

UNIVERSITÉ DE LIÈGE FACULTÉ DES SCIENCES APPLIQUÉES

Hollow steel section columns filled with self-compacting concrete under ordinary and fire conditions

Par CHU Thi Binh

Thèse présentée en vue de l'obtention du grade scientifique de Docteur en sciences de l'ingénieur

Année académique 2008-2009

Hollow steel section columns filled with self-compacting concrete under ordinary and fire conditions

Par

CHU Thi Binh

Promoteurs : Professeur J.C. Dotreppe – Université de Liège Professeur J.M. Franssen – Université de Liège

Acknowledgements

Within the present acknowledgement, I would like to express my gratitude to persons who significantly contributed to the achievement of my thesis.

First, I would like to express my gratitude to my scholarship sponsor from the Vietnamese Government, the Ministry of Education and Training, for financing my study.

I would like to thanks Prof. Jean Claude Dotreppe and Prof. Jean Marc Franssen, the promoters of the thesis, for their support and their advices. They created the best condition to make the possible achievement of this work and gave me the opportunity to participate to the FRFC project. Espeacially, I would like to thank Prof. J.C. Dotreppe for his patience and encouragement to help me overcome difficulties of the study.

My sincere thanks go also to Professor Nguyen Tien Chuong, as the co-promoter, for his advice during the time I worked in Vietnam.

Then, my acknowledgements go to the staffs of the Fire Testing laboratory – University of Liege, Belgium. They contributed actively to the success of the experimental works which I had the opportunity to realize within the present work.

I would like to take this opportunity to express my profound gratitude to my parents, my sisters, and brothers, particularly in my husband and my son, who give love and persistent confidence in me.

Furthermore, I am grateful to my Vietnamese friends for the share during the time I lived in Liege.

Finally, I would like to thank everybody who was involved in the successful realization of thesis, as well as to express my apologies that I could not mention each one personally.

Abstract

The present thesis is dedicated to the studies of hollow steel section columns filled with selfcompacting concrete (SCC) under ordinary and fire conditions. The type of cross-section concerned is small sections with dense reinforcement or embedded steel profile where SCC is needed. The main objectives of the thesis are outlined as follows:

- Perform experimental investigation on the behaviour of steel hollow section columns filled with self-compacting concrete under standard fire conditions.

- Undertake extensive investigation on concrete filled steel hollow section (CFSHS) columns with small sections and dense reinforcement or embedded steel profile where self-compacting concrete is used. This type of columns is studied under both ordinary and fire conditions.

- Provide consulting engineers with a simplified method for calculating the fire resistance of CFSHS columns of small sections and dense reinforcement or embedded steel profile which have not been considered anywhere. Practical recommendations will also be given for columns of larger cross-sectional dimensions.

To achieve these goals, the state of the art regarding CFSHS columns under both ordinary and fire conditions was first presented.

Then numerical models using SAFIR computer code for analysis of CFSHS columns under ordinary and fire conditions were verified in thermal and structural analysis. Tests results from literature were used to validate the computer code. Some calibrations have been performed.

Afterwards, using the verified model, the ultimate load of CFSHS columns at normal temperatures was calculated with varying parameters such as cross-section dimensions, reinforcement ratios, concrete strengths and concrete covers. The type of cross-section concerned is small sections with dense reinforcement or embedded steel profile where SCC is needed. This type of cross-section is not included in existing design methods of Eurocodes. Simulation results are used to check if the current design method of EN 1994-1-1 is still valid for this type of cross-section and to see which European buckling curve is relevant for CFSHS columns with dense steel bar reinforcement or embedded steel profile. Curve "b" is suggested for this type of cross-section.

A new experimental research on steel hollow section columns filled with self-compacting concrete under standard fire tests was performed at University of Liege – Belgium. Results from these tests are used to verify the numerical models using SAFIR code for the analysis of CFSHS under fire conditions with the use of SCC. The aim of these calculations is to see whether the thermal and mechanical properties of self-compacting concrete are close to those of normal concrete. It is found that the material laws of normal vibrated concrete can be

applied for self-compacting concrete.

In order to give to consulting engineers more practical tools, a formula for calculating the fire resistance of SHS columns filled with concrete has been established. The field of applicability has been extended: effective length of column from 2 m to 7 m, percentage of reinforcing steel from 3.5 % to 10 %. Sections containing other steel profile are considered also. A formula for short columns with square section has been established based on SAFIR simulations taking into account the main parameters (quality of materials, dimensions, steel bars, and concrete cover). Further developments aim at showing whether the simplified equation can be used for other types of cross-sections, how the formula can be extended to slender columns, and how to treat columns with eccentric load.

