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Abstract. We prove that any perturbation of the symplectic part of the
derivative of a Poisson diffeomorphism can be realized as the derivative of a
C1-close Poisson diffeomorphism. We also show that a similar property holds
for the Poincaré map of a Hamiltonian on a Poisson manifold. These results are
the conservative counterparts of the Franks lemma, a perturbation tool used
in several contexts most notably in the theory of smooth dynamical systems.

1. Introduction. The well-known Franks lemma [11, Lemma 1.1] states that any
perturbation of the derivative of a diffeomorphism at a finite set can be realized as
the derivative of a nearby diffeomorphism in the C1 topology. This perturbative
result has been crucially used to produce dynamical results out of related properties
for linear systems. Many different dynamical behaviors can then be proved to hold
in dense or even residual sets of diffeomorphisms. In the case of flows similar
perturbation techniques are contained in [18] for C2 vector fields and in [7] for C1.

Based on the usefulness of the Franks lemma, it is natural to ask if it still holds
by restricting its focus to certain subgroups of diffeomorphisms. In the volume-
preserving context Bonatti, Díaz and Pujals [6, Proposition 7.4] proved a version
of the Franks lemma for diffeomorphisms and Bessa and Rocha [4, Lemma 3.2]
for flows. In the symplectic case some authors have stated and used it (see e.g. [2,
Lemma 12], [13, Lemma 5.1] and [24]), but up to our knowledge no proof is available
in the literature. We remark that the Franks lemma is no longer valid in the C2-
topology [23].

In this paper we present a complete proof of the symplectic version, as a particular
case of a slightly more general setting concerning Poisson diffeomorphisms. More
specifically, we show that a perturbation of the symplectic part of the derivative
of a Poisson diffeomorphism at a point p can be realized as the derivative of a
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nearby Poisson diffeomorphism which differs from the original map only at a small
neighborhood of p.

We also show the similar result for general Hamiltonians in Poisson manifolds
as a simple application of the ideas used for symplectomorphisms (this simplifies
considerably the methods described in the manuscript [26]). In fact, we show that
a linear perturbation of the derivative of the Poincaré map is realizable as the
derivative of the Poincaré map of a nearby Hamiltonian. When considering geodesic
flows see [9] for surfaces and [8] for a higher dimensional manifold (see also [25]).

The fact that every Poisson diffeomorphism has to preserve the symplectic fo-
liation of a Poisson manifold is an obstruction to state a general Franks lemma
for Poisson maps. However, the type of perturbation we study here includes time
one maps of Hamiltonian flows on Poisson manifolds. The Hamiltonian dynamical
systems on Poisson manifolds, sometimes referred as generalized Hamiltonian sys-
tems, arise naturally in problems of celestial mechanics, mean field theory, ecology
populations, among many others (cf. e.g. [5, 17, 22] and references therein).

1.1. Organization of the paper. In section 2 we provide basic definitions on
Poisson manifolds and state our main results, Theorems 2.1 and 2.2, on Poisson
diffeomorphisms and the Poincaré map of Hamiltonians, respectively. Section 3
contains the key technical lemma regarding the Hamiltonian function that we will
use to achieve perturbations for the special case of rotations. The linear symplectic
geometry techniques to reduce a general case to rotations will be provided in the
last part of section 3. We will prove Theorem 2.1 in section 4. At the beginning
of section 5 we will show Theorem 2.2, first in a simpler case and later, through a
Poisson flowbox theorem (Theorem 5.4), for the general setting.

2. Statement of results. A Poisson manifold is a pair (M,π) whereM is a smooth
manifold without boundary and π a Poisson structure on M . Recall that a Poisson
structure is a smooth bivector field π with the property that [π, π] = 0, where [·, ·]
is the Schouten bracket (cf. e.g. [14, 21]). The bivector field π provides a vector
bundle map ]π : T ∗M → TM . The image of this map is an integrable singular
distribution which integrates to a symplectic foliation, i.e. a foliation whose leaves
have a symplectic structure induced by the Poisson structure. The rank of Poisson
structure at p ∈ M is half of the dimension of the symplectic leaf passing through
p.

Notice that a Poisson structure can be also defined as a Lie bracket {·, ·} on
C∞(M)× C∞(M) satisfying the Leibniz identity

{ψ, φ η} = {ψ, φ}η + φ{ψ, η}, ψ, φ, η ∈ C∞(M).

The two above descriptions are related by π(dψ, dφ) = {ψ, φ}.
The set Pois1(M) of Poisson diffeomorphisms consists of C1-diffeomorphisms

f : M →M satisfying f∗π = π, where

f∗π(ξ, η) = π(f∗ξ, f∗η), ξ, η ∈ T ∗M.

For the Poisson bracket description, f is Poisson iff {ψ ◦ f, φ ◦ f} = {ψ, φ} ◦ f for
every ψ, φ ∈ C∞(M).

