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Abstract
We consider polygonal billiards with collisions contracting the reflection angle towards the
normal to the boundary of the table. In previous work, we proved that such billiards have a
finite number of ergodic SRBmeasures supported on hyperbolic generalized attractors. Here
we study the relation of these measures with the ergodic absolutely continuous invariant
probabilities (acips) of the slap map, the 1-dimensional map obtained from the billiard map
when the angle of reflection is set equal to zero. We prove that if a convex polygon satisfies
a generic condition called (*), and the reflection law has a Lipschitz constant sufficiently
small, then there exists a one-to-one correspondence between the ergodic SRB measures of
the billiard map and the ergodic acips of the corresponding slap map, and moreover that the
number of Bernoulli components of each ergodic SRB measure equals the number of the
exact components of the corresponding ergodic acip. The case of billiards in regular polygons
and triangles is studied in detail.

Keywords Billiards · Hyperbolic systems with singularities · SRB measures · Ergodicity ·
Piecewise expanding maps

Communicated by Eric A. Carlen.

B Gianluigi Del Magno
gianluigi.delmagno@unipi.it

João Lopes Dias
jldias@iseg.ulisboa.pt

Pedro Duarte
pmduarte@fc.ul.pt

José Pedro Gaivão
jpgaivao@iseg.ulisboa.pt

1 Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy

2 Departamento de Matemática, CEMAPRE and REM, ISEG, Universidade de Lisboa, Rua do
Quelhas 6, 1200-781 Lisbon, Portugal

3 Departamento de Matemática and CMAF, Faculdade de Ciências, Universidade de Lisboa, Campo
Grande, Edificio C6, Piso 2, 1749-016 Lisbon, Portugal

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10955-020-02673-2&domain=pdf
http://orcid.org/0000-0002-4139-9172


11 Page 2 of 29 G. Del Magno et al.

1 Introduction

The dynamics of billiards has been studied in great detail when the reflection law is the
specular one: the angle of reflection equals the angle of incidence. For an account on the
subject, we refer the reader to [17]. In a series of recent works, we studied polygonal billiards
with a reflection law, i.e., a function f describing the dependence of the angle of reflection
from the angle of incidence—bothmeasured with respect to the normal of the billiard table—
that is not the identity function as for the specular reflection law, but a strict contraction having
the zero angle as its fixed point.

The dynamics of polygonal billiards with contracting reflection laws differ significantly
from that of polygonal billiards with specular reflection law: whereas the latter are non-
hyperbolic systems, the former generically have uniformly hyperbolic attractors supporting
a finite number of ergodic Sinai–Ruelle–Bowen measures (SRB measures for short) [5,6,8].
Some billiards in non-polygonal tables with non-specular reflection laws were studied in
[1,2,12].

When the function f is identically equal to 0, i.e., when the angle of reflection θ is
identically equal to zero, the billiardmap is no longer injective and its image is a 1-dimensional
set. The restriction of the billiard map to this subset is a piecewise affine map of the circle
called slap map [12]. The precise form of the slap map depends only on the polygonal
table. If a polygon does not have parallel sides (in fact, a weaker condition introduced later
on suffices), then the corresponding slap map is uniformly expanding, and admits a finite
number of ergodic absolutely continuous invariant probabilities (acips for short) [7].

Given a polygon P and a contracting reflection law f , we denote by � f ,P the map of the
billiard in P with reflection law f , and by ψP the slap map of P . Precise definitions will
be given in Sect. 2. The Lipschitz constant λ( f ) measures how close � f ,P is to �0,P (here
f ≡ 0), but the image of �0,P is 1-dimensional, and the restriction of �0,P to its image is
essentially equal to ψP . In this paper, we address the natural question ‘what is the relation
between the properties of � f ,Q and ψP when λ( f ) is small and the polygon Q is close to
P?’. In particular, we study the relation between the ergodic SRB measures of � f ,Q and the
ergodic acips of ψP .

The results presented in this paper are formulated for convex polygons only. Analogous
results can be obtained for some classes of non-convex polygons, but their proofs are much
more involved than the proofs for convex polygons.

Two polygons are similar if one polygon can be transformed into the other one by a
similarity transformation of the Euclidean plane preserving the orientation (see [6, Sect. 5]).
The dynamics of billiards in similar polygons is the same. Similarity is an equivalence relation
on the space of polygons with n sides. We denote by Pn the quotient of such a space by the
relation of similarity. In [6, Proposition 5.1], we proved that Pn is diffeomorphic to an open
semialgebraic subset of P1 × (P2)n−3 ×P

1 with P1 and P2 being the real projective line and
real projective plane, respectively, and that Pn is a manifold of dimension 2n−4. Hence, the
metric and the measure of P1 × (P2)n−3 × P

1 induce a metric d and a measure m on the set
Pn .

Let q be a non-acute vertex of P . Denote by q+ �= q and q− �= q the intersection points
of ∂P with the two lines passing through q each orthogonal to one of the sides of P meeting
at q . The sequence O+(q) := {q0 = q+, q1, . . .} is defined recursively as follows: for each
i ≥ 0 if qi is a vertex of P , then qi+1 = qi , otherwise set qi+1 to be the intersection point
not equal to qi of ∂P with the line passing through qi and orthogonal to ∂P at qi . Define the
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Fig. 1 Polygons that do not satisfy Condition (*): a an orthogonal orbit ending at a vertex. b An orthogonal
orbit that is eventually periodic

sequence O−(q) similarly by setting q0 = q−. We call O−(q) and O+(q) the orthogonal
orbits of q .

Definition 1.1 A convex polygon P satisfies Condition (*) if for every non-acute vertex q
of P , each set O−(q) and O+(q) does not contain any vertex of P and is not eventually
periodic.

Figure 1 shows examples of polygons that do not satisfy Condition (*).
If a convex polygon P satisfies Condition (*), then all polygons similar to P satisfy the

condition as well. We denote by P∗
n the subset of Pn formed by the equivalence classes

satisfying Condition (*).
Let E(ψP ) be the set of the ergodic acips of ψP , and let E(� f ,Q) be the set of the ergodic

SRB measures of � f ,Q . The main result of the paper is the following theorem.

Theorem 1.2 Given P ∈ P∗
n , there exists δ > 0 such that if f is a contracting reflection law

f that is a C2 embedding with λ( f ) < δ and Q ∈ Pn with d(Q, P) < δ, then there exists a
bijection � f ,Q : E(ψP ) → E(� f ,Q). Moreover,

(1) the supports of the measures in E(� f ,Q) are pairwise disjoint,
(2) the cardinality of E(� f ,Q) is less than or equal to n,

(3) for every ν ∈ E(ψP ), the number of Bernoulli components of � f ,Q(ν) equals the
number of exact components of ν,

(4) the union of the basins of the measures in E(� f ,Q) is a set of full volume in the domain
of � f ,Q.

Condition (*) plays a major role in our analysis, and so it is important to knowwhether the
set of polygons satisfying Condition (*) is large in the topological and measure theoretical
sense. InProposition 2.3,weprove thatP∗

n is a fullmeasure residual subset ofPn . Theorem1.2
and Proposition 2.3 yield immediately that the set of polygons for which the conclusion of
Theorem 1.2 holds is generic and has full measure in Pn .

The strategy of the proof of Theorem 1.2 is as follows. First, we prove that for every
P ∈ P∗

n , there exist pairwise disjoint sets W1, . . . ,Wk with k equal to the cardinality of
E(ψP ) that are trapping sets for all maps � f ,Q sufficiently close to ψP . Then, given one of
suchmaps� f ,Q , we construct the bijection� f ,Q by establishing two facts: (1) the support of
each measure μ ∈ E(� f ,Q) is contained in some trapping set Wi , and (2) each Wi contains
exactly the support of some measure μ ∈ E(� f ,Q). The proof of Theorem 1.2 exploits
properties of the periodic points of ψP that carry over to periodic points of maps � f ,Q

sufficiently close to ψP . Another interesting ingredient of the proof is a novel criterion for
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the ergodicity of an SRBmeasure of� f ,Q . This criterion can be easily generalized to general
hyperbolic map with singularities. In fact, we believe that our proof of Theorem 1.2 can be
adapted to cover a rather general class of two-dimensional hyperbolic maps with singularities
close in a proper sense to piecewise expanding 1-dimensional maps.

Finally, when P is a convex regular polygon or a triangle, using Theorem 1.2, Propo-
sition 2.3 and results from [7], we are able to compute the exact number of ergodic SRB
measures and the Bernoulli components of maps � f ,Q sufficiently close to ψP (see Sect. 6).

The paper is organized as follows. In Sect. 2, we define the objects studied in this paper:
the billiard map for a polygonal billiard with a contracting reflection law and the related slap
map. Moreover, we prove that Condition (*) is a generic property in the space of polygons. In
Sect. 3, we give a sufficient condition for the existence of hyperbolic attractors of a billiard
map, and recall the basic notions of Pesin’s Theory specialized to our billiards. We also
recall a general result on the existence and the spectral decomposition of absolute invariant
probabilities of piecewise expanding maps, which applies to the slap maps considered in
this paper. The preliminary results necessary to prove Theorem 1.2 are presented in Sect. 4,
whereas the final part of its proof is contained in Sect. 5. In Sect. 6, we apply Theorem 1.2
and Proposition 2.3 to billiards in convex regular polygons and triangles.

2 Billiards and SlapMaps

A billiard in a polygon P is a mechanical system formed by a point-particle moving with
uniform motion inside P and bouncing off the boundary ∂P according to a given rule, which
is a function called reflection law whose argument and value are, respectively, the angle of
incidence and the angle of reflection of the particle at the collision point. In the usual definition
of a billiard, the reflection law is the specular one prescribing the equality between the angle
of reflection and the angle of incidence. In this paper, we consider reflection laws that are
strict contractions with small (in a sense that will be explained later) Lipschitz constant.

2.1 Polygonal Billiards

Let P be a convex polygon with n sides and perimeter equal to 1. We choose a positively
oriented parametrization of ∂P by arc length so that 0 = s0 < s1 < · · · < sn−1 < sn = 1 are
the values of the arc length parameter corresponding to the vertices of P . The values s = 0
and 1 correspond to the same vertex of P . In the following, we identify the points of ∂P
with their arc length parameter s (with the additional proviso that s = 0 and s = 1 denote
the same point). In other words, we identify ∂P with the circle S1 of perimeter 1. Denote by
VP = {s0, . . . , sn−1} the set of the vertices of P .

Let M = S1 × (−π/2, π/2). We denote by dS1 the standard distance on S1, and by dM
the Euclidean distance of the cylinder M . Also, we denote by Vol the volume generated
by dM on M , and by ‖ · ‖ the Euclidean norm of R2. Finally, we denote by πs and πθ the
projections defined by πs(s, θ) = s and πθ (s, θ) = θ for (s, θ) ∈ M . A curve � ⊂ M is
called a horizontal segment if πθ (�) = const .

Let MP = ⋃n−1
i=0 (si , si+1) × (−π/2, π/2) ⊂ M . We associate to each element (s, θ) ∈

MP the unit vector v of R2 with base point s making an angle θ with the inner normal to ∂P
at s. Such a normal is not defined at the vertices of P , which is the reason for not including the
set

⋃n−1
i=0 {si }× (−π/2, π/2) in MP . Each pair (s, θ) ∈ MP specifies the state of the particle
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immediately after a collision with ∂P: the collision point is given by s and the velocity is
given by the unit vector v.

Given a particle in the state (s, θ) ∈ MP , we define gP (s, θ) to be the point of collision
of the particle with ∂P , and tP (s, θ) to be Euclidean distance in R

2 between the points of
∂P corresponding to s and gP (s, θ). Let YP = {s0, . . . , sn−1}× (−π/2, π/2), and let NP =
g−1
P (YP ). The standard billiard map for the polygon P is the map �P : MP \ NP → MP

whose image �P (s, θ) ∈ MP corresponds to the state of the particle right after the collision
at gP (s, θ) when the reflection law is the specular one. We denote by hP (s, θ) the angle of
the particle after the collision. Hence, �P (s, θ) = (gP (s, θ), hP (s, θ)). It is not difficult to
see that�P is piecewise analytic. For a detailed definition of the map�P , we refer the reader
to [4].

