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Abstract: Salt-affected soils have detrimental effects on agriculture and ecosystems. However,
these soils can still be used for halophyte (salt-tolerant plants) cultivation using brackish and/or
saline water. In this study, we employed soil technologies and mutualistic microorganisms as a
sustainable strategy to improve the growth and reproduction of the halophyte Limonium algarvense
Erben’s growth and reproduction under saline conditions. A microcosm assay was conducted under
controlled greenhouse conditions to cultivate L. algarvense using a saline Fluvisol (FLU) amended—or
not—with a Technosol (TEC). Plants were inoculated with the arbuscular mycorrhizal fungus (AMF)
Rhizoglomus irregulare and/or a consortium of plant growth-promoting bacteria (PGPB), and they
were irrigated with estuarine water. Soil enzyme analysis and physicochemical characterisation of
the soils, collected at the beginning and at the end of the assay, were carried out. The physiological
status of non-inoculated and inoculated plants was monitored during the assay for 4 months, and
AMF root colonisation was evaluated. In FLU, only plants inoculated with the AMF survived. These
plants had lower number of leaves, and shoot and root dry biomass than the ones grown in the TEC
by the end of the assay. In the TEC, PGPB inoculation led to higher NDVI and PRI values, and AMF
inoculation promoted higher reproductive development but not pollen fertility. The findings show
that the combined use of soil and microbial technologies can be successfully applied to cultivate
L. algarvense, suggesting their generalized use for other Limonium species with economic interest,
while contributing to the sustainable use of marginal lands.

Keywords: arbuscularmycorrhizal fungus (AMF); estuarinewater; Fluvisols; plant growth promoting
bacteria (PGPB); reproduction; Technosols

1. Introduction

Soil salinization, which results from the presence of soluble salts in the soil and/or
irrigation water, is currently one of the main causes of soil degradation [1]. The main
contributors to this situation include the mineralogical and chemical properties of parent
materials, topography, specific climate types (particularly arid and semi-arid climates),
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groundwater composition, sea/tidal water levels, windblown salt particles, and the influx
of salt-laden floodwaters and runoff from affected regions [1,2]. During certain periods of
the year, saline soils contain elevated concentrations of soluble salts, such as chlorides, as
well as sulphates of Ca, Mg, Na, and K. This salinity gives rise to what is known as a salic
horizon, as seen in Solonchaks [3]. Additionally, other soil types found in low-lying regions,
influenced by marine tides, can also display considerable salinity [4]. This is the case for
saline Fluvisols found in alluvial areas, which are formed through the accumulation of
marine and/or fluvial sediments, as seen in saltmarshes [4–6]. These areas, located at the
interface between land and estuarine waters, experience the influence of bi-daily tides in
European estuaries [7].

Saltmarshes are predominantly inhabited by halophyte species, which are plants capa-
ble of tolerating high salinity levels [8]. These unique plants make up approximately 1% of
the world’s flora, and they are relatively uncommon among angiosperms [8]. To adapt to
the saline stress in their environment, these species have developed various mechanisms
at the biochemical, physiological, anatomical, and morphological levels [8–12]. Another
survival strategy involves forming associations with different halotolerant soil microor-
ganisms, such as plant growth-promoting bacteria (PGPB) and arbuscular mycorrhizal
fungi (AMF). These microorganisms play a vital role in activating several mechanisms and
pathways within their host plants, aiding them in coping with salinity stress and enabling
their survival in saline environments [13,14]. Both PGPB and AMF play a crucial role in
promoting plant growth and development through various mechanisms. They improve
nutrient uptake, produce phytohormones, such as auxins, gibberellins, and abscisic acid,
and enhance the plant’s tolerance to saline stress. Among the ways they achieve this is by
activating membrane transporters, such as Na+/H+ antiporters, which help the plant cope
with high salt levels and contribute to improving plant–water relations [15–19]. Moreover,
AMF and PGPB can also lead to an increase in photosynthetic pigments and glutathione
levels in their hosts [20], which, in turn, results in a decrease in ROS levels and lipid
peroxidation [21,22].

