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Abstract

A future quantum technological infrastructure demands the devel-

opment of quantum cyber-physical-cognitive systems, merging quan-

tum arti�cial intelligence, quantum robotics and quantum information

and communication technologies. To support such a development, the

current work introduces a new interpretation of quantum mechanics,

grounded on a link between quantum computer science, systems sci-

ence and �eld-based computation. This new interpretation is applied

to quantum arti�cial neural networks, with examples implemented ex-

perimentally on IBM's �ve qubit transmon bowtie chip, accessed via

cloud using IBM Q Experience, illustrating how quantum neural com-

puting can be implemented on actual quantum computers. A new form

of quantum neural machine learning, based on a quantum optimiza-

tion of a conditional utility function is also introduced and applied to

quantum robotics, where a quantum robot, characterized by an inter-

face and a multilayer quantum arti�cial neural network, interacts with

a quantum target, changing the target's dynamics adaptively, based

upon the quantum optimization dynamics, computing the optima for a

performance measure and changing the target's dynamics accordingly.

Keywords: Quantum Robotics, Quantum Neural Machine Learning, Quan-
tum Force Interpretation, Quantum Optimization
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1 Introduction

The current accelerating technological change is the result of the convergence
between Information and Communication Technologies (ICTs) and the Cog-
nitive Technologies (CogTech), namely, Arti�cial Intelligence (AI), powered
by new machine learning algorithms, synergized with the Third Industrial
Revolution's ICTs led to the cyber-physical-cognitive (CPC) systems' rev-
olution1 that, in turn, gave momentum to a Fourth Industrial Revolution
(Ivancevic et al., 2018; Schwab, 2017).

A CPC system is the result of the integration of CogTech in the ICTs.
In today's accelerating transformations, CPC systems form the basis for a
distributed intelligent arti�cial cognition and includes smart devices embed-
ded in di�erent physical systems, linked to the Internet (Schwab, 2017), such
that the current technological transformation can be described by an acronym
SDO (Smart, Digital, Online). However, quantum technologies, in particular
quantum computers, threaten the current infrastructure of this technological
basis, in the sense that quantum computers can solve cryptographic prob-
lems that are central for secure communications, making cryptographic quan-
tum resistance one of the major problems to the SDO-based transformation
(Bowmeester et al., 2000; Chen, et al., 2016; Cheng et al., 2017).

Thus, as quantum computation becomes feasible, the ICT infrastructure
will have to become quantum-based and dominated by research on quan-
tum secure communications. However, quantum ICTs are not enough, the
CogTech pillar will also have to be developed. As the Third Industrial Rev-
olution's ICTs merged with CogTech, leading to the ground basis for the
Fourth Industrial Revolution, so too will the new quantum ICTs have to
merge with quantum CogTech in order to be able to support the further
exponential expansion of the cyber-physical-cognitive revolution.

Quantum CPC systems, therefore, need to become a research branch of
quantum technologies, linking quantum computation, quantum information
science and quantum AI. The current work is aimed at such a branch of
quantum technologies. Namely, we address the concept of a quantum robot

1We are using, within the technological context, the concept of cyber-physical-cognitive
system worked in Ivancevic (et al., 2018), which addresses the integration of the ICT's
in physical systems (the cyber-physical technological transformation) and of the CogTech
(cyber-physical-cognitive transformation). Since the Fourth Industrial Revolution involves
the merge of the ICTs with the CogTech, the CogTech pillar is explicitly addressed in the
acronym CPC (cyber-physical-cognitive).

2

Electronic copy available at: https://ssrn.com/abstract=3244327



 Electronic copy available at: https://ssrn.com/abstract=3244327 

as a fundamental basis for the development quantum CPC systems (Tandon
et al., 2017; Ivancevic et al., 2018).

Quantum robotics is not new, indeed, one can trace it back to early e�orts
of introducing alternative interpretations of quantum theory, in particular, to
Everett's PhD Thesis (Everett, 1957; 1973), where the author used cybernet-
ics and the concept of an automaton as a basis to model the observer and the
observation act as a quantum interaction. While, in classical mechanics, the
observation act does not a�ect the behavior of the observed system, in quan-
tum mechanics observation involves a form of quantum interaction by which
observer and observed become entangled, a main point in Everett's work
(Everet, 1957; 1973), who explicitly addressed this entanglement dynamics
by incorporating a general form of observer that is formulated, within the
formalism of quantum theory, in terms of its cognitive record of the observed
system.

To physically address the observer, within the formalism, Everett postu-
lated an abstract model of an automaton, in order to strip down the observa-
tion act to its bare essentials, namely: an interaction by which the observer's
memory contents become entangled with the target, in its interaction with
the target. In this way, Everett established quantum measurement as a form
of computation that can be addressed within the formalism of wave dynam-
ics.

A basic automaton with a memory addressed as a quantum degree of
freedom, obeying the rules of quantum dynamics, would, thus, constitute a
model for any observer.

An expansion on the basic �observer� automaton was introduced by Be-
nio� (1998a, 1998b), who proposed a concept of a quantum robot as an
arti�cial agent that not only measures the environment but also carries out
tasks, interacting with the environment to lead to particular changes on that
environment, ful�lling speci�c goals. This introduces a di�erent dynamics,
in the sense that a quantum robot can function as a complex arti�cially
intelligent measurement apparatus.

Dong et al. (2006) addressed the e�ciency of a quantum robot over a clas-
sical robot, using an architecture for quantum robots based on three funda-
mental parts: multi quantum computing units, a quantum controller/actuator
and sensory units.

A connection between quantum robotics, nanotechnology and quantum
Arti�cial Life (ALife) research, was established in Tarasov (2009). Tarasov's
work is particularly relevant for the issue of the development of quantum
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CPC systems within the context of quantum nanotechnology, including the
possibility of interaction and nanoscale management of quantum systems.
More recent works have focused on machine learning and quantum robotics
(Siomau, 2014; Paparo et al., 2014; Abdulridha and Hassoun, 2017).

Quantum robotics is speci�c, within quantum technologies' research, in
the sense that it deals with four main points that need to be dealt with, for
an e�ective development quantum CPC systems solutions, as well as for the
expansion of the scienti�c basis of quantum robotics, these main points are:

• Quantum CPC systems are not closed systems, rather, the interaction
with the environment is a key feature of these systems;

• Entanglement is a key dynamics for the computation of quantum CPC
systems to work;

• AI must be integrated in quantum CPC systems, so that the com-
putation not only needs the entanglement to work but, also, it takes
advantage of that entanglement to produce adaptive changes in the
environment;

• Field-based cognitive science is needed to e�ectively address the com-
putational basis of quantum AI.

In order to address these four main points, within the context of quantum
robotics, however, we need an interpretation of quantum mechanics that has
a fundamentally systemic basis, is consistently closer to cognitive science and
where entanglement, nonlocality and the dynamics of quantum �elds play a
fundamental role.

This interpretation, which we call the quantum force interpretation (QFI),
is introduced in section 2., the advantage of QFI is that it allows for a work-
ing basis that makes it e�ective in connecting fundamental concepts from
cognitive science and computer science with the quantum formalism. A spe-
ci�c point of QFI is that it is a computational theory at its core, that is,
it addresses the dynamics of quantum �elds from a speci�c computational
basis, furthermore, this computational basis works with a dynamics without
states, which means that the input and output of a quantum computation is
actually a transition from one dynamics of the �eld to another dynamics.

The QFI is addressed in section 2., working mainly with Quantum Arti-
�cial Neural Networks (QuANNs) as a basic example to illustrate the fun-
damental points of the interpretation, in this way, the link with QuANNs
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and quantum AI is already developed in that section, allowing us to simul-
taneously present the fundamental points of the interpretation and to link
these to quantum AI, highlighting its connections with cognitive science,
computer science and quantum neural computation. The provided examples
of QuANNs are also implemented on a quantum computer, with access via
cloud, using IBM Q Experience.

In section 3., we introduce a new form of quantum neural machine learn-
ing based on the optimization of a conditional utility function and apply this
framework to quantum robotics, addressing a quantum adaptive dynamics
where the robot, equipped with a multilayer QuANN, not only processes a
target quantum system, but is also capable of conditionally selecting actions
to adaptively change that target's dynamics, solving an optimization prob-
lem. In section 4., we conclude by expanding on main implications of QFI
for quantum CPC systems and quantum technologies.

Regarding some notation, given the binary alphabet A2 = {0, 1}, we
denote by Ad

2 the set of all d-length binary strings. Also, we denote Pauli's
operators by σ̂1, σ̂2 and σ̂3, respectively de�ned, using Dirac's notation, as:

σ̂1 = |0〉 〈1|+ |1〉 〈0| (1)

σ̂2 = −i |0〉 〈1|+ i |1〉 〈0| (2)

σ̂3 = |0〉 〈0| − |1〉 〈1| (3)

with the ket vectors |0〉 and |1〉 given by:

|0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
(4)

and with the bra vectors given by 〈0| = |0〉† , 〈1| = |1〉†. We also de�ne
the unit operator on the two dimensional Hilbert space spanned by the basis
{|0〉 , |1〉} as follows:

1̂2 = |0〉 〈0|+ |1〉 〈1| (5)

and use the notation |±〉 and 〈±| for the ket and bra vectors:

|±〉 =
|0〉 ± |1〉√

2
(6)

〈±| = 〈0| ± 〈1|√
2

(7)

We now introduce the QFI interpretation and how quantum neural dy-
namics of QuANNs can be addressed within the context of this interpretation.
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2 Quantum Neural Dynamics, Echoes and Quan-

tum Force

At the most basic level, quantum theory can be considered as a theory that
addresses quantized rhythms, this point can be made clear by considering
how energy eigenvalues are related to the reduced Planck's constant ~, by
way of a discrete multiple of a term given by the product of 2π by a frequency
ν (expressed in Hertz) and by the reduced Planck constant, the product 2πν
gives an angular frequency for a cyclical dynamics, while the reduced Planck
constant ~ is equal to the action per radian.

The importance of rhythms in quantum theory is particularly relevant
when one looks at the computational substratum of the theory as well, a
substratum that becomes more evident when one explictly addresses models
of quantum computing systems.

To make the point explicit, let us consider a QuANN, comprised of d
two-level neural activity neurons, where the ground level corresponds to a
non�ring neural activity, and the excited level corresponds to a �ring neural
activity, such a network can be addressed, in terms of quantum �eld theory,
as a �eld on a network, where the neural �eld, associated with the network,
is described in terms of a Hilbert space Hd, spanned by the basis:

Bd =

{
d⊗

k=1

|sk〉 : sk ∈ A2

}
(8)

The neural �ring energy level is linked to the network's total neural �ring
frequency, so that we can introduce the neural �ring frequency operator:

ν̂ =
1̂2 − σ̂3

2
ν (9)

and the local Hamiltonian, for each neuron, can be de�ned as (Gonçalves,
2017):

Ĥk = 1̂
⊗(k−1)
2 ⊗ ~2πν̂ ⊗ 1̂

⊗(d−k)
2 (10)

for 1 < k < d, and
Ĥ1 = ~2πν̂ ⊗ 1̂

⊗(d−1)
2 (11)

Ĥd = 1̂
⊗(d−1)
2 ⊗ ~2πν̂ (12)
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The total Hamiltonian is, in turn, given by the sum (Gonçalves, 2017):

ĤNet =
d∑

k=1

Ĥk (13)

with the eigenvalue spectrum:

ĤNet |s〉 =

(
d∑

k=1

sk

)
2πν~ |s〉 (14)

where s is a d-length binary string s1s2...sd.
This Hamiltonian has a degenerate spectrum on the basis Bd, since dif-

ferent �ring patterns can lead to the same total �nal neural �ring energy.
From to Eqs.(9) to (12), it follows that the local �ring frequencies can, in

turn, be obtained from the local Hamiltonians as:

ν̂k =
1

2π~
Ĥk (15)

So that the neural network's total �ring frequency operator is given by:

ν̂Net =
d∑

k=1

ν̂k (16)

which leads to the eigenvalue equation:

ν̂Net |s〉 =

(
d∑

k=1

sk

)
ν |s〉 (17)

Each neural �ring pattern corresponds to a dynamics of the neural �eld on
the network, where each node (neuron) is either �ring with the frequency of
ν Hz (therefore with an energy of 2πν~ Joules) or not �ring (the frequency,
in this case, is 0 Hz and the energy is zero Joules) (Gonçalves, 2017). This
allows us to consider the QuANN as a rhythmic system, where there is a basic
rhythm linked to each neuron's �ring activity, and the eigenvalue spectrum of
the operator ν̂Net corresponds to the total rhythm of the neural network. The
term rhythm comes from the Latin rhythmus, which, in turn, comes from the
Greek ῥυθμός, synthesizing a sense of order/measure/proportion/symmetry
in motion, a �owing motion (ῥέω) that expresses an order.
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The order, in this case, is measured in terms of the �ring frequency,
which is a measure of a dynamical activity in terms of cycles per second. In
this sense, regarding the neural �eld, we cannot speak of states but rather
of rhythmic dynamics, which means that the quanta of the neural �eld are
not �objects� but rather rhythmic patterns expressed by the neural �ring
patterns, where the total frequency associated with the neural activity is the
result of the sum of the �ring frequencies of all the neurons.