After concentrating on CFSHS columns with small cross-section dimensions only (less than 300 mm), it is found that the fire resistance of such small sectional columns is quite low. In order to get additional practical information, *chapter VII* contains numerical calculations of the fire resistance of larger profiles (dimensions up to 400 mm). The main objective of these numerical calculations is to provide practical recommendations and data for immediate use by practical engineers.

Table of Contents

List of Figures List of Tables List of Pictures Notations Chapter I Introduction	
I.1 Context of the research	1
I.2 Objectives of the thesis	
I.3 Content of the thesis	
Chapter II State of the Art	
II.1 Hollow steel columns filled with concrete at normal temperatures	55
II.1.1 Introduction	5
II.1.2 Behaviour of concrete filled steel hollow section (CFSHS) columns	7
II.1.3 Factors affecting the load resistance of CFSHS columns	8
II.1.4 Design codes for predicting the load resistance of CFSHS columns.	14
II.2 Self compacting concrete	16
II.2.1 Introduction	
II.2.2 Mechanical properties of hardened SCC at normal temperature	
II.2.3 Mechanical properties of hardened SCC at elevated temperature	
II.2.4 Thermal properties of SCC	21
II.3 Hollow steel columns filled with concrete under fire conditions	21
II.3.1 Introduction	21
II.3.2 Behaviour of CFSHS columns under fire conditions	
II.3.3 Factors influencing the fire resistance	
II.3.4 Existing design methods for predicting the fire resistance of CFSHS	columns24
II.4 Material properties at elevated temperatures	
Chapter III Methods of analysis using SAFIR finite eleme code	ent computer
III.1 Introduction to SAFIR	
III.2 Thermal model of SAFIR applied to CFSHS columns	
III.2.1. Thermal environment	
III.2.2 Numerical approach for the thermal analysis	

III.2.3 Main ass	sumptions used in the numerical simulations	
III.2.4 Validity	of the thermal model	
III.2.5 Conclusi	on	41
III.3 Structura	I model of SAFIR applied to CFSHS columns	41
III.3.1 The num	erical approach for the structural analysis	41
III.3.2 Main ass	sumptions used in the numerical simulations	
III.3.3 Validity	of the structural model	
III.3.4 Conclusi	on	
Chapter IV	Ultimate load of concrete filled hollow steel column normal temperatures	is at
IV.1 The meth	od of EC 4: EN 1994-1-1 for CFSHS columns	46
IV.1.1 Method	of the current European standard EN 1994-1-1 (2004)	46
IV.1.2 Consider	rations on the European buckling curves	49
IV.2 The buck	ling curve for CFSHS columns with dense reinforcements	
IV.2.1 Assumpt	tions for numerical simulations	52
IV.2.2 Simulati	ons results	52
IV.2.3 Conclusi	ions	60
Chapter V	Experimental research performed at the University of	f Liege
-	and simulations by SAFIR	C
V.1 Experimer	ntal programme and its objectives	61
V.2 Test specir	nens	
V.2.1 Dimensio	ons	
V.2.2 Materials		66
V.2.3 Fabricatio	on	66
V.3 Tests on m	aterial properties	69
V.3.1 Steel stre	ngth	69
V.3.2 Cube con	npressive strength of concrete	69
V.3.3 Water con	ntent of concrete	69
V.4 Test appar	atus	69
V.4.1 Loading	device	69
V.4.2 Furnace o	chamber	70

V.4.3 Instrumentation	70
V.5 Test conditions and procedures	74
V.5.1 Assembly / Loading	74
V.5.2 Fire exposure	75
V.5.3 Recording of results	75
V.6 Test results	76
V.6.1 Test FRFC 1A	76
V.6.2 Test FRFC 1B	76
V.6.3 Test FRFC 2A	76
V.6.4 Test FRFC 2B	77
V.6.5 Test FRFC 3A	77
V.6.6 Test FRFC 3B	77
V.6.7 Test FRFC 4A	78
V.6.8 Test FRFC 4B	78
V.6.9 Test FRFC 5A	78
V.6.10 Test FRFC 5B	78
V.6.11 Profile 6	79
V.7 Simulations and evaluation	79
V.7.1 Thermal analysis	79
V.7.2 Structural analysis	81
V.8 Conclusion	88
Chapter VI Simplified method for fire resistance of self-compacting concrete filled hollow steel columns	
VI.1 Fire resistance of columns under centrical load	90
VI.1.1 Short columns	90
VI.1.1.1 Square-sectional columns	90
VI.1.1.2 Other types of column cross-sections	103
VI.1.2 Slender columns	106
VI.1.2.1 Influence of column length on the fire resistance	106
VI.1.2.2 Relationship between fire resistances of short and slender columns	107
VI.1.2.3 Procedure for determining the fire resistance of CFSHS column under	