A regular Poisson manifold is a Poisson manifold with constant rank. We now
restrict our attention to regular Poisson manifolds (M,π) with rank d ≥ 1 and
dimension 2d + n, n ≥ 0. By the splitting theorem, the Poisson version of the
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Darboux theorem (see e.g. [14]), for every p ∈ M there exists a chart (U,ϕ) with
ϕ(p) = 0, such that ϕ∗π = π0, where

π0 =

d∑
i=1

∂

∂xi
∧ ∂

∂yi

is the canonical Poisson structure. Here, (x1, .., xd, y1, ..., yd, z1, .., zn) stands for
the coordinates of R2d × Rn. We will always use local coordinates (U,ϕ) at p and
(U ′, ϕ′) at f(p) given by the splitting theorem. In these coordinates the derivative
of f ∈ Pois1(M) at p, Dpf = D0(ϕ′ ◦ f ◦ ϕ−1), belongs to the Poisson linear group
given by

Pn(2d+ n,R) = {B ∈ GL(2d+ n) : BĴBT = Ĵ},
with

Ĵ =

(
J 0
0 0

)
, J =

(
0 −I
I 0

)
and the d× d identity matrix I. Note that the elements of Pn(2d+ n,R) are of the
form (

A a
0 b

)
=

(
I a
0 b

)
Aπ,

whereA ∈ Sp(2d,R) is a symplectic matrix, i.e. A ∈ GL(2d,R) such thatAT JA = J,
a is any 2d× n real matrix, b ∈ GL(n,R) and

Aπ =

(
A 0
0 I

)
∈ Pn(2d+ n,R). (2.1)

For f ∈ Pois1(M), ε > 0 and D ⊂ M , define Bε(f,D) to be the set of maps
g ∈ Pois1(M) such that g is ε-close to f in the C1-Whitney topology and g = f on
D.

In the next theorem we show that any small enough perturbation AπDpf of the
derivative of f at p can be realized as the derivative of some g ∈ Bε(f,D).

Theorem 2.1. Let ε > 0, f ∈ Pois1(M) and p ∈ M . Then, there is δ > 0 such
that for every neighborhood V of p,

{AπDpf : A ∈ Sp(2d,R), ‖A− I‖ < δ} ⊂ {Dpg : g ∈ Bε(f,D)}
where D = (M \ V ) ∪ {p}.

We now focus on the Hamiltonian flow case. Consider (M,π) to be a regular Pois-
son manifold with rank d+ 1 and dimension 2(d+ 1) +n, and H ∈ C2(M) a Hamil-
tonian function. The map ]π : T ∗M → TM associates a Hamiltonian H : M → R
to a Hamiltonian vector field by

XH = ]π(dH),

which generates the Hamiltonian flow ϕtH in M . Let p ∈ M with XH(p) 6= 0
and E be the energy surface passing through p, i.e. the connected component of
H−1({H(p)}) containing p. Take S to be the symplectic leaf passing through p.
Around p the set E ∩ S is a 2d+ 1 dimensional submanifold of M . A transversal Σ
to the flow at p in E ∩ S is a 2d-dimensional smooth submanifold verifying

Tp(E ∩ S) = TpΣ⊕ RXH(p),

where RXH(p) denotes the direction of the vector field at p. Note that Σ is a
symplectic submanifold of S.
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Now, take p′ = ϕTH(p) for some T > 0, a transversal Σ′ to the flow at p′ and
some neighborhood U ⊂M of p. The Poincaré map of H at p is defined to be the
C1-symplectomorphism PH : Σ ∩ U → PH(Σ ∩ U) ⊂ Σ′ given by

PH(x) = ϕ
τ(x)
H (x) and τ(x) = min{t ≥ 0: ϕtH(x) ∈ Σ′}.

Notice that U is assumed to be sufficiently small such that, by the implicit function
theorem, τ is C1 and τ(U) is bounded.

The linear Poincaré map of H at p is the derivative of the Poincaré map at p,

DpPH : TpΣ→ Tp′Σ
′,

which can be seen as an element of Sp(2d,R) using local coordinates.
For H ∈ C2(M), ε > 0 and D ⊂ M , consider the set Bε(H,D) of the functions

H ′ ∈ C2(M) ε-close to H in the C2-Whitney topology and XH′ = XH on D.
Since we want to realize perturbations by Hamiltonians inside Bε(H,Γ) for an

orbit segment Γ of ϕtH , we fix the transversals Σ and Σ′ taken at p and p′ both in
Γ.

Theorem 2.2. Let ε > 0, H ∈ C2(M) with an orbit segment Γ starting at p ∈M .
Then, there is δ > 0 such that for every tubular neighborhood W of Γ,

{ADpPH : A ∈ Sp(2d,R), ‖A− I‖ < δ} ⊂ {DpPH′ : H
′ ∈ Bε(H,D)}

where D = (M \W ) ∪ Γ.

3. Preliminaries.

3.1. Definitions. Consider the `1-norm on Rd which induces the matrix norm
‖[ai,j ]‖ = maxj

∑
i |ai,j |. The C1-norm given for any ϕ ∈ C1(Rd,Rd′) by

‖ϕ‖C1 = max

{
‖ϕ‖C0 ,max

j

∥∥∥∥ ∂ϕ∂xj
∥∥∥∥
C0

}
,

where ‖ϕ‖C0 = supx∈Rd

∑
i |ϕi(x)| is the uniform norm.

Given 1 ≤ k ≤ d, consider the embedding πk : SL(2,R) → Pn(2d + n,R) given
by πk(M) = [αi,j ]

2d
i,j=1 where αi,i = 1, i 6∈ {k, d+ k},(

αk,k αk,d+k

αd+k,k αd+k,d+k

)
=M,

and αi,j = 0 for the remaining cases. Notice that πk(I) = I. We can easily
check that πk is a homomorphism πk(M1M2) = πk(M1)πk(M2) and ‖πk(M)‖ ≤
max{1, ‖M‖}.

Define
Rot2(2d,R) =

⋃
1≤k≤d

πk(SO(2,R))

as the set of the symplectic matrices that rotate only in two conjugate directions.
Recall the form of the one-parameter group of rotations SO(2,R) = {Rα : α ∈ R},
where

Rα =

(
cosα − sinα
sinα cosα

)
.

Consider also the embedding

Φ: Sp(2d,R)→ Pn(2d+ 2 + n,R), (3.1)
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for which Φ(M) = [αi,j ]
2d+2+n
i,j=1 is given by αi,i = 1, i ∈ {1, d+2, 2d+3, . . . , 2d+n},

α2,2 . . . α2,d+1 α2,d+3 . . . α2,2d+2

...
...