The major uses of halophytes are related to their applications as fodder, forage,
grazing, ornamental, and landscape plants, as well as for bioremediation purposes and
their potential for food and medicine [23]. Halophilic species of the Limonium genus
(Plumbaginaceae) [3], such as Limonium sinuatum, a native Mediterranean species found
in saline regions, are widely used as dried flowers [24] and extensively cultivated [25].
Limonium algarvense Erben, native to the Iberian–Moroccan (west Mediterranean) coast [26],
is a recretohalophyte with salt glands meant for excreting excess Na+ out of the plants to
avoid salt stress [10]. This species is very attractive for the nutraceutical industry due to
high phenolic compound (phenolic acids, flavonoids, and tannins) content, as well as to a
nutritional profile rich in polyunsaturated acids, and it can be cultivated using saline soil
and saline water [27,28]. However, this and other Mediterranean endemic halophytes with
a protection status are threatened due to estuary degradation (e.g., anthropic pressures) and
invasive species competition (e.g., Carpobrotus edulis (L.) N.E.Br.) [5,29]. Therefore, the sus-
tainable cultivation of these halophytes is crucial to decrease these species’ overexploitation
in their natural habitats [30].

Saline soils are unsuitable for non-halophytes, which include most crops. However,
they provide a unique opportunity for cultivating salt-tolerant plants [31]. Most of these
species can thrive under conditions with NaCl concentrations around 200 mmol/dm3 or
approximately 20 dS/m electrical conductivity (EC) [8], and their growth can be stimulated
within a salinity range of 15–25 dS/m [32]. The abundance of Na in the available soil
fraction complex leads to the dispersion of clay and organic matter, as well as the rupture
of aggregates. Consequently, these soils exhibit a poor structure, primarily characterized
by microporosity and low hydraulic conductivity (infiltration and percolation), resulting in
limited aeration [33].
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Although the use of marginal saline soils can be promising for halophyte cultivation,
the improvement of some soil characteristics and the development of agronomic techniques
adapted to this soil–plant system are required. In this context, the construction of Tech-
nosols, an ecotechnology based on a pedo-engineering approach, can be used as a salinity
mitigation strategy. These tailor-made soils are developed from inorganic and organic
waste materials, and they serve the purpose of environmental rehabilitation [34]. They
have been used for the recovery of degraded/sediments, dredged fluvial/marine sediment
management [27,35], mining soils and tailings [34,36–39], industrial soils [40,41], and saline
soil management [27,30]. They present a strong anthropic influence with more than 20%
(V:V) of the artefacts in the upper 100 cm [4]. Previous studies on L. algarvense employed
tailor-made soils using aquaculture sediments that accumulate at the bottom of ponds,
and these sediments were further disposed on the land adjacent to these ponds (slopes,
marachas), in saltmarshes [27].The aim of the current study was to evaluate the use of a
saline Fluvisol, amended with a mixture of organic and inorganic wastes (referred to as
a Technosol), as well as the inoculation of beneficial microorganisms (PGPB and AMF)
for promoting the growth and reproduction of the valued marine halophyte L. algarvense
when irrigated with estuarine water. The underlying hypothesis was that the combination
of PGPB, AMF, and a Technosol could synergistically improve plant growth, as well as
vegetative and reproductive development.

2. Materials and Methods
2.1. Microcosm Assay

A microcosm experiment was conducted using a Fluvisol (FLU) obtained from the
Sobralinho salt-marsh area (38◦54′16.1′′ N, 9◦01′09.0′′ W; Vila Franca de Xira, west coast
of Portugal; ICNF, 2017). The salt tide in this area reaches approximately 50 km upstream
from the river mouth [42]. To create a Technosol, a mixture of organic and inorganic wastes
was manually combined and then added, as an amendment, to the FLU. This amended
soil is referred to as TEC, and it consists of 85% FLU and 15% Technosol, as described
in Cortinhas et al. [30]. The organic/inorganic waste mixture used for the Technosol
was composed of sludge and waste kieselguhr from breweries, as well as medium sand
(0.25 mm < Ø < 0.5 mm), gravel limestone (2 mm < Ø < 5 mm), and residual biomass
obtained from pruning. The proportions used were 1.5:0.5:3:2:3 (by mass), respectively, as
detailed in Cortinhas et al. [30]. Both the FLU and TEC were placed in pots and incubated
in the dark, at 70% of their maximum water-holding capacity, for a period of 28 days. After
incubation and before transplanting the seedlings, four composite soil samples (0–15 cm
depth) were collected from each pot and subjected to analysis.