This is a point that can be raised about quantum theory in general,
which puts into question the assumption of a classical mechanical reasoning
on dynamics in terms of a transition between states, as a basis for quantum
mechanics. While this classical reasoning has been applied to the quantum
description, it does not follow from the formalism itself, nor from the em-
pirical level that this is the appropriate language for quantum dynamics, a
point that was raised by Baugh, Finkelstein and Galiautdinov (2003).

From a computer science perspective, this is a relevant point, in the sense
that we are dealing with a di�erent computational matrix from that which
underlies classical mechanics. From a computational standpoint, classical
mechanics can be approached in terms of �nding dynamical rules that link
states to states, so that given the state, at a given time, we can �nd out the
state at a future time, such a state can be considered as the output of the
system's computation given the past input.

This pressuposes a stability of a state at each point in time, namely, that
the system is stable enough for there to be a state that fully characterizes
it at each point in time. Even if a stochastic dynamics is assumed, within a
classical setting, this su�cient stability is still being assumed, that is: that
the system must be stable enough for it to have a state and that a state is
an appropriate concept when addressing the system and its dynamics.

In the dynamics of quantum systems the stability needed for there to be
a state is not present, this point can be raised by considering basic physical
quantities like position, momentum and energy. Quantum particles are not
classical particles with a position and momentum. Quantum particles are
quanta of a �eld, in this context, a position is a positioning supported by the
�eld's dynamics and it is not stable enough to be a state, since the momentum
becomes less and less determined, as the position becomes more and more
determined, as per Heisenberg's uncertainty principle.

An assumption of a �xed thing there at a speci�c position that moves
to another position is not consistent with quantum mechanics. A quantum
particle is not an autonomous entity like a classical mechanics' particle that
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is traveling, a point raised by Bohm (1997, [1957]) as a criticism to the pilot
wave model.

There is a common misconception that Bohm defended the pilot wave
model. Indeed, Bohm worked on the pilot wave model but just as a �rst
approximation. In Bohm (1997, [1957]) the author introduced the model
as a �rst approximation but then criticized it, in particular, in regards to
the assumption of a particle being separate from the �eld, even more, Bohm
defended that, at a lower level, the particle does not move as a permanent

existing entity, but is formed in a random way by suitable concentrations of

the �eld's energy (Bohm, 1997, [1957], p.121), we will return to this point
further on.

In quantum mechanics, position, momenta and energy need to be ad-
dressed as computable properties that may characterize the �eld's activity
and whose values result from the �eld's activity at each moment. Thus, for
instance, in the case of a QuANN, an energy eigenvalue is supported by the
neural �eld's rhythmic dynamics, as we saw above.

While eigenvalues cannot be considered states, one might still argue for
a state associated with, for instance, a density operator, and consider the
transition from input to output density operators as a dynamics of state
transition. However, this is a misconception on the concept of vector and on
what the density operator is representing.

As we show next, the density operator is expressing a dynamics of the
�eld and not a state, and, when we consider the unitary propagation, we are
actually addressing a unitary propagation of one dynamics to another. The
dynamics expressed by density operators plays a functionality in the �eld's
computation, that is, we can consider the density operators in terms of a
�eld's computational dynamics.

2.1 Quantum Arti�cial Neural Networks, Density Op-

erators and the Quantum Echo

The extraction of probabilities from the formalism of quantum theory, in its
most general form, demands the use of a particular type of operator on the
Hilbert space used to describe the relevant degree(s) of freedom, these are the
density operators: self-adjoint positive trace-class operators with unit trace.
Given a relevant Hilbert space H we, therefore, need to work with the space
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of density operators2 D (H) (Giulini, 2003; Kupsch, 2003).
To address the basic quantum dynamics, let us consider a speci�c subset

of D (H), S (H) which is comprised of the projectors:

|ψ〉 〈ψ| (18)

where |ψ〉 is a normalized ket vector and 〈ψ| = |ψ〉†. A projector density
is, thus, a projector on the quantum system's Hilbert space H and can be
evaluated for di�erent bases of the same Hilbert space. For instance, let us
consider a Hermitian operator Â, obeying the eigenvalue equation, with a
non-degenerate eigenvalue spectrum (not necessarily �nite in the number of
eigenvectors):

Â |ak〉 = ak |ak〉 (19)

with k = 1, 2, ..., where the eigenvectors span the space H. Then, for any
density projector |ψ〉 〈ψ| ∈ S (H), we can expand the corresponding operator
in the basis B = {|a1〉 , |a2〉 , ...} by expanding the projector's ket and bra

vectors in this basis, leading to:

|ψ〉 〈ψ| =
∑
k,k′

〈ak|ψ〉 |ak〉 〈ak′| 〈ψ|ak′〉 =

=
∑
k,k′

ψ (ak) |ak〉 〈ak′ |ψ (ak′)
∗

(20)

To understand the terms that comprise the density in Eq.(20), we need to
consider a systemic concept of vector. Vector, from the Latin term with the
same name, means carrier. Each carrier, in this case, can be addressed as an
information carrier, understanding information not in terms of act, fact or
pattern but, instead, in terms of a dynamics towards the act, towards the fact,
towards the pattern (Madeira and Gonçalves, 2013). The actualization, in
turn, needs to be addressed in terms of the concept of echo. To address this
concept we need to consider the carriers that appear in the density operator
expansion.

Each term that comprises the sum in Eq.(20) is the product of two car-

riers, namely, a probe carrier |ak〉 representing a motion proceeding towards

the �nal eigenvalue ak, with an associated amplitude ψ (ak) and a response

2For a QuANN, this space is D (Hd), the space of self-adjoint positive trace-class op-
erators with unit trace on the Hilbert space Hd used to geometrize the network's neural
�eld dynamics.
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carrier 〈ak′|, representing a motion proceeding from the �nal eigenvalue ak′ ,
with an associated amplitude ψ (ak′)

∗.
Systemically, the density operator, expanded in the basis B, expresses a

dynamics aimed at solving a problem: that of selecting the �nal eigenvalue,
this is the �nal computational output that the quantum system is working
for.

The above approach recovers a similar framework to that introduced by
the Transactional Interpretation (TI) of quantum mechanics (Cramer, 2016),
where the probe carrier can be interpreted in the same terms as a retarded

wave (also known, in TI, as o�er wave), proceeding forward towards the
output eigenvalue ak, while the response carrier can be interpreted in simi-
lar terms to TI's advanced wave (also known, in TI, as con�rmation wave)
proceeding backwards from the �nal output eigenvalue ak′ .

Of the di�erent terms that comprise the density operator, only the diag-
onal ones coincide with regards to the �nal eigenvalue, all the others exhibit
a mismatch, where the probing is not met by a matching response. When
the probe carrier is met by a matching response carrier, an echo is formed.
In the o�-diagonal terms we have failure to produce an echo, since the probe
dynamics does not meet a matching response dynamics. The echo inten-
sities are associated with the diagonal terms, which correspond to squared
amplitude modulated projections:

ψ (ak)ψ (ak)∗ |ak〉 〈ak| = |ψ (ak)| 2 |ak〉 〈ak| (21)

Considering the case of a QuANN and the �ring pattern selection problem,
the density is given by:

|ψ〉 〈ψ| =
∑

r,s∈Ad2

ψ (r) |r〉 〈s|ψ (s)∗ (22)

Each component of the density operator ψ (r) |r〉 〈s|ψ (s)∗ is the result of
a computational dynamics of the neural �eld. It is important to stress that
probe and response dynamics are, both of them, simultaneous computational
dynamics of the neural �eld, that play a role in the �eld's cognition around
the problem of selecting a �ring pattern.

Thus, when we consider each term ψ (r) |r〉 〈s|ψ (s)∗ in the sum (22) the
neural �eld is simultaneously computing in the two directions, such that a
probing of the �ring pattern r is computed with amplitude ψ (r) and met by
a response for the �ring pattern s, with an amplitude ψ (s)∗.
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An echo is formed when the probe carrier meets a matching response

carrier, leading to an echo intensity |ψ (s)| 2. Systemically, an echo, in this
context, can be addressed as a �eld projective signalizer of an order to be
actualized, thus, in the context of quantum �elds, it plays a role in the
�eld's cognition, this actualization takes the form of a projection selection
for an output eigenvalue. In this case, the squared amplitudes |ψ (s)| 2 are
associated with a projective intensity for each �ring pattern, so that, in a
probabilistic description, it is assumed that the neural �eld evaluates, simul-
taneously, each alternative, discarding the cases that do not lead to an echo,
and selecting the �nal projection, from the projected alternatives, with a
probability equal to their respective echo intensity.

Returning to the general case, the above results apply to any density op-
erator ρ̂ ∈ D (H) and not just to the operators in S (H), indeed, considering
the general form:

ρ̂ =
∑
k,k′

ρk,k′ |ak〉 〈ak′ | (23)

the o�-diagonal terms correspond to failed echoes, while the terms in the
diagonal correspond to the cases where the probe carrier meets a matching
response carrier, producing an echo with an intensity ρk,k. In the special case
of a diagonal density, there are no failed echoes, the density is comprised of
a sum over the projectors |ak〉 〈ak|:

ρ̂ =
∑
k

ρk,k |ak〉 〈ak| (24)

In this way, we get an account for both the actualization and the o�-
diagonal terms in the density operator, as well as to how the diagonal terms
are linked to Born's probability rule. We do not have, however, a reason
for the probabilistic dynamics to follow the echo, and not deviate from it.
This is postulated in the theory, which has by implication, if taken as such,
a fundamental stochastic selection between di�erent alternatives. That is,
when a quantum �eld has to determine the �nal order to be actualized it
does so by way of a random selection.

Assuming the above setting, regarding the density operator, there is,
however, another account that can be given for both the �selection� and the
probability, this account can be provided by recovering Bohm's proposal, who
addressed the squared amplitudes under the concept of a quantum force, as
we now review.
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2.2 The Quantum Force Interpretation and Quantum

Neural Computation

A common misconception regarding Bohm's proposal, as referred previously,
is the statement that Bohm defends that there is a particle which is guided
by a �eld in a pilot wave model where particle and �eld are separate entities,
this is not the case, as reviewed previously. Indeed, Bohm (1997, [1957],
p.117) considers the pilot wave model as a �rst approximation, criticizing the
assumption of particle and �eld as being separate and stating that because
wave and particle are never found separately, that this suggests that they
must be di�erent aspects of a same entity: a �eld. In the above case of
QuANNs, the quanta of energy of the neural �eld correspond to spikes of
neural activity.