2.2 Contracting Reflection Laws

A reflection law is a function

f : (−π/2, π/2) → (−π/2, π/2).

For instance, the specular reflection law corresponds to the identity function f (θ) = θ . Given
a reflection law f , denote by R f : MP → MP the map R f (s, θ) = (s, f (θ)). The billiard
map for the polygon P with reflection law f is the transformation � f ,P : MP \ NP → MP

defined by

� f ,P = R f ◦ �P = (gP (s, θ), f ◦ hP (s, θ)) .

Note that � f ,P is injective if and only if f is, and that � f ,P is a Ck , k > 0 diffeomorphism
onto its image of if and only if f is.

The differential dx� f ,P is given by [6, Sect. 2.5]

dx� f ,P = −
⎛

⎝
cos θ

cos(hP (s, θ))

tP (s, θ)

cos(hP (s, θ))
0 f ′(hP (s, θ))

⎞

⎠ . (2.1)

Definition 2.1 A reflection law f is called contracting if f is of class C1, f (0) = 0 and
λ( f ) := sup{| f ′(θ)| : θ ∈ (−π/2, π/2)} < 1.

The simplest example of a contracting reflection law is f (θ) = σθ with 0 < σ < 1. This
law was considered in several papers [1,2,5,12].

We denote by R the set of all contracting reflection laws. It is easy to verify that R is a
Banach space with the norm λ( f ). We denote byRk , k ≥ 1 the set all contracting reflection
laws that are Ck diffeomorphisms onto their images. The reflection law f ≡ 0 is denoted by
0.

In order to apply Pesin’s theory to � f ,P : MP \ NP → MP and to establish the existence
of stable and unstable local manifolds, � f ,P has to be a C2 diffeomorphism onto its image
� f ,P (MP \ NP ), which is the case if f ∈ R2.

2.3 SlapMaps and Condition (*)

When f = 0, the billiard trajectories in P are all orthogonal to ∂P after every collision.
Thus, the image of the map �0,P is a subset of the segment S1 × {0}. If f ∈ R and λ( f )
is sufficiently small, then � f ,P can be considered as a small perturbation of �0,P . Indeed,

123



11 Page 6 of 29 G. Del Magno et al.

the two maps have the same domain MP \ NP , and from the definition of � f ,P and the
expression of dx� f ,P , it follows that � f ,P and �0,P are λ( f )-close in the C1 topology.

We now introduce a 1-dimensional map related to�0,P . First, let IP = ⋃n−1
i=0 (si , si+1) ⊂

S1, and define FP : IP → S1 by FP (s) = gP (s, 0) for all s ∈ IP . The map FP is related to
�0,P , since�n

0,P (s, 0) = (Fn
P (s), 0) for all (s, 0) ∈ MP \NP and all n ∈ N. Moreover, FP is

affine and strictly decreasing on each connected component of IP . For this reason, FP admits
a unique extension to the whole S1 that is left1 continuous at each point s0, s1, . . . , sn−1. We
denote such an extension by ψP : S1 → S1, and call it the slap map of P .

The singular set of a piecewise expanding map is the set of point where the map does not
have continuous second derivatives. It is not difficult to see that ψP is analytic at si if and
only if si is a vertex with an acute internal angle. In fact, in that case, ψP (si ) = si . It follows
that the singular set SP of ψP is the set of all non-acute vertices of P .

Condition (*) introduced in Definition 1.1 can be equivalently formulated in terms of the
slap map ψP as follows: a polygon P ∈ Pn satisfies Condition (*) if for every s ∈ SP , the
forward orbits of

ψP (s+) := lim
t→s+

ψP (t) and ψP (s−) := lim
t→s−

ψP (t)

do not contain elements of SP or periodic points of ψP .

Remark 2.2 In [9, Sect. 3], we introduced a condition for general piecewise expanding maps
of the interval called Condition (*) as well. When specialized to slap maps, that condition
becomes Condition (*) as written above.

Proposition 2.3 The set P∗
n is a full measure residual subset of Pn.

Proof We give only the main ideas of the proof. The reader can find the details in the proof
of [6, Proposition 5.3] which is very similar to this proof.

Let P ∈ Pn , and define 
 j to be the line supporting the j th side of P . The k-itinerary
of an orbit of the slap map ψP is a k-tuple i := (i1, . . . , ik) with i1, . . . , ik being the labels
of the sides of P visited by the first k elements of the orbit. All orbits of ψP with a given
k-itinerary i are solutions of the equation y = Fi (u, x), where x �→ Fi (u, x) is an affine
map, x is a linear coordinate on 
i0 , y is the coordinate of the corresponding endpoint in 
ik ,
and u ∈ P

1 × (P2)n−3 × P
1 is the coordinate of the polygon P . Systems of two equations

of the form Fi (u, 0) = c and Fj (u, Fi (u, 0)) = Fi (u, 0) in the unknown u determine the
sets of all polygons for which the trajectory of a vertex with coordinate 0 ends up at another
vertex with coordinate c or at a pre-periodic point of the slap map of P (see [6, Proposition
5.3] for more details). These sets are closed algebraic sets of codimension 1. Therefore, the
complement of P∗

n is a countable union of algebraic sets of codimension 2 determined by
the two equations above. 
�

3 Hyperbolic Polygonal Billiards

3.1 Hyperbolic Attractors

Let P a polygon. For every f ∈ R with f �= 0, define

K f ,P =
{
(s, θ) ∈ MP : |θ | < λ( f )

π

2

}
.

1 We might have as well chosen the extension to be right continuous.
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For the special case f = 0, define K0,P = ⋃d−1
i=0 (si , si+1) × {0}, and conventionally choose

the boundary of K0,P to be the empty set, that is, ∂K0,P = ∅. Since f is a contraction, the
set K f ,P is forward invariant

� f ,P (K f ,P \ NP ) ⊂ K f ,P .

From now on, we will focus our attention to the restriction of � f ,P to K f ,P \ NP , which by
abuse of notation we still denote by � f ,P .

Not every every element of K f ,P \ NP can be iterated indefinitely due to the set NP . The
set of all elements of K f ,P \ NP with positive semi-orbit is

K+
f ,P := {

(s, θ) ∈ K f ,P : � f ,P (s, θ) /∈ NP ∀n ≥ 0
}
.

Then the maximal forward invariant set of � f ,P is

D f ,P :=
⋂

n≥0

�n
f ,P (K+

f ,P ).

Note that if f ∈ R1, then D f ,P is also the maximal invariant set of � f ,P , meaning that
�−1

f ,P (D f ,P ) = D f ,P . Following [14], we call

� f ,P := D f ,P

the attractor of � f ,P , and

N+
f ,P := (NP ∩ K f ,P ) ∪ ∂K f ,P

the singular set of � f ,P .
In [6,12], it was proved that for every f ∈ R1 and every polygon P , the set D f ,P has a

weak form of hyperbolicity called dominated splitting. In this paper, we are interested in the
case when D f ,P is a hyperbolic set, that is, when the tangent space of K f ,P at each point
x ∈ D f ,P splits into complementary invariant subspaces Es(x) and Eu(x) that are uniformly
contracted and expanded by the differential of � f ,P .

Definition 3.1 The attractor � f ,P is called hyperbolic if D f ,P is a hyperbolic set.

Definition 3.2 A polygon P has parallel sides facing each other2 if there exist parallel sides
L1 and L2 of P and points q1 and q2 contained in the interior of L1 and L2, respectively,
such that the segment joining q1 and q2 is contained in P , intersects only the sides L1 and
L2 of P , and is perpendicular to both L1 and L2.

The following proposition was proved in [6, Proposition 3.2 and Corollary 3.4].

Proposition 3.3 Suppose that f ∈ R1. Then � f ,P is hyperbolic if and only if P does not
have parallel sides facing each other. Moreover, if � f ,P is hyperbolic, then the unstable
direction Eu coincides with the horizontal direction θ = const . at every point of D f ,P .

Remark 3.4 Note that the horizontal direction is always invariant even if D f ,P is not hyper-
bolic. This peculiar property is a consequence of the fact that the angle formed by two
trajectories bouncing off the same side of the polygon does not change after the collision no
matter how the reflection law f ∈ R is chosen.

2 This notion is not exactly equal to the one given in [6]. According to this definition arbitrarily small
perturbations of a polygon without parallel sides facing each other may have parallel sides facing each other.
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The next lemma concerns Condition (*) and the property of a polygon of having parallel
sides facing each other.

Lemma 3.5 If P ∈ P∗
n , then there exists δ > 0 such that if Q ∈ Pn and d(Q, P) < δ, then

Q does not have vertices with internal right angle and parallel sides facing each other.

Proof It is not difficult to see that Condition (*) implies that no vertex of P can have right
internal angle, and that no segment contained in P with endpoints on two sides of P can be
orthogonal to both of them. This last fact implies that P cannot have parallel sides facing
each others. The same conclusions hold for every polygon Q ∈ Pn sufficiently close to P in
the metric d . 
�

3.2 Pesin Theory and SRBMeasures

In this subsection, we recall basic results on the existence of local stable and unstable mani-
folds for the billiard map � f ,P and the definition of SRB measure. We assume f ∈ R2.

Let

N−
f ,P =

{
x ∈ K : ∃y ∈ N+

f ,P and yn ∈ K f ,P \ N+
f ,P

such that yn → y and � f ,P (yn) → x
}
.

The set N−
f ,P can be thought of as ‘singular set’ for the inverse map �−1

f ,P . Next, for every
ε > 0 and every l ∈ N, define

D+
f ,P,ε,l =

{

x ∈ � f ,P ∩ K+
f ,P : dM

(
�n

f ,P (x), N+
f ,P

)
≥ e−εn

l
∀n ≥ 0

}

,

D−
f ,P,ε,l =

{

x ∈ D f ,P : dM
(
�−n

f ,P (x), N−
f ,P

)
≥ e−εn

l
∀n ≥ 0

}

,

D0
f ,P,ε,l = D−

f ,P,ε,l ∩ D+
f ,P,ε,l ,

and

D±
f ,P,ε =

⋃

l≥1

D±
f ,P,ε,l , D0

f ,P,ε = D−
f ,P,ε ∩ D+

f ,P,ε .

The sets D0
f ,P,ε,l play the role of the regular sets in the Pesin theory for smooth maps [13].

Definition 3.6 The attractor� f ,P is called regular if there exists ε0 > 0 such that D0
f ,P,ε �= ∅

for every 0 < ε < ε0.

If � f ,P is hyperbolic and regular, then the Pesin theory for maps with singularities [10]
guarantees the existence of an ε > 0 such that a local stable manifold Ws

loc(x) exists for all
x ∈ D+

f ,P,ε,l , and a local unstable manifold Wu
loc(x) exists for all x ∈ D−

f ,P,ε,l (see [14,

Proposition 4]). The local manifolds Ws
loc(x) and Wu

loc(x) are C2 (Ck if f ∈ Rk , k ≥ 2)
embedded submanifolds whose tangent subspaces at x are equal to the stable subspace Es(x)
and the unstable subspace Eu(x), respectively. The size of these manifolds depends on the
constants ε and l, and they form two transversal invariant laminations. Finally, we observe
that for the billiard map � f ,P , the local unstable manifolds are horizontal segments.

Definition 3.7 Suppose that � f ,P is hyperbolic and regular. Let ε > 0 be such that Ws
loc(x)

exists for all x ∈ D+
f ,P,ε,l , and Wu

loc(x) exists for all x ∈ D−
f ,P,ε,l . An invariant Borel
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probabilitymeasureμ on� f ,P is called SRB ifμ(D0
f ,P,ε) = 1, and the conditional measures

of μ on the local unstable manifolds of � f ,P are absolutely continuous with respect to the
Riemannian volume on the local unstable manifolds.