For the microcosm assay, L. algarvense seeds collected from plants grown in salt-
marshes in Castro Marim (Guadiana estuary, Algarve, Portugal) were germinated in
transparent boxes containing wet filter paper in a growth chamber (Rumed), as described
previously [43]. After 2 weeks, seedlings were transferred to individual pots with sterilized
sand (120 ◦C for 1 h, in 2 alternate days) as substrate. At that time, soils of half of the pots
were inoculated with an AMF (see Section 2.3). The plantlets grew under controlled temper-
ature, humidity, and photoperiod conditions (20–25 ◦C, 60% relative humidity and 16/8 h
day/night photoperiod), and they were irrigated with deionised water. Every 2 weeks,
10 mL of Hoaglands solution [44] was applied to each plant.

After 3 months, plants with ~10 cm were transplanted to 4 experimental conditions
(non-inoculation, inoculated with PGPB, inoculated with AMF, and double-inoculated with
AMF and PGPB) in FLU or TEC soils, with 5 replicates each (40 plants in total), and left
under greenhouse conditions with natural light from June to October (2021). From that
moment on, inoculation with PGPB was conducted twice a month, in the corresponding
treatments, until the end of the experiment (see Section 2.3). Plants were irrigated with
estuarine water (VF) collected from a channel located in the Tagus estuary, keeping the soils
at 70% of the maximum water-holding capacity. The experiment remained under those
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conditions for 4 months. At the end of the experiment, soil samples were collected from
each pot for physicochemical and soil enzymatic activity analyses.

2.2. Soils and Estuarine Water Analyses
Soil samples of both FLU and TEC were characterized for physicochemical parameters

and enzymatic properties at the beginning and the end of the experiment. The FLU and the
TEC (fraction < 2 mm) were physicochemically characterised for the same parameters and
methods described in Cortinhas et al. [30]: pH and EC in a water suspension (1:2.5 m/V),
extractable K (Kextract; Egner–Riehm method) and P (Pextract; Olsen method), total N (Ntotal;
Kjeldahl method), organic C by wet combustion (Sauerland method, [45]), as well as
macro- and micro-nutrients [46]. In FLU and TEC enzymatic activities (dehydrogenase,
β-glucosidase, celullase, acid phosphatase and urease) were also analysed as biological soil
parameters [47–50].

The estuarine water was analysed for pH, EC, and concentrations of chloride (Mohr
method), as well as hydrogencarbonate (titration method using HCl solution methyl orange
as indicator), P (molybdenum blue method [51]), Na, Ca, Mg, K, Fe, Zn, Mn, and Cu (atomic
absorption spectrometry).

The concentration of mycorrhizal-infective propagules in FLU and TEC was analysed
by the Most Probable Number Technique-MPN [52,53], with soil dilutions from 10−1 to
10−5 and the use of leeks as trap plants. After 5 months of growth in the greenhouse, leek
roots from each soil dilution were stained with 0.05% Trypan blue in lactic acid, following
the protocols of [54,55]. Root systems were observed under an optical microscope, and
the presence/absence of mycorrhizal structures in each root system was annotated. The
program of [56] was used to calculate the concentration of mycorrhizal infective propagules
per gram of soil.

2.3. Microbial Inocula
Arbuscular mycorrhizal fungal (AMF) inoculum was provided by the Agrifood Insti-

tute of Research and Technology (IRTA, Cabrils, Barcelona, Spain), and it was composed
by 100 mycorrhizal propagules of Rhizoglomus irregulare BEG72 per gram. Inoculation was
done by placing a layer of inoculum (7.5 g in total) in the middle of two sand layers in
each pot.

