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The purpose of this paper is to study the dynamics of a square billiard with a non-standard

reflection law such that the angle of reflection of the particle is a linear contraction of the angle of

incidence. We present numerical and analytical arguments that the nonwandering set of this billiard

decomposes into three invariant sets, a parabolic attractor, a chaotic attractor, and a set consisting

of several horseshoes. This scenario implies the positivity of the topological entropy of the billiard,

a property that is in sharp contrast with the integrability of the square billiard with the standard

reflection law. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3701992]

A billiard is a mechanical system consisting of a point-

particle moving freely inside a planar region and being

reflected off the perimeter of the region according to

some reflection law. The specular reflection law is the

familiar rule that prescribes the equality of the angles of

incidence and reflection. Billiards with this reflection law

are conservative systems and as such are models for

physical systems with elastic collisions. For this reason

and their intrinsic mathematical interest, conservative

billiards have been extensively studied. Much less studied

are dissipative billiards, which originate from reflection

laws requiring that the angle of reflection is a contraction

of the angle of incidence. These billiards do not preserve

the Liouville measure and, therefore, can model physical

systems with non-elastic collisions. In this paper, we

investigate numerically and analytically a dissipative bil-

liard in a square. We find that its dynamics differs strik-

ingly from the one of its conservative counterpart, which

is well known to be integrable. Indeed, our results show

that a dissipative billiard in a square has a rich dynamics

with horseshoes and attractors of parabolic and hyper-

bolic type coexisting simultaneously.

I. INTRODUCTION

Billiards are among the most studied dynamical systems

for two main reasons. First, they serve as models for impor-

tant physical systems (see, e.g., the book9 and references

therein), and second, despite their simplicity, they can dis-

play a rich variety of dynamics ranging from integrability to

complete chaoticity. Most of the existing literature on bil-

liards is devoted to billiards with the standard reflection law:

the angle of reflection of the particle equals the angle of inci-

dence (cf. Refs. 5 and 10). These billiards are conservative

systems, i.e., they admit an invariant measure that is abso-

lutely continuous with respect to the phase space volume.

In this paper, we are concerned with billiards with a non-

standard reflection law according to which the angle of reflec-

tion equals the angle of incidence times a constant factor

0 < k < 1. Since we have observed numerically that such a

law has the effect of contracting the phase space volume, bil-

liards with this law will be called “dissipative” in this paper.

Recently, Markarian, Pujals, and Sambarino8 proved that

dissipative planar billiards (called “pinball billiards” in their

paper) have two invariant directions such that the growth rate

along one direction dominates uniformly the growth rate

along the other direction. This property is called dominated
splitting, and is weaker than hyperbolicity, which requires

one growth rate to be greater than one and the other one to be

smaller than one. The result of Markarian, Pujals and

Sambarino applies to billiards in regions of different shapes.

In particular, it applies to billiards in polygons. This is an

interesting fact because the dominated splitting property

enjoyed by the dissipative polygonal billiards contrasts with

the parabolic dynamics observed in the conservative case.8,10

Here, we take a further step towards the study of dissipa-

tive polygonal billiards analyzing the dissipative square bil-

liard. Taking into account the symmetries of the square, we

perform our analysis on a reduced phase space. We provide

theoretical arguments and numerical evidence that the non-

wandering set of our system decomposes into three (possibly

empty) invariant sets: a parabolic attractor, a hyperbolic

attractor, and a horseshoe. This dynamics is clearly richer

than the one of the conservative square billiard, which is a

fully integrable system. In this paper, we also conduct a

rather detailed numerical study of the changes in the proper-

ties of the nonwandering set as the parameter k varies.
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We should mention that results somewhat similar to ours

were obtained for non-polygonal billiards1,2 and the dissipative

equilateral triangle billiard.3 Billiard systems with other

unusual reflection laws have been considered in Refs. 4 and 11.

The paper is organized as follows. In Sec. II, we give a

detailed description of the map for the dissipative square bil-

liard. Some results concerning the invariant sets of this map

are presented in Sec. III. To study our map, it is convenient

to quotient it by the symmetries of the square. This proce-

dure is described in Sec. IV and produces the so-called

reduced billiard map. Section V is devoted to the study of

two families of periodic points of the reduced billiard map.

In particular, we show the stable and unstable manifolds of a

fixed point of the reduced billiard map (corresponding to a

special periodic orbit of the billiard map) have transversal

homoclinic intersections and use this fact to conclude that

the dissipative square billiard has positive topological

entropy. Finally, Sec. VI contains the bifurcation analysis of

the nonwandering set of the reduced billiard map.

II. THE SQUARE BILLIARD

Consider the square D ¼ ½0; 1� � ½0; 1� � R2. For our

purposes, D is called the square billiard table. To study the

dynamics of the billiard inside this table, it is sufficient to

know the angle of incidence at the impact points and the

reflection law. For the usual reflection law (the angle of

reflection is equal to the angle of incidence), we find the next

impact point s0 and angle of reflection h0 by the billiard map

ðs0; h0Þ ¼ Bðs; hÞ acting on the previous impact ðs; hÞ. This

map admits an explicit analytic description. Its domain coin-

cides with the rectangle,

M¼ ½0; 4� � � p
2
;
p
2

� �
from which the set

Sþ ¼ ðs; hÞ 2 M : fsg ¼ 0 or fsg þ tan h 2 f0; 1gf g

is removed. The symbols [s] and fsg ¼ s� ½s� stand for the

integer part and the fractional part of s, respectively. An ele-

ment of Sþ corresponds to an orbit leaving or reaching a cor-

ner of D (see Fig. 1).

By reversing the role of time in this description of Sþ,

one obtains the set

S� ¼ ðs; hÞ 2 M : fsg ¼ 0 or ðs;�k�1hÞ 2 Sþ
� �

:

Both sets Sþ and S� consist of finitely many analytic curves.