...
...

αd+1,2 . . . αd+1,d+1 αd+1,d+3 . . . αd+1,2d+2

αd+3,2 . . . αd+3,d+1 αd+3,d+3 . . . αd+3,2d+2

...
...

...
...

α2d+2,2 . . . α2d+2,d+1 α2d+2,d+3 . . . α2d+2,2d+2


=M,

and αi,j = 0 for the remaining cases. We can easily check that it is also a homo-
morphism Φ(M1M2) = Φ(M1) Φ(M2) and ‖Φ(M)‖ ≤ max{1, ‖M‖}.

Finally, choose a bump function ` ∈ C∞(R) satisfying

`(r) =

{
1, |r| ≤ 1/4

0, |r| ≥ 1,
(3.2)

0 ≤ `(r) ≤ 1,
∫
` = 1 and ‖`‖C2 bounded by a universal constant (we fix this value

in the following).

3.2. Hamiltonian perturbation. For r > 0 define Br ⊂ R2d+n to be the Eu-
clidean open ball centered at the origin with radius r. We write ‖ · ‖2 for the
Euclidean norm.

Given α ∈ R and 1 ≤ i ≤ d, consider the C∞ function Ki : R2d+n → R,

Ki(x, y, z) = α` (ρ) ρi, (3.3)

where

ρ =
1

2
‖(x, y, z)‖22 and ρi =

1

2
(x2
i + y2

i ).

We will also be using the following notations:

ϑi = `′(ρ)ρi + `(ρ)

ϑj = `′(ρ)ρi, j 6= i.

Lemma 3.1.
1. ϕtKi

= πi(Rtαϑi
)Πj 6=iπj(Rtαϑj

),
2. ‖Ki‖C2 ≤ c|α| for some constant c > 0.

Proof. The Hamiltonian vector field XKi(x, y, z) = Ĵ∇Ki(x, y, z) is given by
(ẋi, ẏi) = αϑi(−yi, xi),
(ẋj , ẏj) = αϑj(−yj , xj), j 6= i

żk = 0, k = 1, . . . , n.

It is easy to check that d
dtρ = d

dtρi = 0. This in turn means that ϑi and ϑj are
constants of motion as well. So, the Hamiltonian flow is as stated in the first claim
since it is made of two-dimensional rotations between the symplectic conjugated
coordinates.

Now, it is simple to check that

‖Ki‖C1 = max{‖Ki‖C0 , ‖∇Ki‖C0} ≤ |α| ‖`‖C1 .
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The second order derivatives are the following:
∂2Ki

∂xi∂yi
= α[`′′(ρ)ρi + 2`′(ρ)]xiyi

∂2Ki

∂w2
= α[`′(ρ)ρi + `(ρ) + `′′(ρ)ρiw

2 + 2`′(ρ)w2]

∂2Ki

∂w∂u
= α[`′′(ρ)ρi + `′(ρ)]wu

∂2Ki

∂u2
= α[`′(ρ) + `′′(ρ)u2]ρi

∂2Ki

∂u∂v
= α`′′(ρ)ρiuv,

where w stands for xi or yi, u and v replace xj , yj or zk with j 6= i and u 6= v. So,
for some constant c > 0,

‖D2K‖C0 ≤ c|α|.

Remark 3.2. It is simple to check that Ki = 0 and ϕtKi
= id on R2d+n \ B1.

Moreover, for r ≤ 1/4 we have

ϕtKi
= πi(Rtα)

which keeps Br invariant.

3.3. Symplectic linear algebra. Denote the canonical basis of Rm by {e1, ..., em}.

Lemma 3.3. Let L = diag(λ1, . . . , λm) ∈ GL(m,R) with distinct eigenvalues and
1 ≤ i ≤ m. Then, any A ∈ GL(m,R) close enough to L has a distinct eigenvalue
λ̃i close to λi with a unique associated eigenvector vi close to ei such that ‖vi‖ = 1.

Proof. Without loss of generality, set i = 1. Define F : GL(m,R)×R×Rm → R×Rm
given by

F (A, ν, q) =
(
det(A− νI), (A− νI)q + (q2

1 + · · ·+ q2
m − 1)e1

)
Notice that F (L, λ1, e1) = 0 and

detD(ν,q)F (L, λ1, e1) =

∣∣∣∣∣∣∣∣∣∣∣

Πj 6=1(λj − λ1) 0 0 . . . 0
−1 2 0 . . . 0
0 0 λ2 − λ1 . . . 0
...

...
...

. . .
...

0 0 0 . . . λm − λ1

∣∣∣∣∣∣∣∣∣∣∣
6= 0.

The implicit function theorem now proves the lemma.

Consider the canonical symplectic form ω0 =
∑d
i=1 dxi ∧ dyi. A basis

{v1, . . . , vd, w1, . . . , wd}
of R2d is symplectic if ω0(vi, wi) = δij , where δij is the Kronecker delta, and
ω(vi, vj) = ω(wi, wj) = 0, for all i, j = 1, . . . , d.

Lemma 3.4. Let L = diag(λ1, . . . , λd, λ
−1
1 , . . . , λ−1

d ) ∈ Sp(2d,R) with distinct ei-
genvalues. Then, for any A ∈ Sp(2d,R) close enough to L there is S ∈ Sp(2d,R)
close to the identity such that

A = S diag(λ̃1, . . . , λ̃d, λ̃
−1
1 , . . . , λ̃−1

d )S−1
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with distinct eigenvalues close to the respective eigenvalues of L.