centrical load	
VI.2 Fire resistance of columns under eccentric load	
Chapter VII Numerical calculations of the fire resistance of larger and practical recommendations	profiles
VII.1 Numerical calculations	
VII.2 Conclusions from numerical simulations	
VII.3 Practical recommendations	
Chapter VIII Conclusions and perspectives	
VIII.1 Conclusions	
VIII.2 Suggestions for further research	
Appendix 1: Properties of materials used in the numerical simulati	ons
A1.1 Mechanical properties of materials at normal temperatures	
A1.1.1 Mechanical properties of structural steel at normal temperatures	
A1.1.2 Mechanical properties of reinforcing steel bar at normal temperatures	
A1.1.3 Mechanical properties of concrete at normal temperatures	
A1.2 Thermal and physical properties of materials	
A1.2.1 Thermal and physical properties of structural steel	
A1.2.2 Thermal and physical properties of reinforcing steel	
A1.2.3 Thermal and physical properties of concrete	
A1.3 Mechanical properties of materials at elevated temperatures	
A1.3.1 Mechanical properties of structural steel at elevated temperatures	
A1.3.2 Mechanical properties of reinforcing steel at elevated temperatures	
A1.3.3 Mechanical properties of concrete at elevated temperatures	
Appendix 2: Test results and simulations by SAFIR	
A2.1 Test FRFC 1A	
A2.2 Test FRFC 1B	
A2.3 Test FRFC 2A	
A2.4 Test FRFC 2B	
A2.5 Test FRFC 3A	
A2.6 Test FRFC 3B	
A2.7 Test FRFC 4A	

References	245
Appendix 3: Numerical calculations of the fire resistance of larger profiles	209
A2.11 Test FRFC 6	204
A2.10 Test FRFC 5B	199
A2.9 Test FRFC 5A	194
A2.8 Test FRFC 4B	187

List of figures

Figure II-1. Types of CFSHS column	5
Figure II-2. Conventional CFSHS	5
Figure II-3. Concrete filled steel hollow sections containing another tube or profile	6
Figure II-4. Cross-section of the composite column	6
Figure II-5. Cross-section of the double skin composite columns (Tao Z. et al. (2006))	7
Figure II-6. Mix composition of SCC in comparison with normal vibrated concrete	17
Figure II-7 Variation with time of the average axial displacement of the end section of the	
column for various loads (D = 0.356 m, t = 0.010 m, L = 2 m) (Zha X.X	
(2003))	23
Figure II-8. Stress-strain curves for typical-hot rolled steel at elevated temperatures	
(Buchanan A.H. (2001))	31
Figure II-9. Stress-strain relationship for concrete at elevated temperatures(Buchanan A.H	•
(2001))	31
Figure III-1. Time-temperature curve ISO 834	34
Figure III-2. Discretization of one-quarter of a square section	35
Figure III-3. Temperatures at one point in concrete	36
Figure III-4. Temperatures at the reinforcing bar	36
Figure III-5. Comparison between calculated and measured temperatures in the cross-secti	on
of one particular test	39
Figure III-6. Comparison between calculated and measured temperatures at steel surface o	f
the reference tests	39
Figure III-7. Comparison between calculated and measured temperatures in the steel	
reinforcement of the reference tests	40
Figure III-8. Comparison between calculated and measured temperatures at the central poi	nt
of the concrete core of the reference tests	40
Figure III-9. Schematic representation of the stress- strain relation for structural analysis (I	EN
1992-1-1 (2004))	42
Figure IV-1. Interaction curve for combined compression and uniaxial bending	48
Figure IV-2. Stress distributions for the points of the interaction curve for concrete filled	
hollow sections	49
Figure IV-3. Buckling curves (EN 1993-1-1)	50
Figure IV-4. CFSHS section with an embedded steel profile	52
Figure IV-5. Buckling curve of column with square section S260_8	53
Figure IV-6. Buckling curve of column with square section S150_5	54
Figure IV-7. Buckling curve of column with square section S200_6.3	54
Figure IV-8. Buckling curve of column with square section S300_8	55
Figure IV-9. Buckling curve of column with circular section C168.3_5	55
Figure IV-10. Buckling curve of column with circular section C197.3_5	56
Figure IV-11. Buckling curve of column with circular section C244.5_5	56