Bohm (1997, [1957], p.119, 120) defends that, in what regards quantum
mechanics, the fundamental entities are the �elds, and that, even in vacuum,
these �elds are undergoing violent and very rapid random �uctuations, that
are not directly observable at the macroscopic level, because they average out

(Bohm, 1997, [1957], p.120), besides these turbulent �uctuations, there are
small systematic oscillations that do not average out and that are detected
at a higher level, these systematic oscillations lead to certain patterns that
form basic discrete (quantized) properties of the �elds at this higher level.

Accepting this, and recovering the previous subsection's results, we have
a basic emergent statistical pattern in which the probabilities result from
an average tendency of the �eld to follow the lines of force whose intensity
coincides with the echo intensity. If we accept Bohm's proposal and bring it
into this context, then, we need to consider a subquantum turbulence in the
�eld's activity to make emerge a systematic pattern that, on average, follows
the lines of force. In this proposal, then, the �eld's activity depends on a
lower-level subquantum activity, which introduces a basic stochastic behavior
in the �eld's dynamics, thus, explaining the probabilistic description.

Unlike Bohm, however, we do not consider the squared amplitudes under
the concept of quantum force, but rather as representing the echo intensity

for an order to be risen, in this case, the order associated with a speci�c
�eld dynamics that is characterized by a speci�c eigenvalue. The concept of
quantum force enters into the description, when we consider the rising of a
speci�c order, in the sense that, ontologically, a speci�c eigenvalue can be
considered as a pattern/order of a quantum �eld's dynamics that is risen,
and, thus, takes place in act being supported by the �eld's activity, which
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means that, systemically, in a quantum �eld, forces mobilize to rise and
support the actualized order.

In this sense, the actualization can follow one of di�erent lines of force,
leading to one of the speci�c eigenvalues, with a probability that coincides
with the intensity of that line of force, an intensity that coincides, in turn,
with the corresponding echo for that alternative.

A point raised by Bohm (1997, [1957]) is that the rule that states that
probabilities are numerically equal to the squared amplitudes holds on av-
erage, as an emergent statistical pattern, resulting from a subquantum level
turbulence, averaging out at the scale of the quantum descripion.

This means that the risen dynamical patterns result from the �eld's quan-
tum and subquantum dynamics working in tandem to determine the speci�c
alternative in each case, this �eld's dynamics tends to make emerge a dy-
namics that follows the echoes, which accounts for the stochastic dynamics
associated with the probabilistic description, that is, even if each risen or-
der is determined by the �eld's quantum and subquantum dynamics, which
makes rise a speci�c dynamical order in each case, the resulting random-
ness in the variation of the �nal eigenvalues exhibits an average pattern that
follows the lines of force whose intensity coincides with the echo intensities.

Rather than the fundamental stochastic choice leading to a random ac-
tualization for the same conditions, we will assume this later interpretation
based on the concept of quantum force. We call this interpretation that com-
bines elements of the Cramer's TI and Bohm's proposal: the quantum force
interpretation (QFI). It is this interpretation that we now apply to QuANNs.

2.2.1 Quantum Neural Computation, Backpropagation and Holo-

graphic Dynamics

Let us, now, consider a sequence of computational gates
{
Ûk

}N

k=1
on the

Hilbert space Hd for a QuANN's neural �eld. Computationally, the problem
we will address �rst regards the transition to a �nal neural �ring pattern,
from an initial neural �ring pattern, under the sequence of neural compu-

tational gates
{
Ûk

}N

k=1
. In this case, we begin by expressing the quantum

computational circuit for the sequence
{
Ûk

}N

k=1
by the product of unitary
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operators that represent the computational circuit:

K̂ = ÛN ÛN−1...Û1 =
1∏

k=N

Ûk (25)

The conjugate transpose of this circuit leads to the reverse order chain:

K̂† = Û †1 ...Û
†
N−1Û

†
N =

N∏
k=1

Û †k (26)

Thus, while K̂ propagates forward in the computational circuit, its conjugate
transpose K̂† propagates backward in the computational circuit.

Let us, now, assume that the neural network exhibits, intially, a neural
�ring pattern corresponding to the projector |s0〉 〈s0|, and the problem that
the neural network is solving is that of selecting a �nal neural �ring pattern.
This means that the density operator for this problem is obtained by applying
the two quantum circuits to the projector |s0〉 〈s0| and then expanding in the
neural �ring basis, leading to the operator structure:

K̂ |s0〉 〈s0| K̂† =
∑

r,s∈Ad2

〈
r

∣∣∣∣∣
1∏

k=N

Ûk

∣∣∣∣∣ s0
〉
|r〉 〈s|

〈
s0

∣∣∣∣∣
N∏
k=1

Û †k

∣∣∣∣∣ s
〉

(27)

Each term that comprises this density operator is the product of the probe

carrier
〈
r
∣∣∣∏1

k=N Ûk

∣∣∣ s0〉 |r〉 by the response carrier 〈s|〈s0 ∣∣∣∏N
k=1 Û

†
k

∣∣∣ s〉. The
�rst carrier's amplitude results from the forward propagation in the quantum
circuit from the initial �ring pattern s0 to the �nal �ring pattern r, so that the

�rst carrier probes the �ring pattern r with an amplitude
〈
r
∣∣∣∏1

k=N Ûk

∣∣∣ s0〉.
The second carrier's amplitude results from the backpropagation from the
�nal �ring pattern s to the initial �ring pattern s0, that is, it follows the
quantum circuit backward from the end to the beginning, which leads to the

response carrier 〈s|
〈
s0

∣∣∣∏N
k=1 Û

†
k

∣∣∣ s〉.
The probe, thus, proceeds from the beginning to the end of the quan-

tum computation, while the response comes from the end of the quantum
computation to the beginning. Again, the o�-diagonal terms do not form an
echo, while the diagonal terms form an echo, with an intensity given by the
products: 〈

s
∣∣∣K̂∣∣∣ s0〉〈s0 ∣∣∣K̂†∣∣∣ s〉 =

〈
s

∣∣∣∣∣
1∏

k=N

Ûk

∣∣∣∣∣ s0
〉〈

s0

∣∣∣∣∣
N∏
k=1

Û †k

∣∣∣∣∣ s
〉

(28)
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The intensity of each echo is thus the result of the �encounter� of two propa-
gations: one from the input �ring pattern to the output, which is associated
with the probe, and a second one from the output �ring pattern to the input
�ring pattern, which is associated with the response. The response is a form
of backpropagation, such that the intensity of the echoes result from the
product of the forward and backpropagating amplitudes for each alternative
�nal neural �ring pattern.

In the context of QFI, this introduces a speci�c form of quantum compu-
tation, namely: in the computational system, the forward propagating probe
and the backpropagating response play a cognitive role in producing an echo
for each �nal neural �ring pattern, this echo plays, in turn, a �eld projec-
tive signalizer role in the neural �eld's cognition, so that the neural �eld's
quantum and subquantum dynamics make emerge, at the quantum level, a
tendecy to follow, on average, the lines of force leading from one neural �ring
pattern to another one. Statistically, the emergent quantum dynamics, then,
follows one of the lines of force with a probability equal to the intensity of
that line of force which, in turn, coincides with the respective echo intensity.

As examples of this dynamics, let us consider that the network has three
neurons and that the initial density operator is given by the projector ρ̂in =
|000〉 〈000|, let the neural network structure be comprised of the chain of
synaptic connections:

n1 → n2 → n3 (29)

with the connection between the neurons n1 and n2 and between the neurons
n2 and n3 being expressed, respectively, by the operators:

Û1,2 = |0〉 〈0| ⊗ 1̂2 ⊗ 1̂2 + |1〉 〈1| ⊗ σ̂1 ⊗ 1̂2 (30)

Û2,3 = 1̂2 ⊗ |0〉 〈0| ⊗ 1̂2 + 1̂2 ⊗ |1〉 〈1| ⊗ σ̂1 (31)

and let us consider the computational chain given by Û1,2Û2,3Û0, where the

operator Û0 is given by:

Û0 = ÛWH ⊗ ÛWH ⊗ 1̂2 (32)

where ÛWH is the Walsh-Haddamard gate:

ÛWH =
σ̂1 + σ̂3√

2
(33)
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As an example of entanglement dynamics in the quantum neural computa-
tion, it is relevant to consider how the density changes as each gate in the
computational chain is applied. Initially, the echo for the neural �eld is only
for a non�ring neural dynamics. As the �rst operator is applied, we get for
the probe and response carriers:

Û0 |000〉 = |+〉 ⊗ |+〉 ⊗ |0〉 (34)

〈000| Û †0 = 〈+| ⊗ 〈+| ⊗ 〈0| (35)

thus, after the �rst computational gate, the neural �eld is probing the �ring
and non�ring dynamics with equal weight for neurons n1 and n2, likewise,
there is a response from a �ring and non�ring dynamics associated with
neurons n1 and n2, with equal amplitude. The third neuron's carriers have
not yet changed. Now, the �rst synaptic connection to be activated is n2 →
n3 (it is important to notice that the quantum circuit does to follow, in
this example, the feedforward order). Then, we get the probe and response
dynamics:

Û2,3Û0 |000〉 = |+〉 ⊗ |00〉+ |11〉√
2

(36)

〈000| Û †0 Û
†
2,3 = 〈+| ⊗ 〈00|+ 〈11|√

2
(37)

The second and third neurons now have an entangled dynamics, where the
neural �eld's probing and response dynamics is for a synchronized neural
activity of the second and third neurons. Now, the activation of the �rst
synaptic connection leads to the �nal probe and response dynamics:

Û1,2Û2,3Û0 |000〉 =
|0〉 ⊗ (|00〉+ |11〉)

2
+
|1〉 ⊗ (|01〉+ |10〉)

2
(38)

〈000| Û †0 Û
†
2,3Û

†
1,2 =

〈0| ⊗ (〈00|+ 〈11|)
2

+
〈1| ⊗ (〈01|+ 〈10|)

2
(39)

Therefore, although the �rst neuron is only synaptically connected to the
second neuron, since the second neuron already has an entangled dynamics
with the third neuron, the conditional unitary propagation associated with
the synaptic connection n1 → n2 changes the entangled dynamics of the
second and third neurons, so that, if the neural �eld probes, for the �rst
neuron, a non�ring dynamics, then, the probing dynamics for the other two
neurons is still for a synchronized neural activity.
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On the other hand, if the probe dynamics for the �rst neuron is for a �ring
dynamics, then, the probing dynamics for the second and third neurons is for
a out-of-sync quantum correlation, that is, when one is �ring the other is not
�ring and vice-versa. A similar argument can be produced for the response
dynamics, so that, in the resulting lines of force, the activation of the �rst
neuron leads to an inhibitory response at the level of the entangled dynamics
of the second and third neurons.

There are four resulting lines of force, each with an intensity equal to
1/4, two of these lines have the projector structure |0〉 〈0| ⊗ |ss〉 〈ss| and
the other two the structure |1〉 〈1| ⊗ |s1− s〉 〈s1− s|. We can implement
experimentally this neural network on a quantum computer using IBM's �ve
qubit transmon bowtie chip 3 (ibmqx4), accessed via cloud using IBM Q
Experience3. Figure 1 shows the quantum circuit used and table 1 shows
IBM's quantum simulator's results and the experiment's results.

Figure 1: Quantum circuit for the neural network example using the IBM
Q Experience framework. The registers q[3] and q[4] are not used, since the
implemented network only has three neurons.

