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Resumo 

 

Os rios albergam cerca de 1100 espécies de peixes migradores a nível global, que enfrentam 

barreiras ao movimento, sendo estas físicas (barragens e açudes) ou determinadas por 

condições ambientais desfavoráveis. Esta tese teve como principal objetivo avaliar o efeito de 

flutuações de caudal e temperatura, causadas pela regularização de caudais, na 

transponibilidade de barreiras e comportamento natatório de peixes migradores nativos, 

considerando ainda o impacto que as alterações climáticas poderão ter nos ecossistemas 

ribeirinhos. A tese é constituída por um capítulo introdutório (Capítulo 1) e quatro trabalhos, 

incluindo: (1) dois casos de estudo, nos quais é determinada a transponibilidade de barreiras 

para várias espécies nativas em função de diferentes regimes de caudais e variáveis ambientais 

(Capítulo 2) e em cenários climáticos distintos (Capítulo 3); e ainda (2) dois ensaios 

experimentais, em que é avaliado o comportamento natatório dos peixes em resposta a ondas 

de calor (Capítulo 4) e rápidas flutuações de caudal resultantes da produção de energia 

hidroelétrica (hydropeaking) com descidas abruptas de temperatura – cold thermopeaking 

(Capítulo 5). Os primeiros dois capítulos sugerem que a eficácia das passagens para peixes está 

fortemente dependente não apenas de um regime de caudais adequado (podendo os caudais 

ecológicos mínimos ser insuficientes em contexto de seca), mas também de condições 

ambientais favoráveis, nomeadamente a temperatura dos rios. Nos ensaios realizados, a 

atividade e ousadia de juvenis de Luciobarbus bocagei foram menores após exposição a uma 

onda de calor; já a deriva de larvas de Chondrostoma nasus aumentou com o cold 

thermopeaking. Os resultados obtidos realçam a importância de manter regimes térmicos 

adequados nos rios, passando pela proteção de habitats ripícolas que atuem como refúgios 

térmicos para as fases mais vulneráveis dos peixes migradores, e pela monitorização das 

libertações de caudal nas barragens, por forma a não afetarem significativamente a temperatura 

dos rios a jusante. 

 

Palavras-chave: peixes migradores; transponibilidade; caudais; temperatura; adequabilidade de 

habitat 
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Abstract 

 

Rivers harbour approximately 1100 migratory fish species, facing barriers to free movement, 

whether they are physical (dams and weirs) or determined by unfavourable habitat conditions. 

The main goal of this thesis was to evaluate the effect of flow and thermal changes in rivers 

caused by flow regulation, while also considering the ongoing climate change, to fish passability 

and swimming behaviour. This thesis is structured in a total of six chapters, with an introduction 

to the theme (Chapter 1) and four original works, including: (1) two case studies where fish 

passability through barriers equipped with a fishway was evaluated, in relation to different flows 

and other environmental variables (Chapter 2) and assuming different discharges under distinct 

climate change predictions (Chapter 3); and (2) two experimental studies, where swimming 

behaviour and activity were assessed in response to previous exposure to an experimental 

heatwave (Chapter 4) and rapid flow fluctuations as a consequence of hydropower generation 

(hydropeaking), coupled with abrupt thermal variations – cold thermopeaking (Chapter 5). Results 

from the first two chapters suggest that fishway efficacy is strongly dependant not just on a 

suitable flow regime (minimum ecological flows may be insufficient under drought scenarios), but 

also on other favourable habitat conditions such as water temperature, triggering upstream 

migration. In the experimental designs that were conducted, activity and boldness in juvenile 

barbel Luciobarbus bocagei were lower after exposure to a heatwave under laboratory conditions; 

for the other experimental study, the drift of nase Chondrostoma nasus larvae increased with cold 

thermopeaking. These results highlight the importance of ensuring suitable thermal regimes in 

rivers, namely by protecting sites that can act as thermal refugia for the most vulnerable life stages 

of migratory fish, and by monitoring and adjusting flow releases in dams to ensure that water 

temperature downstream does not change significantly. 

 

Keywords: migratory fish; passability; flows; temperature; habitat suitability 
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Resumo alargado 

 

Os ecossistemas de água doce albergam uma biodiversidade considerável, com cerca de 

10% das espécies de vertebrados a nível mundial, apesar de cobrirem menos de 3% da 

superfície do planeta. Dentro dos vertebrados, os peixes de água doce e migradores são o grupo 

mais representado, estimando-se um total de 17,800 espécies segundo a IUCN, 1100 das quais 

migradoras, incluindo espécies potamódromas (que migram ao longo do rio) e diádromas (que 

migram entre o rio e o meio marinho). As comunidades piscícolas reagem fortemente às 

condições do ambiente que as rodeiam, estando o sucesso destes movimentos migratórios 

fortemente dependente da existência de condições ambientais favoráveis. Esta tese teve como 

principal objetivo avaliar o efeito das flutuações de caudal e temperatura da água causadas pela 

regularização de caudais em barreiras (barragens e açudes), considerando ainda o impacto que 

as alterações climáticas poderão ter nos ecossistemas ribeirinhos e na adequabilidade de 

habitats para as espécies piscícolas nativas. 

No Capítulo 1, é apresentado o estado da arte, com uma introdução aos ecossistemas 

ribeirinhos e às espécies de peixes migradores, que dependem de regimes de caudais e regimes 

térmicos adequados à persistência destas populações, sobretudo tendo em consideração que 

estas espécies efetuam migrações e alternam entre habitats ao longo do seu ciclo de vida na 

procura de locais para refúgio, alimentação e reprodução. Foi também apresentada a 

problemática da regularização de caudais por parte de barreiras (barragens e açudes) que, em 

conjunto com as alterações climáticas, constituem obstáculos à migração dos peixes. No final do 

Capítulo 1, é apresentada a estrutura da tese, que inclui dois casos de estudo e dois estudos 

experimentais, nos quais são avaliados: a transponibilidade de obstáculos (Capítulos 2 e 3), o 

comportamento natatório (Capítulo 4) e a deriva (Capítulo 5), em função de diferentes regimes 

de caudais e variações térmicas, provocados pela regulação de caudais em barreiras e/ou 

alterações climáticas. 

No Capítulo 2, foi avaliada a eficácia de passagem de três espécies potamódromas (barbo-

comum Luciobarbus bocagei, boga-do-Norte Pseudochondrostoma duriense e truta-de-rio, 

Salmo truta fario, num ascensor para peixes na barragem do Touvedo, no rio Lima, em função 

de diferentes variáveis ambientais (incluindo variáveis de caudal e temperatura da água) e modos 

de funcionamento da respetiva central hidroelétrica (caudais turbinados e caudal ecológico). As 

monitorizações das passagens no ascensor demonstraram que a temperatura da água foi uma 

das variáveis ambientais mais fortemente associadas à utilização do ascensor por parte do barbo 

e da boga, enquanto que o caudal médio diário foi a única variável significativa no modelo de 

passagem do ascensor pela truta. A boga registou mais passagens no ascensor na ausência de 

caudais turbinados (havendo libertação de caudal ecológico), enquanto que o barbo e a truta 

registaram mais passagens com caudais turbinados, com uma turbina (potência de produção de 

energia hidroelétrica a metade) e duas turbinas (potência máxima) em funcionamento, 

respetivamente. Este trabalho permitiu comprovar a importância das variáveis ambientais 
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associadas ao caudal e temperatura dos rios na migração para montante de peixes 

potamódromos, as quais foram exploradas nos capítulos seguintes. 

No Capítulo 3, foi estimado o potencial de transponibilidade do açude do Pego (equipado 

com uma rampa para peixes), no rio Tejo, por parte de seis espécies migradoras, considerando 

os caudais médios diários entre 1991 e 2005 (período de referência), e ainda dois regimes de 

caudais assumindo dois cenários de alterações climáticas, baseados na emissão de gases de 

efeito de estufa (cenário “moderado” RCP 4.5 e “extremo” RCP 8.5). Para avaliar o potencial de 

passagem, foram construídas curvas de preferência de habitat (velocidade da água e 

profundidade), com base na avaliação de peritos, e modelada a adequabilidade de habitat com 

o modelo hidráulico River2D, para seis espécies no rio Tejo, incluindo: (1) três espécies 

anádromas (o sável Alosa alosa, a savelha Alosa fallax e a lampreia-marinha Petromyzon 

marinus); (2) duas espécies catádromas (a enguia-europeia Anguilla anguilla e a taínha Chelon 

ramada); e (3) uma espécie potamódroma (o barbo-comum Luciobarbus bocagei). O modelo 

River2D revelou que um caudal mínimo de 3 m3 s-1 é necessário para assegurar a passagem de 

todas as espécies pelo açude, sendo a passagem assegurada pela rampa para peixes. Espera-

se, de acordo com os cenários climáticos RCP 4.5 e RCP 8.5, que, na ocorrência de caudais 

baixos (Q90, situados no percentil 10), grande parte do açude, incluindo a rampa para peixes, 

não esteja submersa, impossibilitando a migração destas espécies para montante. Uma das 

soluções passaria por aumentar os caudais libertados a montante do açude, pela barragem de 

Belver. No entanto, considerando que o açude já não se encontra a servir o seu propósito inicial 

(por encerramento e reconversão prevista da Central Termoelétrica do Pego, que utilizava o 

açude para captação de água para arrefecimento das turbinas), uma solução mais viável 

passaria pela respetiva remoção. 

No Capítulo 4, foram realizados ensaios experimentais para averiguar o efeito das ondas de 

calor no comportamento natatório de juvenis de barbo-comum. Uma onda de calor pode ser 

definida, segundo a World Meteorological Organization, como um aumento de 5ºC na 

temperatura do ar durante um período de seis ou mais dias consecutivos, sendo que se prevê 

que estes fenómenos se venham a tornar cada vez mais frequentes (e com maior magnitude) 

com as alterações climáticas. Considerando a forte correlação entre a temperatura do ar e da 

água dos rios, foi simulada uma onda de calor em ambiente laboratorial, com peixes colocados 

em tanques com água a 30ºC, 5ºC acima da temperatura da água nos grupos de controlo (25ºC). 

Após o período de exposição, os peixes foram transferidos para os mesocosmos do campus do 

Instituto Superior de Agronomia, e o seu comportamento natatório foi avaliado em ensaios de 

uma hora à temperatura dos grupos de controlo. Verificou-se que os peixes previamente 

expostos à onda de calor apresentaram menores índices de atividade e ousadia, realizando 

menos tentativas para transpor um obstáculo presente nos canais dos mesocosmos, em 

comparação com os grupos de controlo. Uma vez que os peixes de água doce e migradores 

nativos poderão estar expostos a condições semelhantes durante o período estival, em 

pequenas massas de água desconectadas entre si (pegos), com tendência a atingir temperaturas 

mais elevadas do que os rios em situação de conectividade fluvial, torna-se importante proteger 
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e restaurar a vegetação ribeirinha autóctone, que promova ensombramento e refúgio térmico 

para estas espécies. 

Finalmente, no Capítulo 5, foi avaliado o impacto do hydropeaking (rápidas flutuações de 

caudal a jusante da libertação de caudais turbinados) e das rápidas descidas de temperatura 

(5,5ºC) associadas (cold thermopeaking) na deriva de larvas do cipriniforme Chondrostoma 

nasus. Para o efeito, foram realizados ensaios numa estação experimental ao ar livre localizada 

em Lunz am See, na Baixa Áustria, equipada com dois canais de 40 metros de comprimento que 

mimetizam troços de rio. Verificou-se que o número de larvas que sofreram deriva foi superior 

no tratamento de cold thermopeaking, em comparação com o controlo (hydropeaking). Este 

aumento na deriva das larvas esteve também associado à magnitude da descida da temperatura 

quando a libertação de caudal era mais elevada (quanto mais fria a água, maior a deriva), 

sugerindo que as larvas de cipriniformes poderão reagir mais fortemente a rápidas alterações de 

temperatura do que a variações de caudal. Deste modo, é necessário assegurar um regime 

térmico adequado a jusante das centrais hidroelétricas, por forma a precaver a deriva de fases 

larvares e salvaguardando a migração para montante destas espécies. 

No Capítulo 6, é apresentada uma discussão geral dos resultados e são enunciadas as 

principais conclusões desta tese, que procurou combinar casos de estudo, à escala do 

mesohabitat (com um foco na transponibilidade de barreiras e adequabilidade de habitat em 

troços com barreiras) com ensaios experimentais (avaliando o impacto das ondas de calor e cold 

thermopeaking no comportamento natatório e deriva dos peixes). Ao nível da transponibilidade 

de barreiras, a implementação de um regime de caudais ecológicos (já prevista e iniciada, no 

âmbito da Diretiva Quadro de Água) em rios regulados permitiria não só assegurar um caudal 

mínimo a jusante das barragens, aumentando a área submersa junto dos obstáculos, mas 

também facilitar a passagem de espécies e fases de desenvolvimento com menor capacidade 

natatória, nomeadamente larvas e juvenis. Não obstante, o potencial de passagem está 

dependente não apenas da existência de caudais mínimos (que, em contexto de seca, poderão 

ser insuficientes), mas também de outras condições ambientais favoráveis à migração dos 

peixes, nomeadamente variáveis associadas à temperatura da água nos rios. Os resultados 

obtidos nos ensaios experimentais em resposta a ondas de calor e cold thermopeaking, em que 

o comportamento natatório e a deriva de juvenis e larvas, respetivamente, foram afetados por 

alterações na temperatura da água, realçam a necessidade de manter regimes térmicos 

adequados nos rios. Reforça-se, por isso, a importância de proteger, num futuro próximo, habitats 

ripícolas que atuem como refúgios para as fases mais vulneráveis dos peixes migradores, 

nomeadamente através da criação de zonas de abrigo junto a barreiras para evitarem caudais 

elevados, e ainda de refúgios térmicos durante o período estival, evitando o stress térmico 

causado por fenómenos meteorológicos extremos como as ondas de calor. 
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CHAPTER 1: Introduction – the rivers of today and tomorrow 
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1.1. River flow and fish migration 

Rivers have long been recognized as being amongst the most valuable ecosystems 

worldwide, sustaining biodiversity and providing a wide range of ecosystem services to human 

populations (Lynch et al. 2016; Thieme et al. 2021). Together with lakes and reservoirs, rivers are 

estimated to cover only 2.3% of global land surface area (excluding ice sheets), yet they host 

almost 10% of the described animal species, including one third of vertebrates (Reid et al. 2019). 

Among vertebrates, fish are estimated to be the most representative group, with around 17,800 

species described so far and a high proportion of threatened species (Collen et al. 2014; IUCN 

2021; Kottelat and Freyhof 2007). 

Of the total freshwater fish species that can be found in rivers, 1,100 migrate in some way to 

complete their life cycles (WFMF 2022). Migration can be defined as a synchronized movement 

of a substantial proportion of a population between distinct habitats, with a repetitive pattern 

through time and within or across generations (McIntyre et al. 2015). Whether they migrate only 

in fresh waters (potamodromous) or between the river and sea (diadromous), migratory fish are 

dependent on suitable environmental conditions to shift between habitats in search for shelter, 

feeding and breeding sites, or even, at a larger scale, to complete migratory routes (Baras and 

Lucas 2001; Benitez et al. 2016). 

Even considering the tremendous diversity of environmental variables that may determine 

habitat suitability, river flow is consistently regarded as one of the main drivers determining fish 

habitat and movement patterns throughout its life cycle (Poff et al. 1997; Palmer and Ruhi 2019). 

Fish communities evolve and adapt in direct response to natural changes in river flow, dealing 

with intra-annual variations and relying on flow variations for migration and spawning. The natural 

flow regime, a concept first introduced in the late 90s by Poff et al. (1997), is composed of five 

key flow components which interact among them and maintain river ecosystem integrity: 

magnitude, frequency, duration, timing, and rate of change. The natural flow regime is 

characterized by strong seasonal patterns, such as the occurrence of high and low flows, which 

are crucial for most migratory fish, as they synchronize seasonal movements according to these 

variations in the flow regime (Mittal et al. 2015; Poff et al. 1997). 

Particularly in the Mediterranean region, river flow conditions are usually distinct between 

the two periods that characterize these regions: the wet season (usually from October to 

February) and the dry season (from March to September). This seasonal phenomenon is 

especially pronounced in intermittent rivers, where longitudinal connectivity is partially or totally 

interrupted during the dry season (Cid et al. 2017). Low flows are expected to occur mostly during 

the dry season, reducing habitat availability (and suitability) for fish species. Instead of freely 

moving across the river, fish get confined in summer pools acting as refugia during this period of 

flow intermittency, until river connectivity is re-established at the end of the dry season (Cid et al. 

2017; Pires et al. 2014). Hence, river flow or, more precisely, the components of the natural flow 

regime (including flow intermittence, low flows, and high flows) play a crucial role in keeping 

ecosystem integrity for freshwater and migratory fish populations (Poff et al. 1997). 
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1.2. Emerging threats in changing rivers 

Despite their recognized value, rivers are also amongst the most endangered ecosystems in 

the planet (Dudgeon et al. 2006; Vörösmarty et al. 2010; Reid et al. 2019). In Europe, about 60% 

of inland waters are below Good Status, the goal required by the Water Framework Directive, 

with negative impacts to freshwater biodiversity (Araújo et al. 2022). While water pollution has 

traditionally been identified as a major cause for habitat degradation, flow modification through 

dams, but also through smaller barriers such as weirs, has assumed a central role as one of the 

main stressors leading to habitat loss in rivers in the last decades (Dudgeon et al. 2006; 

Vörösmarty et al. 2010; Reid et al. 2019). In a recent assessment by Belletti et al. (2022), it is 

shown that more than one million barriers fragment European rivers. This interruption of the free 

flow of rivers also represents a partial or total loss of longitudinal connectivity, if the ability of fish 

and other aquatic organisms to overcome these obstacles is compromised (Fullerton et al. 2010; 

Branco et al. 2012). 

Flow regulation can occur by the presence of the physical barrier itself, but also as a 

consequence of hydropower (Nilsson et al. 2005). In a world of growing energy demand and 

search for renewable energy sources, hydropower assumes a key role in energy production, 

representing over 70% of the renewable energy supply as of 2016 (Moran et al. 2018). A recent 

report by Schwarz (2019) reveals that the number of installed hydropower plants in Europe 

surpasses 20,000 (21,665), with 8,507 more being planned and 278 currently under construction. 

This development in hydropower energy can be partially explained by the recently launched 

European Green Deal, which reinforces the need to increase renewable energy sources (EC 

2019), despite the numerous studies that have documented the adverse impacts of hydropower 

production in the ecological condition of rivers, especially in fish populations (Young et al. 2011). 

Specifically, in Portugal, hydropower generates between 40 and 50% of the total electricity 

consumed (Ferreira and Feio 2019). With a relevant contribution for energy production and 

consumption, flow regulation by large hydropower plants (LHP) is also included as one of the 

main negative consequences of dam activity (Mittal et al. 2015). 

Despite recent attempts to regulate the settlement of new dams, thousands of barriers, 

mostly for hydropower generation, are already planned or under construction worldwide (Figure 

1), often lacking consideration for the ecological consequences in rivers and freshwater 

organisms (Zarfl et al. 2015; Winemiller et al. 2016). To mitigate such impacts, the construction 

and improvement of fishways – defined as hydraulic structural solutions to allow fish movements 

past the barriers, while partially restoring river connectivity (FAO 2002) – has been globally carried 

out, with a multitude of fishway types and designs considered for different contexts. 

One of the most reported effects of dam-induced flow modification is hydropeaking, a 

process where short-term releases of high quantities of water due to hydropower production leads 

to a rapid increase of the water level and flow velocity downstream dams (Boavida et al. 2015, 

Schmutz et al. 2015). By affecting flow conditions downstream, hydropeaking is regarded as a 

major threat to aquatic organisms (Hayes et al. 2019). Particularly for younger life stages such as 

larvae and juvenile, which generally present lower swimming performances (Lechner et al. 2016), 
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the rapid change of flow conditions downstream dams may substantially reduce habitat suitability, 

which may unable fish to overcome large barriers, even if a suitable fishway is incorporated. If 

fish cannot overcome the flow velocities caused by hydropeaking, they may drift downstream, as 

shown in a study with juvenile salmonid Thymallus thymallus by Auer et al. (2017). Whether it 

affects young stages or adult individuals, hydropeaking alters natural flow fluctuations in the flow 

regime of rivers (Schmutz et al. 2015). While fish are well adapted to the seasonal fluctuations of 

a natural flow regime, they may be unable to cope with artificial fluctuations caused by 

hydropeaking and flow regulation in general (Boavida et al. 2015). This can lead to a decrease or 

even failure in annual recruitment, affecting migration in the long-term and ultimately compromise 

population persistence in rivers (Oliveira et al. 2017). 

 

Figure 1. Global spatial distribution of future hydropower dams, either planned or under construction (note: 
n.d.a. stands for “no data available”). Retrieved from Zarfl et al. (2015). 

 

Apart from rapid flow changes downstream hydropower plants, hydropeaking may also 

induce rapid short-term fluctuations in water temperature, if the water released from the dam is 

at a different temperature than the one in the downstream reach (Zolezzi et al. 2010). This 

phenomenon can be caused due to water stratification in reservoirs, following a seasonal pattern 

(Hayes et al. 2022). When releases from deeper water layers in stratified reservoirs occur 

(hypolimnetic discharges), it may lead to a temperature drop in the receiving river and 

consequently to cold thermopeaking. Contrastingly, epilimnetic discharges with generally warmer 

surface water can induce warm thermopeaking (Toffolon et al. 2010). 