Figure IV-12. Buckling curve of column with circular section C273_6.35	57
Figure IV-13. Buckling curve of column with circular section C323.9_8	57
Figure IV-14. Buckling curve of column with double tubes	58
Figure IV-15. Buckling curve of column with double tubes	58
Figure IV-16. Buckling curve of circular column with internal I profile	59
Figure IV-17. Buckling curve of square column with internal I profile	59
Figure IV-18. Buckling curve of column with double tubes	60
Figure V-1. Cross-section of profile 1	63
Figure V-2. Cross-section of profile 2	63
Figure V-3. Cross-section of profile 3	64
Figure V-4. Cross-section of profile 4	64
Figure V-5. Cross-section of profile 5	65
Figure V-6. Cross-section of profile 6	65
Figure V-7. Testing device for the columns	67
Figure V-8. Location of thermocouples in columns	68
Figure V-9. Location of the strain gauges in the column	71
Figure V-10. Location of thermoplates in the furnace	72
Figure V-11. Fire protection of the strain gauges of the test FRFC 3A	73
Figure V-12. Measured thermal expansion coefficient of the ceramic wire used for measure	ing
the transversal displacement at midheight of the columns.	/4
Figure V-13. Modified thermal conductivity of the painted layer of test FRFC 3B	08
Figure V-14. Modified thermal conductivity of the painted layer of test FRFC 4B	80 91
Figure V 16. Transversal displacement of the test EPEC 2A. Calculated with average	04
temperature in the furnace	85
Eigure V-17 Transversal displacement of the test EREC $3A_{-}$ Calculated with thermal grad	ient
between the old part and new part of the furnace	85
Figure V-18 Fire boundaries of a particular cross-section	. 85 . 86
Figure V-19 A typical stress-strain relation for confined concrete of a concrete filled tube	00
according to Han L.H. (2001)	87
Figure VI-1 Variations of reduction factors n_{fi} with the load ratio $Q_{k,1}/G_k$ (EN 1994-1-2)	92
Figure VI-2 Correlation between R_{short} and N_{fi} for various values of concrete cover	93
Figure VI-3 Fire resistance as a function of load for various cross sections and concrete	
strengths	94
Figure VI-4 Fire resistance as a function of $\sqrt{N_{fi}}$ for various cross sections and concrete	
strengths	94
Figure VI-5 Fire resistance as a function of N_c for various cross-section dimensions, load	S
and concrete covers	95
Figure VI-6 Fire resistance as a function of N_{c} for various concrete covers	95
ů	

Figure VI-7 Fire rea	sistance as a function of Dr for various loads, concrete strengths and	
cross-	sectional dimensions	. 96
Figure VI-8 Fire re	sistance as a function of steel wall thickness	. 97
Figure VI-9 Tempe	erature of steel wall varies with time exposed to fire	. 98
Figure VI-10 Comp	parison of fire resistance of columns from Eq.(VI.1) with predictions of	the
num	nerical model with $0.2 \le N_{fi} / N_{pl,Rk} \le 0.6$	100
Figure VI-11 Corre	elations between Rsimple / Rnumeric and cross-section dimension	101
Figure VI-12 Corre	elations between Rsimple / Rnumeric and load	101
Figure VI-13 Corre	elations between Rsimple / Rnumeric and concrete strength	102
Figure VI-14 Corre	elations between Rsimple / Rnumeric and concrete cover	102
Figure VI-15 Corre	elations between Rsimple / Rnumeric and steel wall thickness	103
Figure VI-16 Com	parison of fire resistance of circular sectional columns from	104
Figure VI-17 Cross	s-section with embedded steel profile	104
Figure VI-18 Com	parison of fire resistance of embedded steel profile	105
Figure VI-19 Corre	elations between Rsimple / Rnumeric and N_{fi} / $N_{pl,Rk}$	106
Figure VI-20 Fire	resistance as a function of column length of square sectional columns	107
Figure VI-21 Temp	perature distribution in a section S200_6.3 after 10 minutes of fire	108
Figure VI-22 Buck	cling curve of the column with section S150_5_4D16_Dr30_C40 for	
fire	duration R10	108
Figure VI-23 Buck	kling curve of the column with section S200_6.3_8D18_Dr30_C50 for	
fire	duration R10	109
Figure VI-24 Buck	kling curve of the column with section S260_7_12D18_Dr45_C50 for	
fire	duration R10	109
Figure VI-25 Buck	cling curve of the column with section S300_8_12D18_Dr30_C30 for	
fire	duration R10	110
Figure VI-26 Buck	kling curves (EN 1993-1-1)	110
Figure VI-2/ (Ren	aud C. (2004)) - Buckling curves for composite columns subjected to	
axia	I load and standard fire exposure (d is the cross section dimension,	110
%A	Is the reinforcement ratio).	112
rigule vi-28 iviau	ording to EN 1004 1.2)	112
(acc Figure VI 20 Meth	ording to EN 1994-1-2)	115
riguie vi-29 iviau	pression (according to EN 1994-1-2)	11/
Figure VI-30 Corre	elation between numerical results and results calculated by the	114
prop	posed simplified method for the column with section \$150-5- C30	115
Figure VI-31 Corre	elation between numerical results and results calculated by the	110
prop	posed simplified method for the column with section \$150-5- C50	115
Figure VI-32 Corre	elation between numerical results and results calculated by the	
prop	posed simplified method for the column with section S200-6.3- 8D18	116
Figure VI-33 Corre	elation between numerical results and results calculated by the	
prop	bosed simplified method for the column with section S200-6.3-12D18	116