The precise meaning of ‘the conditional measures of μ on the local unstable manifolds of
� f ,P are absolutely continuous with respect to the Riemannian volume on the local unstable
manifolds’ in the previous definition requires a technical explanation that can be found in
[14]. We remark that what we call here an SRB measure is essentially what is called an
invariant Gibbs u-measure in [14].

3.3 Expanding SlapMaps

If P does not have parallel sides facing each other, then ψP is a piecewise expanding map.
This means that there exists σ > 1 such that |ψ ′

P | > σ . By a well-known result of Lasota
and Yorke [11], piecewise expanding maps have absolutely continuous invariant probability
measures (for short acips). The theory of piecewise expanding maps applied to slap maps
gives the following.

Theorem 3.8 If P is polygon without parallel sides facing each other, then there exist subsets
A1, . . . , Ak of S1 and ergodic acips ν1, . . . , νk of ψP with bounded variation densities such
that

(1) S1 = A1 ∪ · · · ∪ Ak and Ai ∩ A j = ∅ for all i �= j;
(2) ψ−1

P (Ai ) = Ai , νi (Ai ) = 1 and ψP |Ai is ergodic with respect to νi for every i =
1, . . . , k;

(3) for each i = 1, . . . , k, there exist disjoint subsets A1
i , . . . , A

ni
i such that for all i, j,

(a) Ai = A1
i ∪ · · · ∪ Ani

i ;
(b) each A j

i is ψ
ni
P -invariant;

(c) ψ
ni
P |

A j
i
with the normalized restriction of νi to A j

i is exact;

(d) supp νi consists of finitely many pairwise disjoint intervals;
(e) every open subset of supp νi contains two periodic points of ψP whose periods

have great common divisor equal to ni . In particular, the periodic points of ψP

are dense in supp νi ;
(4) the union of the basins of ν1, . . . , νk has full Lebesgue measure in S1.

Proof Even if the results cited in the references below are proved for maps of the interval
[0, 1], they continue to hold for maps of the unit circle. The existence of a finite number
of ergodic acips of ψP and Parts (1), (2) and (3a)–(3d) follow from the general theory
of piecewise expanding maps [3, Theorems 7.2.3 and 8.2.2]. Part (3e) is proved in [9,
Theorem 3.14 and Proposition 3.15]. For a proof of Part (4), see [18, Corollary 3.14]. 
�

We call the sets A1, . . . , Ak the ergodic components of ψP , and we call the sets
A1
i , . . . , A

ni
i the exact components of Ai .

4 Preliminary Results

This section contains preliminaries results needed to prove Theorem 1.2.
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11 Page 10 of 29 G. Del Magno et al.

4.1 Trapping Regions

Let P ∈ Pn . By Theorem 3.8, the support of an ergodic acip ν of ψP consists of finitely
many pairwise disjoint closed intervals. In [9, Sect. 3.1], we obtained a characterization of
the boundary points of supp ν. When P satisfies Condition (*), such a characterization can
be formulated as follows.

Proposition 4.1 Suppose that P ∈ P∗
n , and let ν be an ergodic acip of ψP . If s ∈ ∂ supp ν,

then there exist an orbit segment {s0, . . . , sk}, k ≥ 2 of ψP and 0 < j < k such that

(1) s0 ∈ SP ∩ int(supp ν),

(2) either si = ψ i (s+
0 ) for every 1 ≤ i ≤ k, or si = ψ i (s−

0 ) for every 1 ≤ i ≤ k,
(3) si ∈ ∂ supp ν for every 0 < i < k,
(4) sk ∈ int(supp ν),

(5) s = s j .

We call {s0, . . . , sk} a boundary segment of supp ν.

Remark 4.2 It is not difficult to see that Proposition 4.1 and Condition (*) imply that supp ν1
and supp ν2 are disjoint for any pair ν1, ν2 of distinct ergodic acips of ψP .

In the next proposition, given P ∈ P∗
n and an ergodic acip ν ofψP , we construct a trapping

region arbitrarily close to supp ν common to all slap maps ψQ with Q sufficiently close to
P . A similar conclusion was obtained for more general piecewise expanding maps in [9,
Lemma 4.3].

Let ζ > 0, and denote by (supp ν)ζ the ζ -neighborhood of supp ν.

Proposition 4.3 Suppose that P ∈ P∗
n , and let ν1, . . . , νm be the ergodic acips of the slap

map ψP . For every ζ > 0, there exist δ > 0, τ > 0 and pairwise disjoint closed sets
U1, . . . ,Um of S1 such that if d(Q, P) < δ, then for every 1 ≤ i ≤ m,

(1) supp νi ⊂ int(Ui ) ⊂ (supp νi )ζ ,

(2) Ui is a union of finitely many pairwise disjoint closed intervals whose endpoints are
not vertices of P,

(3) ψQ(Ui ) ⊂ int(Ui ) and dS1(ψQ(Ui ), ∂Ui ) > τ .

Proof We construct the setsU1, . . . ,Um inductively.We start with the setU1. Its construction
is also inductive, and requires l steps, i.e., as many steps as the number of distinct boundary
segments γ1, . . . , γl of supp ν1. At the kth step, we enlarge supp ν1 by enlarging the intervals
forming supp ν1 whose endpoints lie on the kth boundary segment.

Set A0 = supp ν1. Suppose that Ak−1 with 1 ≤ k ≤ l is given, and let γk = {s0, . . . , sNk }
be the kth boundary segment of ν1. Once again, we construct Ak inductively. Set B0 =
Ak−1. Suppose that Bi−1 with 1 ≤ i < Nk is given. If sNk−i ∈ int(Bi−1)—which happens
when there exists k′ < k such that γk′ and γk shares the same point sNk−i+1—then we set
Bi = Bi−1 . Otherwise, if sNk−i is the right endpoint of an interval of Bi−1, then choose
tNk−i ∈ (sNk−i , sNk−i + ζ ) satisfying

(i) [sNk−i , tNk−i ] ∩ SP = ∅,
(ii) [sNk−i , tNk−i ] ∩ Bi−1 = ∅,
(iii) [sNk−i , tNk−i ] ∩ (supp ν2 ∪ · · · ∪ supp νm) = ∅,
(iv) ψP ([sNk−i , tNk−i ]) ⊂ int(Bi−1).
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Instead, if sNk−i is the left endpoint of an interval of Bi−1, then choose tNk−i ∈ (sNk−i −
ζ, sNk−i ) satisfying conditions analogous to (i)–(iv). Such a tNk−i exists, because sNk−i /∈ SP ,
ψP (sNk−i ) ∈ int(Bi−1), and the supports of the acips ofψP are pairwise disjoint. Next, define
Bi = Bi−1 ∪ [sNk−i , tNk−i ]. The previous procedure gives the sets B0, . . . , BNk−1. finally,
define Ak = BNk−1. Once all the sets A0, . . . , Al have been computed, define U1 = Al .

An almost identical construction produces the sets U2, . . . ,Um . Assume that Uj−1 with
2 ≤ j ≤ m is given, and constructUj by following the same procedure used forU1 with the
obvious modifications and with Condition (iii) above replaced by

[si , ti ] ∩ (
U1 ∪ · · · ∪Uj−1 ∪ supp ν j+1 ∪ · · · ∪ supp νm

) = ∅.

It is easy to see that the setsU1, . . . ,Um obtained this way have the wanted properties for the
map ψP . In fact, besides ψP (Ui ) ⊂ int(Ui ) for every 1 ≤ i ≤ m, a bit more can be derived
from the construction above. Namely, we obtain that there is τ > 0 such that

dS1(ψP (Ui ), ∂Ui ) > 2τ for every 1 ≤ i ≤ m. (4.1)

Next, we want to extend the previous conclusion to every map ψQ with d(Q, P) suffi-
ciently small. To this end, note that if d(Q, P) is sufficiently small, then there is a natural
bijective correspondence between the vertices of Q and P . So for d(Q, P) sufficiently small
case, denote by sQ the vertex of Q corresponding to the vertex s of P . Then, for every vertex
s of P , we have sQ → s as d(Q, P) → 0. Moreover by Condition (*) and the fact that no
vertex of P can have an internal angle equal to π/2 (see Lemma 3.5), it follows that for every
vertex s of P ,

ψQ(s±
Q) −→ ψP (s±) as d(Q, P) → 0. (4.2)

By construction ofUi and properties (4.1) and (4.2), it is not difficult to see thatψQ(Ui ) ⊂
int(Ui ) and dS1(ψQ(Ui ), ∂Ui ) > τ for every 1 ≤ i ≤ m provided that d(Q, P) is sufficiently
small. 
�

Recall that� f ,Q : K f ,Q \NQ → K f ,Q . Next, we show that if a polygon Q is sufficiently
close to P ∈ P∗

n , and f is a reflection law sufficiently close to 0, then the map � f ,Q has a
trapping region close to

⋃m
i=1Ui × {0} with U1, . . . ,Um being as in Proposition4.3.

Proposition 4.4 Suppose that P ∈ P∗
n . Given ζ > 0, let δ > 0, τ > 0 and the sets

U1, . . . ,Um be as in Proposition 4.3. There exist 0 < δ′ < δ and pairwise disjoint sets
W1, . . . ,Wm of M defined by

Wi = Ui ×
(
−π

2
λ( f ),

π

2
λ( f )

)
, i = 1, . . . ,m

such that if λ( f ) < δ′ and d(Q, P) < δ′, then � f ,Q(Wi \ NQ) ⊂ int(Wi ) for every
1 ≤ i ≤ m.

Proof Given ζ > 0, let δ > 0, τ > 0 and the sets U1, . . . ,Um be as in Proposition 4.3.
Define Wi as in the statement of the proposition. Clearly, the sets W1, . . . ,Wm are disjoint
because so are U1, . . . ,Um , and satisfy Condition (1). Note that as Ui , the set Wi depends
on the measure νi .

Since | f ◦hQ | < πλ( f )/2, Condition (2) is a consequence of the following property: there
exists 0 < δ′ < δ such that if λ( f ) < δ′ and d(Q, P) < δ′, then gQ(Wi \ NQ) ⊂ int(Ui ).
This property, by Part (3) of Proposition 4.3, follows immediately from

|gQ(s, θ) − ψQ(s)| ≤ τ, (s, θ) ∈ Wi \ NQ .
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Let (s, θ) ∈ Wi \ NQ . Using the Mean Value Theorem, we obtain

|gQ(s, θ) − ψQ(s)| = |gQ(s, θ) − gQ(s, 0)|
≤ sup

−πλ( f )/2<θ<πλ( f )/2

∣
∣∂θgQ(s, θ)

∣
∣ |θ |.

Now, ∂θ gQ(s, θ) = −tQ(s, θ)/ cos(hQ(s, θ)) by (2.1), tQ ≤ 1 because the perimeter of Q is
equal to 1, and by Lemma 3.5, if λ( f ) and d(Q, P) are sufficiently small, then |hQ(·, 0)| is
uniformly bounded away from π/2 on K f ,Q \ NQ , i.e., there is a constant A > 0 depending
only on P such that cos ◦hQ > A on K f ,Q \ NQ . Therefore,

∣
∣gQ(s, θ) − ψQ(s)

∣
∣ <

|θ |
A

<
π

2A
λ( f ), (s, θ) ∈ Wi \ NQ,

provided that λ( f ) and d(Q, P) are sufficiently small. By taking a smaller λ( f ) if necessary,
we obtain π/(2A)λ( f ) ≤ τ . Hence, there exists 0 < δ′ < δ such that if λ( f ) < δ′ and
d(Q, P) < δ′, then

πs ◦ � f ,Q(Wi \ NQ) = gQ(Wi \ NQ) ⊂ int(Ui ).


