are small. 
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3) The transverse normal stress is negligible: 0=ZZσ . 

4) The normals to the reference plane before deformation remain normal, straight 

and inextensible after deformation. 

 The first assumption is the most basic since it implies the other three. It means the 

assumption 1) cannot be violated without violating assumptions 2-4. Assumption 2) in 

effect means that the state of the deformed shell can be related directly to the state of the 

non-deformed shell. Assumption 3) is reasonable for thin shells (except for plasticity) and 

has no further implications besides simplifying the derivation of the governing equations. 

Assumption 4) has two implications; first, the inextensibility assumption implies zero 

normal strain ( 0=ZZε ); second, the normal remains normal, this assumption eliminates 

the possibility of transverse angular distortions and consequently, lead to neglect the 

transverse shearing ( 0XZ YZγ γ= = , see the coordinate system in Figure 2.1.1). 

 Mindlin-Reissner theory is applied for thin to thick shells. The kinematic 

assumptions are: 

1. The normal to the mid-surface remains straight throughout deformation. 

2. The length of the normal remains unchanged throughout deformation. 

3. Transverse normal stresses are negligible 0=ZZσ . 

 When Poisson’s ratio is not equal to zero the latter two assumptions are 

contradictory because the normal must stretch when 0=ZZσ . Reissner’s and Mindlin’s 

theories differ from each other in the way they solve this problem. While Reissner 

assumes a cubic variation in thickness direction of the transverse normal stresses, 

Mindlin manipulates the material law in order to comply with his assumptions. Although 

conceptually different, both theories practically lead to the same results for transverse 

displacements, shear forces and bending moments in actual structural analysis. The 

method of Mindlin is simpler so it is popularly applied for numerical plate and shell 

models. In order to construct the finite element formulas, the Mindlin method requires the 

variational principle with only a displacement field but the Reissner method needs two 

fields (displacement and stress) variational principle. 

 Although these elements have the advantage of being able to account for the 

transverse shear that occurs for thick shell, low-order forms of these elements are subject 

to shear locking.  

 Employing the first and second assumptions makes the transverse shear strains are 

constant over thickness direction. Meanwhile, employing the third assumption requires 

modifications of the 3D-material law. This work is not simple in such an approach, 

especially for complicated material laws which are described only for 3D-continuum.  

 In order to use 3D-material laws directly, the normal stress in the thickness 

direction must be taken into account. This leads to an interpolation of the extensible 

director vector (defined in Figure 2.2.1), see [BET96], [BIS97]. 

 

2.2.2 Degenerated shell elements 

 There were various shell elements whose formulations are derived from the 

degeneration concept introduced by Ahmad et al. [AHM70]. The core of this concept is 
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the discretization of a 3D mathematical model with 3D elements and their subsequent 

reduction into 2D elements. As classified above, the degenerated shell elements are built 

from a so-called continuum based approach (CM). In comparison the CM to shell theory, 

it is not necessary to develop the complete formulation, i.e. developing a weak form, 

discretizing the problem by using finite element interpolations, etc. The degeneration of 

this 3D shell element is done by eliminating the nodes with the same (ξ
1
, ξ

2
) coordinates 

into a single node located at the mid-surface of the element, as shown in Figure 2.2.1. 

 The procedure when creating a shell element using the degenerated solid approach 

is to eliminate nodes by enforcing different constraints on the behavior of the element. 

First, nodes on the mid-surface are removed (nodes 17 to 20, Figure 2.2.1), 

corresponding to assuming constant transverse strains. Then, opposite nodes (1&9, 3&11, 

5&13, 7&15; 2&10, 4&12, 6&14, 8&16) are linked by assuming equal displacements (u, 

v and w) and assigning two rotational DOF’s ( xθ  and yθ ) to each pair of nodes. Finally, 

the motion of each straight line is described by five DOF’s in one node, lying on the 

reference surface, Figure 2.2.1b. 

 

Assumptions: For the shear deformable shells, the following assumptions are made: 

1. The fibers (line connects bottom node with top node) remain straight. The unit 

vector along each fiber is called a director vector; 

2. The element is in a plane stress state, so 0=ZZσ ; 

3. The elongation of the fibers is governed by conservation of mass and/or the 

constitutive equation. 

The first assumption will be called the modified Mindlin-Reissner assumption. It 

differs from what we call the classical Mindlin-Reissner assumption, which requires the 

normal to remain straight; the fibers are not initially normal to the midline. For the CM 

shell element to satisfy the classical Mindlin-Reissner assumptions, it is necessary for the 

fibers to be aligned as closely as possible with the normal to the midline. This can be 

accomplished by placing the slave nodes (nodes of the original solid element) so that the 

fibers are as close to normal to the midline as possible in the initial configuration. 

Otherwise the behavior of the degenerated shell element may deviate substantially from 

classical Mindlin-Reissner theory and may not agree with the physical behavior. 

Obviously, it is impossible to align the fibers with the normal exactly along the entire 

length of the element when the motion of the continuum element is C
0
. Contrarily, if the 

fibers are inclined too much with respect to the normal while the transverse normal strain 

is taken into account, there is an effect call curvature thickness locking occurs, see 

Chapter 3 for more details. 

 Instead of the third assumption, many authors assume that the fibers are 

inextensible. Inextensibility contradicts the plane stress assumption: the fibers are usually 

close to the z direction and so if 0=ZZσ , the strain in the z direction generally cannot 

vanish. The assumption of constant fiber length is inconsistent with the conservation of 

mass: if the shell element is horizontally stretched, it must become thinner to conserve 

mass. Therefore, if the thickness strain is calculated through the constitutive equation via 

the plane stress requirement, conservation of mass is enforced. The important feature of 

the third assumption is that the extension of the fibers is not governed by the equations of 

motion or equilibrium. From the third assumption, it follows automatically that the 
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equations of motion or equilibrium associated with the thickness modes are eliminated 

from the system. 

  

 

 

 

 

 

 
 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The third assumption can be replaced by an inextensibility assumption if the 

change in thickness is small. In that case, effect of the thickness strain on the position of 

the slave nodes is neglected, so that the nodal internal forces do not reflect changes in the 

thickness. The theory is then applicable only to problems with moderate strains (on the 

order of 0.01, for instance).  

 The degenerated shell elements are in general cheap in computational cost due to 

the reduced number of DOF and using coarse mesh. The major shortcoming of the 

elements is the problems of locking for thin shells. However, the degenerated shell 

elements are attractive since they propose a simple method without discretization of the 

governing shell equation as in the case of the direct formulations - the classical shell 

theories. We have presented above a brief discussion about shell elements. In the next 
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chapter we will discover performances of the one called solid-shell in comparison with 

the degenerated and classical shell elements in simulating thin-walled structures. 

 

2.3 INCOMPATIBLE DISPLACEMENT ELEMENT 

Incompatible method, also called assumed displacement method, is derived from 

the potential energy variational principle. In the thesis the incompatible method is 

presented as a reference to motivate for the EAS method. Hence, the incompatible 

method is briefly introduced and only considered in linear elastic theory.  

The standard solid elements pose the following difficulties: locking phenomena 

for bending and incompressible problems. By adding incompatible displacements to 3-D 

isoparametric nodes, the mentioned difficulties are canceled. 

  

2.3.1 Finite element formulation 

Consider a continuum body occupying a volume V in a space of boundary surface 

A. Assume that the body force and the tension force are conservative and the object is in 

static state. Under the theory of linear elasticity, the principle of minimum potential 

energy can be stated as: 

 
( )

* *

( ) ( )

1
( )

2

com T com

V A V

dV dA dV

σ

ρπ = − ⋅ − ⋅∫ ∫ ∫
4

u uu
C u t u bε εε εε εε ε  

(2.3.1) 

When the solid continuum is discretized into a finite number of elements, the 

above variational is rewritten in the form as: 

 ( )
4

1

1
( ) ( )  * *

2e e

Nele
e T e e e e e

e V A

dV dA

σ

π
=

   
= − ⋅ − ⋅  

    
∑ ∫ ∫u

Du C Du u b u t   (2.3.2) 

where  Nele : number of elements. 

 In the finite element formulation the element displacements eu  are interpolated in 

terms of nodal displacements that may be at both boundary nodes (Serendipity elements) 

and internal nodes (Lagrange elements). Elements can also be formulated by adding to 

the original element displacements 
eu , which are in terms of nodal displacements 

eU , 

higher-order displacements λ , which are not expressed in terms of nodal displacements 

of the boundary nodes. For example, the displacements u  and v  for the standard four-

node quadrilateral element are based on bilinear interpolation functions. They are 

incomplete in quadratic terms, see (2.1.12). Improvement of the performance of a four-

node element can be made by adding terms such that the displacements are complete in 

quadratic terms. Wilson et al. [WIL73] suggested the addition of incompatible 

displacements that vanish at all corner nodes. In these cases the element strain 
eDuε =  

can be expressed as 
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where  

 λBB , u  are compatible strain matrix and incompatible strain matrix, respectively. 

 
eU  is nodal displacement vector and eΛ  is incompatible mode vector of element: 
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with Nnode  is the number of nodes per element; inMod  is the number of incompatible 

modes per element.  

 Introducing (2.3.3) into (2.3.2) we have: 
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where: 

- The standard stiffness matrix of the element is: 

  dVu

T

V

u
e
uu

e

BCBk 4

0

)(∫=   (2.3.6) 

- The incompatible-standard stiffness matrix of the element is defined as: 

  dVu

T

V

e
u

e

BCBk 4

0

)(∫= λλ   (2.3.7) 

- The incompatible stiffness matrix of the element is defined as: 

  dV
T

V

e

e

λλλλ BCBk 4

0

)(∫=   (2.3.8) 

- The standard nodal force vector is: 

  ( ) ( )
e e

T T
e e e

ext u u

V A

dV dA

σ

= +∫ ∫f N b* N t *   (2.3.9) 

- The incompatible nodal force vector is defined as: 

  ( ) ( )
e e

T T
e e e

V A

dV dA

σ

λ λ λ= +∫ ∫f N b* N t *   (2.3.10) 

with λN  are the incompatible shape functions.  

The incompatible vector eΛ  consists of internal variables hence it can be 

condensed out of the variational formulation by setting 0/ =∂∂ Λπ  in order to get eΛ  in 

function of 
eU  as:   
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 Then, the total potential energy ( )uπ  is rewritten: 
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where the equivalent element stiffness matrix is 

  1( ) ( )e e e T e e

uu u uλ λλ λ
−= −k k k k k   (2.3.13) 

and the equivalent nodal force vector is 

  1( ) ( )e e e T e e

ext uλ λλ λ
−= −f f k k f   (2.3.14) 

 Assembling ek  into the global stiffness matrix K  and ef  into global nodal vector 

F , finally, the total potential energy ( )uπ  is: 

 ( ) FUUKUu ⋅−⋅⋅=  )(  )(
2

1 TTπ   (2.3.15) 

where:  

- U  is the global nodal displacement vector;  

- 
1

Nele
e

e=

=∑K k ;  

- 
1

Nele
e

e=

=∑F f . 

Let’s take the first variation of ( )uπ  with respect to global displacement vector U  

and impose it equal to zero, ( ) 0/ =∂∂ Uuπ , the equation for displacement solution is 

 FUK =⋅   (2.3.16) 

 After the solution process, solving system (2.3.16), all the nodal displacements are 

known. Other variables, strains and stresses, are obtained as in the standard manner. 

    In the next section, the EAS method, based on the three field Hu-Washizu 

variational principle, is presented. The EAS method is considered as a generalized 

approach of the incompatible method as pointed by Simo and Rifai [SIM90]. 

 

2.4 EAS ELEMENT 

 
 Due to their efficiency and simple geometry, low-order solid elements are often 

preferred in structural mechanics. As mentioned above, the low-order standard 

displacement elements exhibit, in many cases, severe stiffening effects known as locking. 

Shear locking occurs when simulating thin-walled structures by the low-order standard 

displacement elements, where pure bending modes are spoiled by parasitic shear strains. 

Membrane locking is encountered in high aspect ratio elements when bending modes 
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cannot be separated from membrane strains and, thus, not allowing the verification of 

pure inextensional modes. For incompressible or nearly incompressible conditions, 

volumetric locking may also occur; in this case, deviatoric modes always come along 

undesirably with volumetric strains. The class of EAS elements presented below allows 

the systematic development of low-order elements with enhanced accuracy for coarse 

meshes.   

 The EAS elements have been applied to simulate geometrically and materially 

nonlinear problems due to the fact that they perform well in severe situations as the 

nearly incompressible limit and pure bending situations. Compared with almost all finite 

elements, the EAS elements show very good coarse mesh accuracy. In general, a low-

order free-locking element can be developed based on EAS technique. 
  

2.4.1 Variational formulation 

Initially proposed by Simo and Rifai [SIM90] for small strains, the EAS method, 

which involves the three field variational principle of Hu-Washizu, was lately extended 

to the finite strain theory by Simo and Armero [SIM92] and open to the 

thermomechanically coupled behavior [ADA05]. When incorporated with the ANS 

technique, that assumes directly on strain components, a formulation in terms of the 

Green-Lagrange strains is however more favourable than the one based on the 

displacement gradient. In the light of this consideration, the following form of the Hu-

Washizu principle is taken as the variational principle for a hyperelastic material: 
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where:  

- 
int

π  and extπ : internal and external energies, respectively; 

- The script “*” denotes prescribed values; 

- u : admissible displacement field; 

- S : admissible second Piola-Kirchhoff stress field; 

- tb, : body force and surface traction vectors, respectively; 

- )(ESW : stored energy function; 

- 
com

)(uE  : admissible Green-Lagrange strain field. In the thesis, the letter “com” in 

upper position designates for compatible quantities. 

In (2.4.1), the body under consideration occupy a volume 0V  and has the boundary 

uAAA ∪= σ where σA  denotes the prescribed traction (
*t ) parts while uA  denotes the 

prescribed displacement (
*u ) ones. As the thesis concentrates on quasi-static problems, 

hence, the inertial force in (2.4.1) is not considered. Furthermore, the body force and 

surface traction are assumed to be conservative. 

In (2.4.1), three independent fields are the strain field E , the stress field S  and the 

displacement field u . According to the EAS method the independent strain field is 

proposed as:  
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  ( )

mod com enh
≡ = +uE E E E  (2.4.2) 

The strain tensor 
enh

E  in (2.4.2) is named the enhanced assumed strain field. The 

strain tensor 
mod

E  is named the modified strain field. Introducing the modified strain 

field 
mod

E  into (2.4.1) we have the Hu-Washizu principle as the variational basis for the 

EAS method: 
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 Once the modified strain tensor 
mod

E  is obtained, the gradient deformation tensor 
modF  can be consistently derived through the use of a polar decomposition, see Section 

3.5.1. In (2.4.3), three fields u , 
mod

E  and S  are independent, while  the two fields t  and 

S  relate together through the Cauchy’s stress theorem. 

 In order to pass the patch test, see details in Section 2.4.4, the approximation of 
enh

E  and S  are chosen to satisfy the following orthogonality condition as proposed in 

[SIM90]: 

 ∫ =
0V

ES 0: dV
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 (2.4.4) 

 Applying (2.4.4) in combination with (2.4.2) the three field variational (2.4.3) 

reduces to a two field variational principle as below: 
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 The first variation 
( )

enhδπ
u,E

 immediately follows: 
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where: 

- intπδ : the variation of the internal term 

   :)(
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 and the second Piola-Kirchhoff stress 
mod

S  is given by 

  
mod

Smod W

E
S

∂

∂
=  (2.4.8) 

- extπδ : the variation of the external term 

  

0
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ext

A V

dA dV

σ
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 The orthogonality (consistency) condition (2.4.4) can be interpreted such that the 

variationally consistent stress field of an EAS element is complementary to the enhanced 

strain interpolation. 
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 Following the finite element method, the approximation of the current geometry 

vector x  and displacement vector u  at the element level are read as: 

 ( ) ( )
he

),,(
321 ξξξξξ xNx =       and   ( ) ( )

he UNu ξξ =        (2.4.10) 

where:  

- superior index “e” refers to quantities at the element level; 
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 in which: 
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 with the standard trilinear shape functions as    
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; I=1-8 is nodal number.  (2.4.13) 
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h
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x  and 
hU  are the vectors of nodal coordinates and nodal displacements, 

respectively. They are defined as follows 

   
]       ...          [

]      ...          [

888222111

888222111

WVUWVUWVU

zyxzyxzyx

h

h

=

=

U

x
 (2.4.14) 

- The superscript “h” refers to nodal values.  

 The displacement variation and increment are required by the linearization of the 

variational. The displacement variation ( )
e

ξδu  are interpolated as: 

  ( ) ( )
he

),,( 321 ξξξ
δδ UNu ξξ =       (2.4.15) 

The displacement increment ( )
e

ξu∆  are interpolated in the same manner: 

  ( ) ( )
he

),,( 321 ξξξ
UNu ξξ ∆=∆              (2.4.16) 

 In the following sections, the superscript “e” in eu  will be omitted.  

The variation Eδ  and increment E∆  of Green-Lagrange strain at the element level 

are interpolated as: 

 ( )
hcom

h ),,( 321 ξξξ
δδ UBE

U
=       and   ( )

hcom
h ),,( 321 ξξξ

UBE
U

∆=∆        (2.4.17) 

where the compatible strain-displacement matrix B is a function of displacements u, see 

[ZIE00b], such as: 

 ]     ...     [ 821

comcomcomcom BBBB =        (2.4.18) 

with 
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      (2.4.19) 

 

In order to simplify the notation we are going to introduce Voigt notation. Thus, 

components of Green-Lagrange strain vector comE  and PK2 vector S  are transformed 

from the corresponding matrices with indices as listed in the table below. 

Table 2.4.1: Index transformation 

Matrix index 11 22 33 12 (21) 13 (31) 23 (32) 

Vector index 1 2 3 4 5 6 

  

 The enhanced strains enhE , which will be presented in details below as functions 

of enhanced strain interpolation matrix Γ , see (2.4.45), and internal strain parameters α , 

variation enhEδ  and increment enhE∆  of the enhanced strains are: 

       αΓE  =enh  ;      αΓE δδ  =enh  ;       αΓE ∆=∆  enh  (2.4.20) 

 This variation and increment are required by the linearization of the weak form, 

see (2.4.23). 

 

2.4.2 Linearization of discrete weak form 

 Employing the Voigt notation (Table 2.4.1), we rewrite the internal term (2.4.7) at 

the element level: 

 ∫∫ ×××× +=
e

V

modTenh

e
V

modTcome

int
dVdVenh

0

1661

0

1661)
)()( SESE

E(u,
δδπδ  (2.4.21) 

 The first variation of the external term (2.4.9) is 

 ∫∫ ⋅−⋅−=
e

A
e

V

e

ext dAdV

σ

δρδπδ ** tubu . 
(2.4.22) 

 We use e

intπδ  and e

extπδ  to formulate the linearization of the weak form 

e

)enhE(u,
πδ by employing the truncated Taylor series about the k

th
 iteration: 
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u E
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u E

 (2.4.23) 

where ( ) D is the Gateaux derivative operator, see Simo and Hughes [SIM98].  
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 To alleviate the notation, the right subscript “k” designating the iterative index is 

omitted. In order to calculate (∆u, ∆E
enh

) we let the right hand side of (2.4.23) equal to 

zero, the result is: 

 

( ) ( ) ( )

( )
( )

( )
( )
( )

( )

)
 - | ,

                             ,  ,
, ,

e e e enh

int ext
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int ext inth e h e

h e h e

Dδ δ δ

δ δ δ

π π π

π π π

+ = ⋅ ∆ ∆

∂ + ∂
= ⋅ ∆ ∆ = ⋅ ∆ ∆

∂ ∂

enh(u ,E
u E

U α U α
U α U α

 (2.4.24) 

 Introducing (2.4.15), (2.4.17) and (2.4.20) into (2.4.21), we get the internal virtual 

work as: 
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0 0

( ) ( )

                 

h

e h T mod T mod
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e e

V V

(h)T e (e)T e

int enh

dV dVδ δ
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= +

∫ ∫eU ,α
B U S Γ α S

U f α f

 (2.4.25) 

with: 
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e T mod

int
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V

dV= ∫f B S   ;     

0

e T mod

enh
e

V

dV= ∫f Γ S   
(2.4.26) 

 Introducing (2.4.15) into  (2.4.22) of the external virtual work we get: 

 e

ext

(h)Te

ext fUδπδ −=     (2.4.27) 

where: 

  dAdV
e

A

T

e
V

Te

ext ∫∫ +=

σ

ρρ ** tNbNf

0

    
(2.4.28) 

 Observe that the element external force vector e

extf  (2.4.28) has the usual 

expression of the standard displacement element.  

 Substituting (2.4.25) and (2.4.27) into (2.4.24) we have: 
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eU k α k U U k α k α

 (2.4.29) 

 The constitutive tensor in the physical space is expressed through the following 

stress-strain relationship: 

 [ ]
66×










∂

∂
==

mod

kl

(ij)mod
ijkl

C
E

S
C4   (2.4.30) 

 In (2.4.29) the stiffness matrices are established and listed hereafter. 
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  The standard stiffness matrix of the element includes the material part 
e
matk  and 

geometrical part 
e
geok  that is 

 

0 0

4 mod( ) , h

e e

e
T

e e eint
uu mat geoh

V V

dV dV
∂

= = + = +
∂ ∫ ∫ U

k k k B C B B S
U

f
 (2.4.31) 

where, for a geometrical nonlinear theory the strain-displacement matrix B , see (2.4.19), 

is a function of the displacements u. Furthermore, the strain-displacement matrix contains 

the derivatives of the shape functions with respect to the global co-ordinates X in the 

reference configuration. Components of the geometrical part 
e
geok  is defined as, see 

(10.69) of [ZIE00b]: 
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 (2.4.32) 

where IJG  ( I , J = 1-8) is defined for a node combination I  and J  as IJ IJ 3G=G I ; with 3I  

is the unit matrix of dimension (3×3) and:  

 

0

, ,
e

IJ I K KL J L

V

G N S N dV= ∫  ;  ,   1-3K L = . 
(2.4.33) 

 Enhanced-compatible stiffness matrix of the element is 
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∂

∂
== αα  (2.4.34) 

where Γ  is defined in the next section, expression (2.4.45). 

 Enhanced stiffness matrix of the element is 
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4  
e

e e mod
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e mod e
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 (2.4.35) 

Combination of (2.4.23), (2.4.25), (2.4.27), (2.4.29) with (2.4.31) and (2.4.34) and 

(2.4.35) we get the discrete linearized system of equations to solve for the increment ∆U
h
 

and ∆α
 e 

, for more details see Klinkel and Wagner [KLI97]: 
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kk int
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α  (2.4.36) 

 The algorithm for solving the system (2.4.36) is listed in Chapter3 - Figure 3.4.1.  

 Since E
enh

 is not required to enhance inter-element continuity, we could eliminate 

∆α
 e

 at the element level before assembling the element matrices to the global matrices. 

From (2.4.36), we withdraw the formula for ∆α
 e
: 

 [ ] ( )he

u

e

enh

ee Ukkα f ∆+−=∆
−

ααα

1
 (2.4.37) 
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 Introducing (2.4.37) into (2.4.36) we finally get the condensed element stiffness 

matrix )(e

Tk  and element residual force vector r
e
: 

 [ ] [ ] e

u

eTe

u

e

uu

e

T αααα kkkkk
1−

−=  (2.4.38) 

 [ ] [ ] e

enh

eTe

u

e

int

e

ext

e fff kkr
1−

+−= ααα  (2.4.39) 

 Assembling element matrices, the global system has the form: 

 RUK =∆ h

T  (2.4.40) 

 After condensing, the global system (2.4.40) has the similar form as the global 

system of the standard displacement FEM. 

 

2.4.3 EAS parameters 

 In this section we investigate the modified strain ( )

mod com enh= +uE E E  under the 

framework of the EAS approach. The enhancing strain field for an element in the 

Cartesian coordinate system enhE  is usually assumed, see [KLI97], by  

 enhTenh

ξET
J

J
E −= 0

0   (2.4.41) 

where:  

- J  is the Jacobian matrix, 
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- 0J  is the Jacobian matrix at the center of the element )( 0=ξ ;  

- T  is the transformation matrix that maps quantities in the physical space to the 

natural space: 
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T  (2.4.43) 

with ( , )
ij

J J i j≡ . 

- 0T  is natural-physical transformation matrix at the element center )( 0=ξ . 

 For enhancing strain interpolation in the natural coordinate system, the following 

formulation is used: 

 αME ξ )(=enh

ξ  (2.4.44) 
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where α  is the vector of internal parameters. The dimension of α  is various, it depends 

on the type of the free-locking EAS elements in volumetric, membrane and shear 

responses. It is equal to the number of the additionally enhanced modes defined in Table 

2.4.2 below. The natural - physical mapping is realized at element’s center to obtain 

unique values for the parameters iα . Otherwise, values of the iα  parameters will vary 

according to integration points. These internal strains fill in the available compatible 

strain field to alleviate parasitic terms. 

 The additional factor J/0J  in (2.4.41) is introduced to be able to enforce the 

orthogonality condition (2.4.4). The justification of its use, as suggested by Taylor et al. 

[TAY76], is based on the same considerations which led to the approximation of the 

local-global transformation at the element center )( 0=ξ , i.e. using  0T  rather than the 

transformation T . In fact, the factor J/0J  relates the transformation of an infinitesimal 

volume element to the element center as well, thus facilitating the enforcement of the 

orthogonality condition for the constant stress and strain states, i.e. the patch test, see the 

next section for a more detailed analyses.  

 After combination of  (2.4.41) and (2.4.44), the enhancing strain field enhE  in the 

physical coordinate system  is written as: 

 αΓαMT
J

J
E ξ  )(0

0 == −Tenh    with   )(0

0

ξMT
J

J
Γ T−=  (2.4.45) 

 The enhancing matrix M , according to Andelfinger and Ramm [AND93], is 

defined: 
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(2.4.46) 

where 321  and ; ξςξηξξ ≡≡≡ . 

In (2.4.46), non-zero terms in the three upper-rows are applied for enhancing the 

additional modes of the normal strains; non-zero terms in the three lower-rows are 

applied for enhancing the additional modes of the shear strains. For the sake of 

comprehension, let’s consider the compatible strain 11( )ε ξξξξ  in the natural space for the 

eight-node solid element: 

   

1 2 3 1 2 2 3 1 3 1 2 3

( ) 0 1 2 3 4 5 6 7

( ) 2 3 2 3

11( ) 1 4 6 71

com

u a a a a a a a a

u
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= + + + + + + +

∂
= = + + +

∂

ξξξξ

ξξξξ

ξξξξ

 (2.4.47) 

When additionally enhanced by the non-zero terms in the first row of matrix M  in 

(2.4.46) the expression 11( )ε ξξξξ  will becomes a complete tri-linear polynomial as:  

  
2 3 2 3 1 1 2 1 3 1 2 3

1 4 6 7 1 2 3 4        ( ) ( )

mod com enh

11( ) 11( ) 11( )
E E

a a a a d d d d

ε

ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ

= +

= + + + + + + +

ξ ξ ξξ ξ ξξ ξ ξξ ξ ξ
 (2.4.48) 
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where ( 1 4)
i

d i = −  are components of vector α . The modified strains as (2.4.48) will help 

the EAS element to satisfy the incompressible condition and pure bending condition 

because there is no inconsistent term (see Section 2.1.1) in the enhanced strains. 