In contrast with high discharges resulting from hydropeaking, the release of low flows 

downstream reservoirs is also an issue for migratory fish, as the wetted area downstream of these 

barriers may be substantially reduced. Under low flow conditions, fish may be unable to overcome 

not only dams, but also smaller barriers such as weirs which are, in general, far more numerous 
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than dams and may pose significant threats to successful fish migration (García-Vega et al. 2018). 

Indeed, the permeability of a weir to fish passage (i.e., passability) is not only dependent on its 

structural properties (such as length, slope, and substrate), but also on the hydraulic conditions 

(e.g., flow regime). Depending on flow conditions within a given time and area, fish may only 

surpass these obstacles provided that key hydraulic variables, such as flow velocity and 

water depth (that structure habitat suitability) are adequate, providing “flow windows” for fish 

passage (Shaw et al. 2016; Santos et al. 2018). 

Particularly in Mediterranean climate-regions such as the Iberian Peninsula, low flow 

conditions and river intermittency are expected to be exacerbated with climate change (Figure 

2), as current predictions for this region indicate a decrease in precipitation in the following 

decades, coupled with an increase in mean annual temperature and evapotranspiration (Satoh 

et al. 2022). Under these circumstances, river discharge is expected to decrease, increasing both 

drought frequency and duration and potentiating longitudinal fragmentation (van Vliet et al. 2013a; 

Sellami et al. 2016; Lennox et al. 2019), reducing the suitable habitat for fish to overcome barriers 

(Mameri et al. 2021). 

 

Figure 2. Projected spatiotemporal changes, during low flow season, in the frequency of drought days (FDD) 
under climate change. The colors indicate the direction and magnitude of the change of the climatological 
percent changes derived for the FDDs in the mid-21st century (2036–2065) under the high greenhouse gas 
emission scenario RCP 8.5, compared to the historical period (1971–2005). This figure was adapted from 
an original figure by Satoh et al. (2022). 

 

Hence, in Mediterranean rivers, the available habitat for riverine fish can be drastically 

reduced, being limited to isolated (disconnected) pools, generally with poor habitat quality (Cid et 

al. 2017). Understanding fish responses to increasingly drought-stricken rivers is thus of most 

importance to plan effective conservation and management strategies for freshwater and 

migratory fish (Lennox et al. 2019). In addition to increased flow intermittency and mean 

temperature increases, extreme weather events such as heatwaves are also expected to become 

more frequent (IPCC 2022). Although multiple definitions of this phenomena exist, a heatwave 

can be defined as an increase of at least 5ºC in air temperature for more than five consecutive 

days, in a specified reference period (WMO 2001). As water temperature is strongly correlated 

with air temperature (Caissie 2006), heatwaves can disrupt the thermal regime of rivers (Olden 



 
6 

 

and Naiman 2010) and potentially lead to thermal stress in aquatic organisms (van Vliet et al. 

2013b; Pansch et al. 2018). According to the Global Drought Observatory (GDO) of the European 

Commission’s Joint Research Centre, in 2022, many regions in Europe have been facing a severe 

drought since the beginning of the year, with a worrisome combination of persistent lack of 

precipitation widely affecting river discharges, plus a sequence of heatwaves, since May 2022 

(Toreti et al. 2022). Warmer and drier conditions than usual are expected in the Mediterranean 

region, and particularly in the Iberian Peninsula until November 2022 (Toreti et al. 2022). 

Given the importance of natural flow and thermal regimes in assuring suitable habitat 

conditions, when its components are modified through human action, it can have negative effects 

on fish populations. Hence, the modification of flow and thermal regimes by anthropogenic 

activities, namely through flow fragmentation and climate change, may have a considerable 

impact on the suitable habitat for the different fish species, disrupting seasonal movements and 

threatening critical life stages such as larvae and juveniles, but also breeding adults. The 

development of suitable strategies to mitigate the impact of these stressors should consider not 

only seasonal variations in flow and the management of flow conditions downstream barriers, but 

also predicted reductions in river discharge and changes in thermal conditions in the following 

decades, following climate change predictions and its impacts on future flow conditions. 

1.3. Thesis objectives and structure 

River fragmentation, whether it is directly caused by the presence of dams and weirs, or by the 

flow regulation occurring in these barriers, is expected to increase with climate change, making it 

essential to assess how flow and thermal conditions near these obstacles can change with climate 

and alter fish movement and migration within rivers. Hence, the development of successful 

strategies for the management of migratory fish in rivers would benefit from the assessment of 

how current stressors, with an impact on key environmental variables such as river flow and water 

temperature, may affect fish movement at different scales, going from mesohabitat (habitat 

suitability) to individual assessments (fish behaviour). Furthermore, it should consider how these 

stressors may interact and change over time and their impact on migratory fish species. 

This thesis aims to assess how fish movement can be affected by flow fragmentation and 

climate change, based on current and future scenarios of modified flow and thermal regimes, in 

the face of flow regulation (hydropeaking and thermopeaking) and climate change-driven events 

(heatwaves and water scarcity). Outcomes from this PhD are expected to provide 

recommendations for the management of fish populations considering the flow and temperature 

fluctuations occurring in disturbed rivers. This thesis comprises six chapters, organized with the 

aim of responding to the thesis’ specific goals. Chapter 1 provides the essential background for 

understanding the aims of the thesis and the link between the four studies included in this PhD. 

Chapters 2 to 5 concern the research carried out to support the discussion and conclusions of 

this thesis, including two case studies at the mesohabitat scale (Chapters 2 and 3) and two 

experimental designs where fish swimming behaviour was assessed in response to thermal 

changes (Chapters 4 and 5).  
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Specifically, the goals of this thesis are: 

(1) to understand the role of current environmental conditions in determining fish passage 

through barriers, in particular large hydropeaking plants (Chapter 2); 

(2) to predict changes in fish passability through a small barrier, based on key environmental 

drivers, under future climate change scenarios (Chapter 3); 

(3) to assess how fish swimming behaviour may be affected by changes in water temperature 

during a heatwave (Chapter 4); 

(4) to evaluate the impact of rapid thermal fluctuations caused by hydropeaking 

(thermopeaking) in fish movement near barriers (Chapter 5). 

 

Each of these chapters corresponds to a published paper in an ISI Web of Science (WoS) 

journal, being identical to the published version, with the addition of an abstract in Portuguese, as 

mentioned in the regulations of Instituto Superior de Agronomia. Finally, Chapter 6 presents a 

general discussion of the results and the conclusions of this thesis. This final chapter also includes 

considerations to the current mitigation measures being applied and recommendations for the 

management of fish populations in rivers in the face of climate change. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: some freshwater fish genus previously belonging to the Cyprinidae family, namely Chondrostoma and 

Pseudochondrostoma, were reclassified to the Leuciscidae family, following a recent phylognenetic revision 

by Schönhuth et al. (2018). This reclassification was later recognized in the Portuguese Freshwater and 

Migratory Fish Guide in 2021 (Collares-Pereira et al. 2021), by the time Chapter 2 (dealing with a former 

cyprinid species, Pseudochondrostoma duriense) was already published. In Chapter 5, the term cypriniform 

(concerning the order Cipriniformes) was used to designate the nase Chondrostoma nasus. 
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Resumo 

As grandes barragens, nomeadamente as que se destinam à produção de energia hidroelétrica, 

atuam como barreiras ao movimento dos peixes, nomeadamente de espécies potamódromas, 

que migram ao longo do rio. As passagens para peixes constituem soluções estruturais que, 

quando bem planeadas, permitem restaurar parcialmente a conectividade longitudinal e mitigar 

este impacto, sendo que os ascensores para peixes são considerados os mais adequados para 

grandes barragens em que a altura a vencer é considerável, e nas quais o nível da água a 

montante e jusante da barragem pode diferir bastante em função dos caudais libertados. Este 

estudo teve como principal objetivo avaliar a eficácia de um ascensor para peixes incorporado 

na barragem do Touvedo, no rio Lima, à passagem para montante de três espécies 

potamódromas nativas: o barbo-comum (Luciobarbus bocagei), a boga-do-Norte 

(Pseudochondrostoma duriense) e a truta-de-rio (Salmo truta fario). Através de registos de 

passagem destas espécies com recurso a vídeo-monitorização do ascensor, complementados 

com amostragens por pesca elétrica a jusante da barragem, verificou-se que quase 80% das 

passagens ocorreram entre o período de verão e início de outono. A temperatura da água 

(medida a cada hora) esteve fortemente associada à utilização do ascensor por parte do barbo 

e da boga, enquanto que para a truta, o caudal médio diário foi a variável mais significativa para 

a passagem desta espécie. A utilização do ascensor também variou consoante o modo de 

operação da central hidroelétrica: a boga passou com mais frequência (67,8%) na ausência de 

caudal turbinado (quando apenas o caudal ecológico estava a ser libertado); o barbo (44,8%) foi 

mais observado no dispositivo com a barragem a turbinar a metade (50 m3 s-1); já a truta, utilizou 

mais a passagem (44,2%) durante os caudais turbinados à potência máxima (100 m3 s-1). Este 

estudo permitiu a avaliação da eficácia do ascensor para peixes do Touvedo, realçando a 

diferente resposta das espécies aos caudais turbinados e a necessidade de considerar os 

requisitos específicos de cada espécie no estabelecimento de um regime de caudais adequado, 

em termos de atratividade da passagem. Os resultados deste trabalho foram discutidos com vista 

à adoção de estratégias de gestão destas espécies e de estudos futuros. 

Palavras-chave: peixes potamódromos, migração, ascensor, energia hidroelétrica, gestão de 

espécies 
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2.1. Abstract 

River fragmentation by large hydropower plants (LHP) has been recognized as a major threat for 

potamodromous fish. Fishways have thus been built to partially restore connectivity, with fish lifts 

representing the most cost-effective type at high head obstacles. This study assessed the 

effectiveness with which a fish lift in a LHP on the River Lima (Touvedo, Portugal), allows 

potamodromous fish – Iberian barbel (Luciobarbus bocagei), Northern straight-mouth nase 

(Pseudochondrostoma duriense) and brown trout (Salmo trutta fario) – to migrate upstream. Most 

fish (79.5%) used the lift between summer and early-fall. Water temperature was the most 

significant predictor of both cyprinids’ movements, whereas mean daily flow was more important 

for trout. Movements differed according to peak-flow magnitude: nase (67.8%) made broader use 

of the lift in the absence of turbined flow, whereas a relevant proportion of barbel (44.8%) and 

trout (44.2%) passed when the powerhouse was operating at half (50 m3s−1) and full-load (100 

m3s−1), respectively. Size-selectivity found for barbel and trout could reflect electrofishing bias 

towards smaller sizes. The comparison of daily abundance patterns in the river with fish lift 

records allowed the assessment of the lift’s efficacy, although biological requirements of target 

species must be considered. Results are discussed in the context of management strategies, with 

recommendations for future studies. 

 

Keywords: potamodromous fish; migration; lift; hydropower; species management 

 

2.2. Introduction 

Rivers are currently one of the most threatened ecosystems in the world [1,2], with flow 

regulation and longitudinal fragmentation by dams and weirs being among the main causes of 

environmental degradation and reduction of available habitat for freshwater fauna [3–5]. Large 

hydropower plants (LHP) are particularly harmful for fish populations, not only by causing the 

blockage to their movements, but also by increasing the risk of fish stranding, drifting and 

dewatering of spawning grounds caused by flow variations, as results of peak-operations in 

response to energy demands [6–9]. In fact, a myriad of studies have reported significant declines 

or extinctions of many fish affected by LHP [10–13]. Particularly impacted are potamodromous 

species, i.e., freshwater species that seasonally undergo upstream migrations along the river, for 

the purpose of finding suitable habitats for reproduction, which are needed to complete their life-

cycles [14–16]. A significant amount of research has therefore been carried out with the goal of 

restoring longitudinal connectivity in an upstream direction [15,17]. In this context, the 

development of fishways to transpose barriers stood up as a hydraulic structural solution which 

facilitates fish movements past the barriers, while partially restoring river connectivity [18–20]. 
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From the different fishway types that have been constructed worldwide to address upstream 

migration of fish [18,21], fish lifts are the most used and cost-effective at high dams (>15 m; [22]), 

from the economic and biologic point of view [23,24]. A fish lift consists of a mechanical system 

which is located at the foot of an obstruction, which attracts (by a guiding flow) the fish into a cage 

with an inscale (non-return device), raising it and then emptying it in the reservoir upstream, 

transporting fish over the barrier (for schemes see [18,25]). Although much less studies on fish 

lifts are available when compared to other fishways, such as pool-type or nature-like facilities 

[17,26], these structures have nonetheless been monitored in different regions and targeted 

different fish species [27]. In Europe, fish lift studies have mostly addressed salmonids [23,24,28] 

and eels [29], but also cyprinids [30,31]. However, most assessments were performed without 

considering the abundance and size-structure of fish species downstream the dam (often costly 

due to the human resources and equipment involved) that potentially constitute the migrant 

population to use the fish lift (but see Discussion below). Such information, in addition to seasonal 

and daily patterns of fish migration and associated environmental triggers [32], is fundamental to 

address fish lift selectivity and efficacy, and may be useful to support management decisions. 

Studies of the effectiveness of fishways on LHP often focus on high-value economic and 

recreational species, namely diadromous and salmonids [33,34], whereas studies on 

potamodromous fish have often been neglected [17,26]. These species, however, are well 

represented in riverine fish assemblages, particularly in Iberia [9,35,36] and free instream 

movement is crucial for their survival [37]. Moreover, this is particularly important as 

potamodromous fish are key components of the lower and middle reaches of temperate rivers 

[38] and sensitive to river regulation and longitudinal fragmentation [16]. 

Within the fish community present in the study area, the cyprinids Iberian barbel 

Luciobarbus bocagei (Steindachner, 1864) (hereafter barbel) and Northern straight-mouth nase 

Pseudochondrostoma duriense (Coelho, 1985) (hereafter nase), and the salmonid brown trout 

Salmo trutta fario (Linnaeus, 1758) (hereafter trout) are amongst the most abundant species in 

northern Iberian rivers [39] and were therefore the focus of this study. 

The main goal of this study was therefore to assess the effectiveness with which a fish lift 

in a large hydropower plant on the River Lima (Portugal), allows potamodromous fish to migrate 

upstream. For this, we assessed the seasonal and daily use of the lift by the fish population and 

compared it with (1) the environmental factors that are known to be associated with the triggering 

of the fish upstream migration; (2) the peak-flow magnitudes at the power plant (0, 50 and 100 

m3s−1, see Study Area); and (3) the size structure (to infer selectivity) and abundance (to calculate 

a ratio of effectiveness) of the fish population downstream. 

We predict that (i) fish counts through the lift would vary between the different months for 

all three species following patterns outlined in the literature, i.e., cyprinid species movements 

should mainly occur during the reproductive season, i.e., summer [40,41], and further extending 

to early fall when species start to search for winter, feeding or thermal refuges [15,42] (with regard 

to the trout, movements are predicted as well to occur in the reproductive season, in this case, 

between late fall and early-winter [43]); (ii) daily activity of the studied species would not show 
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marked diurnal/nocturnal preferences due to the absence of natural predators in the River Lima 

[16,44], which should not restrict movements to take place preferentially during the night, when 

survival is expected to be maximum [26]; (iii) water temperature and flow, two of the most 

important environmental factors responsible for triggering migration [35,45], would be the most 

significant ones for the target species; (iv) large-sized and faster-flowing species would be better 

able to cope with higher peak-flow magnitudes (50 and 100 m3s−1) than smaller ones, and hence 

expected to use the lift during such conditions; and (v) selectivity should be low, although the 

presence of larger individuals in the lift when compared to the downstream river segment, would 

be expected to occur as a result of upstream migration of adults to spawning sites [41]. 

2.3. Material and Methods 

2.3.1. Study Area 

The River Lima runs for 135 km in the north-west part of Iberian Peninsula, being shared by 

Spain and Portugal (Figure 3). It runs on a NE-SW direction and is characterized by a relatively 

high run-off, as a result of a mean annual rainfall of about 2000 mm. Geology is mainly granitic 

and the topography consists of a series of steep and narrow valleys in the upper reaches, 

contrasting with the lower reaches, with milder gradients and wider valleys dominated by alluvial 

materials. 

 

Figure 3. Map of the study area in the River Lima, North Portugal. The black pentagons refer to the dam 
locations. 
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The Touvedo LHP stands at 47 km from the river mouth and is the first large instream barrier 

to upstream fish migration. It is 42 m high and it serves as a tailwater reservoir for the high flows 

released by the Alto Lindoso Dam, located 16.5 km upstream (250 m3s−1 at full operation), by 

temporarily storing them, and then returning them to the river, with values not higher than 100 

m3s−1. The dam is equipped with a 22-MW Kaplan turbine and three spillway gates, with a 

maximum discharge of 3200 m3s−1 when the reservoir reaches the run-off storage limit. Mean 

number of spillway discharge events is 32/year, which mainly occur (c. 80%) from mid-autumn to 

early spring [44]. The Touvedo LHP works under three peak-flow magnitudes: (i) 0 m3s−1, turbine 

shutdown (i.e., powerhouse off), which is compensated by a 5.5 m3s−1 constant ecological flow (a 

minimum of 4.0 m3s−1 + 1.5 m3s−1 from the fish lift) to ensure the connectivity of the different 

habitats and movements of species downstream; (ii) 50 m3s−1, half-load operation; and (iii) 100 

m3s−1, full-load operation.  

A network of spawning, feeding and refuge habitats is available for fish upstream the 

Touvedo dam. These are mainly located in the Rivers Adrão, Froufe and Saramadigo, which have 

no man-made obstacles (i.e., all free-flowing) and also no sources of pollution across their 

watersheds [9]. 

The dam features a fish lift (2.1 m long, 1.3 m wide and 2.9 m high) which is located on the 

left bank. It has 3 entrances (two placed above the turbine gates and another one displaced 20 

m downstream, to take advantage of the turbined flow) and was initially designed to improve 

diadromous species movements, such as Atlantic salmon Salmo salar and sea trout Salmo trutta 

trutta. A maximum attraction flow of 4.5 m3s−1 is released to promote attraction towards the 

entrances, which have a mean water velocity varying between 0.21 and 0.55 m s−1 (turbine 

shutdown, powerhouse off) and between 0.68 and 0.91 m s−1 (turbine operating, powerhouse on), 

as previously measured with a SonTek FlowTracker Handheld ADV (model number P4267, 

Qualitas Instruments Ltd., Madrid, Spain, 2012) at nine points across their width [44]. Inside the 

attraction circuit, the fish move towards the trapping cage, which is set to raise and empty every 

4-h. 

 

2.3.2. Fish Passage through the Lift 

To account for seasonal variations in migration patterns, monitoring of fish passage through the 

lift was made on a monthly basis, from March 2013 until February 2014. Continuous data was 

acquired through an automatic video-recording system, which included a video camera (Bosch, 

mod. MR700, Gerlingen, Germany) placed on the top of the fish lift (allowing the collection of 

trapping cage images during the final period of the cage ascent) and a video recorder (Bosch, 

mod. LTC455). Target species (barbel, nase and trout) were the most frequent and abundant 

potamodromous fish species previously recorded in the catchment [30,44]. Following this 

approach, no fish handling was required, as opposed to other monitoring techniques (e.g., mark-

recapture or radio telemetry), thus avoiding causing injury or stress to the fish. The camera was 

installed on the upper part of the fish lift in order to acquire images of the lift cage during its final 

period of ascension. The trapping cage was sealed with 20 × 20 cm white quadrats to obtain 
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clearer images for identification and estimates of fish lengths [29]. Collected data included: the 

timing of fish passage (day and hour), the number of fish per cycle, the identification of each fish 

to the species level and the estimated total length of individuals (TL, to the nearest cm). For further 

details on the video-recording system, see [29]. 

To determine the role of environmental variables on fish movements, six potential predictors 

were recorded: (1) water temperature, recorded on an hourly basis by a Vemco Minilog-II probe 

placed in the downstream river segment; (2) mean daily flow, defined as the amount of flow 

through the turbine, spillway or ecological flow provided by the dam reports on an hourly basis; 

(3) daily flow fluctuation, i.e., the standard deviation of hourly flow – turbined, spillway or 

ecological – provided by the dam reports; (4) mean daily rainfall, provided by a nearby weather 

station (code 03F/01G, managed by the Portuguese Institute for Sea and Atmosphere, I.P.), 

located 17 km downstream from the Touvedo dam; (5) accumulated rainfall, obtained by 

combination of the mean daily rainfall that occurred on the three preceding days (as we predicted 

that fish would move upstream a few days earlier in response to accumulated rainfall; (6) 

photoperiod, as the time of civil twilight, i.e., the length (in hours) of the daytime period, obtained 

at http://zenite.nu/ (accessed June 2018); and (7) the proportion of illumination of the moon, based 

on the ephemeris available at http://www.rodur.ago.net/en/ (accessed June 2018), obtained by 

dividing the lunar cycle into four phases. 