�

4.2 Hyperbolicity

Definition 4.5 Given Q ∈ Pn , f ∈ R and m ∈ N, denote by α(�m
f ,Q) and β(�m

f ,Q) the

infimum and the supremumof ‖dx�m
f ,Q(1, 0)T ‖, respectively, over the subset of K f ,Q where

�m
f ,Q is differentiable.

The next lemma says that the horizontal direction is uniformly expanding for� f ,Q when-
ever P ∈ P∗

n , f ∈ R and Q ∈ Pn with λ( f ) and d(Q, P) sufficiently small. We emphasize
that f and � f ,P may not be invertible for f ∈ R.

Lemma 4.6 Let P ∈ P∗
n . Then there exist δ > 0 and 1 < α0 < β0 such that

(1) if f ∈ R1 and d(Q, P) < δ, then � f ,Q is hyperbolic;
(2) if f ∈ R with λ( f ) < δ and d(Q, P) < δ, then

α0 ≤ α(� f ,Q) ≤ β(� f ,Q) ≤ β0.

Proof Part (1). By Lemma 3.5, every Q sufficiently close to P has no parallel sides facing
each other. For such a Q, Proposition 3.3 guarantees that the attractor � f ,Q is hyperbolic
for every f ∈ R1.

Part (2). Let f ∈ R, and let Q ∈ Pn . By (2.1), we have

α f ,Q(x) :=
∥
∥
∥
∥dx� f ,Q

(
1
0

)∥
∥
∥
∥ = cos θ

cos(hQ(s, θ))

for every x = (s, θ) ∈ K f ,Q \ N+
f ,Q . Denote by u(x) the unit vector of R2 parallel to

the side L(x) of Q containing s and having the same orientation of L(x) (induced by the
parametrization of ∂P). Also, denote by 0 < ωQ(x) < 2π the smallest angle of the coun-
terclockwise rotation of R2 mapping u(x) to u(� f ,Q(x)). A simple computation shows that
hQ(s, θ) = π − ωQ(x) − θ . Hence

α f ,Q(x) = 1

− cosωQ(x) + tan θ sinωQ(x)
. (4.3)
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Now, let Q = P ∈ P∗
n . Since P satisfies Condition (*), P does not have sides parallel

facing each other and adjacent sides that are perpendicular (see Lemma 3.5). It is still possible
for P to have parallel sides, but two consecutive collisions x and � f ,P (x) at parallel sides
never occur. It follows that if λ( f ) is sufficiently small, then the angle ωP (x) must satisfy
the property: there exist τ > 0 depending only on P and δ0 > 0 such that if λ( f ) < δ0, then
for all x ∈ K f ,P \ N+

f ,P ,

ωP (x) ∈
(π

2
+ τ, π − τ

)
∪

(

π + τ,
3

2
π − τ

)

. (4.4)

Recall that if x ∈ K f ,P , then |θ | < πλ( f )/2 for f �= 0, and θ = 0 for f = 0. This
together (4.4) and (4.3) implies that there exists 0 < δ1 ≤ δ0 and 1 < α0 < β0 such that if
λ( f ) < δ1, then

α0 < α f ,P (x) < β0 for all x ∈ K f ,P \ N+
f ,P . (4.5)

By Lemma 3.5, every Q sufficiently close to P does not have parallel sides facing each
other and adjacent sides that are perpendicular. From this, it is not difficult to see that there
must exist 0 < δ ≤ δ1 such that (4.4) with the same τ , and therefore (4.5) with the same
α0 and β0 continue to hold for every Q ∈ Pn with d(Q, P) < δ and every f ∈ R with
λ( f ) < δ. This implies the wanted conclusion. 
�

For every s ∈ VQ and every r > 0, define

I (s, r) = (s − r , s) ∪ (s, s + r) ⊂ S1,

and

HQ(r) =
⋃

s∈VQ

I (s, r) × (−r , r) ⊂ M .

The first conclusion of the next proposition is an obvious consequence of Lemma 4.6.
The second conclusion says, roughly speaking, that for every m ∈ N, the map �m

f ,Q is
differentiable on a sufficiently small neighborhood of the ‘vertices’ of the polygon provided
that P satisfies (*) and � f ,Q is sufficiently close to �0,P . From this, it follows that when
a sufficiently short curve γ in K f ,Q is iterated forward m times, it cannot be cut more than
once by the singular set of � f ,Q .

Proposition 4.7 Let P ∈ P∗
n . For every ᾱ > 1, there exist δ > 0, m ∈ N and r > 0 such

that if f ∈ R with λ( f ) < δ and d(Q, P) < δ, then

(1) ᾱ ≤ α(�m
f ,Q) ≤ β(�m

f ,Q) ≤ βm
0 with β0 be as in Lemma 4.6,

(2) �m
f ,Q |HQ(r) is differentiable.

Proof Let P ∈ P∗
n , and let ᾱ > 1. By Lemma 4.6, there exist m ∈ N and δ0 > 0 such that

ᾱ ≤ αm
0 ≤ α(�m

f ,Q) ≤ β(�m
f ,Q) ≤ βm

0

for all f ∈ R with λ( f ) < δ0 and all Q ∈ Pn with d(Q, P) < δ0. The value of m will be
kept fixed throughout the rest of the proof.

Recall that YP = VP × (−π/2, π/2). Since P satisfies Condition (*), if s ∈ SP (i.e., s
is a singular point of ψP ), then the forward orbits of ψP (s+) and ψP (s−) do not visit any
vertex of P . Also, recall that each vertex of P in VP \ SP is a fixed point of ψP . Hence,
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there exists r0 > 0 such that dS1(VP , ψ i
P (I (s, r0))) > 0 for all 0 ≤ i ≤ m and all s ∈ VP .

Equivalently, in terms of the map �0,P ,

dM (YP ,�i
0,P (I (s, r0) × {0})) > 0

for all 0 ≤ i ≤ m and all s ∈ VP . It is not difficult to see that the conclusion remains
valid for every Q sufficiently close to P . More precisely, there is 0 < δ1 ≤ δ0 such that if
d(Q, P) < δ1, then

dM (YQ,�i
0,Q(I (s, r0) × {0})) > 0 ∀0 ≤ i ≤ m ∀s ∈ VQ . (4.6)

Now, arguing as in the proof of Proposition 4.4, one can show that there is 0 < r ≤ r0
such that (4.6) holds even when I (s, r0)×{0} is replaced by I (s, r)×{−r , r}, and that there
is 0 < δ ≤ δ1 such that if f ∈ R with λ( f ) < δ and d(Q, P) < δ, then

dM (YQ,�i
f ,Q(I (s, r) × (−r , r))) > 0

for all 0 ≤ i ≤ m and all s ∈ VQ . By taking a sufficiently small δ, one can even guarantee
that

�i
f ,Q(I (s, r) × (−r , r)) ⊂ S1 × (−r , r)

for all 0 ≤ i ≤ m and all s ∈ VQ . What we have just proved can be reformulated in terms
of the set HQ(r) as follows. There exist r > 0 and δ > 0 such that if f ∈ R with λ( f ) < δ

and d(Q, P) < δ, then

dM (YQ,�i
f ,Q(HQ(r))) > 0 and �i

f ,Q(HQ(r)) ⊂ S1 × (−r , r)

for every 0 ≤ i ≤ m. The first inequality implies that �m
f ,Q is differentiable on HQ(r).

Indeed, suppose that the claim was not true. Then there would exist 0 ≤ i < m such that
�i

f ,Q(HQ(r)) ∩ N+
f ,Q �= ∅ implying dM (YQ,�i

f ,Q(HQ(r))) = 0, which is impossible. 
�

Given a C1-curve � ⊂ K f ,Q , denote by |�| the length of � induced by the metric dM .

Lemma 4.8 Let P ∈ P∗
n . Then there exist δ > 0 and η > 0 such that if f ∈ R, Q ∈ Pn with

λ( f ) < δ and d(Q, P) < δ, and � is a horizontal segment, then there exist a segment γ ⊂ �

and k ∈ N with the property that �k
f ,Q(γ ) is a horizontal segment with |�k

f ,Q(γ )| > η.

Proof Choose3 ᾱ = 3, and let m > 0, r > 0 and δ > 0 be as in Proposition 4.7. Let f ∈ R
with λ( f ) < δ, and let Q ∈ Pn with d(Q, P) < δ.

Let � be a horizontal segment in K f ,Q . Define recursively a sequence of horizontal
segments {� j } as follows: let �0 = �, and let � j+1 be any interval of maximal length of
�m

f ,Q(� j ) for every j ≥ 0. We claim that |� j | > r for some j ≥ 0. It is easily seen that the
conclusion of the lemma with η = r and k = mj is a direct consequence of our claim.

To prove the claim, we study separately the two alternatives: (1) �m
f ,Q(� j ) consists of

more than two horizontal segments for some j ≥ 0, and (2) �m
f ,Q(� j ) consists of one or

two horizontal segments for every j . If alternative 1 occurs, then there exist 1 ≤ i ≤ m and
a segment �′ ⊂ �i

f ,Q(� j ) with both endpoints on YQ . By Proposition 4.7,

�′ ⊂ �i
f ,Q(HQ(r)) ⊂ S1 × (−r , r),

3 This choice is arbitrary, every ᾱ > 2 will do.
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and so the intersection�′∩HQ(r) contains a segment�′′ of length r . Since�m−i
f ,Q is continuous

on HQ(r) and α(� f ,Q) > 1,

|� j+1| ≥ |�m−i
f ,Q (�′′)| > r .

If alternative 2 occurs, then we clearly have |� j+1| ≥ |� j |ᾱ/2, and so

|� j | ≥ |�0|
(

ᾱ

2

) j

> r

for some j ≥ 0. Hence, in both cases, there exists j ≥ 0 such that |� j | > r . This completes
the proof. 
�

4.3 Existence of SRBMeasures

Recall that Vol denotes the volume generated by the Riemannian metric dM on M . Given a
C1-curve � ⊂ K f ,Q , denote by Vol� the normalized volume on � induced by the metric
dM . Finally, denote by N+

f ,Q(r) the neighborhood of N+
f ,Q in K f ,Q of radius r > 0.

Proposition 4.9 If P ∈ P∗
n , then there exists δ > 0 such that if f ∈ R2 with λ( f ) < δ and

d(Q, P) < δ, then the following properties hold:

(A) there are positive constants C = C( f , Q) and r0 = r0( f , Q) such that

Vol(�−n
f ,Q(N+

f ,Q(r))) < Cr ∀n ≥ 1 ∀0 < r < r0,

(B) there is r1 = r1( f , Q) > 0 such that for every horizontal segment �, there exists
B = B( f , Q, �) > 0 for which

Vol�(� ∩ �−n
f ,Q(N+

f ,Q(r))) < Br ∀n ≥ 1 ∀0 < r < r1.

Proof In [8, Lemma 4.9 and Theorem 4.15], we demonstrated that properties (A) and (B)
are consequences of the m-step expansion condition (c.f. [4, Inequality (5.38)]): there exists
m ∈ N such that

lim inf
τ→0+ sup

�∈H(τ )

∑

γ∈Sm (�)

1

am(γ )
< 1, (4.7)

where H(τ ) is the set of horizontal segments � ⊂ K f ,Q with |�| < τ , Sm(�) is the
set of maximal subsegments γ of � such that �m

f ,Q |γ is differentiable, and am(γ ) =
inf x∈γ ‖dx�m

f ,Q(1, 0)T ‖. Accordingly, to prove the proposition, it suffices to show that the
m-step expansion condition holds for a proper m ∈ N.

Let P ∈ P∗
n , and denote by L the length of the shortest side (or sides) of P . Choose ᾱ > 2,

and let δ, m, r and β0 be the positive constants as in Proposition 4.7. Consider f ∈ R2 with
λ( f ) < δ and Q ∈ Pn with d(Q, P) < δ. If necessary, take a smaller δ so that the length
of the shortest side (or sides) of Q is less than 3L/2. Choose δ = β−m

0 · min{r , l}, and let
� ∈ H(τ ).