Bacterial inoculum was composed of Vibrio kanaloae RA1, Pseudoalteromonas sp. RA8,
Pseudoalteromonas rhizosphaerae RA15, and Staphylococcus warneri RA18 [57,58]. This in-
oculum was prepared, as described, by [59]. Briefly, each bacterial strain was incubated
separately in Tryptic Soy Broth-TBS (Liofilchem, Roseto degli Abruzzi, Italy) overnight
at 28 ◦C by shaking (115 rpm). Then, cultures with 108 cells/mL were washed with 0.9%
sterile NaCl solution, centrifuged, and pellets were resuspended in 5 mL of the same sterile
saline solution. The process was repeated, and the 4 bacteria were mixed in a 50 mL Falcon
tube. Limonium algarvense plants were watered with the consortium diluted in the irrigation
water, and the process was repeated fortnightly until the end of the experiment.

2.4. Plant Performance and Root Colonization Evaluation
Along the microcosm assay, the photochemical reflectance index (PRI) and the nor-

malized difference vegetation index (NDVI) were measured with a PlantPen model PRI
200 and NDVI 300, respectively, as indicators of the plant performance [30]. Measurements
were performed once a month in three random leaves per plant.

At the end of the experiment, the number of leaves per plant was counted, and shoots,
roots, and inflorescences were separated to determine the fresh biomass using a digital
balance. Then, root systems were stained following the protocols of [54,55]. There were
10 stained root segments (1 cm long) per experimental treatment placed in slides, and the
presence/absence of mycorrhizal structures was annotated in each one. Since those roots
also appeared to be colonized by dark septate endophytes (DSE), their presence/absence
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was also annotated, and the percentage of root colonization byAMF andDSEwas calculated
for each root system.

2.5. Pollen Fertility
Pollen fertility was estimated by analysing pollen tube germination, as in [43]. Three

flowers per plant (five fresh anthers per flower) and three plants per experimental treatment
were used to analyse tube germination in vitro.

Pollen grains were collected from plants immediately after anther dehiscence and
placed in a culture medium containing 20 mmol/dm3 boric acid, 6 mmol/dm3 calcium
nitrate, 0.1% casein hydrolysate, and 7% sucrose [60]. To create suitable physical conditions
for pollen germination, a dialysis tubing and filter paper support, combined with 23%
polyethylene glycol-20,000 as an osmoticum, were used in the medium. The incubation of
pollen grains took place at 37 ◦C in the dark, lasting either 48 h or 72 h.

Pollen grains were considered germinated when pollen tube length equalled or ex-
ceeded the diameter of the pollen grain. To analyse the germinated pollen tubes, ten
random samples were selected from each treatment. The measurements were taken on
micrographs using a 63× objective on a Zeiss Axioskop 2 fluorescence microscope, and the
images were captured with an AxioCamMRc5 digital camera (Zeiss, Jena, Germany).

2.6. Statistical Analyses
At the beginning of the experiment, soil physicochemical characteristics and soil

enzymatic activities between FLU and TEC were compared by a t-test or by a Mann–
Whitney U test when data did not follow a normal distribution.At the end of the experiment,
the data collected from different soils under various microbial inoculation treatments were
analysed separately for the TEC and FLU conditions. The soil type factor could not be
included in a factorial ANOVA due to the non-survival of plants from two experimental
groups in the FLU (non-inoculated and PGPB-inoculated plants).

In TEC, a two-way ANOVA was conducted to determine the effects of AMF and
PGPG inoculation, as well as of their interaction, on soil physicochemical characteristics,
soil enzymatic activities, the number of leaves, shoot and root fresh biomass, dark septate
endophyte (DSE) colonization percentage, and the monthly collected NDVI and PRI data.
Data from FLU were analysed using a t-test, comparing AMF and AMF + PGPB treatments.
Additionally, subsequent t-tests were performed to compare plant parameters in FLU and
TEC for both the AMF and AMF + PGPB treatments. Mycorrhizal colonization data in
AMF-inoculated plants were compared by a one-way ANOVA test, followed by Duncan’s
post hoc test.