 

2.3.3. Fish Catches Downstream 

To obtain a measure of fish lift efficacy, surveys (n = 9) were performed once every month 

(unable to sample on March 2013 and January-February 2014, due to adverse weather 

conditions) in a river segment (total length: 340 m) located immediately downstream the dam, by 

using a combined wadable and boat electrofishing scheme (DC, 300–700 V, SAREL model 

WFC7-HV, Electracatch International, Wolverhampton, UK) to obtain the most reliable picture of 

fish abundance (unit effort = 1 fishing day – 4h of effective sampling – along with ratios of fish-lift 

records to downstream catches; for further details on the sampling procedure, see [29]). Fish 

were then identified and measured for TL (nearest cm); native specimens were then returned to 

the river alive, whereas non-natives were sacrificed in accordance with Portuguese legislation. 

Fish surveys were not performed in March 2013 and January–February 2014 due to adverse 

weather conditions (high flow events) that prevented secure access to the river. 

 

2.3.4. Data Analyses 

Monthly fish counts recorded in the lift were initially plotted on a line chart to examine 

seasonal activity and search for migration periods. Next, to search for eventual daily patterns of 

passage through the lift, two periods were considered: 06:00–18:00 h (day) and 18:00–06:00 h 

(night) [41]. For both data, the chi-square test of goodness of fit was conducted to account for 

differences in the relative abundance of fish passing through the lift in each month and between 

day and night periods, respectively. 

http://zenite.nu/
http://www.rodur.ago.net/en/
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The relative influence of environmental variables on the fish counts in the lift was also 

evaluated through generalized linear models (GLM) following a Poisson distribution. For this 

purpose, a forward stepwise approach was conducted, based on the Akaike Information Criterion 

(AIC) for each fitted model, selecting only the variables leading to the most adequate model (i.e., 

lowest AIC). In each model, variable significance was set at α = 0.05. To improve data distribution, 

we applied a log (x + 1) transformation to all environmental variables before fitting them into the 

GLM, with the exception of the proportion of illumination of the moon, which was arcsin-

transformed. Durbin–Watson statistics for each model were also calculated to detect possible 

autocorrelation between residuals (values ranging from 1 to 2 are considered to be acceptable). 

To search for significant differences in species movements according to the different peak-flow 

magnitudes (0 m3s−1, powerhouse off; 50 m3s−1, powerhouse at half-load; 100 m3s−1, powerhouse 

at full-load), the chi-square test of goodness of fit was employed. Size selectiveness in the fish lift 

was assessed by comparing the population size structure of each species recorded in the lift with 

the one obtained downstream the dam, using Fisher’s exact test. Size-classes were partitioned 

in 5-cm intervals, to allow a more detailed effect of selectivity [29]. 

Literature has outlined the absence of a standardized procedure to evaluate fish passage 

efficacy [17,46], a qualitative concept consisting of checking if the fishway is capable of allowing 

the target species to pass. This concept differs from efficiency, which focuses on its quantitative 

performance, defined as the percentage of marked fish that enter and successfully negotiate the 

fishway out of the total fish previously marked [47]. A ratio of fish lift efficacy was therefore 

calculated by dividing the number of fish observed ascending the lift (number day−1) by the total 

number of fish captured below the dam (unit effort = number in 1 fishing day), being considered 

as a proxy of the lift’s efficacy [48]. 

All analyses were conducted in R version 3.5.2, [49], using the packages stats (implemented 

in R) and MASS [50]. 

 

2.4. Results 

2.4.1. Seasonal Fish Counts in the Lift 

Fish counts through the lift varied significantly between the different months for all three 

species (barbel: χ2 = 57.828, df = 11, p < 0.001; nase: χ2 = 232.440, df = 11, p < 0.001; trout: χ2 

= 66.315, df = 11, p < 0.001) (Figure 4). A total of 548 barbel, 1801 nase and 63 trout were 

recorded passing the fish lift within the study period, with most of the fish being observed between 

summer and early fall (79.5%), i.e., August and October. Among the three species, nase was the 

most abundant (74.7% of the total fish counts), with the highest counts being recorded in August 

(699) and October (491). Barbel (22.8%) was more abundant in October (125), while trout (2.6%), 

the least abundant species, peaked a maximum of 13 individuals in both April and October. 



 
20 

 

 

Figure 4. Fish counts for barbel (dotted green line), nase (green line) and trout (dark green line) in the fish 

lift, between March 2013 and February 2014. 

 

2.4.2. Daily Patterns of Fish Passage 

Fish recordings in the lift did not vary significantly with the time of day for barbel (χ2 = 0.006, 

df = 1, p = 0.936), nase (χ2 = 0.810, df = 1, p = 0.368); and trout (χ2 = 3.028, df = 1, p = 0.082). 

Among the three species, the highest difference in percentage of fish passing between two 

periods belonged to trout (58.7% of the fish counts recorded during the night period) (Figure 5). 

 

 

 

Figure 5. Abundance of barbel, nase and trout recorded in the fish lift during the day (06:00–18:00) and 
night (18:00–06:00). 
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2.4.3. Effects of Environmental Variables on Fish Passability 

Water temperature (F = 22.425, p < 0.001) and daily flow fluctuation (F = 4.894, p < 0.001) 

were positively associated with nase passability. The fitted model for this species included a third 

significant variable positively associated – photoperiod (F = 3.955, p = 0.049) (Table 1). Water 

temperature was also included in the model for barbel passability (F = 7.138, p = 0.008), together 

with mean daily flow (F = 7.733, p = 0.006) and accumulated rainfall (F = 12.818, p < 0.001) as 

significant variables, all with positive associations (Table 1). For trout, only the mean daily flow 

(positively associated) was retained in the final model (F = 3.941, p = 0.049). 

 

Table 1. Variables entered in the GLMs explaining species abundance in the Touvedo fish lift. Seven 
different factors were analyzed, but only those included in the final models are presented. For each species, 
significance of each variable in the final model was calculated through the F-test. Beta coefficients (ß) and 
Durbin–Watson statistics (D) for each model are also presented. 

Variable ß F-test p-value D 

P. duriense    1.127 

Water temperature 0.466 22.425 <0.001  

Flow variation 0.228 4.894 0.029  

Photoperiod 0.198 3.955 0.049  

L. bocagei    1.812 

Water temperature 0.167 7.138 0.008  

Mean daily flow 0.155 7.733 0.006  

Acumulated rainfall 0.276 12.818 <0.001  

S. trutta fario    1.996 

Mean daily flow 0.151 3.941 0.049   

 

 

2.4.4. Fish Passage in Relation to Peak-Flow Magnitudes 

Fish lift use varied according to peak-flow magnitudes, with nase showing significant 

differences in passability (χ2 = 55.460, df = 2, p < 0.001). Accordingly, passability of this species 

was the highest (67.8%) when the powerhouse was off (0 m3s−1, Figure 6). Contrastingly, 

passability of larger species, i.e., barbel (χ2 = 6.480, df = 2, p = 0.039) and trout (χ2 = 5.631, df = 

2, p = 0.060) occurred mainly when the powerhouse was operating, being the highest for the 

barbel (44.8%) upon operation at half-load (50 m3s−1), whereas for the trout, the largest portion of 

individuals (44.2%) migrating occurred when the powerhouse was operating at full-load, though 

differences in the last species were not significant (100 m3s−1; χ2 = 5.631, df = 2, p = 0.060). 
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Figure 6. Relative abundance (%) of barbel, nase and trout recorded in the lift for different peak-flow 
magnitudes: 0 m3s−1 (pale green; powerhouse off), 50 m3s−1 (light green; powerhouse at half-load) and 100 
m3s−1 (dark green; powerhouse at full-load). 

 

2.4.5. Fish Lift Selectivity 

Differences in population size structure were found when comparing the proportions of fish 

counts in the lift and captures downstream of the Touvedo dam for all three species (Fisher’s 

exact test, p < 0.05), though these differences were more pronounced in barbel and trout (Fisher’s 

exact test, p < 0.001), with some selectiveness being observed (Figure 7). For both species, the 

proportions of individuals observed in the lift (barbel: mean ± SD = 22.4 ± 6.9 cm; trout: 23.5 ± 

4.2 cm) were generally larger than the ones captured in the river segment downstream (barbel: 

18.1 ± 4.5; trout: 16.5 ± 4.5 cm). Nonetheless, for barbel, both lift recordings and river surveys 

revealed 15–20 cm individuals as the most abundant size class (Figure 5). For nase, despite 

differences in size-class distributions were found (Fisher’s exact test, p = 0.016; mean size ± SD 

= 13.0 ± 3.6 in the lift and 13.3 ± 2.9 in caught fish), the same size classes were represented in 

the lift and river surveys, but with a larger proportion of the smallest size individuals (TL ≤ 10 cm) 

occurring in the fish lift: 24.3% (10.1% in the river downstream) (Figure 7). 
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Figure 7. Size class (cm) distributions of barbel, nase and trout recorded in the lift (light green) and captured 
downstream of the Touvedo dam (dark green). 
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2.4.6. Fish Lift Efficacy 

The passage-to-catch ratio was generally higher in barbel (mean ± SD = 1.36 ± 1.06) than 

in nase (mean ± SD = 0.26 ± 0.25) and trout (mean ± SD = 0.10 ± 0.10). Average monthly ratios 

for the barbel were superior to the unit in half of the study period, attaining a maximum value of 

3.10 in September (Table 2.2), when this species recorded higher counts in the lift (Figure 2.2). 

Ratios for nase in its most active period (August-October; Figure 2) varied between 0.43 and 0.75, 

being considerably higher than the ratios obtained in the remaining months (≤0.10; Table 2.2). 

For trout, ratios were generally low throughout the year, despite an increase was observed in 

September–October, when mean values were superior to the overall mean obtained for this 

species (0.10). 

Table 2. Mean daily number of barbel, nase and trout migrating through the Touvedo fish lift and captured 
downstream by electrofishing in 2013 (unit effort = 1 fishing day (4h of effective sampling)), along with ratios 
of fish-lift records to downstream catches. (a) Undetermined ratio due to the absence of caught individuals 
by electrofishing, despite being observed in the fish lift. 

  Barbel       Nase       Trout   

 Fish lift Electr. catch Ratio   Fish lift Electr. catch Ratio   Fish lift Electr. catch Ratio 

Month N day-1 N unit effort-1    N day-1 N unit effort-1    N day-1 N unit effort-1  

Apr 0.70 0 a)  0.13 5 0.03  0.43 5 0.09 

May 1.52 0 a)  0.42 1 0.42  0.16 0 a) 

Jun 1.36 2 0.68  0.50 18 0.03  0.03 1 0.03 

Jul 0.77 0 a)  1.26 13 0.10  0.06 1 0.06 

Aug 2.80 0 a)  23.30 30 0.75  0.07 2 0.03 

Sep 3.21 1 3.10  13.76 31 0.43  0.45 3 0.14 

Oct 4.03 12 0.34  4.03 34 0.47  0.35 1 0.35 

Nov 1.34 1 1.30  1.34 28 0.09  0.14 2 0.07 

Dec 0.62 0 a)  0.62 29 0.03  0.10 9 0.01 

Mean 1.82 1.78 1.36   5.04 21.00 0.26   0.20 2.67 0.10 

 

2.5. Discussion 

This study assessed the effectiveness with which a fish lift in a LHP allows native 

potamodromous fish to migrate upstream. To accomplish such goal, we assessed the seasonal 

and daily use of the lift by fish and compared it with the environmental factors that are known to 

be associated with the triggering of the fish upstream migration, the peak-flow magnitudes at the 

power plant and the size structure and abundance of the fish population downstream. This 

continuous monitoring of fish stocks downstream the dam, though time-consuming and enclosing 

inherent technical difficulties of sampling a large river [51], has seldom been used in fish lift 

evaluation studies (e.g., [23,30]) and provided a useful proxy of the efficacy of the fish lift that, 

together with the seasonality of fish movements, can be used by managers to better plan fish lift 

operations and shutdowns. 
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As it was expected, fish counts through the lift varied significantly between the different 

months for all three species. Overall, the highest number of fish counts was attained in late 

summer–early fall, when almost 80% of the individuals used the fish lift, with nase being the most 

abundant species (74.7% of the total fish counts), followed by barbel (22.7%). The large 

proportions of both species observed in late summer is consistent with previous reports on these 

rheophilic cyprinids [52,53]. Similarly, in a work by De Leeuw and Winter [53] in the lowland rivers 

Meuse and Rhine in the Netherlands, the authors reported more movements of the common 

barbel Barbus barbus and common nase Chondrostoma nasus during both summer-early fall 

(July–October) and spring (spawning season for both species). It is highly likely that such activity 

observed in the lift is related to reproductive migrations, which takes place during these periods, 

particularly in summer [40,41], when these potamodromous species migrate upstream to seek 

areas for reproduction, typically in gravel and pebble beds located in upstream tributaries [39]. 

These species also showed movements outside their usual spawning period, displaying a second 

peak in early-fall (September–October), a result that is also consistent with other studies, in which 

“out of season” movements may reflect a search for winter, feeding or thermal refuges, as it has 

been observed in other potamodromous cyprinids [15,54]. The presence of trout in the fish lift 

was residual (only 2.6% of the total fish counts), with movements occurring throughout the year 

and not only restricted to the spawning period, which typically occurs during late fall and winter 

[43]. The similarity of observed seasonal fish counts in the lift, with the species migratory ecology, 

provides therefore an indication that the lift is not disrupting the seasonality of fish movements, 

serving therefore its purpose. 

No significant differences were found in daily patterns of fish passage ascending the fish lift, 

which is in accordance with our expectations. Though some studies suggest that cyprinids are 

more active during the night to avoid predation (e.g., [37,41]), such patterns can be quite species-

specific [16]. In a recent study conducted in the Meuse river basin (Belgium), Benitez et al. [16] 

found that the common barbel Barbus barbus did not show any differences in daily activity when 

passing through the existing fishways, contrarily to the trout, which was more active during the 

day, a result that was also supported by some authors (e.g., [43]), but not others (e.g., [42]). In a 

series of surveys conducted in the Zêzere River (Tagus river basin), Santos et al. [52] also did 

not find differences in daily activity for the Iberian straight-mouth nase (Pseudochondrosoma 

polylepis), a sister species of the present P. duriense. Such findings, as well those of the present 

study, reflect the absence of predators in the sampled river segment downstream of the Touvedo 

dam [44], which does not constrain the activity of native species to take place during night-time 

periods when survival would be expected to be maximum [26,41]. 

Water temperature was found to be the most significant predictor of the abundance of both 

cyprinids (barbel and nase), which is consistent with our expectations and with previous findings 

on the migratory ecology of these species, where increasing water temperature acts as an 

environmental trigger for the upstream movements of these species [30,55]. Flow variables (mean 

daily flow and daily flow fluctuations) were also important to explain upstream movements of both 

cyprinids, as it was previously expected: daily flow fluctuation, which can act as an environmental 
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trigger for fish migration [45,56], also had a positive effect on the observed nase in the lift, whereas 

barbel abundance in the fish lift was positively associated with increasing mean daily flow. 

Moreover, accumulated rainfall, which also has a direct influence in river flow [57], was also 

present in the model for barbel passability. Taken together, these results corroborate the ones in 

the literature in which flow (in addition to water temperature) is also one of the most important 

variables in triggering fish migration [45,58], particularly under conditions of high-water level 

fluctuation [59] as in the Touvedo LHP. Photoperiod was also positively associated with barbel 

passability, which seems to indicate a higher activity during the day in the lack of predators [60], 

as previously mentioned. Mean daily flow was the only variable selected by the model to explain 

the number of trout individuals that migrated through the fish lift. This result is in agreement with 

some studies [61,62], but not with others [30,41] that pointed out water temperature as the most 

important factor in the upstream migration of this species. It should be noted, however, that the 

number of individuals recorded was considerably lower compared to the remaining 

potamodromous species, which may have reduced the statistical power of our analyses. On the 

other hand, it is possible that a different hierarchy of environmental factors stimulated the same 

behaviour in different years [45]. Hence, long-term studies could provide a broader understanding 

of the interaction between environmental variability and potamodromous fish movements, in order 

to clarify trends over long time series (>10 years), while also providing important data for scientists 

and ecosystem managers. 

Fish passage in relation to the different peak-flow magnitudes differed in two of the three 

species, with the largest proportion of nase (67.8% of total abundance) using the fish lift in the 

absence of turbined flow (powerhouse off). Contrarily, barbel made broader use of the fish lift 

when the powerhouse was operating at half-load (50 m3s−1). As for trout, it should be noted that 

while differences were not significant, the largest proportion of movements occurred when the 

powerhouse was operating at full-load (100 m3s−1). It is our conviction that nase made larger use 

of the fish lift when the powerhouse was off (i.e., with turbines shutdown) due to the lower water 

velocities (0.21–0.55 m s−1) that occur at the lift entrances upon this scenario [44]. Though nase 

is a medium-sized cyprinid [63], for which adults can cope critical swimming speeds up to 0.78 m 

s−1 [64] and therefore theoretically being able to negotiate such a range of velocities, individuals 

found in both river segment downstream and lift were mainly juveniles, small-sized fish (mean: 

13.0 cm TL), for which swimming performance is typically lower than larger conspecifics [65,66]. 

It is thus important to ensure that water velocities that nase will face within the entrances that lead 

to the lift are sufficiently attractive—not too low (<0.20 m s−1) to hinder attraction [29], nor too high, 

above their critical swimming speed (>0.78 m s−1, [64])—for appropriate entrance and passage, 

particularly during summer and early fall when most of the individuals (74.7%) used the fish lift.  

It is tempting to suggest that managers should try to implement management strategies, 

such as periodic turbine shutdown [67], that best balance the trade-off between energy production 

and the potential for upstream fish migration [68], at least during the critical migratory periods. 

However, this is often difficult to achieve and dependent on the characteristics of the national 

network of hydropower schemes as well as on the specificities of the energy market. 
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Nevertheless, the specific requirements of the different species migrating, namely swimming 

performance, should be taken into account when planning for a mitigation flow scheme such as 

ecological flow releases. Both barbel (mean TL: 22.4 cm) and trout (mean TL: 23.5 cm), the two 

largest species that used the lift, have rheophilic habits during part (barbel) or the whole (trout) 

life-cycle [36], which, combined with their greater ability to withstand higher velocities during short 

time periods (adult barbel: Ucrit = 0.81 m s−1, [69]; trout: Ucrit = 0.65 m s−1 and Umax varying between 

0.94–1.26 m s−1, depending on water temperature, [70]), may have determined the larger 

proportion of individuals of both species using the fish lift under the half- load (50 m3s−1) and full-

load (100 m3s−1) conditions, respectively.  

It should be noted, however, that the willingness to enter and use the fish lift cannot be 

explained solely by the water velocity at the entrances nor the size of individuals. Such motivation 

can also be driven by other internal (such as the physiological condition or fatigue level) or 

external (such as turbidity or turbulence) factors not accounted for in the present study. For 

example, some recent studies on fish passage have pointed out the importance of turbulence in 

determining the success and timing of potamodromous fish migration upstream [71,72]. It is clear 

that future studies should focus on experimental controlled conditions, where the variables of 

interest (e.g., water velocity and associated turbulence parameters) can be manipulated while 

controlling for potential confounding factors (e.g., temperature), which provide an excellent 

opportunity disentangle the effect that multiple factors have on fish attraction and passage through 

fish lifts. 

The comparison of species size-structure between observed fish in the lift and those 

captured downstream, which gives an indicator of fishway selectivity, showed some differences 

for all three species, particularly for barbel and trout, with the occurrence of larger individuals in 

the fish lift relatively to the river downstream, as it was previously predicted (see Introduction). 

Such selectivity could have also arisen as a result of sampling the fish with electrofishing in 

specific habitats, such as deep pools, where typically the larger fish, like barbel and trout [44], 

dwell, and where capture efficiency is often lower than in shallower (up to 1.5 m) habitats [9,63]. 

On the other hand, the smaller individuals of these species may not display a marked migration 

stimulus, at least associated with reproduction (e.g., [15]), so their abundance in the fish lift should 

be lower than that of the larger ones. Another relevant aspect that could partially explain the lower 

abundance of smaller-sized individuals of these species is related to the potential effect of water 

velocity in the fish lift attraction circuit (up to 0.90 m s−1 when the powerhouse is on), which may 

have limited the entrance of smaller individuals, for which swimming capacity is typically more 

limited comparatively to the larger ones [66]. Assessing their swimming capabilities would help 

clarify if the observed patterns are related with their lower swimming capabilities, or the lack of 

environmental cues for these smaller fish to perform upstream migrations. 

As a proxy of the fish lift’s efficacy, the standardized passage-to catch ratio was used, as 

there are presently, to the best of our knowledge, no standard methods nor metrics to evaluate 

efficacy, neither any defined thresholds (e.g., [46,73]). Our results showed that the mean value 

of this indicator was higher than 1 for the barbel, suggesting that more individuals were using the 
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fish lift compared to those that were available downstream and captured by electrofishing. As 

outlined above, such results should be analyzed with caution as most barbel, particularly the 

larger individuals, often dwell in deep pool habitats [9] where electrofishing is clearly less effective 

[74], and thus their population downstream that is potentially available to migrate could have been 

under–evaluated. The use of other techniques, such as mark-recapture or passive integrated 

transponders (PIT) telemetry [75], can be useful to provide more accurate data on barbel stocks 

arriving at the foot of large–scale barriers. The mean ratio obtained for the nase (0.26), the most 

abundant species in the fish lift, was higher than those reported by Noonan et al. [26], who 

reviewed worldwide estimates of fish passage efficiency across all types of fishways. In the case 

of fish lifts and the presence of non–salmonid species, the mean value reported was only 0.10, 

which makes the present estimate (0.26) quite optimistic in the current context, although their 

work focuses on efficiency rather than efficacy as in the present study. However, since the 

concept of efficacy is not defined in terms of minimum standards (e.g., [41,46]), it should be 

specified with respect to the biological requirements of the species using the fishway, and not as 

an absolute value [47].  