Next, let

M1 ¼ ðs; hÞ 2 M : fsg > 0 and fsg þ tan h > 1f g;
M2 ¼ ðs; hÞ 2 M : fsg > 0 and 0 < fsg þ tan h < 1f g;

M3 ¼ ðs; hÞ 2 M : fsg > 0 and fsg þ tan h < 0f g:

The billiard map B :Mn Sþ !Mn S� is defined by

Bðs; hÞ ¼
½s� þ 1þ 1�fsg

tan h mod 4ð Þ; p
2
� h

� �
on M1;

½s� � 1� fsg � tan h mod 4ð Þ;�hð Þ on M2;

½s� þ fsg
tan h mod 4ð Þ;� p

2
� h

� �
on M3:

8>><
>>:

This map is clearly an analytic diffeomorphism in its

domain. The inverse of B is easily obtained by noticing that

the billiard map is time-reversible. That is, given the map

T ðs; hÞ ¼ ðs;�hÞ, we have

B�1 ¼ T � B � T �1:

To modify the reflection law, we compose B with another

map R :M!M. The resulting map U ¼ R�B is called a

billiard map with a modified reflection law.

Several reflections laws have been considered.1,8 In this

paper, we consider the following “dissipative” law. Given

0 < k < 1, we set

Rkðs; hÞ ¼ s; khð Þ:

According to this law, the direction of motion of the particle

after a reflection gets closer to the normal of the perimeter of

the square (see Fig. 2). To emphasize the dependence of the

billiard map on the parameter k, we write

Uk ¼ Rk � B:

As a side remark, one can also define the map Uk for k > 1.

In this case, the map Rk expands uniformly the angle h, and

Uk becomes a map with holes in the phase space. It is inter-

esting to observe that the maps Uk�1 and U�1
k are conjugated

for 0 < k < 1. Indeed, it is not difficult to check that

Uk�1 ¼ ðRk � T Þ�1 � U�1
k � ðRk � T Þ

by using the fact that T and Rk commute and that

R�1
k ¼ Rk�1 . Therefore, all the results presented in this paper

hold for k > 1 as well, provided that we replace the word

“attractor” with the word “repeller” and switch the words

“stable” and “unstable.”

FIG. 1. Phase spaceMn Sþ. FIG. 2. Dissipative reflection law.
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III. HYPERBOLICITY

Let ðs0; h0Þ be an element of Mn Sþ. Set

ðs1; h1Þ ¼ Ukðs0; h0Þ and denote by tðs0; h0Þ the length of the

segment connecting s0 and s1. Using elementary trigonome-

try, one can show in a straightforward manner that the deriv-

ative of Uk takes the following form:

DUkðs0; h0Þ ¼ �
cos h0

cos k�1h1

tðs0; h0Þ
cos k�1h1

0 k

0
B@

1
CA:

In fact, the previous formula holds for every polygon and not

just for the square (see Formula 2.26 in Ref. 5).

Now, suppose that fðsi; hiÞgn
i¼0 are nþ 1 consecutive

iterates of Uk. Then, we see that

DUn
kðs0; h0Þ ¼ ð�1Þn anðs0; h0Þ fnðs0; h0Þ

0 bnðs0; h0Þ

� �
;

where

anðs0; h0Þ ¼
cos h0

cos k�1hn

Yn�1

i¼1

cos hi

cos k�1hi
; bnðs0; h0Þ ¼ kn

and

fnðs0; h0Þ ¼
1

cos k�1hn

Xn�1

i¼0

kitðsi; hiÞ
Yn�1

k¼iþ1

cos hk

cos k�1hk
:

We now prove a simple lemma concerning the stability of

the periodic points of Uk. It is not difficult to see that this

result remains valid for every polygon and for other reflec-

tion laws (e.g., Rkðs; hÞ ¼ ðs; h� c sin 2hÞ with 0 < c < 1=2

as in Ref. 8).

Lemma III.1. For every k 2 ð0; 1Þ, the periodic points of

Uk of period 2 and period greater than 2 are parabolic and

hyperbolic, respectively.

Proof. Suppose that ðs0; h0Þ is a periodic point of Uk

with period n. Since ðsn; hnÞ ¼ ðs0; h0Þ, it turns out that

anðs0; h0Þ ¼
Yn�1

i¼0

cos hi

cos k�1hi

:

Now, note that each term cos hi= cos k�1hi in the expression

of anðs0; h0Þ is equal or greater than 1 with equality if and

only if hi ¼ 0. Also, note that DUn
kðs0; h0Þ is a triangular ma-

trix, and so the moduli of its eigenvalues are anðs0; h0Þ and

kn < 1. Therefore to determine the stability of ðs0; h0Þ is

enough to find out whether or not anðs0; h0Þ is greater than 1.

If n¼ 2, it is easy to see that the trajectory of ðs0; h0Þ
must always hit the boundary of D perpendicularly. In other

words, we have h0 ¼ h1 ¼ h2 ¼ 0, and so a2ðs0; h0Þ ¼ 1.

Periodic points of period 2 are, therefore, parabolic. Clearly,

a necessary condition for a polygon to admit periodic points

of period 2 is that the polygon must have at least 2 parallel

sides (not a sufficient condition though).

Now, suppose that n > 2. In this case, we claim that

ðs0; h0Þ is hyperbolic. Indeed, when n > 2, the billiard trajec-

tory of ðs0; h0Þ must have at least two non-perpendicular

collisions with the boundary of D, and since

cos hi= cos k�1hi > 1 for such collisions, we can immediately

conclude that anðs0; h0Þ > 1. h

A more elaborated analysis along the lines of the proof

of Lemma III.1 yields some general conclusions on the cha-

otic behavior of general dissipative polygonal billiards. Two

of such conclusions are stated in Propositions III.2 and III.3

below. To state these propositions, we need first to introduce

the notion of uniformly and non-uniformly hyperbolic sys-

tems. Unless specified otherwise, Uk denotes the map of a

dissipative billiard in a general polygon D throughout the

rest of this section.