3Information and access to IBM's quantum computing resources can be found at the
website https://www.research.ibm.com/ibm-q/.
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Firing pattern Simulator Experiment

000 0.250 0.227
011 0.245 0.206
101 0.250 0.217
110 0.256 0.205
001 0 0.040
010 0 0.039
100 0 0.053
111 0 0.012

Table 1: Simulator and experiment's results from implementation on IBM's
�ve qubit transmon bowtie chip 3 (ibmqx4) (IBM Q 5 Tenerife), in both
cases, 8192 shots were used.

If we consider the experiment's results we can see that the dominant
frequencies are those that match the �nal results of the theoretical model,
there are also some residual cases that correspond to solutions for the other
neural �ring dynamics4.

Now, there are two relevant of entangled dynamics that occur in the above
example and that play a relevant role in quantum neurocomputation. The
�rst is the excitatory dynamics, where the echoes are for the alternatives
where two neurons exhibit a positively correlated activity (either they are
both non�ring or they are both �ring), and the second is the inhibitory
dynamics where the echoes are for the alternatives where the two neurons
exhibit a negatively correlated activity (if one is �ring the other is non�ring
and vice-versa). The �rst dynamics corresponds to an excitatory relation,
while the second to an inhibitory relation.

These two basic dynamics occur for the most elementary networks (two
neurons feedforward networks). For instance, considering the quantum cir-
cuit Û1,2Û0 with the quantum gates given by:

Û0 = ÛWH ⊗ 1̂2 (40)

Û1,2 = |0〉 〈0| ⊗ 1̂2 + |1〉 〈1| ⊗ σ̂1 (41)

then, if ρ̂in = |00〉 〈00|, the resulting dynamics leads to an excitatory en-
tanglement, while, if ρ̂in = |11〉 〈11|, the resulting dynamics leads to an

4These deviations are to be expected in the context of actual physical implementation
of quantum computation.
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inhibitory entanglement. Results from the quantum simulator for these two
circuits and from experiments run on IBM's chip are shown in the follow-
ing table. Again we see that the dominant frequencies are those associated
with the circuit's entangled dynamics, with the non-dominant frequencies
corresponding to deviations from the theoretical output.

Firing pattern
ρ̂in = |00〉 〈00| ρ̂in = |11〉 〈11|

Simulator Experiment Simulator Experiment

01 0 0.072 0.495 0.458
10 0 0.062 0.505 0.422
00 0.509 0.465 0 0.108
11 0.491 0.401 0 0.012

Table 2: Simulator and experiment's results from implementation on IBM's
�ve qubit transmon bowtie chip 3 (ibmqx4) (IBM Q 5 Tenerife), with ρ̂in =
|00〉 〈00| and ρ̂in = |11〉 〈11|, in each case, 8192 shots were used.

Let us now return to the general case and consider that the initial density
is a projector of the form |ψ〉 〈ψ|, then, the propagation in both directions of
a computational chain leads to:

K̂ |ψ〉 〈ψ| K̂† =
∑

r,s∈Ad2

〈
r

∣∣∣∣∣
1∏

k=N

Ûk

∣∣∣∣∣ψ
〉
|r〉 〈s|

〈
ψ

∣∣∣∣∣
N∏
k=1

Û †k

∣∣∣∣∣ s
〉

(42)

The echo intensities, in this case, are given by:

〈
s
∣∣∣K̂∣∣∣ψ〉〈ψ ∣∣∣K̂†∣∣∣ s〉 =

〈
s

∣∣∣∣∣
1∏

k=N

Ûk

∣∣∣∣∣ψ
〉〈

ψ

∣∣∣∣∣
N∏
k=1

Û †k

∣∣∣∣∣ s
〉

(43)

Now, since we have the relations:〈
r

∣∣∣∣∣
1∏

k=N

Ûk

∣∣∣∣∣ψ
〉

=
∑
s0∈Ad2

〈
r

∣∣∣∣∣
1∏

k=N

Ûk

∣∣∣∣∣ s0
〉
ψ (s0) (44)

〈
ψ

∣∣∣∣∣
N∏
k=1

Û †k

∣∣∣∣∣ s
〉

=
∑
s0∈Ad2

〈
s0

∣∣∣∣∣
N∏
k=1

Û †k

∣∣∣∣∣ s
〉
ψ (s0)

∗ (45)
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then, we get for Eq.(43): 〈
s
∣∣∣K̂∣∣∣ψ〉〈ψ ∣∣∣K̂†∣∣∣ s〉 =

=
∑

r0,s0∈Ad2

〈
s

∣∣∣∣∣
1∏

k=N

Ûk

∣∣∣∣∣ r0
〉〈

s0

∣∣∣∣∣
N∏
k=1

Û †k

∣∣∣∣∣ s
〉
ψ (r0)ψ (s0)

∗ (46)

Introducing the amplitudes Ψr0,s and Ψ∗s,s0 , respectively as:

Ψr0,s =

〈
s

∣∣∣∣∣
1∏

k=N

Ûk

∣∣∣∣∣ r0
〉
ψ (r0) (47)

Ψ∗s,s0 =

〈
s0

∣∣∣∣∣
N∏
k=1

Û †k

∣∣∣∣∣ s
〉
ψ (s0)

∗ (48)

the echo intensities result from the sum of products:〈
s
∣∣∣K̂∣∣∣ψ〉〈ψ ∣∣∣K̂†∣∣∣ s〉 =

∑
r0,s0∈Ad2

Ψr0,sΨ
∗
s,s0

(49)

The term Ψr0,s is a probe quantum amplitude linking an initial (input) neural
�ring pattern described by the string r0 to the �nal (output) neural �ring
pattern described by the string s. The term Ψ∗s,s0 is, in turn, a response
quantum amplitude linking the �nal (output) neural �ring pattern described
by the string s to an initial (input) neural �ring pattern described by the
string s0.

The two amplitudes are linking the same output to di�erent inputs, thus,
the �eld's computation is e�ectively propagating like a stream in both di-
rections of the computational chain, through each alternative initial �ring
pattern and multiplying the corresponding amplitudes. The input activity
does not need to match, indeed, the �eld takes into account the initial echoes
and the initial failed echoes, in accordance with the dynamics associated with
the initial density |ψ〉 〈ψ|, since the initial failed echoes can end up contribut-
ing to a �nal echo as long as the output is the same.

In the �eld's dynamics of probe and response, as described above, we have
a form of holographic computation, in such a way that each echo's intensity
results from the sum of all of the propagations that proceed from each com-
ponent of |ψ〉 〈ψ| propagated in both directions of the computational chain,
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simultaneously. Each component of the projector |ψ〉 〈ψ|, propagated in both
directions of the computational chain, therefore, enters in the computation
of each echo, either with a zero amplitude (if there is no path leading to that
output), or non-zero amplitude (if there is a path leading to that output).
In this way, we get quantum wave-like interference.

The neural �eld's computation, thus, �ows like a stream in both directions
of the computational chain simultaneously, using the whole initial projective
dynamics |ψ〉 〈ψ| to get a probe and response across the entire computational
chain, for each �nal output neural activity, summing all the products of probe
and responses that are associated with the same �nal output neural activity.

This �owing of the probing and response that add up with respect to
the �nal output, explains the quantum interference, a point already raised
by Bohm and Hiley (1993, p.365, 366) regarding the algebraic properties
of the quantum dynamics associated with a speci�c quantum holographic
dynamics, when one works with projectors. We use the term holo�owing, for
this holographic �owing dynamics, which expresses the dynamical activity
described above, taken as concept.

Bohm and Hiley (1993) used the term holomovement, however, we pre-
fer the term holo�owing due to the nature of the wave dynamics. From a
computer science perspective, the concept of holo�owing can be de�ned as a
holographic dynamics where the computation can be addressed like a stream
�owing in both directions from input to output (forward propagation), which
is Cramer's o�er wave dynamics, and from output to input (backpropaga-
tion), which is Cramer's con�rmation wave dynamics, computing, in this
way, each path towards the �nal projection, which is added to form the �nal
amplitudes associated, respectively, with the computational output's probe
and response carriers, this explains the dynamics leading to the �nal echoes.

Under the above concept of holo�owing, the echo formation dynamics is
such that the neural �eld's computation needs to be considered in its whole,
that is, we cannot consider just a few neurons or even just a few pairing of
probe and response dynamics, the �eld's computation needs to account for
all of the initial pairings of probe and response in order to compute the �nal
echoes, since, as long as these dynamics lead to the same �nal neural activity,
they must be added up, contributing to the �nal echo intensity associated
with a corresponding projected neural activity.

The lines of force related to the �nal echoes thus re�ect the result of this
holographic dynamics, which explains how the probabilities associated with
the quantum neural activity exhibit wave-like interference.
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In the �eld's computational dynamics, the holo�owing leads to an echo
rematching, in the sense that the product Ψr0,sΨ

∗
s,s0

, with r0 6= s0, expresses
a transition from an initial failed echo to a �nal dynamics where probe and
response carriers agree, thus, forming an echo. In this sense, the modulated
projection associated with each �nal neural �ring activity is given by the
sum: 〈

s
∣∣∣K̂∣∣∣ψ〉〈ψ ∣∣∣K̂†∣∣∣ s〉 |s〉 〈s| = ∑

r0,s0∈Ad2

Ψr0,sΨ
∗
s,s0
|s〉 〈s| (50)

where each product Ψr0,sΨ
∗
s,s0

with r0 6= s0 corresponds to the transition from
an initial failure of the response carrier to respond to the probe, to a �nal
output dynamics where the response matches the probe. The degree to which
initial mismatches are propagated to �nal matchings depends on the structure
of the computational chain, namely, on the forward propagating amplitudes〈
s
∣∣∣∏1

k=N Ûk

∣∣∣ r0〉 and the backpropagating amplitudes
〈
s0

∣∣∣∏N
k=1 Û

†
k

∣∣∣ s〉, as
long as the product of these amplitudes is non-null for a pair r0 6= s0, then,
we get an echo rematching for ψ (r0) 6= 0 and ψ (s0) 6= 0. The sum over
the �nal matchings explains the workings of the holographic dynamics in its
relation with the quantum neural computation dynamics implemented for
these QuANNs. We call these echo rematchings echo correction dynamics.

The holo�owing is a nonlocal dynamics involving the whole quantum �eld,
including quantum and subquantum levels. Indeed, in the above context of
QuANNs, we cannot locate this dynamics at the level of a speci�c neuron,
but, instead, the dynamics involves the whole neural �eld. A point that
is speci�cally seen, within the formalism, in the sums

∑
r0,s0∈Ad2

Ψr0,sΨ
∗
s,s0

,
which are being summed over the entire neural activity patterns. It is, thus,
relevant to consider the concept of nonlocality in this context.

2.2.2 Nonlocality and the Quantum Force Interpretation

In quantum mechanics, nonlocality is usually discussed in connection with
quantum correlated dynamics that violate the signal-based communication
limit postulated, in special relativity, to be the speed of light in vaccuum.
That is, in a quantum �eld, correlated dynamics, with regards to speci�c
�eld properties' eigenvalues, evaluated at di�erent points in space, occur
beyond the limits of classical signal-based communication, that is, we have
a dynamics where not even a signal (classically) propagating at light speed
can link the two points.
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Di�erent interpretations of quantum mechanics deal di�erently with non-
locality. In Bohm's proposal, which assumes a subquantum dynamics, non-
locality is not directly related to superluminal quantum correlations, rather,
these superluminal quantum correlations are, in Bohm's proposal, a conse-
quence of nonlocal dynamics of a quantum �eld, but even when we are deal-
ing with a single degree of freedom, and not with what quantum theory calls
multipartite entanglement, nonlocality still plays a role. Also in Cramer's TI
nonlocality plays a role, not only being linked to quantum correlations but
also in linking emitters in the present with future absobers (Cramer, 2016).