In the Lima basin, cyprinids are the most dominant and abundant species in the main river 

[9,41]. Consequently, the main goal of the lift, rather than allowing the whole species’ population 

downstream to move upstream the dam (as it would in the case of anadromous or catadromous 

species), is to prevent fragmentation of potamodromous populations between different river 

segments [25]. For such species that carry out their life cycles downstream and upstream the 

dam [30], simple documentation of them passing upstream is sufficient [76], providing enough 

evidence that a considerable proportion of individuals used the fish lift, assuring a long-term 

sustainability of fish populations. 

It should also be noted that the low ratios observed in the months outside the migratory 

season (for barbel, nase and trout) do not necessarily represent low lift efficacy, as they may 

reflect the absence of migratory stimuli and the consequent lack of motivation to overcome the 

obstacle. Trout was the species that theoretically performed the lowest, as shown by their lowest 

mean ratio (0.10) when compared to the other two species, as well to the corresponding mean 

value (0.35) in the literature for salmonids using fish lifts [26]. This is unlikely to reflect a lower 

performance of trout upon negotiating water velocities to enter the lift, as trouts are typically better 

swimmers and withstand higher velocities than cyprinids, but instead their natural low abundance 

in the present cyprinid-type river segment [77]. Future studies should try to associate efficacy to 

other indicators, namely efficiency and delay, to achieve a broader assessment of fish passage 

through a fishway [78]. In the particular case of fish lifts, it would be important to try to quantify 

the two components of attraction efficiency [17]: guidance (i.e., arrival at the entrance) in response 

to attraction currents, and entry (i.e., decision to enter). In this sense, biotelemetry techniques 

could be applied to monitor such fine-scale activity. 

Finally, it should be pointed out that actions to improve the efficacy of upstream movements 

of potamodromous species at fish lifts may not always be the best practice. Fish lifts are 

unidirectional systems, transporting fish from downstream to upstream of dams, but do not 
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operate on the reverse side (i.e., from upstream to downstream), therefore not allowing 

subsequent downstream migration. When this is coupled with the absence of suitable spawning 

and growth habitats upstream (even if they are present downstream), fish lifts may act as 

ecological traps, doing more harm than good to fish populations [79]. Although a unidirectional 

fishway, the Touvedo fish lift is not likely to be acting as an ecological trap, due to the existence 

of a network of good quality habitats upstream the Touvedo dam (see Study Area). Taken 

together, the Touvedo fish lift enables the upstream migration of a “considerable” number of adult 

potamodromous fish in the proper seasonal timing, which is a positive step towards the 

maintenance of populations above and below the dam, potentially contributing to their future 

sustainability. However, different fish species were found to be affected differently by the peak-

flow magnitudes (nase preferentially migrating during periods of turbine shutdown, whereas 

barbel and trout making broader use of the lift when the powerhouse was operating), which points 

to the need of a proper peak-flow management during the species reproductive season. Future 

studies should consider determining to what extent fish can safely use the spillway gates or the 

turbines as a pathway in their descendent routes. 
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Resumo 

As alterações climáticas e as expectáveis reduções de caudal nos rios, em particular no 

Mediterrâneo, representam um grande desafio para a gestão de populações de peixes nativos, 

que pode condicionar ainda mais a passagem de peixes por pequenas barreiras como açudes. 

Com recurso a modelos hidráulicos de adequabilidade de habitat (River2D), foi investigado o 

impacto que estas reduções de caudal, regulado a montante pela barragem de Belver, poderão 

ter no potencial de passagem de espécies migradoras nativas pelo açude do Pego, localizado 

no rio Tejo junto a uma antiga central termoelétrica, e equipado com uma rampa para peixes na 

margem direita. Foram tomados como referência valores de caudais retirados de estações 

hidrométricas, no período de 1991 a 2005, sobre os quais se aplicaram reduções de 30% e 60% 

de caudal, assumindo cenários de emissões moderadas (RCP 4.5) e extremas (RCP 8.5) de 

gases de efeito de estufa até ao final do século (2070–2100), com base nas previsões para a 

bacia do Tejo. Os resultados revelaram que é necessário um caudal mínimo de 3 m3 s-1 para 

assegurar a passagem das espécies nativas (que para baixos caudais ocorre exclusivamente 

pela rampa) consideradas neste estudo, e que se prevê um acréscimo significativo na ocorrência 

de caudais inferiores a este valor em ambos os cenários climáticos considerados. Esta previsão 

de redução do potencial de passagem de pequenas barreiras por parte de espécies nativas 

realça a importância de considerar não apenas o regime de caudais atual na gestão da ictiofauna 

aquando da construção de açudes, mas também as alterações de caudal que poderão ocorrer 

nas próximas décadas. Quando estes obstáculos se tornam obsoletos, a sua remoção deverá 

ser considerada para um restauro mais efetivo da conectividade fluvial. 

 

Palavras-chave: rampa para peixes, pequenas barreiras, alterações climáticas, caudais 

baixos, adequabilidade de habitat 
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3.1. Abstract 

Climate change represents a major challenge for the management of native fish communities in 

Mediterranean rivers, as reductions in discharge may lead to a decrease in passability through 

small barriers such as weirs, both in temporary and perennial rivers. Through hydraulic modelling, 

we investigated how discharges from a large hydropower plant in the Tagus River are expected 

to affect the passability of native freshwater fish species through a rock weir (Pego, Portugal), 

equipped with a nature-like fish ramp. We considered not only mean daily discharge values 

retrieved from nearby gauging stations (1991–2005) for our flow datasets, but also predicted 

discharge values based on climatic projections (RCP) until the end of the century (2071–2100) 

for the Tagus River. Results showed that a minimum flow of 3 m3 s−1 may be required to ensure 

the passability of all species through the ramp and that passability was significantly lower in the 

RCP scenarios than in the historical scenario. This study suggests that climate change may 

reduce the passability of native fish species in weirs, meaning that the construction of small 

barriers in rivers should consider the decreases in discharge predicted from global change 

scenarios for the suitable management of fish populations. 

Keywords: fish ramp; small barriers; climate change; low flows; habitat suitability 

 

3.2. Introduction 

Rivers have long been among the most endangered ecosystems worldwide, facing multiple 

threats including the introduction and dispersal of invasive species [1,2], chemical [3] and thermal 

pollution [4], flow regulation [5,6], longitudinal fragmentation [7] and climate change [8], with the 

later acting as an enhancer of the previous ones [9,10]. One common consequence of these 

threats is the gradual loss of suitable habitat, which is particularly worrisome in the case of 

migratory freshwater fishes, as these migrate along the river (potamodromous) or between the 

river and sea (diadromous) in different stages of their life cycle to perform critical functions, such 

as reproduction, feeding and sheltering [11]. 

Climate change can significantly alter flow regimes [8], leading to the increase of extreme 

flow events [12–14]. In Mediterranean-climate rivers, facing an annual dry season (usually from 

March to September, being more pronounced from June onwards), increased droughts may 

further potentiate river fragmentation and loss of suitable habitat due to increased flow 

intermittency. [15] This issue is particularly relevant as it encompasses the migratory period of 

potamodromous and diadromous fish species; therefore, interfering directly with their migrations 

and recruitment, and lately affecting the sustainability of their populations [16]. 

Fish movement and migration may be further limited by the presence of small barriers such 

as weirs, which are generally far more numerous than large dams and clearly represent significant 

barriers to fish migration [17,18]. These instream structures change the depth and velocity 

patterns, creating vertical drops that change the hydrodynamics of aquatic systems and may 
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prevent the movement of migratory fish to spawning, feeding and refuge areas [19], and thus their 

permeability should be assessed for a proper management of these populations [20,21]. The 

permeability of a weir to fish passage (i.e., passability) will depend not only on its structural 

properties (e.g., length, slope, substrate), but also on the hydraulic conditions (e.g., flow regime), 

within a given time and area, providing “flow windows” for fish to pass [22,23]. The passability of 

a given fish species and life history stage through weirs will also depend on key hydraulic 

variables, namely flow velocity and water depth [23], that structure habitat suitability [24]. 

The potential combined effects of weir passability along with the climate change driven 

increased flow intermittency of rivers is seldom investigated and deserves greater attention. 

Despite some uncertainty attributed to flow predictions due to different modelling assumptions, 

studies so far have suggested that in the Mediterranean region, mean monthly flows and annual 

flow rates are expected to decrease with climate change [25,26]. On the other hand, extreme flow 

conditions (high flow and low flow magnitudes, and duration) are expected to increase in 

Mediterranean rivers [27], potentially reducing the suitable habitat area for fish species to be able 

to overcome barriers. 

The use of modelling approaches to determine measures of habitat suitability, such as 

habitat suitability indexes (HSI), can provide a relative measure of fish passability, based on the 

available area for fish in specific stages of their life cycle, considering specific flow requirements 

determined for each species [28]. Habitat suitability curves (HSC) can be developed for this 

purpose, but often require detailed data at a microhabitat scale, which are typically scarce in large 

rivers [29]. Recent studies have recommended the use of mesohabitat data (ranging from 10 to 

100 m) as the relevant spatial scale of habitat use by fish [30,31] and the use of expert opinion to 

build HSC based on previous literature and expert knowledge on the species, lowering both the 

research effort and need for empirical data on habitat use and preference of fishes [32]. 

For modelling habitat suitability, 2D hydraulic models have the advantage of being more 

robust and predicting hydraulic conditions more accurately over 1D models, provided that 

sufficient and good resolution bed topography data is collected, and that model calibration is 

performed [33–35]. Relative measures of fish passability can be estimated based on the suitable 

habitat and hydraulic conditions (such as water depth and flow velocity) of small instream 

obstacles over time and space [24,36,37]. 

The main goal of this study is to evaluate the passability of the low-head Pego weir, in the 

Tagus River, Central Portugal, to the different migratory fish species, in relation to historical 

(1991–2005) and future flow conditions based on two global warming scenarios (RCP 4.5 and 

RCP 8.5), following the reports of ISI-MIP: Inter-Sectoral Impact Model Intercomparison Project 

[38]. As current projections for the Mediterranean region suggest a decrease in river discharge in 

the following decades, it is expected that fish passability will be lower under scenarios of low flow 

conditions, due to the reduction of the submerged area of the weir. Specifically, we expect 

passability for all species to be lower under global climate change scenarios. 
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3.3. Material and Methods 

3.3.1. Study Area 

This study was conducted in the Pego weir, located in the Tagus River, close to the 

municipality of Abrantes, Portugal (Figure 8). The Tagus River is the longest river in the Iberian 

Peninsula (1110 km), with a drainage area of 80,630 km2 and a hydrological regime typical of a 

Mediterranean-climate river, with lower flow values in summer months and higher values in winter 

[39]. Data collected from gauging stations shows that it has a relatively high flow variation 

coefficient (72.15%), contrasting with a relatively low annual coefficient of variation (7.29%), within 

the period ranging from 1991 to 2005 [40]. 

 

Figure 8. Pego weir in the Tagus River, approximately 12 km downstream of the Belver dam. 

Within this river basin, the Pego weir, a 250 m wide low-head ramped weir, was built between 

1992 and 1995, to allow water collection to cool down the turbines from a nearby coal thermal 

power plant, which has recently ceased activity (Figure 8). The weir features a fish ramp located 

close to the river’s right bank, which is approximately 20 m long and 4 m wide, at an elevation of 

23 m, with a longitudinal slope of 2.5% (Figure 12). Both the weir and the fish ramp present a 

substrate dominated by rocks and boulders. This structure was built to ensure the passability of 

the local native fish species. The closest upstream barrier is the Belver dam, one of the main 

large hydropower plants in the Tagus River basin, located 12 km upstream of the Pego weir, with 

an installed power of 80.7 MW and a storage capacity of 7.5 hm3. Flow data provided by the 

Portuguese Environmental Agency and local gauging stations reveal that turbined flows do not 

exceed 800 m3 s−1 [40]. The Belver dam is a run-of-the-river hydropower plant, with low water 

retention and a reduced thermal stratification in the water column. 
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3.3.2. Flow Data and Topographic Survey 

Flow data was retrieved from the Portuguese national network on water resources (SNIRH), 

which aggregates data on discharge and other water quality related parameters collected from 

gauging and meteorological stations nationwide [40]. Mean daily discharge values were retrieved 

from the available data recorded in the nearby Belver gauging station (station code: 17J/01A), 

from 1st January 1991 to 31st December 2005, in line with the historical period considered in the 

Intergovernmental Panel on Climate Change [38] reports on climate projections (1986–2005). 

Missing values (approximately 15%) were estimated by linear regression (R2 = 0.934) from mean 

daily flows recorded in the Almourol gauging station (station code: 17G/02A), approximately 28 

km downstream from the study area. It should be noted that there are no tributaries between the 

Pego weir and the Belver dam, and that inflows in the Pego weir are strongly associated with the 

turbined flows in Belver [41]. 

For the climate projections, two global warming scenarios (RCP 4.5 and RCP 8.5) were used, 

following the reports of ISI-MIP: Inter-Sectoral Impact Model Intercomparison Project [38]. The 

considered scenarios stand for “Representative Concentration Pathways” (RCP), describing 

general trajectories of greenhouse gases (GHG) emissions, concentrations and land use 

emissions until the end of the century (2100), according to specific radiative forcing values, 

namely 4.5 and 8.5 W m−2. RCP 4.5 is described as a more conservative and moderate scenario, 

while RCP 8.5 is the extreme one. Particularly for the Tagus River basin, decreases in average 

monthly flows of 30% and 60% in the late century (2071–2100) were previously estimated 

following RCP 4.5 and RCP 8.5 trajectories, respectively, when integrating reservoirs and water 

management processes in the hydrological models for river discharge at Almourol, with a strong 

decrease in hydropower production under both future climate scenarios being expected [26]. 

These projections consider the regional warming trends through statistical downscaling and bias 

correction, as an alternative to regional climatic models, with the goal of preserving warming 

trends [42]. Focusing on low flows (Q90), as these are expected to be more impacted by climate 

change, we considered two hydrologic scenarios: one with a reduction of 30% on mean daily 

discharges (RCP 4.5) and another with a 60% (RCP 8.5) reduction, both until the end of the 

century (2071–2100), regarding the original discharge dataset retrieved from the gauging 

stations. 

3.3.3. Suitability Curves and Habitat Modelling 

Fish passability was determined by modelling habitat suitability for the native freshwater fish 

community using River2D, a two-dimensional depth averaged model which combines the 

hydraulic conditions close to the weir with HSC for each fish species [43]. The key hydraulic 

variables for which HSC were developed were water depth (above the weir) and flow velocity, 

similarly to previous studies assessing fish passability in weirs [44,45]. The boundary conditions 

considered in this model were the inflow section (in m3 s−1) and the water level at the outflow 

section (in meters), making use of a rating curve of the cross-section that was computed with an 

acoustic Doppler current profiler (ADCP), that took measurements in the cross-section during 



 
41 

 

several different discharges. Model calibration was done by comparing the modeled values for 

flow velocity and water depth with the values measured in the field. Field measurements took 

place at the end of the dry season (September) under different flow conditions. The River2D 

model ran with a spatial mesh of 2 × 2 m in general, refined to 0.5 × 0.5 m in the weir area, 

similarly to one used for the topographic survey of the 2D model. 

The fish community is composed by a multitude of species with different migratory traits, 

including: (i) anadromous—Allis shad (Alosa alosa), twaite shad (Alosa fallax) and sea lamprey 

(Petromyzon marinus), (ii) catadromous—European eel (Anguilla anguilla) and thlinlip grey mullet 

(Chelon ramada) and (iii) potamodromous species—Iberian barbel (Luciobarbus bocagei). Due 

to the lack of detailed data on HSC for these species, an expert judgment approach [46,47] 

following a literature review (Table 3) was used to build the species HSC, based on flow velocity 

and water depth (Figures 13 and 14 in Supplementary Material). Such approaches based on the 

application of literature or expert opinion-based data, performed in similar conditions – i.e., when 

empirical data is scarce and difficult to gather (cost limited, lack of time or reference conditions, 

species with low detectability such as the diadromous ones) – were applied elsewhere [46–50]. 

A previous assessment of the river topography allowed for the characterization of the hydraulic 

conditions (flow velocity and water depth) and for the calibration of the River2D model [41]. 

 

Table 3. Literature considered for the construction of the species habitat suitability curves (HSC), based on 
key variables that structure fish passability at low-head ramped weirs [45]: flow velocity at the ramp weir and 
water depth above the weir. 

 

To evaluate passability and determine the minimum flow required for each species to pass 

the weir, a stepwise approach was followed, modelling in steps of 1 m3 s−1 and assessing the 

response of the habitat suitability index (HSI) throughout the weir and particularly in the fish ramp. 

This index was calculated as a product of the separate suitability indices: flow velocity index (VSI), 

water depth index (DSI) and channel index (CSI, which considers the substrate, dominated by 

rocks and boulders, constant and evenly distributed within the study area and thus with no 

significant influence in habitat suitability, assuming a constant value in the formula): HSI = VSI × 

DSI × CSI [43]. Mean HSI values from each scenario were adjusted to a sigmoid function [68], 

allowing the estimation of HSI for each discharge value of the datasets by interpolation. 

3.3.4. Data Analyses 

Quantile distribution of the mean daily discharges from the historical data were analyzed 

to determine the low flow conditions (Q90, corresponding to the 10th percentile) in the two 

hydrologic scenarios considered (30% in RCP 4.5 and 60% in RCP 8.5). The comparison of mean 

Common Name Scientific Name References 

Allis shad Alosa alosa [51,52] 

Twait shad Alosa fallax [51,53] 

Sea lamprey Petromizon marinus [51,54–56] 

Thinlip grey mullet Chelon ramada [51,57,58] 

European eel Anguilla anguilla [51,58–62] 

Iberian barbel Luciobarbus bocagei [51,63–67] 
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daily discharge between each scenario was achieved using the non-parametric Kruskal–Wallis 

test due to non-normally distributed data (Shapiro–Wilk). A Kruskal–Wallis test (followed by a post 

hoc Dunn test for pairwise differences) was also performed to investigate differences in HSI 

between flow scenarios (for each species) and between species (in each scenario). Analyses 

were conducted in R, version 4.1.0 [69] and Statistica, version 10 [70]. 

3.4. Results 

3.4.1. Flow under Future Climate Change Scenarios 

Low flow conditions for the historical period (1991–2005) included discharges from 0 to 11.0 

m3 s−1, with null values being recorded in 316 days, mostly between March and September (71%), 

which is usually considered the dry season in the Mediterranean climate. Mean daily discharge 

was significantly different between the three scenarios (χ2 = 28.232, df = 2, p < 0.001), being 

lowest in RCP 8.5 (mean value: 1.2 m3 s−1), intermediate in RCP 4.5 (2.1 m3 s−1) and highest in 

the historical (3.1 m3 s−1) scenario (Figure 9). 

 

Figure 9. Density distribution of mean daily discharge (m3 s−1) for the historical, RCP 4.5 and RCP 8.5. 
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3.4.2. Minimum Flow Assessment 

River2D modelling revealed that under low flow conditions, more than half of the weir was 

emersed, with the percentage of submersed area varying from 21% (for inflows of 1 m3 s−1) to 

42% (for inflows of 11 m3 s−1), which was reflected in a generally low passability close to the ramp 

for all species. The suitable area allowing fish passage was only observed at a minimum 

discharge of 3 m3 s−1 (when the fish ramp became submersed), regardless of the species (Figure 

10). 

 

Figure 10. River2D output habitat suitability index for P. marinus (which displayed generally lower HSI 
values among the species present) in the Pego weir (left) and specifically at the fish ramp (right), for an 
inflow of 3 m3 s−1. Colored scales are presented for each case (HSI varying from 0-blue to 1-red, water depth 
from 0 to 5.32 m). 

 

3.4.3. Passability across Different Climate Change Scenarios 

Habitat suitability under low flow conditions was significantly different among species (χ2 = 

38.752, df = 5, p < 0.001). Overall, A. alosa had the highest mean HSI (ranging from 0.08 ± 0.11 

in RCP 8.5 and 0.13 ± 0.16 in the historical scenario), while P. marinus scored the lowest (mean 

HSI: 0.06 ± 0.07 in RCP 8.5 and 0.09 ± 0.11 in historical). Both species had significantly different 

mean HSI when compared to the remaining species (Dunn post hoc test): A. anguilla (mean HSI: 

0.05 ± 0.10 RCP 8.5 and 0.09 ± 0.08 in historical), A. fallax (mean HSI: 0.05 ± 0.08 RCP 8.5 and 

0.10 ± 0.12 historical), L. bocagei (mean HSI: 0.05 ± 0.08 RCP 8.5 and 0.10 ± 0.12 historical) and 

C. ramada (mean HSI: 0.06 ± 0.09 RCP 8.5 and 0.10 ± 0.13 historical). Significant differences for 

HSI between the three scenarios were also observed within each species (χ2 = 58.794, df = 2, p 

< 0.001) and for pairwise comparisons, with all species attaining higher scores in the historical 

scenario (Figure 11). 
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Figure 11. Habitat suitability index (HSI) in each scenario for each species: Alosa alosa (Aa), Anguilla 
anguilla (Ag), Alosa fallax (Af), Luciobarbus bocagei (Lb), Chelon ramada (Cl), Petromyzon marinus (Pm). 
Mean values and 95% confidence intervals are given by dots and whiskers, respectively. 