A set R �M is called invariant if U�1
k ðRÞ ¼ R. An

invariant set R is called hyperbolic if there exist a norm �k k
on M, a non-trivial invariant measurable splitting

TRM¼ Es � Eu and two measurable functions 0 < l < 1

and K > 0 on R such that for every ðs; hÞ 2 R and every

n 	 1, we have

jjDUn
kjEsðs;hÞjj 
 Kðs; hÞlðs; hÞn;

jjDU�n
k jEuðUn

kðs;hÞÞ
jj 
 Kðs; hÞlðs; hÞn:

If the functions l and K can be replaced by constants, then R
is called uniformly hyperbolic, otherwise it is called non-uni-
formly hyperbolic.

We can now state our propositions. The first one concerns

billiards in polygons without parallel sides. For such poly-

gons, the map Uk does not have periodic points of period 2.

Proposition III.2. Let D be a polygon without parallel

sides, and suppose that R is an invariant set of Uk. Then R is

uniformly hyperbolic for every k 2 ð0; 1Þ.
The second proposition concerns billiards in rectangles.

In this case, Uk has periodic points of period 2. Denote by P
the set of all these points. It is not difficult to check that P is

a parabolic attractor for every k 2 ð0; 1Þ.
Proposition III.3. Let D be a rectangle, and suppose that

R is an invariant set of Uk not intersecting the basin of attrac-

tion of P. Then there exists k� 2 ð0; 1Þ such that R is hyper-

bolic for every k 2 ð0; k�Þ and is uniformly hyperbolic for

every k 2 ðk�; 1Þ.
For reasons of space, the proofs of these propositions

are omitted and will appear elsewhere.7

IV. THE REDUCED BILLIARD MAP

The analysis of the billiard dynamics can be simplified if

we reduce the phase space. First, we identify all sides of the

square by taking the quotient with the translations by integers

of the s-component. Then, due to the symmetry along the verti-

cal axis at the midpoint of the square, we can also identify

each point ðs; hÞ with ð1� s;�hÞ. To formulate the reducing

procedure more precisely, we define an equivalence relation �
on M by ðs1; h1Þ � ðs2; h2Þ if and only if pðs1; h1Þ
¼ pðs2; h2Þ, where p :M!M is the function defined by

pðs; hÞ ¼
ðfsg; hÞ if h 2 0; p

2

� 	
;

ð1� fsg;�hÞ if h 2 � p
2
; 0


 	
:

(
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Let M denote the image of p. Clearly, we have

M ¼ ð0; 1Þ � 0;
p
2

h �
:

Note that it is possible to identify the set M with the quotient

space M= �. We call M the reduced phase space. The

induced billiard map on M is the reduced map, which we

will denote by /k.

It is clear from the definition of p that p�1ðs; hÞ consists

of 8 elements for every ðs; hÞ 2 M, and so ðM; pÞ is an 8-

fold covering of M. It is then easy to see that the reduced bil-

liard map /k is a factor of the original billiard map Uk by

noting that the quotient map p is indeed a semiconjugacy

between /k and Uk, i.e., we have that p�Uk ¼ /�kp.

In what concerns the relation between the dynamical

systems defined by Uk and /k, there are several key points

that are worth remarking. First, we note that periodic points

of /k lift to periodic points of Uk. To be more precise, an

orbit of period n under /k is lifted to either eight orbits of pe-

riod n, or four orbits of period 2 n, or two orbits of period 4

n, or one orbit of period 8 n for Uk. Analogous statements

can be produced for the lifts of transitive sets and the

existence of invariant measures. Namely, transitive sets for

/k are lifted to a finite number of transitive sets for Uk and

any invariant measure under the dynamics of /k corre-

sponds to a finite number of invariant measures under Uk.

Finally, we remark that the reduced map /k has positive

topological entropy if and only if this is the case for the bil-

liard map Uk.

By studying the trajectories of the billiard map, we have

basically two cases: either the billiard orbit hits a neighbor-

ing side of the square or the opposite side. Separating these

cases, there is a corner which is reachable only if the initial

position ðs; hÞ 2 M is in the singular curve

Sþ ¼ ðs; hÞ 2 M : sþ tan h ¼ 1f g:

This curve separates the reduced phase space in two con-

nected open sets: M1 below Sþ and M2 above Sþ.

Let f1 : M1 ! M and f2 : M2 ! M be the transforma-

tions defined by

f1ðs; hÞ ¼ sþ tan h; khð Þ for ðs; hÞ 2 M1;

f2ðs; hÞ ¼ ð1� sÞ cot h; k
p
2
� h

� �� �
for ðs; hÞ 2 M2:

The reduced billiard map is then given by

/k ¼
f1 on M1;
f2 on M2:

�

Its domain and range are M n Sþ and M n S�, respectively,

where

S� ¼ ðs; hÞ 2 M : s� tanðk�1hÞ ¼ 0
� �

:

Like the billiard map Uk, the reduced billiard map /k is an

analytic diffeomorphism. Notice that the second component

of /k is independent of s. Consequently, /k leaves horizontal

lines invariant.

Finally, we observe that the subsets of M where the maps

/n
k and /�n

k are defined for every n 	 0 are, respectively,

Mþ ¼ M n
[
n	0

/�n
k ðSþÞ and M� ¼ M n

[
n	0

/n
kðS�Þ:

V. ATTRACTORS AND HORSESHOES

We start this section by formulating several definitions.

The stable set of an element q 2 M is defined by

WsðqÞ ¼ x 2 Mþ : lim
n!þ1

/n
kðxÞ � /n

kðqÞ
�� �� ¼ 0

� 

;

where jj � jj is the Euclidean norm on M. In the case of an

invariant set K ¼ /kðKÞ, we define its stable set to be

WsðKÞ ¼
[
q2K

WsðqÞ:

The unstable sets WuðqÞ and WuðKÞ are defined analogously

by replacing /k with /�1
k and Mþ with M�. When WuðsÞðKÞ

turns out to be a manifold, we will call it an unstable(stable)

manifold.