Our proposal, the QFI, combines elements of the TI and elements of
Bohm's proposal with systems science. In systems science, nonlocality is
linked to the systemic identity and unity, namely, considering that any sys-
tem is not reducible to the sum of its parts, we need to consider the parts
and their relation to the whole, in this way, we can speak of a diversity of
parts and, simultaneously, of a unity that sustains the systemic coherence,
thus, the systemic nonlocality needs to be considered as a dynamics of the
systemic unity that plays a role in the system's sustainability, coherence and
identity (Madeira, 2013). In a system, nonlocality involves a holographic
projective cognitive dynamics that works at all scales of the system, towards
the system's integrity, coherence, sustainability and identity.

In a system's dynamics, the conservation of systemic integrity, coherence
and identity necessarily mean that coordinated synchronized activity needs
to be permanently assured, so that one part cannot go one way and another
one go another way, leading to a systemic disaggregation. This means that
the system will necessarily exhibit correlated activity that cannot be de-
pendent upon classical �nite signal speed propagation, otherwise the system
would collapse. Entanglement means, in this case, that: entangled dynam-
ics between the parts imply a connection that must be independent of �nite
speed propagation signal-based communication.

One might assume that the subquantum level is supporting �nite super-
luminal propagation of signals, also assuming that nonlocality comes from
such a fundamental dynamics, but that signal propagation speed cannot be
�nite.

Since nonlocality is necessarily a dynamics of the systemic unity towards
the system's sustainability, integrity and identity (Madeira, 2013), otherwise
we would not have a system in the proper sense of the term, the system's
nonlocality is necessarily that system's nonlocality, and the system's nonlo-
cality cannot, thus, depend upon a signal-based communication with a �nite
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speed of signal propagation, be it luminal or superluminal, otherwise, the
system would lose coherence and disaggregate, because, for each of the sys-
tem's dynamics, all of the parts must always be coordinated in keeping the
system's integrity and coherence.

The loss of systemic coherence, in this last case, would be due to a lag
always present, related to the passage of a signal at �nite speed, even a
superluminal one. Entangled dynamics between di�erent parts of the system
must always work either without the need for a passage of signal, or through
the instaneous passage of signal. In the �rst case, Einstein's special theory
of relativity can still be assumed to hold for signal-based communication, in
the second case, the postulate of the speed of light limit breaks down at the
quantum level (Bohm and Hiley, 1993).

Regarding the �rst case, in biophysics, from experiments of communi-
cation with megaptera (Beamish, 2004), later on generalized for di�erent
animal species (Beamish, 2011), a new concept of communication, di�erent
from signal-based communication, was found pertinent and robust, being re-
searched by Beamish, who proposed the (bio)physical concepts of 'Rhythm
Based Communication' (RBC), 'Rhythm Based Time' (RBT) and 'Rhythm

Based Information' (RBI). A connection of these concepts with quantum me-
chanics was researched by Kitada (2004). Future research on this area may
provide for a relevant basis for new computational physics and technolo-
gies, with possible links to quantum technoscience, in general, and quantum
robotics in particular, since these concepts work with a communication dy-
namics that is di�erent from signal-based communication, an added point
regarding the role of RBC and RBT in quantum mechanics is the relevance
of rhythms in quantum systems, as reviewed in the previous subsection.

If we consider the echoes resulting from correlated probe and response
carriers in entangled dynamics coming from conditional unitary propagation,
then, the �nal probe and response dynamics are correlated. One may argue,
however, that such a correlation cannot be sustained without the passage of
a signal at the level of the quantum �eld's nonlocal dynamics, in that case,
the signal has to pass at an instanteous speed, supported by the quantum
and subquantum dynamics.

Accepting this last approach, means that the chronological temporal con-
nection is, in this case, between dynamics of a �eld that computes nonlocally
at more than a superluminal scale, it computes at an instantaneous scale (be-
yond any �nite signal propagation postulate). If one accepts this last frame-
work, then the point, which also holds for the dynamics of multiple systems
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with where their respective �elds exhibit entangled dynamics, is that the dy-
namics, at the level of the nonlocal connections, are not chronometrizable,
therefore, neither relativity, nor any classical theory of �nite signal propaga-
tion speed apply as an explanatory framework (Bohm and Hiley, 1993).

Nonlocal signaling is, in this last case, a process di�erent from any as-
sumed in a classical computational framework, where dynamics is thought
in terms of transitions between states mediated by causally �nite chains.
Some confusion arises in physics regarding this signaling, it is important to
stress that: quantum entanglement is not about cause and e�ect, but about
connection sustained by a quantum �eld's nonlocal dynamics.

The no-signaling theorem does not regard an instantaneous passage of
signal associated with quantum entanglement, rather, it is about the state-
ment impossibility of signal-based communication between localities (two ob-
servers) using the nonlocal �eld dynamics just by making measurements on
the entangled parties (Cramer, 2016; Walleczek and Grössing, 2016). Thus,
it is a way to make quantum mechanics less problematic for relativity5 (Wal-
leczek and Grössing, 2016). However, relativity is a classical mechanical
theory that does not deal with nonlocal dynamics (Bohm and Hiley, 1993),
including, for instance, the case of two �elds' probe and response dynamics
that exhibit nolocal correlations, which implies that, if we accept the in-
stantaneous signal passage, that passage occurs between nonlocalities, not
involving propagation in a �space-time�.

Conceptual categories, coming from classical physics, such as space-time,
causality and classical signal-based communication are not applicable at this
level, where we are dealing with di�erent computational dynamics, and where
�neighborhood� is a �neighboring� (verb) determined by connection, which
is dynamical and non-metric, rather than by a geometrically determined
metrizable background space.

In the context of quantum mechanics, under the QFI, we consider that a
quantum �eld works towards the rising of an actualized order, which is risen,
at the quantum level, as a discrete (quantized) pattern. In computational
terms, the holo�owing can be considered as a re�exive holographic nonlocal
dynamics that involves the whole �eld towards the rising of an order, a rising
that is determined by the lines of force which depend upon the itensity of

5However, as Cramer (2016) argues, even if it were shown to be possible to use the
nonlocal dynamics for observer-to-observer communication, that communication can still
be argued to be consistent with respect to Lorenz invariance.
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the respective echoes that result from the holo�owing.
In this sense, the quantum dynamics, described above, works in a way

that involves the whole �eld, including quantum and subquantum dynamics,
where the rising of an actualized order depends upon the intensity of the
echoes resulting from the holo�owing (the re�exive holographic �owing) of
the �eld and the intensity of the lines of force that are the result of the quan-
tum and subquantum activity that supports, in the �eld, the mobilization
of the forces needed to determine and make rise an actualized order, lines of
force that coincide with the re�exive echoes.

The coincidence between echo intensities and the intensity of the lines
of force is a fundamental computational result of the �eld's activity around
a problem, and it involves both quantum and subquantum levels working
in tandem towards the rising of an order, a work that involves a re�exive
dynamics, that connects beginning and end of the computation, which leads
to the echoes that signalize the forces to be mobilized. In this way, the lines
of force are formed in direct correspondence with the echoes, since these are
the lines of force that are speci�cally directed towards the solution of the
problem in question.

In this sense, in terms of computational physics, the quantum dynamics
corresponds to a basic computational dynamics that involves a speci�c form
of learning about a problem, involving a forward and backpropagating wave-
like dynamics, leading to the formation of a speci�c con�guration of lines of
force that allow the �eld to make emerge a speci�c order, using these lines
of force that connect the beginning to the endpoint of the computational
problem and, thus, solve it. Such a computational dynamics involves the
whole �eld working, supported by both quantum and subquantum levels.

In this computational dynamics, in the case of QuANNs, entanglement
results from the local Hamiltonian structure associated with each neural link.
In terms of machine learning, this computational dynamics allows the devel-
opment of a new form of quantum neural machine learning based on quan-
tum optimization, which we will introduce in the next section and apply to
a quantum robotics problem.
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3 The Quantum Force Interpretation and Quan-

tum Robotics

Following Russel and Norvig's (2014) de�nition of agent, a robot can be
de�ned as an arti�cial agent capable of perceiving the environment through
a interface and changing that environment's dynamics through actuators.
Within a classical context, the perception process can be addressed as a
mapping of the sensory data and does not, by itself, change the environment,
in the quantum context, however, this is no longer the case, as made explicit
by Everett (1957).

Everett (1957) applied the formalism of quantum wave dynamics to both
a target quantum system and the observer, whose cognitive dynamical space

is addressed within the Hilbert space formalism and assumed to follow the
quantum mechanical rules just as the target system. The cognitive dynamical

space is assumed by Everett in terms of memory patterns that obey the
rules of quantum wave dynamics, in this way, the observation act involves
a quantum computation by which the observed system and the observer's
cognitive dynamics become correlated, so that we get an entangled dynamics
of observer agent (Everett's automaton) and the observed system.

While Everett worked with the concept of a quantum dynamics in terms
of state transitions and worked on relative states, we are dealing with an
interpretation of quantum mechanics without states, working from a projec-
tive dynamics resulting from the �encounters� of probe carriers and response

carriers, so that we can no longer speak of a state vector but rather, each ket

vector corresponds, in the mathematical formalism, to a probing dynamics
of a quantum �eld and each bra vector corresponds to a response dynamics.

The computation of the �eld is, thus, like a search for a solution to a
problem, where each probed alternative also gets a response, with the �eld's
lines of force being formed along the (cognitive) echo resulting from the
encounters of matching probe and response carriers and with a force intensity
that matches the echo's intensity. This whole dynamics involves the �eld's
computation at both quantum and subquantum levels. The quantum �eld,
in this case, is the �eld associated with the robot's neural network.

While Everett's automaton model is speci�cally built to address the mea-
surement and observation of a quantum system, the immediate extension of
this model, that arises from classical robotics, is to consider the ability to
change the target system's dynamics through actuators, with the actions de-
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pending upon the robot's quantum cognitive dynamics. A point that was
raised by Benio� (1998) as well as by Dong et al. (2006).

The robot architecture we will work with follows a similar approach as
that of Dong et al. (2006) regarding the multi quantum computing units,
quantum actuator and sensory units, with some di�erences, namely: the
quantum actuator and sensory units are associated with a single unit, which
is the robot's interface through which the robot interacts with a target quan-
tum system and the multi quantum computing units will take the form a
feedforward multilayer quantum neural network. The sensory processing in-
volves the interface and the �rst layer of neurons, and the action involves the
interface and the neural network, which means that the actuator operator
must be a conditional unitary operator on the target that depends upon the
interface and neural network.

The context of quantum neural machine learning assumed here is ex-
panded from Gonçalves (2017), where, instead of an iterative scheme, the
convergence of the network occurs within a continuous time framework, such
that the QuANN converges to an optimized solution for a conditional util-
ity performance measure, as the neural processing time tends to a learning
period, as we now review.

3.1 Quantum Neural Machine Learning and Quantum

Optimization

Let us consider the single neuron general Hamiltonian structure (Gonçalves,
2017):

Ĥx = −~
2

ω(x)

4t0
1̂2 +

θ(x)

4t0

3∑
j=1

uj(x)
~
2
σ̂j (51)

where x is a parameter assuming values in the domain F (which can be any
set), ω(x) and θ(x) are angles measured in radians, 4t0 is the learning period
and uj(x) are the components of a real unit vector. The unitary operator for
such a Hamiltonian structure is, thus, given by the U(2) operator:

exp

(
− i
~
4tĤx

)
=

= e
i
ω(x)4t
24t0

[
cos

(
θ(x)4t
24t0

)
1̂2 − i sin

(
θ(x)4t
24t0

) 3∑
j=1

uj(x)σ̂j

] (52)
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If we let ω(x), θ(x) and uj(x) be de�ned such that:

ω(x) = (1− f(x))π (53)

θ(x) =
2− f(x)

2
π (54)

u1(x) = u3(x) =
1− f(x)√

2
(55)

u2(x) = f(x) (56)

where f is a map f : F 7→ A2, then, as shown in Gonçalves (2017), as
4t → 4t0 we have the convergence for the probe and response carriers |+〉
and 〈+|:

e−
i
~4tĤx |+〉 → |f(x)〉 (57)

〈+| e
i
~4tĤx → 〈f(x)| (58)

which means that an initial density |+〉 〈+| will converge to the �nal density
|f(x)〉 〈f(x)|, therefore, while, initially, we have two echoes, one for the al-
ternative �ring pattern |0〉 〈0| and another for the alternative �ring pattern
|1〉 〈1|, each with equal echo intensity, after the unitary evolution, the neural
�eld dynamics converges to a single echo either for |0〉 〈0|, if f(x) = 0, or for
|1〉 〈1|, if f(x) = 1, this convergence is addressed, in connection to quantum
neural machine learning in Gonçalves (2017), allowing one to introduce a
form of quantum optimization in the basic quantum neural computation of
a feedforward neural network, where the learning takes place as a form of
convergence of the probe and response carriers to the optimum.