All analyses were performed using SPSS Statistics vs. 23 (IBM) program.

3. Results
3.1. Characterisation of Irrigation Water and Soils

The estuarine water had neutral pH, presenting high concentrations of chloride,
hydrogencarbonate, Na, K, Ca, and Mg (Table 1).

At the beginning of the experiment, the initial analyses of the soils showed that FLU
presented slight alkaline pH and very high salinity (Table 2). Although total N concen-
trations can be considered as medium, organic C and extractable P and N (N-NH4 and
N-NO3) concentrations, important to plant and microorganism growth, were low (Table 1).
Nonetheless, extractable K concentration was high. In the TEC, the pH values were also
slightly alkaline, but the application of the waste mixture to the FLU contributed to an
increase in organic C and some elements’ concentrations in the available fraction (e.g.,
N-NO3, P, Ca, Na, Cu, and Zn; Table 1). The case of extractable P concentration, which was
more than 30-fold higher in TEC compared to FLU (Table 2), is noteworthy. Acid phos-
phatase, β-glucosidase, urease, and dehydrogenase activities were also significantly higher
in the TEC than in the FLU (Table 2). The largest difference was found in dehydrogenase
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activity, which was 9.8 times higher in the TEC. However, the number of propagules in the
TEC (0.7 propagules per gram) tended to be lower than in the FLU (2.2 per gram).

Table 1. Chemical characteristics of the estuarine water used in the experiment. Data correspond
to the average value of three technical repetitions ± standard error. EC: Electric Conductivity.
DL—Detection limit.

Parameters

pH 6.6 ± 0.09
Electrical conductivity (dS/m) 39.8 ± 0.12

Chloride (mg/L) 15,455.9 ± 210.67
Hidrogenocarbonate (mg/L) 3.50 ± 0.122

P (mg/L) 0.44 ± 0.003
Mg (mg/L) 996.59 ± 3.689
Na (mg/L) 18,995.47 ± 625.884
K (mg/L) 265.76 ± 0.807
Ca (mg/L) 318.95 ± 5.149
Fe (mg/L) 0.13 ± 0.012
Zn (mg/L) <DL
Mn (mg/L) <DL
Cu (mg/L) <DL

Table 2. Soil physicochemical characteristics, soil enzymatic activities, and the concentration of
mycorrhizal propagules at the beginning of the experiment. Data correspond to the average value of
four technical repetitions ± standard error. Different letters indicate significant differences according
to t-test or to Mann–Whitney U test.

Parameters Fluvisol (FLU) Amended Fluvisol (TEC)

pH 7.9 ± 0.07 a 7.6 ± 0.02 b
CE (dS/m) 5.6 ± 0.30 a 6.0 ± 0.26 a

Pextract (mg/kg) 11.1 ± 0.28 b 369.4 ± 7.67 a
Kextract (g/kg) 0.09 ± 0.00 a 1.1 ± 0.06 a
Total N (g/kg) 1.7 ± 0.04 b 2.8 ± 0.11 a

Organic C (g/kg) 20.0 ± 0.95 b 29.5 ± 1.18 a
N-NH4 (mg/kg) 14.9 ± 2.72 a 8.2 ± 1.67 a
N-NO3 (mg/kg) 34.7 ± 1.74 b 96.5 ± 9.70 a

Ca (g/kg) 1.2 ± 0.03 b 32.6 ± 12.26 a
Mg (g/kg) 1.1 ± 0.01 b 1.8 ± 0.02 a
Na (g/kg) 5.3 ± 0.19 b 15.0 ± 2.11 a
Fe (mg/kg) 633.5 ± 10.39 a 611.6 ± 50.96 a
Mn (mg/kg) 248.5 ± 1.28 a 226.8 ± 26.92 a
Zn (mg/kg) 8.6 ± 0.13 b 15.9 ± 1.07 a
Cu (mg/kg) 7.0 ± 0.07 b 10.2 ± 0.46 a

β-glucosidase 1 0.17 ± 0.014 b 0.678 ± 0.086 a
Acid phosphatase 2 0.27 ± 0.039 b 1.14 ± 0.090 a