Table 2.4.2: EAS elements 

EAS  

element 

Additional modes 

Detailed modes 

Capability 

EAS3v 3v + 0s 

(only modes 25÷27 in (2.4.46) are 

adopted to enhanced normal strains) 

Free volumetric locking 

EAS6s 0v + 6s 

(modes 28÷33 in (2.4.46) are 

adopted to enhanced shear strains) 

Free shear locking 

EAS9 3v + 6s 

(25÷27) + (28÷33) 

Free volumetric & shear locking  

EAS12 6v + 6s 

(25÷27;40,43,44) + (28÷33) 

Improved incompressibility behavior 

with respect to EAS9 

EAS15   3v + 12s 

(25÷27) + (28÷39) 

Improved bending behavior with 

respect to EAS9 

EAS21 9v + 12s 

(25÷27;40÷45) + (28÷39) 

Totally free volumetric locking & 

free shear locking 

EAS24 9v + 15s 

(25÷27;40÷45) + (28÷39;46÷48) 

Totally free shear & volumetric  

locking 

EAS30 12v + 18s 

(25÷27;40÷45;49÷51) + 

(28÷39;46÷48;52÷54) 

Totally free shear & volumetric 

locking, applied for distorted mesh 

  

The enhancing matrix M  in (2.4.46), when introduced in the expression (2.4.45) 

to calculate enhE , will make enhE satisfy the orthogonality condition (2.4.4). In other 

words, this matrix M  is designed in such a way that the EAS elements are locking free 

while pass the patch test, see the next section for a detailed expression. 

Consequently, as chosen in (2.4.46) the matrix M  expands the compatible strain 

field up to the complete tri-linear field (EAS30). It means the enhanced element has 30 

additional modes and 54 modes in total (24 compatible modes and 30 enhanced modes). 

However, the number of additional modes should be suitable to each problem so as to 

limit the calculation time. The list in Table 2.4.2 gives some suggestions for reducing 

additional mode elements. 

 Above, a formulation of the EAS elements in the Green-Lagrange strains has been 

presented. This formulation was implemented in a MATLAB code. The numerical results 

at the end of this chapter show performances of the EAS elements and also assure quality 

of the implementation.  

2.4.4 Patch test 

 The arguments in this section are valid for both the incompatible method (Section 

2.3) and the EAS method. For 0
C  elements, such as the eight-node hexahedral, the 
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method for deriving the incompatible shape functions λN  (Section 2.3) for the 

incompatible elements (or enhancing matrix M  (2.4.46) for the EAS elements) is so 

detail. Not only filling higher order terms in the standard displacement field but the 

incompatible shape functions also have to satisfy the patch test requirement. That is the 

necessary condition for an element to converge to the correct solution. 

 Designate the space of the enhanced strain field as enhε
⌢

 and the space of  

admissible strain field defined in the standard fashion as comε
⌢

. The enhanced strain 

interpolation and the compatible strain interpolation are independent in a sense as: 

}0{=∩ comenh εε
⌢⌢

 (2.4.49) 

  Consider the enhanced stiffness matrix (2.4.35) and use Γ  in (2.4.45), we have: 

 

0 0

2
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( ) 0 0 ( )2
 ( )  ( )

e e

T
e T

V V

dV dVαα
− −= =∫ ∫ ξ ξ

J
k Γ C Γ M T C T M

J
 (2.4.50) 

In order to consider positive definite of e

ααk , the constant values (
2 1

0 0, −J T ) and 

positive values (
2

J ) can be eliminated from the expression. In addition, rows of M , see 

(2.4.46), have been assumed to be linearly independent. Since the constitutive matrix C4  

is positive definite, the assumption of linearly independent rows of M  assure the 

enhanced stiffness matrix dV
T

V

e

e

ΓCΓk  4

0

∫=αα  (in fact, the integral 

0

4

( ) ( ) 
e

V

dV∫ ξ ξM C M ) also 

positive definite.  

 Let’s consider rigid body motions or constant strain conditions. In nonlinear 

problems, we consider the increment quantities. Hence, the constant strain condition is 

const∆ =E . Denote h

0U∆  as the set of nodal displacements, which corresponds to one of 

the rigid body cases or a constant strain state. Then we also have const∆ = ∆ =h

0E B U . 

Denote e

0α∆  as the values of internal variables in the case of the motion h

0U∆ . In order to 

pass the patch test, the EAS element requires eα∆  to be zero whenever hU∆  corresponds 

to rigid body motions or constant strain conditions. Since the matrix e

ααk  is always 

positive definite, the condition for eα∆  = 0 from the second set of equations in (2.4.36) 

reduces to:   

 0fUk =+∆ e

enh

h

0

e

u 0,][ α         

 ⇔      0SΓUBCΓ =+∆ ∫∫ dVdV
e

V

Th
T

V
e

0

mod

00

4  

0

 
(2.4.51) 

Pay attention that the term ( h

0

4  UBC ∆ ) is in fact some constant stress state mod

0S  

that is correspond to rigid body motions or constant strain conditions. Consequently, the 

requirement for the patch test to be satisfied reduces to: 

       

0
e

V

dV =∫ Γ 0  
(2.4.52) 

Calculation of the left hand side expression will be performed in the natural space 

( 1 2 3, ,ξ ξ ξ ) where the presence of the Jacobian (2.4.42) is evident as: 

       
1 1 1

1 2 3

1 1 1
0
eV

dV d d dξ ξ ξ
− − −

=∫ ∫ ∫ ∫Γ Γ J  (2.4.53) 
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This will generally lead to non-zero value of  dV
eV

∫
0

Γ  and hence the element will 

not pass the patch test except when the element is a parallelepiped. In this latter case, the 

Jacobian will consist of constants and dV
eV

∫
0

Γ  will be equal to zero and the patch test will 

be passed. As a remedy, it was proposed (Taylor et al., [TAY76]) to replace J  by the 

constant values computed at the origin (ξξξξ = 0) of natural coordinates as: 
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 (2.4.54) 

In fact, the orthogonality condition (2.4.4) did imply expression (2.4.52) because:  

 ∫ ∫ =⋅=
0 0V V

ΓSαSE 0)( : dVdV
enh

 
(2.4.55) 

 We see that expression (2.4.55) is the strong form of the patch test condition. The 

condition in (2.4.55) is valid for an arbitrary stress field while the patch test condition is 

only valid for  a constant stress field mod

0S . 

 The use of  0J  to approximate J  is equivalent to the introduction of a geometric 

approximation by replacing the original hexahedral (for 2D: quadrilateral) element into a 

parallelepiped of the same volume (for 2D: parallelogram of the same area). 

 

2.4.5 Equivalence between EAS and Hellinger-Reissner elements 

A so-called hybrid stress method can be derived from the Hellinger-Reissner (HR) 

principle which consists of the stress field and the displacement field. Before comparing 

with the EAS elements the formulation of HR element is briefly introduced. From the 

Hu-Washizu principle in (2.4.1) one obtains the conventional stress-displacement HR 

functional by eliminating SCEE 14 )( −== S . The result is: 
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 The HR elements with compatible displacement and assumed stress fields that are 

built as follow: 

 ( ) ( )
he UNu ⋅= ξξ   (2.4.57) 

 ( )
hhe

H βPβPTS ⋅=⋅⋅= ξ0  (2.4.58) 

where: 

 - e

HS  is assumed stress at element level; 
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 - ( )ξP  is the matrix that enhances the stress field; 

-  ( )ξPTP ⋅= 0  with 0T  is defined in (2.4.43); 

 - hβ  is vector of internal stress variables.  

The displacement trial functions ( )ξN  should be compatible ( 0
C  continuous) 

across inter-element boundaries because there are first derivatives of the displacement 

field in the  HR-functional. But stress trial functions P  are not subject to derivation so 

could be chosen to be incompatible ( 1−
C  continuous). This help for eliminating the 

internal stress variables hβ  at the element level more easily. 

For the sake of simplicity, the following abbreviations are defined: 

 dV
eV

T  )()(

0

14

∫ ⋅⋅= − PCPH  (2.4.59) 

 dV
eV

T

∫ ⋅=

0

 )( BPG   (2.4.60) 

The element stiffness matrix of the HR elements is derived from HR principle has 

the form as:   

 GHGk e ⋅⋅= −1)()( T  (2.4.61) 

The (2.4.61) is achieved after eliminating stress parameters hβ  from the system of 

equations. Then, the element stiffness matrix (2.4.61) can be used for the standard 

displacement formulation. 

After the solution process, the stresses can be obtained at the element level as: 

 dGHPS ⋅⋅⋅= −1)(e

H  (2.4.62) 

Simo and Rifai [SIM90] generalized the incompatible displacement method to the 

EAS method. Both of these methods are the dual ones of the hybrid stress method. 

Hence, the EAS and the incompatible displacement methods with respect to the hybrid 

stress method are correspondent in some special cases. In this section some relationships 

between these methods are introduced. These relationships provide a helpful theoretical 

basis for development and exploitation of the incompatible and EAS methods and also 

the hybrid method. 

It was proven by inspection [AND93] that the stiffness matrix of  the EAS 

elements is equivalent to the stiffness matrix of  HR elements if the polynomials in ( )ξM  

(2.4.46) and ( )ξP  (2.4.58) are complementary. It means a polynomial term used for a 

strain component in ( )ξM  is not considered for the corresponding stress component in ( )ξP . 

Consequently, the hybrid stress and enhanced assumed strain fields are orthogonal to 

each other as: 

 
1 1 1

1 2 3

( ) ( )

1 1
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d d dξ ξ ξ ξ ξ

− −

=∫ ∫ ∫
-1

P M   

or  ( ) 0e T enh
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(2.4.63) 
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In Table 2.4.3, a rectangle low-order element with 2×2 integration will provide an 

equivalent stiffness matrix whether assumed by a strain field (EAS method) or by a stress 

field (hybrid stress method). 

Table 2.4.3: Equivalent bilinear EAS - HR elements 

EAS element HR element 
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( )

















=
2121

212

211

0000

00000

00000

ξξξξ

ξξξ

ξξξ

ξM  

PS :  

 ( )

















=

00100

0010

0001
1

2

ξ

ξ

ξP  

EAS4:  

 ( )

















=
21

2

1

00

000

000

ξξ

ξ

ξ

ξM  

HR8:  

 ( )

















=
21

21

21

1

2

00

00

00

   

00100

0010

0001

ξξ

ξξ

ξξ

ξ

ξ

ξP  

EAS0:  

 ( ) [ ]0=ξM  

HR12:      

( )

















=
2121

21

21

21

21

1

2

0

000

0000

  

00

00

00

  

00100

0010

0001

ξξξξ

ξξ

ξξ

ξξ

ξξ

ξ

ξ

ξP  

  

 

2.5 ANS ELEMENT 
 

Application of the EAS method that is described in the preceding sections to shear 

deformable elements does not work satisfactorily in all situations. Particularly in the case 

of severely distorted meshes or too thin structures these elements do not perform well. 

The method that is most widely used in these situations is the ANS method. In this 

context, we focus on the problem of transverse shear locking in solid elements, although 

the same have been done in a similar way for shell elements. There are also a number of 

publications on application of the ANS concept to overcome volumetric locking, shear 

locking and membrane locking. However, the ANS method is only effective in transverse 

shear locking removal [BIS97]. 

 The ANS abbreviation means Assumed Natural Strain. Here, strain components 

are assumed in the natural (isoparametric) space. The principal idea of the ANS method 

is to choose a certain interpolation for the transverse shear strains instead of deriving the 

strains directly from the interpolation of the displacements. Hence, the method also 

named “mixed interpolation”, it means both the interpolation for displacement field and 

interpolation for strain field are required by the method. The bilinear ANS plate element 

is the most widely used element in both scientific and commercial finite element 

packages (e.g. ADINA, ANSYS). It is also known as MITC4 element (MITC = Mixed 

Interpolation of Tensorial Components) or “Dvorkin- Bathe” element [BAT96].  
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 The natural strains at an interior point of the MITC4 element are obtained by 

linear interpolations of the strains on boundary lines. Finally, the physical strains, which 

are required at numerical integration points for evaluating the element stiffness and 

internal force arrays are obtained by tensorial transformation of the natural strain 

components instead of the standard isoparametric derivative transformations. The 

procedure of the natural strains and transforming tensorially to physical coordinates has 

been found to play a key role in improving element performance when the mesh is 

distorted or curved. 

 The ANS method can also be combined with the EAS method to improve the in-

plane bending behavior. For an explicit definition of an ANS element one has to specify 

two things, namely: 

- The number of nodes and the corresponding shape functions for the displacements 

(which are the standard shape functions of a displacement element) and 

- The number and location of the sampling points and the corresponding shape 

functions. 

 The ANS elements do not contain any spurious zero energy mode and show good 

convergence behavior [PAR86]. All the ANS elements can be used in linear analysis, and 

in large displacement and large strain analyses, e.g. in the simulations of structural 

problems and collapse of shells. 

 The ANS was conceived as one of several competing methods with which to solve 

shear locking problems. Its most noteworthy feature is that, unlike many forms of 

reduced integration elements, it produces no rank deficiency. Furthermore, it is easily 

extendible to geometrically nonlinear problems.    

 

2.5.1 Kinematics in natural coordinate system 

 The ANS method requires the interpolation of all assumed strains in natural 

coordinate system. Therefore, it is necessary to define a convected description, which 

naturally preserves the objectivity (in the convected description, the material base vectors 

reflect the geometrical and kinematic aspects, hence, the corresponding components are 

indifferent with respect to their material base vectors). To this end, let’s denote the 

position vectors of the reference configuration 0Ω  and the current configuration tΩ  in 

the local coordinate system by ( )ξX  and ( )ξx , respectively. The convected basis vector 

iG  and its components ijG  in the initial basis system are defined by: 

 31     ;      ;   / −==⋅∂∂= iGijji

i

i GGXG ξ  (2.5.1) 

while the contravariant vector 
jG  and its components ji

G  are defined following: 

 31  ;     ;    -1 −====⋅ i,jGG ijii

jijj

i

j

i GGGGG δ  (2.5.2) 

 Similarly, the convected basis vector ig  and its components ijg  in the current 

basis system are defined: 

 31      ;       ;    // −==⋅∂∂+=∂∂= igijji

i

i

i

i gguGxg ξξ  (2.5.3) 
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and its contravariant vector 
jg  and its components ijg  are defined through the following 

expressions: 

 31   ;     ;   -1 −====⋅ i,jgg jijj

ijij

i

j

i ggggg δ  (2.5.4) 

 The deformation gradient in the form of the convected vectors is calculated as: 

 ( )
( )

( )

i
i Gg

X

x
F
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ξ
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∂

∂
=  (2.5.5) 

while the Green-Lagrange strain tensor takes the following form 
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or alternatively: 
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 (2.5.7) 

 In the context of large deformation, the ANS method modifies shear components 

of Green-Lagrange strain tensor E . Hence, the variational equation should be written in 

material configuration (or total Lagrange formulation) in terms of the Green-Lagrange 

strain tensor E  and its energy conjugated quantity S , the second Piola-Kirchhoff stress 

tensor.  

 

 

2.5.2 Classical ANS formulation 

In this section we present the classical ANS technique for the removal of 

transverse shear locking in an eight-node hexahedral element. For the sake of simplicity, 

let’s consider the case with a rectangular prismatic geometric configuration. It means the 

physical space (X,Y,Z) is chosen to be identical to the natural space ),,( 321 ξξξ , see 

(Figure 2.5.1).  

Instead of the standard computation, which leads to shear locking, the transverse 

shear strains 13E  and 23E  are assumed, according to Dvorkin and Bathe [DVO84], to be 

interpolated through the use of certain sampling points as follows 
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BDYZ
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EEEE

EEEE

ξξ

ξξ

++−=≡

++−=≡

  (2.5.8) 

where )(23)(13)(13 ,, BCA EEE  and )(23 DE  are the natural shear strains at points A, C, B and 

D situated on the mid-surface of the solid element (Figure 2.5.1), respectively. Values of 

these sampling strains can be directly derived through the use of the covariant 

components in the contravariant base vectors as by Eij in (2.5.6): 
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 Once the transverse shear strains are assumed, all assumed strain-displacement 

matrices can be immediately formulated as: 
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 Then the stiffness matrix is formulated as in the standard manner. Expressions 

(2.5.8-10) are only valid when the physical space is identical to the natural space, i.e., 

(X,Y,Z) ≡ 1 2 3( , , )ξ ξ ξ . 

For the general case, where the mid-surface quadrilateral is not a rectangle and the 

X-Y frame is not aligned to the 1 2ξ ξ−  frame, the natural shear strain components must 

be firstly interpolated in the covariant space, as defined in (2.5.11). This allows taking 

into account the element distortion.  
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Figure 2.5.1: ANS method illustration, 
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From (2.5.8) and (2.5.9), the assumed shear strains in the general case can be 

computed by: 
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where )(23)(13)(13 ,, DCA EEE  and )(23 BE  are natural shear strains, evaluated by 

displacement interpolations, at points A, C, D and B respectively, see Figure 2.5.1.  

Clearly, 13

~
E  is constant with respect to 

1ξ  and discontinuous at 11 ±=ξ  (between 

elements), while 23

~
E  is constant with 

2ξ  and discontinuous at 12 ±=ξ .  

 The strain tensor can be equivalently expressed in both the natural space and the 

physical (Cartesian) space. The transformation of the strain components between the 

natural space and the physical space is done by using the transforming matrix )( 0≠ξT  as 

defined in (2.4.43). In order to alleviate the shear locking, the natural shear strains 13E  

and 23E  are replaced by the assumed natural shear strains 13

~
E  and 23

~
E  before doing the 

transformation from the natural space to the physical space. Finally, the physical assumed 

strain vector is: 
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 These assumed strains can be implemented in the standard solid element in a 

straightforward manner. These assumptions allow the element to represent pure bending 

modes without any spurious shear effect.  

 The modified shear strains lead to the new operator matrix ɶB  (2.5.10) in the 

natural space. However, the formulation can be slightly modified so that no explicit strain 

evaluation at the sampling points is necessary in the numerical calculation. The physical 

assumed strain-displacement matrix at node I of the eight-node solid element is: 
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2.5.3 Some variational basis for the ANS method 

 The ANS element is locking-free, rank sufficient and distortion insensitive even 

with coarse meshes as it has been pointed out by Park and Stanley [PAR86]. The ANS 

method has originally been derived from engineering intuition without a convincing 

variational background. Firstly, a restricted form of the method was proposed in 1969 for 

four-node plane stress element by assuming a constant shear strain that is independent to 

the direct strains [MIL90a]. In 1981 Hughes and Tezduyar [HUG81] used the method to 

avoid shear locking for plates; later in 1984 it was applied successfully by Dvorkin and 

Bathe to four-node shell element for geometric and material nonlinear analysis [DVO84]. 

In fact, the mathematical justifications, based on the Hu-Washizu and mixed functionals, 

have been provided a couple of years later in separate publications, e.g. Militello and 

Felippa [MIL90a,b].  

 In ANS method, there are two strain fields: the derived-displacement strain field 

and the assumed natural strain field. If we consider these fields as independent fields, the 

ANS formulation can be interpreted by a Reissner type functional: the functional that 

uses the strains and displacements as independent fields. Departure from the three fields 

general Hu-Washizu functional (2.4.1) the displacements u , stresses S  and strains E  are 

independently varied, let’s re-write the functional (2.4.1): 
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 (2.5.14) 

 From ( )SEu ,,π  one obtains the conventional stress-displacement Heillinger-Reissner 

functional by eliminating E  by: 

 SCEE 14 )( −== S  (2.5.15) 

 Another Reissner type, strain-displacement functional is obtained by eliminating 

S  through: 

 CESS 4== E  (2.5.16) 

which yields: 
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Eu (2.5.17) 

 Setting com

)(uEE =  and *uu =  on uA  reduces ( )Eu ,π  to the potential energy functional  
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(2.5.18) 

 

 Partial Strain Assumption 

 It is common practice to assume only a part of the strains to be independent fields. 

For instance, with MITC4 element independent assumptions are only made for the 

transverse shear strains [BAT96], whereas the bending strains are entirely derived from 

displacements: 

 [ ]T

ba E    EE =  (2.5.19) 

where  aE  stands for the assumed strain field and com

bb EE =  stands for the derived-

displacement (bending) strain field.  

  The ( )Eu ,π  functional (2.5.17) requires obvious modification in the volume term: 
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 (2.5.20) 

 The resulting principles take a particularly simple form if the constitutive coupling 

terms abC  and baC  vanish, in that case: 

 ( ) ( ) ( ) extb,a, ππππ ++= uEuEu aa
 (2.5.21) 

where ( )aEu ,aπ  is a mixed strain-displacement energy involving aE  ; ( )ubπ  is a potential 

energy involving the com

bE  ; extπ  is the external energy. 

 Up to now a compatible displacement field and a discontinuous strain field are 

involved. Hence use ( )aEu ,π  is a suitable functional for the ANS method. 

 The element displacement field is interpolated as: 

  h

c

e UNu c=  (2.5.22) 

where cN  is the compatible shape functions as defined in (2.4.11), h

cU  is the nodal 

displacement vector as defined in (2.4.14). 

 The strain fields derived from the displacements are: 

- bending strains:   

  =com c h

b b cE B U  (2.5.23) 

- shear strains:   

  =com c h

s s cE B U  (2.5.24) 
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where c

bB  and c

sB  are parts of strain-displacement matrix that relate to bending strains 

and shear strains, respectively (the letter “c” stands for compatible values). 

  The independent strains in ( )aEu ,π  are: 

- bending strains as the derived-displacement bending strains (2.5.23);   

- shear strains (the superscript “a” stands for ANS values):   

  a

a s=E B a  (2.5.25) 

with a

sB  is natural assumed strain-displacement matrix and a  is strain coefficient vector. 

 Introduce (2.5.23) - (2.5.25) into (2.5.21) and carrying out the interpolations at the 

element level we will have: 
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  (2.5.27) 

 On performing the variations we obtain the matrix equation: 
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 From the second equation of (2.5.28) we obtained the shear strain coefficients: 

 h

c

h

c UQUKKa c

Tcaaa == − )()( 1  (2.5.29) 

 Introduce (2.5.29) into (2.5.28) gives the statically condensed system: 

 c

c

aaT

c

cc

b fUQKQK h

c =+ )(  (2.5.30) 

 In (2.5.30) 
cc
bK  is the bending stiffness matrix, which is also obtainable from the 

potential energy principle. While c

aaT

c QKQ  stands for the new shear stiffness matrix. The 

system of equations (2.5.30) now contains only nodal displacement vector h

cU  as in the 

standard displacement method. 

 A variational justification of the ANS formulation as presented above has been 

done by Militello and Felippa [MIL90a,b]. This study is based on two hybrid extensions 

of Reissner-type functional that uses strains and displacements as independent fields. 

However, the work of Militello and Felippa is not applicable to all types of material 

models. The material is firstly required to be decoupled as in (2.5.20). Furthermore, the 

proposal of Militello and Felippa, currently, is only valid to transverse shear locking 

removal. Meanwhile the ANS method could apply for another locking effect, such as 

curvature thickness locking (Chapter 3). By these arguments, we see that variational base 

of the ANS method is still an open problem. However, as it has been pointed out 

[BAT96] that a variational basis of an element might not exist, but whether the element is 
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useful and effective can of course be determined only by a deeper analysis of the 

formulation. 

 Advantages of the ANS method are simplicity while remaining effective. The 

ANS elements could be applied for both structural (plate, shell) and continuum (solid) 

elements. Numerical results in literature show that ANS elements are locking-free, rank 

sufficient and distortion insensitive even with coarse meshes. Furthermore, the method is 

easy to be implemented in any code. Because of its attractions, the ANS method has been 

being developed by many authors as Dvorkin and Bathe [DVO84], Park and Stanley 

[PAR86], Betsch and Stein [BET95], Bathe et al. [BAT00], etc.  

 

 

2.6 NUMERICAL RESULTS  

 This section investigates performances of the EAS and ANS elements. In the 

following tests, the low-order standard solid element is designated as Q1. While the 

standard solid element Q1, which employs the classical ANS technique [DVO84] for 

alleviating transverse shear locking and curvature locking, is designated as ANS. The 

EAS elements are designated as EASx, where ‘x’ is the number of internal parameters. 

The additional letter “2D.” stands for elements in 2D, without this additional letter means 

elements are in 3D. The ANS, EAS elements used in the following tests are implemented 

in a MATLAB code, according to the theories presented in this chapter.  

           

2.6.1 Membrane patch test 

 Let’s consider a patch test as suggested by McNeal and Harder [MAC85] and 

originally aimed to check the membrane behavior of plate and shell elements. In order to 

adapt to 3D elements, the number of nodes has been doubled (Figure 2.6.1) as Vu-Quoc 

and Tan [QUO03a]. An imposed displacement field at the boundary nodes is chosen to 

cause a constant stress field in the plate. , 

 

              Table 2.6.1: Interior nodal coordinates 

 5 6 7 8 13 14 15 16 

X 0.04 0.18 0.16 0.08 0.04 0.18 0.16 0.08 

Y 0.02 0.03 0.08 0.08 0.02 0.03 0.08 0.08 

Z -h/2 -h/2 -h/2 -h/2   h/2   h/2   h/2   h/2 

  

Practically, consider a rectangle plate of dimensions L×W×h = 0.24×0.12×0.001. 

The material parameters are taken as E = 10
6
 and ν = 0.25. In the original problem 

designed for plane stress problems, McNeal and Harder [MAC85] employed the 

following boundary conditions:  

 
310)2/( −+= YXu ;   

310)2/(v −+= YX  (2.6.1) 

which lead to the corresponding reference solutions of constant strains and stresses: 
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310−=== XYYX γεε ;              

 σX = σY  =  1333 ;   τXY  =  400. 
(2.6.2) 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Motivated by this result, the above boundary conditions (2.6.1) are also adopted 

for the modified doubled-surface membrane patch test. Additionally, the condition w = 0 

has also be imposed to a bottom node, e.g. node 1, to prevent rigid body motions. 

Because the plate is too thin, L/h=240, it is possible to assure a constant stress state in the 

plate when apply these conditions. 

 Numerical results show that the ANS element passes the modified patch test; i.e. 

the computed stresses are constant all over the plate and consistent with (2.6.2). The 

computed displacements of interior nodes also fully agree with (2.6.1). We also note that 

the EAS elements also pass this patch test as previously reported in [KLI06], [QUO03a]. 
 