Proof. Applying Lemma 3.3 for every i = 1, . . . , d one gets a small neighborhood of
L in which a matrix A has pairs of eigenvalues and normalized eigenvectors

(λ̃1, v1), . . . , (λ̃d, vd)

close to (λ1, e1), . . . , (λd, ed), respectively. The fact that A is symplectic implies
that the other pairs of eigenvalues/normalized eigenvectors are

(λ̃−1
1 , w1), . . . , (λ̃−1

d , wd),

again close to (λ−1
1 , ed+1), . . . , (λ−1

d , e2d), respectively. The eigenvalues can be made
distinct as long as A is sufficiently close to L. Thus, A is diagonalizable by a matrix
S. It remains to show that S is symplectic.

Notice that for any pair of eigenvectors v, v′ associated to the eigenvalues λ, λ′
we have

λλ′ω0(v, v′) = ω0(Av,Av′) = ω0(v, v′).

Hence, if λλ′ 6= 1 then ω0(v, v′) = 〈v, Jv′〉 = 0. Since all the eigenvalues are distinct,

ω0(vi, vj) = ω0(wi, wj) = 0

and ω0(vi, wj) = 0 for i 6= j. By the non-degeneracy of ω0 we conclude that
ω0(vi, wi) 6= 0 for all i = 1, . . . , d.

Since vi and wi are close to ei and ej , respectively, the scalar ω0(vi, wi) is close
to one. Dividing the eigenvectors vi by ω0(vi, wi) gives us a symplectic basis of
eigenvectors close to the canonical one. This matrix forms the columns of S−1 which
is therefore close to the identity. From S = I−S(S−1−I) we get ‖S‖ ≤ (1−‖S−1−
I‖)−1, which then implies ‖S−I‖ = ‖S(S−1−I)‖ ≤ (1−‖S−1−I‖)−1‖S−1−I‖.

The following result is the symplectic version of [6, Lemma 7.5].

Lemma 3.5. There exist ε, c > 0 such that any A ∈ Sp(2d,R) with ‖A − I‖ < ε
can be written as A = A1 . . . A4d, where Ai = PiRiP

−1
i with Ri ∈ Rot2(2d,R),

‖Ri − I‖ < c‖A− I‖1/2, Pi ∈ Sp(2d,R) and ‖P±i ‖ ≤ c.

Proof. Our goal is first to write the matrix A as a product of diagonal and diago-
nalizable matrices. Then we will show that diagonal matrices can be written as the
product of symplectic rotations in Rot2(2d,R) up to symplectic linear conjugacy.

Write A = L1B, where B = L−1
1 A and

L1 = diag(λ1, . . . , λd, λ
−1
1 , . . . , λ−1

d ) ∈ Sp(2d,R)

with distinct eigenvalues and |λi−1| ≤ ‖A−I‖. If ‖A−I‖ is sufficiently small then
by Lemma 3.4 we have B = PL2P

−1 where L2 = diag(λ̃1, . . . , λ̃d, λ̃
−1
1 , . . . , λ̃−1

d ) ∈
Sp(2d,R) and P is a symplectic matrix close to the identity. The eigenvalues verify
|λ̃i − 1| ≤ c1‖A− I‖ with a constant c1 > 0.

Any invertible diagonal matrix L = diag(η1, . . . , ηd, η
−1
1 , . . . , η−1

d ) ∈ Sp(2d,R)
can be written as the product of d diagonal symplectic matrices each being essen-
tially two-dimensional:

L =

d∏
i=1

πi(diag(λi, λ
−1
i )). (3.4)

This means that we can reduce our setting to two dimensions to deal with such
decompositions for L1 and L2 as given above (corresponding to a total of 2d diagonal
matrices).
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Consider D =
(
ηi 0

0 η−1
i

)
∈ Sp(2,R) = SL(2,R), where |ηi − 1| ≤ max{1, c1}‖A−

I‖, and Rθ ∈ SO(2,R) the rotation matrix by an angle θ ∈ [0, π2 ] with

(ηi − 1)2

η2
i + 1

< 1− cos θ ≤ |ηi − 1|. (3.5)

Writing D = RθR−θD and recalling that π(D) = πk(Rθ)πk(R−θD), it remains
to show that R−1

θ D is conjugated to a rotation. Indeed, if

| cos θ| < 2

ηi + η−1
i

,

in which our θ satisfies because of first inequality in (3.5), then the characteristic
polynomial of

R−1
θ D =

(
ηi cos θ η−1

i sin θ
−ηi sin θ η−1

i cos θ

)
,

has complex roots (cos ξ ± i sin ξ), where ξ ∈ [0, π2 ] is chosen such that

cos ξ =
ηi + η−1

i

2
cos θ.

A simple calculation shows that R−1
θ D = PiRξP

−1
i , where

Pi =
1√

(η−1
i sin θ sin ξ)

(
η−1
i sin θ 0

cos ξ − ηi cos θ sin ξ

)
The matrix Pi has determinant 1, so πk(Pi) is symplectic. Notice that (η−1

i sin θ

sin ξ)1/2, (η−1
i sin θ), sin ξ and (cos ξ − ηi cos θ) go to zero with equal rates when

0 < θ < ξ → 0.

That is, Pi is close to ( 1 0
1 1 ) so ‖P±i ‖ is bounded from above by some constant c.

The conjugating matrices Pm are of the form PiP where P is the close to identity
symplectic matrix given by Lemma (3.4), so Pm ∈ Sp(2d,R) and ‖P±m‖ ≤ c.

Notice that (ηi + η−1
i )/2 ≥ 1 for every ηi > 0, so 1− cos ξ < 1− cos θ < |ηi − 1|.