Figure VI-34	Correlation between numerical results and results calculated by the proposed simplified method for the column with section \$260-7	117
Figure VI-35	Correlation between numerical results and results calculated by the	,
	proposed simplified method for the column with section S260-9	117
Figure VI-36	Relationship between the fire resistance and $N_{fi} / N_{u, fy=0}$ with various	
	eccentricities of loading for column section S200-6.3, 8ø16 reinforcing	
	bars, column length = 2 m	119
Figure VI-37	Relationship between the fire resistance and $N_{fi} / N_{u, fy=0}$ with various	
	eccentricities of loading for column section S200-6.3, 12ø18 reinforcing	
	bars, column length = 3 m	120
Figure VI-38	Relationship between the fire resistance and $N_{fi} / N_{u, fy=0}$ with various	
	eccentricities of loading for column section S260-7, 16ø18 reinforcing	
	bars, column length = 3 m	120
Figure VI-39	Relationship between the fire resistance and $N_{fi} / N_{u, fy=0}$ with various	
	eccentricities of loading for column section S260-7, 12ø18 reinforcing	
	bars, column length = 2 m	121
Figure VI-40	Relationship between the fire resistance and $N_{fi} / N_{u, fy=0}$ with various	
	eccentricities of loading for column section S260-7, 16ø18 reinforcing	
	bars, column length = 3 m	121
Figure VI-41	Relationship between the fire resistance and $N_{fi} / N_{u, fy=0}$ with various	
	eccentricities of loading for column section S260-7, 16ø22 reinforcing	
	bars, column length = 4 m	122
Figure VI-42	Relationship between the fire resistance and $N_{fi} / N_{u, fy=0}$ with various	
	eccentricities of loading for column section S300-8, 16ø18 reinforcing	
	bars, column length = 4 m	122
Figure VI-43	Relationship between the fire resistance and $N_{fi} / N_{u, fy=0}$ with various	
	eccentricities of loading for column section S300-8, 16ø22 reinforcing	
	bars, column length = 5 m	123
Figure VI-44	Relationship between the fire resistance and $N_{fi} / N_{u, fy=0}$ with various	
	eccentricities of loading for column section S200-6.3, 8ø16 reinforcing	
	bars, column length = 2 m	123
Figure VII.1-	Section type of group 1	129
Figure VII.2-	Section type of group 2	130
Figure VII.3-	Section type of group 3	131
Figure VII.4-	Section type of group 4	132
Figure VII.5-	Section type of group 5	133
Figure A1.1 S	Schematic representation of the stress-strain relation of structural steel (for	
	tension and compression)	138