 

3.4. Discussion 

Changes in hydrology under climate change can lead to shifts in fish habitat suitability and 

distribution in rivers [71]. For migratory fish species, which shift from different habitats (spawning, 

feeding, refuge) during their life cycle, this habitat loss is particularly worrisome, particularly in the 

presence of barriers to fish movement, making it essential to assess how habitat may change in 

the advent of future flow regimes [16]. However, quantifying the impact of climate change in 

natural populations is challenging, as different effects are expected depending on the climate 

model trajectories that are assumed [72], the temporal range (mid or late century) and the effect 

of climate change on the multiple stressors already acting [73]. 

In this study, we built flow datasets for the different climatic scenarios – RCP 4.5 and RCP 

8.5 – by assuming the predicted changes in monthly discharge described by Lobanova et al. [26] 

for the Tagus River, with reductions of 30 and 60%, respectively, until 2100. Passability for all 

species occurred at a minimum flow of 3 m3 s−1, and the frequency of null flows and flows lower 

than the required threshold for fish passage increased in both RCP 4.5 and RCP 8.5 scenarios. 

This result is particularly relevant as the increase in “zero-flow” day frequency has been reported 

as a severe threat to hydrological connectivity and species persistence in rivers [74]. By adding 
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the cumulative effect of a small barrier (weir), this means that the decrease in the occurrence of 

suitable flows for fish populations close to the Pego weir, over the next decades, may lead to an 

overall decrease in the weir passability to the different fish species. 

Passability was found to be significantly lower in the RCP 4.5 and RCP 8.5 scenarios 

relatively to the historical dataset (1991–2005). Habitat modelling using River2D also revealed 

that under low flow conditions, passability only occurred in the area covered by the fish ramp, 

close the right bank. A previous assessment of the Pego weir showed that inflows of at least 30 

m3 s−1 are required to allow fish passage across the remaining area of the weir, with all species 

being able to pass the weir if it was submerged [41]. This further enhances the importance of this 

fishway for upstream migration, as mean daily discharge will tend to decrease in future climates 

[8,26], while droughts are expected to increase in frequency and intensity [14,74]. 

While 2D assessment of fish passability was only performed for low flow conditions, it 

revealed differences between the different species, which can be explained by their different 

swimming capacities. Overall, the two clupeid species, A. alosa and A. fallax, had the highest 

passabilities in all scenarios, attaining the first and second highest HSI values, respectively. 

Previous studies on nature-like fishways (such as rock ramps) reported higher passability for 

Alosa species compared to the other ones present in the fish community using the same fishway 

[75]. Contrastingly, the sea lamprey P. marinus had the lowest passability, even though nature-

like fishways are suggested as more adequate for allowing lamprey passage when compared to 

technical fishways such as pool and Denil fishways [76]. Emphasis on improving attraction 

efficiency under low flow conditions, considering the swimming performance and behavior of the 

different species composing the migratory fish community, should be put into future fishway 

adjustments (e.g., boulder arrangement: [77]). 

The passability of the Pego weir was modelled for different climate scenarios, considering 

the key hydraulic variables—flow velocity and water depth—that are known to highly influence 

fish passage in this type of instream structures. As the difficulty in gathering appropriate data for 

developing HSC would reveal cost and effort-intensive for a large river such as the Tagus River, 

an expert judgement approach was followed [32,36,49,50]. Coupled with an extensive 

characterization of the hydraulic conditions in the study area, a relative measure of passability 

based on the habitat suitability of each species was obtained, proving that this approach may be 

a useful alternative to empirical studies for fish population management purposes. 

Successful fish passage across an instream obstacle is a more complex phenomenon other 

than depending solely on flow velocity and water depth above the weir. The willingness to 

negotiate a barrier is also driven by internal factors – the physiological condition, such as fatigue 

level, migratory phase, age, and body size [78] – as well as individual predisposition to move 

upstream, and other external factors not accounted on the present study, such as water 

temperature [79]. Though our modelling approach enabled us to estimate fish passability for 

different migratory species across a small weir in a large river, considering the critical hydraulic 

variables, future validation with empirical studies, such as fish telemetry tracking, is essential if 

we want to effectively use such tools in river conservation and management plans [80]. 
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3.5. Conclusions 

To conclude, this study provided evidence that under low flow conditions, the passability of 

migratory fish species in the Pego weir is generally low and only occurring through the fish ramp. 

Results suggest that under future flow regimes, the permeability of the weir to fish passage is 

likely to further decrease for all species. This highlights the need to account for future impacts of 

altered flow regimes driven by climate change on fish populations, considering current and future 

climatic models and flow requirements for each species when modelling habitat suitability and 

fish passability. Moreover, it is crucial to adapt conditions for obstacle transposition, namely by 

improving attraction efficiency close to the ramp, followed by monitoring surveys of fishway 

efficiency. The ongoing transition of fossil fuels to renewable energy occurring in Portugal (and in 

other countries worldwide), is expected to lead to an adjustment of coal thermal plants (to coal-

fired plants using charcoal) or in some cases to a complete shutdown, making the barriers that 

were built to accommodate its activity obsolete and thus potential targets for removal. This would 

allow for a more efficient re-establishment of longitudinal connectivity for all fish species. 
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3.7. Supplementary Material 

 

Figure 12. Fish ramp (20 m long, 4 m wide, 23 m elevation, 2.5% longitudinal slope), at the right margin of 
the Tagus River, incorporated in the Pego weir. Picture retrieved following the study by Ferreira et al. [41]. 
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Figure 13. Suitability curves for the flow velocity at the ramp weir for each species, based on expert judgment 

following a literature review (see Table 3). 
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Figure 14. Suitability curves for the water depth above the weir for each species, based on expert judgment 

following a literature review (see Table 3). 
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CHAPTER 4: Heatwave effects on the swimming behaviour of a Mediterranean freshwater 

fish, the Iberian barbel Luciobarbus bocagei 

Daniel Mameri, Paulo Branco, Maria Teresa Ferreira, José Maria Santos 

Forest Research Centre (CEF), School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017, 

Lisboa, Portugal 

 

Resumo 

Os eventos meteorológicos extremos como as ondas de calor, que podem ser definidas como 

aumentos de pelo menos 5ºC durante 6 ou mais dias consecutivos, estão a tornar-se mais 

frequentes com as alterações climáticas. Os organismos aquáticos que estão dependentes da 

temperatura do ambiente em redor (ectotérmicos), como os peixes, encontram-se por isso mais 

vulneráveis a estes fenómenos, sobretudo em rios mediterrânicos. Nos meses de verão, vários 

cursos de água secam parcialmente, ficando os peixes confinados em pegos desconectados 

entre si e potencialmente sujeitos a stress térmico até a conectividade fluvial ser novamente 

restabelecida no final da estação seca. Neste estudo, procurou-se avaliar o efeito de uma onda 

de calor, simulada num ambiente laboratorial, no comportamento natatório de juvenis de uma 

espécie potamódroma nativa da Península Ibérica, o barbo-comum Luciobarbus bocagei, nos 

canais dos mesocosmos do campus do Instituto Superior de Agronomia, em Lisboa. Os 

comportamentos monitorizados incluíram a atividade (em movimento ou repouso), ousadia 

(predisposição para transpor um obstáculo) e a coesão de cardume, em situações de baixa 

velocidade, a 18 cm s-1, mimetizando riffles nos rios. Os ensaios comportamentais nos 

mesocosmos, após exposição prévia à onda de calor (30ºC), revelaram que a atividade e a 

ousadia dos barbos expostos a este fenómeno foram inferiores comparativamente ao grupo de 

controlo (25ºC). Este estudo realça a importância de identificar e preservar refúgios térmicos em 

rios que possam ajudar a mitigar o impacto das ondas de calor em peixes nativos, sobretudo no 

período estival. Procurar compreender a interação de ondas de calor com outros fatores de 

stress, nomeadamente a escassez de oxigénio, poderá ser essencial para a elaboração de 

estratégias de mitigação destes fenómenos em peixes de água doce nativos. 

 

Palavras-chave: alterações climáticas, ondas de calor, stress térmico, comportamento natatório, 

rios intermitentes 
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4.1. Graphical Abstract 

 

 

4.2. Abstract 

Heatwaves, which can be defined as increases of at least 5 °C in air temperature for more than 

five consecutive days for a specified reference period, are expected to become more frequent 

under the ongoing climate change, with freshwater organisms being particularly vulnerable to high 

temperature fluctuations. In Mediterranean climate areas, depending on the extent of summer 

droughts and loss of longitudinal connectivity, river segments may become isolated, maintaining 

fish populations confined to a series of disconnected pools, with no possibility to move to thermal 

refugia and thus becoming more prone to thermal stress. In this study, we evaluated the effect of 

a simulated heatwave on the swimming behaviour of juvenile stages of a potamodromous native 

cyprinid fish, the Iberian barbel Luciobarbus bocagei, under experimental mesocosm conditions. 

Behavioural traits included fish activity, boldness and shoal cohesion and were continuously 

measured at a constant flow velocity of 18 cm s−1, which is typical of riffle habitats. Overall, results 

show that the behaviour of juvenile Iberian barbel is likely to be affected by heatwaves, with fish 

displaying lower activity and boldness, while no clear difference was observed in shoal cohesion. 

This study highlights the importance of managing thermal refugia that are crucial for fish to persist 

in intermittent rivers. Future studies should focus on the interaction of heatwaves with other 

stressors, such as oxygen depletion, for a broader understanding of the perturbation affecting 

freshwater fishes under a changing climate. 

 

Keywords: climate change, heatwaves, thermal stress, swimming behaviour, intermittent rivers 

 

 

4.3. Introduction 

Riverine environments are among the most diverse in the world (Dudgeon, 2019), providing 

vital ecosystem services such as fish production, water supply, nutrient transport, health benefits 

and recreational value (Green et al., 2015). But they are also among the most vulnerable, as they 

experience strong anthropogenic pressures from increasing human populations, such as 
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damming, urbanization and nutrient enrichment (Reid et al., 2019; Wen et al., 2017). Climate 

change leading to global warming has been a major topic of concern and will continue to be in 

the next decades, as it is expected to potentiate the effect of these pressures and lead to an 

increase in the frequency and severity of extreme events, such as heatwaves (IPCC, 2014; 

Perkins et al., 2012; Seneviratne et al., 2014). Although a universally accepted definition is lacking 

(Xu et al., 2016), heatwaves can be defined as increases of at least 5 °C in air temperature for 

more than five consecutive days for a specified reference period (WMO, 2001), representing 

discrete events of potentially high thermal stress (Pansch et al., 2018). In contrast to global 

warming driven increase in annual mean temperature, heatwaves are suggested to be more 

significant to natural populations, as high temperatures can have disproportionate effects on 

individuals' life-history traits (such as development time, fecundity and mortality), behaviour, 

survival and reproduction (Chiu et al., 2012; Clarke, 2003; Dhillon and Fox, 2007). Heatwaves, 

which are expected to increase in frequency, duration and/or amplitude (Zampieri et al., 2016), 

may act as important selective forces shaping species distribution and the spatial and temporal 

dynamics of their populations (Sandblom et al., 2014; Shultz et al., 2016). 

The observed increase in the frequency of heatwaves over the past years, particularly in the 

Mediterranean region (Fischer and Schär, 2010; Meehl and Tebaldi, 2004; Vautard et al., 2014), 

has also been associated with an increase in the frequency and severity of summer droughts, 

affecting evapotranspiration, rainfall and soil dryness, which in turn can act as precursors and 

amplifiers of heatwaves (Lennox et al., 2019; Vautard et al., 2007; Zampieri et al., 2009). This 

concern is particularly relevant in Mediterranean rivers, characterized by seasonal and 

predictable hot and dry summers (Cid et al., 2017; Gasith and Resh, 1999), where the intensity 

and duration of heatwaves is expected to increase over the next years (IPCC, 2014). These rivers 

are also characterized by hotspots of biodiversity and harbour highly threatened endemic fish 

fauna (Hermoso and Clavero, 2011; Smith and Darwall, 2006), which will increasingly face the 

effects of heatwaves, and therefore their interaction with such phenomena deserves a clear 

attention. 

Several studies have been conducted on the effect of heatwaves on fish species, but these 

have mostly targeted marine organisms (Kikuchi et al., 2019; Lenanton et al., 2017; Pansch et 

al., 2018; Vinagre et al., 2018; Wernberg et al., 2012), while studies on freshwater fish still remain 

relatively scarce (Figueiredo et al., 2019; Troia and Giam, 2019), despite their generally high 

conservation status (Smith and Darwall, 2006). Furthermore, the vulnerability of freshwater fish 

to such warming events is even more pronounced in river systems affected by increased 

connectivity fragmentation due to man-made barriers, which do not allow fish to freely move along 

the river network to find thermal refugia (Isaak and Rieman, 2013; Kurylyk et al., 2014; Magoulick 

and Kobza, 2003; Sutton et al., 2007). Longitudinal fragmentation can also occur due to river 

intermittence (Jaeger et al., 2014), when these systems dry out during the dry season, reducing 

the available habitat to series of disconnected pools (Cid et al., 2017; Gasith and Resh, 1999), 

from where fish disperse after river connectivity is re-established (Magalhães et al., 2002; Pires 

et al., 2014). 
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Successful re-colonization of river reaches following flow reestablishment is thus critical for 

the survival of Mediterranean freshwater fish populations, and dependent on the ability of fish to 

perform movements and migrations along the river. Studies at the individual level, namely through 

behavioural trials measuring the impact of stressors in fish behaviour and movement (e.g. oxygen 

depletion: Branco et al., 2016; ashes from wildfires: Gonino et al., 2019) are thus critical to 

understand how populations will respond (Killen et al., 2013; Lennox et al., 2019). To the best of 

our knowledge, no information exists on the effects of heatwaves on Mediterranean freshwater 

fish behaviour and activity, particularly of potamodromous cyprinid fish, that perform seasonal 

migrations within rivers for reproduction, feeding and to seek refuge against harsh environmental 

conditions. Experimental work, preferentially performed under controlled conditions where 

variables of interest can be manipulated while controlling for confounding effects, offers an 

excellent opportunity to improve knowledge on heatwave-related disturbance on fish and better 

inform managers for future risk assessments. 

Using an experimental mesocosm, the goal of this study was to assess the effect of a 

simulated heatwave on the swimming behaviour of a Mediterranean potamodromous cyprinid, 

the Iberian barbel Luciobarbus bocagei (Steindachner, 1864). For the purpose of this study and 

considering that freshwater fish can experience considerable diel variations in river temperatures 

(higher during the day and lower during the night; Allan and Castillo, 2007), we divided the 

heatwave treatment in two phases: an initial gradual increase in temperature followed by a 

stabilization of this value with a 5 °C difference to the control (see more in detail in Section 2.2. 

Fish sampling and housing and Fig. S1). We hypothesized that previous exposure to a heatwave 

would: (1) reduce the number of active fish; (2) reduce boldness; and (3) decrease shoaling 

cohesion. The findings from this study can be used to inform river restoration practices to be 

considered in Mediterranean landscapes that are particularly prone to such events, especially 

considering low flows and increases in temperature are expected to become more frequent under 

the current climate change projections (van Vliet et al., 2013). 

4.4. Material and Methods 

4.4.1. Compliance with ethical standards 

All procedures involving animal manipulation, including capture in their natural environment, 

housing and behavioural trials, were carried out in strict compliance with European standards 

(Directive 2010/63/EU) and Portuguese legislation (Decree-Law 113/2013, 7th August, article 35, 

no. 5, transposing the European Directive for animal experimentation). Permits regarding fish 

capture, handling, transportation and holding were issued by the Portuguese Institute for 

Conservation of Nature and Forests (ICNF) (permit numbers 273/2019/CAPT, 274/2019/CAPT 

and 275/2019/CAPT), which also authorized keeping L. bocagei in captivity for 10 days, in 

accordance with the methodology presented in this study. Fish housing and trials were 

coordinated by J. M. Santos, who holds a FELASA level C certification (www.felasa.eu) to direct 

animal experiments. Thus, all the necessary procedures to complete this study were authorized 

and performed with minimum handling stress. No fish were sacrificed for the purpose of this study. 

http://www.felasa.eu/
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4.4.2. Fish sampling and housing 

Sampling of juvenile Iberian barbel took place in Lizandro, a small Atlantic coastal river in 

West Portugal, by means of wadable electrofishing (Hans Grassl IG-200, Germany), following the 

recommendations of the European Committee of Standardization (CEN, 2003). A total of two 

electrofishing events were performed (one per week), in late June–early July, collecting 20 fish 

per event. After each fishing event, captured individuals (mean total length (TL) ± standard 

deviation (SD) = 90.2 ± 10.4 mm, range: 77–118 mm) were transported to the campus of the 

School of Agriculture, University of Lisbon, in a fish transport box (Hans Grassl, 190 L), filled with 

river water and featuring a portable aeration device (ELITE, Germany) to reduce transportation 

stress. 

At the campus, fish were maintained for a maximum period of 48 h in an acclimation tank 

(volume = 700 L), which featured a High Performance Canister Filter FX4 (turnover rate: 2650 L 

h−1, Fluval, Quebec, Canada), with biological media (Biomax, Fluval, Quebec, Canada), to 

reduce potential stress prior to the acclimation in the laboratory. The tank featured two U-shape 

ceramic roof tiles (45 cm long×25 cm wide×10 cm high) to provide shelter (Stammler and Corkum, 

2005) and reduce stress. Water quality in the acclimation tank (temperature = 22.5 ± 0.6 °C; pH 

= 7.5 ± 0.2; dissolved oxygen (DO) = 7.7 ± 0.3 mg L−1) was checked daily with portable meters 

(HANNA's temperature probe HI98304 and oxygen probe HI98193, Portugal) and aquarium test 

stripes (for pH; Tetra, Germany). No fish died following transportation and housing in the tank. 

Following the acclimation step after each sampling event and period of quarantine, 16 fish 

were moved to four PVC tanks (65 L each), in shoals of 4 fish per tank, randomly selected. Each 

tank was covered by a mesh panel on the top to provide visual cover for the fish and was equipped 

with one filter (turnover rate: 378 L h−1, AquaClear 20, Quebec, Canada) with biological media 

(Biomax, Fluval, Quebec, Canada). Fish shoals in two tanks acted as controls, whereas the 

remaining two were subjected to an experimental heatwave treatment. For the purpose of this 

work, a heatwave was defined as a 5 °C increase in water temperature in relation to the control 

temperature (Kikuchi et al., 2019), for six consecutive days. Control temperature had a mean 

value of 24.5 ± 0.7 °C (Table 4), which is consistent with the range of stream temperature records 

in the Lizandro River in summer (18.0–26.1 °C; mean ± SD = 22.1 ± 1.9 °C; data retrieved 

between 1998 and 2008 in a nearby meteorological station – code 20A/01; APA, 2019). 

Temperature increase in the heatwave tanks was achieved through the use of thermal heaters 

(one per tank, Hydor 300 W, Italy), switched on every day at 9:00 h (temperature = 24.9 ± 0.7 °C) 

and calibrated to 32 °C, allowing an increase in water temperature at a rate of 1.6 °C/ h, until a 5 

°C difference to the control temperature was achieved (at 12:00 h, see Table 4 in Results and 

Fig. 18 in Supplementary data for further details). Heaters were then calibrated to 30 °C and kept 

operating for further six hours, until 18:00 h (temperature = 29.7 ± 0.6 °C), when they were turned 

off. This assured a gradual and natural temperature decrease overnight, similar to the one that 

rivers experience during such phenomena (Allan and Castillo, 2007). To observe a minimum 5 

°C difference over the controls, water temperature was monitored four times a day (HANNA's 

probe HI98304), whereas DO (HANNA's probe HI98193), pH, nitrates and nitrites (aquarium test 
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strips; Tetra, Germany) were checked once a day. To prevent higher levels of nitrates and nitrites, 

10 L (15%) of the total amount of water in each tank were replaced every two days. Fish feeding 

(Tetra Pond sticks) stopped 24 h prior to behavioural trials. 

 

4.4.3. Mesocosm facility 

The effects of the experimental heatwave on fish behaviour were assessed in the mesocosm 

facility located at the School of Agriculture campus, University of Lisbon, Portugal. Mesocosms 

are outdoor experimental systems that examine the natural environment under controlled 

conditions, where a variable can be manipulated while controlling for confounding factors and 

incorporating natural variations (such as photoperiod and air temperature), thus providing a link 

between field surveys and highly controlled laboratory experiments (Calapez et al., 2017; Gonino 

et al., 2019). 

Table 4. Water quality parameters (mean values and standard deviations, SD) throughout the acclimation 
step for control and heatwave groups (note: overnight temperatures refer to the minimum temperatures 
recorded within the period 18:00 h–09:00 h.; DO stands for dissolved oxygen). (*) Significant differences in 
water temperatures and DO were found between control and heatwave treatments (temperatures: Mann-
Whitney; DO: t-test; p < .05). 