If N+
f ,Q ∩�i

f ,Q(�) = ∅ for every 0 ≤ i < m, then�i
f ,Q |γ is differentiable, and�i

f ,Q(�)

consists of a single segment. Thus Sm(�) = {�}, am(�) ≥ ᾱ and

sup
�∈H(τ )

∑

γ∈Sm (�)

1

am(γ )
= 1

ᾱ
<

1

2
.

123



11 Page 16 of 29 G. Del Magno et al.

Now, suppose that N+
f ,Q ∩ �i

f ,Q(�) �= ∅ for some 0 ≤ i < m, and let 0 ≤ j < m be the

smallest i with such a property. It follows that� j
f ,Q(�) consists of several disjoint horizontals

segments whose total length is less than Lβ
−m+ j
0 < L , because βm

0 is the supremum of the
expansion along the horizontal direction. Since Q is convex, and the length of its shortest side
is less than 3L/2,� j

f ,Q(�)must consist exactly of two horizontal segments, both having one

endpoint in YQ . The length of each segment is less than rβ−m+ j
0 < r . Hence, both segments

are contained in HQ(r). By Proposition 4.7, �m
f ,Q |HQ (r) is differentiable and α(�m

f ,Q) ≥ ᾱ.
So πm(�) consists of two segments, and am(γ ) ≥ ᾱ > 2 for every γ ∈ πm(�). Therefore,

sup
�∈H(τ )

∑

γ∈Sm (�)

1

am(γ )
= 2

ᾱ
< 1.

The previous estimates imply the desired property,

lim inf
τ→0+ sup

�∈H(τ )

∑

γ∈Sm (�)

1

am(γ )
<

2

ᾱ
< 1.


�
Remark 4.10 Property (A) is a version adapted to billiards of a condition introduced by Sataev
[15] for general maps with singularities, which in turn is a stronger version of Condition H4
in [14]. Condition H4 is key in proving the existence of SRB measures for hyperbolic maps
with singularities.

We now establish the existence of SRB measures for the map � f ,Q .

Theorem 4.11 Suppose that P ∈ P∗
n . Then there exists δ > 0 such that for every f ∈ R2

with λ( f ) < δ and every Q ∈ Pn with d(Q, P) < δ, the attractor � = � f ,Q is hyperbolic
and regular, and there exist countably many ergodic SRB measuresμ1, μ2, . . . of� = � f ,Q

and countably many Borel subsets E0, E1, E2, . . . of � such that

(1) � = ⋃
i=0 Ei and Ei ∩ E j = ∅ for all i �= j;

(2) Ei ⊂ D, �(Ei ) = Ei , μi (Ei ) = 1 and �|Ei is ergodic with respect to μi for every
i ≥ 1;

(3) for every i ≥ 1, there exist ki ∈ N disjoint subsets B1
i , . . . , B

ki
i such that

(a) Ei = ⋃ki
j=1 B

j
i ;

(b) �(B j
i ) = B j+1

i for j = 1, . . . , ki − 1, and �(Bki
i ) = B1

i ;
(c) �ki |

B j
i
with the normalized restriction of μi to B j

i is a Bernoulli automorphism;

(4) If μ is an SRB measure of �, then there exist α1, α2, . . . with
∑

i=1 αi = 1 such that
μ = ∑

i αiμi ;
(5) if x ∈ D−

ε and ν is a probability measure on M supported on Wu
loc(x) absolutely

continuous with respect to the Riemannian volume on Wu
loc(x) and with density κ(x, ·)

(see [14, Proposition 6]), then every weak-* limit point of μn = n−1 ∑n−1
k=0 �k∗ν is an

SRB measure of �;
(6) the set of periodic points of � is dense in �;
(7) for every i ≥ 1, there exist C > 0, α > 0 and r0 > 0 such that μi (N

+
f ,Q(r)) ≤ Crα

for every 0 < r < r0.
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Proof The theorem follows from results by Pesin on the existence and properties of SRB
measures for general hyperbolic piecewise smoothmaps.More precisely, conclusions (1)–(4)
follow from [14, Theorem 4], conclusion (5) follows from [14, Theorem 1], conclusion (6)
follows from [14, Theorem11], and conclusion (7) follows from [14, Proposition 12]. See also
[15], where Sataev obtained results that are stronger than those of Pesin (but under stronger
hypotheses). To justify our claim, we show that the map � f ,Q satisfies the hypothesis of
Pesin’s paper, i.e., the conditions called H1–H4 and the condition that � f ,Q is hyperbolic.

The map � f ,Q satisfies conditions H1 and H2, because so does the billiard map �P with
the specular reflection law (see [10, Theorem 7.2]), and f and f −1 have bounded second
derivates since f ∈ R2. Since P ∈ P∗

n , Lemma 4.6 and Proposition 4.9 implies, respectively,
the hyperbolicity of � f ,Q and Properties (A) and (B) for every f ∈ R1 and every Q ∈ Pn

sufficiently close to P . Finally, Property (A) implies H3 (the regularity of � f ,Q) by [14,
Proposition 3], and (B) implies H4. 
�

Wecall the sets E1, . . . , Em the ergodic components of�, andwe call the sets B1
i , . . . , B

ki
i

the Bernoulli components of Ei .

Remark 4.12 Under the extra hypothesis that f ′(θ) > 0 for every θ ∈ (−π/2, π/2), the pre-
vious theorem follows from a general result on polygonal billiards with contracting reflection
laws [8, Theorem 4.12]. Theorem 4.11 shows that the condition f ′(θ) > 0 can be dropped
when λ( f ) is sufficiently small.

4.4 Continuation of Periodic Points

Throughout this section, P and Q are assumed to be polygons in Pn without parallel sides
facing each other, and f is assumed to be a reflection law in R. Note that for such an f ,
the map � f ,Q is not necessarily invertible. Since P does not have parallel sides facing each
other, ψP is piecewise expanding.

Denote by B(x, r) the open ball of S1×(−π/2, π/2) centered at x of radius r > 0. Given
x ∈ D+

f ,Q,ε , we call the two curves contained in Ws
loc(x) having as endpoints x and a point

of ∂Ws
loc(x) the components of Ws

loc(x). In the next theorem, we prove that each periodic
point of ψP admits a continuation to a hyperbolic periodic point of the billiard map � f ,Q

provided that λ( f ) and d(Q, P) are sufficiently small.

Theorem 4.13 Let s be a periodic point of ψP of period m ∈ N whose orbit does not visit
VP . Then there exist positive constants δ, r and 
 such that if λ( f ) < δ and d(Q, P) < δ,

then

(1) � f ,Q has exactly one hyperbolic periodic point x f ,Q of period m in B((s, 0), r) con-
verging to (s, 0) as λ( f ) + d(Q, P) → 0,

(2) the slope of Es(x f ,Q) is smaller than −1/(2tP (s, 0)),
(3) if γ is a component of Ws

loc(x f ,Q)), then |γ | ≥ 
.

Note that x := (s, 0) is a hyperbolic periodic point of �0,P of period m.

Definition 4.14 We call x f ,Q the continuation of s [or of x = (s, 0)].

To prove Theorem 4.13, we need Lemma 4.15. Let d1 be the C1-distance between maps.

Lemma 4.15 Let s ∈ S1, and suppose that there exists m ∈ N such that ψ i
P (s) /∈ VP for

every 0 ≤ i ≤ m − 1. There are δ0 > 0 and r0 > 0 such that if λ( f ) < δ0, d(P, Q) < δ0
and x = (s, 0), then the restrictions �m

0,P |B(x,r0) and �m
f ,Q |B(x,r0) are both differentiable.
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Proof By the hypothesis on s, there exists r0 > 0 such that the restriction �m
0,P |B(x,r0) is

differentiable. This implies that the components of themap�m
f ,Q and the entries of thematrix

dx�m
f ,Q are continuous in the variables f and Q at f = 0 and Q = P . Hence, there exists

δ0 > 0 such that if λ( f ) < δ0 and d(Q, P) < δ0, then �n
f ,Q |B(x,r0) is differentiable as well.


�
Remark 4.16 By Lemma 4.15, �n

f ,Q |B(x,r0) can be thought as a perturbation of �m
0,P |B(x,r0),

and Theorem4.13 is a corollary of a general theoremon the persistence of hyperbolic periodic
points of smooth maps (without singularities) under small perturbations [19, Theorem 2.6].
However, to be able to apply this theorem to ourmapswith singularities,weneed the following
observation. The map�m

0,P |B(x,r0) is an endomorphism, whereas [19, Theorem 2.6] assumes

that the unperturbed map is a C1 diffeomorphism. Nevertheless, it continues to hold when
the unperturbed map is just a C1 endomorphism, because even if [19, Lemma 2.5]—the key
step in the proof of Theorem 2.6—is formulated for hyperbolic linear isomorphisms, it is
actually valid for hyperbolic linear endomorphisms (see also [20, Sect. 2.1]).

Proof of Theorem 4.13 Since the orbit of s does not visit VP , the �0,P -orbit of x = (s, 0) is
defined, and x = (s, 0) is a fixed point of �m

0,P . Moreover, since P does not have parallel
sides facing each other, x is a hyperbolic periodic point. We can then apply Lemma 4.15 to
�m

0,P and x . Let r0 > 0 and δ0 > 0 be as in the lemma. Next, we apply [19, Theorem 2.6] to
�m

0,P |B(x,r0) and its perturbation �m
f ,Q |B(x,r0) with λ( f ) < δ0 and d(Q, P) < δ0. So there

exist 0 < δ < δ0 and 0 < r < r0 such that if λ( f ) < δ and d(Q, P) < δ, then �m
f ,Q |B(x,r)

has a unique fixed point x f ,Q with the property that x f ,Q → x as λ( f )+d(Q, P) → 0. Since
Q does not have sides facing each other, the map � f ,Q is uniformly hyperbolic, implying
that x f ,Q is hyperbolic. This proves conclusion (1) of the theorem.

Now, consider the fixed point x of �m
0,P . Note that the (2, 2)-entry of dx�m

0,P is equal to
0, since f = 0 in this case. Then, using (2.1), one can easily show that the slope of the stable
direction of x is equal to−1/tP (x). Since the entries of the matrix dx f ,Q�m

f ,Q are continuous
functions of ( f , Q) at f = 0 and Q = P , so is the slope of the stable direction of x f ,Q .
Thus, by further shrinking δ, we obtain conclusion (2) of the theorem with the lower bound
for the slope equal to −1/(2tP (x)).

Now, we assume that λ( f ) < δ and d(Q, P) < δ. Since x f ,Q is a periodic point, the
distance of its orbit from the singular set N+

f ,Q is bounded away from zero uniformly in f

and Q (chosen as above). This implies that x f ,Q ∈ D+
f ,Q,ε,l for some l ∈ N uniformly in

( f , Q). By Pesin’s theory, there exists 
 > 0 such that the length of each component of
Ws

loc(x) is greater than or equal to 
 for every x ∈ D+
f ,Q,ε,l . This implies conclusion (3) of

the theorem. 
�

4.5 A Criterion for Ergodicity

Throughout of this section, we will assume implicitly that P is a polygon without parallel
sides facing each other and that f ∈ R2. Hence, � f ,P is hyperbolic by Proposition 3.3. In
particular, every periodic point of � f ,P is hyperbolic.

The next lemma plays a crucial role in the proof of Theorem 4.22. It tells us about
the points contained in a given horizontal segment where local stable manifolds exist (c.f.
[15, Proposition 3.4] and [14, Lemma 1]). The lemma is a consequence of Property (B) in
Proposition 4.9.

Lemma 4.17 Let � be a horizontal segment. For every 0 < τ < 1, there exists l+ ∈ N such
that Vol�(� ∩ D+

f ,P,ε,l) ≥ 1 − τ for all l ≥ l+.
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Proof Note that if x ∈ � \ D+
f ,P,ε,l , then dM (�n

f ,P (x), N+
f ,P ) < l−1e−εn for some n ≥ 0.