Figure A1.2 Schematic representation of the compressive stress-strain relation of conce	ete 139
Figure A1.3 Thermal conductivity of concrete according to EN 1992-1-2	142
Figure A1.4 Mathematical model for stress-strain relationships of structural steel at ele	vated
temperatures	143
Figure A1.5 Graphical presentation of the stress-strain relationships of structural steel a	at
elevated temperatures, strain-hardening included	145
Figure A1.6 Mathematical model for stress-strain relationships of concrete under comp	ression
at elevated temperatures	146
Figure A2.1 Cross-section of profile 1	148
Figure A2.2. Location of thermocouples in the test FRFC 1A and 1B	149
Figure A2.3. Temperatures in the furnace of the test FRFC 1A	150
Figure A2.4. Temperatures in the section of the test FRFC 1A	150
Figure A2.5. Temperatures in the section of the test FRFC 1A	151
Figure A2.6. Vertical displacement of the test FRFC 1A	151
Figure A2.7. Transversal displacement at the middle height of the test FRFC 1A	152
Figure A2.8. Strains at room temperature of the test FRFC 1B	154
Figure A2.9. Temperatures in the furnace of the test FRFC 1B	155
Figure A2.10. Temperatures in the section of the test FRFC 1B	155
Figure A2.11. Vertical displacement of the test FRFC 1B	156
Figure A2.12. Transversal displacement at the middle height of the test FRFC 1B	156
Figure A2.13. Cross-section of profile 2	158
Figure A2.14. Location of thermocouples in the test FRFC 2A and 2B	159
Figure A2.15. Strains at room temperature of the test FRFC 2A	160
Figure A2.16. Temperatures in the furnace of the test FRFC 2A	160
Figure A2.17. Temperatures in the section of the test FRFC 2A	161
Figure A2.18. Temperatures in the section of the test FRFC 2A	161
Figure A2.19. Vertical displacement of the test FRFC 2A	162
Figure A2.20. Transversal displacement at the middle height of the test FRFC 2A	162
Figure A2.21. Temperatures in the furnace of the test FRFC 2B	163
Figure A2.22. Temperatures in the section of the test FRFC 2B	164
Figure A2.23. Temperatures in the section of the test FRFC 2B	164
Figure A2.24. Vertical displacement of the test FRFC 2B	165
Figure A2.25. Transversal displacement at the middle height of the test FRFC 2B	165
Figure A2.26. Cross-section of profile 3A	166
Figure A2.27. Location of thermocouples in the test FRFC 3A	167
Figure A2.28. Strains at room temperature of the test FRFC 3A	168
Figure A2.29. Temperatures in the furnace of the test FRFC 3A	168
Figure A2.30. Temperatures in the section of the test FRFC 3A	169
Figure A2.31. Temperatures in the section of the test FRFC 3A	169
Figure A2.32. Vertical displacement of the test FRFC 3A	170
Figure A2.33. Transversal displacement at the middle height of the test FRFC 3A	170
Figure A2.34. Strains in fire test of column FRFC 3A	171

Figure A2.35. Cross-section of profile 3B	172
Figure A2.36. Location of thermocouples in the test FRFC 3B	173
Figure A2.37. Strains at room temperature of the test FRFC 3B	174
Figure A2.38. Temperatures in the furnace of the test FRFC 3B	174
Figure A2.39. Temperatures in the section of the test FRFC 3B	175
Figure A2.40. Temperatures in the section of the test FRFC 3B	175
Figure A2.41. Temperatures in the section of the test FRFC 3B	176
Figure A2.42. Vertical displacement of the test FRFC 3B	177
Figure A2.43. Transversal displacement at the middle height of the test FRFC 3B	177
Figure A2.44. Cross-section of profile 4A	179
Figure A2.45. Location of thermocouples in the test FRFC 4A	180
Figure A2.46. Strains at room temperature of the test FRFC 4A	181
Figure A2.47. Temperatures in the furnace of the test FRFC 4A	181
Figure A2.48. Temperatures in the section of the test FRFC 4A	
Figure A2.49. Temperatures in the section of the test FRFC 4A	
Figure A2.50. Vertical displacement of the test FRFC 4A	
Figure A2.51. Transversal displacement at the middle height of the test FRFC 4A	
Figure A2.52. Cross-section of profile 4B	
Figure A2.53. Location of thermocouples in the test FRFC 4B	
Figure A2.54. Temperatures in the furnace of the test FRFC 4B	
Figure A2.55. Temperatures in the section of the test FRFC 4B	
Figure A2.56. Temperatures in the section of the test FRFC 4B	189
Figure A2.57. Temperatures in the section of the test FRFC 4B	189
Figure A2.58. Vertical displacement of the test FRFC 4B	190
Figure A2.59. Transversal displacement at the middle height of the test FRFC 4B	190
Figure A2.60. Cross-section of profile 5	193
Figure A2.61. Location of thermocouples in the test FRFC 5A and 5B	194
Figure A2.62. Temperatures in the furnace of the test FRFC 5A	195
Figure A2.63. Temperatures in the section of the test FRFC 5A	195
Figure A2.64. Temperatures in the section of the test FRFC 5A	196
Figure A2.65. Vertical displacement of the test FRFC 5A	196
Figure A2.66. Transversal displacement at the middle height of the test FRFC 5A	197
Figure A2.67. Strains at room temperature of the test FRFC 5B	198
Figure A2.68. Temperatures in the furnace of the test FRFC 5B	198
Figure A2.69. Temperatures in the section of the test FRFC 5B	199
Figure A2.70. Temperatures in the section of the test FRFC 5B	199
Figure A2.71. Vertical displacement of the test FRFC 5B	200
Figure A2.72. Transversal displacement at the middle height of the test FRFC 5B	
Figure A2.73. Cross-section of profile 6	203
Figure A2.74. Location of thermocouples in the test FRFC 6	204
Figure A2.75. Temperatures in the furnace of the test FRFC 6	204
Figure A2.76. Temperatures in the furnace of the test FRFC 6	205