2.6.2 Out-of-plane bending patch test 

 Let’s re-consider the above plate, Figure 2.6.1, but in bending situation. Again, a 

patch test for 2D elements (plates and shells) is extended for 3D elements. In order to 

create a constant stress state, the original boundary conditions, see [MAC85], for the 

displacement )( 0w  and rotations ),( yx θθ  at the reference surface of the plate are:  

 

3 2 2

0

3 3

10 ( ) / 2;

10 ( / 2) ;     10 ( / 2).
X Y

w X XY Y

w w
Y X X Y

Y X
θ θ

−

− −

= + +

∂ ∂
= = + = = − +

∂ ∂

 (2.6.3) 

The boundary conditions (2.6.3) are not directly applicable to the solid elements 

because they contain the rotations. If the cross sections of the plate are assumed plane (it 

is plausible because the plate is thin) the boundary conditions can be modified, as in 

[QUO03a], in such a way that: 

 ;2/)(10 223

0 YXYXww ++== −
 (2.6.4) 

Figure 2.6.1: Membrane patch test 
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310)2/(

22

−+=±= YX
hh

u Y ∓θ ; 310)2/(
22

v −+== XY
hh

X ∓∓ θ ;   

i.e. different displacements are imposed to the exterior nodes on the top (upper sign) and 

bottom (lower sign) surfaces of the plate, respectively. The theoretical stresses, see 

[MAC85], at the top and bottom surfaces of the plate are: 

 667.0±== YX σσ ; 200.0±=XYτ   (2.6.5) 

 

Table 2.6.2: Displacements of the interior nodes 

Node u v w 

5 810500.2 −×  810000.2 −×  610400.1 −×  

6 810750.9 −×  810000.6 −×  510935.1 −×  

7 710000.1 −×  810000.8 −×  510240.2 −×  

8 810000.6 −×  810000.6 −×  610600.9 −×  
  

 Table 2.6.3: Normalized displacements at interior nodes  

Node Displacement ANS EAS3v6s EAS12v18s 

5 u 

v 

w 

1.0000 

1.0000 

0.9999 

2.6009 

-2.5450 

 3.0543 

4.6332 

1.1749 

3.8885 

6 u 

v 

w 

1.0000 

1.0000 

0.9999 

0.6086   

-0.1536   

 1.1603 

0.1436 

1.4310 

1.3021 

7 u 

v 

w 

1.0000   

1.0000 

1.0000 

0.6719   

1.9783   

1.1643 

0.1815 

0.7567 

1.2923 

8 u 

v 

w 

1.0000 

1.0000   

1.0000 

1.5000 

1.8627   

 1.4216 

0.2291 

0.7849 

1.7288 

 

      As also already reported by Vu-Quoc and Tan [QUO03a], all EAS elements are 

unable to converge to the analytic solution listed in Table 2.6.2. The displacements of the 

EAS12v18s in Table 2.6.3 are identical to those reported by Vu-Quoc and Tan 

[QUO03a]. This helps to evaluate the quality of our EAS implementation in the 

MATLAB code. 

 In contrast, the classical ANS enables the exact solution. This presents the superior 

performance of the ANS techniques over the EAS ones in the removal of shear locking 

and in working with distorted mesh, see Table 2.6.3. 

 

2.6.3 Eigenvalues analyses of a rectangle 

 This is one of the basic tests. The eigenvalues of stiffness matrices of regular 

meshes are calculated. We examine a single element of rectangle shape with length is 

equal to unit, material properties are Young’s modulus E = 1000 and Poisson’s ratio ν = 

0.  

In order to check whether the element is free from shear locking, eigenvalues of 

pure bending mode of the stiffness matrix are analysed. As references, let’s take free-
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shear locking elements as 2D.EAS4 (see Table 2.4.3), based on the EAS method, 

proposed by Simo and Rifai [SIM90] and DSG element proposed by Bischoff et al. 

[BIS03] to compare with the 2D.ANS element. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

The Poisson’s ratio is set to zero, ν = 0, in order to preventing the element from 

volumetric locking and Poisson thickness locking. The results show that with various 

aspect ratios (length is fixed, thickness is changed) the 2D.ANS element displayed 3 rigid 

body modes and no spurious zero energy modes. Figure 2.6.2 shows that behavior of the 

present 2D.ANS solid is completely coincident with results given by 2D.EAS4 and DSG. 

It means all of them are free from shear locking at high aspect ratio. Meanwhile the 

standard element 2D.Q1 shows stiffer (locking) behavior when aspect ratio increasing. 

 

2.6.4 Circular cantilever beam at large displacements 

 The following example shows the applicability for thin 3D-beams. Let’s consider 

a circular cantilever of dimension R = 100, α = 45° and cross section 1×1, see Figure 

2.6.3. Material parameters are elastic modulus E = 710  and Poisson ratio ν = 0. The 

cantilever is clamped at one end and loaded by a force P at the other extremity.  
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Figure 2.6.3: Circular cantilever 

Figure 2.6.2: Eigenvalue analyses of element stiffness matrices,  

in-plane bending mode 
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The problem has been modeled by Slavkovic et al. [SLA94], who used 18 internal 

strain parameters to enhance the solid element. The problem has also been modeled by 

Klinkel et al. [KLI97], who also used EAS solid element. Both the enhanced elements of 

authors in [SLA94] and [KLI97] are EAS elements but enhanced by different modes. 

However, these elements are shear and volumetric locking free. The large deformation 

response will be calculated for different vertical tip loads. In this test, behavior of the 

classical ANS method is very attractive. Figure 2.6.4 shows that displacements of the 

cantilever discretized by only 10 ANS elements are quite comparable to the results of 

Slavkovic and Klinkel with 16 elements. The ANS element is softer in displacement u 

(curve 5) but stiffer in displacement v (curve 6) while give a well approximated 

displacement w (curve 7) to the references, [SLA94] and [KLI97]. This is the result of 

shear locking removal in thickness direction (z). 
 

 

 

 

 

  

 

 
 

 

 

 

  

 

 

 

 

 

 

 

 

 
 

 

 

2.6.5 Scordelis-Lo roof with rigid end diaphragms 

 Consider a shell of radius R = 25, thickness t = 0.25, length L = 50 and open angle 

α = 40° under a gravity load p = 90 (per unit area) distributed on the shell surface (Figure 

2.6.5). Both ends of the shell are constrained with only a free movement in the axial 

direction. The material parameters are: E = 4.32 810×  and ν = 0.0. The vertical deflection 

of the mid-side free edge v = 0.3024 is taken as the reference solution (McNeal and 

Harder [MAC85]).   

Due to the symmetry of the structure, only a single quarter of the shell is modeled. 

Different types of discretization are considered together with various elements (Figure 

2.6.6). The ANS element delivers a good solution with a rather coarse mesh (4×4). In 

contrast, the EAS9 element, which has 9 incompatible modes, requires a finer mesh 

(16×16) to reach the correct solution. 

 

Figure 2.6.4:  Curved cantilever beam: displacements 
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With an increase of enhanced modes, the EAS15 element appears to give a better 

result more theoretically expected than the EAS9 element. However, instead of starting 

from a low value of displacement at coarse meshes and then progressively increasing this 

value with the refinement of mesh as seen for the EAS9 element, the EAS15 element 

gives first a higher value of deflection at coarse meshes and then lower values due to a 

mesh refinement. This can be explained by the effects of the high-order incompatible 

modes (modes 34-39, see (2.4.46)), they make the EAS15 soft by fairly alleviating the 

shear locking. As regards the Q1 standard element, a rather slow convergence is found. 

Obviously, the shear locking contributes to this behavior. 

Figure 2.6.6: Scordelis-Lo roof: convergence of finite element solution 
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2.6.6 Regular block with nearly incompressible material  

 In order to investigate the performance of the ANS and EAS elements in 

volumetric locking conditions, a regular block of dimensions 100×100×50 clamped at 

bottom and loaded by a uniform pressure of q = 250/unit area, acting on a top area of 

20×20 at the center is considered [AND93], see Figure 2.6.7. The material has an elastic 

modulus 
5101.2 ×=E  and Poisson ratio ν = 0.4999, i.e. nearly incompressible material. 

Due to symmetry, only a quadrant of the block is modeled by a mesh of 5×5×5 elements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 In Table 2.6.4 the vertical displacement simulated by different elements is listed. 

Take the result of the free-volumetric locking SRI element as the reference. Obviously, 

the volumetric locking response is observed with the standard element. Since volumetric 

locking cannot be removed by the ANS techniques, the ANS element is nearly as stiff as 

the standard element Q1 in this problem.  

Table 2.6.4: Vertical displacement at the block’s center 

Element Q1 ANS EAS3v6s EAS9v EAS21 EAS30 SRI 

w 0.00160 0.00161 0.01136 0.01844 0.01907 0.01907 0.01966 

w/wSRI 0.08140 0.08190 0.57780 0.93790 0.97000 0.97000 1.00000 

 

Compare to the EAS30, we see that EAS3v6s with 3 volumetric modes is rather 

stiff. The EAS21 element with 9 volumetric modes gives as good result as the EAS30. 

Note that the shear modes can assist the volumetric modes in volumetric locking 

removal. It explains why the locking response can be more removed with the additional 

introduction of shear enhanced modes. For example, the EAS21 with 12 shear modes 

besides 9 volumetric modes gives a quite better result than the EAS9v with unique 9 

volumetric modes. The SRI technique shows a better performance in removing the 

incompressible locking in comparison with the EAS technique. 

 

 

 

Figure 2.6.7: Regular block 
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CONCLUSION 

 Through the numerical tests we see that the transverse shear locking treatment is 

ideally suited by the ANS method. In the case the Poisson’s ratio is different from zero, 

the ANS method gives less accuracy but always remains too much better than the 

standard displacement-based method (see Section 2.6.5, for example). The EAS method 

is also useful to shear locking removal but computational cost of the EAS method is more 

expensive than the ANS because the EAS method requires calculation of internal 

variables. The volumetric locking is effectively removed by the EAS method. The SRI is 

completely suitable for volumetric locking removal but this method cannot pass the patch 

test (see Appendix in the next page) so it is not taken into consider in the thesis. However 

the SRI elements are still used by many authors because of its simplicity.  

 There was a combination between methods of ANS with EAS proposed by 

Andelfinger and Ramm [AND93] for four-node degenerated-shell elements. In order to 

improve the element performance, Andelfinger and Ramm use the EAS method for the 

membrane and bending components, while the transverse shear component is formulated 

according to the ANS method. To alleviate the shear locking, the shear strains are 

referred to natural coordinates. Next, the combination of Andelfinger and Ramm was 

continually extended to geometrically nonlinear Reissner-Mindlin shell by Bischoff and 

Ramm [BIS97]. Authors in [BIS97] did apply the ANS method for avoiding curvature 

thickness locking by use of interpolation functions for transverse normal strains at nodal 

points instead of an evaluation at the integration quadrature points. Other example of 

EAS-ANS combination results in a simple shell model, built directly from basis of ANS 

shell model of Dvorkin and Bathe, where the EAS techniques are integrated for 

membrane locking, was introduced by Slavkovic et al. [SLA94], etc. 

 Other successful combination of the EAS concepts and ANS method is the 

generating of the solid-shell elements. The solid-shell concept was built on modifying 

assumptions of the standard shell theory (Reissner-Mindlin shell model). In fact, the 

solid-shell elements form a class of finite element models which are intermediate 

between thin shell and conventional solid elements. Detail for the solid-shell elements are 

presented in the chapter following. 
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APPENDIX of Chapter 2 

Free-volumetric locking element - SRI element 

 

 If nearly incompressible material behavior is use, the elements suffer from 

volumetric locking. Using the SRI method is one of the best ways for eliminating 

volumetric locking [PON95]. By the way, use the SRI method with reduced integration 

for volumetric part and full integration for deviatoric part assures that all three normal 

strains satisfy the volumetric constraint 0=iiε . 

 Consider the SRI method, starting from the potential energy functional (2.5.18):  

 
ext

V

u dVW ππ += ∫
0

)()( comES

 
(A.1) 

 The first variation of the functional is: 

 0 :

0

=+∫ ext

V

dV πδδ SE  
(A.2) 

 We split the strain E and stress S of (A.2) additively into volumetric (dilatational) 

parts and deviatoric parts. The volumetric parts are: 

 
1

3
iiE  i 1- 3= =vE I                        (A.3) 

 
1

3
iiS  i 1- 3= =vS I                        (A.4) 

 And the deviatoric parts are: 

 = −d vE E E                       (A.5) 

 = −d vS S S                       (A.6) 

 Rewriting the expression (A.2) with tensors decoupled into volumetric and 

deviatoric parts, we have: 

0 0 0 0

:  :  :  :  0ext

V V V V

dV dV dV dVδ δ δ δ δπ+ + + + =∫ ∫ ∫ ∫d d v v d v v dE S E S E S E S  
(A.7) 

 Assume that: 

 

0 0

:  :  0
V V

dV dVδ δ= =∫ ∫d v v dE S E S  
(A.8) 

 So the weak form (A.7) becomes: 

 

0 0

:  :   0ext

V V

dV dVδ δ δπ+ + =∫ ∫d d v vE S E S  
(A.9) 

 The second integrand of the expression (A.9) is calculated by the reduced 

integration, but this is only applied for in-plane components, 1×1 integration instead of 

2×2 while the integration in thickness direction remains unchanged. Restriction of the 

SRI method is that the applied material laws must allow a decoupling stress field and 

strain field into volumetric parts and deviatoric parts. It means the tangent moduli tensor 
4
C could be also split into a volumetric part and a deviatoric part as: 
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4
C = 

4
Cd + 

4
Cv (A.10) 

 As mentioned above, the SRI is the best method to remove volumetric locking. Its 

severe problem is cannot pass the patch test. In order to understand the problem, let’s 

consider a cubic patch test. 

 The patch test for convergence is a fascinating area in the development of 

nonconforming finite element methods. It has been intuitionally proposed by Irons since 

the mid-1960s. By the early 1970s the test had became a powerful and practical tool for 

evaluating and checking nonconforming elements. We consider the following example: a 

unit cube modeled by seven elements - distorted mesh [MAC85]. Material parameters 

are: elastic modulus E = 10
6
 and Poisson ratio ν = 0.25. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A1: Location of inner nodes 

Coordinates Nodes 

X Y Z 

1 0.249 0.342 0.192 

2 0.826 0.288 0.288 

3 0.850 0.649 0.263 

4 0.273 0.750 0.230 

5 0.320 0.186 0.643 

6 0.677 0.305 0.683 

7 0.788 0.693 0.644 

8 0.165 0.745 0.702 

  

 The outer nodes subject to following conditions: 

 u = 10
-3

(2X+Y+Z)/2   

 v = 10
-3

(X+2Y+Z)/2    

 w = 10
-3

(X+Y+2Z)/2 

(A.11) 
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Figure A1. Cubic patch test 
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Figure A2. Stress in patch elements (METAFOR [MET08]) 

σz is spurious with SRI σz is smooth with EAS 

1.93e+3 1.95e+3 1.98e+3 2.01e+3 2.04e+3 2.00e+3 2.00e+3 2.00e+3 2.00e+3 2.00e+3 

  These conditions assure a uniform strain in the cubic. Reference solution of the 

problem is analytically derived as: 

 εX = εY = εZ = γXY = γYZ = γZX = 10
-3 

 σX = σY = σZ = 2000  

 τXY = τYZ = τZX = 400 

(A.12) 

 The 3D element patch test is used to verify whether volume elements can exactly 

reproduce a constant strain state for any configuration. If this is the case, then the element 

will converge to the analytically exact solution (assuming that the materials are elastic 

and deformations are small), as the mesh is refined. Depending on the element type and 

problem, however, convergence may be too slow for practical purposes. The values of 

stress at the Gauss points obtained with the EAS9 are presented in Table A2. 

 

Table A2: Results of EAS9 

σX = σX vol. + σX dev.  Element 

σX vol. σX dev. 

τXY τXZ 

1 1998.5 0.95E-5 399.5 399.5 

2 1998.5 0.25E-5 399.5 399.5 

3 1998.5 0.35E-4 399.5 399.5 

4 1998.5 -0.11E-4 399.5 399.5 

5 1998.5 -0.35E-4 399.5 399.5 

6 1998.5 -0.68E-4 399.5 399.5 

7 1998.5 0.23E-5 399.5 399.5 

Ref. 2000 400 400 

 

A quite similar trend is observed with different schemes of enhanced modes 

(EAS15, EAS21, etc). In contrast with the SRI elements where the hydrostatic stress σvol. 

is spurious and hence these elements fail to pass the patch test, the EAS elements really 

pass the patch test, see Figure A2. 

 

 

 

 

 

 

 

 

 
 

  

 

 

 

 

 

 

 As stated by McNeal and Harder [MAC85], if an element produces correct results 

for the patch test, the results of any problem solved with that element will converge 
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toward the correct solution as the elements are subdivided. Many authors supposed that 

an element that does not pass the patch test should not be trusted. On the other hand, 

passing the patch test does not guarantee satisfaction since the rate of convergence may 

be too slow for practical use. However, in the thesis the SRI element is not furthermore 

considered because employment of the SRI technique may be the cause makes the solid-

shell elements cannot pass the bending patch test, see [CAR07] and [REE07]. 
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Chapter 3. SOLID-SHELL ELEMENTS FOR 

FINITE DEFORMATION 
  

 

INTRODUCTION 

 

 For the analysis of nonlinear mechanical behavior of structures, low-order 

elements are widely applied because of their efficiency and simple geometry. However, 

the standard pure displacement elements usually exhibit severe stiffening effects known 

as locking. Concretely, in thin-walled structures pure bending modes are spoiled by the 

parasitic shear strains, shear locking occurs. For nearly incompressible materials and 

incompressible conditions, volumetric locking occurs, when deviatoric modes come 

along undesirably with volumetric strains. In this work, we attempt to develop a low-

order solid-shell element, which is free from all kinds of locking effects. Indeed, 

transverse shear locking and curvature thickness locking can be circumvented by using 

the ANS method, while membrane locking and volumetric locking can be removed by 

the EAS method. 

 The solid-shell elements are well applicable for geometrically nonlinear problems 

([HAU98], [QUO03a,b]) or for both geometrically and materially (elastoplastic) 

nonlinear problems ([HAU00], [TAN05], [JET08]). In comparison with other shell 

elements, the solid-shell elements enable an easy connection with other continuum 

elements due to their solid topology, (Figure 1.0.1). 

 The solid-shell elements here refer to the finite element models which are 

applicable to shell analyses and possess no rotational DOF’s. They are different from the 

degenerated shell elements in the sense that the latter elements are equipped with both 

translational and rotational DOF’s. The solid-shell elements have the characteristics of 

solid elements where strains can be extended up to complete trilinear fields by internal 

parameters [AND93] or can be naturally assumed. There are several advantages of the 

solid-shell elements compared to the degenerated shell elements. First, the solid-shell 

elements are simpler in their kinematic and geometric descriptions. Second, no special 

effort is required for matching the translational and rotational DOF’s when a structure 

consists of both solid and thin-walled regions. The laborious task of defining algebraic 

constraints or introducing solid-to-shell transition elements can be exempted. Third, the 

complication on handling finite rotational increments can be avoided. Nevertheless, 

formulating the robust solid-shell elements is indeed more demanding than formulating 

the degenerated shell elements. However, the latter elements are only plagued by shear 

and membrane locking effects while the former elements are also bothered by Poisson 

thickness and trapezoidal (curvature) locking effects, see Section 3.1.  

  Starting from the principle of shear locking removal by the available ANS method 

[DVO84] an ANS technique with an alternative scheme of sampling points, which can be 

employed for the solid-shell elements, is investigated. In fact, several ways can be 

employed for the interpolation of natural strains such as linear interpolations [DVO84], 

quadratic interpolations [HAU01], [PAR86]. In Section 3.3 an alternative bilinear 

interpolation is introduced.  
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Table 3.0.1: Dominant features of degenerated shell and solid-shell 

Degenerated shell Solid-shell 

� The kinematic DOF are the components 

of the displacement vector and of the 

extensible director vector of the 

reference surface.  

� Locking effects (Poisson thickness 

locking), which occur if a 3D material 

law is used along with constant normal 

thickness strains, can be avoided. 
 

� The kinematic degrees of freedom are 

the components of the displacement 

vector.  

 

� The stresses are evaluated from a 3D 

material law. This feature is especially 

useful for complicated nonlinear 

constitutive equations. 

 

 

3.1 LOCKING PHENOMENA WITH SOLID-SHELL 

 The well-known locking phenomenon of displacement based finite elements for 

thin-walled beams, plates and shells is caused by unbalances of the trial functions. This 

unbalance, described in innumerable papers, can be cured by either reduction or 

enhancement of the DOF to strengthen the interpolations of variable fields. 

 With solid elements, there are essential locking effects as:  

• Shear locking; 

• Poisson thickness locking; 

• Curvature thickness locking (Section 3.1.1); 

• Volumetric locking. 

Meanwhile, for shell elements, there are also some shell-typical locking 

phenomena to face with:  

• Transverse shear locking; 

• Membrane locking. 

The solid-shell elements are solid elements where the shell like-behaviors are 

integrated so the elements can be coped with thin-walled problems. With the assumption 

of straight normal to the element mid-surface, the solid-shell formulation can take into 

account transverse shear effects.  

If the solid-shell elements are applied for simulation of thick structures, the 

locking effects they meet are similar to locking effects happen with solid elements. On 

the contrary, being applied for thin and curve structure the solid-shell elements behave 

similarly to shell elements, so the anti-locking techniques for shell elements would be 

useful. 

In general, methods to remedy locking effects may be classified as follows: 

� Incompatible displacement models by Wilson et al. [WIL73] and Taylor et al. 

[TAY76], designed by the extension of the trial functions through additional 

incompatible modes. 

� ANS elements by Hughes & Tezduyar [HUG81], Dvorkin and Bathe [DVO84]. 
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� Assumed stress elements by Pian [PIA86], based on the Hellinger-Reissner 

functional to enrich the stress space. 

� Reduced or selected reduced integration techniques, e.g. [DOL00], to clear the 

parasitic stresses by a modified numerical integration. 

� EAS elements by Simo and Rifai [SIM90], Simo and Armero [SIM92] based on 

the Hu-Washizu functional and the extension of the strain tensor or the material 

deformation gradient by additional terms. 

The solid-shell element would suffer transverse shear locking and membrane 

locking as the degenerated shell if we do not apply any one of the remedial methods as: 

ANS, EAS, RI or assumed stress method. On the other hand, the solid-shell elements 

would show volumetric locking as solid element if plasticity in either small or large 

displacement occurs. To overcome those, the solid-shell formulation has to adopt the 

above methods. In order to improve the element performance, it means remove locking 

effects, the EAS method could be used for the membrane and bending strains, while the 

transverse shear strain components are formulated according to the ANS method. 

In Chapter 2 we did discuss about severe locking effects (volumetric locking, 

Poisson thickness locking and shear locking) that happen to the low-order solid and, of 

course, also happen to the solid-shell elements. Hereafter, under mechanical point of 

view (Section 2.1.1), other locking phenomena happen to the solid-shell elements are 

continuous discussed.  

 

3.1.1 Curvature (trapezoidal) locking 

 A further locking effect observed for solid elements is the phenomenon of a so 

called curvature locking or sometimes “trapezoidal locking”. The phenomenon is only 

found in structures where the out-of-plane element edges are not perpendicular to the 

mid-layer, which is the case for originally curved as well as for heavily deformed 

structures. However, curvature locking only occurs when the elements include thickness 

strains. It means continuum elements and some extensible-director degenerated shell 

elements suffer this locking. Other degenerated shell elements, whose thickness strains 

are equal to zero, do not suffer this locking. In brief, curvature locking happens when the 

two following factors are present in the same time: 

 1) When element models include normal strains in thickness direction and 

 2) The out-of-plane element edges are not perpendicular to the mid-layer, 

 it will  activate incompatible normal strains in thickness direction. 

 Trapezoidal locking is the least envisioned deficiency in the solid-shell element 

development. This ignorance is probably due to the fact that curvature locking does not 

occur in degenerated shell elements and flat plate geometry. Curvature locking was first 

put forward by McNeal [MAC87]. Let’s consider a simple case of four node element, 

trapezoidal shape as Figure 3.1.1. 

In the Cartesian coordinates, the element has the height H = 2; the average width 

W = H×Λ, where Λ is the element aspect ratio. The trapezoidal element relates to the 

isoparametric space by: 

   X = Λξ1
(1 - αξ3

)  ;  Z = ξ
3  

;   Λα = tan(δ) (3.1.1)
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Consider the analytical displacements for in-plane bending, see (2.1.15). For the 

sake of simplicity we assume M/EI = 1; ν = 0 and we do not consider the constant term in 

vertical displacement. Finally, the solutions are: 

 u
CM

 = XZ   

 w
CM

 = - X²/2  
(3.1.2)

or in the form of isoparametric coordinates  

 u
CM

 =    Λ[ξ
1
ξ

3
 - α ξ

1
(ξ

3
)

 2
]    

 w
CM

 = - Λ² [(ξ
1
)

 2
 - 2α(ξ

1
)

 2
ξ

3
 + (αξ1

ξ
3
)

2
]/2 

(3.1.3)

The displacement within the element is calculated, see [MAC94], as: 

 u
a
 = Λ( ξ

1
ξ

3
 - α ξ

1
)   

 w
a
 = - Λ²(1 - 2α ξ

3
 + α²)/2 

(3.1.4)

The compatible strains in the element are:  

 

3

3

2

3
1

3

( )
     

(1 )

( )
2 1

(1 )

a

X

a

Z

a

XZ

ξ α
ε

αξ

ε α

α ξ α
γ ξ

αξ

−
=

−

= Λ

 −
= Λ + 

− 

 (3.1.5)

While the analytical strains are:  

 

3

0

2 0

CM

X

CM

Z

CM

XZ

ε ξ

ε

γ

=

=

=

 (3.1.6)

 In the case of rectangular, α = 0, the strain components 
X

ε  and 
Z

ε  are correct. In 

case α ≠ 0, the error in 
X

ε  is small for α small. The error in shear term 
XZ

γ  (causes 

transverse shear locking) can be eliminated by the ANS method when shear strain is 

interpolated by strains at sampling points in order to assure shear strains are equal to zero 

in pure bending, see Chapter 2. Here we can see that apart from the inconsistent terms 

(see Section 2.1.1.2) that cause transverse shear locking, the distorted mesh also causes a 

similar effect. This locking effect becomes severe, due to parasitic strain a

Zε , when the 

curvature of the structure is high with respect to the thickness, i.e. when  tan(δ) = Λα >> 

2Λ(1+α) 

2Λ(1-α) 

δ ξ
1
 

ξ
3
 

2 

2
 

δ X 

Z 

Figure 3.1.1: Four node element 

H
 =

 2
 

a) In Cartesian space b) In isoparametric space 
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1. Curvature locking is a consequence of geometric irregular (distortion) on analysis 

accuracy. 

 Curvature locking shows up if 2D or 3D solid elements are used to model curved, 

thin-walled structures (the name “trapezoidal locking” reflects the fact that in these cases 

the individual elements have a trapezoidal shape). When shell elements are built on 

extensible director kinematics and are incorporated unmodified 3D constitutive models 

these elements will also show severe locking behavior in the case of curved-thin shell 

structures. We make conclusions that when multiple trapezoidal elements are used to 

model bending problems, the transverse bending stress/strain mode, which should 

physically vanish, is most detrimental to the element accuracy and leads to a deficiency. 

In other words, the element accuracy drops substantially if trapezoidal meshes are used. 

The oblique edges activate parasitic normal strains in thickness direction and may lead to 

locking. The effect happens only for curved structures, and is severe for thin solid and 

solid-shell elements. One method to resolve this problem is using a naturally assumed 

strain interpolation of the normal strain in thickness direction as proposed by Bischoff 

and Ramm [BIS97], Betsch and Stein [BET95].  The detail formulation is presented in 

Section 3.4 below.   

 

3.1.2 Membrane locking  

 In order to understand membrane locking, it is necessary to distinguish 

“extensional bending” and “inextensional bending”. The term "inextensional bending" 

refers to a class of plate and shell problems in which the potential energy is dominated by 

flexural strains as opposed to extensional strains. It means the in-plane strains (εX, εY and 

γXY) become vanishingly small  when compared to the bending strains (εZ). In contrast, 

the term “extensional bending” is referred if the mid-surface experiences significant 

stretching or contraction; also called combined bending-stretching or coupled membrane-

bending. 

 Membrane locking, also known as inextensional locking, does only occur in 

curved beam and shell elements when the curvature is large. It is sometimes confused 

with shear locking and volumetric locking because these affect the membrane part of 

shell elements. However, they are completely different phenomena.  