Finally, there is constant c′ such that for any k = 1, . . . , d,

‖πk(Rξ)− I‖ = 1− cos ξ +
√

1 + cos ξ
√

1− cos ξ ≤ c′|λ− 1|1/2.

4. Proof of Theorem 2.1. We want to construct a perturbation g of f around
p ∈M which realizes a matrix AπDpf close to Dpf . We choose

g = ϕ−1 ◦ h ◦ ϕ ◦ f,
where (U,ϕ) is a local chart (from the splitting theorem) at f(p) with ϕ(f(p)) = 0,
and h is a Poisson diffeomorphism of R2d+n that fixes the origin. Therefore, D0h =
C Dpg Dpf

−1 C−1 with C = Df(p)ϕ Poisson.
Let

Ãπ = C (AπDpf)Dpf
−1 C−1 = I + C (Aπ − I)C−1.

By Lemma 3.5 we write Ã = A1 . . . A4d with Ak = PkRαk
P−1
k . We want to use

Lemma 3.1 for each k by constructing Kk as in (3.3) for αk corresponding to a
rotation in the coordinates i(k) and d + i(k). This guarantees the existence of a
Poisson map hk = (Pk)π ◦ ϕ1

Kk
◦ (Pk)−1

π fixing the origin and satisfying D0hk =

(Ak)π. So, the choice h = h1 ◦ · · · ◦ h4d implies that D0h = Ãπ.
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Furthermore,

h− id =

4d∑
k=1

(hk − id) ◦ hk+1 ◦ · · · ◦ h4d,

Dh− I =

4d∑
k=1

(Dhk − I) ◦ hk+1 ◦ · · · ◦ h4d.

Notice that, by the integral formula ϕtK − id =
∫ t

0
XK ◦ ϕsK ds,

‖ϕtK − id‖C0 ≤ ‖K‖C1 .

Take T such that ‖DϕTK − I‖C0 = maxs ‖DϕsK − I‖C0 . Then, from DϕtK − I =∫ t
0
DXK ◦ ϕsK(DϕsK − I) ds+

∫ t
0
DXK ◦ ϕsK ds, one gets

‖DϕTK − I‖C0 ≤ ‖DXK‖C0‖DϕTK − I‖C0 + ‖DXK‖C0

and

‖Dϕ1
K − I‖C0 ≤ ‖K‖C2

1− ‖K‖C2

.

We obtain the following estimates from Lemmas 3.1 and 3.5,

‖h− id‖C1 ≤
4d∑
k=1

‖hk − id‖C1 ≤
4d∑
k=1

c1|αk|
1− c2|αk|

≤ c3δ1/2

as long as δ is small enough. Notice that |αk| ≤ c4‖Rαk
− I‖ for some constant

c4 > 0 whenever |αk| is close to zero.
Finally,

‖g − f‖C0 = ‖(ϕ−1 ◦ h− ϕ−1) ◦ ϕ ◦ f‖C0

≤ ‖Dϕ−1‖C0‖h− id‖C0

and
‖Dg −Df‖C0 = ‖(Dg (Df)−1 − I)Df‖C0

≤ ‖Dϕ−1‖C0‖Dϕ‖C0‖Df‖C0‖Dh− I‖C0 .

Hence,

‖g − f‖C1 = max {‖g − f‖C0 , ‖Dg −Df‖C0}
≤ max {1, ‖Dϕ‖C0‖Df‖C0} ‖Dϕ−1‖C0‖h− id‖C1 .

This is less than ε as long as δ is small enough.

5. Hamiltonian flows in Poisson manifolds. Consider R2d+2+n equipped with
the Poisson structure π0. The Hamiltonian

H0(x, y, z) = y1, x ∈ Rd+1, y ∈ Rd+1, z ∈ Rn,

corresponds to the constant vector field XH0
= (1, 0, . . . , 0) and the flow

ϕtH0
= id + tXH0 .

Therefore, it has the orbit segment Γ0 = [0, 1] × {0} corresponding to the orbit of
the origin.

Fix the transversals Σ0 = {x1 = 0, y1 = 0, z = 0} and Σ′0 = {x1 = 1, y1 = 0, z =
0} at the edges of Γ0. The Poincaré map PH0 : Σ0 → Σ′0 is PH0 = id + (1, 0, . . . , 0).
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Given r > 0 define

Vr = {(x, y, z) ∈ R2d+2+n : 0 ≤ x1 ≤ 1, |y1| < r, ‖(x̂, ŷ, z)‖ < r}.
Here and in the following we use the notations x̂ = (x2, . . . , xd+1) and ŷ = (y2, . . . ,
yd+1).

Proposition 5.1. For any ε > 0 there is δ > 0 such that

{A ∈ Sp(2d,R) : ‖A− I‖ < δ} ⊂ {DpPH ∈ Sp(2d,R) : H ∈ Bε(H0, D)},
where D = (R2d+2+n \ B%) ∪ Γ0 for any open ball B% centered at the origin with
radius % > 0.

5.1. Proof of Proposition 5.1. Given α ∈ R and 1 ≤ i ≤ d. Consider the C∞

function H̃ : R2d+2+n → R,

H̃(x, y, z) = `(2x1 − 1)`(y1)Ki(x̂, ŷ, z), (5.1)

where ` is the bump function defined at (3.2). We write the function Ki as Ki

in (3.3) rotating the coordinates i and d+ i.

Lemma 5.2. Let H = H0 + H̃. Then,
1. XH = XH0

on (R2d+2+n \ V1) ∪ Γ0,
2. if 0 < r ≤ 1/4, PH : Vr ∩ Σ0 → Σ′0 is given by PH = πi(Rα),
3. ‖H −H0‖C2 ≤ c|α| for some constant c > 0.