Urease 3 1.51 ± 0.030 b 3.75 ± 0.482 a
Cellulase 4 0.47 ± 0.160 a 0.71 ±0.110 a

Dehydrogenase 5 26.03 ± 5.554 b 255.75 ± 34.696 a
Number of mycorrhizal propagules per gram 2.2 0.7

1 in µmole glucose g−1 dry soil matter 16 h−1; 2 in µmole p-nitrophenol g−1 dry soil matter h−1; 3 in µmole
N-NH4

+ g−1 dry matter 2 h−1; 4 in µmole p-Nitrophenol g−1 dry soil matter h−1; 5 in µg TPF g dry matter
16 h−1.

After 4 months of plant growth in FLU and TEC, soil properties were analysed again.
We found a significant increase in EC, as well as in soil Na and Mg concentrations, in both
FLU and TEC compared to the initial values. The EC was 3 times higher in both soils, and
Na concentration was 6.5 times higher in FLU and 2.5 times higher in TEC, compared to
the initial concentration. In contrast, FLU and TEC had lower concentrations of N-NH4,
N-NO3, and Fe than the initial soils (Tables 2 and 3).



Soil Syst. 2023, 7, 74 7 of 20

When L. algarvense plants were transplanted to those soils, non-mycorrhizal plants
did not survive in the FLU. Therefore, the pots containing those plants were discarded,
and the soils were not analysed at the end of the experiment. However, although we could
not study the effect of the soil type factor in a full factorial ANOVA, several trends could
be observed between FLU and TEC. The most remarkable ones were the higher C, P, K,
total N and NH4, and Zn concentrations in the TEC compared to the FLU. The case of
P, where TEC had 337.32 g of P/kg on average and FLU had an average of 10.78 g/Kg,
is noteworthy.

In the TEC, extractable P was significantly affected by AMF inoculation (p = 0.02;
Table 4), and pots with AMF-inoculated plants tended to have lower soil P concentration
than the ones with non-mycorrhizal plants (Table 3). Total N was significantly affected
by both AMF and PGPB inoculations (p = 0.02 and p = 0.02, respectively; Table 4), but the
mean comparison test did not show any significant differences among the experimental
groups (Table 3). Nitrate (NO3) and NH4 concentrations were not affected by any of the
microbial inoculation types, but in both cases, the non-inoculated treatment tended to have
the highest vales. Soil Na and Ca concentrations showed significant interactions between
AMF and PGPB factors (Table 4), with Na concentrations being significantly higher in pots
with non-inoculated plants than in the other ones, and Ca concentrations being significantly
higher in pots with double-inoculated plants than in the rest of the experimental groups
(Table 4). Organic C, Mg, and K did not show an effect of the inoculant type.

Concerning micronutrients, in the TEC, all of them showed significant interactions
between AMF and PGPB (Table 4). Iron, Zn, and Cu concentrations followed the same
pattern: pots with double-inoculated plants had significantly lower concentrations than the
other pots. Contrastingly, soil Mn concentrations were highest in AMF-inoculated plants
and lowest in the AMF + PGPB-inoculated ones (Table 3).

As said before, in FLU, only AMF-inoculated plants (with andwithout PGPB) survived;
therefore, data analysis by a two-way ANOVAwas not possible. The t-test conducted to
compare AMF and AMF + PGPB-inoculated plants indicated that organic C, as well as total
N, Mg, and Zn, were significantly lower in pots with double-inoculated plants than in the
AMF-inoculated ones.

When soil enzymatic activity was analysed after 4 months of plant growth in FLU and
TEC, we observed a significant decrease in soil dehydrogenase activity in both soils, with
a 4 and 6.5 times decrease, respectively (Tables 2 and 3). Soil β-glucosidase and cellulase
activities also decreased by 2.2 and 2.3 times, respectively, in TEC, but they remained at
similar levels in FLU (Tables 2 and 3).

On the other hand, at the end of the experiment, FLU had lower levels of β-glucosidase
(56%), acid phosphatase (71%), urease (55%), and dehydrogenase activities (83%) compared
to the TEC (Table 3).