 

 

 

  

 

 

 

 

For the sake of simplicity, in order to understand membrane locking easily, let’s 

consider a curved beam element of length 2l and radius of curvature R based on classical 

thin beam theory, see Figure 3.1.2. The displacement degrees of freedom required are the 

circumferential displacement u and the radial displacement w. The coordinate s follows 

Figure 3.1.2: Curved beam element 

ξ = s/l R

w

u

sl
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the middle line of the curved beam. The membrane strain ε and the bending strain χ are 

described by the strain-displacement relations [PRA01]: 

 ε = u,s + w/R        

 χ = u,s/R -  w,ss        
(3.1.7)

Base on derivatives of (3.1.7), obviously, a C
0
 description for u and a C

2
 

description for w are required. Kinematically admissible displacement interpolations for u 

and w are: 

 u = a0 + a1ξ        

 w = b0 + b1ξ + b2ξ
2
 + b3ξ

3
       

(3.1.8)

where a0 to b3 coefficients are the generalized DOF’s which can be related to the nodal 

degrees of freedom U, W and W,s at the two nodes. 

 The strain field interpolations can be derived as 

 ε = (a1/l + b0/R) + (b1/R)ξ + (b2/R)ξ
2
 – (b3/R) ξ

3
       

 χ = (a1/Rl - 2b2/l
2
) – (6b3/l

2
)ξ 

(3.1.9)

  When the above curved element is applied for simulating an inextensional bending 

problem the physical response requires that the membrane strain (ε) tends to vanish. It 

means:  

 a1/l + b0/R   = 0 

       b1/R                = 0 

 b2/R    = 0 

 b3/R    = 0       

(3.1.10a) 

(3.1.10b) 

(3.1.10c) 

(3.1.10d) 

 We can observe that constraint (3.1.10a) has terms participating from both the u 

and w fields. It can therefore represent the condition (ε � 0) in a physical way. However, 

the three remaining constraint (3.1.10b) to (3.1.10d) have no participation from the u 

field. Let’s examine what these three constraints imply for the physical problem. From 

the three constraints we have the conditions (b1 � 0), (b2 � 0), (b3 � 0). Each of these 

the conditions in turn implies following conditions (w,s � 0), (w,ss � 0) and (w,sss � 0). 

These are the spurious constraints due to b1, b2 and b3 must be different from zero, see 

(3.1.8). Consequently, the exist of b1, b2 and b3 causes membrane locking. Apart from the 

EAS method, there are two ways are popularly applied for membrane locking removal. 

Use high-order approximations for in-plane displacements or use RI technique for in-

plane strains [STO82]. The first method requires a dramatical reduction of time step for 

explicit time integration while the second method may cause spurious modes. 

 Membrane locking does not occur in flat elements, e.g. the four-node quadrilateral 

shell only manifests membrane locking in wrapped configurations. With the solid-shell 

elements, due to the coupling of the transverse normal strains with in-plane strains, when 

the mesh is distorted, membrane locking may occur. Particularly, it is severe with large 

aspect ratios of the elements. For the solid-shell element, this locking is overcomed 

effectively by using the EAS method, see [HAU01], with an enhancing matrix M  as: 
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(3.1.11) 

where only in-plane strains, which are equivalent to rows 1, 2 and 4 of the enhancing 

matrix M  in (2.4.46), are enhanced.  

 In conclusion, membrane locking occurs if exist two conditions. First, the 

transverse strains and the in-plane strains interlock. Second, the interpolations are unable 

to model the inextensional behavior in inextensional bending problems. Consequently, a 

stiffening effect occurs when pure bending deformations are accompanied by parasitic 

membrane stresses.  

 In the following sections we will formulate a solid-shell element which 

incorporates an alternative ANS technique that is different from the classical ANS 

technique presented in Section 2.5. This element is free from all locking effects that have 

been mentioned. 

   

 

3.2 KINEMATICS OF SOLID-SHELL 

  

 For the use of the ANS and the EAS methods to design the free-locking solid-shell 

elements the weak form is written in a local coordinate system, where the two axes X and 

Y are aligned with the element mid-surface and the third axis Z is aligned with the 

thickness direction. To ease for presentation, some kinematic definitions in Section 2.5.1 

will be repeated in this section. 

 For the development of the low-order solid-shell element, we naturally adopt the 

assumption of Naghdi for shells: “the normal to the element mid-surface remains straight 

but not necessarily normal during the deformation”. Also adopted by Timoshenko beam 

theory and the Mindlin-Reissner plate theory, this assumption is fulfilled by a linear 

approximation of the in-plane displacements over the shell thickness [HAU98]. In this 

context, the interpolation formulations for geometrical vectors can be read as 

 ( ) 1 2 1 2

3 3

( , ) ( , )

1
[(1 ) (1 ) ]

2

h h

u lξ ξ ξ ξ
ξ ξ= + − −

ξ
X X X  (3.2.1) 

 ( ) 1 2 1 2

3 3

( , ) ( , )

1
[(1 ) (1 ) ]

2

h h

u lξ ξ ξ ξ
ξ ξ= + − −

ξ
x x x  (3.2.2) 

where: ∈= T},,{ 321 ξξξξ □ =[-1,1]×[-1,1]×[-1,1], tri-unit cube in R
3
. 

 In the above formulas, ( )ξX  and ( )ξx  are the geometrical descriptions of the solid-

shell element in the initial and current coordinate systems, respectively. The vectors 

1 2( , )

h

u ξ ξ
X  and 1 2( , )

h

l ξ ξ
X  are the position vectors of nodes in upper and lower surfaces, 

respectively, of the element in the initial coordinate system. Similarly, the position 
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Ω0 

Ωt 

Ω 

Figure 3.2.1: Initial configuration 
0Ω , current configuration 

tΩ   

                      and isoparametric configuration Ω  

� ),,( 321 ΕΕΕ : unit vectors of isoparametric system 

� ),,( 321 eee  : unit vectors of global (physical) system 

ξ
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ξ
2
 

ξ
3
 

E1 

E2 

E3 

e1 

e2 

e3 

G1 

G2 
G3 

g1 

g2 

g3 

vectors of nodes in the current coordinate system are denoted by h

u ),( 21 ξξ
x  and h

l ),( 21 ξξ
x . 

Here the subscript “l” is the index for terms in lower surface and the subscript “u” is the 

index for terms in upper surface.  

   

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The displacement vector u  is calculated as 

 ( ) ( ) ( )ξξξ Xxu −=  (3.2.3) 

and the deformation gradient tensor F  is defined by 

 ( )
( )

( )ξ

ξ

ξ
X

x
F

∂

∂
=  (3.2.4) 

 The Green-Lagrange strain tensor is defined as below 

 ( )
( ) ( )

( ) ( )

( ) ( )

1 1
( ) [( ) ]

2 2

T T
∂ ∂

= − = −
∂ ∂

ξ ξ

ξ ξ ξ

ξ ξ

x x
E F F I I

X X
 (3.2.5) 

 Originally proposed by Dvorkin and Bathe for small strains [DVO84], the ANS 

method requires a modification of the shear components of the Green-Lagrange strain 

tensor E  when dealing with large deformation. Consequently, it is necessary to write the 

variational equation in the material configuration (or the total Lagrange formulation) in 

terms of the Green-Lagrange strain tensor E  and its conjugated second Piola-Kirchhoff 

stress tensor S . 

 Moreover, the ANS method requires the interpolation of all assumed terms in 

natural coordinate system. Therefore, it is necessary to define a convected description. 

Let’s consider the position vectors ( )ξX  of the reference configuration 0Ω  and the 
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Figure 3.2.2: Configuration of low-order solid-shell element 
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position vectors ( )ξx  of the current configuration tΩ  in the local coordinate system. As 

illustrated in Figure 3.2.1, the convected basis vector iG  and its components in the initial 

basis system are defined by: 

 31     ;      ;   / −=⋅=∂∂= iG jiij

i

i GGXG ξ  (3.2.6) 

while the contravariant vector 
jG  and its components ji

G  are defined following: 

 31  ;     ;    -1 −====⋅ i,jGG ijii

jijj

i

j

i GGGGG δ  (3.2.7) 

  

 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 Similarly, the convected basis vector ig  in the current basis system and its 

components ijg  are defined as: 

 
jiij

i

i

i

i

g

i

gg

uGxg

⋅=

−=∂∂+=∂∂= 31         ;    // ξξ
 (3.2.8) 

and its contravariant vector 
jg  and its components ijg  are defined through the following 

expressions 

 31   ;     ;   -1 −====⋅ i,jgg jijj

ijij

i

j

i ggggg δ  (3.2.9) 

 Anticipating the transition to a shell element, one of the solid-element dimension 

is identified as the shell thickness direction. We call the element face (1,2,3,4) as the 

lower face, the element face (5,6,7,8) as the upper face, see Figure 3.2.2. All the edges 1-

5, 2-6, 3-7 and 4-8, the ones that connect the lower node with the upper nodes, are 

thickness edges. 

 The deformation gradient in the form of the convected vectors becomes 

 ( )
( )

( )

i
i Gg

X

x
F

ξ

ξ
ξ ⊗=

∂

∂
=  (3.2.10) 

while the Green-Lagrange strain tensor takes the following form 
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ijij

T
EGg GGGGIFFE ξξξ ⊗=⊗−=−=

2

1
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2

1
)(

2

1
 (3.2.11) 

or alternatively: 

 ( ) 31
2

1
−=⊗









∂

∂
⋅

∂

∂
+⋅

∂

∂
+

∂

∂
⋅= i,j

ji

jijiji       GG 
uu

G
uu

GE ξ
ξξξξ

 (3.2.12) 

  

  

3.3 AN ALTERNATIVE ANS TECHNIQUE FOR TRANSVERSE 

SHEAR LOCKING REMOVAL 
 

 The classical ANS technique presented in Chapter 2 has been widely adopted and 

thus applied for shell [DVO84] and solid-shell elements ([HAU98], [HAU00], [HAU01], 

[QUO03a]), i.e. 3D modeling. Its 2D counterpart can be obtained through a degeneration 

of the 3D version, and is applicable to a 2D solid-shell element (Figure 3.3.1). The 

2D.ANS element has only a single sampling point (A ≡ C) for the assumed shear strain 

XZE
~

 (2D case). Such a configuration can be also obtained through the application of a 

selective-reduced integration to the shear part of the element. Consequently, the assumed 

shear strain XZE
~

 becomes, in the 2D version, constant over the element, while it is not the 

case for the 3D version. 

 We alternatively investigate another ANS technique, where the 3D and 2D 

versions always feature a linearly assumed shear strain (along the thickness direction). To 

this end, let’s first start from the standard solid element to develop a new 3D ANS-solid 

element (designated by ANSn). Its 2D counterpart (designated by 2D.ANSn) can be 

immediately followed through a simple degeneration, see [NGU08]. 

 

  

 

 

 

 

 
 

     

 

 

 

 

 

3.3.1 Cubic hexahedral ANS element (ANSn) 

 Consider a single solid element of tri-unit geometry (size 2×2×2), see Figure 3.3.2. 

For the sake of simplicity, the isoparametric space ( )321 ,, ξξξ  and the physical space 

(X,Y,Z) are taken identical. Hence, it is possible to investigate the problem directly in the 

physical space. Recall the Green-Lagrange strain components in (2.1.2): 

Figure 3.3.1: Degeneration from 3D to 2D of ANS-solid element 
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 The displacement derivatives of displacement in 0X direction are defined as 

follows 
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 If the element is subjected to a pure bending in 0X direction, Figure 3.3.3, and 

assuming that the Poisson ratio is equal to zero, the following relations are hold: 
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and then 
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Let’s investigate the compatible shear strain XZE , which can be directly derived 

from (3.3.1) - (3.3.4):            

 ZXZXZXZ uuuuuE ,),1(,,,2 +=+=     (3.3.5) 

Figure 3.3.2: Solid element, special case (X,Y,Z) ≡ (ξ
1
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2
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where the second term represents the nonlinear geometrical quantities. Notice that: 
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 Thus, the standard element clearly presents a strain XZE , which is a bilinear 

function in both 1ξ  and 3ξ , while this strain component must be physically zero in the 

pure bending case. In other words, XZE  contributes to the so-called parasitic transverse 

shear strain in pure bending problems. In order to remove this shear locking, we observe 

that this parasitic shear strain is only equal to zero at 01 =ξ , see (3.3.5) and (3.3.6) or line 

∂u/∂Z in Figure 3.3.4. This motivates the use of sampling points, which are employed 

later for the interpolation of assumed strains, on the vertical plane including the point 

01 =ξ  and the axis 2Oξ . Indeed, the shear strain XZE  is equal to zero at the points 

lul CAA ,,  and uC  (Figure 3.3.4) under the pure bending condition. As a result, the physical 

strain XZE
~

 is assumed to take the following form: 
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XZXZ EEE
~

)1(
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1~
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2

1~ 22 ξξ ++−=     (3.3.8) 

where A

XZE
~

 and C

XZE
~

 are derived through the strains at sampling points on the face 

),,,( luul CCAA on Figure 3.3.4: 

  

ul

ul

C

XZ

C

XZ

C

XZ

A

XZ

A

XZ

A

XZ

EEE

EEE

)1(
2

1
)1(

2

1~

)1(
2

1
)1(

2

1~

33

33

ξξ

ξξ

++−=

++−=

    (3.3.9) 

 

 

 

Figure 3.3.3: Pure bending in 0X direction 
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Similarly, the assumed shear strain YZE
~

 is interpolated as     
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)1(
2

1~
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1~ 11 ξξ ++−=  (3.3.10) 

where D

YZE
~

 and B

YZE
~

 are assumed by using sampling points on the face ),,,( luul BBDD , 

Figure 3.3.4, as         
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 Interpolation of the transverse shear strains as (3.3.8) and (3.3.10) make sure of 

preserving the bilinear variation of the assumed strains as the derived-displacement shear 

strains. 
 

 The 2D version (Figure 3.3.5) of the ANSn element can be deduced in a 

straightforward manner. Indeed, under pure bending in 0X direction, the bending mode is 

activated so that  ∂w/∂X = ∂w/∂Z = 0. Hence, the compatible transverse shear strain 

becomes: 

 
1 3
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1 1
2 2  ( ) [1 ( )(1 )]
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ξ ξ
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∂ ∂ ∂
  (3.3.12) 

 Since this shear strain is equal to zero at 01 =ξ , we can employ sampling points on 

the vertical line through the point 01 =ξ . For example, with the use of two sampling 

points A 1 3
( 0, 1)ξ ξ= = −  and B 1 3

( 0, 1)ξ ξ= = , and the corresponding assumed shape 

functions are:   

Figure 3.3.4: Sampling points for ANSn element 
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3 31 1

(1 );      (1 )
2 2

A BN N
ξ ξξ ξ= − = +   (3.3.13) 

The assumed shear strain xzEɶ  can be linearly interpolated through two points A 

and B: 

  
A B

XZ A XZ B XZE N E N E
ξ ξ= +ɶ        (3.3.14) 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 In the case of 3D elements, being applied for the pure bending in 0X direction, the 

above ANS technique for the shear locking removal can be also employed for the pure 

bending in 0Z direction. We however note that the bending in 0Z direction is not 

considered in the conventional shell elements.   

 In the general case, where the element geometry is not regular, the shear term 

needs to be evaluated in the natural space. The assumed strains are then transformed to 

the physical space for the computation of the stiffness matrices. All of these problems are 

addressed below. 

 

3.3.2 Distorted hexahedral ANSn element 

 As a requirement, the order of the assumed strain field should be equal to the one 

of the derivation of the displacement field so that the assumed strains may consistently 

capture the strain field resulting from the derivation of the displacement in non-pure 

bending modes. Notice that only the transverse shear strains ) and ( 2313 EE  are considered 

for shear locking removal by the ANS technique.  

 Consider the Green-Lagrange strain values, which can be derived from (3.2.11) 

and (3.2.12) as: 
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Figure 3.3.5: Sampling points for 2D.ANSn element  
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 In order to determine the order of the function ijE  with respect to the natural 

variables iξ , we investigate the constituents of the strains in (3.3.15). The vector iG  is a 

bilinear function of the natural coordinates as follows: 
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where T
},,{ kkk ZYX  are reference nodal coordinate vector. The derivatives of the 

displacement vector with respect to the natural coordinate iξ  is  
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 Based on (3.3.15) - (3.3.17) we can examine the order of the natural constituents 

in the shear strain function 13E  as 
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Vectors 1G  and 
1ξ∂∂u  are derivatives of the shape functions with respect to 1ξ , 

hence, 1G  and 
1ξ∂∂u  are functions of  ),,( 3232 ξξξξ ; similarly, vectors 3G  and 3ξ∂∂u  

are functions of ),,( 2121 ξξξξ . Consequently, 13E  is a function of the natural coordinates 

of the type:  

 ])(,)(,)(,,,,)(,,,,[ 322122132232132312221321

13 ξξξξξξξξξξξξξξξξξξξξfE =  (3.3.19) 

 Clearly, (3.3.19) shows that 13E  is a linear function of 1ξ . In order to remove shear 

locking the naturally transverse assumed shear strain 13E  is interpolated on the face that 

goes through 01 =ξ  and contains the axis 2Oξ , see plane (P) in Figure 3.3.6. On that 

natural face the shear strain is quadratic with respect to 2ξ  but linear with respect to 3ξ  

Figure 3.3.6:  Distorted element - sampling points for strains 
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as ])(,,)(,,[
322322232

13 ξξξξξξξfE = . Hence, the naturally assumed shear strain 13

~
E  can be 

assumed to be a function whose order of natural variables is equal to or lower than the 

order of natural variables in the derived-displacement strain (3.3.19). It can be: 

• Constant in thickness direction 3Oξ  and linear in horizontal direction 2Oξ . This is 

the classical ANS method [DVO84]. Hauptmann and Schweizerhof [HAU98], 

Klinkel et al. [KLI06], Vu-Quoc and Tan [QUO03a] use this interpolation in their 

solid-shell elements. This interpolation requires only two sampling points A and 

C, see (2.5.8) and Figure 3.3.6.  

• Linear in both thickness direction 3Oξ  and horizontal direction 2Oξ . This 

interpolation requires two sampling points along both 3Oξ  and 2Oξ  

), and  ,( ulul CCAA , Figure 3.3.6. Similarly to (3.3.8), the natural assumed strain 13

~
E  

is interpolated as 
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ξξ ++−=   (3.3.20) 

where A
E13

~
 and C

E13

~
 are evaluated by using sampling points on the face that goes 

through ),,,( ulul CCAA : 
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  (3.3.21) 

• Linear in thickness direction 3Oξ  and quadratic in 2Oξ  direction. This 

interpolation requires two sampling points along 3Oξ  ), and  ,( ulul CCAA  and three 

sampling points along 2Oξ  ),, and , ,( uuulll COACOA , Figure 3.3.6. This assumed 

interpolation is the closest to the consistent displacement-derived strain 13E . Our 

numerical tests show that this quadratic interpolation for assumed strains in 2Oξ  

axis significantly increases computational time with respect to the corresponding 

linear interpolation while the improvement is not remarkable. 

     

 In the thesis, the second option is chosen to be investigated. Similar to 13E  

(3.3.19), the shear strain 23E  is a function of the natural coordinates as shown below 

    ])(,,)(,)(,,,,)(,,,[
322132132122132312121321

23 ξξξξξξξξξξξξξξξξξξξξfE =  (3.3.22) 

 In order to overcome that shear locking occurs with the pure bending in 0Y 

direction, we consider 23E  at 02 =ξ . At that coordinate the shear strain 23E  is quadratic 

with respect to 1ξ  as ])(,,)(,,[
321312131

23 ξξξξξξξfE =  but 23E  is linear with respect to 3ξ . 

Similar to (3.3.20), the natural assumed strain 23

~
E , if linearly interpolated in both 

thickness direction 3Oξ and horizontal direction 1Oξ , is expressed as 
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where D
E23

~
 and B

E23

~
 are linear functions of 3ξ  with sampling points on faces parallel axis 

2Oξ  and go through a pair of points ),( ul DD  and ),( ul BB , respectively: 
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(3.3.24) 

 In order to alleviate shear locking, the natural shear strains 13E  and 23E  are 

replaced by the assumed natural shear strains 13

~
E  and 23

~
E  before doing the 

transformation from the natural space to the physical space. Finally, the physical assumed 

strain vector by the alternative ANS technique is: 

{
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 These assumed strains can be implemented in the standard solid element in a 

straightforward manner. The physical assumed strain-displacement matrix at node I (I = 

1-8) of the solid-shell element is similarly assumed: 

{

}

{
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 We can see that the ANS technique with alternative sampling points (the bilinear 

assumed strains (3.3.25) and the classical ANS technique (2.5.12) have some common 

and uncommon features: 



73 

• For both techniques, the strain sampling points are taken at coordinate 01 =ξ  for 

13E  and 02 =ξ  for 23E . 

• For the alternative ANS technique the assumed strains are linear in the thickness 

direction. Meanwhile for the classical ANS technique the assumed strains are 

constant in the thickness direction. When strain is not too large, the two 

techniques are similar because the strain at the mid-surface (the classical ANS) 

will be the average value of the strains at the lower and the upper surfaces (the 

alternative ANS presented here). 

• As being employed in the degenerated shell elements [AHM70], the classical 

ANS technique uses sampling points on the mid-surface, which is usually 

considered to be the reference plane. Contrarily, the alternative ANS technique 

employs sampling points located on the physical, upper and lower surfaces, but 

not on the reference plane of the solid element. 

 

For distorted 2D.ANSn element, the shear strain is similarly assumed as (3.3.14), 

Figure 3.3.5, 
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ξξ ++−=   (3.3.27) 

 These assumed strains are then transformed to the physical space by the transform 

matrix T  in (2.4.43). 

 The 3D eight-node solid element which directly employs assumed strains as 

(3.3.25) is hereinafter referred as ANSn. The element can be applied for distorted mesh  

model. It is a 3D solid element which is free from shear locking for thin and moderate 

thick-wall structures, see Section 3.6 below for numerical illustration. 
 

 

3.4 COMBINED ANS-EAS SOLID-SHELL ELEMENT 

 The solid-shell element presented in this chapter possesses the performances of the 

ANS elements in alleviating transversal shear locking and curvature locking. Further 

more, to be free from volumetric locking, Poisson thickness locking (see [HAU98], 

[HAU00]) and membrane locking the EAS method needs to be adopted. The solid-shell 

elements which only employ the ANS techniques [FEL03] should not be applied for 

incompressible deformation problems because they exhibit poor performance for 

volumetric locking removal, see [BIS97].      

 In the above paragraphs, curvature locking was mentioned. In order to circumvent 

curvature locking several authors, e.g. Bischoff and Ramm [BIS97] and Betsch and Stein 

[BET95], suggested employing an assumed strain approximation for the strain 

component 33E . Corner nodes on the mid-surface play the role of the sampling points 

(points E, F, G and H, Figure 3.3.6). The 
0

C -continuous strain field is thus given by: 

 ∑=
I

I I
ENE )(33),(33 21

~
ξξξ

 ;  I  = E, F, G, H   (3.4.1) 



74 

where 
),( 21 ξξI

N  are the shape functions in mid-surface, 3ξ  = 0, as: 

  ( )( )       11
4

1 2211
21 ξξξξ

ξξ III
N ++=

),(
  (3.4.2) 

 Hauptmann et al. [HAU00] did show that, this kind of locking is minor compared 

to other types, a bilinear interpolation of the transverse normal strain as (3.4.1) is enough 

for subduing this locking. One simple way to overcome curvature locking is using fine 

mesh on thickness direction. 

 Introducing the assumed natural strain 33

~
E  (3.4.1) into the assumed strain vector 

ANSE
~

 (2.5.12) or (3.3.25) we receive the strain field of an element that is free from both 

transversal shear locking and curvature locking. The classical ANS element that is free 

from transverse shear locking and curvature locking is given by: 
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where the transverse normal strain (3.4.1), which is assumed in order to alleviate 

curvature thickness locking  [BIS97], were rewritten as 
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 Once the transverse shear strains are assumed, all strain-displacement matrices can 

be similarly formulated. The classical ANS strain-displacement matrices are given by: 

 



































++++−

++++−

+
=

∑
−

)(23,32,

1

)(23,32,

1

)(13,31,

2

)(13,31,

2

12,21,

33,

4

J
),(

22,

11,

))(1(
2

1
))(1(

2

1

))(1(
2

1
))(1(

2

1

                                  

)(                               

                                          

                                          

~
21

B

T

I

T

ID

T

I

T

I

C

T

I

T

IA

T

I

T

I

T

I

T

I

J

T

IJ

T

I

T

I

TANS

I

NNNN

NNNN

NN

NN

N

N

gggg

gggg

gg

g

g

g

TB

ξξ

ξξ

ξξ

 (3.4.5) 

with  I = 1-8 (node number) and  J = E, F, G, H. 

 The alternative assumed natural strains and the associate strain-displacement 

matrices with curvature locking removal are formulated similarly to the classical ANS 

ones (3.4.3) and (3.4.5). 
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An EAS element that is free from volumetric locking and membrane locking 

[HAU01] has an enhancing matrix M  such as 
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 An EAS element that is free from volumetric locking, membrane locking and 

Poisson thickness locking [QUO03a] has an enhancing matrix M  such as 

 

45       44      03    29    27    26    25          

0000000

0000000

00000

0000

000000

000000

21

32313

2

1



























=
ξξ

ξξξξξ

ξ

ξ

M
     (3.4.7) 

 The EAS element, which is interpolated by a matrix M  such as (3.4.7), is 

enhanced by seven internal parameters hence it is named EAS7. Recall that the 

enhancing matrix (3.4.7) is extracted from matrix (2.4.46). Therefore, the EAS7 always 

satisfies the patch test. The trilinear terms in modes 49, 50 and 51 of (2.4.46) are not 

taken into account because they only improve element performance a little while making 

the computational cost increase significantly. 

 Eventually, a completely original element that combines both the advantages of 

the EAS and ANS formulations can be designed, simply by combining the ANS strain 

field (3.3.25) and (3.4.1) with the 7 EAS modes (3.4.7) thus resulting in the so-called 

SS7n. It means the solid-shell element with 7 EAS modes and the alternative ANS 

technique. In this element, the resulting strain field is 

  enhANSmod

)()(

~
αu EEE +=    (3.4.8) 

 Similarly, a solid-shell element with 7 EAS modes (3.4.7) and the classical ANS 

technique (3.4.3) results in the so-called SS7. This element has already been presented in 

[QUO03a]. In the thesis, the EAS internal parameters are used to remove volumetric 

locking for solid-shell element. Instead of 9 modes (25-27 and 40-45) as proposed in 

[AND93], only three modes 25 - 27 of (2.4.46) are adopted for the solid-shell element to 

limit computational cost. 

Detail of the solid-shell implementation is given in Figure 3.4.1. In general, the 

implementation is valid for the EAS element. If the compatible strains are assumed as in 

(3.4.3) or (3.3.25) and then introduced in step 3 of the algorithm (Figure 3.4.1) we then 

have the solid-shell element formulation. 