Proof. For (x, y) ∈ Vr with r ≤ 1/4, the Hamiltonian equations of motion (ẋ, ẏ, ż) =

XH(x, y, z) = Ĵ∇H(x, y, z) are
ẋ1 = 1

ẏ1 = −α`′(2x1 − 1)(x2
i + y2

i )(
ẋi
ẏi

)
= α `(2x1 − 1)

(
yi
−xi

)
and ẋj = ẏj = żk = 0 for j 6= i and k = 1, .., n. It is easy to check that d

dt (x
2
i +y2

i ) =
0. So, on this domain, the Hamiltonian flow (x(t), y(t)) = ϕtHi

(x, y) is

x1(t) = x1 + t

y1(t) = y1 − α [`(2x1 + 2t− 1)− `(2x1 − 1)]
(x2
i + y2

i )

2(
xi(t)
yi(t)

)
= Rθ(t,x1)

(
xi
yi

)
,

where θ(t, x1) = α
∫ t

0
`(2x1 + 2s− 1)ds, while in the remaining coordinates the flow

is constant.
For (x, y, z) ∈ Vr ∩ Σ0 we have y1 = 0, so |y1(t)| ≤ r2|α| < r if r < |α|−1

and ϕtH(Vr ∩ Σ0) ⊂ Vr, and for (0, x̂, 0, ŷ, 0) ∈ Vr ∩ Σ0 we have ϕ1
H(0, x̂, 0, ŷ, 0) =

(1, x̂α, 0, ŷα, 0), where (x̂α, ŷα) = πi(Rα)(x̂, ŷ). In particular, ϕtH(0) = (t, 0) implies
that Γ0 is an orbit segment of H with transversals Σ0 and Σ′0 at the edges. There-
fore, whenever (x, y, z) ∈ Vr ∩Σ0 we have ϕ1

H(x, y, z) ∈ Σ′0. So, PH : Vr ∩Σ0 → Σ′0
just acts on the coordinates i and d + i by rotating an angle θ(1, 0) = α i.e.
PH(x̂, ŷ) = πi(Rα)(x̂, ŷ).

Finally, we need to estimate the C2-norm of the perturbation. It is simple to
check that

‖H −H0‖C1 = max{‖H −H0‖C0 , ‖XH −XH0‖C0} ≤ r|α| ‖`‖C1 . (5.2)
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Writing ρ = ‖(x̂, ŷ, z)‖2/2 and ρi = (x2
i + y2

i )/2, the second order derivatives are
the following:

∂2H

∂x2
1

= 4α`′′(2x1 − 1)`(y1)`(ρ)ρi

∂2H

∂x1∂y1
= 2α`′(2x1 − 1)`′(y1)`(ρ)ρi

∂2H

∂x1∂w
= 2α`′(2x1 − 1)`(y1)[`′(ρ)ρi + `(ρ)]w

∂2H

∂x1∂u
= 2α`′(2x1 − 1)`(y1)`′(ρ)ρiu

∂2H

∂y2
1

= α`(2x1 − 1)`′′(y1)`(ρ)ρi

∂2H

∂y1∂w
= α`(2x1 − 1)`′(y1)[`′(ρ)ρi + `(ρ)]w

∂2H

∂y1∂u
= α`(2x1 − 1)`′(y1)`′(ρ)ρiu

and
∂2H

∂xi∂yi
= α`(2x1 − 1)`(y1)[`′′(ρ)ρi + 2`′(ρ)]xiyi

∂2H

∂w2
= α`(2x1 − 1)`(y1)[`′(ρ)ρi + `(ρ) + `′′(ρ)ρiw

2 + 2`′(ρ)w2]

∂2H

∂w∂u
= α`(2x1 − 1)`(y1)[`′(ρ)ρi + `(ρ)]wu

∂2H

∂u2
= α`(2x1 − 1)`(y1)[`(ρ) + `′(ρ)u2]ρi

∂2H

∂u∂v
= α`(2x1 − 1)`(y1)`′(ρ)ρiuv,

where w stands for xi or yi, u and v replace xj , yj or zk with j 6= i and u 6= v. So,
for some constant c > 0,

‖D2(H −H0)‖C0 ≤ c|α| ‖`‖C2 , (5.3)

in which together with (5.2) yields part (3) of the lemma.

Consider a finite set of matrices Ak = PkRkP
−1
k ∈ Sp(2d,R), k = 1, . . . , N , with

Pk ∈ Sp(2d,R), Rk = πi(k)(Rαk
), αk ∈ R and 1 ≤ i(k) ≤ d. We write H̃i(k) for the

Hamiltonian in (5.1) for a function Ki(k).

Lemma 5.3. There is 0 < r < 1 such that

H = H0 +N

N∑
k=1

H̃i(k) ◦ Φ(Pk) ◦ Tk,

where Tk(x, y) = (Nx1 − k + 1, x2, . . . , xd, y1, . . . , yd) and Φ is defined at (3.1),
verifies

1. XH = XH0 on (R2d+2+n \ V1) ∪ Γ0,
2. PH : Vr ∩ Σ0 → Σ′0, PH = AN · · ·A1,
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3. ‖H − H0‖C2 ≤ cN2 maxk=1,...,N{(max{1, ‖Pk‖2})|αk|}, for some constant
c > 0.

Proof. For each k = 1, . . . , N + 1 let

Σk =

{
(x, y, 0) ∈ R2d+2+n : x1 =

k − 1

N
, y1 = 0

}
.

If k − 1 ≤ Nx1 ≤ k with 1 ≤ k ≤ N , then H = H0 + NHi(k) ◦ Φ(Pk) ◦ Tk. So,
using Lemma 5.2 and taking r sufficiently small, the Poincaré map of H between
the transversals to Γ0 given by PH : Σk → Σk+1 is PH = Ak. Recall that for any
f ∈ C2(R2d+2+n) we have that ϕtf◦P = P−1 ◦ ϕtf ◦ P where P is a linear map.