Figure A2.77. Temperatures in the furnace of the test FRFC 6	205
Figure A2.78. Temperatures in the section of the test FRFC 6 with the value of water con	ntent
in concrete is 6% in weight	206
Figure A2.79. Temperatures in the section of the test FRFC 6 with the value of water con	ntent
in concrete is 6% in weight	206
Figure A2.80. Temperatures in the section of the test FRFC 6 with the value of water con	ntent
in concrete is 9% in weight	207
Figure A2.81. Temperatures in the section of the test FRFC 6 with the value of water con	ntent
in concrete is 9% in weight	207

List of tables

Table II.1 S	lender limits of the steel section	13
Table III.1 I	Fire resistance of columns tested and calculated	
Table III.2 I	Load resistance of columns tested and calculated	44
Table III.3 I	Fire resistance of columns tested and calculated	45
Table V.1 N	Iechanical properties of the steel	69
Table V.2 S	tructural properties of tested columns	75
Table V.3 T	ested fire resistances of the columns	76
Table V.4 C	comparison between calculated and measured fire resistance of tested	
C	columns	87
Table VI.1	Comparison of the fire resistance of the columns with various steel wall	
S	trengths	99
Table VII.1	Characteristics and calculated fire resistances of column- profile 16 with concrete strength 30 MPa	125
Table VII.2	Characteristics and calculated fire resistances of column- profile 16 with	
	concrete strength 40 MPa and 50 MPa	126
Table VII.3.	Practical table for columns with section type 1	129
Table VII.4.	Practical table for columns with section type 2	130
Table VII.5.	Practical table for columns of section type 3 - buckling around the major	131
Table VII.6	Practical table for columns of section type 4 - buckling around the major	131
	axis	132
Table VII.7	Practical table for columns with section type 5	133
Table A1.1	Relation between the various parameters of the mathematical model of Figure A1.4	143
Table A1.2	Reduction factors k_{θ} for stress-strain relationships of structural steel at	
	elevated temperatures	144
Table A1.4	Values for two main parameters of the stress-strain relationships of normal weight concrete (NC) and lightweight concrete (LC) at alevated	
	temperatures	
Table A1.5	Parameters $\varepsilon_{cu,\theta}$ and $\varepsilon_{ce,\theta}$ defining the recommended range of the	
	descending branch for the stress-strain relationships of concrete at elevated temperatures	147
Table A3 1	Characteristics and calculated fire resistances of column- profile 1	211
Table A3.2.	Characteristics and calculated fire resistances of column- profile 2.	
Table A3.3.	Characteristics and calculated fire resistances of column- profile 3A.	214
Table A3.4.	Characteristics and calculated fire resistances of column- profile 3B	215
Table A3.5.	Characteristics and calculated fire resistances of column- profile 4A.	217