 

 



76 

ALGORITHM FOR SOLID-SHELL IMPLEMENTATION 

 
1. Step 1: Initial values 

  k=0; (k)∆ =U 0  ; ( )k =α 0  ; (k)U  from the last time step; tolerance Tol 

2. Step 2: Update at element level for iteration (k +1): 

• Nodal displacement:  h

k

h

k
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• EAS parameters: 
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3. Step 3: at each Gauss point for each element, 

a. calculate: 

• Compatible strains: ( 1)

com

k+E  as in (3.3.1) 

• Enhanced strains (2.4.45): 
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• ANS strains, e.g. (3.4.3) for the classical ANS method,:  

 if (solid-shell element) 

 enh

k

ANS

k

mod

k )1()1()1(

~
+++ += EEE  ; ( 1) ( 1)

ANS

k k+ += ɶB B ; 
mod

k

Smod

k

W

)1(

)1(

+

+
∂

∂
=

E
S  

else (EAS element) 

 
enh

k

com

k

mod

k )1()1()1( +++ += EEE  ; ( 1)

( 1)

mod S
k mod

k

W
+

+

∂
=

∂
S

E
 

end if 

b. calculate tangent matrices and internal forces, Section 2.4.2 
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4. Step 4: Assemble global matrices 1)(k1)(k , ++ RK . 

5. Step 5: Solve the incremental displacement and check for global convergence 

   1

( 1) ( 1) ( 1)k k k

−
+ + +∆ =U K R        

  if Tolk <+ )1(R  or ( 1) ( 1)k k Tol+ +∆ ⋅ <U R  

   goto next time step 

  else 

   k=k+1;    return Step 2 

  end if 

Figure 3.4.1: Solid-shell algorithm 
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3.5 ENHANCED QUANTITIES 

3.5.1 Consistent deformation gradient 

 The solid-shell element presented in this chapter has been built on the modified 

strain E
mod

 (3.4.8). The associated modified deformation gradient F
mod

 is required if the 

element is implemented in a source code base on the updated Lagrange formulation or 

when a material algorithm for large elastoplastic strains is needed. 

 The deformation gradient can be split into right-stretch tensor U and rotation 

tensor R as: 

 RUF =   (3.5.1) 

 Introduce U and R into the formulation for calculating Green-Lagrange strain 

tensor (3.2.5) we have: 

  )(
2

1
])([

2

1
)(

2

1 2 IUIURRUIFFE −=−=−= TTT   (3.5.2) 

 Clearly, Green-Lagrange strain tensor depends only on the right-stretch tensor U. 

Thus, from the modified strain 
mod

E  we can derive the associated modified right-stretch 

tensor U
mod

. According to Hauptmann et al. [HAU00], the modified deformation gradient 

F
mod

 is calculated as 

 modmod RUF =   (3.5.3) 

 We see that calculation of F
mod

 requires twice of polar decomposition. The first 

time is calculation of rotation tensor R in (3.5.1). The second time is calculation of 

modified right-stretch tensor U
mod

 from 
mod

E . These calculations will increase 

computational cost of the algorithm when the deformation gradient F
mod

 is required.  

 

3.5.2 Local static condensation  

 The internal parameters of the EAS element are condensed out at the element 

level, see (2.4.37), before assembling. As shown in the solid-shell algorithm (Figure 

3.4.1), the internal parameters at iteration (k+1) is calculated by: 

 1

( 1) ( ) ( ) ( )[ ] ( )e e e e h e

k k k u k (k) enh(k)αα α
−

+ = − ∆ +α α k k U f  (3.5.4) 

 This procedure requires, for each element, that apart from the internal parameters 

at iteration (k) - e

k )(α  must be stored for the calculation of e

k )1( +α , other quantities as e

k )(ααk , 

e

ku )(αk  and e

enh(k)f  also need to be kept. When solving a problem with a huge number of 

DOF’s, a large memory space must be reserved for storing these items. Simo et al. 

[SIM93] did propose a “local static condensation algorithm”. According to this local 

algorithm, the internal parameters e

k )1( +α  are not calculated at Step 2. Instead, they are 

calculated at the end of Step 3b (Figure 3.4.1) from e

k )1( +ααk , e

ku )1( +αk  and e

1)enh(k +f . 

Consequently, it is not necessary to save EAS arrays that usually demand a significant 

memory allocation. Details of the local static condensation algorithm are presented in 

Figure 3.5.1. 
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LOCAL STATIC CONDENSATION ALGORITHM 

 

 Let { h

nU , h

nU∆ } be the correct solutions at time tn and { h

kn )(1+U , h

kn )(1+∆U } be 

solutions at a given iteration (k) within the interval [tn, tn+1]. Fix this iteration and 

compute e

kn )(1+α  for each element by means of the following sub-iteration (at the 

element level): 

  

2. Step 1: Initial values 

  k = 1 ; e

n

e

n αα =+ )1(1  ; tolerance tol ; Calculate com

k )1( +E  

3. Step 2: Update at element level for iteration (k +1): 

• Compute: enh

k )1( +E  ; enh

k

com

k

mod

k )1()1()1( +++ += EEE  

• Use constitutive equations to compute: 
mod

k

Smod

k

W

)1(

)1(

+

+
∂

∂
=

E
S  

4. Step 3: 

• Compute increment: e

1)enh(k

e

k +
−

++ =∆ fkαe

1)(k

1

)1( ][ αα  

• Test for convergence: 

   if  ( tole

kenh

e

k <⋅∆ ++ )1()1( fα ) or (k ≤ 3) 

    stop 

   else 

    update ααα ∆−=+
e

k

e

k )()1(  

    k=k+1;    return Step 2 

   end if 

Figure 3.5.1: Static condensation algorithm [SIM93] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 In the algorithm of Simo et al. [SIM93], Figure 3.5.1, the internal parameters are 

calculated by an approximation formulation: 

 )(][ 1

)()()1(

e

enh(k)

e

k

e

k

e

k fkαα −
+ −= αα  (3.5.5) 

 Hence, a limited number of iterations (≤ 3) have to be realized to get a correct 

solution.  

 

 

3.6 NUMERICAL RESULTS AND DISCUSSION 

 In the thesis, the solid-shell, which adopts 7 EAS parameters  (3.4.7) and the 

classical ANS techniques (3.4.3), is designated by SS7. While the solid-shell element 

with the alternative ANS technique that is presented in the above section, expression 

(3.3.25), is designated by SS7n. The additional letter “n” stands for the elements that 

employ the new alternative ANS technique. 
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3.6.1 Patch tests 

 The patch test has been originally proposed in the mid-sixties as a simple means to 

proof convergence of an element. Beside a numerical verification there is also the 

possibility of a theoretical analysis. The patch test checks, whether a constant distribution 

of any state variable within an arbitrary element patch (i.e. a distorted mesh) can be 

represented exactly. It is especially useful for finite element formulations which violate 

the compatibility condition (and thus cannot be proven to be consistent), such as the 

ANS, EAS, etc. Nature of the patch test is to verify an element’s ability to represent a 

constant strain/stress field, and thus ensure completeness and an ability to converge in the 

limit as the element size decreases. 

 The membrane patch test (for membrane constant stress state) and the bending 

patch test (for bending constant stress state) presented in Chapter 2 – Section 2.6 are 

satisfied by the classical ANS, SS7 elements and the proposed ANSn, SS7n elements. 

 

3.6.2 Eigenvalue analysis of an incompressible cube  

 In order to estimate the behavior of the ANSn and SS7n elements at the nearly 

incompressible limit an eigenvalue analysis of a unit cube is performed as in [AND93]. 

The material parameters are elastic modulus E = 1.0 and Poisson ratio ν = 0.4999. The 

cube is considered in regular configuration, and furthermore, in distorted configuration to 

check the sensitivity to distorted mesh of elements, see Figure 3.6.1.   

 

 Table 3.6.1 shows the eigenvalues of 18 deformable modes of the regular cube 

(Figure 3.6.1a), the six zero eigenvalues for the six rigid body modes are not shown. 

 
 

 

 

 

 

 

 

 

 

 

  

 

 

 

   

 The six eigenvalues of the constant strain-states, which are identical for all 

elements, are printed in italic letters. Their corresponding eigenmodes can be identified 

as three shear modes, two tension modes and one dilatation (or incompressible) mode 

(Figure 3.6.2). The eigenvalues of the EAS3v, EAS6v and EAS9v, in Table 3.6.1 are 

totally identical to those values of METAFOR [BUI02]. This assures the quality of our 

EAS implementation in the MATLAB code. 

 

Figure 3.6.1: Regular and distorted cubes 

a) Regular shape b) Distorted shape 
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Table 3.6.1: Eigenvalues of regular cube 

Mode Q1 EAS3v EAS6v EAS9v SS7 SS7n ANS ANSn 

1 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 

2 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 

3 0.167 0.167 0.093 0.093 0.093 0.093 0.111 0.111 

4 0.167 0.167 0.111 0.093 0.093 0.093 0.139 0.167 

5 0.167 0.167 0.167 0.093 0.111 0.111 0.139 0.167 

6 0.222 0,222 0.167 0.167 0.111 0.135 0.222 0.222 

7 0.333 0.333 0.167 0.167 0.111 0.135 0.333 0.333 

8 0.333 0.333 0.222 0.167 0.222 0.222 0.333 0.333 

9 0.333 0.333 0.333 0.222 0.333 0.333 0.333 0.333 

10 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 

11 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 

12 92.654 0.389 0.333 0.333 0.333 0.333 92.617 92.654 

13 92.654 0.389 0.333 0.333 0.333 0.333 92.636 92.636 

14 92.654 0.389 0.389 0.333 0.333 0.333 92.636 92.636 

15 555.648 92,654 0.388 0.389 0.333 0.365 555.593 555.593 

16 555.648 92,654 0.389 0.389 0.333 0.365 555.620 555.648 

17 555.648 92,654 92.654 0.389 92.617 92.654 555.620 555.648 

18 2500.00 2500.00 2500.00 2500.00 2500.00 2500.00 2500.00 2500.00 

                                                                                                            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For a volumetric-locking free behavior, the elements should contain only one 

infinite eigenvalue, it is the eigenvalue of the dilatation mode (mode number 18, 

eigenvalue = 2500 is considered as infinite). In the case of the standard elements Q1, six 

deviatoric modes (modes 12-17) are always mixed up by volumetric strains which when 

ν � 0.5 leads to six unrealistic infinite eigenvalues. The same consequences are found 

with ANS and ANSn, it means Q1 and both ANS and ANSn are not volumetric locking 

free. With the introduction of 3 enhanced modes, the most important part of volumetric 

locking is removed in the EAS3v element, which has now a better volumetric locking 

Figure 3.6.2: Two deformation modes 

a) warping mode b) dilatation mode 
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response in comparison to the Q1. However, higher order parts in the interpolation 

functions still exist and this might cause volumetric locking in certain cases. With the 

additional enhanced modes, the EAS6v becomes nearly free volumetric locking. 

Introduce more enhanced modes, for example EAS9v we obtains totally free volumetric 

locking element. As we might observe, after removing volumetric locking, the infinite 

eigenvalue becomes finite. The solid-shell elements, SS7 and SS7n, are almost free 

volumetric locking, except a warping mode (Figure 3.6.2) has a moderate eigenvalue of 

92.6 (mode 17).  

 

Table 3.6.2: Distorted cube - location of  nodes 

 1 2 3 4 5 6 7 8 

x -2.5 +2.5 +2.5 -2.5 -0.5 +0.5 +0.5 -0.5 

y -2.5 -2.5 +2.5 +2.5 -2.5 -2.5 +2.5 +2.5 

z -1.5 -1.5 -0.5 -0.5 +1.5 +1.5 +0.5 +0.5 

 

 

Table 3.6.3: Eigenvalues of distorted cube 

Mode Q1 EAS3v EAS6v EAS9v SS7 SS7n ANS ANSn 
1 0.056 0.056 0.056 0.056 0.057 0.059 0.059 0.069 

2 0.378 0.378 0.391 0.298 0.067 0.070 0.133 0.135 

3 0.401 0.391 0.312 0.276 0.171 0.164 0.202 0.217 

4 0.493 0.464 0.422 0.412 0.163 0.181 0.372 0.344 

5 0.622 0.614 0.464 0.454 0.284 0.414 0.428 0.589 

6 0.679 0.674 0.578 0.553 0.442 0.440 0.591 0.633 

7 1.109 0.935 0.614 0.578 0.484 0.667 0.606 0.814 

8 1.185 1.109 0.935 0.811 0.660 0.675 1.055 1.031 

9 1.783 1.457 0.989 0.925 0.919 0.958 1.436 1.730 

10 1.722 1.646 1.457 0.988 1.392 1.448 1.704 1.826 

11 12.916 1.724 1.477 1.473 1.805 1.677 177.914 9.241 

12 202.125 3.129 1.662 1.614 1.789 1.754 652.063 197.282 

13 464.475 3.706 1.724 1.686 3.040 3.035 901.394 771.135 

14 1171.097 13.803 3.129 2.020 3.580 3.739 953.793 899.555 

15 1764.644 204.498 3.689 3.061 6.863 6.906 2712.966 2721.249 

16 3443.134 707.527 17.078 3.280 228.098 26.162 3995.422 4400.630 

17 4268.216 1197.604 707.527 17.031 735.750 832.995 6639.616 6566.450 

18 10673.478 10278.645 10278.645 10167.644 21513.640 21281.558 25092.928 25024.503 

 

For distorted case (Figure 3.6.1b), the general trend is quite similar as in the 

regular case. Table 3.6.3 shows the eigenvalues of 18 deformable modes of the distorted 

cube. The ANS and ANSn elements and the Q1 standard element are locked because of 

the presence of many infinite eigenvalues (modes 12-17). With the introduction of 

enhanced modes in volume, volumetric locking is removed. However, in this distorted 

configuration, the EAS elements cannot remove completely the locking effect. For 

example, it exists two locking eigenmodes (modes 16, 17) in the EAS6v. Fortunately, the 

eigenvalue is rather moderate and we expect a very mild locking. The solid-shell 

elements, SS7 an SS7n, also show two locking eigenmodes (modes 16, 17) as the EAS6v. 

Anyway, the ANSn and SS7n seem to be better than ANS and SS7, respectively, in this 

distorted configuration, see Table 3.6.3 (by comparing eigenvalues of mode 11 of the 
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ANS and ANSn; and by comparing eigenvalues of mode 16 of the SS7 and SS7n). In the 

distorted configuration, the SS7n and ANSn elements have only one more moderate 

eigenvalue compare to their eigenvalues in the regular configuration, respectively. These 

arguments improve that the ANSn and SS7n elements are less sensitive to distorted mesh 

than the ANS and SS7 elements, respectively. 

The distorted case of the cube was also analysed by Jetteur [JET08]. In [JET08] 

the incompatible element, the SRI, EAS24 and EAS9 elements were invoked. Analysed 

results in [JET08] showed that the incompatible element behaves similarly as the EAS3v 

element. Volumetric locking was almost removed by the EAS9v element. Hence, in this 

case the EAS9v and EAS24 give similar results. Only the SRI element is completely 

volumetric locking free in this case. 

 

3.6.3 Eigenvalues of a square plate  

 Eigenvalues of a square plate with zero Poisson’s ratio is investigated to check 

performance of elements in bending [HAU00]. Dimensions and material parameters of 

the plate are given in Figure 3.6.3. 

 

 

 

 

 

 

 

 

 

 

 Eigenvalues of elements are shown in Table 3.6.4. Result of EAS3DEAS solid-

shell element of Hauptmann et al. [HAU00] is also gathered to compare with the solid-

shell elements presented in this thesis. The EAS3DEAS element incorporated the 

classical ANS technique for removal of transverse shear locking, and incorporated the 

EAS method for membrane and Poisson thickness locking removals. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6.3: Square plate 
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Figure 3.6.4: Two bending modes 

a) Bending in 0X b) Bending in 0Y 
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All of the elements have six rigid body modes. The standard element, Q1, suffers 

transverse shear locking as we see its eigenvalues for bending modes in 0X and 0Y axes 

(Figure 3.6.4) are infinite. These eigenvalues of Q1 are equal to 227.7 while the 

correspondent values of non-locking elements are smaller than 1.0 (Table 3.6.4, modes 

11 and 12). Furthermore, the Q1 element and also the EAS3v6s element may suffer a 

mild locking caused by two warping modes (Figure 3.6.5) because these modes were 

affected by transverse shear strains. The warping-mode eigenvalues of the Q1 and the 

EAS3v6s are equal to 75.9 while the equivalent values of other elements in Table 3.6.4 

are smaller than 1.0 (modes 9 and 10). 

     

Table 3.6.4: Eigenvalues of the square plate 

Eigen 

mode 
Q1 EAS3v6s ANS-SC SS7 ANSn SS7n 

1 1365.0 1365.000 1365.000 1365.000 1365.000 1365.000 

2 682.8 227.864 227.864 227.864 227.863 227.864 

3 682.8 227.500 227.500 227.500 227.500 227.500 

4 227.9 682.773 682.773 682.773 682.773 682.773 

5 227.5 682.773 682.773 682.773 682.773 682.773 

6 151.7 151.727 151.667 151.666 151.727 151.727 

7 455.1 455.000 455.000 455.000 455.091 455.091 

8 455.1 455.000 455.000 455.000 455.091 455.091 

9 75.9 75.924 0.273 0.546 0.273 0.546 

10 75.9 75.924 0.273 0.546 0.273 0.546 

11 227.7 0.546 0.182 0.546 0.182 0.546 

12 227.7 0.546 0.182 0.091 0.182 0.091 

13 0.3 0.091 0.091 0.091 0.091 0.546 

14 0.3 0.091 0.182 0.091 0.182 0.182 

15 0.5 0.546 0.182 0.546 0.182 0.182 

16 0.5 0.546 0.182 0.546 0.182 0.182 

17 0.5 0.546 0.182 0.546 0.182 0.182 

18 1.5E-4 1.454e-4 1.45e-4 1.454e-4 1.45e-4 1.45e-4 

       

Table 3.6.5: Eigenvalues of the square plate - Summary 

Eigenvalues (of deformable modes) Element Rigid body 

modes < 0.1 < 1.0 ≈ ∞ Max. 

Q1 1 – 6 7  8 – 12 – 1365 

EAS3v6s 1 – 6 7   8 – 14 – 1365 

EAS3DEAS 

(Hauptmann) 

1 – 6 7 – 9 10 – 16 – 1365 

ANS 1 – 6 7 – 9 10 – 16 – 1365 

ANSn 1 – 6 7 – 9 10 – 16 – 1365 

SS7 1 – 6 7 – 9 10 – 16 – 1365 

SS7n 1 – 6 7 – 9 10 – 16 – 1365 
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3.6.4 Square plate at large displacements and strains  

 Consider a square plate of dimension a×a×h with a = 100 and h = 1. Young 

modulus is E = 2×10
5
 and Poisson’s ratio is ν = 0.3. The plate is considered in two cases: 

fully clamped and simply supported at all edges. A concentrated force P is applied at the 

center of the plate.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 Due to symmetry, only one quarter of the plate is analysed, see Figure 3.6.6. By 

adopting the assumption on small displacements and strains, analytical results for the 

displacement at the center of the plate can be obtained thanks to Timoshenko’s plate 

theory. These analytical results are:  

 for the clamped plate:  DPaw /0056.0
2

max = , 

 for the simply supported plate:  DPaw /0116.0
2

max = , 

(3.6.1a) 

(3.6.1b) 

where )1(12/
23 ν−= EhD  is the flexural rigidity of the plate cross-section. 

The analytical solution with the assumption of small displacements and strains 

offers a reference to examine the correctness of the numerical results. The problem is 

modeled by a coarse mesh of  5×5×1 elements. In both clamped and supported cases, the 

ANS and ANSn give the same results, similarly, the SS7 and SS7n give the same results. 

Hence, in this example we only expose results of the ANSn and SS7n. 

 Consider first the case where the plate is clamped, Figure 3.6.7. At a rather 

moderate loading (P < 100), displacements and strains in the plate remain small. Hence 

numerical results from large strain version should match the analytical solution. Results 

are also compared to results from reduced integration (RI) element of Li and Cescotto, 

[LI97], with automatic hourglass control. Notice that if the RI results match quite well 

Figure 3.6.5: Two warping modes of EAS3v6s & Q1 
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Figure 3.6.6: Square plate geometry 
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the EAS15 and SS7n, this is at the expense of 3 layers over the plate thickness for the RI 

while only one layer is required by other elements. The elements derived from the RI 

technique undergo Poisson thickness locking. Therefore, for RI elements, more than one 

layer should be used over thickness in order to obtain a good result of stress distribution 

along thickness in bending dominated problems. 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 The EAS15, RI and SS7n elements are very satisfactory by approaching the 

analytical curve up to a loading level about P = 100. With increasing loading, 

geometrically nonlinear effects become important and this due to membrane effects 

makes the plate stiffer. It explains why all numerical results are lower than the theoretical 

ones. Also, large strains might happen and this will have an influence on the behavior of 

the structure. The accuracy of the alternative ANS technique is confirmed when a very 

good agreement is found in comparison of the SS7n element with the EAS15 and RI 

elements being developed in the framework of large displacement and strains. 

 Consider now the case when the plate is simply supported, Figure 3.6.8. The 

results of the EAS15, SS7n and the RI are rather close to each other. However, while the 

EAS15 and SS7n results approach the analytical solution at a moderate loading (P < 100) 
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Figure 3.6.7:  Displacement versus applied force for fully clamped plate 
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as expected, it is not the case of the RI element. The deviation of the RI results from the 

analytical solution at small strains. When the applied force is over 150N, the EAS15 and 

SS7n continue giving the same result but they are a little stiffer than the RI element. 

The behavior of the EAS15 in both clamped and simply supported cases are totally 

identical to those values of METAFOR [BUI02]. This assures the quality of our EAS 

implementation in the MATLAB code. 

 

 

 

CONCLUSION 

 The ANSn and SS7n elements, which base on the alternative ANS technique, 

satisfy the patch tests. By analysing eigenvalues we see that they are free from volumetric 

locking and transverse shear locking. 

 The solid-shell elements are full-integrated scheme hence the stiffness matrix is 

stable; it means there is not hourglass modes. It should be noted that the derivation of 

the solid-shell stiffness matrix is carried out on the flattened (unwarped) solid geometry, 

then globalized to the actual geometry. If the element is too warped or tapered, certain 

tests are only approximately satisfied. Poor results can be expected if the element is 

excessively warped. Unlike others plane-stress shell formulations for metal forming 

simulation, the solid-shell elements provide a natural and efficient way for shell contact 

problem since double-side surfaces of shell are available and the transverse normal stress 

is included.  

Featuring an appropriate combination of the ANS and the EAS methods dedicated 

to alleviate locking effects, the solid-shell elements are free from locking due to parasitic 

shear strains, distorted geometries and incompressible materials. Through an 

investigation of the ANS method in the removal of shear locking, an alternative scheme 

of sampling points, which enables a linear distribution instead of a constant value of 

shear strains, is developed in this chapter. As it was revealed by numerical results, the 

solid-shell elements with this alternative scheme offer a comparable performance in 

comparison with that employed the classical ANS scheme. 

 In the next chapter performances of the ANS and ANSn, the SS7 and SS7n solid-

shell elements for elastic applications are continuously investigated with various linear 

and nonlinear tests.  
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Chapter 4. ELASTIC APPLICATIONS 
  

 

INTRODUCTION 

 In Chapter 3 a solid-shell element, which integrates the alternative ANS technique, 

has been developed. In this chapter, various numerical tests are presented to demonstrate 

the capabilities of the proposed solid-shell element. For the sake of clarity, all denotations 

for elements in Chapter 2 and Chapter 3 are recalled below. 

 The standard solid element with full integration is designated by Q1, while the 

solid element, which employs the classical ANS technique [DVO84] for alleviating 

transverse shear locking and curvature locking, is designated by ANS. The solid-shell 

element described in Chapter 3, which adopts 7 EAS parameters and the classical ANS 

techniques (3.4.3), is designated by SS7, while the solid-shell element with the 

alternative ANS technique presented in Chapter 3 (3.3.25) is designated by SS7n. The 

additional letter “n” stands for the elements that employ the alternative ANS technique. 

The EAS elements are designated by EASx, where ‘x’ is the number of internal 

parameters. For linear and nonlinear elasticity tests in this chapter, all of these elements 

are implemented in a MATLAB code.  

Table 4.0.1: Summary of employed elements 

Name Type Description 

Q1 Standard solid element Only compatible strains 

ANS Classical ANS element Linear transverse shear strains (3.4.3) 

ANSn New ANS element Bi-linear transverse shear strains (3.3.25) 

EASx Enhanced assumed strain element “x” enhanced modes (Table 2.4.2) 

SS7 Solid-shell element 7 enhanced modes (3.4.7) 

Linear transverse shear strains (3.4.3) 

SS7n New solid-shell element 7 enhanced modes (3.4.7) 

Bi-linear transverse shear strains (3.3.25) 

 

 

4.1 LINEAR APPLICATIONS 

In this section we investigate performances of the ANSn and SS7n elements. 

Various tests, which include shear, membrane and volumetric locking, are taken into 

considered. All of tests in this section are linear problems. Nonlinear problems are 

considered later, in section 4.2. 

4.1.1 Cantilever beam under pure bending 

 Consider a cantilever of dimension 10×1×1 clamped at left end and loaded by a 

constant moment (induced by forces P = 0.5) at right end, Figure 4.1.1. This test 

presented by Chandra and Prathap [CHA89]. The elastic modulus is E = 10
6
 and 

Poisson’s ratio is ν = 0.0. From the theory of the strength of materials, the analytical 

solutions for vertical displacement w and maximum normal stress are:      
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 A mesh of one element is used. Since the structure undergoes pure bending, an 

enhancement in volumetric locking is quite useless. Therefore, we will employ here 3 

shear-enhanced modes. With this rather moderate enhancement, the EAS3s is already 

able to attain the expected results both in displacement and normal stress. The stress 

results in Table 4.1.1 are averages of absolute values at upper and lower surfaces of the 

cantilever. Except the Q1 standard element is too stiff due to shear locking, all the other 

elements, ANS, ANSn, SS7 an SS7n, are shear locking free. 

 

 

 

 

 

 

 

 

 

 
 

 

Table 4.1.1. Normalized results 

 Q1 EAS3s ANS ANSn SS7 SS7n 

w  0.0195            0.9998 0.9998 1.0000 0.9998 0.9998 

σmax 0.0195                0.9998 0.9998 0.9998   0.9998 0.9998 

 

 

4.1.2 Twisted beam with warping effects 

 In order to test the warping effect on elements McNeal and Harder [MAC85] 

proposed the twisted cantilever in bending in-plane direction (Pv = 1) and out-of-plane 

direction (Ph = 1), Figure 4.1.2. The cantilever length is L = 12, the width is w = 1.1 and 

the thickness is t = 0.32. The cantilever is twisted 90° from root to tip. Young’s modulus 

is E = 29×10
6
 and Poisson’s ratio is ν = 0.22.  
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Figure 4.1.1: Cantilever under pure bending 
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The cantilever is fixed at left end and loaded by a unit force at right end. The 

reference solutions are: 

� In-plane direction (Pv = 1):       wref   = 5.424×10
-3

; 

� Out-of-plane direction (Ph = 1): vref  = 1.754×10
-3

. 

 The cantilever is modeled with a mesh of n×1×1 elements, where n is number of 

elements along the cantilever length. 
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Numerical results for the case of bending in-plane direction are listed in Figure 

4.1.3, where results of ASQBI element of Belytschko and Bindeman [BEL93] and 

NEWHEX element of Fredriksson and Ottosen [FRE07] are also taken into considered. 

Both ASQBI and NEWHEX elements are assumed strain elements where element 

underintegration is adopted. The SS7 and SS7n elements converge with very coarse mesh 

(n = 2) while the convergence with other elements requires finer mesh: n = 3 for ASQBI 

and EAS21, n = 10 for NEWHEX and n = 9 for the EAS15. The ANS and ANSn 

elements also converge as quickly as SS7. The Q1 element continues to show poor 

performance in this bending case as usual. 