Indeed, let us consider the most elementary case of a QuANN with two
fully connected layers. Where the input layer has din neurons and the output
layer has dout neurons, then, let v : Adin

2 ×Adout
2 7→ R, be a conditional utility

function that assigns a real number to each pair in Adin
2 ×Adout

2 , given the pair
of strings (r, s), with r ∈ Adin

2 and s ∈ Adout
2 , then, we write v[s|r] = v (r, s)

for the utility of the output binary string s given the input binary string r.
Let V be the space of such utility functions, with the added condition that,
for each r ∈ Adin

2 , there is a unique string in Adout
2 that maximizes the utility

conditional on r. Then, we have a single maximum utility output string for
each input string r, this string is the solution to the equation:

sr = arg max
s

v[s|r] (59)
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We denote by sr,k the k -th bit in the string sr and de�ne:

sr,k = arg max
s,k

v[s|r] (60)

where the notation on the right hand side is interpreted as the value of the
argument that maximizes the conditional utility, on the input pattern r,
evaluated at the k -th position.

Now, let us consider that the neural network, at the beginning of the com-
putation, is characterized by the projector |Ψ(t0)〉 〈Ψ(t0)| where the probe
and response carriers are given by:

|Ψ(t0)〉 = |+〉⊗din ⊗ |+〉⊗dout (61)

〈Ψ(t0)| = 〈+|⊗din ⊗ 〈+|⊗dout (62)

And let us assume that each neuron on the output layer is connected to
all the neurons of the input layer. Then, we have the following conditional
unitary operator:

Û4t =
∑

r∈Adin2

|r〉 〈r|
dout⊗
k=1

exp

(
− i
~
4tĤk,r

)
(63)

where the Hamiltonians for each output layer's neuron Ĥk,r incorporate the
conditional utility optimization problem as follows:

Ĥk,r =

= −~
2

(
1− arg max

s,k
v[s|r]

)
π

4t0
1̂2+

+

(
2− arg max

s,k
v[s|r]

)
π

24t0

3∑
j=1

uj,k(r)
~
2
σ̂j

(64)

u1,k(r) = u3,k(r) =

1− arg max
s,k

v[s|r]
√

2
(65)
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u2,k(r) = arg max
s,k

v[s|r] (66)

Then, the probe carrier, after a neural processing period of 4t, is given by
the superposition:

Û4t |Ψ(t0)〉 = |Ψ(t0 +4t)〉 =

=
∑

r∈Adin2

|r〉(√
2
)din dout⊗

k=1

exp

(
− i
~
4tĤk,r

)
|+〉 =

=
∑

r∈Adin2

|r〉(√
2
)din dout⊗

k=1

|ψk,r (t0 +4t)〉

(67)

with |ψk,r (t0 +4t)〉 given by:

|ψk,r (t0 +4t)〉 =

= e
i
(1−sr,k)π4t

24t0 cos

(
(2− sr,k) π4t

44t0

)
|+〉−

−iei
(1−sr,k)π4t

24t0 sin

(
(2− sr,k) π4t

44t0

)
[(1− sr.k) |0〉 − isr,k |−〉]

(68)

The formula for the response carriers can be obtained from the forward car-
riers by applying the conjugate transposition〈Ψ(t0 +4t)| = |Ψ(t0 +4t)〉†,
〈ψk,r (t0 +4t)| = |ψk,r (t0 +4t)〉†.

Now, at t0 = 0, the neural �eld exhibits an independent probe and re-
sponse dynamics for each neuron's activity, with the �ring and non�ring
alternatives symmetrically weighted. As 4t→4t0, however, the probe and
response dynamics are no longer independent, since for the k -th second layer
neuron, with k = 1, 2, ..., dout, the respective probe and response carriers con-
verge on the �ring pattern that leads to the conditional utility maximizing
solution evaluated at the position k.

This is a form of quantum search in continuous time, where the initial
dynamics has a probe an response dynamics that are e�ectively evaluating all
alternative solution, but, then, as4t→4t0, there takes place a convergence
to the optimum. To see how this convergence works, let us consider the probe
and response carriers for each second layer neuron. If sr,k = arg max

s,k
v[s|r] =
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0, then, we get, the probe and response carriers:

|ψk,r (t0 +4t)〉 =

e
i π4t
24t0

(
cos

(
π4t
24t0

)
|+〉 − i sin

(
π4t
24t0

)
|0〉
)

(69)

〈ψk,r (t0 +4t)| =(
〈+| cos

(
π4t
24t0

)
+ 〈0| i sin

(
π4t
24t0

))
e
−i π4t

24t0
(70)

When 4t is close to zero, the dominant probe and response carriers are,
respectively, |+〉 and 〈+|, which means that the neural �eld is still close
to the initial dynamics which explores each �ring pattern with the same
weight, however, as 4t → 4t0 these two carriers lose weight, and the �nal
carriers converge to |ψk,r (t0 +4t0)〉 = |0〉 and 〈ψk,r (t0 +4t0)| = 〈0|, which
matches the optimum, evaluated at position k, arg max

s,k
v[s|r]. Likewise if

sr,k = arg max
s,k

v[s|r] = 1, then, we get:

|ψk (t0 +4t)〉 =

cos

(
π4t
44t0

)
|+〉 − sin

(
π4t
44t0

)
|−〉

(71)

〈ψk (t0 +4t)| =

〈+| cos

(
π4t
44t0

)
− 〈−| sin

(
π4t
44t0

)
(72)

Again, when 4t is close to zero, the dominant probe carrier and response
carriers are, respectively, |+〉 and 〈+|, as 4t→ 4t0, however, the weight of
the second carrier in the superposition starts to increase and that of the �rst
carrier to decrease, approximating each other. When 4t = 4t0 the two car-
riers have a weight of 1/

√
2, in this case, there occurs a wavelike destructive

interference for the non�ring alternative, with the corresponding amplitude
becoming zero, while there is a constructive interference for the �ring alterna-
tive, with the corresponding alternative becoming equal to one, which means
that the carriers converge to |ψk,r (t0 +4t)〉 = |1〉 and 〈ψk,r (t0 +4t)| = 〈1|,
respectively.

The neural �eld, thus, takes advantage of quantum interference in order
to �nd the optimum. Since, when 4t = 4t0, the carriers, for each second
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layer each neuron, coincide with arg max
s,k

v[s|r], the second layer's carriers

coincide with the optimum given each alternative, which means that the
density for 4t = 4t0 is given by the entangled dynamics:

|Ψ(t0 +4t0)〉 〈Ψ(t0 +4t0)| =
∑

r,r′∈Adin2

|r, sr〉 〈r′, sr′|
2din

(73)

The echoes are, thus, only formed for pairs where the second layer exhibits
the maximum conditional utility �ring pattern given the �rst layer's �ring
pattern. This means that the lines of force with nonzero intensity are only
those associated with the optimal dynamics of the second layer given the �rst
layer's �ring pattern.

This approach to quantum neural machine learning, based on quan-
tum optimization, can be extended to multiple layers and has applications
in quantum robotics, furthermore, these applications help illustrate major
points regarding the quantum neural cognition involved in quantum neural
computation, under the QFI, a point that we now address.

3.2 Quantum Optimizer Robot

Let us consider a target described by a Hilbert space HTarget spanned by
the basis {|on〉 : n = 1, 2, ..., N}, such that the basis ket vectors satisfy the
eigenvalue equation for some observable:

ÔTarget |on〉 = on |on〉 (74)

where the spectrum is, in this case, assumed to be non-degenerate. We denote
the set of target's eigenvalues by O = {o1, o2, ..., on}.

The quantum robot is de�ned as an arti�cial agent that has an interface
that interacts with the target, working as both a measurement apparatus,
that performs a von Neumann measurement of the observable ÔTarget, and an
actuator. Now, linked to the robot's interface is a feedforward QuANN com-
prised of two fully connected layers of neurons, plus a third layer comprised
of a �nal neuron which is fully connected to the previous two layers.

Each layer, along with the interface, has a speci�c functionality in the
robot's cognitive processing. The �rst layer maps the sensory data to binary
�ring patterns, thus, processing the sensory data coming from the interface,
the second layer maps out a desired pattern in accordance with a conditional
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performance measure for the robot, the third layer, which is comprised of
the last neuron, is an action triggering layer, that is, if the neuron �res,
then an action is implemented, while if the neuron does not �re, an action
is not implemented. Figure 1 shows the basic architecture for the robot plus
interaction with the target.

Figure 2: Robot's architecture and interaction with target.

Formally, the robot's interface with the target is described by the Hilbert
space HInt spanned by the basis {|an〉 : n = 1, 2, ..., N} of the Hermitian op-
erator satisfying the eigenvalue equation:

Âint |an〉 = an |an〉 (75)

where an are real-valued quantum numbers that characterize the interface's
�eld dynamics, the spectrum is also assumed to be non-degenerate. We
denote the set of interface eigenvalues by A = {a1, a2, ..., an}.

The Hilbert space to describe the robot's cognition is, thus, given by
the tensor product of the interface's Hilbert space plus the neural network's
Hilbert space:

HRobot = HInt ⊗HNet (76)

The neural network's Hilbert space is, in turn, given by the tensor product:

HNet = H⊗dN2 ⊗H⊗dN2 ⊗H2 (77)
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where dN = min {d ∈ N : d ≥ log2N} is the width of the �rst and second
layers, needed for the digital dynamical mapping of the N patterns associated
with the interface's �eld dynamics.

In what follows, we de�ne the unit operator for the target and interface
as respectively:

1̂T =
N∑

n=1

|on〉 〈on| (78)

1̂Int =
N∑

n=1

|an〉 〈an| (79)

and, as before, we use the notation 1̂2 for the unit operator on the single
neuron Hilbert space, as per Eq.(5). Then, the �rst stage of the robot's
computation is the sensory processing stage, by which the robot interacts
with the target, so that the interface's �eld becomes entangled with the
target's �eld, in such a way that there is a matching correlation between the
probing and response dynamics of both target and interface's �elds.

The sensory processing is implemented by way of the unitary operator:

ÛSensory =
N∑

n=1

|on〉 〈on| ⊗ Ûn ⊗ 1̂
⊗(2dN+1)
2 (80)

with Û1 = 1̂Int and, for n > 1, Ûn has the following structure:

Ûn = |a1〉 〈an|+ |an〉 〈a1|+
∑

a∈A\{a1,an}

|a〉 〈a| (81)

to illustrate the dynamics of this operator, let us consider that the initial
density operator is given by a projector |Ψ〉 〈Ψ|, where the probe and response
carriers are, respectively, given by the superpositions:

|Ψ〉 =
N∑

n=1

ψn |on〉 ⊗ |a1〉 ⊗ |+〉⊗(2dN+1) (82)

〈Ψ| =
N∑

n=1

ψ∗n 〈on| ⊗ 〈a1| ⊗ 〈+|
⊗(2dN+1) (83)

Before the interaction with the target, the probe and response dynamics of
the interface's �eld is independent of the target's �eld, the neural �eld's probe
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and response dynamics is in turn independent for each neuron and separable
from the interface, being characterized by a symmetric superposition of the
non�ring and �ring carriers.