Parameter Control (mean ± SD) Heatwave (mean ± SD) 

Temperature (ºC) 
  

     09:00 h* 24.4 ± 0.7 24.9 ± 0.7 

     12:00 h* 24.5 ± 0.8 29.3 ± 0.5 

     15:00 h* 24.5 ± 0.7 29.3 ± 0.6 

     18:00 h* 24.6 ± 0.7 29.7 ± 0.6 

Overnight* 24.4 ± 0.7 24.9 ± 0.5 

DO (mg L-1)* 7.0 ± 0.3 6.6 ± 0.3 

pH 7.2 ± 0.1 7.2 ± 0.1 

Nitrates (mg L-1) 20.9 ± 6.8 23.0 ± 5.3 

Nitrites (mg L-1) 0.5±0.5 1.0 ± 1.6 

 

The present mesocosm consisted of a set of 2 tinplate-lined outdoor artificial flume channels 

(each 0.4 m wide, 4 m long and 0.2 m deep), with the water being supplied from a 3000 L central 

tank (Fig. 15). The water source was an in situ natural spring considered to have good quality 

(temperature: 19.1 °C; pH = 8.06; conductivity = 0.87 mS cm−1; DO = 9 mg L−1; Leite et al., 2019; 

Gonino et al., 2019). Water was then distributed to head containers (70 L) located in the 

uppermost section of each channel (henceforth designated as upstream tanks). Each channel 

was delimited downstream by a fixed mesh panel (to prevent fish from dropping out of the 

channel) that allowed water to ran to a downstream tank (70 L) connected to a pump (Kripsol OK-

71 B, 0.56 kW), operating in a recirculation flow system towards the upstream tank, thus allowing 

upholding water conditions independently of the source tank. Water distribution and recirculation 

was ensured with a PEAD pipe system connected to the pump. Each flume channel (Fig. 15, 

section IV) was separated from the upstream tank (III) by a 47 cm long and 36 cm high ramp, at 

a slope of 50%. Fish could move freely between the main channel and the upstream tank, 

provided that they could successfully negotiate the ramp. 
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4.4.4. Experimental procedure 

Following the six-day acclimation period, fish were transported to the mesocosm, to assess 

their swimming behaviour after exposure to the control and heatwave treatments. Two shoals of 

fish (each n = 4) – a control and one subjected to the heatwave - were then placed in the 

lowermost section (60 cm length and 40 cm wide) of each of the two flume channels, delimited 

upstream by a removable mesh panel for acclimation purposes (see section V in Fig. 15). Fish 

were then acclimatized to the channels' conditions for 10 min (water temperature = 23.1 ± 0.7 °C, 

pH = 8.6, DO = 8.9 mg L−1, conductivity = 1.0 ms cm−1). The water column was maintained at a 

depth of 12 cm with an average velocity of 18 cm s−1, within the range of velocities that the Iberian 

barbel experiences in Mediterranean rivers throughout the year, namely in riffle habitats 

(Martínez-Capel et al., 2009; Santos et al., 2018). At the start of each trial, the upstream mesh 

panel was removed to allow fish to swim freely through the whole channel. 

 

Figure 15. Schematics of the mesocosm facility: (I) natural spring acting as the water source; (II) 3000 L 
central tank, retrieving water directly from the spring; (III) upstream tank (70 L capacity, one for each 
channel); (IV) flume channel (area where fish behaviour was visible and monitored by the observer), 
including (V) the acclimation zone in the lowermost area; (VI) downstream tank, to collect the water; (VII) 
pump connected to the downstream tank, redirecting the water through the pipes back again to the upstream 
tank, creating a recirculating flow. 

Behavioural traits monitored included: (1) activity, given by the total number of active fish 

(i.e. displaying exploratory behaviour, directional changes or fleeing pattern, and not holding 

position); (2) boldness, given by the total counts of fish that entered the ramp in the upstream 

section of the flume and actively attempted to negotiate it, based on the idea that a novel 

environment is considered dangerous, and that venturing into the uppermost section represents 

willingness to undertake risk (Laubenstein et al., 2018); (3) shoal cohesion, given by the number 

of fish in the flume that were within one body length of each other (Gonino et al., 2019). Similar 

behavioural traits have been used in previous studies to assess fish behaviour due to their 
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ecological relevance (Amaral et al., 2019; Ariyomo and Watt, 2012; Brownscombe et al., 2014; 

Laubenstein et al., 2018; Leite et al., 2019; Gonino et al., 2019). Both activity and boldness have 

been positively associated with increased feeding and growth rates (Laubenstein et al., 2018) and 

with the searching for more favourable areas for refuge and spawning (Biro et al., 2003). Shoaling 

cohesion may confer increased survivorship to fish living in groups, namely by improving threat 

detection and reducing stress and individual risk, despite the potential drawback of increased 

competition for space and food (Tien et al., 2004). 

Each of the two experimental treatments (control and heatwave) was replicated four times. 

Each replicate lasted for 60 min and consisted in the instantaneous sampling of behavioural traits, 

together with the total number of fish in the main channel of the flume. The observers stood still 

at an approximate distance of 0.5 m downstream from each channel, with a full view of it, 

approaching and leaving discreetly the observation points whenever necessary, to obtain a 

snapshot status of fish behaviour every 3 min (with the exception of boldness, as it was measured 

continuously, with each attempt to actively negotiate the ramp being assigned to the 

corresponding 3-min interval). This procedure was tested in previous experiments in the 

mesocosm facility with the same species and was considered adequate, since no sudden 

changes in fish behaviour were noted (Gonino et al., 2019). Channel treatment and observer 

allocations were randomized (i.e. the same treatment was not always housed by the same flume, 

and observers monitored a different flume in each trial), thus avoiding possible pseudo-replication 

issues. After each trial, fish were removed from the channel and measured (TL, to the nearest 

mm). Fish were used only once and were released after trials were concluded. Fish total length 

(TL) did not differ between treatments (control: 90.2 ± 7.3 mm, heatwave: 91.7 ± 13.1 mm; t-

statistics = −0.384, df = 30, p = .704). 

 

4.4.5. Data analysis 

Data normality and heteroscedasticity of water quality parameters and fish TL were 

evaluated through the Shapiro-Wilk and F tests, respectively, and differences between treatments 

for each parameter were assessed through the Mann-Whitney test (all except DO and TL, for 

which a t-test was applied). Each of the behavioural traits (activity, boldness and shoal cohesion) 

was fitted into a generalized linear model (GLM) following a Poisson distribution, with three fixed 

effects: (1) treatment (control/heatwave); (2) time of sampling (every 3-min interval, when 

behaviour was recorded); and (3) number of fish present in the main channel of the flume 

(excluding the upstream tank, thus accounting for a potential bias in the measured behaviour, 

driven by the number of fish that were not visible to the observer – see Fig. 1). A fourth Poisson 

GLM was built to assess a possible association between fish activity and shoal cohesion (Bartolini 

et al., 2014; Pritchard et al., 2001), with the last being the only fixed effect incorporated in the 

model (see Fig. 19 in Supplementary data). A significance level (α) of 0.05 was considered and 

all analyses were performed in R (R Core Team, 2019, version 3.6.2). Model fit was assessed 

through the deviance goodness-of-fit test, by comparing the deviance of each fitted model with 

the one of the corresponding null model (function “pchisq” from the R software “stats” package). 
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4.5. Results 

4.5.1. Exposure to experimental heatwave 

During the acclimation phase, DO and water temperatures were significantly different 

between experimental treatments (Table 4). Differences in mean temperature during the 

heatwave period (09:00 h–18:00 h) ranged between 0.5 °C (at 09:00 h, before turning the heaters 

on) and 5.1 °C (at 18:00 h, before turning the heaters off) − (Table 4). Minimum temperatures 

recorded overnight also differed between experimental groups, contrastingly with pH, nitrates and 

nitrites, for which no significant differences were found (Table 4). 

 

4.5.2. Assessment of fish behaviour 

 

Experiments revealed that fish activity was dependent on the type of treatment (β = −0.279, 

z = −3.699, p < .001), with heatwave fish displaying lower frequencies of active individuals (59.5% 

active) relatively to control ones (82.7% active) (Fig. 16). As activity depended on the number of 

fish visible to the observer (average of 3.4 ± 0.6 in control and 3.9 ± 0.6 in heatwave), an effect 

of the number of fish present in the channel was found (β = −0.325, z = −0.078, p b .001), while 

the effect of the time of sampling (3-min interval) was not significant (β = −0.004, z = −1.601, p = 

.109). Boldness was also significantly different (β = −0.549, z = −3.230, p = .001) between the 

control (98 out of 156 attempts to negotiate the ramp, corresponding to 62.8%) and the heatwave 

fish (58 out of 156 attempts, 37.2%) (Fig. 16). No significant effect on boldness was found when 

considering the number of fish in the channel (β = 0.014, z = 0.096, p = .924) nor the time of 

sampling (β = −0.003, z = −0.626, p = .532). 

 

 

Figure 16. Relative frequency (%) of active fish (activity) and active attempts to negotiate the ramp 
(boldness) in each of the two experimental treatments: control (light grey) and heatwave (dark grey). The 
Poisson Generalized Linear Model revealed significant differences between control and heatwave fish in 
terms of both activity and boldness (“*”, p < .05). 
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Contrastingly with activity and boldness, no clear effect of the treatment was observed on 

shoal cohesion (β = −0.085, z = −1.796, p = .073). The time of sampling was also a non-significant 

variable for this behavioural trait (β = −0.001, z = −0.818, p = .413). However, similarly to activity, 

this behavioural trait was influenced by the number of fish in the channel (β = −0.185, z = −3.963, 

p < .001). Fish were found to be alone (i.e. with no fish within one body length distance) only 

once, in the control treatment (Fig. 17). Shoal sizes of 2 and 3 fish occurred more frequently in 

control fish, and shoal sizes of 4 fish were found more often among heatwave fish, but with similar 

relative frequencies for each shoal size (Fig. 17). 

 

Figure 17. Relative frequency (%) for each measured value of shoal cohesion (classified as 1, no fish within 
a body length of each other; 2, two fish within a body length of each other; 3, three fish within a body length 
of each other; 4, all fish within a body length of each other; 4, all fish within a body length of each other) in 
each of the two experimental treatments: control (light grey) and heatwave (dark grey). The Poisson 
Generalized Linear Model did not reveal significant differences in shoal cohesion between treatments (β = 
−0.085, z = −1.796, p = .073). 

 

4.6. Discussion 

Sequential stressful events with intermittent stress relaxation may have additive, synergistic 

or antagonistic cumulative effects (Bevelhimer and Bennett, 2000; Gunderson et al., 2016), 

depending on species identity, stressor identity, the existence of stress memory and the duration 

of the recovery phase (Gunderson et al., 2016; Walter et al., 2013). In Mediterranean climate 

regions, fish survival, dispersal and recruitment following flow re-establishment depend on habitat 

heterogeneity and favourable environmental conditions (Pires et al., 2010; Magalhães et al., 

2002), such as water temperatures that are within their thermal tolerance ranges. Changes in 

thermal regimes, particularly increases in water temperature close to sublethal values following 

successive heatwaves, can lead to thermal stress and influence freshwater fish condition and 

survival (Beitinger et al., 2000; Jesus et al., 2016; Zaragoza et al., 2008). This study assessed 

the effect of a simulated heatwave on the behaviour of juvenile Iberian barbel, contributing to 
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reduce the knowledge gap on the effect of these extreme climate events on the behavioural 

responses of Mediterranean freshwater fishes. Overall, the heatwave treatment was 

characterized by a daily gradual temperature increase up to 5 °C, during six consecutive days 

and by lower levels of DO relatively to the control, but still considerably higher than the ones used 

in oxygen depletion studies on the Iberian barbel, which ranged from 1.4 mg L−1 to 4.4 mg L−1 for 

high and mild oxygen depletion, respectively (Branco et al., 2016; Hayes et al., 2019). 

Fish activity under the simulated heatwave was found to be significantly lower than in control 

one as initially predicted, with this decrease in relation to temperature also being observed in 

another potamodromous species, the brown trout Salmo trutta (Colchen et al., 2017), though it 

should be noted that the magnitude of temperature treatments was considerably lower (between 

0 and 12 °C). Decreases in activity as consequence of other stressors (other than temperature) 

were also reported by Gonino et al. (2019) for the Iberian barbel, with the stressor being the high 

concentration of ashes in water, following wildfires in Mediterranean landscapes. Some studies 

concerning thermal stress have shown the opposite effect, i.e., fish became more active when 

temperature increased (Baduy et al., 2016; Bartolini et al., 2014), but the later focused on tropical 

species that may experience higher temperature extremes in their natural habitats. It has also 

been hypothesized that higher temperatures can increase activity until the optimum thermal range 

of a species (Britton and Pegg, 2011; Vinagre et al., 2018); however, when water temperature 

approaches the critical thermal maximum (CTM) of that species, individuals may become less 

active (Baras, 1995). Although CTM was not determined for the Iberian barbel, previous work by 

Jesus et al. (2016) involving transcriptome profiling in Iberian chubs (Squalius carolitertii and 

Squalius torgalensis) has shown that temperature increases from 18 °C to 30 °C at a rate of 1 

°C/h (in a 12 h treatment) could increase gene expression of Heat Shock Proteins (HSPs), which 

respond to thermal stress. Furthermore, studies on the common barbel Barbus barbus (Linnaeus, 

1858) revealed that CTM in juvenile stages varied between 31 and 32 °C (Rutledge and Beitinger, 

1989; Souchon and Tissot, 2012), slightly above the mean temperature that fish experienced 

during the heatwave treatment in this study. During the dry season, Mediterranean fish 

populations may be exposed to temperatures higher than 30 °C (Jesus et al., 2016; Pires et al., 

2010). Depending on the extent of summer droughts and/or loss of longitudinal connectivity, these 

habitats may become isolated from the river reach upstream and/or downstream, maintaining fish 

confined in pools (Cid et al., 2017; Gasith and Resh, 1999), with no possibility to move to cooler 

waters. Further increases in river water temperature during one or subsequent heatwaves, 

coupled with additional stressors such as oxygen depletion and increased competition, can add 

further stress to native fish (Magoulick and Kobza, 2003). 

Similarly to activity, the number of fish that entered the ramp in the upstream section of the 

flume and actively attempted to negotiate it (quantified as a measure of boldness) was also lower 

in heatwave fish than in control ones. Previous studies on different vertebrate species highlight a 

significant effect of boldness upon an individual's probability to disperse and migrate 

(Dingemanse et al., 2003; Fraser et al., 2001). Particularly in freshwater fish, it has been shown 

that the probability of migrating is higher in bolder individuals (e.g. in the roach Rutilus rutilus, 
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Chapman et al., 2011; in the mosquito fish Gambusia affinis, Cote et al., 2010). Although bolder 

individuals may be more exposed to predators (Biro and Dingemanse, 2009), this greater 

willingness to disperse and explore novel environments may be beneficial when the predation risk 

is low, or when competition for resources is high at the original environment (Chapman et al., 

2011). This seems to be the case for some Mediterranean potamodromous species such as the 

Iberian barbel, as they move along the river throughout their life cycle to search feeding areas, 

refuge zones or spawning habitats, and where the predation risk is generally considered to be 

low due to the residual abundance of piscivorous fish (e.g. largemouth bass Micropterus 

salmoides), which seems to be the case of the Lizandro River, where fish sampling for this study 

took place. It should also be noted that while not being the focus of this study, passage efficiency 

(i.e. the number of successful attempts to overcome the ramp and move to the upstream tank) 

was also determined and was found to be relatively low for both treatments (15.3% in control and 

10.3% in heatwave), though the features of the obstacle (47 cm long and 36 cm high ramp, at a 

slope of 50%) are not considered suitable for cyprinids in general (Larinier, 2002). 

Shoal cohesion was characterized by assessing shoal size, i.e., the number of fish in the 

channel that were within one body length of each other, through instantaneous sampling of 

behaviour every 3 min. Contrastingly with our initial prediction and the other two behavioural traits 

(activity and boldness), no significant differences in shoal cohesion were found between 

heatwave and control fish. Previous works have shown that shoal cohesion and coordination 

among its members tends to decrease with increasing temperature alone (Bartolini et al., 2014; 

Colchen et al., 2017) or in combination with another stressor (e.g. acidification in meagre 

Argyrosomus regius; Maulvault et al., 2018). Nonetheless, it should be noted that these studies 

used a different metric to assess shoal cohesion: the nearest neighbour distance (NDD), which 

consists of the closest distance of a fish to a conspecific (Tien et al., 2004). In this study, distance 

between fish was only assessed at a precision of one body length to allow the observer in each 

flume to properly obtain a snapshot picture of three behavioural traits simultaneously (activity, 

boldness and shoal size) and instantaneously. The lack of significant differences in shoal 

cohesion may also be partially explained by fish activity, as some authors have suggested that 

an increase in activity may promote higher shoal cohesion (Pritchard et al., 2001). This trend was 

observed in this study, with a significant (yet mild) association between these two traits (see Fig. 

S4.2 in Supplementary data). Regardless of the relation between fish activity and shoal cohesion, 

evidence from previous studies suggests that reduced shoal cohesion may lower survival and 

dispersion (Bartolini et al., 2014; Colchen et al., 2017; Maulvault et al., 2018), making it a suitable 

trait to assess the response to a stressor. 

 

4.7. Conclusions 

Overall, this study shows that the swimming behaviour of Iberian barbel is likely to be affected 

by the occurrence of heatwaves, displaying lower activity and boldness. This can have negative 

consequences on both individual and collective performance, affecting seasonal migrations for 

feeding and reproduction, and ultimately annual recruitment and population persistence. By 
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assessing fish behavioural response at the individual level, we gain valuable information on how 

its populations may respond to environmentally stressful conditions (Killen et al., 2013; Lennox et 

al., 2019). It should be noted that these responses may depend not only on the duration and 

frequency of the heatwave (which in our study lasted six days), but also on the rate of temperature 

change (or experimental ramping rate, 1.6 °C/h in this work) and on its interaction with critical 

thermal limits and warming tolerances (Allen et al., 2016) or flow conditions leading to plasticity 

in behaviour (Alexandre et al., 2014). Such interactions should be considered in future 

assessments on the effect of heatwaves on freshwater fish. Moreover, other climate-driven 

stressors may come into play in association with heatwaves, due to a combination of both 

anthropogenic pressure and climate change, such as drought (Lennox et al., 2019), salinization 

(Cañedo-Argüelles et al., 2016, 2019) and dispersion of exotic species (Quiroga et al., 2017), for 

which the distribution range may increase due to generally higher tolerance to temperature 

increases (see the work on the chanchito Australoherus facetus; Baduy et al., 2016). 

While this study focused on juvenile stages of a Mediterranean fish species that make use 

of pools during the dry season, it is expected that other life stages, larvae (Pankhurst and Munday, 

2011) and adults (White et al., 2019), as well as other freshwater organisms such as amphibians 

(Carreira et al., 2016), crayfish (Carreira et al., 2017), snails (Leicht and Seppälä, 2019) and 

macrophytes (Cao et al., 2015) may also be affected by heatwaves. Potential consequences of 

increases in water temperature include changes in movement patterns, delays in migration and 

changes in microhabitat use in search for cooler water patches (Caissie, 2006; Jonsson, 1991; 

Olden and Naiman, 2010). One important conservation measure to counteract these negative 

heatwave impacts would be to restore and preserve autochthonous riparian forests (such as 

willow Salix sp., ash Fraxinus sp., alder Alnus sp. and poplar Populus sp.), that can provide 

instream habitat and overhanging shade, promoting cooler water patches (Kurylyk et al., 2014; 

Ormerod, 2009; Torgersen et al., 1999; Trimmel et al., 2018). Recent studies have highlighted 

the role of cool water patches for fish species such as salmonids (e.g. Fullerton et al., 2017; Hess 

et al., 2016; Keefer et al., 2019). These patches can act as thermal refugia, avoiding fish having 

to cope with physiological stress resulting from temperatures above their optimum thermal range 

(Farless and Brewer, 2017; Magoulick and Kobza, 2003). To conclude, future studies should 

focus on the interaction of the multiple stressors driven by climate change, for a broader 

understanding of the perturbation affecting freshwater fishes, and mitigation measures should 

focus on river restoration and management of thermal refugia. 
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4.9. Supplementary Material 

 

Figure 18. Water temperature (ºC) in control (blue) and heatwave (red) treatments during the period when 
turned on (9:00-18:00h). Mean values and 95% confidence intervals for both treatments are represented by 
dots and arrows, respectively. 

 

 

Figure 19. Shoal cohesion in relation to fish activity (i.e. the number of active fish). A significant association 
was found between shoal cohesion (classified as 1, no fish within a body length of each other; 2, two fish 
within a body length of each other; 3, three fish within a body length of each other; 4, all fish within a body 
length of each other) and fish activity (β=0.057, z=3.175, p=0.002; Poisson Generalized Linear Model with 
activity as the single fixed effect). 
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Resumo 

A investigação em hydropeaking, que consiste na rápida variação da altura e velocidade da água 

a jusante de centrais hidroelétricas após a libertação de caudais turbinados, tem vindo a 

expandir-se rapidamente nos últimos anos, com um foco recente no impacto das variações de 

temperatura associadas (thermopeaking). As variações de caudal e temperatura podem afetar 

os movimentos dos peixes e padrões migratórios em fases críticas do seu ciclo de vida, ao 

induzir, por exemplo, a deriva catastrófica destas espécies, se não forem capazes de lidar com 

estas variações ou de procurar refúgio. Neste estudo, foi avaliado o impacto do cold 

thermopeaking, com descidas médias de temperatura de 5,5ºC no pico de caudal de um evento 

de hydropeaking, na deriva de larvas da espécie cipriniforme Chondrostoma nasus, em 

comparação com um tratamento de hydropeaking a uma temperatura constante. Os ensaios 

realizados nos canais da estação hidromorfológica de Lunz am See (HyTEC – Hydromorphology 

and Temperature Experimental Channels), nos meses de verão, revelaram um aumento da 

deriva das larvas para jusante dos canais com a descida abrupta da temperatura durante a 

subida (up-ramping) e pico de caudal (peak flow), estando os dois fenómenos fortemente 

associados. Também foi encontrada uma correlação entre a temperatura no início dos ensaios e 

a deriva observada na fase de aclimatação (sendo esta maior quanto mais fria estava a água). 