Numerical results for the case of bending in out-of-plane direction are listed in 

Figure 4.1.4. In this case, all of the elements (ANSn, SS7n and EAS) only converge with 

rather fine mesh (n ≥ 5). However, with coarse meshes, the ANSn and SS7n elements 

give better results than the EAS15. In contrary, the EAS21 converges as fast as the SS7n. 

The Q1 element suffer shear locking hence show poor performance in this bending case. 

Solid-shell in Samcef is a volumetric, quadrature shell element which can perform 

the thickness deformation [JET08]. That element adopts the ANS method for shear 

locking removal. Furthermore, 12 EAS modes are also adopted to remove other locking 

effects. That solid-shell element passes the bending and membrane patch tests [JET08]. 

For this twisted beam problem, the solid-shell in Samcef converges with a mesh of 

12×2×1 elements (for both bending in-plane direction and bending out-of-plane 

direction).  

 

4.1.3 Clamped and simply supported plates under uniformed pressure 

 A square plate of dimension a×a×h with fixed thickness h = 1 and various values 

of width a = (10, 100, 1000) is modeled. All edges of the plate are clamped or simply 

supported. A uniform pressure p = 1 loads on the upper face of the plate.  This test is 

presented by Chandra and Prathap [CHA89]. 

 

 

 

 

 

 

 

 

 

 

 

 The symmetry of the structure allows to simulate a quarter of the plate, see Figure 

4.1.5. The material properties are Poisson’s ratio υ = 0.3 and the elastic modulus E is 

artificially dependent on the length a , see (4.1.3). The analytical result on the centre 

deflection can be obtained [TIM59]: 

Figure 4.1.5: Square plate under uniformed pressure 
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where D is the flexural stiffness of plate and dimensionless deflection α depends on 

boundary condition, see Table 4.1.2.  

In order to respect the condition of small displacements, the centre deflection has 

to be limited to a small value. Here, a typical value w = h/1000 is respected. 

Correspondingly, the Young’s modulus takes the following value from (4.1.2): 
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Table 4.1.2. Dimensionless deflection α (from [BLE00] and [TIM59]) 

h/a 0.1 0.01 0.001 0.0001 

Plate thick thin very thin very thin 

Clamped 

α 0.15 0.126 0.126 0.126 

Simply supported 

α 0.424 0.406 0.406 0.406 

  

For the comparison reason, the numerical dimensionless coefficient αnum, which is 

defined below, derived from (4.1.2), will be employed:   

 
4

100
pa

Dwnum
num =α   (4.1.4) 

 Consider first the case where all the edges of the plate are clamped, Table 4.1.3. 

Numerical analysis shows that the EAS15, SS7 and SS7n elements give very satisfactory 

results for all cases ranging from thick to thin plates. While the Q1 element delivers a 

poor prediction, especially when shear locking and Poisson thickness locking (due to 

Poisson ratio is different from zero) becomes important with a decrease of the plate 

thickness. The EAS9 element only gives good results for thick plate. When the aspect 

ratio (a/h) is over 100, the EAS9 is too much worse than the ANS and ANSn elements. 

However, the ANS and ANSn elements exhibit a stable tendency of convergence but 

cannot reach the desired value because Poisson’s ratio is not equal to zero. 

Table 4.1.3. Normalization of dimensionless deflection α -  

Clamped plate (υ = 0.3) 

h/a 0.1 0.01 0.001 0.0001 

Mesh 2×2 4×4 2×2 4×4 2×2 4×4 2×2 4×4 

Q1   0.38540    0.63140    0.00667    0.02428    0.00007    0.00025  0.007e-4  0.002e-3 

EAS9 0.84413    0.95780    0.08126    0.59397    0.00087    0.01452  0.088e-4  0.148e-3 

EAS15 0.93347    0.96627    0.96897    0.99579    0.96754    0.99413    0.95682    0.99960 

ANS 0.78220    0.81200    0.78881    0.81254    0.78738    0.81095    0.79269    0.83643 

ANSn 0.78220    0.81200    0.78881    0.81254    0.78738    0.81095    0.78809    0.81333 

SS7 0.92860    0.96507    0.96278    0.99421    0.96103    0.99262    0.95087    1.02436 

SS7n 0.92853    0.96507    0.96278    0.99421    0.96103    0.99262    0.96992    0.99897 
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Let’s pass now to the case where the plate is simply supported at all edges, see 

Table 4.1.4. Locking response occurs in the case of Q1 - standard element. The EAS15 

element show again its performance with a quick convergence toward the expected 

results but the EAS9 element continues to give poor result at high aspect ratio. The SS7n 

and SS7 solid-shell elements show good performance as the EAS15 at coarse mesh for 

thick and thin plate. As expected, the ANSn and ANS element behave better than the 

EAS9, as in the clamped case when the aspect ratio (a/h) is over 100. 

 

Table 4.1.4. Normalization of dimensionless deflection α -  

Simply supported plate (υ = 0.3) 

h/a 0.1 0.01 0.001 0.0001 

Mesh 2×2 4×4 2×2 4×4 2×2 4×4 2×2 4×4 

Q1    0.45014    0.69738    0.00916    0.03543    0.00009    0.00037  0.009e-4  0.004e-3 

EAS9    0.95395    1.03089    0.14190    0.73649    0.00165    0.02737  0.165e-4  0.281e-3 

EAS15    1.00977    1.03632    0.98173    0.99728    0.98097    0.99624    1.00235    0.99947 

ANS    0.82675    0.84711    0.80011    0.81377    0.79944    0.81294    0.84025    0.78776 

ANSn    0.82666    0.84653    0.80011    0.81377    0.79945    0.81294    0.83871    0.83123 

SS7    1.00662    1.03589    0.97831    0.99648    0.97753    0.99544    0.99989    0.95143 

SS7n    1.00649    1.03486    0.97831    0.99648    0.97754    0.99543    1.06946    1.04330 

  

 

Table 4.1.5. Normalization of dimensionless deflection α -  

Clamped plate (υ = 0.0) 

h/a 0.1 0.01 0.001 0.0001 

Mesh 2×2 4×4 2×2 4×4 2×2 4×4 2×2 4×4 

Q1    0.30742    0.60525    0.00469    0.01718    0.00005    0.00017  0.047e-5  0.002e-3 

EAS9    0.78011    0.91660    0.05836    0.50669    0.00062    0.01024  0.620e-5  0.103e-3 

EAS15    0.90605    0.92896    0.98001    0.99804    0.97902    0.99690    0.97884    1.00560 

ANS    0.88575    0.92410    0.95492    0.99190    0.95391    0.99079    0.95011    0.97469 

ANSn    0.88571    0.92408    0.95492    0.99192    0.95391    0.99079    0.93525    1.00998 

SS7    0.88575    0.92410    0.95492    0.99192    0.95391    0.99079    0.95666    0.96606 

SS7n    0.88571    0.92408    0.95492    0.99192    0.95391    0.99079    0.94112    0.97986 

 

 

Table 4.1.6. Normalization of dimensionless deflection α -  

Simply supported plate (υ = 0.0) 

h/a 0.1 0.01 0.001 0.0001 

Mesh 2×2 4×4 2×2 4×4 2×2 4×4 2×2 4×4 

Q1    0.39922    0.75090    0.00644    0.02526    0.00006    0.00026  0.006e-4  0.003e-3 

EAS9    0.94032    1.04521    0.10388    0.66287    0.00116    0.01932  0.116e-4  0.197e-3 

EAS15    1.02024    1.05355    0.98788    0.99888    0.98710    0.99770    1.02352    1.03863 

ANS    1.00826    1.05032    0.97435    0.99565    0.97357    0.99446    1.08355    0.99346 

ANSn    1.00769    1.04795    0.97435    0.99565    0.97355    0.99447    0.96104    1.01437 

SS7    1.00951    1.05249    0.97435    0.99565    0.97358    0.99446    1.01366    0.96576 

SS7n    1.00865    1.04932    0.97435    0.99566    0.97356    0.99447    1.00054    0.99384 
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 In order to check performance of elements when there is no Poisson thickness 

locking, let’s impose υ = 0.0, see Tables 4.1.5 and 4.1.6. For both clamped and simply 

supported cases, the EAS9 element continues to give poor results when a/h > 100. Hence 

we can conclude that due to shear locking the EAS9 element shows bad performance. 

The ANS and ANSn elements are only shear locking free. When there is no Poisson 

thickness locking they behave as well as the SS7 and SS7n. Due to free from Poisson 

thickness locking, performance of the other elements (SS7, SS7n and EAS15) are almost 

similar to the case where Poisson thickness locking exists. 

 

4.1.4 Square clamped plates with concentrated loads  

 A square plate of dimension a×a×h = 100×100×1 is clamped at all edges and 

loaded by a concentrated load P = 16.367 at the center. Material properties are E = 10
4
 

and υ = 0.3. Due to symmetry one quadrant of the plate is modeled with one layer of 2×2 

and 4×4 elements. The structure has been modeled with EAS elements by Andelfinger 

and Ramm [AND93].  

 By adopting the assumption on small displacements, analytical results on the 

center displacement can obtained thanks to the Kirchhoff’s plate theory: 
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D   (4.1.5) 

where D is the flexural stiffness of the plate. 

 

Table 4.1.7. Center deflection 

Mesh 2×2 4×4 

Q1 0.00683 0.02516 

EAS9 0.07342 0.55351 

EAS15 0.87357 0.97050 

ANS 0.71124 0.79194 

ANSn 0.71124 0.79194 

SS7 0.86773 0.96848 

SS7n 0.86773 0.96848 

Theory 1.0 

 

 

Applying (4.1.5), the theoretical displacement is imposed w = 1 at the center of the 

plate. Without the presence of geometrical (nonlinear) stiffness the EAS15, SS7n and 

SS7 elements give very  good approximation, see Table 4.1.7. 

 This thin plate bending problem is modeled by coarse meshes, hence, the Q1 

standard element is too stiff. Better results are given by the EAS9 element but with both 

very coarse mesh 2×2 and finer mesh 4×4 the EAS9 is always worse than the ANSn and 

ANS elements. The solid-shell elements who adopt the classical ANS technique (ANS 

and SS7) or the alternative ANS technique (ANSn and SS7n) behave identically in this 

test. 
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4.1.5 Simply supported square plate with various thickness and distorted mesh   

 This test illustrates the distorted mesh insensitivity of the solid-shell elements and 

their performance in shear locking and Poisson thickness locking removal at high aspect 

ratio (a/h ≤ 2000). Consider a plate of dimensions a×a×h (Figure 4.1.6) with a = 20 and 

different values of the thickness h (Table 4.1.8). The plate is simply supported along the 

four edges and loaded by a unit concentrated force at the center. Young’s modulus is E = 

10
7
 and the Poisson’s ratio is ν = 0.25. The problem is symmetric, hence, only one 

quarter of the plate is considered in two cases: regular mesh and distorted mesh of 4×4 

elements (Figure 4.1.6).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1.8. Regular mesh - Normalization of displacement 

h Q1 ASQBI NEW- 

HEX 

EAS9 ANSn, 

ANS 

SS7n, 

SS7 

1.5  0.667  1.089  1.089 1.070 0.965 1.080 

1.0  0.454  1.039  1.039 1.014 0.921 1.034 

0.5  0.173  1.009  1.009 0.935 0.894 1.005 

0.1  0.008  0.999  0.999 0.377 0.885 0.995 

0.05  0.002  0.999  0.999 0.133 0.884 0.995 

0.01  8.4e-5 0.999  0.999 0.006 0.884 0.995 

 

Table 4.1.9. Irregular mesh - Normalization of displacement 

h Q1 ASQBI NEW- 

HEX 

EAS9 ANSn, 

ANS 

SS7n, 

SS7 

1.5  0.660 1.090 1.090 1.064 0.964 1.079 

1.0  0.449 1.040 1.040 0.994 0.920 1.033 

0.5  0.172 0.990 0.990 0.873 0.893 1.003 

0.1  0.008 0.680 0.700 0.236 0.883 0.994 

0.05  0.002 - - 0.073 0.883 0.993 

0.01  8.5e-5 - - 0.003 0.883 0.993 

 

Figure 4.1.6: A quarter of the plate - distorted mesh 
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 The analytical solution of displacement at the center of this problem is given by 

(3.6.1b). Numerical solutions are listed in Table 4.1.8 for the regular mesh and in Table 

4.1.9 for the distorted mesh. 

Results from the SS7n and ANSn elements are compared with results of the EAS9, 

ASQBI of Belytschko and Bindeman [BEL93] and with NEWHEX of Fredriksson and 

Ottosen [FRE07]. When the aspect ratio is less than 40 (i.e., h > 0.5), all the elements, 

except Q1, give good results for both regular and distorted meshes. When the aspect ratio 

is larger than 200 (i.e., h < 0.1) ASQBI and NEWHEX only give good results for regular 

mesh while results of the EAS9 deteriorate rapidly even for regular mesh. On the 

contrary, the behavior of ANSn and SS7n is stable with both distortion and high aspect 

ratio (a/h = 2000). These elements can thus be considered as robust. 

 

4.1.6 Pinched cylinder with rigid end diaphragms   

 Consider a cylinder of inner radius r = 300, thickness t = 3 and length L = 600, see 

Figure 4.1.7. Young’s modulus is E = 3×10
6
 and the Poisson’s ratio is ν = 0.3. The 

concentrated forces F = 1 apply at the mid-length of the cylinder.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Reference deflection w = 1.8248×10
-5

 is coincident with the loaded points. Due to 

symmetry only one-eighth of the cylinder is modeled. The structure is dominated by 

inextensional bending response hence membrane locking may occur. Furthermore, the 

thin structure with highly curve geometry also cause curvature thickness locking and 

shear locking.  

 In this test a solid-shell element, ANS3DEAS, of Hauptmann and Schweizerhof 

[HAU98] is used for comparison. The ANS3DEAS adopts the ANS method for 

transverse shear locking removal and adopts the EAS method to enhance the membrane 

strains. The ANS3DEAS element is superior in membrane dominated problems as stated 

in [HAU98]. Mindlin shell and the solid-shell element of Samcef [JET08], see Section 

4.1.2, are also taken into comparison. 

Figure 4.1.8 shows that the vertical displacements of the alternative ANS method, 

ANSn element (only with N < 100) and SS7n element, are better than ANS3DEAS and 

Figure 4.1.7: Pinched cylinder with two rigid end diaphragms 
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the EAS elements. The SS7n, EAS15 and ANS3DEAS elements converge with very fine 

mesh (32×32). The Samcef solid-shell element behaves as well as the SS7n element. The 

Mindlin (Samcef) element converges at very coarse mesh; but does not provide the 

correct result when the mesh is finer.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

4.1.7 Morley spherical shell   

A benchmark test for shell elements of McNeal and Harder [MAC85] is 

considered. The structure consists of a thin hemispherical shell, Figure 4.1.9. The middle 

radius of the shell is R = 10, the thickness t = 0.04. Material properties are elastic 

modulus E = 6.825×10
7
 and Poisson’s ratio υ = 0.3. Concentrated loads F of opposite 

signs position at every 90° in the equatorial plane.  

 Table 4.1.10. Morley spherical shell - Normalized displacements at test point 

Mesh Q1 EAS9 EAS15 ANSn, 

ANS 

SS7n, 

SS7 

2×2 1.064e-4 3.192e-4 4.255e-4 0.985 1.053 

4×4 0.001 0.010 0.040 1.022 1.036 

8×8 0.003 0.163 0.746 0.997 1.003 

16×16 0.010 0.750 0.989 0.991 0.998 

32×32 0.038 0.96 0.984 0.979 0.984 

 

 The theoretical displacement of test point is u = 0.0940. Because of the symmetry, 

a one-fourth of the structure needs to be modeled. One element over thickness will be 

fixed for all computation while different kinds of mesh in other directions will be tried. 
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Figure 4.1.8: Convergence investigation for the pinched cylinder  
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Computed results with the EAS elements as well as the solid-shell elements are 

compared. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As the spherical shell is very thin, 3D modeling may lead to an ill-conditioned 

problem, since the distance between two corresponding nodes in the thickness direction is 

too small in comparison to other directions in the case of a too coarse mesh. Hence, a 

refinement of mesh will be helpful to handle this problem. Figure 4.1.10 shows results of 

the solid-shell elements versus the EAS and standard elements with variety of meshes. 

The EAS9 converges to the exact solution for a very fine mesh (32×32) while the EAS15 

converges for a coarser mesh (16×16). However, the solid-shell elements give good 

Figure 4.1.9: Morley spherical shell 
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Figure 4.1.10: Convergence of finite element solution  
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results even at extremely coarse mesh (2×2). The classical ANS elements, ANS and SS7 

elements, and the alternative ones, ANSn and SS7n elements, are in this case, totally 

equivalent. 

 

4.1.8 Thick-walled cylinder  

 Expansion of a thick cylinder with various Poisson’s ratio (ν = 0-0.4999) as 

described in [MAC85] is considered to investigate the performance of the solid-shell 

elements in volumetric locking conditions. Elastic modulus is E = 1000. The inner radius 

of the cylinder is Ri = 3.0, the outer radius is Ro = 9.0 and the thickness is t = 1.0, see 

Figure 4.1.11. Plane strain conditions are assumed in the thickness direction. The inner 

surface of the cylinder is loaded by a pressure q = 1/unit area.  

 A part of the cylinder, as described in Figure 4.1.11, is modeled by a 5×1 mesh. 

The analytical solution of the problem is given by 
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 Numerical solutions, at the inner radius, of elements are tabulated in Table 4.1.11. 

The results show that the ANS and ANSn elements deliver identical results. The same 

remark is also shown by the SS7 and SS7n elements. Obviously, volumetric locking 

response can be observed for the Q1 element. Since volumetric locking cannot be 

removed by the ANS techniques, the ANS element’s response is nearly as stiff as the Q1 

standard element for this problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This volumetric locking can be removed with the use of the EAS internal 

parameters, or more precisely with the introduction of enhanced volumetric modes. 

Indeed, the ANS technique combined with the EAS technique to result in the solid-shell 

elements, SS7 and SS7n. The solid-shell elements are free from not only shear locking 

but also volumetric locking, see Table 4.1.11. Moreover, numerical results show the 

Figure 4.1.11: Thick-walled cylinder 
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EAS9 elements, with 3 volumetric locking modes, and the EAS21, with 9 volumetric 

locking modes, give almost exact results as the SS7n. 

Table 4.1.11. Normalized radial displacement at Ri 

ν Q1 ANSn, 

ANS 

EAS9 EAS21 SS7n, 

SS7 

0.0 0.993 0.996 0.998 0.998 0.998 

0.25 0.989 0.992 0.996 0.996 0.996 

0.30 0.987 0.990 0.995 0.995 0.995 

0.49 0.845 0.848 0.991 0.991 0.991 

0.499 0.358 0.360 0.990 0.990 0.990 

0.4999 0.053 0.053 0.990 0.990 0.990 

  

 

4.2 NONLINEAR APPLICATIONS 

In this section we investigate performances of the ANSn and SS7n elements in  

nonlinear problems. All locking effects (shear locking, membrane locking and volumetric 

locking) are presented in problems.  

4.2.1 Cantilever in large displacement 

 Consider a cantilever under transverse line load, see Figure 4.2.1. Geometry of the 

cantilever are L×b×h = 10×1×0.1. The elastic modulus is E = 2.1×10
5
 and Poisson’s ratio 

is υ = 0.3. The cantilever is clamped at one end and suffer a line load q0 = 1 at the other 

end. Reference solution is numerical results of ANS3DEAS element (see Section 4.1.6) 

of Hauptmann et al. [HAU01]. 

  

 

 

 

 

 

 

 

 

 

 

 

 

A discretization with a mesh of 10×1×1 elements is used. The load - displacement 

diagram in Figure 4.2.2 is obtained by using ten equal load steps. It is shown that when 

the applied load is small or moderate, 03.0 qq < , the EAS15 element performs as well as 

the SS7n and ANS3DEAS (Hauptmann et al. [HAU98]) elements while the ANSn 

element is a little stiffer because of Poisson effect. When the applied load continues 

increasing, the EAS15, due to transverse shear locking, becomes as stiff as the ANSn 

element due to Poisson thickness locking. Meanwhile the other elements, SS7n and 

ANS3DEAS, give identically better results than ANSn and EAS15 do. 

L 

b 

h
 

q0 

Figure 4.2.1: Cantilever beam 

test point 



100 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

4.2.2 Morley spherical shell – large deformation case 

 The same data are given as the numerical test in Section 4.1.7 except the thickness 

is thinner, t = 0.01 and the applied load is larger F=5.0. The mesh is composed of 

16×16×1 elements. The total load is applied in 15 equal steps. The problem was 

considered by Vu-Quoc and Tan [QUO03a] and Klinkel et al. [KLI06] for investigating 

behavior of their solid-shell elements. This test is considered as one of the most severe 

bench-mark problems for nonlinear analysis of shell [QUO03a].  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 
 

  

 

 The inward and outward displacements at the point A and B are plotted versus the 

pinching load, see Figure 4.2.3. Both membrane and bending strains contribute to the 

displacements at the load points. The structure is a doubly-curved shell with high aspect 
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B 

A 

Figure 4.2.4: Deformed hemisphere at F = 5 

(without any magnification) 

ratio (R/t = 1000), hence, curvature thickness locking, transverse shear locking and 

membrane locking may simultaneously occur. From Table 4.2.1 the data show that the 

presented solid-shell element (SS7n) is quite equivalent to the solid-shell element of Vu-

Quoc and Tan. Compare with the EAS9 and EAS15, the ANSn element, which is free 

from shear locking and curvature thickness locking, deliver a very good result. Hence, we 

can conclude that transverse shear locking and curvature thickness locking are the reason 

for bad performance of the EAS9 and EAS15 elements in this problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2.1: Displacements due to pinched force F = 5 

Element uA uA/uref vB vB/vref 

EAS9 2.30850 0.42100  1.69930 0.52117 

EAS15 4.85402 0.88523 2.92634 0.89750 

ANSn 5.29089 0.96491 3.19503 0.97991 

SS7n 5.47885 0.99920 3.26135 1.00024 

Reference 

[QUO03a] 

5.48331 1.00000 3.26055 1.00000 

 

 

4.2.3 Slit annular plate under line force 

 A circular annular plate has a slit cut (line AB, Figure 4.2.5) along the radial 

direction. The plate is clamped at one end of the slit and suffers a line force p = 0.8 at the 

free end. The inner radius is Ri = 6, the outer radius is Ro = 10, the plate thickness is h = 

0.03. Young modulus is E = 21.0×10
6
 and Poisson’s ratio is υ = 0.0. The total load is 

applied in 10 equal steps. A mesh of 6×30×1 elements is used to model the plate.  

 Reference solution is numerical result of HS hybrid-stress solid-shell element of 

Sze et al. [SZE02]. The HS element adopts the ANS method for transverse shear locking 

and trapezoidal locking removals; and stress components are assumed independently 

from the ones obtained from the displacement field. Numerical results of the HS element 

are: vertical displacement at point A: wA = 13.618; vertical displacement at point B: wB = 

17.257. 
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The annular plate is a thin-walled structure (R/h > 300), hence, transverse shear 

locking may appear. From numerical results in Figure 4.2.7, we see that the SS7n 

element performs as well as the HS element of Sze et al. The ANSn element is slightly 

stiffer than the SS7n and HS elements. Normally, when Poisson’s ratio is equal to zero, if 

only transverse shear locking exists, the ANSn and SS7n should give similar results. In 

this test, maybe membrane locking occurs, hence, the ANSn is little stiffer than the SS7n. 

Due to transverse shear locking and high aspect ratio, the EAS9 element behaves too stiff 

but still too much better than the Q1 standard element. 
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Figure 4.2.6: The deformed configuration at maximum load 

(without any magnification) 
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Figure 4.2.5: Slit annular plate - initial configuration 
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CONCLUSION 

 In this chapter, various bench-mark tests (linear and nonlinear problems with 

various locking effects) have been invoked to demonstrate performance for the SS7n 

solid-shell element. The SS7n shows good performances for incompressible behavior and 

for bending behavior of thin and thick-walled structures. However, all of the numerical 

tests in this chapter are limited to linear material model. In comparison with the classical 

shell elements, the solid-shell elements allow a straightforward integration of 3D material 

models since they do not resort to the plane stress assumption. This advantage especially 

becomes important for implementation of nonlinear material models. This argument is 

assured in the next chapter, where performances of the SS7n element with nonlinear 

material models are considered.  
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Chapter 5. PLASTIC APPLICATIONS 
  

 

INTRODUCTION 

 In the last chapter, applications of the SS7n element in linear elasticity and 

nonlinear elasticity were presented. In order to exploit its performances in plasticity field, 

the SS7n element has been also implemented in FEAP (Finite Element Analysis Program, 

[TAY01]). In this chapter we investigate plastic behavior of the ANSn and SS7n 

elements. First of all, available plastic theory in FEAP is briefly presented. Then, 

numerical tests are investigated to look for differences in plastic behavior between ANS 

and ANSn techniques. To carry out that work, stresses in largely plasticity-deformed 

structures are analysed. Later, apart from the just mentioned tests, a special care is taken 

for a springback simulation. Springback or elastic recovery relates to the change in shape 

between the fully loaded and unloaded configurations that the material encounters during 

a stamping operation. This results in the stamping component being out of tolerance and 

can create major problems in the assembly or installation. Springback prediction of sheet 

metal after forming is an important issue in controlling the manufacturing processes. To 

this end, a benchmark test for high strength steel will be investigated with the ANSn and 

SS7n elements. 

  

 

5.1 FINITE STRAIN THEORY 

5.1.1 Multiplicative split 

 Consider a body Ω which contains a line vector dX before deformation (initial 

configuration). After deformed to the current configuration, the line vector dX is 

transformed to dx by a transformation mapping F (Figure 5.1.1). The line vector dX has 

undergone both elastic and plastic deformation to be transformed to dx. The intermediate 

configuration is defined as in which the line vector dx has been unloaded to a stress free 

state, characterized by line vector dp. In other words, the line vector dX in initial 

configuration has undergone purely plastic deformation to become the line vector dp in 

the intermediate configuration. That pure plastic transformation can be expressed by: 

 XFp dd p=  (5.1.1)

  And the pure elastic transformation from the intermediate configuration to the 

current configuration is realized by: 

 pFx dd e=  (5.1.2)

 Then we can write: 

 XFFpFx ddd pee ==  (5.1.3)

 The finite strain plasticity formulation relies on the local multiplicative 

decomposition of the deformation gradient F that is derived from (5.1.3) as: 
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 peFFF =  (5.1.4)

where eF  is the deformation caused by the elastic stretching and rotation and pF  is the 

plastic deformation. This is the classical multiplicative decomposition of Lee, see 

[SIM88a]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Due to the total Lagrange formulation of the variational equations for the solid-

shell elements, the plasticity model hereafter will be formulated using the right Cauchy 

strain tensor. As pointed out by Simo [SIM88a], the return-mapping algorithm of 

infinitesimal plasticity can be carried over to the presented formulation without any 

modification. With the hyperelastic models, the elastic predictor in the return-mapping 

algorithm is exactly calculated by using the strain energy function. The Green-Lagrange 

strain tensor is defined relatively to the reference configuration as:  

 )(
2

1
)(

2

1
ICIFFE −=−= T     with   FFC T=  

 )(
2

1
)(

2

1
ICIFFE −=−= pppTp   with   ppTp FFC =  

(5.1.5)

where C is the right Cauchy strain tensor. 