Thus,

� \ D+
f ,P,ε,l ⊂

∞⋃

n=0

� ∩ �−n
f ,P

(
N+

f ,P (l−1e−εn)
)

.

By Property (B) of Proposition 4.9, we obtain

Vol�(� \ D+
f ,P,ε,l) ≤

∞∑

n=0

Vol�
(
� ∩ �−n

f ,P

(
N+

f ,P (l−1e−εn)
))

≤ B

l

∞∑

n=0

e−εn = B

l(1 − e−ε)
.

Hence,

Vol�(� ∩ D+
f ,P,ε,l) = 1 − Vol�(� \ D+

f ,P,ε,l) ≥ 1 − B

l(1 − e−ε)
,

which yields the wanted conclusion. 
�

Denote by C(� f ,P ) be set of all continuous functions on the attractor � f ,P . For every
ϕ ∈ C(� f ,P ), let

ϕ+(x) = lim
n→+∞

1

n

n−1∑

k=0

ϕ
(
�k

f ,P (x)
)

be the forward Birkhoff average of ϕ. Also, let μ1, μ2, . . . be the ergodic SRB measures of
� f ,P , and let E1, E2, . . . be the corresponding sets as in Theorem 4.11.

Definition 4.18 For every i , define

μi (ϕ) =
∫

�

ϕ(x) dμi (x) ∀ϕ ∈ C(� f ,P ),

and

Ri = {
x ∈ Ei : ϕ+(x) = μi (ϕ) ∀ϕ ∈ C(� f ,P )

}
.

Since the sets Ei ’s are � f ,P -invariant and pairwise disjoint, so are the sets Ri ’s. More-
over, the separability of C(� f ,P ) and the Birkhoff Ergodic Theorem imply that μi (Ri ) =
μi (Ei ) = 1 for every i .

Definition 4.19 For every i , define �i to be the set of all x ∈ D−
f ,P,ε for which there exists

an open disk Vx in Wu
loc(x) containing x such that VolVx (Vx ∩ Ri ) = 1.

Remark 4.20 By the property of the conditional measures of an SRB measure, it follows that
μi (�i ) = 1 (see the definition of a u-measure and the paragraph before [14, Proposition 9]).

The next results play a central role in the proofs of Theorem 1.2, permitting to characterize
the sets Ei ’s and the number of their Bernoulli components using the periodic points of the
map � f ,P . We observe that our Theorem 4.22 is similar to [16, Theorem 5.1].
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Proposition 4.21 Let x ∈ �i , and suppose that there are a periodic point x0 of � f ,P and
an integer n ≥ 0 such that

Ws
loc(x0) ∩ �n

f ,P (Vx ) �= ∅,

where Vx is as in the definition of �i . Then there exists an open disk W of x0 in Ws
loc(x0)

and a set W ′ ⊂ W ∩ Ri such that VolW (W ′) = 1.

Proof Let p be the period of x0. By hypothesis, there exists y ∈ Ws
loc(x0)∩�n

f ,P (Vx ). Define

yk = �
kp
f ,P (y) for every k ≥ 0. Clearly, yk ∈ Ws

loc(x0) and limk→+∞ yk = x0.
Since the attractor � f ,P is hyperbolic, there exists k0 ≥ 0 such that

Wu
loc(yk) ∩ �

n1+kp
f ,P (Vx ) = Wu

loc(yk) for all k ≥ k0.

Let k ≥ k0. We have Vk := �
−(n1+kp)
f ,P (Wu

loc(yk)) ⊂ Vx . Moreover, since the probability

measure (�
n1+kp
f ,P )∗(VolVk ) is equivalent to VolWu

loc(yk )
, and the set Ri is�-invariant, we have

VolWu
loc(yk )

(Wu
loc(yk) ∩ Ri ) = 1.

The periodic point x0 is hyperbolic, and so x0 ∈ D−
f ,P,ε,l− for some l− ∈ N. It follows

that there is k1 ≥ k0 such that

yk ∈ D−
f ,P,ε,2l− for all k ≥ k1. (4.8)

Hence, the size of Wu
loc(yk) is uniformly bounded from below by some positive constant

depending on ε and l−. Since D−
f ,P,ε,2l− is closed, by [14, Propositions 1 and 4], the sequence

of curves Wu
loc(yk) converges in the C1-topology to an open disk W ⊂ Wu

loc(x0) containing
x0.

By Lemma 4.17, for every 0 < δ < 1, there exists l+ ≥ 0 such that

VolW (W ∩ D+
f ,P,ε,l+) ≥ 1 − δ.

This together with (4.8) implies that there exist an open disk W1 ⊂ W containing x0 and an
integer k2 ≥ k1 such that

VolW (W1 ∩ D+
f ,P,ε,l+) ≥ 1 − δ/2,

and

Ws
loc(w) ∩ Wu

loc(yk2) �= ∅ for all w ∈ W1 ∩ D+
f ,P,ε,l+ .

Let

W2 =
{
w ∈ W1 ∩ D+

f ,P,ε,l+ : Ws
loc(w) ∩ Wu

loc(yk2) ∩ Ri �= ∅
}

.

It is a well known fact that if ϕ ∈ C(�),w ∈ D+
f ,P,ε and ϕ+(w) exists, then ϕ+(z) = ϕ+(w)

for every z ∈ Ws
loc(x). Therefore, if w ∈ W2, then Ws

loc(w) ∩ Ri �= ∅, and so ϕ+(w) =
μi (ϕ) for every ϕ ∈ C(� f ,P ). By the absolute continuity of the stable foliation (see [14,
Proposition 10]),

VolW (W2) = VolW (W1 ∩ D+
f ,P,ε,l+) ≥ 1 − δ/2.

We have proved that for every 0 < δ < 1, there is a subset W2 = W2(δ) ⊂ W such that
VolW (W2) ≥ 1 − δ/2, and ϕ+|W2 = μi (ϕ) for every ϕ ∈ C(� f ,P ). We obtain immediately
the existence of a set W ′ ⊂ W such that VolW (W ′) = 1 and ϕ+|W ′ = μi (ϕ) for every
ϕ ∈ C(� f ,P ). 
�

123



Hyperbolic Polygonal Billiards... Page 21 of 29 11

Theorem 4.22 Let x1 ∈ �i and x2 ∈ � j , and suppose that there are a periodic point x0
of � f ,P and two integers n1 ≥ 0 and n2 ≥ 0 such that Ws

loc(x0) ∩ �
n1
f ,P (Vx1) �= ∅ and

Ws
loc(x0) ∩ �

n2
f ,P (Vx2) �= ∅, where Vx1 and Vx2 are the sets corresponding to x1 and x2 as

in the definition of Ri . Then i = j .

Proof Both x1 and x2 satisfy the hypotheses of Proposition 4.21. Thus, there exist two
open disks W1 and W2 of x0, and two sets W ′

1 ⊂ W1 ∩ Ri and W ′
2 ⊂ W2 ∩ R j such that

VolW1(W
′
1) = VolW2(W

′
2) = 1. It follows that Ri ∩ R j �= ∅. Hence Ri = R j , i.e., i = j . 
�

Wenowprove a proposition that allows us to estimate the number of Bernoulli components
of an ergodic SRB measure.

Let μ = μi be one of the ergodic SRB measures of � = � f ,P , and let E = Ei be
the corresponding ergodic component. Suppose that μ has n Bernoulli components. Then, it
follows from Theorem 4.11 that there exist an integer n > 0 and a probability measure μ′
such that �n endowed with μ′ is a Bernoulli automorphism, and μ is the arithmetic average
of μ′,�∗μ′, . . . , �n−1∗ μ′. Define the sets R′ and �′ for the measure μ′ and the map �n

exactly as the sets Ri and �i for the measure μi and the map � in Definitions 4.18 and 4.19.
Remark 4.20 applies to �′ and μ′ as well, and so μ′(�′) = 1. Also, given x ∈ �′, let Vx be
the open disk in Wu

loc(x) containing x as in Definition 4.19.

Proposition 4.23 Let x ∈ �′, and suppose that there exist an integer j ≥ 0 and a periodic
point x0 of � of period p such that

Ws
loc(x0) ∩ � j (Vx ) �= ∅.

Then n is a divisor of p.

Proof By Proposition 4.21, there exists a neighborhood W ⊂ Wu
loc(x0) of x0 and a set

W ′ ⊂ W ∩ R′ with VolW (W ′) = 1. Since x0 is periodic and W ′ ⊂ Wu
loc(x0), we have

�−p(W ′) ⊂ W ′. Moreover, VolW (�−p(W ′)) > 0 because the measure �
p∗ VolW is equiva-

lent to Vol�−p(W ). This yields W
′ ∩ �−p(W ′) �= ∅. Since W ′ ⊂ R′, the set W ′ is contained

in a Bernoulli component of μ. Hence, n must be a divisor of p. 
�

5 Proof of Theorem 1.2

In this section, we prove Theorems 5.11, 5.14 and 5.15 and Corollary 5.12, which all together
form Theorem 1.2. Throughout this section, we assume that P ∈ P∗

n . Recall that E(ψP ) and
E(� f ,Q) denote the set of ergodic acips of ψP and the set of the ergodic SRB measures of
� f ,Q , respectively.

5.1 The SetF(�)

Consider ν ∈ E(ψP ). Let η > 0 be as in Lemma 4.8. From Part (3) of Theorem 3.8 and
Condition (*), it follows that there exists a finite subsetF(ν) of int(supp ν)with the following
properties:

(1) F(ν) consists of periodic points of ψP whose orbits do not visit any vertex of P ,
(2) F(ν) is η/6-dense in supp ν,
(3) for every s ∈ F(ν), there exists z ∈ (s − η/9, s + η/9) ∩ F(ν) with z �= s such that

the great common divisor of the periods of s and z equals the number of the exact
components of ν.
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Given s ∈ S1 and r > 0, let B(s, r) = (s − r , s + r) be the open interval of S1 centered
at s of radius r .

Lemma 5.1 For any pair s1, s2 ∈ F(ν), there exist an open interval I ⊂ B(s1, η/3)∩supp ν,

integers k,m ≥ 0 and s0 ∈ F(ν) such that

(1) ψk+m
P |I is differentiable [so ψk

P (I ) and ψk+m
P (I ) are intervals],

(2) ψk
P (I ) ⊂ B(s2, η/3) ∩ supp ν,

(3) |ψk+m
P (I )| > η,

(4) B(s0, η/3) ⊂ ψk+m
P (I ) ⊂ supp ν.

Proof Let Bi = B(si , η/3) for i = 1, 2. From si ∈ int(supp ν), it follows that Bi ∩ supp ν is
an interval, and so ν(Bi ) > 0. Since ν is ergodic, there exist s ∈ B1 ∩ supp ν and an integer
k ≥ 0 such that ψk

P (s) ∈ B2. The set of points whose forward orbit meets a vertex of P
has zero ν-measure. Then, we can assume without loss of generality that ψ i

P (s) /∈ VP for
every 0 ≤ i ≤ k. Thus, there exists a subinterval I1 of B1 ∩ supp ν with s ∈ int(I1) such that
ψk

P (I1) is differentiable. In particular, ψk
P (I1) is a subinterval of B2 ∩ supp ν.

By Lemma 4.8, there are an integer m ≥ 0 and an open interval J ⊂ ψk
P (I1) such that

ψm
P |J is differentiable, and ψm

P (J ) is an interval contained in supp ν with |ψm
P (J )| > η.

We conclude that there exists an open interval I ⊂ I1 with ψk
P (I ) = J such that ψk+m

P I is

differentiable, ψk+m
P (I ) ⊂ B2 ∩ supp ν, ψk+m

P (I ) ⊂ supp ν and |ψk+m
P (I )| > η. Finally,

since F(ν) is η/6-dense in supp ν, there exists s0 ∈ F(ν) such that B(s0, η/3) ⊂ ψk+m
P (I ).