Suppose that K is an invariant subset of M. Then K is

called an attractor if K ¼ WuðKÞ and WsðKÞ is open in Mþ

and is called a horseshoe if neither WsðKÞ is an open set in

Mþ nor is WuðKÞ an open set in M�. Note that a saddle peri-

odic orbit is a horseshoe according to this definition. A finite

union of hyperbolic invariant sets A1;…;Am is called a

hyperbolic chain if

WuðAiÞ \WsðAiþ1Þ 6¼ ; for i ¼ 1;…;m� 1:

A point x 2 Mþ is said to be nonwandering if for every open

neighborhood U containing x, there exists n 	 1 such that

U \ /n
kðUÞ 6¼ ;. We denote by Xk � Mþ \M� the set of all

nonwandering points of /k. We say that two hyperbolic peri-

odic points x; y 2 Xk are homoclinically related if WuðxÞ and

WsðyÞ intersect transversally, and WuðyÞ and WsðxÞ intersect

transversally. The closure in Mþ \M� of the set of periodic

points homoclinically related to a hyperbolic periodic point

x 2 Xk is called the homoclinic class of x. Every homoclinic

class is a transitive invariant subset of Xk (see Ref. 6, Chap.

IX, Proposition 5.2).

A. Parabolic attractor

Let us define P ¼ pðPÞ. It is easy to see that

P ¼ ðs; hÞ 2 M : h ¼ 0f g;

and each point of P is a parabolic fixed point coming from

period 2 orbits of the original billiard (orbits that bounce

between parallel sides of the square). It is an attractor and

WsðPÞ includes the set of points B that are below the forward

invariant curve,

S1 ¼ ðs; hÞ 2 M : sþ
Xþ1
i¼0

tanðkihÞ ¼ 1

( )
:
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The sequence /n
kðS1Þ converges to the point (1, 0). The pre-

image of B is at the top of phase space. Moreover, its basin

of attraction is

WsðPÞ ¼
[
n	0

/�n
k ðBÞ:

By Proposition III.3, the set Xk n P is hyperbolic. Hence,

every periodic point in Xk n P has stable and unstable mani-

folds. Because of the cutting effect of the singular sets S�

and Sþ, these manifolds are countable unions of smooth

curves.

B. Fixed point and its invariant manifolds

The map Uk has many periodic orbits. Two special peri-

odic orbits of period 4 can be found by using the following

simple argument. A simple computation shows that if an

orbit hits two adjacent sides of the square with the same

reflection angle hk, then

hk ¼
pk

2ð1þ kÞ :

If we further impose the condition that the orbit hits the two

sides at s1 and s2 in such a way that fs1g ¼ fs2g ¼ sk, then

we obtain

sk ¼
1

1þ tan hk
:

By symmetry, we conclude that U4
kðsk; hkÞ ¼ ðsk; hkÞ. Using

once again the symmetry of the square, we also have

U4
kð1� sk;�hkÞ ¼ ð1� sk;�hkÞ. One of these orbits is

depicted in Fig. 3.

Due to the phase space reduction, the periodic orbits just

described correspond to the fixed point

pk ¼ ðsk; hkÞ

of /k. This is actually the only fixed point of /k in M2 out-

side of P. By Lemma III.1, pk is hyperbolic and thus it has

local stable and unstable manifolds Ws;u
locðpkÞ for every

k 2 ð0; 1Þ. Since /k maps horizontal lines into horizontal

lines, and the set S� does not intersect the horizontal line

through pk, we see that the local unstable manifold of pk is

given by

Wu
locðpkÞ ¼ ðs; hÞ 2 M : h ¼ hkf g:

In fact, the global unstable manifold consists of a collection

of horizontal lines cut by the images of S�.

The geometry of the stable manifold is more compli-

cated. By definition, points on the stable manifold converge

to the fixed point. Moreover, Ws
locðpkÞ cannot cross Sþ. Thus,

Ws
locðpkÞ is contained in M2. The graph transform associated

with the corresponding branch of /k is the transformation

CðhÞðhÞ ¼ 1� hðgkðhÞÞ tan h;

where gk : ½0; p=2Þ ! ½0; p=2Þ denotes the affine contraction

gkðhÞ ¼ k
p
2
� h

� �
:

Iterating k times the zero function by C, we obtain

Ckð0ÞðhÞ ¼
Xk�1

n¼0

ð�1Þn
Yn�1

i¼0

tanðgi
kðhÞÞ:

Hence, the local stable manifold of pk is the curve

Ws
locðpkÞ ¼ ðhkðhÞ; hÞ : 0 
 h <

p
2

and 0 < hkðhÞ < 1
n o

;

where

hkðhÞ ¼
X1
n¼0

ð�1Þn
Yn�1

i¼0

tanðgi
kðhÞÞ: (1)

This series converges uniformly and absolutely since

tanðgn
kðhÞÞ converges to tan hk as n!1 and 0 < tan hk < 1.

The same statement holds for the series of the derivatives of

hk. Thus, hk is smooth.

The invariant manifolds of pk, the singular curves of the

reduced billiard map, and the upper boundary S1 of B are

depicted in Fig. 4.

Let k2 be the unique solution of

hkðkhkÞ ¼ tanðhkÞ for k 2 ð0; 1Þ:

Geometrically, k2 is the value of k such that the singular set

S�, the local manifold Ws
locðpkÞ, and the closure of the first

FIG. 3. Periodic orbit.
FIG. 4. Invariant manifolds of pk and singular curves for the reduced bil-

liard map (k ¼ 0:6218).
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iterate of the piece of the unstable manifold of pk contained

in M1 have non-empty intersection (see Fig. 5(b)). A numeri-

cal computation shows that

k2 ¼ 0:8736:::

Let D be the closed set bounded by Ws
locðpkÞ and Wu

locðpkÞ as

in Fig. 5(b).

Proposition V.1. For k > k2, there is a compact /k-

invariant set D0 � intðDÞ such that Xk \ D � fpkg [ D0.

Proof. For k > k2, we have f1ðD \M1Þ � intðDÞ, and

we can a find a compact forward-invariant set D0 � intðDÞ
under f2 such that f1ðD \M1Þ � D0. Hence D0 is also /k-

invariant. Since pk is the only nonwandering point in D
whose orbit does enter M1, we have Xk \ D � fpkg [ D0. h

Proposition V.2. The invariant manifolds of pk have

transverse homoclinic points if and only if 0 < k < k2.