Os resultados obtidos sugerem que as larvas de cipriniformes poderão reagir mais fortemente a 

alterações abruptas de temperatura comparativamente a variações de caudal, e que é 

necessário manter um regime térmico adequado a jusante das centrais hidroelétricas, por forma 

a precaver a deriva de fases larvares e salvaguardando a migração para montante destas 

espécies. 

 

Palavras-chave: temperatura da água, larvas, cipriniformes, energia hidroelétrica, canais 

experimentais, caudais turbinados 
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5.1. Abstract 

Research on how intermittent water releases from hydropower plants affect the early life stages 

of fish has advanced in the last years, focusing not only on the direct impacts of rapid flow changes 

(hydropeaking), but also on the short-term fluctuations in water temperature (thermopeaking). 

Flow and thermal fluctuations caused by hydropeaking may affect fish movement patterns and 

migration at critical stages of a species’ life cycle, e.g., by inducing passive downstream drift. 

Using two experimental outdoor channels, we investigated how nase (Chondrostoma nasus, 

Cypriniformes) larvae respond to a rapid drop in water temperature during hydropeaking 

(simulating a cold thermopeaking event), reaching on average 5.5 °C under peak flow (maximum 

discharge) conditions, in comparison with a hydropeaking treatment with a constant water 

temperature regime. Responses of fish larvae were analyzed during acclimation, up-ramping 

(increase in discharge), peak flow and down-ramping (decrease in discharge) phases. Fish drift 

increased during peak flow in the cold thermopeaking treatment compared to hydropeaking. 

Higher drift rates were also negatively associated with pronounced water temperature drops 

during peak flow conditions. In addition, the starting temperature of the experiment influenced drift 

during up-ramping. Overall, the results suggest that cold thermopeaking may increase drift in the 

early life stages of cypriniform fish compared with hydropeaking with stable water temperature. 

Hence, monitoring and active water temperature adjustments following hydropower releases 

should be adopted as strategies to mitigate power plant-related impacts on aquatic organisms. 

 

Keywords: thermal fluctuations, young-of-the-year, cyprinids, hydropower, flume experiments, 

pulsed flows 

 

5.2. Introduction 

Throughout their life cycle, fish shift between habitats for feeding, reproduction, and 

sheltering (Lucas and Baras 2001). Drift, which can be defined as a downstream movement of 

aquatic organisms, willingly (active) or forced by water velocities exceeding a species’ swimming 

capability (passive), plays a fundamental role in the migration of early life stages of fish such as 

larvae (Zens et al. 2018; Nagel et al. 2021). Drift has long been described as an important fish 

migration process to search for more suitable rearing habitats (Jonsson 1991; Lucas and Baras 

2001; Reichard et al. 2004; Pavlov et al. 2008; Koster et al. 2013; Lechner et al. 2016). While fish 

swimming performance can determine the success of habitat shifts, these movements are 

triggered by changes in environmental conditions. Particularly flow velocity and water temperature 

are known to be among the main environmental drivers of fish migration in search of more suitable 

areas for each life stage (Jonsson 1991; Poff et al. 1997; Caissie 2006; Rakowitz et al. 2008; 

Webb et al. 2008; Olden and Naiman 2010). 
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Humans impact flow velocity and water temperature through the construction of river 

regulation infrastructure, of which hydropower plants are one of the most common worldwide 

(Steel and Lange 2007; Shen and Diplas 2010; Tofolon et al. 2010; Jones and Petreman 2014; 

Couto and Olden 2018; Hayes et al. 2018; Song et al. 2018). Hydropeaking is one operation mode 

of hydropower plants, consisting of short-term flow fluctuations downstream of dams caused by 

the rapid release of water from turbines due to peaks in energy demands (Greimel et al. 2018; 

Hayes et al. 2022a). Research on hydropeaking increased significantly in the last decade 

(Boavida et al. 2015; Auer et al. 2017; Romão et al. 2018; Costa et al. 2019; Amaral et al. 2021; 

Hayes et al. 2021; Führer et al. 2022). Particularly for early life stages of fish, such as larvae and 

juveniles, the impacts of hydropeaking can endanger successful recruitment and, ultimately, their 

survival, as it may cause fish to become stranded or passively drift, making them unable to reach 

critical habitats for life cycle requirements (Kupren et al. 2011; Rolls et al. 2013; Wang et al. 2013; 

Lechner et al. 2018). 

More recently, research on the ecological impacts of hydropeaking focused not only on the 

direct impacts of rapid flow changes, but also on the associated short-term fluctuations in water 

temperature (Carolli et al. 2011; Bruno et al. 2012; Schülting et al. 2016; Choi and Choi 2018; 

Feng et al. 2018; Auer et al. 2023), a process known as thermopeaking (Zolezzi et al. 2010). 

Thermopeaking occurs due to water stratification in reservoirs, following a seasonal pattern 

(McCartney 2009; Tofolon et al. 2010; Hayes et al. 2022a). When releases from deeper water 

layers in stratified reservoirs occur (hypolimnetic discharges), it may lead to a temperature drop 

in the receiving river (cold thermopeaking), particularly during the summer season. In alpine 

rivers, water temperature during peaking operations can cool down the water temperature 

downstream the dam up to 6 °C in spring and summer (Zolezzi et al. 2010). Contrastingly, in 

winter, the opposite pattern is observed, with an increase in temperature in the receiving river – 

warm thermopeaking (Zolezzi et al. 2010). 

While awareness of the impacts of thermopeaking is growing, its ecological impacts on 

freshwater populations are still poorly understood. Much of the published literature on the 

ecological effects of thermopeaking focuses on macroinvertebrate drift (e.g., Carolli et al. 2011; 

Bruno et al. 2012; Schülting et al. 2016). Fewer studies have assessed the impacts of 

thermopeaking on fishes (Auer et al. 2023; Casas-Mulet et al. 2016). Understanding the impacts 

of abrupt changes in temperature due to thermopeaking is particularly important, considering that 

it can lead to involuntary downstream displacement, i.e., passive drift (Young et al. 2011; Auer et 

al. 2017, 2023). Such involuntary movements are likely linked to increased hydraulic stress 

(Fuiman and Batty 1997; von Herbing 2002). Also, fish may seek areas with more optimal 

temperatures, entailing habitat shifts (Keckeis et al. 1997; Schiemer et al. 2002; Auer et al. 2023). 

Therefore, it is crucial to understand how fish cope with rapid changes in flow conditions and 

associated short-term thermal variations caused by hydropower activity to establish the best 

mitigation frameworks, including active temperature adjustment of the water released during 

hydropeaking. In this study, we evaluated the impact of hydropeaking and cold thermopeaking on 

larvae of nase Chondrostoma nasus (L.), a cypriniform species for the conservation of European 
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rivers, whose populations have been declining in the last several decades (Jurajda 1995; 

Schiemer et al. 2002; Hayes et al. 2022b). We performed fume experiments in an outdoor semi-

natural stream facility to assess whether cold thermopeaking could lead to a higher fish drift than 

hydropeaking without temperature changes. We predicted that (1) hydropeaking with cold water 

release (cold thermopeaking) would entail greater fish larvae drift than hydropeaking with 

constant water temperature, and that (2) the more pronounced the temperature drop, the higher 

the drift will be, and (3) fish drift will occur not only in higher velocity areas, but also closer to the 

shoreline (Auer et al. 2023). 

 

5.3. Material and Methods 

5.3.1. Experimental set-up 

This study was conducted in the summer, from July 22nd until August 3rd, 2021. All trials were 

conducted during daylight, from 8:30 to 18:30, in the absence of rain. We used nase larvae (mean 

TL = 25.1 mm ± 2.1 SD) from a fish hatchery in Lower Austria that used wild-caught breeders 

(Auer et al. 2017). Larvae were transferred to the HyTEC (Hydromorphology and Temperature 

Experimental Channel) facility in Lunz am See (Lower Austria) and reared in circular holding tanks 

(with an approximate volume of 0.7 m3 each) 1 month before the start of the experiments. The 

tanks had a continuous water supply from lake Lunzer See and fish were fed 2–4 times a day 

with live brine shrimp (Artemia) at different hours each day to avoid learning effects (Brodersen 

et al. 2008). Larvae were in the sixth (VI) larval stage of development (Penaz 1974), with a total 

length ranging from 20.9 to 29.2 mm at the start of the experiments. 

The experimental facility consists of two outdoor seminatural channels, 40 m long and 6 m 

wide, a research station for controlling the water discharge in the two channels, and two pressure 

pipelines that take the required water from Lunzer See and transport it to the channels (Fig. 1). 

One pipe is located near the surface and the other is installed deeper, allowing temperature 

manipulation in both channels and fish tanks. The water is led back into Lunzer Seebach, the 

lake’s natural run-of, via a height-adjustable dam beam construction at the downstream end of 

the experimental channels. Channel water temperature, depth, and flow velocity are easily 

adjusted, guaranteeing controlled and repeatable experimental conditions (Auer et al. 2023; Haug 

et al. 2022). The two parallel channels had a longitudinal slope of 0.5% and a lateral slope of 5%, 

with a fat bank substrate dominated by fine gravel and coarse sand (median grain size 

d50=2.0 mm, 90th percentile grain size d90=5.1 mm). The experimental area encompassed the 

most downstream section of both channels (4 m length and 3 m width), with five drift nets installed 

at the lower end of each channel (Figure 20). Flow velocity measurements (Flowtherm NT–

Hoentzsch) were conducted immediately before the start of this study and checked on both 

channels during the experimental period to ensure identical flow velocity gradients. Water depth 

and flow velocity were measured every 30 cm along a cross section, with up to three 

measurements alongside the water column in each point coordinate (Figure 21). 
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Figure 20. (Left) Aerial picture of the experimental facility (https://hydropeaking.boku.ac.at). The lower 

sections of both channels (RC–right channel, LC–left channel, both in red) were used for the trials. (Right) 

Scheme of the experimental area in LC (symmetrical to the one in RC): flow direction (and velocity) is 

indicated by the (length of) arrows, and the downstream drift nets (64 × 75 cm) are numbered from the 

deepest and fastest segment (N1) to the shallowest and slowest segment (N5); the wetted area at 

acclimation (wetted width: 1.50 m) and peak flow (2.60 m) are represented by the blue and light blue fills, 

respectively; the dashed line refers to the cross-section where flow velocity was measured (Figure 21). 

 

 

 

Figure 21. Channel hydraulics during (A) acclimation (15 L·s−1) and (B) peak flow (80 L·s−1). Water depth 

(y-axis, in cm) and flow velocity (contour, in cm·s−1) were measured every 30 cm along a cross section 

(Figure 20), from the deepest part of the channel to the shoreline (x-axis), with up to three measurements 

alongside the water column in each point coordinate. The color legend is relative to each plot. The area 

without water (including the gravel bank with a lateral slope of 5%) is represented in grey. Nets range from 

N1 (fastest and deepest segment) to N5 (slowest and shallowest). 

https://hydropeaking.boku.ac.at/
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Two hydropeaking treatments were implemented: one with a constant temperature regime 

(“hydropeaking”) and a second one where the temperature dropped rapidly during hydropeaking 

(“cold thermopeaking”). Each trial lasted 30 min, starting with 50 nase larvae being transported in 

opaque buckets and stocked in the upstream channel section (3 m ahead from the drift nets and 

1 m behind the upper limit of the trial area) at a base flow of 15 L·s−1. The water temperature in 

the tanks (mean = 20.0 °C ± 1.6 SD) and channels (mean = 19.8 °C ± 1.7 SD) was nearly 

identical, with an average temperature difference of 0.3 °C. Also, the starting temperature in 

hydropeaking (mean = 19.8 °C ± 1.8 SD) and cold thermopeaking (mean = 19.8 °C ± 1.7 SD) 

trials was the same. Each experiment consisted of four phases, simulating a single-peak 

hydropeaking event in Alpine rivers facing flow regulation by hydropower plants (adapted from 

Auer et al. 2017): (1) a 10-min acclimation period at baseflow, (2) up-ramping, with a discharge 

increase during 5 min, with a vertical up-ramping rate of 1.5 cm·min−1, (3) peak flow, with a 

discharge of 80 L·s−1 that was maintained for 10 min, and (4) a 5-min down-ramping, resulting in 

a vertical down-ramping rate of 1.4 cm·min−1 (Figure 22). In each phase, we counted the fish that 

drifted into the nets at the downstream end of the channel (Figure 20). After each trial, all 

remaining larvae were cleared from the channel at base flow using hand nets. Overall, nine 

replicates were performed for each treatment. Drift was compared between the two different 

treatments (hydropeaking versus cold thermopeaking) for each phase of the trials (acclimation, 

up-ramping, peak flow, and down-ramping); additionally, comparisons in drift among the different 

nets (N1–N4) were also performed (Auer et al. 2023). The temperature was recorded on a minute 

basis using a multiparametric probe (Flowtherm NT–Hoentzsch), complemented with values 

recorded using pressure probes (Aquitronic ATP05). During cold thermopeaking, water 

temperature started dropping during up-ramping, reaching its maximum drop during peak flow 

[mean drop ± SD = 5.5 ± 1.7 °C compared with hydropeaking (Figure 23)]. 

 

 

Figure 22. Overview of the experimental setup: channel discharge, in L·s−1 (black line) and water height, in 

cm (blue area) throughout each trial (total duration of each trial: 30 min). 
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Figure 23. Temperature measurements during hydropeaking (orange) and cold thermopeaking (blue) 

experiments (1-min time resolution), for each phase of a trial: acclimation phase (AP), up-ramping (UR), 

peak flow (PF), and down-ramping (DR). Dots and whiskers represent the mean values and 95% confidence 

intervals, respectively. At the start of up-ramping (minute 10), there was a water temperature drop in the cold 

thermopeaking treatment, but not in hydropeaking (where temperature remained constant). 

 

5.3.2. Data analysis 

Larvae drift, expressed as drift rates, was obtained by dividing the absolute frequency of 

drifted fish (per phase, considering all nets) by the absolute frequency of fish present in the 

channel at the beginning of each phase (i.e., that did not drift in previous phases) (Auer et al. 

2017): 

𝐷𝑟𝑖𝑓𝑡 𝑟𝑎𝑡𝑒 =
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑑𝑟𝑖𝑓𝑡𝑒𝑑 𝑓𝑖𝑠ℎ

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑓𝑖𝑠ℎ 𝑖𝑛 𝑡ℎ𝑒 𝑐ℎ𝑎𝑛𝑛𝑒𝑙
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Data normality and homoscedasticity were assessed using the Shapiro–Wilk and F test of 

equality of variances, respectively. As both assumptions were not met, comparisons of drift 

between different experimental treatments (hydropeaking and cold thermopeaking) were 

performed with the non-parametric Mann–Whitney test. Differences among trial phases and 

lateral drift distribution [in which net fish were found (Figure 20)] were evaluated using the non-

parametric Kruskal–Wallis test (followed by Dunn post hoc tests for pairwise comparisons). 

Effects of hydropeaking and thermopeaking on fish drift were further explored through multiple 

regression models, following a stepwise approach where the starting temperature of each trial 

and the temperature drop at peak flow were included as predictors for fish drift in each phase, 

considering all trials pooled together (n=18). The “drop1” function from the “stats” package (R 

Core Team 2021), which uses the Akaike Information Criterion (AIC), a weight of evidence 

approach, was used to obtain the most parsimonious model (with the lowest AIC), with the thermal 

variables most associated with fish drift in each phase. Finally, a chi-squared test was performed 

to assess if the lateral drift distribution (in which net the fish were found) depended on the 

treatment (hydropeaking and cold thermopeaking). All analyses were conducted in R (version 

4.1.0) at a significance level (α) of 0.05. 

 

5.4. Results 

5.4.1. Drift during a hydropeaking event 

Drift was significantly different between the phases of the hydropeaking (χ2 = 19.276, df = 3, 

p < 0.001) and the cold thermopeaking treatments (χ2 = 19.649, df = 3, p < 0.001). Fish drift was 

highest during acclimation for both treatments, representing around 30% of the total drift observed 

in all trials (Figure 24). For hydropeaking trials, drift during acclimation was significantly higher 

(mean ± SD = 0.32 ± 0.17) than the ones observed in the subsequent phases (Dunn post hoc, p 

< 0.05): up-ramping (mean ± SD = 0.04 ± 0.03), peak flow (mean ± SD = 0.05 ± 0.05), and down-

ramping (mean ± SD = 0.03 ± 0.04). For thermopeaking trials, fish drift at acclimation (mean ± SD 

= 0.29 ± 0.16) and peak flow (mean ± SD = 0.18 ± 0.15) were not significantly different (Dunn 

post hoc, p = 0.176). However, both were significantly higher than during up-ramping (mean ± SD 

= 0.05 ± 0.07) and down-ramping (mean ± SD = 0.04 ± 0.07). Comparing the two treatments per 

phase, results showed that larvae drift in peak flow was higher during cold thermopeaking than 

during hydropeaking (Mann–Whitney, U = 15, p = 0.027). These differences were not observed 

in the other three phases (Fig. 5): acclimation (U = 44, p = 0.790), up-ramping (U = 42, p = 0.928), 

and down-ramping (U = 35, p = 0.616). 
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Figure 24. Drift rates of hydropeaking (HP – white) and cold thermopeaking (TP – dark grey) treatments 
during each of the four phases: acclimation, up-ramping, peak flow, and down-ramping. Bold lines and 
whiskers outside the boxes refer to median values and interquartile ranges, respectively. Significant 
differences (p < 0.05) in drift rates between HP and TP are marked with “*” (peak flow: U = 15, p = 0.027). 

 

5.4.2. Temperature influence on drift 

An effect of the starting temperature and temperature drop was observed at different phases 

of the trials. The final adjusted models for each phase retained only one variable each: starting 

temperature for acclimation and up-ramping, and temperature drop magnitude for the peak flow 

and down-ramping phase (Table 5). However, significant regressions were only found for drift 

during up-ramping (with starting temperature as a predictor) and peak flow (with temperature drop 

as a predictor). For up-ramping, this association was negative: lower (colder) starting 

temperatures were associated with higher fish drift during up-ramping (β = −0.469, R2 = 0.176, p 

= 0.047). On a similar level, during peak flow, higher temperature drops (colder water) were linked 

to more pronounced fish drift (β = 0.509, R2 = 0.192, p = 0.039). 

 

Table 5. Summary of the stepwise regression models for drift rates in each experimental phase (acclimation, 
up-ramping, peak flow, down-ramping), considering all trials pooled together (n=18). The standardized beta 
coefficient (β), adjusted R2, and p value of the variables retained in the best-fitting model (lowest AIC - Akaike 
Information Criterion) are presented for each phase (significance at α=0.05 marked with an asterisk “*”). 

Phase Acclimation Up-ramping Peak flow Down-ramping 

Starting temperature      
β coefficient –0.456 –0.469   
Adjusted R2 0.159 0.176 - - 
p value 0.057 0.047* - - 
Temperature drop    
β coefficient   0.569 0.374 
Adjusted R2 - - 0.192 0.137 
p value - - 0.039* 0.079 
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5.4.3. Lateral drift distribution 

Considering all trials pooled together, the majority (90%) of displaced fish were found in N1 

(43%) and N2 (47%), located in mid-channel areas of higher flow velocities, reaching up to 58 

cm·s−1 during peak flow conditions (Figure 21). Contrastingly, few fish drifted into N3 (9%) and 

N4 (1%). N5 was only partially wetted during the trials (Figure 20), even during peak flow, and 

no fish were found in this net. Significant differences were found in the lateral drift distribution of 

both treatments, considering all phases (χ2 = 10.1, df = 7, p = 0.018). This difference was mainly 

caused by the observed drift within the first 1.6 m of the channel (N1–N3) during peak flow, where 

higher drift rates were found for cold thermopeaking fish than for hydropeaking ones (Figure 25). 

 

 

Figure 25. Drift rates at hydropeaking (HP – white) and cold thermopeaking (TP – dark grey) in relation to 

the distance from the channel (0.3, 0.9, 1.6, and 2.2 correspond to the mid-points of N1, N2, N3 and N4, 

respectively; no drift was observed in N5), during each of the four phases: acclimation, up-ramping, peak 

flow, and down-ramping. Bold lines and whiskers refer to median values and interquartile ranges, 

respectively. 

 

5.5. Discussion 

5.5.1. Hydropeaking and thermopeaking impact on drift 

The survival of early life stages of fish strongly depends on favorable habitat conditions. 