�
Lemma 5.2 There exists δ1 > 0 such that for any s1, s2 ∈ F(ν), there are integers m1,m2 ≥
0 and s0 ∈ F(ν) for which if λ( f ) < δ1, d(Q, P) < δ1 and �1 and �2 are horizontal
segments satisfying B(si , η/3) ⊂ πs (�i ) for i = 1, 2, then

B(s0, η/3) ⊂ πs

(
�

mi
f ,Q(�i )

)
, i = 1, 2.

Proof For any pair of points s1, s2 ∈ F(ν), denote by I (s1, s2), s0(s1, s2), m(s1, s2) and
k(s1, s2) the interval, the point of F(ν) and the two positive integers as in Lemma 5.1. Also,
define

m1(s1, s2) = m(s1, s2) + k(s1, s2) and m2(s1, s2) = k(s1, s2).

Since F(ν) is finite, m1 and m2 are bounded functions on F(ν) ×F(ν). For this reason, the
assumption on �1 and �2 and Lemma 5.1, we can find a δ1 > 0 such that if λ( f ) < δ1 and
d(Q, P) < δ1, then for any pair s1, s2 ∈ F(ν), the sets �

m1(s1,s2)
f ,Q (�1) and �

m2(s1,s2)
f ,Q (�2)

will be so close to the intervals ψ
m1(s1,s2)
P (I (s1, s2)) and ψ

m2(s1,s2)
P (I (s1, s2)) that

B (s0(s1, s2), η/3)) ⊂ πs

(
�

mi (s1,s2)
f ,Q (�i )

)
, i = 1, 2.


�

5.2 The SetFf,Q(�)

Given s ∈ F(ν), denote by δ(s), κ(s) = 2tP (s, 0) and 
(s) the constants in Theo-
rem 4.13. Define δ̄ = mins∈F(ν) δ(s), κ̄ = mins∈F(ν) κ(s) and 
̄ = mins∈F(ν) 
(s). If
λ( f ) < min{δ1, δ̄} and d(Q, P) < min{δ1, δ̄}, then by Theorem 4.13 there exists a continu-
ation x f ,Q = (s f ,Q, θ f ,Q) for every (s, 0) with s ∈ F(ν).
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Lemma 5.3 There is 0 < δ2 < min{δ1, δ̄} such that if λ( f ) < δ2 and d(Q, P) < δ2, then for
every s ∈ F(ν), the local stable manifold Ws

loc(x f ,Q) of the continuation of (s, 0) intersects
both lines θ = −λ( f )π/2 and θ = λ( f )π/2 at points with s-coordinate contained in the
interval (s − 2η/9, s + 2η/9).

Proof Suppose that λ( f ) < min{δ1, δ̄} and d(Q, P) < min{δ1, δ̄}. A straightfor-
ward computation—which we omit—shows that if we also require λ( f ) < min
{
̄/(π√

1 + κ̄2), η/(9π)}, then for every s ∈ F(ν), the local stable manifold of the con-
tinuation x f ,Q of (s, 0) intersects both lines θ = −λ( f )π/2 and θ = λ( f )π/2 at points with
s-coordinate contained in (s f ,Q − η/9, s f ,Q + η/9). The existence of 0 < δ2 < min{δ1, δ̄}
with the wanted property follows from the fact that x f ,Q → (s, 0) as λ( f ) + d(P, Q) → 0.


�

For λ( f ) < δ2 and d(Q, P) < δ2, define

F f ,Q(ν) = {
x f ,Q ∈ MQ : s ∈ F(ν)

}
.

Fix 0 < ζ < η/6. Propositions 4.3 and 4.4 imply that there exists 0 < δ3 < δ2 such that if
λ( f ) < δ3 and d(Q, P) < δ3, then there are trapping regions U (ν) and W (ν) for ψQ and
� f ,Q , respectively. Finally, note that F(ν) is η/3-dense inU (ν) because of our choice of ζ .

5.3 The SetG

Let B ⊂ S1 be the union of the basins of the ergodic acips of ψP . For every s ∈ S1 and
r > 0, define

�(s, r) = (s − r , s + r) × (−πr/2, πr/2) .

Lemma 5.4 There exist a η/2-dense finite set G ⊂ B in S1 and δ4 > 0 such that if λ( f ) < δ4
and d(Q, P) < δ4, then for every s ∈ G, there are an ergodic acip ν̃ ∈ E(ψP ) and an integer
k ≥ 0 for which �k

f ,Q(�(s, δ4)) ⊂ int(W (ν̃)).

Proof Let S be the set of all s ∈ B such that ψ i
P (s) is a vertex of P for some i ≥ 0. S is at

most countable, and B has full Lebesgue measure by Part (4) of Theorem 3.8. Hence, B \ S
has full Lebesgue measure as well, and so it contains a finite set G that is η/2-dense in S1.

Let s ∈ G. Then, there exists ν̃ ∈ E(ψP ) such that s ∈ B(ν̃). Since supp ν̃ ⊂ int(U (ν̃))

(see Proposition 4.4), Urysohn’s Lemma guarantees the existence of a continuous function
φ : I → [0, 1] such that φ is identically equal to 1 on supp ν̃ and is identically equal to 0 on
the closure of the complement of S1 \U (ν̃). Since s ∈ B(ν̃),

lim
k→+∞

1

k

k−1∑

i=0

φ(ψP (s)) =
∫

S1
φ(s)d ν̃(s) = 1.

Hence, there exists k ≥ 0 such that ψk
P (s) ∈ int(U (ν̃)). Since s /∈ S, it follows that

ψ i
P (s) /∈ VP for every i , and so

�k
0,P (s, 0) =

(
ψk

P (s), 0
)

.

This and the fact that U (ν̃) × {0} = W (ν̃) imply �k
0,P (s, 0) ∈ int(W (ν̃)).
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Finally, note that the map ( f , Q, x) �→ �k
f ,Q(x) is continuous at (0, P, (s, 0)). Thus,

there exits δ4 > 0 such that

�k
f ,Q(�(s, δ4)) ⊂ int(W (ν̃))

provided that λ( f ) < δ4 and d(Q, P) < δ4. 
�

5.4 Ergodic SRBMeasures

The constant δ3 introduced at the end of Sect. 5.2 depends on the ergodic acip ν. To emphasize
such a dependence, we write δ3(ν). Let δ̄3 be the minimum of δ3(ν) over all ν ∈ E(ψP ).

Let δ be as in Theorem 4.11, and choose 0 < δ5 < min{δ, δ̄3, δ4}. By Theorem 4.11, for
every f ∈ R2 with λ( f ) < δ5 and every Q ∈ Pn with d(Q, P) < δ5, the map � f ,Q admits
ergodic SRB measures. In the rest of this subsection, we will implicitly assume that f ∈ R2

with λ( f ) < δ5 and that Q ∈ Pn with d(Q, P) < δ5.

Definition 5.5 For every ν ∈ EψP , define

H f ,Q(ν) = {
μ ∈ E(� f ,Q) : μ(suppμ ∩ W (ν)) = 1

}
.

Given μ ∈ H f ,Q(ν), denote by R(μ) and �(μ) the sets corresponding to μ as in Defini-
tions 4.18 and 4.19, respectively. By Remark 4.20, μ (�(μ) ∩ W (ν)) = 1.

Lemma 5.6 Let μ ∈ H f ,Q(ν). If x ∈ �(μ) ∩ W (ν), then there exist j ≥ 0 and s ∈ F(ν)

such that B(s, η/3) ⊂ πs(�
j
f ,Q(Vx )), where Vx ⊂ Wu

loc(x) is the set associated to x as in
Definition 4.19.

Proof Since Vx is a horizontal segment, Lemma 4.8 implies that there exists j ≥ 0 such that
�

j
f ,Q(Vx ) contains a horizontal segment � with |�| > η. Since F(ν) is η/6-dense in U (ν),

and πs(W (ν)) = U (ν), there is s ∈ F(ν) such that B(s, η/3) ⊂ πs(�) ⊂ πs(�
j
f ,Q(Vx )). 
�

Lemma 5.7 #H f ,Q(ν) ≤ 1.

Proof Let μn1 , μn2 ∈ H f ,Q(ν). For i = 1, 2, pick xi ∈ �(μni ) ∩ W (ν). Such an xi exists,
because μi (�(μni ) ∩ W (ν)) = 1. By Lemma 5.6, there exist j1, j2 ≥ 0 and s1, s2 ∈ F(ν)

such that

B(si , η/3) ⊂ πs

(
�

ji
f ,Q(Vxi )

)
for i = 1, 2. (5.1)

Hence, there exist two horizontal segments �1 ⊂ �
ji
f ,Q(Vx1) and �2 ⊂ �

ji
f ,Q(Vx2) whose

images under πs contain the intervals B(s1, η/3) and B(s2, η/3), respectively.
By applying Lemma 5.2 to �1 and �2, we can conclude that there exist two integers

m1,m2 ≥ 0 and s0 ∈ F(ν) such that for each i = 1, 2,

B(s0, η/3) ⊂ πs

(
�

ji+mi
f ,Q (Vxi )

)
. (5.2)

Let x0 ∈ F f ,Q(ν) be the periodic point of � f ,Q corresponding to s0. By Lemma 5.3,
Ws

loc(x0) intersects both lines θ = ±λ( f )π/2 at points with s-coordinate contained in

B(s0, η/3). Since each πθ

(
�

ji+mi
f ,Q (Vxi )

)
is contained in the strip |θ | < λ( f )π/2, it follows

thatWs
loc(x0)∩�

ji+mi
f ,Q (Vxi ) �= ∅. for each i = 1, 2. We can now apply Theorem 4.22 to μn1

and μn2 , and conclude that n1 = n2, i.e., μn1 = μn2 . 
�
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Lemma 5.8 #H f ,Q(ν) = 1.

Proof By Lemma 5.7, it is enough to prove that H f ,Q(ν) �= ∅. Let x ∈ F f ,Q(ν). Since
x is a hyperbolic periodic point, we have x ∈ D−

f ,Q,ε . Parts (5) of Theorem 4.11 applied
to x implies that � f ,Q has an SRB measure μ̃. Since F f ,Q(ν) ⊂ W (ν), it follows from
Proposition 4.4 that supp μ̃ is contained in the closure ofW (ν). By the ergodic decomposition
of μ̃ [see Part (4) of Theorem 4.11], there exists μ ∈ E(� f ,Q) such that

suppμ ⊂ supp μ̃ ⊂ W (ν) = U (ν) ×
[
−π

2
λ( f ),

π

2
λ( f )

]
.

Now, by Part (7) of Theorem 4.11, μ̃(suppμ ∩ ∂K f ,Q) = 0. Since ∂K f ,Q ⊂ S1 ×
{−πλ( f )/2, πλ( f )/2}, we have μ(suppμ∩W (ν)) = 1. We conclude that μ ∈ H f ,Q(ν). 
�

Lemmas 5.7 and 5.8 allow us to define� f ,Q : E(ψP ) → E(� f ,Q) by� f ,Q(ν) = μwith
μ ∈ H f ,Q(ν). Next, we prove that � f ,Q is a bijection.

Lemma 5.9 � f ,Q is one-to-one.

Proof Suppose that there exist two distinct measures ν1, ν2 ∈ E(ψP ) such that μ =
� f ,Q(ν1) = � f ,Q(ν2). Then μ(W (ν1) ∩ W (ν2)) = 1, contradicting W (ν1) ∩ W (ν2) = ∅
(see Proposition 4.4). 
�
Lemma 5.10 � f ,Q is onto.

Proof We prove that given μ ∈ E(� f ,Q), there exists ν ∈ E(ψP ) such that μ ∈ H f ,Q(ν),
i.e., μ(suppμ ∩ W (ν)) = 1.