The Poincaré map for the transversals at the edges of Γ0, PH : Σ0 → ΣN+1 = Σ′0,
is the composition of the above maps. That is, PH = AN · · ·A1 on Vr ∩ Σ0.

Finally, the norm can be estimated also by using Lemma 5.2,

‖H −H0‖C2 ≤ c ‖`‖C2N2 max
k=1,...,N

{(max{1, ‖Pk‖2})|αk|},

for some constant c > 0.

Considering Lemmas 3.5, 5.2 and 5.3, in order to complete the proof of Propo-
sition 5.1 it remains to show that H can be taken equal to H0 outside any ball of
radius % > 0. Define the %-open ball B% ⊂ R2d+2+n around the origin. Consider the
Hamiltonian H̃ = %H ◦ψ with ψ(x, y) = (%−1x, %−1y). Then XH̃ = XH ◦ψ implies
that ϕt

H̃
= ϕ

t/%
H . So, up to a time change, the dynamics are the same.

5.2. Poisson Flowbox coordinates. For a manifoldM and a submanifold N , we
will denote the annihilator of TN inside T ∗M by

TN◦ = {ξ ∈ T ∗M : ξ(v) = 0, v ∈ TN}.
Let (M,π) be a Poisson manifold. For a given H ∈ Cs(M) we define the corre-

sponding Hamiltonian vector field as

XH = {·, H} = π(·, dH).

In particular, if M = R2d+n with coordinates (y1, ..., y2d+n) and the standard Pois-
son structure

π0 =

d∑
i=1

∂

∂yi
∧ ∂

∂yd+i
,

then H0(y) = yd+1 yields XH0
= ∂

∂y1
.

The following result is the version of a straightening theorem in the Poisson
context, (cf. [1, 3] for the symplectic case).

Theorem 5.4 (Poisson flowbox coordinates). Let (M2d+n, π) be a Cs-Poisson man-
ifold, a Hamiltonian H ∈ Cs(M,R), s ≥ 2 or s =∞, and x ∈M such that the rank
of π is constant in a neighborhood of x. If XH(x) 6= 0, there exist a neighborhood
U ⊂M of x and a local Cs−1-Poisson diffeomorphism g : (U, π)→ (R2d+n, π0) such
that H = H0 ◦ g on U .

Proof. Fix e = H(x). Since XH(x) 6= 0 one can find a local coordinate chart
(U, (q1, ..., q2d+n)) centered at x, such that XH = ∂

∂q1
. In the neighborhood U we

have:
{H, q1} = π(dH, dq1) = XH(q1) =

∂q1

∂q1
= 1
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We will denote q1 by G and the neighborhood U will be allowed to remain as small
as needed. For small enough U one can define the transversal Σ at point x by

Σ = G−1(0) ∩ U

which is a Cs regular connected submanifold of dimension 2d+ n− 1. Notice that
{H,G} = 1 holds in U .

Locally there is a Cs regular (2d + n − 2)-dimensional hypersurface of H−1(e)
where H and G are both constant: Σe = Σ ∩H−1(e). Notice that for m ∈ Σe,

TmΣe = {v ∈ TM : dH(v)(m) = dG(v)(m) = 0},

since dH(XG)(m) = −dG(XH)(m) = 1, we have XG(m), XH(m) /∈ TmΣe and

TmM = TmΣe ⊕ RXH ⊕ RXG.

Also,
T ∗mM = T ∗mΣe ⊕ RdH(m)⊕ RdG(m).

Consider the pointwise linear map π] : T ∗M → TM given by

ξ(m) 7→ π(m)(ξ(m), ·).

Since the rank of π is constant in the neighborhood around x where Σe is defined,
showing that

π](TΣ◦e) ∩ TΣe = {0} (5.4)

implies that Σe is a Poisson-Dirac submanifold of M (cf. [10, §8]). Poisson-Dirac
submanifolds have a canonically induced Poisson structure. In the language of Pois-
son brackets one can compute the induced Poisson structure πe on the submanifold
Σe as follows:

πe(dF1, dF2) = {F1, F2}e := {F̂1, F̂2}|Σe
,

where F̂i ∈ C∞(M) are extensions of Fi ∈ C∞(Σe) such that dFi|π](TN◦) = 0,
i = 1, 2.

Lets check that (5.4) holds for Σe. Notice that by elementary linear algebra TΣ◦e
is two dimensional. Furthermore, H and G are constant on Σe, i.e. dH, dG ∈ TΣ◦e.
Moreover, dH and dG are independent in U so TΣ◦e = RdH ⊕RdG. The definition
of a Hamiltonian vector field gives us

π](dH) = XH and π](dG) = XG.

It is now clear that (5.4) holds.
The corollary of Weinstein’s splitting theorem for constant rank Poisson struc-

tures [14, Theorem 1.26] assures us the existence of a local diffeomorphism h : Σe →
R2d+n−2 such that

h∗πe = π′0 where π′0 =

d∑
i=2

∂

∂yi
∧ ∂

∂yd+i
. (5.5)

The next step is to extend the above Poisson coordinates from Σe to U . For this
purpose we use the parametrization by the flows φtH and φtG generated by XH and
XG, respectively.

Consider the function G ◦ φH : U × R→ R, (m, t) 7→ φtH(m). As G ◦ φ0
H(x) = 0

and
d

dt
G ◦ φtH(x)|t=0 = dG(XH)(x) = {G,H} = −1 6= 0,
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by the implicit function theorem we know that for U small enough, there exists a
unique τ ∈ Cs−1(U,R) such that G ◦ φτ(m)

H = 0, i.e. φτ(m)
H ∈ Σ for each m ∈ U .