Proof. To prove the existence of homoclinic points, we

iterate a piece of the local unstable manifold in M1 and show

that it intersects transversely the local stable manifold in M2.

Taking into account that /k maps horizontal lines into hori-

zontal lines, /kjM1
¼ f1 and

f1ðWu
loc \M1Þ ¼ ðtan hk; 1Þ � fkhkg;

the problem of finding homoclinic intersections reduces to

proving the following chain of inequalities:

tan hk < hkðkhkÞ < 1:

We will see that these inequalities hold if and only if

0 < k < k2.

Lemma V.3. The inequality tan hk < hkðkhkÞ holds if

and only if 0 < k < k2.

Proof. For k > 0 sufficiently small, we have

tan hk þ tanðkhkÞ < 1 since hk ! 0 as k! 0. On the other

hand, we know by definition of hk that hkðkhkÞ
þ tanðkhkÞ > 1 for every k 2 ð0; 1Þ. Putting these two

inequalities together we conclude that

tan hk < 1� tanðkhkÞ < hkðkhkÞ

for every k > 0 sufficiently small. Since hkðkhkÞ � tan hk

is strictly decreasing for k 2 ð0; 1Þ and k2 is the unique

solution of hkðkhkÞ ¼ tan hk we obtain the desired

result. h

Lemma V.4. The inequality hkðkhkÞ < 1 holds for every

k 2 ð0; 1Þ.
Proof. At the fixed point, we compute

h0kðhkÞ ¼ �
sec2 hk

ð1� k tan hkÞð1þ tan hkÞ
< 0: (2)

Define now

mðhÞ ¼ hkðhkÞ þ h0kðhkÞðh� hkÞ

¼ 1� k tan hk � sec2 hkðh� hkÞ
ð1� k tan hkÞð1þ tan hkÞ

to be the function whose graph is the line tangent to the

graph of hk at the fixed point pk. Since hk is concave,

hkðhÞ 
 mðhÞ for every h 2 ð0; p=2Þ. Thus, it is enough to

check that mðkhkÞ < 1 for k < 1, by using elementary esti-

mates. h

Thus, f1ðWu
locðpkÞ \M1Þ \Ws

locðpkÞ 6¼ ; if and only if

0 < k < k2. To conclude the proof of the proposition, note

that for k > k2, by Proposition V.1, the region D is a trapping

set. Since WuðpkÞ � intðDÞ [Wu
locðpkÞ; pk has no homoclinic

intersections for k > k2.

The following corollary is a direct consequence of Prop-

osition V.2 and Ref. 6, Chap. 7, Theorem 4.5.

Corollary V.5. The map /k has positive topological

entropy for every 0 < k < k2.

C. Two families of periodic orbits

Given ðn;mÞ 2 N2, a straightforward computation shows

that

f n
2 � f m

1 ðs; hÞ ¼ ð�1Þn�1!n;mðh; sÞ; gn
kðkmhÞ

� �
;

where !n;m is given by

!n;mðh; sÞ ¼ hn�1ðkmhÞ � s� Sm�1ðhÞ½ �cnðkmhÞ

and the sequences of functions hn; cn, and Sn are defined by

FIG. 5. Trapping regions for /k.
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hnðhÞ ¼
Xn

i¼0

ð�1Þi
Yi�1

j¼0

tanðgj
kðhÞÞ;

cnðhÞ ¼
Yn�1

i¼0

cotðgi
kðhÞÞ;

SnðhÞ ¼
Xn

i¼0

tanðkihÞ:

Recall that gk is the affine contraction gkðhÞ ¼ kðp=2� hÞ.
For each n 	 1, define qn and pn as the unique solutions,

when they exist, of

f 2
2 � f n

1 ðqnÞ ¼ qn and f 2n�1
2 � f1ðpnÞ ¼ pn:

In agreement with this definition, we set q0 ¼ pk.

Proposition V.6. There exists a unique decreasing

sequence cn 2 ð0; k2Þ such that qn is a periodic point of pe-

riod nþ 2 for /k if and only if k 2 ð0; cnÞ.
Proof. Let qn ¼ ðsn; hnÞ. A simple computation shows

that

sn ¼ ð1� SnðhnÞÞ
c2ðknhnÞ

c2ðknhnÞ � 1
;

hn ¼
p
2

kð1� kÞ
1� k2þn

:

(3)

Let Dn be the set of points ðs; hÞ 2 M1 such that

1� SnðhÞ < s < 1� Sn�1ðhÞ:

Since f n
1 ðDnÞ � M2 to show that qn exists, it is enough to

check that ðsn; hnÞ belongs to Dn.

In the following estimates, we will frequently use the

fact that the tangent is a convex function, i.e., for every

x; y 2 ð0; p
2
Þ and 0 < k < 1, we have

tanðkxþ ð1� kÞyÞ < k tanðxÞ þ ð1� kÞ tanðyÞ;

and moreover that for every 0 < x < p
2
; tanðxÞ > x.

Let us start by proving that sn > 1� SnðhnÞ. By

definition,

c2ðknhnÞ ¼ cotðknhnÞ cot k
p
2
� knhn

� �� �
>

cotðknhnÞ
k tan p

2
� knhn


 	 :
Thus, c2ðknhnÞ > 1 which, taking into account the definition

of sn, implies that sn > 1� SnðhnÞ. To prove the other in-

equality, we start by noting that

sn ¼ 1� Sn�1ðhnÞ þ
1� Sn�1ðhnÞ � cotðgkðknhnÞÞ

c2ðknhnÞ � 1
:

Since c2ðknhnÞ > 1, we only need to prove that

Sn�1ðhnÞ þ cotðgkðknhnÞÞ > 1: (4)

Using the definition of Sn, we get

Sn�1ðhnÞ ¼
Xn�1

i¼0

tanðkihnÞ > hn
1� kn

1� k
:

On the other hand,

cotðgkðknhnÞÞ ¼ tanðk�1hnÞ >
hn

k
:

Putting these estimates together we obtain

Sn�1ðhnÞ þ cotðgkðknhnÞÞ > hn
1� knþ1

kð1� kÞ

¼ p
2

1� knþ1

1� knþ2
>

p
2

nþ 1

nþ 2
> 1

for every k 2 ð0; 1Þ.
It remains to prove that sn > 0. It is clear that

dSnðhnðkÞÞ=dk > 0 for every k 2 ð0; 1Þ. Since Snðhnð0ÞÞ ¼ 0

and Snðhnð1ÞÞ ¼ ðnþ 1Þ tanðpðnþ 2Þ�1=2Þ > 1 for n 	 1,

we conclude that SnðhnðkÞÞ < 1 if and only if k 2 ð0; cnÞ.
Here, cn 2 ð0; 1Þ is the unique solution of

Xn

i¼0

tan kihnðkÞ

 	

¼ 1:

Thus sn > 1� SnðhnðkÞÞ > 0 if and only if k 2 ð0; cnÞ. Now

we prove that cnf g is decreasing. Since dSnðhnðkÞÞ=dk > 0,

it is sufficient to prove that

Snþ1ðhnþ1Þ > SnðhnÞ:

By definition of Sn, we have that

Snþ1ðhnþ1Þ ¼ SnðhnÞ þ
Xn

i¼0

tanðkihnþ1Þ � tanðkihnÞ
� �

þ tanðknþ1hnþ1Þ:

Let DSn ¼ Snþ1ðhnþ1Þ � SnðhnÞ. Note that hn > hnþ1. Since

tanðy� xÞ > ðtanðyÞ � tanðxÞÞð1� tanðxÞ tanðyÞÞ for every

0 < x < y < p=4 we get

DSn > tanðknþ1hnþ1Þ �
Xn

i¼0

tanðkiðhn � hnþ1ÞÞ
1� tanðkihnþ1Þ tanðkihnÞ

> tanðknþ1hnþ1Þ �
Xn

i¼0

tanðkiðhn � hnþ1ÞÞ
1� tan2ðhnÞ

:

In the derivation of the previous inequality, we have used the

upperbound: tanðkihnþ1Þ tanðkihnÞ < tan2ðhnÞ for every

n 	 1. Let

qn ¼
knþ2

1þ kþ � � � þ knþ1
:

Clearly, hn ¼ ð1þ qnÞhnþ1. Since qn=k
nþ1 < 1, we obtain

DSn > tanðknþ1hnþ1Þ �
Xn

i¼0

tanðqnk
ihnþ1Þ

1� tan2ðhnÞ

> tanðknþ1hnþ1Þ 1� qnð1� knþ1Þ
knþ1ð1� tan2ðhnÞÞð1� kÞ

� �
:

Using the expression for qn, we get
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DSn >
tanðknþ1hnþ1Þð1� kÞ
ð1� tan2ðhnÞÞð1� knþ2Þ

1� pk tan2ðhnÞ
2hn

� �
:

Since 0 < hn < h1 < p=4, we have that

tan2ðhnÞ <
hn

h1

� �2

tan2ðh1Þ

<
2hn

pk
ð1þ kþ k2Þ tan2 p

2kð1þ kþ k2Þ

� �

<
2hn

pk
3 tan2 p

6

� �
¼ 2hn

pk
:

Hence, DSn > 0 as we wanted to show. Finally, cnf g is

bounded from above by k2 since a numerical computation

reveals that

c1 ¼ 0:7964…

which, taking into account the numerical value of k2, implies

that cn < c1 < k2. h

The proof of the next result is omitted because it is simi-

lar to the previous one.

Proposition V.7. If k 2 ð0; k2Þ then pn is a periodic point

of period 2 n for /k.

By Lemma III.1, these periodic points are hyperbolic.

As we shall see in Sec. VI, these orbits seem to play an im-

portant role in the dynamics of /k for different values of k.

The corresponding billiard orbits in configuration space are

depicted in Fig. 6.

Since the sequence cn is decreasing, we can define

k1 ¼ lim
n!1

cn. The number k1 is also the unique solution of

the equation

X1
n¼0

tan
p
2

kiþ1ð1� kÞ
� �

¼ 1 for k 2 ð0; 1Þ:

In geometrical terms, when k ¼ k1, the intersection point of

the curve S1 with the line h ¼ pkð1� kÞ=2 lies exactly on

the line s¼ 0 (see Fig. 5(a)). This intersection point is also

the limit of the sequence qn. A numerical computation shows

that

k1 ¼ 0:6218:::

By Proposition V.6, the periodic points qn disappear as k
increases from k1 to k2. The point q1 is the last to disappear

for a value of k close to k2. All points qn are contained in the

light-colored trapping region depicted in Fig. 5(a).

Proposition V.8. We have WuðqnÞ \ B 6¼ ; for every

0 < k < k1 and every n sufficiently large. In particular, the

homoclinic class of qn is a transitive horseshoe provided that

n is sufficiently large.

Proof. Let qn ¼ ðsn; hnÞ where sn and hn are given by

Eq. (3). Hence as n!1, these points approach the horizon-

tal line h ¼ pkð1� kÞ=2. It is also straightforward to check

that WuðqnÞ contains the horizontal segment joining ð0; hnÞ
to qn. Let

rðhÞ ¼ 1�
X1
i¼0

tanðkihÞ

be the map whose graph is S1, the upper bound of B. This

function is decreasing in k, and by definition of k1, we have

rðpkð1� kÞ=2Þ ¼ 0 when k ¼ k1. Also, we must have

rðpkð1� kÞ=2Þ > 0 for every 0 < k < k1. Thus, rðhnÞ > 0

for all large enough n. This proves that WuðqnÞ, which con-

tains the segment joining ð0; hnÞ to qn, intersects the set

B � WsðPÞ, bounded from above by the graph of r. Hence

this homoclinic class is a horseshoe. To complete the proof,

we just need to observe that transitivity is a general property

of the homoclinic classes (see Ref. 6, Chap. IX, Proposition

5.2). h

FIG. 6. Billiard trajectories correspond-

ing to the periodic points qn and pn for

k ¼ 0:6.
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Proposition V.9. The following statements hold for

k > k1:

1. WsðPÞ ¼ B [ /�1
k ðBÞ.

2. C ¼ Mþ nWsðPÞ is a trapping region, i.e., /kðCÞ
� intðCÞ.

3. WuðqnÞ \ B ¼ ; for every n 	 1.

Proof. Since the second and third statements immedi-

ately follow from the first one, we only prove that

WsðPÞ ¼ B [ /�1
k ðBÞ:

By definition, WsðPÞ ¼
S

n	0

/�n
k ðBÞ. Thus,

B [ /�1
k ðBÞ 
 WsðPÞ:

To prove the opposite inclusion, it is sufficient to prove that

/�2
k ðBÞ � B [ /�1

k ðBÞ:

Suppose that the previous inclusion does not holds, i.e., there

exists x 2 /�2
k ðBÞ such that neither x 2 B nor x 2 /�1

k ðBÞ.
Thus /kðxÞ 2 /�1

k ðBÞ n B. On the other hand, it is clear that

for every k > k1, we have

ð/�1
k ðBÞ n BÞ \ /kðMÞ ¼ ;;

yielding a contradiction. h

Proposition V.10. There exists d > 0 such that the peri-

odic points qn are all homoclinically related with pk for every

0 < k < d.

Proof. For k > 0 close to 0, the local stable manifold

Ws
locðpkÞ is the graph of the concave monotonic function hk

connecting the left side s¼ 0 to the vertex ðs; hÞ ¼ ð1; 0Þ.
Using a graph transform argument, we can prove that the

local stable manifold Ws
locðqnÞ is the graph of a concave

monotonic function s ¼ hnðhÞ with rnþ1ðhÞ < hnðhÞ <
rnðhÞ, where

rnðhÞ ¼ 1� tanðhÞ þ tanðkhÞ þ…þ tanðkn�1hÞ

 	

:

Notice that Mn
1 ¼ fðs; hÞ : rnþ1ðhÞ < s < rnðhÞg is the

region of all points in M1 mapped by f n
1 into the domain M2.

The graph s ¼ hnðhÞ also connects the left side s¼ 0 to the

vertex ðs; hÞ ¼ ð1; 0Þ. An easy computation shows that

1�
X1
i¼1

tanðkihnÞ > 0

and hn > pk=4, the second inequality for k < 1=2. Because

f1ð0; p=2Þ ¼ ð1; pk=4Þ, we can deduce from the inequality

hn > pk=4 that the local unstable manifold of qn is the hori-

zontal segment connecting ð0; hnÞ to ð1; hnÞ. Whence

Wu
locðqnÞ ¼ ½0; 1� � fhng intersects Ws

locðqmÞ ¼ graphðhmÞ for

any pair of integers n;m 	 1. Since pk ¼ q0, the proposition

is proved. h

For future use, we now introduce the new constant

k0 ¼ inffk > 0 : 9n 	 1;WuðpkÞ \WsðqnÞ ¼ ;g:

From Proposition V.10, it follows that k0 	 d > 0, where d
is as in Proposition V.10. Numerically, we found that

k0 > 0:6104:

VI. BIFURCATION OF THE LIMIT SET

Recall that Xk is the nonwandering set of the map /k. In

this last section, we formulate a conjecture on the decompo-

sition of Xk and discuss the changes in this decomposition as

the parameter k varies.

Conjecture VI.1. For any 0 < k < 1, the nonwandering

set Xk is a union of three sets,

Xk ¼ P [ Hk [ Ak;

where P is the parabolic attractor introduced in Sec. V A, Ak

is a hyperbolic transitive attractor, and Hk is a horseshoe.

Moreover, Hk is either transitive or else a (possibly empty)

hyperbolic chain of transitive horseshoes. In particular,

Mþ ¼ WsðPÞ [WsðHkÞ [WsðAkÞ:

Our next conjecture is justified by the fact that P consists of

periodic points, and the set Ak [ Hk is hyperbolic.

Conjecture VI.2. The set of periodic points is dense

in Xk.

The rest of the section is devoted to the justification of

the previous Conjecture VI.1 and to the analysis of the

changes in the sets Hk and Ak as k varies. The conclusions

based on numerical observations are presented as conjec-

tures, whereas the conclusions based on analytical arguments

are presented as propositions with their proofs. We split our

discussion into four parts, each corresponding to k taking

values inside one of the following intervals: ð0; k0Þ;
ðk0; k1Þ; ðk1; k2Þ and ðk2; 1Þ. See Fig. 7.

A. 0 < k < k0

The following conjecture is suggested by numerical

computations of the invariant manifolds for the points qn

(see Fig. 8(a)).

Conjecture VI.3. The manifolds Wuðqnþ1Þ and WsðqnÞ
intersect transversally for every 0 < k < cnþ1. Moreover,

provided that 0 < k < k1, all qn are mutually homoclinically

related for sufficiently large n.

In light of Conjecture VI.2, the next conjecture simply

states that Xk n P is the union of the homoclinic classes of

the qn.

Conjecture VI.4. Suppose that x 2 Xk n P is a periodic

point of /k. Then there are m; n 	 0 such that WuðxÞ and

WsðqnÞ intersect transversally, and WuðqmÞ and WsðxÞ inter-

sect transversally.

Proposition VI.5. If Conjectures VI.3 and VI.4 hold,

then Xk ¼ P [ Hk and Hk is a transitive horseshoe for

0 < k < k0.