When soil enzyme activity data were analysed individually for each type of soil in
TEC, although the two-way ANOVA did not show a significant effect for AMF or PGPB-
inoculation factors, the multiple comparison test showed that PGPB-inoculated treatment
(without AMF) had significantly higher β-glucosidase and acid phosphatase activity values
than the AMF-inoculated treatment (without PGPB) (Table 3). No significant differences
were found between AMF and AMF + PGPB treatments in FLU.
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3.2. Evolution of Physiological Parameters of Plants with Microbial Inoculations Grown in
Fluvisols (FLU) and Amended Fluvisols (TEC)

As previously said, 1 week after L. algarvense transplantation into FLU (July), both
non-inoculated and PGPB-inoculated plants did not tolerate the new conditions, and all
the individuals died. In the remaining plants, the vegetative indices, NDVI and PRI, were
monitored every month.

In TEC, both PGPB and AMF inoculations had a significant effect on this parame-
ter. Two months after transplant (August), PGPB inoculation had a significant negative
effect in NDVI, but in September, 3 months after transplant, the effect became positive
(Figure 1A). Mycorrhizal inoculation also had a negative effect in NDVI in August, but this
trend changed 4 months after transplant (October), and AMF-inoculated plants were the
ones with the highest NDVI values (Figure 1A). Contrastingly, in the FLU, no significant
differences were observed between AMF-inoculated and PGPB + AMF-inoculated plants.
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Figure 1. (A) Normalized difference vegetation index (NDVI) and (B) photochemical reflectance
index (PRI) of Limonium algarvense plants during 4 months in 2 different substrates (FLU—Fluvisol
and TEC—Fluvisol amended with Technosol) and with 4 inoculation treatments (non-inoculated,
inoculation with bacterial consortium-PGPB, inoculation with the mycorrhizal fungus-AMF, and
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AMF + PGPB). Bars represent mean values ± standard error. Different letters indicate statistical
differences between means, and “ns” indicates non-significant differences. The asterisk above the
bars indicates significant differences in AMF and AMF + PGPB-treated plants between TEC and
FLU. The dashes within the chart indicate that all plants from the respective experimental group
died. On the top of the bars, the results of the two-way ANOVA, conducted to study the effect of the
mycorrhizal inoculation (AMF) and plant growth promoting bacteria inoculation (PGPB), as well as
of their interaction, are indicated. The asterisk represents a significant effect at p = 0.05.

When comparing this parameter between TEC and FLU, we observed differences in
July for AMF + PGPB-inoculated plants and in September for AMF-inoculated plants. In
both cases, NDVI values were higher in FLU than in TEC.

Regarding PRI, when the inoculation treatments were analysed separately for each
type of soil, in the TEC, a significant negative effect of AMF inoculation was found 1 month
after transplant (July) (Figure 1B), and 1 month later, and a significant positive effect was
observed for PGPB inoculation (Figure 1B). However, the different microbial inoculations
no longer had a significant effect on PRI in September and October. In FLU, 3 months after
transplant (September), plants inoculated with AMF and PGPB had significantly higher
values than plants inoculated with just AMF. A month later, the trend was still the same,
but it was not statistically significant (p = 0.07) (Figure 1B).

3.3. Effects of Microbial Inoculations and Technosols in L. algarvense Vegetative and
Reproductive Growth

In TEC, after 4 months of plant growth, by the end of the experiment, no mycor-
rhizal colonization was observed in plants that were not inoculated with AMF. In FLU
and TEC, root colonization was around 50% in both AMF-inoculated and AMF + PGPB-
inoculated plants (Figure 2). Remarkably, all plants presented root colonization by DSE
(Figures 2 and S1), which was between 62% and 78%. No significant differences were found
in this parameter between the experimental treatments (Figure 2).
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Figure 2. Root colonization rate by arbuscular mycorrhizal fungi (AMF) and dark septated endo-
phytes (DSE). Bars represent mean values ± standard error. Missing bars (the two dashes within
the chart) indicate that all plants from the respective experimental group died. FLU—Fluvisol;
TEC—Fluvisol amended with Technosol.