Thus, before interacting with the target, the robot and target have non-
entangled dynamics. After interacting with the target, under the sensory
unitary propagation, we get, respectively, the following results for the probe
and response carriers:

ÛSensory |Ψ〉 =
N∑

n=1

ψn |on〉 ⊗ |an〉 ⊗ |+〉⊗(2dN+1) (84)

〈Ψ| Û †Sensory =
N∑

n=1

ψ∗n 〈on| ⊗ 〈an| ⊗ 〈+|
⊗(2dN+1) (85)

Thus, when the target's �eld probes the alternative eigenvalue on, the
robot's interface's �eld probes the alternative eigenvalue an, so that the prob-
ing dynamics of target and interface's �elds are entangled. Similarly, when
the target's �eld response dynamics is associated with the eigenvalue on, the
robot's interface's �eld response dynamics is associated with the eigenvalue
an, therefore, the response dynamics is also entangled. The neural �eld dy-
namics, however, is not yet entangled, with the interface's �eld dynamics.
The neural �eld is still probing each neural activity, for each neuron, sym-
metrically and independently, the same holds for the neural �eld's response
dynamics.

This changes with the �rst layer's neural processing, which works to pro-
duce a neural mapping of the sensory data in the form of speci�c neural �ring
dynamics, functioning as another form of quantum measurement apparatus,
in this case, as a measurement apparatus of the interface.

To address the �rst layer's neural processing, let DdN
2 ⊆ AdN

2 be a set of
binary strings such that DdN

2 contains the �rst N binary strings, following
the order in the integer expansion:

m =

dN−1∑
k=0

sk2dN−1−k (86)

in this case, we use the notation s[m] for the dN -length binary string s0s1...sdN−1
that represents m. The �rst element in DdN

2 is, thus, s[0] and the last is
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s[N − 1]. When N is a power of 2, dN = log2N and DdN
2 = AdN

2 , in the other
cases, DdN

2 is a proper subset of AdN
2 .

The connection between the interface and the �rst layer of neurons is such
that each neuron processes the input from the interface, this means that we
have a unitary operator for the �rst layer's neural processing given by:

ÛL1,4t = 1̂T ⊗
N∑

n=1

|an〉 〈an|
dN⊗
k=1

e−
i
~4tĤk,n ⊗ 1̂⊗dN2 ⊗ 1̂2 (87)

thus, while the last two layers remain unchanged, each neuron's dynamics in
the �rst layer is transformed accordingly with a conditional unitary operator,
with the conditional Hamiltonians having the general structure of Eqs.(64)
to (66) but such that the conditional utility optimization is conditional on
the interface's eigenvalues, the Hamiltonians for each neuron are, thus, given
by:

Ĥk,n =

= −~
2

(
1− arg max

s,k
v1[s|an]

)
π

4t0
1̂2+

+

(
2− arg max

s,k
v1[s|an]

)
π

24t0

3∑
j=1

uj,k(an)
~
2
σ̂j

(88)

u1,k(an) = u3,k(an) =

1− arg max
s,k

v1[s|an]

√
2

(89)

u2,k(an) = arg max
s,k

v1[s|an] (90)

where v1 is the conditional utility function for the �rst layer. Now, during
the neural prodcessing period4t, the probe carrier undergoes the conditional
unitary propagation:

ÛL1,4tÛSensory |Ψ〉 =

=

(
N∑

n=1

ψn |on〉 ⊗ |an〉
dN⊗
k=1

e−
i
~4tĤk,n |+〉

)
⊗ |+〉dN+1

(91)

so that the neural �eld no longer has a separable dynamics, with the �rst
layer of neurons exhibiting a conditional propagation that depends upon the
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interface's �eld's probed alternatives. Likewise, for the response carrier, we
get the correlated propagation:

〈Ψ| Û †SensoryÛ
†
L1,4t =

=

(
N∑

n=1

ψ∗n 〈on| ⊗ 〈an|
dN⊗
k=1

〈+| e
i
~4tĤk,n

)
⊗ 〈+|dN+1

(92)

As 4t → 4t0 the probe and response carriers converge to an entangled
probing and response dynamics with the interface. Assuming that:

s[n− 1] = arg max
s

v1[s|an] (93)

we get the following probe and response carriers for the �rst layer's optimum:

ÛL1,4t0ÛSensory |Ψ〉 =

=

(
N∑

n=1

ψn |on〉 ⊗ |an〉 ⊗ |s[n− 1]〉

)
⊗ |+〉dN+1

(94)

〈Ψ| Û †SensoryÛ
†
L1,4t0

=

=

(
N∑

n=1

ψ∗n 〈on| ⊗ 〈an| ⊗ 〈s[n− 1]|

)
⊗ 〈+|dN+1

(95)

The probe and response dynamics of the neural �eld now exhibits an en-
tangled dynamics with the probe and response dynamics of the interface's
�eld and the target's �eld. Indeed, when the target's �eld probes the alter-
native on, the interface's �eld probes the alternative an and the neural �eld
probes, for the �rst layer of neurons, the neural �ring pattern matching the
binary string s[n − 1]. Likewise, for the response dynamics we also get a
similar correlation.

At this point, the robot is still working similarly to Everett's proposal,
in the sense that Everett (1973) considered the possibility of addressing the
observer's degree of freedom in terms of a (quantum) neurodynamical map-
ping of the target. In this case, we addressed the architecture of a complex
measurement apparatus that includes a interface plus a neural network.

The importance of the neural network comes from the fact that we do
not wish to just address the quantum measurement, that is, to just have a
measurement automaton. The main point is that the robot's neural network
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must function as a cognitive basis for observation and decision, in this case,
how to change the target's quantum dynamics.

The next step of the computation takes us beyond the standard quantum
measurement, in the sense that the second layer of neurons produces an
internal cognitive evaluation of what is a desirable dynamical pattern for the
target, given the observed dynamical pattern.

The next stage of the quantum neural computation, thus, addresses the
optimization of a performance measure incorporated in the second layer's
conditional utility function, so that, in terms of re�exivity, the �rst stage
of learning, re�exively, plays an adaptive role that can be described as the
target's diagnosis, while the second stage implements the evaluation of what
is �desirable� for the robot. This means that the conditional unitary prop-
agation has to incorporate a performance optimization dependent upon the
�rst layer's �ring patterns.

Let us, then, de�ne the conditional utility for the second layer such that if
r /∈ DdN

2 , then, arg max
s

v2[s|r] = r, while, for r ∈ DdN
2 , then, arg max

s
v2[s|r]

corresponds to an optimal performance that may not coincide with r. Then,
the unitary operators for the second layer have the conditional structure:

ÛL2,4t = 1̂T ⊗ 1̂Int ⊗
∑

r∈AdN2

|r〉 〈r|
dN⊗
k=1

e−
i
~4tĤk,r ⊗ 1̂2 (96)

with the local Hamiltonians given by:

Ĥk,r =

= −~
2

(
1− arg max

s,k
v2[s|r]

)
π

4t0
1̂2

+

(
2− arg max

s,k
v2[s|r]

)
π

24t0

3∑
j=1

uj,k(r)
~
2
σ̂j

+ (97)

u1,k(r) = u3,k(r) =

1− arg max
s,k

v2[s|r]
√

2
(98)

u2,k(r) = arg max
s,k

v2[s|r] (99)
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Using the following notation:

smax[n− 1] = arg max
s

v2[s|s[n− 1]] (100)

as 4t → 4t0, the probe and response carriers converge to the following
superpositions:

ÛL2,4t0ÛL1,4t0ÛSensory |Ψ〉 =

=

(
N∑

n=1

ψn |on〉 ⊗ |an〉 ⊗ |s[n− 1]; smax[n− 1]〉

)
⊗ |+〉

(101)

〈Ψ| Û †SensoryÛ
†
L1,4t0

Û †L2,4t0
=

=

(
N∑

n=1

ψ∗n 〈on| ⊗ 〈an| ⊗ 〈s[n− 1]; smax[n− 1]|

)
⊗ 〈+|

(102)

so that, as4t→4t0, at the level of the probe carrier, for the second layer, we
actually have a convergence from a symmetric equally weighted superposition
of the di�erent �ring patterns to an entangled dynamics with a probe carrier
for the second layer that always probes the optimum performance alternative.
A similar argument holds for the response carriers.

Now the third and last layer plays a role at the action stage level. The
unitary operator for this layer is:

ÛL3,4t = 1̂T ⊗ 1̂Int ⊗
∑

r,s∈AdN2

|r; s〉 〈r; s| ⊗ e−
i
~4tĤr,s (103)

with the local Hamiltonians given by:

Ĥr,s =

= −~
2

(
1− arg max

s
v3[s|r, s]

)
π

4t0
1̂2+

+

(
2− arg max

s
v3[s|r, s]

)
π

24t0

3∑
j=1

uj(r, s)
~
2
σ̂j

(104)

u1(r, s) = u3(r, s) =

1− arg max
s

v3[s|r, s]
√

2
(105)
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u2(r, s) = arg max
s

v3[s|r, s] (106)

Using the indicator function 1<condition> which evaluates to 1, if the< condition >
holds, and to 0, if the < condition > does not hold, we are, thus, assuming
that the optima for the third layer are such that:

arg max
s

v3[s|r, s] = 1r6=s (107)

Again as4t→4t0, the probe and response carriers converge to the following
�nal superpositions:

ÛL3,4t0ÛL2,4t0ÛL1,4t0ÛSensory |Ψ〉 =

=
N∑

n=1

ψn |on〉 ⊗
∣∣an; s[n− 1]; smax[n− 1]; 1s[n−1]6=smax[n−1]

〉 (108)

〈Ψ| Û †SensoryÛ
†
L1,4t0

Û †L2,4t0
Û †L3,4t0

=

=
N∑

n=1

ψ∗n 〈on| ⊗
〈
an; s[n− 1]; smax[n− 1]); 1s[n−1] 6=smax[n−1]

∣∣ (109)

In the above equations the carriers for the last neuron are such that the
neuron does not �re when s[n − 1] = smax[n − 1] and �res otherwise. This
last neuron triggers the action stage.

The action stage proceeds in two steps, in the �rst step, we have a feed-
back dynamics from the neural �eld to the interface, in the second step, the
actuator is applied where the feedback is now from the interface's �eld to the
target's �eld. The operator for the �rst step is de�ned as:

ÛInt = 1̂T ⊗
∑

r,s∈AdN2

∑
r∈A2

Ĝ(r, s, r)⊗ |r; s; r〉 〈r; s; r| (110)

where the operator Ĝ(r, s, r) is given by:

Ĝ(r, s, r) =

{
1̂Int, r = 0 ∨ r /∈ DdN

2

Û int
r,s , otherwise

(111)

and Û int
r,s is given by:
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Û int
r,s =

|g(s)〉 〈g(r)|+ |g(r)〉 〈g(s)|+

+
∑

a∈A\{g(r),g(s)}

|a〉 〈a|
(112)

where g is a one-to-one and map from DdN
2 onto the set of quantum numbers

A = {a1, a2, ..., aN}, such that, for n = 1, ..., N :

g(s[n− 1]) = an (113)

Thus, under the interface's conditional propagation, we get for the probe
and response carriers:

ÛIntÛL3,4t0ÛL2,4t0ÛL1,4t0ÛSensory |Ψ〉 =

=
N∑

n=1

ψn |on〉⊗

⊗
∣∣g (smax[n− 1]) ; s[n− 1]; smax[n− 1]; 1s[n−1]6=smax[n−1]

〉 (114)

〈Ψ| Û †SensoryÛ
†
L1,4t0

Û †L2,4t0
Û †L3,4t0

Û †Int =

=
N∑

n=1

ψ∗n 〈on| ⊗

⊗
〈
g (smax[n− 1]) ; s[n− 1]; smax[n− 1]; 1s[n−1] 6=smax[n−1]

∣∣
(115)

At this point, the interface's �eld probe and response dynamics are towards
the optimal response pattern expressed in terms of the interface eigenvalue
g (smax[n− 1]).