Proof. By definition of k0, all qn are homoclinically

related for 0 < k < k0. By Conjectures VI.3 and VI.4,

Xk ¼ P [ Hk, where Hk denotes the homoclinic class of

pk ¼ q0. Then Proposition V.8 shows that Hk is a transitive

horseshoe. h
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B. k0 < k < k1

In this parameter range, the set Xk n P splits into two or

more homoclinic classes dynamically partially ordered. At

the bottom of this hierarchy of homoclinic classes lies a tran-

sitive hyperbolic attractor, and at the top, a transitive horse-

shoe whose unstable set intersects the basin of attraction of

P. We write H � H0 for WuðH0Þ \WsðHÞ 6¼ ;.
Proposition VI.6. If Conjectures VI.2-VI.4 hold, then for

k0 < k < k1, there exists N 	 1 such that

Xk ¼ P [ C0 [ C1 [… [ CN and

1. each Ci is the homoclinic class of some periodic point qni
,

2. Ci \ Cj ¼ ; whenever i 6¼ j,
3. C0 � C1 �… � CN ,

4. C0 is a transitive hyperbolic attractor,

5. P � CN .

Proof. Let C0;C1;…;CN be the homoclinic classes of

the periodic points qn. By conjecture VI.4, we have

Xk n P ¼ C0 [ C1 [… [ CN . These sets are obviously dis-

joint. Conjecture VI.3 implies the sets Ci are ordered in a fi-

nite chain, and we can always display them as in item 3. C0

is the homoclinic class of the fixed point q0 ¼ pk and hence

a transitive invariant set. It is attracting since it lies at the

chain’s bottom, and it is hyperbolic because of Proposition

III.3. The set H ¼ C1 [… [ CN is a chain of transitive

hyperbolic horseshoes. Finally, since CN is at the chain’s

top, Proposition V.8 implies that P � CN . h

By the definition of k0, for every k0 < k < k1, there is

some n 	 1 such that Wuðq0Þ \Wsðqnþ1Þ ¼ ;, and, in view

of Conjecture VI.3, this implies there is some n 	 1 such

that WuðqnÞ \Wsðqnþ1Þ ¼ ;. Given n 	 1, let �kn be the

bifurcation point where the homoclinic connection

WuðqnÞ \Wsðqnþ1Þ breaks down. The numerical value given

above for k0 was obtained from the following dichotomy: for

k < k0, almost every point is attracted to P, while for

k > k0, there is a nontrivial hyperbolic attractor with an

open basin of attraction. We did not try to understand these

heteroclinic connection breaking bifurcations �kn, but numeri-

cal plots indicate that k0 ¼ �kn for some rather small n, prob-

ably n 
 3.

C. k1 < k < k1

In this parameter range, the periodic points qn vanish

one by one. More precisely, according to Proposition V.6,

there is a decreasing sequence of bifurcation parameters,

k1 < … < cnþ1 < cn < … < c2 < c1 < k2;

and qn persists for k < cn but vanishes for k > cn. Hence,

unlike the previous interval, only finitely many qn persist for

each k1 < k < k2.

FIG. 7. Local stable (dashed green curve) and unstable (dotted red curve) manifolds of pk and attractor Ak (blue region).

FIG. 8. Zoom of the phase space with maximal

local invariant manifolds of the periodic points. (a)

Points qn together with their local stable (dashed

green) and unstable (dotted red) manifolds for

k ¼ 0:6. The black curves represent some iterates

of the singular set Sþ. (b) Points pn together with

their local stable (dashed green) and unstable (dot-

ted red) manifolds for k ¼ 0:85.
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Proposition VI.7. If Conjectures VI.2-VI.4 hold, then

for k1 < k < k2, there exists N 	 0 such that

Xk ¼ P [ C0 [ C1 [… [ CN and

1. each Ci is the homoclinic class of some periodic point qni
,

2. Ci \ Cj ¼ ; whenever i 6¼ j,
3. C0 � C1 �… � CN ,

4. C0 is a transitive hyperbolic attractor,

5. P 6� Ci for all i ¼ 0; 1;…;N.

Proof. Keeping the notation of last section, the proof

here is a simple adaptation of that of Proposition VI.6. As

before, the hyperbolic attractor C0 is the homoclinic class of

the fixed point q0 ¼ pk. The main difference is that for

k > k1, by Proposition V.9, we have WsðPÞ ¼ B [ /�1
k ðBÞ

and there is a trapping region C, disjoint from WsðPÞ, for-

ward invariant under /k, which contains all periodic points

qn. This proves item 5. h

We found numerically that

• Xk n P ¼ C0, for c1 < k < k2,
• Xk n P ¼ C0 [ fq1g with q1 6� q0, for c2 < k < c1,
• Xk n P ¼ C0 [ fq1g [ fq2g with q1 6� q0 and q2 6� q1, for

c3 < k < c2.

D. k2 < k < 1

By Proposition V.1, in this parameter range, the shad-

owed region D in Fig. 5(b) is a trapping region, i.e., D is for-

ward invariant under /k. Moreover, all periodic points pn

must lie inside D whenever they exist.

Our numerical analysis suggests the following conjec-

tures (see Fig. 8(b)).

Conjecture VI.8. The periodic points pn with n 
 16 per-

sist for k2 < k < 1, while those with n 	 17 persist for

k 2 ð0; an� [ ½bn; 1Þ, where the sequences bounding the gap

satisfy an & k2 and bn % 1. In particular, for any given

k2 < k < 1, only finitely many points pn persist.

Conjecture VI.9. The periodic points pn generate two

homoclinic classes

1. C0 the homoclinic class of the pn with n 
 16 or k < an,

2. C1 the homoclinic class of the pn with n 	 17 and

k > bn.

For k > b17 (i.e., when C1 becomes non-empty),

C0 � C1.

The next conjecture simply states that Xk n P is the

union of the homoclinic classes of the periodic points pn and

the fixed point pk.

Conjecture VI.10. For every k2 < k < 1 and every peri-

odic point x 2 Xk n ðP \ fpkgÞ, there exist n;m 	 1 such

that WuðxÞ and WsðpnÞ intersect transversally, and WuðpmÞ
and WsðxÞ intersect transversally.

The proof of the following proposition is similar to

Proposition VI.6.

Proposition VI.11. If Conjecture VI.2 and Conjectures

VI.8-VI.10 hold, then for every k2 < k < 1, we have

Xk ¼ P [ C0 [ C1 [ fpkg and

1. C0 is a transitive hyperbolic attractor,

2. C1 is a transitive horseshoe (possibly empty),

3. C0 \ C1 ¼ ;,
4. C0 � C1 � fpkg.
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