Moreover, φtG preserves the level set of G and
d

dt
H ◦ φtG = {H,G} = 1.

Thus, H ◦ φtG(m) = H(m) + t and in particular H ◦ φe−H(m)
G (m) = e. Hence,

φ
e−H(m)
G (m) ∈ H−1(e) for each m ∈ U .
So, we define g : U → R2d+n given by

g(m) =
(
−τ(m), h1 ◦ φe−H(m)

G ◦ φτ(m)
H (m), H(m),

h2 ◦ φe−H(m)
G ◦ φτ(m)

H (m), h3 ◦ φe−H(m)
G ◦ φτ(m)

H (m)
)
,

(5.6)

where h = (h1, h2, h3) as in (5.5), hi : Σe → Rd−1, i = 1, 2, and h3 : Σ → Rn.
Clearly, H0 ◦ g = H. The proof will be complete as soon as we show that g is a
Cs−1 Poisson diffeomorphism.

It follows that g is Cs−1 with inverse g−1 : g(U)→ U ,

g−1(y) = φy1H ◦ φ
yd+1−e
G ◦ h−1(ŷ), (5.7)

where ŷ = (y2, ..., yd, yd+2, ..., y2d+n). In addition, for y ∈ g(U),

g−1
∗ XH0

(y) = φ̇y1H ◦ φ
yd+1−e
G ◦ h−1(ŷ)

= XH ◦ φy1H ◦ φ
yd+1−e
G ◦ h−1(ŷ) (5.8)

= XH ◦ g−1(y).

Equivalently, g∗XH = HH0
. Furthermore, notice that the map F 7→ XF from

Cs(M) to the set of Cs−1 vector fields Xs−1(M) is a Poisson map, i.e.

{F1, F2} 7→ X{F1,F2} = [XF1
, XF2

], F1, F2 ∈ CS(M),

cf. [14, Proposition 1.4]. In U , we have {H,G} = 1 thus [XH , HG] = X{H,G} = 0.
This means that φt1H ◦ φ

t2
G = φt2G ◦ φ

t1
H . Using this fact and

g−1
∗

∂

∂yd+1
(y) = φ̇

yd+1−e
G ◦ φy1H ◦ h

−1(ŷ)

= XG ◦ φ
yd+1−e
G ◦ φy1H ◦ h

−1(ŷ) (5.9)

= XG ◦ g−1(y),

which is a similar calculation as in (5.8), we obtain g∗(XG) = ∂
∂yd+1

.
Notice that on Σe we have

(g∗dy1)(XH) = dy1(g∗XH) = dy1(XH0
) = 1

(g∗dy1)(XG) = dy1(g∗XG) = dy1(
∂

∂yd+1
) = 0

(g∗dy1)(v) = dy1(g∗v) = dy1(h∗v) = 0, v ∈ TmΣe.

On the other hand,

− dG(m)(XH) = −{G,H}(m) = 1,

− dG(m)(XG) = −{G,G}(m) = 0,

− dG(m)(v) = 0, v ∈ TmΣe,



REALIZATION OF TANGENT PERTURBATIONS 5373

by elementary linear algebra. Then, g∗dy1(m) = −dG(m) for each m ∈ TeΣ.
Similarly, g∗dyd+1(m) = dH(m). We also have g∗dyj(m) = h∗dyj(m) ∈ T ∗mΣe for
every j /∈ {1, d+ 1}. Furthermore, taking in addition k /∈ {1, d+ 1},

(g∗π)(dyj , dyk) = (h∗)π(dyj , dyk) = π0(dyj , dyk),

(g∗π)(dy1, dyd+1) = π(g∗dy1, g
∗dyd+1) = π(−dG, dH) = −{G,H} = 1,

(g∗π)(dy1, dyj) = π(−dG, g∗(dyj)) = XG(g∗(dyj)) = 0,

(g∗π)(dyd+1, dyj) = π(dH, g∗(dyj)) = −XH(g∗(dyj)) = 0.

Therefore, g∗(π) has to be the canonical Poisson structure π0, i.e. g∗π = π0 on Σe.
The inverse of g in (5.7) shows that every point in U can be reached by the

flows φG and φH , consecutively. Fix a point m ∈ Σe and t1, t2 ∈ R such that
m′ = φt2H ◦φ

t1
G (m) ∈ U . We will restrict to a small neighborhood around m in which

φt2H ◦ φ
t1
G does not take us outside U . Now,

G(φ
τ(m)−t2
H (m′)) = G(φt1G ◦ φ

τ(m)
H (m)) = G(φτH(m)) = 0,

where we used the fact that XH and XG commute and G is constant along orbits
of XG. Thus,

τ(m′) = τ(m)− t2. (5.10)
Furthermore,

H(φt2H ◦ φ
t1
G (m)) = H(φt1G (m)) = H(m) + t1 (5.11)

using the fact that {H,G} = 1. By the definition of g, (5.10) and (5.11), we get

g(m′) = g(φt2H ◦ φ
t1
G (m)) = g(m) + (t2, 0, . . . , 0, t1, 0, . . . , 0). (5.12)

Notice that the flow of a Hamiltonian vector field, for any fixed time, is a Poisson
map, so both φt2H , φ

t1
G are Poisson maps in (M,π). In addition, translations in

(R2d+n, π0) are Poisson. Finally, (5.12) together with g∗π = π0 on Σ completes the
proof.

5.3. Proof of Theorem 2.2. By Theorem 5.4 we can locally reduce the problem
to the case of Proposition 5.1.
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