The only �nal step now is for the robot to interact again with the target.
In this, case we have the actuator operator:

Ûact =
N∑

n=1

∑
s∈AdN2

Ûact
s;n ⊗ |an〉 〈an| ⊗ |s〉 〈s| ⊗ 1̂

⊗(dN+1)
2 (116)

with the action unitary operator de�ned as:

Ûact
s;n =

{
1̂T , g(s) = an ∨ s /∈ DN

2

L̂s;n, otherwise
(117)
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L̂s;n =

= |on〉 〈f ◦ g(s)|+ |f ◦ g(s)〉 〈on|+

+
∑

o∈O\{on,f◦g(s)}

|o〉 〈o|
(118)

where f is a one-to-one map from the interface's quantum numbers set A to
the observable's quantum numbers set O, such that:

f(an) = on (119)

Under this actuator we get, for the probe and response carriers, the �nal
dynamics:

ÛactÛIntÛL3,4t0ÛL2,4t0ÛL1,4t0ÛSensory |Ψ〉 =

=
N∑

n=1

ψn |f ◦ g (smax[n− 1])〉⊗

⊗
∣∣g (smax[n− 1]) ; s[n− 1]; smax[n− 1]; 1s[n−1]6=smax[n−1]

〉 (120)

〈Ψ| Û †SensoryÛ
†
L1,4t0

Û †L2,4t0
Û †L3,4t0

Û †IntÛ
†
act =

=
N∑

n=1

ψ∗n 〈f ◦ g (smax[n− 1])|

⊗
〈
g (smax[n− 1]) ; s[n− 1]; smax[n− 1]; 1s[n−1] 6=smax[n−1]

∣∣
(121)

At the level of the target, the echoes are formed so that the initial echo
dynamics transitions to:

|ψn|2 |on〉 〈on| → |ψn|2 |omax
n 〉 〈omax

n | (122)

where omax
n is the eigenvalue for the target that is the best response in terms

of conditional utility for the agent, that is, following the full optimization of
the performance measure, and given the de�nition of f and g we get:

omax
n = f ◦ g

(
arg max

s
v2
[
s|g−1 ◦ f -1 (on)

])
(123)

the sequence g−1 ◦ f -1 (on) is the path taken by the robot's cognitive dy-
namics from initial interaction with the target f -1 (on) to the neural pro-
cessing of the sensory data by the neural �eld, g−1 ◦ f -1 (on), so that, if the

44

Electronic copy available at: https://ssrn.com/abstract=3244327



 Electronic copy available at: https://ssrn.com/abstract=3244327 

target's �eld probes the alternative on, the interface's �eld probes the al-
ternative f -1 (on) and the �rst layer of neurons probes the alternative g−1 ◦
f -1 (on), then, the second layer of neurons probes the maximum conditional
utility alternative corresponding to the optimum of the performance mea-
sure. From there on, the dynamics is such that the interface �eld no longer
probes the alternative f -1 (on) but, due to a feedback from the neural �eld,
now probes the matching pattern, with respect to the interface eigenval-
ues, for the maximum conditional utility �ring pattern, this is the sequence

g

(
arg max

s
v2
[
s|g−1 ◦ f -1 (on)

])
, and, �nally, through the actuator, the target

no longer probes on but, rather, the pattern that matches the maximum con-

ditional utility �ring pattern under the sequence f◦g
(
arg max

s
v2
[
s|g−1 ◦ f -1 (on)

])
.

A similar dynamics can be described for the response dynamics.
Given the changes in the echoes, the robot, through its interaction with

the target, assures that the initial line of force associated with each alterna-
tive |on〉 〈on| changes its aim from that line of force |on〉 〈on| to the conditional
utility maximizing alternative |omax

n 〉 〈omax
n |, as long as the two are di�erent

(if the two are not di�erent, then the third neuron does not �re and the robot
does nothing).

In the �nal dynamics, the target's �eld probing and response dynamics
and the robot's interface �eld and neural �eld probing and response dynamics
are entangled, in a speci�c way: there is a direct matching between the target,
the interface and neural �eld at the level of the second layer's �ring pattern,
since that, if the target's �eld probes the n-th target eigenvalue or there is a
response associated with that eigenvalue, then, the interface's probe/response
are, respectively, also towards the n-th interface eigenvalue and the second
layer's probe/response are, respectively, towards the matching �ring pattern
s[n− 1].

The �rst layer's probe and response dynamics, in turn, correspond to the
neural mapping of the initial dynamics of the target by way of the quantum
neural processing of the interface, thus, it works as a memory layer. The
relation of the �rst and second layer is that it represents the mapping de�ned
by the robot's performance optimization, where the �rst layer's dynamics
always addresses the starting point, while the second layer always addresses
the maximum utility response leading to the optimum of the performance
measure.

The maximization is incorporated in the conditional Hamiltonians for
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the neural connections between the two layers, so that, as shown above, the
network converges to the optimum during the neural processing period as
it converges to the learning period. Finally, the third layer's single neuron
probes a non�ring dynamics if the �rst two layer's probed �ring patterns
match and probes a �ring dynamics otherwise. A similar dynamics applies
to the response carriers.

A relevant point is that if the optimum is always the same for each alter-
native, then, the target is placed in a projective dynamics for that optimum.
Also, even if the number N is very large, still the neural network is always
able to ��nd� the optimum performance due to the conditional Hamiltonians
linking the �rst and second layers. The optimization is incorporated in the
Hamiltonian associated with the neural connections, in accordance with the
quantum neural machine learning framework de�ned in the previous subsec-
tion.

4 Conclusion

Quantum mechanics has a di�erent computational substratum from that of
classical mechanics. Computationally, classical mechanics can be approached
in terms of a computation where states are the object of the computation
and the transition between states is expressed by a mechanical rule within
the mathematical framework of calculus, quantum mechanics is di�erent.

While, for calculations, and predictions in physical experiments it does
not bring severe problems that one is using the wrong computational frame-
work, when one starts to deal with next generation quantum technologies,
in particular, those that merge ICTs with CogTech, such as quantum AI,
machine learning, robotics and other applications of quantum nanoscience,
then, the wrong computational framework does make a di�erence.

Cramer's TI was the �rst interpretation of quantum mechanics to consis-
tently expose the main dynamics, namely, if one considers Cramer's work,
one has to look at quantum mechanics in terms of a dynamics that is closer
to a communication dynamics that links present and future. Instead of a
single mathematical object (the wave function), Cramer's proposal raises the
point that we need to consider the two wave dynamics: the o�er waves that
propagate forward towards the future and the con�rmation waves that come
from the future.

The quantities produced by the encounter of these two wave dynamics,
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one present to future bound wave going from the emitter to the absorber
(the o�er waves) and the other future to present bound wave coming from
the absorber to the emitter (the con�rmation wave), are, in Cramer (2016),
the strengths of the echoes arriving back at the site of emission, so that a
transaction for a �nal exchange of energy and momentum depends proba-
bilistically on the strengths of these echoes.

This is a basic communication circuit that is not present in classical me-
chanics. However, despite other interpretations of quantum mechanics, that
work with states, this circuit has always been represented, in the formalism,
in one particular object that is used to extract probabilities: the density
operator.

The density operator expresses a speci�c quantum computational dynam-
ics, and points to a framework that is consistent with Cramer's proposal.
Namely, by recovering the primitive concept of vector as carrier, the density
operator, rather than expressing a state, is actually expressing a dynamics,
where the o�-diagonal terms are failed echoes and the main diagonal terms
are the echoes resulting from the matching of a probe and response dynamics.

The QFI works with the basis from TI, linking it to the density operator,
namely, the density is addressed, within the QFI, as a dynamics similar to
that of echolocation, namely, we have a probe carrier and a response carrier

for each alternative, for which an echo is formed, with the �nal alternative
taking place with a probability that is equal to the echo intensity. If we were
to remain with this approach, then, we would have a variant of Cramer's
TI, working from the density operator, rather than the wave function as
primitive, and we would have an account for the physical meaning of the
o�-diagonal terms as failed echoes as well as for Born's rule and why it works
with the diagonal terms of the density.

However, from a physical and computational perspective a problem re-
mains, which is: the reason for the quantum �eld to follow each alternative
in accordance with the echo intensity. It is at this point that the concept of
quantum force is introduced, working from Bohm's proposal. In this case,
we are moving from what is basically a TI-variant to a theory of the source
of the quantum dynamics.

While the TI-variant essentially implies, computationally, that we have
a �eld-based cognition that works with a probing and response dynamics to
probabilistically select a �nal solution to a quantum problem, the quantum
force concept o�ers a systemic basis for this cognition, in terms of the �eld
activity at the quantum level, supported by a subquantum level dynamics.
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Both quantum and subquantum levels are working in the �eld's dynamics
towards an order to be risen, in this way, lines of force are risen that are
consistent with the �eld's quantum cognition with respect to the problem,
such that the intensity of each line coincides with the echo intensity, the �eld,
then, tends to follow the lines of force with a probability that coincides with
the force intensity. In terms of system's dynamics, we have something like a
bifurcation where the system will follow, stochastically, one of the branches
with a probability that coincides with the force intensity associated with each
branch.

This is the key basis for the QFI. Thus, the QFI works with elements
from Cramer's TI and Bohm's interpretation, combining them with com-
puter science and cognitive science, providing for a substratum that is more
consistent with the new generation of quantum technologies.

In the case of quantum CPC systems, this is particularly useful since we
have a basis for addressing, computationally, the dynamics of open systems in
interation with the environment and that are capable of adaptively acting on
that environment. The example of the quantum robot, that was addressed,
provides for a key point, namely: quantum entanglement, in the case of the
robot, is a dynamics between �elds by which a �eld's probing and response
dynamics becomes correlated with the other �eld's probing and response
dynamics, in this way, the interaction is a form of conditional transformation
of the dynamics of the involved systems by which the echoes and lines of
force become correlated, which means that from that point on the �elds are
nonlocally connected.

These nonlocal connections can be taken advantage of computationally,
so that a quantum CPC system, equipped with an appropriate cognitive
architecture, is capable of adapting to a target using the interactions and the
entanglement to a�ect the target's �eld so that the target's �eld dynamics,
namely, the target's lines of force point towards the alternatives that are
consistent with the quantum CPC system's goals (given goals since we are
dealing with technological constructions).

Quantum robots, as arti�cially intelligent measurement systems that are
capable not only of measuring target quantum systems but, also, of acting
on those targets based on the measured results, can thus be used to manage
quantum physical systems, leading to an adaptive dynamics and faster opti-
mization of target quantum systems. In particular, for nanosystems' energy
manipulations this may provide a road for future quantum-based applica-
tions.
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This was already illustrated in the example, where the quantum robot
was capable of processing the target using an interface and a QuANN that
solves an optimization problem, �nding the utility maximizing solution for
each initial quantum dynamics of the target's �eld, and interacting with
the target so that the target's lines of force are only directed towards the
conditional utility maximizing solutions.

The optimization is like �nding a needle in a haystack when the target's
observable has a high number of alternatives. Indeed, as the dimensional-
ity of the target's Hilbert space grows with N , we have an increase in the
number of alternatives for each case, however, due to the conditional Hamil-
tonians associated with the neural conections, the QuANN is always capable
of converging to the right solution during the learning period.
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