 Consider a general form of strain energy function: 

 ),( pCCWW =  (5.1.6)

 Assuming hyperelastic response, the second Piola-Kirchhoff stress tensor S is 

defined as:  

 
C

CC
S

p

∂

∂
=

),(
2

W
 (5.1.7)

 

dX

dx

dp

X
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e

p

Z

YX

0

Figure 5.1.1: Schematic diagram of multiplicative decomposition 
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5.1.2 Yield condition 

 Consider a yield surface defined in strain space with a general functional form 

given by 

 0),,( ≤Φ QCC p  (5.1.8)

where Q is a suitable set of internal plastic variable vector. 

 The evolution of the internal plastic variable vector Q can be determined by a rate 

equation in the form: 

 ),,( QCCHQ pγɺɺ =  (5.1.9)

where ),,( QCCH p  is a prescribed function of the generalized plastic hardening moduli; 

the initial condition is 0Q =  at the reference configuration. The term γ is plastic 

consistency parameter. 

 

5.1.3 Flow rule 

 As in the infinitesimal theory, in this section, beginning with the principle of 

maximum plastic dissipation, the evolution of plastic flow is expressed directly in terms 

of kinematic variables related to the multiplicative decomposition. 

 Without loss of generality, the elastoplastic behavior is assumed to be 

characterized by variables {C,C
p
,Q}. Furthermore, assume that an elastoplastic potential 

function can be decoupled into internal-independent contribution ),( pCW CC  and 

internal-dependent contribution )(QQW  as: 

 )(),( QCC QpC WWW +=  (5.1.10)

 The plastic dissipation at the state defined by {C,C
p
,Q} is: 

 )::(),;,,( Q
Q

C
C

QCQCC ɺɺɺɺ
∂

∂
+

∂

∂
−=

WW
D p

p

ppp  (5.1.11)

 In local form, the maximum plastic dissipation formulated in strain space may be 

stated as follows. Give a state {C,C
p
,Q} among all admissible right Cauchy strain tensors 

satisfying the yield criterion, the actual strain tensor C is the one for which plastic 

dissipation attains its maximum. Let’s consider the maximum plastic dissipation in point 

of view of optimization theory, the problem may be stated as: 

 Maximize { ]::[),;,,( Q
Q

C
C

QCQCC ɺɺɺɺ
p

p

p

ppp WW
D

∂

∂
+

∂

∂
−= } 

 subject to }0),,( { 6 ≤Φ∈= QCCC pC RK  

(5.1.12)

where CK  is the space of admissible right Cauchy strain tensors at fixed plastic variables 

{C
p
,Q}; tensor C

 
 is symmetric, hence, consists of 6 independent components. 

 As shown in (5.1.10) and (5.1.11), with a fixed set of {C
p
,Q} � Q

Q
ɺ:

∂

∂W
 constant, 

the maximum of pD  only depends on the term ]:
),(

[ p

p

pC
W

C
C

CC ɺ
∂

∂
− . Hence, the 
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maximum of pD  is equivalent to the minimum of ]:
),(

[ p

p

pC
W

C
C

CC ɺ
∂

∂
. Thus, the 

maximum plastic dissipation problem can be changed to: 

 Minimize { ]:
),(

[ p

p

pC
W

C
C

CC ɺ
∂

∂
} 

 subject to }0),,(  { 6 ≤Φ∈= QCCC pC RK  

(5.1.13)

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We can solve the problem (5.1.13) by the method of Lagrange multipliers to 

inequality constraints. The Lagrange functional for the problem (5.1.13) is defined: 

 ),,( :
),(

QCCC
C

CC pp

p

pC
p W

L Φ+
∂

∂
= γɺɺ  (5.1.14)

STRAIN-BASED ELASTOPLASTIC CONSTITUTIVE MODEL 

 

1. Step 1: Multiplicative decomposition 
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2. Step 2: Hyperelastic stress-strain relations 
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3. Step 3: constitutive tensors   

• Elastic: 
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• Plastic 
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4. Step 4: Flow rule 

    

C

QCC
S

CCCMS

∂
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5. Step 5: Hardening law 

  ),,( QCCHQ pγɺɺ =         

6.  Step 6: Loading/unloading conditions 

  0≥γɺ  ;  0),,( ≤Φ QCC p  

  0),,( =Φ QCC pγɺ  

Figure 5.1.2: Finite strain theory 
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where γɺ  is positive and belongs to the set of square integrable L
2
(Ω) functions, that 

defined by the positive cone pK : 

 
}0  )({ 2 ≥Ω∈= γγ ɺɺ LK

p

 (5.1.15) 

 Resulting from (5.1.14) and (5.1.15), the Kuhn-Tucker conditions are: 

  

1 ( , , )
0 ( , ) : 2  

2

0

( , , ) 0

 ( , , ) 0

p p
p p p
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L
γ
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∂ ∂Φ
= ⇔ = − = 

∂ ∂ ≥ 
Φ ≤

Φ = 

ɺ ɺ ɺ

ɺ

ɺ

C C Q
S M C C C

C C

C C Q

C C Q

  (5.1.16)

where the constitutive tensor 
p

pC
p W

CC

CC
CCM

∂∂

∂
=

),(
 4),(

2

. 

 The flow rule (5.1.16a) and loading/unloading conditions (5.1.16b-d) are 

associative with the multiplicative decomposition (5.1.4). The presented theory is 

summarized in Figure 5.1.2. 

 

5.1.4 Elastoplastic tangent moduli 

 The requirement for the load point to remain on the yield surface during plastic 

deformation is called the consistency condition. It enables to determine the plastic 

multiplier γɺ . This condition states that plastic loading ( 0≥γɺ ) requires 

0/),,( =∂Φ∂ tp QCC  as:  

 0::2:2),,(
),,(

=
∂

Φ∂
+

∂

Φ∂
+

∂

Φ∂
=Φ=

∂

Φ∂
Q

Q
C

C
C

C
QCC

QCC ɺɺɺɺ p

p

p
p

t
 (5.1.17)

or  

 ]::2[:2 Q
Q

C
C

-C
C

ɺɺɺ
∂

Φ∂
+

∂

Φ∂
=

∂

Φ∂ p

p
 (5.1.18)

 Calculate pCɺ  from (5.1.16a) then introduce the result into (5.1.18) we can derive 

the expression for the plastic consistency parameter: 

 

H
QC

M
C

C
C

:::8
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1

∂
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−

∂

Φ∂

∂

Φ∂
∂

Φ∂

=
−

p

ɺ

ɺγ  (5.1.19)

 Time differentiating of the elastic constitutive equation (5.1.7) we have: 

 
2 2

4 : 4 : : 4
W W

γ
∂ ∂ ∂Φ

= + =
∂ ∂ ∂ ∂ ∂

ɺ ɺ ɺ ɺ ɺp

p
S C C A C -

C C C C C
 (5.1.20)

where  
2

4
W∂

∂ ∂
A =

C C
 and 

2

:
W

γ
∂ ∂Φ

=
∂ ∂ ∂

ɺ ɺp

p
C -

C C C
 from (5.1.16a). 

By inserting (5.1.19) into (5.1.20) we have the expression: 

  CAS ɺɺ :ep=  (5.1.21)
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with the elastoplastic tangent moduli: 

H
QC

M
C

CC-AA

p
:::8

8

1

∂

Φ∂
−

∂

Φ∂

∂

Φ∂
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Φ∂
⊗

∂

Φ∂

=
−

ep  

         

 

5.2 J2 MATERIAL MODEL 

5.2.1 Multiplicative split and elastic response 

 The material model described above will be applied for J2 materials. The J2 

models are well suited to the materials whose elastic volumetric response is uncoupled 

with elastoplastic deviatoric response, this behavior is observed in metal in plasticity, for 

instance. 

 Denote J = det( F ), the volume-preserving part of the deformation gradient part is 

defined:   

 FF 3/1−= J  (5.2.1)

with det( F ) = 1, it means F  satisfies the incompressible condition.  

 The right Cauchy strain tensors which are associated with F  and F  are also 

defined: 

 2/3T
J

−= =C F F C     �   det(C ) = 1 

and similarly,  2/3p pT p p
J

−= =C F  F C  
(5.2.2)

 Account for uncoupled volumetric/deviatoric response the energy function 

(5.1.10) is in the form: 

 )(),()(),,( QCCQCC Qpdevvolp WWJWW ++=  (5.2.3)

 The uncoupled energy function in (5.2.3) results in uncoupled volumetric – 

deviatoric stress-strain relationships. In metal plasticity the plastic deformation is 

isochoric, i.e. fully incompressible. While elastic deformation is compressible and small 

in many applications. As an example, an energy function from [SIM92b] is consisted as: 
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==

∞
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 (5.2.4)

where 

 - G and K are constant. They are shear modulus and bulk modulus, respectively; 

 - δ > 0 is saturation exponent; 

 - )ln( e

i

e

i λε =  ; i = 1,2,3; e

iλ  are principal elastic stretches (from eigenvalues of C); 

 - )det( eeJ F= ; 

 - 0yσ  and ∞yσ  are the first yield stress and the saturation yield stress; 

 - pε  is the equivalent plastic strain; 

 - Hiso is the linear hardening modulus. 
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 Following (5.1.7), the second Piola-Kirchhoff, for J2 material, is decomposed into 

the hydrostatic and deviatoric parts as: 

 
2/ 3

( ) ( , )
2 2

( , )
    DEV[2 ]

vol dev

dev
vol dev

W J W

W
Jp J −

∂ ∂
= +
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∂
= + = +

∂

p

p
-1

C C
S

C C

C C
C S S

C

 (5.2.5)

where JJWp vol ∂∂= )(  is the hydrostatic pressure. In (5.2.5) we did use the relation (see 

[HOL00], page 41): 

 1-C
C

J
J

=
∂

∂
 (5.2.6)

and the derivative (see [HOL00], page 229): 

 ]
3

1
[3/2 1-CCI

C

C
⊗−=

∂

∂ −J  (5.2.7)

and the denotation  

 1-)](:[
3

1
    )(][DEV CC •−•=•  (5.2.8)

 In (5.2.5), the hydrostatic stress is presented by the term -1CJp , and ][DEV •  gives 

the physically correct deviator stresses in the reference configuration.  

 

5.2.2 Flow rule and yield function 

 The yield function, for J2 material model can be assumed to only depend on the 

deviatoric part of right Cauchy strain tensor C  as: 

 0),,( ≤Φ QCC p  (5.2.9)

 According to the arguments in the last section with C , the Kuhn-Tucker 

conditions (5.1.16) leads to a flow rule as: 
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  (5.2.10)

where, similar to (5.1.16a),  pSɺ  is also set:  

 ]:2[DEV 
2

32 p

p

dev
/-p W

J C
CC

S
∂∂

∂
−=ɺ  (5.2.11)

 The von Mises yield condition in form of spatial terms in stress space is: 

 0
3

2
][dev),( ≤−+−= yq σφ ατQτ  

 κisoHq −=  

(5.2.12)

where: 

 - σy is the yield stress and  
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 - the Kirchhoff stress tensor τ  is the push-forward of the second Piola-Kirchhoff 

 stress S  by:  

 TFSFτ =  (5.2.13)

 - the hardening variables are:  

 ],[ αQ q=  (5.2.14)

with α  is back stress which defines the location of the center of the yield surface. This 

back stress is used to account for Bauschinger’s effect (kinematic hardening). The 

isotropic hardening is characterized by the internal variable q with isotropic hardening 

modulus Hiso > 0. Hiso is a function of isotropic hardening variable к for nonlinear 

hardening laws, and for linear isotropic hardening laws Hiso  is a constant. 

  

The algorithm for the presented formulation is straightforward as follows. 

Integrate the material (reference) description of the flow rule (5.2.10) by an integration 

scheme, such as backward Euler difference scheme. Substitute the result into the 

hyperelastic stress-strain relations (5.2.5). The detailed algorithm is listed in Figure 5.2.1. 

The implementation of the hyperelastic formulation of J2-flow theory reduces to the 

classical radial return with the elastic predictor computed by energy function evaluation. 

 We see that maximum of plastic dissipation (5.1.12) leads to a return mapping 

algorithm, see Figure 5.2.1. That algorithm will look for the solutions on a path that 

makes the plastic dissipation stationary. Concretely, within a typical time step a trial 

elastic is calculated first. Then, the actual stress is defined in the closest-point projection 

of the trial state onto the elastic domain. For J2 flow theory, the closest-point projection 

boils down to the classical radial return method. 
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RETURN-MAPPING ALGORITHM FOR J2-FLOW THEORY 

 

1. Step 1: Geometry update 
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2. Step 2: Elastic predictor (k=0) 
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3. Step 3: Check for yielding   
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n QCC  

 IF )(

1

k

n+Φ  < TOL THEN 

  Set )(

11 )()( k
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4. Step 4: Compute plastic consistency parameter (see (5.1.19)) 
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5. Step 5: Update state variables 
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  Set k = k+1 and RETURN Step 3    

Figure 5.2.1: Material stress update algorithm 
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5.3 PLASTICITY APPLICATIONS 

In the sections following we investigate performances of the SS7n element in field 

of plasticity. 

5.3.1 Cantilever at large elastoplastic deformation  

Consider a cantilever beam of dimension L×b×h = 15×1×0.7 clamped at left end 

and loaded by a distributed force (q0 = 7) at right end, Figure 5.3.1. This test was 

presented by Huh and Kim [HUH00]. The elastic modulus is E = 2×10
5
 N/mm

2
 and 

Poisson’s ratio is ν = 0.3. Material law is elastoplastic with isotropic hardening as 
pεσ 1000340 += . 

  
                                

 

 

 

 

 

 

 

 

 

 

 

 

 

As proposed in the work of Huh and Kim [HUH00], a very fine mesh of 40×10×1 

elements (along L, h and b, respectively) is first employed. By adopting the assumption 

on a plain strain state, these authors can employ a 2D modeling. Here, with 3D solid 

elements to simulate 2D modeling, the width of beam (Y direction) will be presented by 

only one finite element and the plain strain state will be obtained by setting to zero 

displacement in the width direction. For the comparison between different approaches, 

the displacement at the tip point A will be considered. The SRI, EAS9, EAS21 

(METAFOR software, [MET08]), ANS, ANSn, SS7 and SS7n elements will be involved 

in the computation.  

The SRI element is one of the best elements in removing volumetric locking. 

However, shear locking in this problem is important. Consequently, in Figure 5.3.2, we 

see that the SRI element with 10 layers (i.e. 40×10×1 elements) is stiffer than the RI 

element [HUH00] or the EAS9 with 2, 4 or 10 layers. Results given by the EAS9 with 10 

layers are converged to the results given by the EAS21 with 4 or 10 layers, see Figure 

5.3.3. If only 1 layer is adopted, both the EAS 9 and EAS21 elements show stiff 

behaviour, see Figures 5.3.2 and 5.3.3. The EAS21 always gives very good results in 

both shear and volumetric locking removals, [AND93]. Hence, with a very fine mesh of 

40×10×1 elements, result of the EAS21 (METAFOR) element is considered as a 

reference. We see that this reference is a little softer than the result of the RI element in 

[HUH00]. 

X 

Y 

Z 

L=15 

b 
h

 

q0 = 7 

Figure 5.3.1:  Cantilever at large elasto-plastic deformation 
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Figure 5.3.2:  EAS9 (METAFOR) results with various elements along thickness 
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Next, the deformation is calculated by the ANS method with various layers of 

element along the thickness direction. Consider the load-displacement curve, the ANS 

and ANSn elements give identical results hence only the results of the ANSn are 

presented here. We see that with 2 layers, the ANSn element is softer than the SRI when 

P = q×b ≤ 4.0N. The reason is due to shear locking. At load level P > 4.0N, the cantilever 

is in larger deformation, effect of volumetric locking become more important, hence, 

behavior of two-layered ANSn element is stiffer than the SRI element, Figure 5.3.4. With 

4 layers, the ANSn element is always softer than the SRI element. When volumetric 

locking becomes more serious (because of large plasticity deformation), the ANSn 

element with 4 layers approaches the behavior of the SRI element. Increasing number of 

layers to 10, ANSn behavior becomes too soft. Compare to the reference result (EAS21), 

behaviour of the ANSn is too stiff. We see that for this problem, the ANSn element, 

which is only free from shear locking, should not be used.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now we investigate the problem with the SS7n element (because the SS7 and 

SS7n elements give identical results). From Figure 5.3.5 we see that result of the SS7n 

element, with 2 layers along the thickness, is only close to the result of the EAS21 when 

shear locking is important (i.e., P ≤ 4.0N). When P > 4.0N, SS7n with 2 layers is a little 

stiffer than the EAS21 and RI elements. Increasing layers along the thickness to 4 or 10, 

the SS7n even becomes stiffer. If a very coarse mesh is adopted, i.e. with only 1 layer 

along the thickness, the SS7n is too stiff. Hence, in this problem, 2 layers of SS7n are the 

most suitable choice. 
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Figure 5.3.3:  EAS21 (METAFOR) results with various elements along thickness 
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Figure 5.3.4:  ANS results with various elements along thickness 
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It was presented in Chapter 3 that the ANS and ANSn elements are different in 

assumed strained components Exz and Eyz. These elements will give identical results if 

transverse shear strains are not important. As in this problem, the ANS and ANSn 

elements give identical results because the cantilever is not too thin (aspect ratio ≈ 20), 

hence, transverse shear stresses given by the ANS and ANSn are similar, see Figures 

5.3.6-7. Consequently, σxz stress given by the SS7 and SS7n elements are similar, see 

Figures 5.3.8-9. 
 

 

Table 5.3.1. Convergence of σxz (MPa) 

40×1×1 40×2×1 40×4×1 40×10×1 40×15×1  

min max min max min max min max min max 

EAS9 -400 369 -259 266 -250 245 -247 262 -246 250 

EAS21 -400 369 -262 262 -251 248 -251 258 -246 250 

SS7 - - -224 181 -235 226 -242 240 -246 243 

SS7n - - -225 185 -235 225 -241 240 -245 243 

  

 

 Distribution of σxz stress in a mesh of 40×10×1 given by the EAS9 element 

(METAFOR, Figure 5.3.10) and the solid-shell elements (SS7 and SS7n, Figures 5.3.8 

and 5.3.9) are similar. However, the ultimate values given by the EAS9 element is larger 

in comparison with the solid-shell elements (-247MPa vs. -240MPa and 262MPa vs. 

240MPa). The convergence value of σxz is found in Table 5.3.1 with both solid-shell and 

EAS21 elements (bold letters) with mesh of 40×15×1 elements. Data in Table 5.3.1 

shows that the EAS21 and EAS9 elements go to the convergence from higher values. In 

contrary, the SS7 and SS7n elements go to the convergence from lower values. 

SS7n, SS7 (40×2) 
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Figure 5.3.5:  SS7n results with various elements along thickness 
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Figure 5.3.7:  ANSn element -  σxz (mesh 40×10×1) 

Figure 5.3.6:  ANS element -  σxz (mesh 40×10×1) 
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Figure 5.3.9:  SS7n element - σxz stress (mesh 40×10×1) 

(the result is shown in the structural coordinate system) 

Figure 5.3.8:  SS7 element - σxz stress (mesh 40×10×1) 

(the result is shown in the structural coordinate system) 
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Figure 5.3.10:  EAS9 element - σxz stress (METAFOR, mesh 40×10×1) 
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5.3.2 Pinched cylinder at large elastoplastic deformations  

 Consider a cylinder of inner radius r = 300, thickness t = 3 and length L = 600, 

Figure 5.3.11. Young’s modulus is E = 3×10
3
 and Poisson’s ratio is ν = 0.30. A couple of 

opposite, concentrated forces F applied at the mid-length of the cylinder. Both ends of the 

cylinder are pinched, only a free movement in the axial direction Y is possible. Material 

law is elastoplastic with isotropic hardening as 24.3 300 pσ ε= + . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 We investigate deflection coincident with the point load against loads. The 

deflection response is strongly dominated by inextensional circumferential bending. Due 

to symmetry, only one eighth of the cylinder is modeled. A result with 3D elements – and 

mesh of 40×40×1 elements proposed by Wriggers et al. [WRI96b] will be employed as 

the reference, see Figure 5.3.13. Wriggers did use 3D enhanced element presented by 

Simo and Armero in [SIM92a]. That element is equivalent to the EAS12 (6v + 6s) 

element, see Table 2.4.2. It means the reference element is volumetric and shear locking 

free. Let’s investigate convergence of the EAS12 element. We also see that the EAS12 

element of METAFOR, Figure 5.3.12, converges with a mesh of 40×40×1 elements. The 

EAS12 (40×40×1 elements) of METAFOR gives an identical result as the reference 

[WRI96b], Figure 5.3.13. 
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Figure 5.3.11:  Pinched cylinder 
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Figure 5.3.12:  EAS12 element (METAFOR) 
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This cylinder is a thin shell structure (R/t = 100 >> 20) and subject to large 

deformation. Consequently, transverse shear strains are important. In this problem results 

of the ANS and ANSn elements are not totally coincident, see Figure 5.3.13. 

Now we consider the resultant stresses from the ANS and ANSn techniques with a 

coarse mesh: 16×16×1 elements. Let’s concentrate in ultimate transverse shear stresses at 

the left end of the cylinder and at the area where the load is applied. All results are 

considered in the structural coordinate system. Data in Figures 5.3.14 - 15 show the σxz 

stresses calculated by the SS7 and SS7n elements. Reference result of the σxz stress is in 

Figure 5.3.20b. Pay attention that the concentrated load is only applied at the center node. 

As a consequence, the element containing the center node is singular due to the applied 

load is unphysical. Hence, in following analyses we will consider stresses at point B 

instead of stresses at point A, see Figure 5.3.14. 

When using the same coarse mesh (16×16×1), the SS7n gives the results, which 

are closer to the results of the reference - EAS12 (40×40×1) - than the SS7 does, see 

Table 5.3.2. In Table 5.3.2, transverse shear stresses of the EAS12 (16×16×1) are 

extracted from Figures 5.3.16 - 17. In that table, transverse shear stresses of the ANS and 

ANSn elements (16×16×1) are also introduced. We see that transverse shear stresses 

given by the ANSn are closer to the reference than the result of ANS. Transverse shear 

stresses predicted by the EAS12 (16×16×1) are worse than the values predicted by the 

SS7n (except the minimal value of σyz), Table 5.3.2. 

 

Table 5.3.2. Normalized transverse shear stresses  

(reference values are results of EAS12 - 40×40×1 element) 

 ANS 

(16×16×1) 

ANSn 

(16×16×1) 

SS7 

(16×16×1) 

SS7n 

(16×16×1) 

EAS12 

(16×16×1) 

Reference 

values  

Max 0.854 0.854 0.695 0.894 0.642  15.1 
σxz 

Min 0.291 0.648 0.559 0.862    0.836   -31.8 

Max 0.569 0.643      0.816      0.863      0.580  25.5 
σyz 

Min 0.557 0.708 0.587 0.925 1.042 -49.6 

 

Data from Figures 5.3.18 -19 show σyz stress calculated by the SS7 and SS7n 

elements. Reference result of σyz stress is in Figure 5.3.21b. When a coarse mesh is 
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Figure 5.3.15: SS7n element -  σxz (mesh 16×16×1) 

adopted, compare with the reference stresses in areas I and II (Figures 5.3.18, 19 and 

21b) we can see that the SS7n element give less worse results than the SS7 element. In 

detail, stress in area I given by the reference is 10.4 while values given by the SS7 and 

SS7n are 7.16 and 9.63, respectively. Stress in area II given by the reference is -5.0 while 

values given by the SS7 and SS7n are -1.9 and -2.7 respectively. The maximal and 

minimal values of σyz are listed in Table 5.3.2. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3.14:  SS7 element -  σxz (mesh 16×16×1) 
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Figure 5.3.17: EAS12 element - σyz (EAS12,METAFOR, 16×16×1) 

(due to singularity at load point, min. value has been imposed to -51.7) 

Figure 5.3.16: EAS12 element - σxz (EAS12,METAFOR, 16×16×1) 

(due to singularity at load point, max. value has been imposed to 26.0) 
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Figure 5.3.19:  SS7n element -  σyz (mesh 16×16×1) 
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Figure 5.3.18:  SS7 element -  σyz (mesh 16×16×1) 
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Figure 5.3.20a:  Reference -  σxz (EAS12,METAFOR, 40×40×1) 

Figure 5.3.20b:  Reference -  σxz (EAS12,METAFOR, 40×40×1) 

(due to singularity at load point, max. value for drawing has been imposed to 43.3) 
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Figure 5.3.21a:  Reference -  σyz (EAS12,METAFOR, 40×40×1) 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3.21b:  Reference -  σyz (EAS12,METAFOR, 40×40×1) 

(due to singularity at load point, min. value for drawing has been imposed to -49.6) 
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Figure 5.3.22:  SS7 element -  von Mises stress (mesh 16×16×1) 

Figure 5.3.23:  SS7n element -  von Mises stress (mesh 16×16×1) 

As analysing above, the differences in transverse shear stresses calculated by the 

classical ANS technique and the alternative ANS technique lead to difference in von-

Mises stress and Load-Displacement curve calculated by the SS7 and SS7n elements, see 

Figures 5.3.22-24. 
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Next, we compare results of the SS7 and SS7n elements with results of solid 

element (EAS12) and shell element presented in [WRI96b]. The shell element in 

[WRI96b] is based on a quasi-Kirchhoff-theory, which means that the assumption of the 

classical Kirchhoff-Love kinematics is respected via a penalty constraint. A reduced 

integration for the penalty term was applied in order to obtain locking-free behavior in 

bending dominated problems. 

In Figure 5.3.24 the load-displacements curves for different elements are plotted. 

In general, the results of the SS7 and SS7n (16×16×1) elements are a little stiffer than the 

results of 3D calculation (EAS12, 40×40×1 elements). However, with the same coarse 

mesh (16×16×1) the solid-shell elements, SS7 and SS7n, are comparable to the 

conventional shell element (RI shell elements, [WRI96b]) and better than results of the 

EAS12, Figure 5.3.24.  

The SS7n element shows a load decrease (at w ≈ 200) as RI shell element does (at 

w ≈ 210). This consequence arises as a result of the relatively coarse mesh. Hence, it 

makes the plastic zone cannot developed continuously. This consequence can be canceled 

by using a finer mesh as appear for the EAS12 results (16×16 vs. 40×40). In Figure 

5.3.24 the curve of the SS7 element is smoother than the SS7n.  
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Figure 5.3.24:  Pinched cylinder – solid-shell elements 
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 For this problem, behavior of the EAS12 and EAS21 (with both coarse mesh and 

fine mesh) are similar, see Figures 5.3.24 - 25. Hence, it is reasonable to use 12 internal 

parameters for the EAS as Wriggers et al. [WRI96b]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By this numerical test we see that the SS7n element predicts transverse shear 

stresses better than the SS7 element, Table 5.3.2. For analyzing a thin-walled structure 

with a coarse mesh, both solid-shell elements, SS7 and SS7n, can work as well as the 

conventional shell elements, e.g. the shell element in [WRI96b]. The other solid-shell 

elements, such as the solid-shell element of Samcef (20×20×1 elements) [JET08] 

provides a result which approximates the result of 3D element of Wriggers (40×40×1 

elements). Hence, using the solid-shell elements to simulate thin-walled structures will 

provide a real 3D model with a cheap computational cost. 
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Figure 5.3.24:  Pinched cylinder – solid-shell elements 
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5.3.3 Springback of unconstrained cylindrical bending 

The following benchmark initially proposed at the NUMISHEET’02 conference 

[NUM02] has been chosen as a reference case for comparing finite element formulations  

with various time integration schemes. This benchmark is recommended to investigate 

springback analysis and complex contact treatment. It consists of an initially flat blank 

bent into a cylindrical shape and then unloaded. Because there is no blankholder, the 

problem is called unconstrained bending. The initial geometry and the loading process 

are described in Figure 5.3.26 (left side). The loading process is stopped when punch and 

die are concentric (right side of Figure 5.3.26). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After the loading phase, the unloading phase takes place and some springback 

occurs. The amount of springback is quantified in the following way, see Figure 5.3.27. 