Pick x ∈ �(μ), and letVx be the open disk ofWu
loc(x) as inDefinition 4.19.ByLemma4.8,

there exists an integer i > 0 such that �i
f ,Q(Vx ) contains a horizontal segment �1 with

|�1| > η.
Let G be the η/2-dense set in S1 as in Lemma 5.4. Since �1 is contained in S1 ×

(−πλ( f )/2, πλ( f )/2), we have �1 ∩ �(s, δ5) �= ∅ for some s ∈ G. By Lemma 5.4, there
exist an integer k ≥ 0, a measure ν ∈ E(ψP ) and a horizontal segment �2 ⊂ �1 ∩ �(s, δ5)
such that �′ := �k

f ,Q(�2) is a horizontal segment contained in W (ν).
Combining the previous conclusions, we obtain that there is a horizontal segment�0 ⊂ Vx

such that �′ = �k+i
f ,Q(�0) ⊂ W (ν). Now, recall that VolVx (Vx ∩ R(μ)) = 1, and that R(μ) is

� f ,Q-invariant. Since the push-forward of Vol�0 by �k+i
f ,Q is equivalent to Vol�′ , it follows

that Vol�′(�′ ∩ R(μ)) = 1. But �′ ⊂ W (ν), and so R(μ) ∩ W (ν) �= ∅.
We claim that μ(R(μ) ∩ W (ν)) = 1. Indeed, let A = R(μ) \ W (ν), and suppose that

μ(A) > 0. Let z ∈ A be a μ-point of density of A. Since K f ,Q \ W (ν) is open, there are
a compact neighborhood C of z and an open neighborhood O of z such that C ⊂ O ⊂
K f ,Q \ W (ν). By Urysohn’s Lemma, there is a continuous φ : K f ,Q → [0, 1] such that
φ|C ≡ 1 and φ|K f ,Q\O ≡ 0. Let x ∈ R(μ) ∩ W (ν). Using the function φ as in the proof of

Lemma5.4, one can show that� j
f ,Q(x) ∈ O for some j ∈ N. In particular,� j

f ,Q(x) /∈ W (ν).
However, that is impossible, since W (ν) is � f ,Q-forward invariant by Proposition 4.4, and

so �
j
f ,Q(x) ∈ W (ν). Therefore, μ(A) = 0, whic is equivalent to μ(R(μ) ∩ W (ν)) = 1.

Since μ(R(μ) ∩ suppμ) = 1, we conclude that μ(suppμ ∩ W (ν)) = 1. 
�
The previous propositions prove the following.

Theorem 5.11 Let P ∈ P∗
n . There is δ5 > 0 such that if λ( f ) < δ5 and d(Q, P) < δ5, then

there exists a bijection � f ,Q : E(ψP ) → E(� f ,Q). Moreover, for every ν ∈ E(ψP ), the
support of � f ,Q(ν) is contained in the closure of the trapping set W (ν).
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The next corollary is a direct consequence of Theorem 5.11 and the fact that the number
of ergodic acips ofψP is bounded from above by the cardinality of the singular set SP , which
is not larger than n, the number of sides of P .

Corollary 5.12 Under the hypotheses of Theorem 5.11, the ergodic SRB measures of � f ,Q

enjoy the following properties: their number equals the number of the ergodic acips of ψP ,

which is bounded from above by n, and their supports are pairwise disjoint.

5.5 Bernoulli Components

We prove that for every ν ∈ E(ψP ), the number of Bernoulli components of � f ,Q(ν) equals
the number of exact components of ν.

Proposition 5.13 Under the hypotheses of Theorem 5.11, if ν ∈ E(ψP ), then the number of
Bernoulli components of � f ,Q(ν) is a multiple of the number of exact components of ν.

Proof Let ν be an ergodic acip of ψ = ψP , and suppose that ν has m exact components.
Accordingly, ψm has m exact invariant measures ν1, . . . , νm whose arithmetic average is
equal to ν and such that ψ∗(νi ) = νi+1 for each i = 1, . . . ,m − 1, and ψ∗νm = ν1. Of
course, ν1, . . . , νm are ergodic acips of ψm . In fact, they are the only ergodic acips of ψm

with support contained in supp ν.
The map ψm is piecewise expanding, and satisfies Condition (*), since so does ψ . Hence,

Proposition 4.1 and Remark 4.2 apply to the measures ν1, . . . , νm , and so their supports are
pairwise disjoint, and consist of finitely many closed intervals. Since supp ν = ⋃m

i=1 supp νi ,
the trapping set U (ν) of ψ in Proposition 4.3 can be written as U (ν) = ⋃m

i=1Ui , where Ui

is the subset of U (ν) containing supp νi . Since ψ∗ permutes cyclically ν1, . . . , νm , we have
ψ(Ui ) ⊂ Ui+1 for each i = 1, . . . ,m − 1, and ψ(Um) ⊂ U1.

In view of the last conclusion, the trapping set W (ν) of � = � f ,Q in Proposition 4.4
can be written as W (ν) = ⋃m

i=1 Wi , where Wi = Ui × (−πλ( f )/2, πλ( f )/2). Moreover,
from the properties of U1, . . . ,Um , it follows that �(Wi ) ⊂ Wi+1 for each i = 1, . . . ,m,
and �(Wm) ⊂ W1.

Suppose thatμ = � f ,Q(ν) has n Bernoulli components B1, . . . , Bn . For every 1 ≤ i ≤ n
and every 1 ≤ j ≤ m, define Bi, j = Bi ∩ Wj . We claim that for each i , there exists k
such that μ(Bi,k) = μ(Bi ). The proof of the claim is as follows. Since �m(Wj ) ⊂ Wj for
every j and �n(Bi ) = Bi for every i , each Bi, j is �mn-forward invariant. Moreover, since
W1, . . . ,Wm are pairwise disjoint, so are Bi,1, . . . , Bi,m . But the normalization of μ to Bi is
mixing for �mn , and so Bi,1, . . . , Bi,m are �mn-forward invariant and pairwise disjoint only
if there exists k such that μ(Bi,k) = μ(Bi ).

Now, consider the set Bi,k such that μ(Bi,k) = μ(Bi ). By the invariance of μ, we have
μ(�n(Bi,k)) = μ(Bi ), and so μ(Bi,k ∩ �n(Bi,k)) = μ(Bi ) > 0. Thus, there exists a
nonempty set B ⊂ Bi,k such that �n(B) ∈ Bi,k ⊂ Wk . Since Wk ∩ �i (Wk) = ∅ for all
1 ≤ i ≤ m − 1, and �m(Wk) ⊂ Wk , we can conclude that n must be a multiple of m. 
�
Theorem 5.14 Under the hypotheses of Theorem 5.11, for every ν ∈ E(ψP ), the number of
Bernoulli components of � f ,Q(ν) equals the number of exact components of ν.

Proof Let ν ∈ E(ψP ), and suppose that ν has m exact components. Let E be the ergodic
component of� f ,Q corresponding toμ = � f ,Q(ν). Themeasureμ is the arithmetic average
of n Bernoulli invariant measures of �′ = �n

f ,Q |E . Let μ′ be one of these measures. Next,
define the sets R′ and �′ for the measure μ′ and the map �n exactly as the sets Ri and �i
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have been defined for the measure μi and the map � in Definitions 4.18 and 4.19. Finally,
given x ∈ �′, let Vx be the open disk in Wu

loc(x) containing x as in Definition 4.19.
Remark 4.20 applies to�′ andμ′, and soμ′(�′) = 1. Let x ∈ �′ ∩W (ν). By Lemma 5.6,

there exist an integer j ≥ 0 and s1 ∈ F(ν) such that B(s1, η/3) ⊂ πs(�
′ j (Vx )), and by

property (3) of the definition of F(ν), there is s2 ∈ F ∩ B(s1, η/9) with s2 �= s1 such that
the great common divisor of s1 and s2 is m.

Let x1 and x2 be the points in F f ,Q(ν) corresponding to s1 and s2. Lemma 5.3
guarantees that for each i = 1, 2, Ws

loc(xi ) intersects both lines θ = −πλ( f )/2 and
θ = πλ( f )/2 at points x−

i and x+
i with s-coordinate contained in B(si , 2η/9). This together

with s2 ∈ B(s1, η/9) implies that πs(x
−
i ) and πs(x

+
i ) are both contained in B(s1, η/3), and

so Ws
loc(xi ) intersects �′ j (Vx ). By Proposition 4.23, n is a divisor of m. On the other hand,

by Proposition 5.13, n is a multiple of n. We conclude that n = m. 
�

5.6 Basins of the Ergodic SRBMeasures

In [8, Theorem 5.1], we proved that for every polygon Q without parallel sides facing each
other and for every reflection law f ∈ R2 satisfying the additional condition f ′ > 0, the
ergodic SRB measures of � f ,Q have the property that the union of their basins is a subset
of MQ of full Vol-measure. The extra hypothesis f ′ > 0 was required to make sure that the
billiard map admits SRB measures, and it can be safely replaced by the weaker condition
f ∈ R2, once we know that � f ,Q does admit ergodic SRB measures. Accordingly, from [8,
Theorem 5.1], we obtain the following.

Theorem 5.15 Under the hypotheses of Theorem 5.11, the union of the basins of the ergodic
SRB measures of � f ,Q is a subset of MQ of full Vol-measure.

6 Billiards in Regular Polygons and Triangles

In this section, we apply Theorem 1.2 and Proposition 2.3 to billiards in convex regular
polygons with an odd number of sides and to billiards in triangles. The case of the billiard in
an equilateral triangle was first studied in [2].

Lemma 6.1 Each convex regular polygon with an odd number n of sides satisfies Condi-
tion (*).

Proof Let P be a convex regular polygon with an odd number n of sides. Using the symmetry
of P , we showed in [6, Sect. 6.2] that the map φn : [0, 1[→ [0, 1[ defined by

φn(x) = − 1

cos
(

π
n

)

(

x − 1

2

)

(mod 1)

is a factor of ψP , and that φn enjoys the following property: the forward orbit of x = 0 does
not contain any periodic points and the discontinuity point x = 1/2 of φn . In view of this, it
is not difficult to see that ψP satisfies Condition (*). 
�
Corollary 6.2 Let P be a convex regular polygon with an odd number n ≥ 3 of sides. There
exists δ > 0 such that if f ∈ R2 with λ( f ) < δ and Q ∈ Pn with d(Q, P) < δ, then the
following hold:

(1) if n = 3, then � f ,Q has a unique ergodic SRB measure, and this measure has a single
Bernoulli component;
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(2) if n = 5, then � f ,Q has a unique ergodic SRB measure, and this measure has two
Bernoulli components;

(3) if n ≥ 7, then� f ,Q has exactly n ergodic SRBmeasures. All these measures have 2m(n)

Bernoulli components, where m(n) is the integer part of − log2(− log2 cos(π/n)).

Proof By [7, Theorem 1.1], the slap map ψP has a unique ergodic acip if n = 3 or 5, and
exactly n ergodic acips if n ≥ 7. Moreover, every acip has 2m(n) exact components, where
m(n) is the integer part of − log2(− log2 cos(π/n)). In particular, m(3) = 0 and m(5) = 1.
The conclusion of the corollary now follows from Theorem 1.2 and Lemma 6.1. 
�

Next, we consider billiards in triangles.

Corollary 6.3 There exists a residual and full measure subset X3 of the set of triangles P3

with the following property: for any P ∈ X3, there is δ > 0 such that if f ∈ R2 with
λ( f ) < δ and Q ∈ P3 with d(Q, P) < δ, then the billiard map � f ,Q has a unique ergodic
SRB measure. This measure is Bernoulli if P is acute, and has an even number of Bernoulli
components, otherwise.

Proof The corollary follows fromTheorem1.2 and Proposition 2.3 and the ergodic properties
of slap maps of triangles [7, Theorem 1.2]. 
�
Corollary 6.4 Let P be an acute triangle. If λ ∈ R2 and λ( f ) is sufficiently small, then � f ,P

has a unique ergodic SRB measure, and this measure has a single Bernoulli component.

Proof By [7, Theorem 1.2], the slap map of any acute triangle has a unique ergodic acip,
which is also exact. Since acute triangles trivially satisfyCondition (*), thewanted conclusion
follows from Theorem 1.2. 
�
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