Table A3.6. Characteristics and calculated fire resistances of column- profile 4B	218
Table A3.7. Characteristics and calculated fire resistances of column- profile 5	220
Table A3.8. Characteristics and calculated fire resistances of column- profile 6	221
Table A3.9. Characteristics and calculated fire resistances of column- profile 7	223
Table A3.10. Characteristics and calculated fire resistances of column- profile 8A	225
Table A3.11. Characteristics and calculated fire resistances of column- profile 8B	226
Table A3.12. Characteristics and calculated fire resistances of column- profile 9A	228
Table A3.13. Characteristics and calculated fire resistances of column- profile 9B	229
Table A3.14. Characteristics and calculated fire resistances of column- profile 10	231
Table A3.15. Characteristics and calculated fire resistances of column- profile 11A	233
Table A3.16. Characteristics and calculated fire resistances of column- profile 11B	234
Table A3.17. Characteristics and calculated fire resistances of column- profile 12	236
Table A3.18. Characteristics and calculated fire resistances of column- profile 13	237
Table A3.19. Characteristics and calculated fire resistances of column- profile 14A	239
Table A3.20. Characteristics and calculated fire resistances of column- profile 14B	240
Table A3.21. Characteristics and calculated fire resistances of column- profile 15	242
Table A3.22. Characteristics and calculated fire resistances of column- profile 16	243

List of pictures

Picture A2.1. Column FRFC 1A after the test	153
Picture A2.2. Column FRFC 1B after the test	
Picture A2.3. The intumescent paint after the test of FRFC 3B	
Picture A2.4. Column FRFC 4A after the test	
Picture A2.5. Local buckling of the test FRFC 4A	
Picture A2.6. Column FRFC 4B after the test	191
Picture A2.7. Local buckling of the test FRFC 4B	
Picture A2.8. Local buckling of the test FRFC 5B	
Picture A2.9. The upside of the column FRFC 5B after the test	
Picture A2.10. The upside of the column FRFC 5B after the test	
Picture A2.11. The movement of the mark in concrete at the steam vent	
Picture A2.12. The columns FRFC 6 after the test	
Picture A2.13. The upper end of the column FRFC 6 after the test.	

Notations

- A_c cross-section area of concrete
- A_s cross-section area of reinforcement
- A_a cross-section area of the structural steel section
- *d* diameter of circular section or the outside dimension of square section
- *Dr* distance between the axis of longitudinal reinforcements and the border of the concrete core (concrete cover)
- E_s modulus of elasticity of the reinforcing steel
- E_a modulus of elasticity of the structural steel
- E_{cm} secant modulus of elasticity of the concrete
- (EI)_{md} modified effective rigidity of the section after 10 minutes of fire
- f_{cm} mean value of the measured cylinder compressive strength of concrete
- f_{ck} characteristic value of the cylinder compressive strength of concrete
- f_{sk} characteristic value of the yield strength of reinforcing steel
- f_{y} nominal value of yielding strength of structural steel
- f_{cd} design value of the cylinder compressive strength of concrete
- f_{sd} design value of the yield strength of reinforcing steel
- f_{yd} design value of yielding strength of the structural steel
- f_c value of the cylinder compressive strength of concrete using in numerical simulations
- f_s value of the yield strength of reinforcing steel using in numerical simulations
- I_a second moment of area of the structural steel section
- I_c second moment of area of the concrete section
- I_s second moment of area of the reinforcement for the bending plane being considered.
- L_{10} effective length corresponding to a fire resistance of 10 minutes of a column under determined loads.
- *l* effective length of the column
- N_c compressive resistance of the concrete portion: $N_c = A_c * f_c$
- N_a compressive resistance of the steel wall portion: $N_a = A_a * f_y$
- N_s plastic compressive resistance of the steel reinforcement portion: $N_s = A_s * f_s$
- N_d compression load to column under normal temperature
- N_{fi} axial load on the column during exposed to fire

 N_{cr} elastic buckling load of the column

 $N_{R10,R}$ compression load bearing capacity of the column after 10 minutes of fire

- $N_{pl,Rk}$ characteristic value of the plastic resistance to compression of the section
- $N_{pl,Rd}$ design value of plastic resistance to compression of the section

 N_{Rd} ultimate design axial load of the column

 $N_{R10, pl, R}$ compression plastic resistance of the section after 10 minutes of fire

 $N_{R10, plR}$ the plastic resistance of the section after 10 minutes of fire

- N_u ultimate load of the column at room temperature
- $N_{u.fy=0}$ ultimate load of the column at room temperature ignored the strength of steel wall (calculated with $f_y=0$)
- R_f fire resistance of slender column

 R_{short} fire resistance of short column

- *t* wall thickness of the steel hollow section
- α imperfection parameter
- χ reduction factor for flexural buckling
- $\overline{\lambda}$ relative slenderness of the column
- $\overline{\lambda}_{R10}$ relative slenderness of the column after 10 minutes of fire