- Angle between line AB and line CD (Figure 5.3.27a) before and after springback 

at the final stroke of 28.5 mm. 

 Other specifications of the problem are: 

- The tools are assumed rigid. 

- Blank dimension are: length: 120.0mm; thickness: 1mm; width: 30mm.  

- Plane strain is assumed during all simulations. 

- Friction coefficient: µ = 0.1482. 

- The punch speed is kept constant between: (1-50) mm/sec. 

- Total punch stroke: 28.5 mm. 

- Blank material: isotropic steel with mechanical properties:  

• 0.25177645.24( 0.0102)σ ε= +   MPa; 

• E = 217.500 GPa ; ν = 0.3. 

 

Figure 5.3.26: Initial position (left) and final position (right) for stamping 
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First of all a parameter study are undertaken with all elements (EAS, SRI, ANS 

and solid-shell) in order to determine the sensitivity of the numerical solution with 

respect to some numerical parameters. Indeed we considered the influence on the results 

of the discretization, the penalty parameters for contact treatment and the time integration 

scheme with their associated numerical parameters.  

All computations with the EAS and SRI elements were carried out by using 

METAFOR software [MET08]. All computations with the ANS and solid-shell elements 

were carried out by using FEAP program [TAY01]. This is a plane strain problem, hence, 

instead of using the SS7n element its 2D version - 2D.SS4n element will be adopted. The 

2D.SS4n is resulted from the 2D.ANSn in (3.3.27) and the EAS4 element, Table 2.4.3. 

 

 

Simulation with 2D.EAS7 elements 

 Table 5.3.3 is a survey of some representative results. First of all the blank is 

divided into three zones (see Figure 5.3.28) whose lengths are respectively given by 21, 

18 and 21 mm, respectively. Inside any of the three zones any element has the same 

length. Then each of the zones has been discretized by imposing n2 elements through the 

thickness and respectively n1 equal elements in the first zone and n3 and n4 in the two 

remaining zones. 
 

 The different numerical parameters are then systematically explored. First, mesh 

size was changed to find out a good mesh quality (Table 5.3.3/Cases 1-4). After having 

set the mesh, the penalty parameters are varied (Table 5.3.3/Cases 5-6). Then, integration 

scheme is changed from quasi-static to implicit Chung-Hulbert (Table 5.3.3/Cases 6-8) 

with parameters are αM = -0.97 and αF = 0.01. This choice for αM and αF satisfies the 

unconditional stability and second order accuracy of Chung-Hulbert scheme [PON99]. 

Number of elements through the thickness direction was also considered (Table 

5.3.3/Cases 6-9). Each input parameter was changed to get a better and better result. The 

Table 5.3.3/Case 10 with very fine mesh is introduced to get a reference solution. 

 The areas which are sensible to mesh size are deformed areas (meshed by n1, n2, n3 

elements). We only survey the changes of n1, n2 and n3 because the area with n4 elements 

is neither deformed nor contacted by the punch or die (see Figure 5.3.28). 

a) between line AB and line CD 

2
0

2
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B

A

D

CUnit: mm
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Punch

F

0

b) between 2 contacted points 

Figure 5.3.27: Definition of angles 
(point E and point F are the farthest contact points from the centerline) 
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 Then, when a fine enough discretization has been attained for the mesh, the 

penalty parameters is varied. For reasonable variations, it can be seen in Figure 5.3.30  

that there is almost no difference in the force curves. The conclusion is the same when 

the implicit Chung-Hulbert scheme has been used instead of the quasi-static algorithm. 

As far as one avoids using only one element through the thickness (Case 9 in Figure 

5.3.29) one can also see that the results are quite stable. All the punch force - 

displacement curves, except the case of using 1 element through the thickness, nearly 

coincide with the reference curve - Case 10 (Table 5.3.3). So we can conclude that with 

≥2 elements through the thickness the mesh is refined enough. 
 

 

 

 Table 5.3.3. Calculation with 2D.EAS7 element 

Case 
Integration 

scheme 
Penalty  

Mesh Size 

n1; n2; n3; n4 

Note 

1 QS 1.0×10
3
 30; 2; 40; 20  

2 QS 1.0×10
3
 60; 2; 40; 20  

3 QS 1.0×10
3
 30; 2; 80; 20  

4 QS 1.0×10
3
 30; 2; 100; 20  

5 QS 5.0×10
2
 30; 2; 100; 20  

6 C-H 5.0×10
2
 30; 2; 100; 20 Convergence of 2D.EAS7  

7 C-H 5.0×10
2
 30; 3; 100; 20  

8 C-H 3.0×10
2
 30; 3; 100; 20  

9 QS 1.0×10
3
 30; 1; 100; 20  

10 QS 1.0×10
3
 150; 7; 150; 30 Reference 

* Bold  numbers or letters indicate what has changed from one case to another 

C-H: Chung - Hulbert scheme 

QS:  Quasi - static 

Figure 5.3.28: Discretization of the model: definition of the 3 zones 
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Figure 5.3.29: Punch force vs. punch displacement – EAS element 

(quasi-static; Table 5.3.3/cases 1 to 5; penalty =1.0×10
3
) 
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For mesh discretization parameter n3 is the most sensitive. Indeed, a rough 

discretization in this zone leads to oscillations in the punch force versus punch 

displacement curve as can be seen in Figure 5.3.29 (Case 2). This can be easily explained 

since it is the lower side of elements located in this zone that do have a sliding contact 

with the shoulder of the die (radius R3 - see Figure 5.3.28). As far as the contact with 

punch is considered the radius R1 is much larger than R3 so it is much less sensitive to 

discretization. Actually, if n3 is too small the number of nodes in contact with the die can 

be reduced to one. As a consequence, this leads to oscillations in the curve. As can be 

seen in Figure 5.3.29, n3 = 100 lead to almost no oscillation. 
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Figure 5.3.30: Punch force vs. punch displacement – EAS element 
(Table 5.3.3/cases 6 to 10) 
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In Figure 5.3.30, we see that the results got by using different penalty parameters, 

which are 2 times of difference (5.0×10
2
 and 1×10

3
), are generally similar. For this 

problem, solutions got by quasi-static scheme and dynamic scheme are almost similar. 

Solutions with 2 or 3 elements on the thickness are similar, except the case of using 1 

element on the thickness - Case 9 makes the behavior stiffer. 
 

 

 

Simulation with 2D.SRI elements 

In this section, a similar study was carried out but this time using 2D.SRI 

elements. Different results are tabulated in Table 5.3.4.  

First of all, we started the 2D.SRI computations with a reasonable mesh for the 

2D.EAS7 simulation (reasonable means that the force curve is quite close to the reference 

one in this case), e.g. n1 = 30; n2 = 2; n3 = 100; n4 = 20 (see Table 5.3.3/Case 6). As can 

be seen in Figure 5.3.32, the resulting curve exhibits a lack of smoothness. Changing the 

numerical parameters while keeping n1 = 30 does not affect too much the results (see 

again Figure 5.3.32), while increasing n1 will lead to the reference solution - see Figure 

5.3.33 - for n1 equal to or larger than 100. 

 As a first conclusion, we can state that even if 2D.SRI element are much cheaper 

than 2D.EAS7 and converge to the reference solution as the mesh is refined, they should 

be used with some care as they do not exhibit a coarse mesh accuracy as the 2D.EAS7  

does. The 2D.SRI element converges with a mesh of 100×2×100×20 element (Table 

5.3.4/Case 6). Meshes of cases 7 and 8 are very fine, so they are the best solutions of 

2D.SRI elements. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3.31: Reference solution of SRI element  
 (Table 5.3.4 /case 7– equivalent plastic strain, simulation with METAFOR) 

0.0211 0.0158 0.0105 0.0052 -6.70e-005 
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Table 5.3.4. Calculation with 2D.SRI element 

Case 
Integration 

scheme 
Penalty 

Mesh 

n1; n2; n3; n4 

Note 

1 QS 5.0×10
3
 30; 2; 100; 20  

2 QS 5.0×10
2
 30; 2; 100; 20  

3 C-H 1.0×10
3
 30; 2; 100; 20  

4 C-H 1.0×10
3
 30; 3; 100; 20  

5 QS 1.0×10
3
 30; 1; 100; 20  

6 C-H 1.0×10
3
 100; 2; 100; 20 

Convergence of 

2D.SRI 

7 QS 1.0×10
3
 150; 5; 150; 20  

8 C-H 1.0×10
3
 185; 7; 185; 30  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

 

Simulation with 2D.ANS elements 

Before investigate springback with the solid-shell elements, let’s consider 

springback behavior of 2D.ANSn elements. For this springback test, behavior of the ANS 

and ANSn is similar so only results of the 2D.ANSn are presented in Table 5.3.5. We 

investigate the ANS computations with a mesh with which the EAS element converged, 

i.e. n1 = 30; n2 = 2; n3 = 100; n4 = 20 (see Table 5.3.3/Case 6). Due to volumetric locking 

happens with the 2D.ANSn element, we should start with a higher number of element 

along the thickness to reduce locking, e.g., n2 = 3. However, as seeing in Figure 5.3.35, 

the resulting curve still exhibits locking. 

Case 1: SRI-30x2x100x20 
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3
) 

0

50 

100 

150 

200 

250 

300 

5 10 15 20 25 30 

Case 2: SRI-30x2x100x20 
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Figure 5.3.32: Punch force vs. punch displacement – SRI element 

(Penalty=1.0×10
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; Table5.3.4/cases 1 to 4) 
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The punch force - displacement curve with the 2D.ANSn element is stiffer than 

the reference curve, see Figure 5.3.35. Increasing number of element along the thickness 

n2 = 4 (Table 5.3.5/Case 2), the resulting curve is closer to the reference one. To get more 

stringent result, let's trying increasing element number in contact area with punch, n1 = 

100 (Table 5.3.5/Case 3). Data in Figure 5.3.34 shows that increasing n1 has only effect 

of reducing oscillation of contact force. Meanwhile, increasing number of element along 

the thickness, n2 = 5 (Table 5.3.5/Case 4), we get better result. The converged result of 

the ANSn element is obtained with penalty parameter equal to 1.0e+2, Table 5.3.5/Case 

4. If we use a higher penalty value (5.0e+2) the computational cost increasing while 

result is not improved, Figure 5.3.34-36. The consequence is the same when integration 

scheme is changed from quasi-static to Newmark (because the Chung-Hulbert scheme is 

not available in FEAP). 
 

 

Table 5.3.5. Calculation with 2D.ANSn element 

Case 
Integration 

scheme 
Penalty 

Mesh 

n1; n2; n3; n4 

Note 

1 QS 1.0×10
2
 30; 3; 100; 20  

2 QS 1.0×10
2
 30; 4; 100; 20  

3 QS 1.0×10
2
 100; 4; 100; 20  

4 QS 1.0×10
2
 30; 5; 100; 20 

Chosen result of 

2D.ANSn 

5 QS 1.0×10
2
 100; 5; 100; 20  

6 QS 5.0×10
2
 30; 5; 100; 20  

7 Newmark 1.0×10
2
 30; 5; 100; 20  
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Figure 5.3.33: Punch force vs. punch displacement – SRI element 

(Penalty=1.0×10
3
; Table5.3.4/cases 5 to 8) 
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Figure 5.3.34: Chosen solution of  2D.ANSn element  
 (Table 5.3.5 /case 6 – von Mises stress, simulation with FEAP) 
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Figure 5.3.35: Punch force vs. punch displacement – ANSn element 
(Table5.3.5/cases 1 to 4) 
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We see that ANS computation with 5 layers of element along the thickness gives 

the same maximal punch force as the one of the EAS element (30×2×100×20), see 

Figures 5.3.35-36. However, behaviors of the ANS and EAS elements are different. The 

ANS element is stiffer when punch displacement is smaller than 20mm. When punch 

displacement is larger than 20mm, ANS behavior is softer. This consequence is 

reasonable because the ANS element is only shear-locking free. 

 

 

Simulation with solid-shell element 

Finally, springback prediction for this unconstrained bending problem is 

investigated with the solid-shell element: 2D.SS4n. With this test, behavior of the solid-

shell elements using the classical technique and the alternative ANS technique is similar. 

Hence, only results of the later are presented in Table 5.3.6. We begin the computation 

with a coarse mesh for EAS simulation, i.e. n1 = 30; n2 = 2; n3 = 40; n4 = 20 (Table 

5.3.3/Case 1). Then, the mesh is made finer to get better result. Data from Figure 5.3.38 

shows that the solid-shell element converged with rather coarse mesh, n1×n2×n3×n4 = 

60×2×70×20. 

 

 

Table 5.3.6. Calculation with solid-shell element 

Case 
Integration 

scheme 
Penalty 

Mesh 

n1; n2; n3; n4 

Note 

1 QS 1.0×10
2
 30; 2; 40; 20  

2 QS 1.0×10
2
 50; 2; 60; 20  

3 QS 1.0×10
2
 60; 2; 70; 20 

Convergence of 

solid-shell 

4 QS 5.0×10
2
 60; 3; 70; 20  

5 Newmark 1.0×10
2
 60; 2; 70; 20  
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(Table5.3.5/Case 7) 
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Figure 5.3.36: Punch force vs. punch displacement – ANSn element 
(Table5.3.5/cases 5 to 7) 
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Figure 5.3.37: Reference solution of 2D.SS4n element  
 (Table 5.3.6 /case 3 – von Mises stress, simulation with FEAP) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After having set the mesh, the penalty parameters are varied (Table 5.3.6/Cases 4). 

Then, integration scheme is changed from quasi-static to Newmark (Table 5.3.6/Cases 5). 

It can be seen in Figures 5.3.38 - 39 that there is almost no difference in the force curves. 

The conclusion is the same when the Newmark scheme has been used instead of the 

quasi-static algorithm. We see that when the punch force is larger than 200N the solid-

shell element is a little softer than the reference result.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3.38: Punch force vs. punch displacement – 2D.SS4n element 
(Table5.3.6/cases 1 to 3) 
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Validation of simulation results 

In order to validate results of the solid-shell element, the force curve obtained has 

been compared to both experimental (BE - Figure 5.3.40) and numerical (BS - Figure 

5.3.41) results published in the NUMISHEET’02 proceeding [NUM02]. As can be seen 

from those figures, numerical results from the 2D.SS4n match quite well the 

experimental reference results (curve BE-01). It should be noted that numerical results 

exhibit a quite large dispersion which can be attributed to the variety of finite element 

codes, as well as the variety of elements (shell, continuum quads, triangles) and time 

integration algorithm (implicit, quasi-static). 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3.39: Punch force vs. punch displacement – 2D.SS4n element 
(Table5.3.6/cases 4 and 5) 
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Figure 5.3.40: Punch force vs. punch displacement [NUM02] 
          (BS = Benchmark simulation result) 
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When punch force is smaller than 200N results of the 2D.EAS7 and 2D.SS4n are 

coincident but they are a little different from the experiment results, BE-01. When punch 

force is larger than 200N, only the 2D.EAS7 gives the identical results with results of the 

BE-01. Meanwhile, the 2D.SS4n is a little softer than the 2D.EAS7. 

 

As a more local result of the benchmark, it was also asked to evaluate the angle α - 

see Figure 5.3.27 and Figure 5.3.42 for definition and illustration for different punch 

stroke, i.e. 7, 14, 21 and 28.5 mm. Results delivered by the 2D.SS4n are very closed to 

the experimental values (BE-01), see Figure 5.3.43. The convergence results of the other 

element are also presented in Figure 5.3.43. See Table 5.3.7 - 10 for angle α at different 

punch strokes in all cases of simulation with the 2D.EAS7, 2D.SRI, 2D.ANSn, 2D.SS4n 

elements. 

 

 

Table 5.3.7. Springback angles - calculation with 2D.EAS7 element  

Angle (°) between line 

AB and line CD 

Angle (°) between 2 farthest  

points (from centerline) at stroke  Case 

before SB after SB 7mm 14mm 21mm 28.5mm 

1 21.864 33.440 16.536 60.298 111.108 158.726 

2 21.184 33.436 18.688 62.120 111.228 158.494 

3 21.376 33.338 16.964 60.054 112.298 158.406 

4 21.378 33.082 16.786 60.182 112.514 158.804 

5 21.882 33.850 20.154 63.634 113.386 158.970 

6 21.974 33.788 20.102 63.652 113.468 158.904 

7 21.630 33.404 20.158 63.550 113.480 158.872 

8 21.056 33.968 20.326 63.666 114.338 159.800 

9 21.438 35.510 20.322 63.458 113.466 158.702 

10 21.344 33.358 18.880 62.260 112.432 158.278 
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Figure 5.3.41: Punch force vs. punch displacement [NUM02] 
             (BE = Benchmark Experiment result) 
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Figure 5.3.43: Angle between 2 contact points which are the  

            farthest from the centerline [NUM02] 

Participants 

A
n

g
le

 (
0
) 

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

200 

2
D

.A
N

S
n

 

2
D

.S
S

4
n 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

½ of open angle  

Figure 5.3.42: Definition of the angle between 2 contact points 

which are the farthest from the centerline 

contact area  
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Table 5.3.8.: Springback angles - calculation with 2D.SRI element  

Angle (°) between line 

AB and line CD 

Angle (°) between 2 farthest  

points (from centerline) at stroke  Case 

before SB after SB 7mm 14mm 21mm 28.5mm 

1 21.246 34.086 16.988 60.106 111.550 157.048 

2 21.704 34.654 20.258 63.340 113.228 159.652 

3 21.652 34.348 20.112 63.606 112.612 158.816 

4 21.514 33.400 16.786 60.028 112.446 158.598 

5 21.144 35.726 20.238 63.560 113.476 158.806 

6 21.466 34.884 19.246 63.052 112.640 159.002 

7 21.288 33.430 18.806 62.132 112.388 158.790 

8 21.344 33.812 18.550 62.206 112.464 158.462 

 

 

Table 5.3.9. Springback angles - calculation with 2D.ANSn element  

Angle (°) between line 

AB and line CD 

Angle (°) between 2 farthest  

points (from centerline) at stroke  Case 

before SB after SB 7mm 14mm 21mm 28.5mm 

1 22.000 49.800 16.000 62.000 116.000 158.000 

2 23.000 40.600 18.000 64.000 116.000 159.000 

3 23.000 40.600 19.000 64.000 116.000 158.000 

4 23.000 37.000 19.000 63.000 116.000 159.000 

5 23.000 37.000 19.200 61.500 114.000 159.000 

6 21.500 36.000 18.000 63.000 114.000 159.000 

7 21.600 36.500 18.000 63.000 114.000 159.000 

 

 

Table 5.3.10. Springback angles - calculation with 2D.SS4n element  

Angle (°) between line 

AB and line CD 

Angle (°) between 2 farthest  

points (from centerline) at stroke  Case 

before SB after SB 7mm 14mm 21mm 28.5mm 

1 23.000 34.500 25.000 66.000 117.000 160.000 

2 23.000 33.500 24.000 67.500 117.000 161.000 

3 23.000 33.500 23.000 66.000 117.000 157.500 

4 22.500 32.500 24.000 66.000 114.500 159.000 

5 22.500 32.500 22.000 66.000 115.500 159.000 

       

   

 

 

Springback simulation 

In order to evaluate the springback, the tools are progressively removed and the 

resulting opening angle, as defined in Figure 5.3.27a is measured as shown in Figures 

5.3.44 and 5.3.45. 
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Figure 5.3.44: Open angle between the lines AB and CD before spring back 
(Table 5.3.3/Case 6 - equivalent plastic strain - METAFOR) 
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Figure 5.3.45: Open angle between the lines AB and CD after spring back 
(Table 5.3.6/Case 3 - equivalent stress - FEAP) 

(½ open angle) 

16.750° 



145 

A
n

g
le

 (
°)

 

Participants 

B
E

-0
1

 

B
E

-0
2

 

B
E

-0
3

 

B
E

-0
4

 

B
S

-0
2

 

B
S

-0
1

 

B
S

-0
3

 

B
S

-0
4

 

B
S

-0
5

 

B
S

-0
6

 

B
S

-0
7

 

B
S

-0
8

 

B
S

-0
9

 

B
S

-1
0

 

B
S

-1
1

A
 

B
S

-1
1

B
 

B
S

-1
2

 

B
S

-1
3

 

B
S

-1
4

 

B
S

-1
5

 

2
D

.E
A

S
7

 

2
D

.S
R

I 

B
S

-1
6

A
 

B
S

-1
6

B
 

Figure 5.3.46: Angle before and after springback at the final punch 

stroke of 28.5 mm 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

Average 

Average 

50 

Before SB 

After SB 

2
D

.A
N

S
n

 

2
D

.S
S

4
n 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data in Tables 5.3.7 - 5.3.10 are used to compare results of the 2D.EAS7, 2D.SRI,  

2D.ANSn and  2D.SS4n with the other sources in [NUM02]. Figure 5.3.46 presents 

curves for angles before and after springback. Concretely: 

- Figure 5.3.46 shows that almost open angles before and after springback 

concentrate around the mean values, 22° with respect to open angles before 

springback and 34° with respect to open angles after springback. 

- Simulated results of the 2D.EAS7 and 2D.SS4n almost conform to major 

softwares, concretely, 21.974° (2D.EAS7) and 23.000° (2D.SS4n) with respect 

to open angles before springback and 33.788° (2D.EAS7) and 33.500° 

(2D.SS4n) with respect to open angles after springback. For data of all cases see 

Tables 5.3.7 -5.3.10. 
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CONCLUSION 

 

In this chapter some plasticity problems were invoked to investigate performances 

of the solid-shell elements. Only free from shear locking, the ANS element is not suitable 

to the plasticity tasks. The SS7n element, in general, gives similar results as the SS7, 

except the cases where large aspect ratio and large deformation occur simultaneously 

(Section 5.3.2). Being easy for contact handling, the solid-shell elements are well 

applicable to metal forming problem, such as springback prediction. As we have seen in 

Section 5.3.3, the simulation accuracy can be improved effectively if a good performance 

elements is used with a suitable methodology for choosing numerical parameters. In the 

last section, the 2D.EAS7, 2D.SRI, 2D.ANSn and 2D.SS4n elements are used to predict 

springback due to elastic recovery of the material under elastoplastic deformation. 

Comparing between models, the best one costs minimum computational calculation while 

gives a correct solution. Correlation between the numerical solution of the solid-shell 

element and the EAS element, a good conformability was found with the experimental 

solution (BE-01). However, with a limited number of enhanced modes, the solid-shell 

element proposes a lower computational cost than the EAS elements. Hence, the metal 

forming simulation with the solid-shell element promises a confident and economical tool 

for springback prediction in industrial manufacturing. 

 

 In conclusion, through all numerical tests, it is possible to state that the solid-shell 

elements are useful for simulating shell structures with a wide range of thickness (from 

thin (1000 > R/t > 20) to moderately thick (R/t < 20)). Advantages of the elements are:  

 - Connecting of the solid-shell with other continuum elements is simple; 

 - Easy handling of variable thicknesses; 

 - Accuracy over a wide range of thickness;  

 - No more need for mid-surface extraction;  

 - Easier contact handling. 
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Chapter 6. GENERAL CONCLUSIONS AND 

FUTURE WORKS 
  

 

CONCLUSIONS 

 In the thesis, locking phenomena which happen with low-order solid elements 

have been analysed. The free shear locking ANS element and its performance have been 

introduced. As showed in Chapter 2, the EAS element can circumvent all locking effects 

but with high computational cost. Hence, an element which can circumvent all locking 

effects but with lower computational cost than the EAS element is preferred. In chapter 3, 

the solid-shell element (designated as SS7) has been presented as a combination of the 

classical ANS element [DVO84] and the EAS element [SIM90]. In comparison with the 

classical shell elements, the solid-shell elements allow a straightforward integration of 

3D material models since they do not resort to the plane stress assumption. Moreover, 

their solid topology offers an effective doubly sided contact handling possibility. In 

comparison with the EAS solid elements, the solid-shell elements require only a limited 

number of EAS parameters, i.e. 7 modes, and the computational effort is thus reduced. 

Those features, which are truly a combination of the strong points of both the ANS and 

EAS methods, render the solid-shell elements very attractive. 

 

 The thesis concentrates in developing the solid-shell element. As a result, an 

alternative ANS technique has been presented in Chapter 3. This alternative ANS 

technique can incorporate with the EAS method to result in a new solid-shell element, 

named SS7n. This alternative ANS technique assumes that the transverse shear strains are 

linear in the thickness direction and in an in-plane direction. Meanwhile, following the 

classical ANS technique, the assumed transverse shear strains are only linear in one in-

plane direction. The classical and the alternative ANS techniques were systematically 

compared together. Both of them can assist the solid-shell elements, SS7 and SS7n, pass 

the membrane and bending patch tests. Performances of the SS7 and SS7n elements have 

been investigated for both bulk problems and shell-like structures, ranging from thin to 

moderately thick structures. Theory in Chapter 3 and the plasticity test with pinched 

cylinder in Chapter 5 proved that the new solid-shell element, SS7n, leads to a better 

approximation of strains and stresses in the thickness direction than the SS7 element 

(with the classical ANS technique). Also, the SS7n element is less sensitive to distorted 

mesh than the SS7 element, see numerical test 3.6.2. 

 

Numerical results in the thesis show that the SS7n solid-shell element is well 

adapted to most engineering problems. In particular, for pure bending problems and 

under nearly incompressible condition the SS7n element exhibits comparable or superior 

performances with respect to their original ANS and EAS counterparts.   
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FUTURE WORKS 

 The solid-shell SS7 and SS7n elements have been implemented in a MATLAB 

code. This MATLAB code is helpful to investigate linear and nonlinear elastic tests. The 

solid-shell SS7 and SS7n elements have been also implemented in FEAP [TAY01] to 

exploit the available plasticity material models and contact algorithm in FEAP. These 

facilities are necessary for plasticity and springback tests in Chapter 5. However, 

plasticity behavior and springback prediction are enormous subjects. In the thesis, only 

some basic aspects of these subjects have been investigated. The following works should 

be pursued: 

- Investigating capabilities of the classical ANS technique and the alternative ANS 

technique in approximating transverse stresses and strains. The alternative ANS 

technique allows a better approximation of the stress field in the thickness 

direction, hence would lead to a more accurate evaluation of stress-based criteria 

such as delamination criteria in composite materials. 

- Exploitation of the SS7 and SS7n in metal forming and springback prediction; 

These engineering problems are usually too complex (deformation rate, contact 

condition, material hardening, distorted mesh, etc.) and include a large number of 

DOF’s. Hence, an effective (less computational cost and more accuracy) element 

is truly demanded. 

- Apart from the springback prediction, there are also several interesting topics in 

metal forming field, such as tearing, wrinkling, limit forming curve, etc. 

Performances of the solid-shell elements with these topics may be perspective. 

- In Chapter 4 we did see that the SS7n element is well applicable to structural 

problems. For some specific applications, such as collapse of shells, structural 

stability, etc. peformances of the SS7n would be useful. 

  

The solid-shell theory in this thesis will be useful for researchers who want to 

apply 3D solid elements to simulate thin-walled structures. In order to facilitate research 

works in various topics, the solid-shell elements should be implemented in a software 

which had various material models, integration schemes and contact algorithms.  
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