Adequate flow and thermal conditions can determine recruitment success and, subsequently, 
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population viability (Lucas and Baras 2001; Sonny et al. 2006; Kupren et al. 2011; Hayes et al. 

2021). Hence, it is crucial to understand how early life stages of fish are affected by rapid and 

artificial variations in flow velocity and water temperature caused by hydropeaking power plants. 

Such process-based knowledge is needed to evaluate the impacts of hydropeaking and 

thermopeaking, and to develop adequate mitigation strategies (Schmutz et al. 2015; Sanz-Ronda 

et al. 2019; Hayes et al. 2022a). By conducting this experimental study, we aimed to assess how 

hydropeaking and cold thermopeaking affect nase larvae drift. 

In both hydropeaking and cold thermopeaking treatments, drift was highest during 

acclimation. This result is consistent with preliminary trials performed with nase larvae, where the 

drift was also higher in the first minutes after stocking than the rest of the time (Figure 26). Hence, 

this initial period not only allowed fish to acclimate to the experimental setup under controlled 

conditions, but also served to remove potentially unfit fish before the start of the experiment (Auer 

et al. 2017; Mameri et al. 2019). In the hydropeaking treatment, the drift rate did not differ during 

up-ramping, peak flow, and down-ramping. In contrast, at cold thermopeaking, the drift rate was 

significantly higher during peak flow (when the temperature change was more pronounced) than 

during up-ramping and down-ramping. Sudden drops in temperature under rapidly increasing 

flows, accompanied by increased hydraulic stress, may promote downstream drift, potentially as 

a behavioral response to maximize successful dispersal (Lechner et al. 2013; Zens et al. 2018), 

which may be harmful if there is no suitable habitat downstream (as in the case of this experiment, 

with the drift nets). The results suggest that nase larvae react more strongly to temperature 

changes than to changes in hydraulic conditions (Zitek et al. 2004; Rolls et al. 2013). Indeed, 

rapid decreases in water temperature can also lead to “cold shock” in fish and reduced swimming 

performance (Smith and Hubert 2003; Donaldson et al. 2008). Looking into each phase, peak 

flow exhibited the greatest temperature drop of the thermopeak (surpassing 5 °C), and higher drift 

rates were positively associated with the magnitude of the temperature drops during peak flow 

(occurring in the cold thermopeaking trials). 

Swimming performance depends on water temperature, and when facing suboptimum 

thermal conditions, a fish’s swimming ability may be compromised due to lower levels of oxygen 

diffusion in the skeletal muscles (Farrell 2002). This phenomenon may have reduced larvae 

responsiveness to increased flow conditions (Donaldson et al. 2008; Morgan et al. 2022), even 

though the water temperature during the trials was within the thermal tolerance range of the nase 

(8.0–29.0 °C; Leuven et al. 2011). This reduced swimming performance is likely to have, at least 

partially, led to an overall increase in drift rates in cold thermopeaking during peak flow when 

compared with hydropeaking. It should be noted, however, that only one temperature drop and 

one ramping rate (velocity at which the water level increases or decreases) were tested in this 

experiment. Future studies should assess larvae drift across gradients of temperature and water 

level variation to understand better the impact of these environmental conditions on fish swimming 

(Auer et al. 2023). 
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5.5.2. Lateral drift distribution and active drift 

Lateral fish distribution across the drift nets revealed that larvae that experienced cold 

thermopeaking drifted more than hydropeaking fish in higher velocity areas in the channel (N1–

N2) and closer to the shoreline (N3), suggesting that fish may be less active when exposed to 

temperature drops (Martelo et al. 2013). The increased drift closer to the shoreline (N3) during 

cold thermopeaking trials, which has also been observed for juvenile grayling Thymallus 

thymallus (L.) (Auer et al. 2023), may indicate that fish were trying to avoid colder temperatures 

by moving into the shallow zones in search of thermal refugia. In nature, young stages of 

cypriniform species are also known to shift closer to the shoreline to avoid faster currents 

(Bodensteiner and Lewis 1994; Copp et al. 2002; Reichard and Jurajda 2004; Lechner et al. 2013; 

Greimel et al. 2018). However, the flow velocity measurements at base flow conditions were far 

below the velocity thresholds described for this species. Indeed, the critical flow velocity for nase 

larvae with 15–25 mm length is estimated to be 4–5 times their corresponding body length (Flore 

et al. 2001). These critical values were only exceeded during peak flow in the mid-channel section, 

but not during base flow conditions. 

It should be noted that we did not distinguish between active and passive drift. However, 

some studies have highlighted the importance of active larvae drift in downstream dispersal 

(Robinson et al. 1998; Reichard et al. 2004; Pavlov et al. 2008; Lechner et al. 2016). Particularly 

for the nase, a study in the Danube River revealed that larvae were more active during low flow 

conditions, thus suggesting that the hydraulic conditions could facilitate active dispersal (Lechner 

et al. 2018). The high drift rates observed during acclimation in both treatments (hydropeaking 

and cold thermopeaking), as well of base flow trials, therefore, seem to suggest that active drift 

may have occurred. Further evidence comes from the fact that cold thermopeaking fish drifted 

more in N3 than in hydropeaking. Behavioral studies in nature-like channels, like the ones 

presented here, would help to clarify the role of active and passive drift in the total observed drift 

caused by hydropeaking and thermopeaking. 

 

5.5.3. Management recommendations 

Earlier studies suggested that hydropower releases into rivers should be adapted to avoid 

peaking during key life cycle periods of aquatic species (Jones and Petreman 2014; Hayes et al. 

2019; Moreira et al. 2019). The release of ecological flows, following recent European policies for 

the Water Framework Directive implementation, can provide an effective mitigation measure to 

dampen not only flow ramping rates, but also temperature changes during hydropower releases 

(EU Commission 2015), namely by adapting water releases during hydropeaking that mimic 

natural temperature fluctuations (Casas-Mulet et al. 2016; Heggenes et al. 2017; Tonolla et al. 

2017; Halleraker et al. 2022). According to Zolezzi et al. (2010), in Alpine rivers, thermopeaking 

can have the same magnitude as the one simulated in this experiment. This can potentially harm 

fish by causing increased involuntary downstream displacement, ultimately affecting population 

viability. 
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In addition to drift, medium and long-term effects of both cold and warm thermopeaking 

should also be investigated, such as displacement of larvae and early juveniles from the regulated 

site, food availability, and spawning success in the following reproductive season. Finally, one 

aspect which was not targeted in this experiment was stranding caused by the fish’s inability to 

shift from shallow to deeper areas during down-ramping (Führer et al. 2022; Hayes et al. 2023). 

Conducting similar thermopeaking experiments with a larger variety of microhabitats may help to 

investigate how temperature fluctuations can promote habitat shifts and lead to larvae drift and 

stranding (Auer et al. 2017, 2023; Antonetti et al. 2023; Hayes et al. 2023). 

 

5.5.4. Conclusions 

Overall, our results highlight that hydropeaking, combined with cold thermopeaking, 

increases the drift of sensitive life cycle stages of cypriniform fish populations, if occurring during 

sensitive life cycle stages. To our knowledge, this was the first experimental study assessing the 

influence of cold thermopeaking in larvae of a cypriniform species and comparing it with 

hydropeaking. Hence, ensuring suitable flow and water temperature conditions for early life 

stages of migratory fish, downstream from hydropower plants, is of utmost importance to avoid 

involuntary passive drift and ultimately population decline. Monitoring and active adjustment of 

water temperature following intermittent water releases should be included as main mitigation 

strategies to establish best-practice hydropower operations. 
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5.7. Supplementary Material 

 

 
Figure 26. Drift rates in base flow trials (50 fish stocked in each), with a constant discharge of 15 L s-1 for 
30 minutes. Drift rates were calculated for the time periods corresponding to each of the experimental 
phases: acclimation (minutes 0-10), up-ramping (11-15), peak flow (16-25) and down-ramping (26-30). Bold 

lines and whiskers refer to median values and interquartile ranges, respectively.   
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CHAPTER 6: Overall discussion and conclusions – where do 
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6.1. Key-environmental variables for managing migratory fish populations 

Managing rivers for aquatic populations involves addressing not only the maintenance of 

suitable conditions for these species to thrive, but also the remaining ecosystem services they 

provide, of which energy production frequently comes on top (Thieme et al. 2021). In a world of 

growing energy demands, hydropower assumes a fundamental role in energy production and 

consumption, with Portugal being no exception (Feio and Ferreira 2019). Climate change adds a 

further layer of challenges to already disturbed river systems, with the need to account for future 

environmental conditions in these already dynamic freshwater systems (Reid et al. 2019). 

Flow and water temperature have long been regarded as key environmental drivers for 

habitat suitability in fish (Poff et al. 1997; Caissie 2006; Olden and Naiman 2010), while also 

acting as triggers for migration and habitat shifts in general. The Water Framework Directive 

(WFD) states the need to ensure the good ecological status of water bodies, which partially 

depends on keeping flow and thermal regimes in rivers as close to their natural regimes as 

possible, to ensure that critical stages of fish and, consequently, population persistence, is not 

compromised (Poff et al. 1997; Olden and Naiman 2010; Acreman et al. 2014; Hayes et al. 2022). 

For the Mediterranean, predictions suggest a decrease in river discharge and precipitation (van 

Vliet et al. 2013; Lobanova et al. 2016), and an increase in both mean and maximum 

temperatures, with the last one being associated to heatwaves (IPCC 2022). Based on expected 

scenarios on how environmental conditions and river dynamics, namely flow and thermal regimes, 

will change, one crucial first step is to understand how these changes in key environmental drivers 

will: (1) affect aquatic organisms in regard to current conditions; (2) whether they can cope and 

adapt to them; and finally (3) how can we mitigate these impacts, by implementing mitigation 

measures or adjusting the ones that are currently in place. 

The natural dynamics of riverine systems and the species they harbour, with constant 

changes in environmental conditions, shape the life history strategies of aquatic species. Having 

to deal with growing anthropogenic stressors, either these species find new mechanisms to adapt 

to the changing environment, or, in most cases, they are unable to do so (at least fully) and are 

impacted by these stressors. Measuring the impact of these changes in aquatic organisms is 

challenging, as they vary across time and space. Evaluating these in migratory fish represents a 

further layer of complexity, as not only different life stages may react differently to stressors, but 

also the habitat where they can be found is likely to be different depending on whether they are 

at a larval, juvenile, or adult stage. Furthermore, impact can be manifested on the short, mid or 

long-term, and may vary from affecting a reduced number of individuals to an entire population. 

In this thesis, focus was given into assessing changes in fish passability through small and 

large barriers (weirs and dams, respectively) and on swimming behaviour in response to changes 

in flow and thermal regimes, trying to fill knowledge gaps in the current literature. Regarding fish 

passability, the temporal range of the impact of flow changes ranged from a mid-term period 

(passability and fish lift efficacy across seasons, in Chapter 2) to a long-term period (habitat 

suitability and potential passability until the end of the century, in Chapter 3). As for the swimming 
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behaviour, both experimental designs focused on the short-term effect of thermal changes in river 

temperature, caused by heatwaves (Chapter 4) and cold thermopeaking (Chapter 5). 

6.2. Thesis novelties and take-home messages 

The main goal of this thesis was to assess how fish movement could be affected by flow 

fragmentation and climate change, based on current and future scenarios of modified flow and 

thermal regimes, considering not only flow regulation and its direct impacts on the short-term 

(hydropeaking and thermopeaking), with implications to fish movement and fish passage, but also 

climate change and how environmental conditions are expected to change with it, namely through 

drought and extreme weather events. To accomplish this main goal, this thesis was structured in 

four chapters, which included: (1) two case studies dealing with barrier passability through 

fishways, under hydropeaking schemes (Chapter 2) and low flow conditions (Chapter 3); and (2) 

two experimental designs focusing on the swimming behaviour and activity after exposure to 

heatwaves (Chapter 4) and cold thermopeaking (Chapter 5).  

In Chapter 2, fish passability was determined in relation to different environmental variables, 

time of day and year, powerhouse operation (two hydropeaking magnitudes and one ecological 

flow release, when both turbines were turned off) and fish size. A seasonal component in fish use 

of the lift was found for all species, with most of these movements being related to the reproductive 

season of these species, which were also associated with variations in key environmental drivers 

for fish passage in native potamodromous fish species, including mean flow, flow variation and 

water temperature. Several studies on fishway efficacy have been published in the past years, 

but fewer have combined field work with continuous video-monitoring of the fishway in the 

Mediterranean region (Croze et al. 2008; Santos et al. 2016). One major finding of this study was 

the different use of the fish lift by the three potamodromous species in relation to different 

hydropower release schemes (ecological flow, half-power with one turbine, and full power with 

two turbines), This result highlights the complexity of adjusting flow releases to the different 

species composing the fish community downstream barriers. For a more complete assessment, 

future studies should also consider the attractiveness of the fishway and the suitability of the river 

stretch downstream the barrier, in terms of guidance to the entrance by attraction currents, and 

at the entry (determining the fish decision to enter) should also be taken into account in future 

studies on fishway efficacy, namely by conducting telemetry studies with a sub-sample of the fish 

community downstream the dam.  

One potential non-invasive approach to estimate fish passability is to model habitat 

suitability, based on the idea that if the habitat is suitable enough for a certain species and if its 

swimming performance allows it, fish will be more likely to overcome a barrier (Boavida et al 

2020). In Chapter 3, habitat suitability in a river stretch of the Tagus River where an obstacle was 

present (Pego weir) was modelled as a measure of passability for different migratory fish species, 

in relation to different mean daily discharge scenarios, considering current flow and future flow 

conditions expected under different greenhouse gas emissions (RCP 4.5 and RCP 8.5). Overall, 

droughts and low flow conditions are expected to become more frequent considered the ongoing 
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climate change and global warming predictions for the Mediterranean basin, with a persistent 

combination of lack of precipitation affecting river discharges and a sequence of heatwaves 

(Toreti et al. 2022; IPCC 2022). As the percentage of submerged area, particularly close to the 

fishway, is crucial to increase the chances of successful fish passage, ensuring minimum 

discharges during critical migration periods of these species would be of uttermost importance to 

allow a successful upstream migration. For the Pego weir, the River2D model revealed that a 

minimum flow of 3 m3 s-1 is necessary to ensure the passage of all fish species through the fish 

ramp incorporated in the weir. Although it is a relatively low discharge which could be easily 

achievable by implementing a minimum ecological flow, the persistence of zero and low flow 

conditions is expected to increase under the RCP 4.5 and RCP 8.5 greenhouse gas emission 

scenarios, as revealed by their density distributions of mean daily discharge. Whereas the release 

of minimum “ecological” flows has been a raising concern in Portugal, and while some dams are 

currently on the processes of incorporating them, these may not be enough in scenarios of 

reductions in river discharges until the end of the century, as the different components of the 

natural flow regime should be incorporated in response to the fish communities present (EC 

2015). It should be noted that currently, the thermal powerplant located in Pego is no longer 

functioning, and it is expected to be re-converted to a charcoal-fuelled thermal powerplant, 

complemented with renewable energy production (JN 2022). As the Pego weir is no longer 

serving its original purpose (water retrieval for turbine cool down at the thermal powerplant), the 

removal of the weir should be considered for a complete restoration of the longitudinal 

connectivity, following other barrier removals from the Dam Removal Europe initiative, with over 

6,000 barriers removed (WFMF 2022) in this stretch of the Tagus River, rather than investing in 

a structural solution which will require constant monitoring, maintenance and will only partially 

ensure fish passage. However, in cases where barrier removal is not a possibility, a suitable and 

dynamic regime of flow releases in dams, particularly during critical migratory periods for fish 

species, should be adopted.  

Focusing on fish swimming behaviour and activity in response to water temperature, the 

experimental designs in Chapters 4 and 5 showed that short-term exposures to altered thermal 

regimes can impact early life stages of fish. Specifically, in Chapter 4, the exposure to a heatwave 

can alter, even if only at short-term, the swimming behaviour of juvenile Iberian barbel, namely in 

terms of activity and boldness, which may limit its ability to explore more suitable habitats for 

feeding and growing, for instance. While some literature can be found on the impact of thermal 

stress on migratory fish species (Colchen et al. 2017; Madeira et al. 2013) and even heatwave 

effects on marine fish (Islam et al. 2020; Madeira et al. 2020), this study was the first published 

work on the effects of heatwaves in a Mediterranean freshwater fish species, thus filling a 

knowledge gap on thermal stress research, while considering the ongoing climate change.  While 

not assessed in Chapter 4, the combined effect of temperature increases, together with other 

water quality parameters, such as lower dissolved oxygen (hypoxic stress) and ammonia and 

nitrogen derivatives, is also of relevance for fish species to tolerate stress overall, in response to 

oxygen availability and thermal fluctuations (Filice et al. 2021; Magoulick and Kobza 2003). Future 
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experimental studies on fish thermal stress would also benefit from the measurement of 

physiological parameters after the trials, namely the ones associated with stress, such as enzyme 

activity and protein (e.g., HSPs – Heat Shock Proteins) metabolism (Jesus et al. 2016; Schleger 

et al. 2022). Moreover, the effects of chronic exposure to high and sub-lethal temperatures, as 

well as stress accumulation during periods of thermal fluctuations, should be investigated 

(Bevelhimer and Bennett 2000). The impact in a longer temporal range, such as delays in 

migratory routes, considering not just heatwaves but also the loss of longitudinal connectivity 

during the dry season, has yet to be assessed, and should be a priority in rivers facing 

intermittency, namely in the Iberian Peninsula and other Mediterranean-climate regions. These 

results reinforce the need to ensure suitable thermal habitats for cypriniform fish during the dry 

season, when several Mediterranean-climate rivers dry partially, forming a series of disconnected 

pools which will tend to warm during these extreme events (Cid et al. 2017). Identifying, 

protecting, and restoring autochthonous riparian forests, namely willow Salix sp., ash Fraxinus 

sp., alder Alnus sp., and poplar Populus sp., would provide instream habitat and overhanging 

shade, promoting cooler water patches (Dzara et al. 2019; Fullerton et al. 2017).  

Finally, in Chapter 5, the effect of temperature drops during a hydropeaking event (cold 

thermopeaking) on larval drift were assessed in the cypriniform nase Chondrostoma nasus. This 

was the first experimental study assessing the influence of cold thermopeaking in larvae of a 

cypriniform species and comparing it to regular hydropeaking. Drift plays a fundamental role in 

fish migration, particularly in early life stages such as larvae and juveniles (Nagel et al. 2021; 

Zens et al. 2018), with a direct impact on annual recruitment and population persistence (Lechner 

et al. 2018). Research on thermopeaking in Alpine (but also temperate) rivers has been rapidly 

advancing in the last years and will hopefully be extended to Mediterranean-climate rivers, which 

are already facing other thermal and drought-related stressors, as previously mentioned. 

Specifically in Alpine rivers, cold thermopeaking is known to occur in thermally stratified reservoirs 

during hydropower generation in summer (Antonetti et al. 2022; Zolezzi et al. 2010), which 

corresponds to the season when this study took place. Overall, results showed that drift, which 

was generally low, significantly increased during the peak flow phase of a single hydropeaking 

event, when the discharge was highest (80 L s-1) and the water colder (average drop of 5.5ºC), 

compared to hydropeaking at constant temperature. Furthermore, the highest drift rates during 

peak flow were found to be correlated with the magnitude of the temperature drop in the cold 

thermopeaking treatments: the colder the water, the higher the drift. One potential mitigation 

solution would be to adjust dam releases considering the critical migration and reproductive 

periods of the species moving upstream the reservoirs, namely by installing temperature control 

devices (Zarri et al. 2019). This study highlighted that nase larvae react stronger to sudden 

changes in temperature rather than flow (i.e., increasing discharge from base to peak flow). 

Furthermore, the lateral fish distribution observed suggests that a combination of high flow 

velocities, such as the ones fish experienced during hydropeaking and, more specifically, during 

peak flow, combined with a sudden temperature drop, is likely to be more impactful in fish larvae 

rather than the cold water itself, if fish are unable to laterally shift and shelter in lower velocity 
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areas (Führer et al. 2022). Similarly to the impact of heatwaves in Chapter 4, consequences of 

rapid thermal changes on fish physiology (i.e., stress hormones and HSPs; Inoue et al. 2008), 

fitness, swimming performance, upstream migration and reproductive success should also be 

assessed in future studies. Finally, different magnitudes of thermal variation, not just for 

temperature drops, but also warm thermopeaking, should be tested to have a broader 

assessment of the impact of thermopeaking-inducing fish drift.  

To conclude: some of the knowledge gaps on the impacts of flow regulation and climate 

change on migratory fish species will hopefully be filled with the results and conclusions obtained 

in this thesis, but there are still questions that remain (at least fully) unanswered. For instance: 

which are the mid and long-term consequences of fish exposure to rapid flow and thermal 

fluctuations, namely when we investigate their migratory patterns, occurrence and abundance 

within a river basin, and population persistence in rivers? Moreover, a considerable amount of 

work is yet to be done when it comes to improving flow management in regulated rivers. A crucial 

step would be optimizing current monitoring tools on key environmental variables, namely by 

ensuring a fully functional and widespread network of monitoring sites for assessing flow 

conditions in river stretches. Combining this monitoring network with the use of automatic devices, 

such as dataloggers, to measure thermal conditions in rivers and obtain high resolution datasets 

on water temperature, a significant amount of input data can be collected to model habitat 

suitability and future thermal conditions for migratory fish in rivers. 
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