When plant growth parameters were analysed, in TEC, the two-way ANOVA, con-
ducted to study the effects of AMF and PGPB inoculations, did not show any significant



Soil Syst. 2023, 7, 74 11 of 20

effect for any of the factors. Nevertheless, the number of leaves tended to be lower
in PGPB-inoculated plants (p = 0.06), and shoot biomass tended to be higher in AMF-
inoculated plants (p = 0.09) (Table 5A). In FLU, no differences in the number of leaves
and shoot and root dry biomass between AMF-inoculated and AMF + PGPB-inoculated
plants were found.

Table 5. (A) p-values of the two-way ANOVA test conducted to study the effect of the inocula-
tion with the AMF, the consortium of PGPB, as well as of their interaction in TEC. (B) Average
values ± standard error of the n◦ of leaves, shoot fresh weight, and root fresh biomass. The asterisk
indicates significant differences in AMF and AMF + PGPB-treated plants between TEC and FLU.

(A) Factor/Effect N◦ Leaves Shoot Fresh Biomass Root Fresh Biomass

AMF 0.96 0.09 0.13
PGPB 0.06 0.64 0.39

Interaction 0.34 0.85 0.28

(B) N◦ Leaves Shoot Fresh Biomass Root Fresh Biomass

Treatment TEC FLU TEC FLU TEC FLU

Non-inoculated 34 ± 1.4 - 11.6 ± 0.23 - 2.8 ± 0.99 -
PGPB 29 ± 6.4 - 11.2 ± 0.87 - 4.2 ± 0.69 -
AMF 38 ± 1.6 9 ± 0 * 13.8 ± 0.69 4.4 ± 0.40 * 4.7 ± 0.41 1.5 ± 0.30 *

AMF + PGPB 24 ± 4.2 8 ± 0.3 * 13.1 ± 1.41 3.6 ± 0.65 * 4.5 ± 0.05 1.4 ± 0.78 *

FLU—Fluvisol; TEC—Fluvisol amended with Technosol.

When the number of leaves, as well as shoot and root biomass, in both AMF-inoculated
and AMF + PGPB-inoculated plants were compared between FLU and TEC, significant
differences were observed. In all cases, the values were higher in TEC (Table 5B).

Regarding the reproductive growth in FLU, only one plant belonging to the AMF
inoculation treatment developed an inflorescence. By contrast, in TEC, all plants had
inflorescences (one or two scapes), and AMF inoculation had a positive significant effect on
their fresh biomass (Figure 3).
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Figure 3. Total fresh weight of Limonium algarvense inflorescences, inoculated or not, with an
arbuscular mycorrhizal fungi (AMF) and a consortium of plant growth promoting bacteria (PGPB),
growing in the amended Fluvisol (TEC). Bars represent mean values ± standard error. Different
letters indicate statistical differences between means (p = 0.05). On the top of the bars, the result
of the two-way ANOVA, conducted to study the effect of the AMF and PGPB, as well as of their
interaction, is indicated. The asterisk represents a significant effect at p = 0.05, while “ns” indicates
no significant effect.
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In plants bearing inflorescences, an average of 55 pollen grains per anther, with
different sizes and different colpi numbers (3 to 5) were found. In general, pollen grain
germination rate was low for all plants. The pollen grains that germinated (Figure 4) were
usually the bigger ones with 4 colpi, with sizes ranging from 50–80 µm. Non-inoculated
plants from TEC had the highest germination rate, ranging from 9% to 27% per flower,
with a total of 0.60% considering all replicates, whereas the PGPB inoculated ones were
the ones with the lowest pollen germination rate (1.8% per flower; 0.02% considering all
the replicates).

Figure 4. Pollen grains and pollen tubes. Different pollen sizes and colpi apertures were noticed in all
the treatments. The arrows in (a) indicate colpi in pollen grains. The arrow in (b) shows a pollen tube.
The arrow in (c) indicate a pollen tube from a pollen grain with three colpi.

4. Discussion
4.1. Soil Technologies Improve Soil Properties

In this study on L. algarvense growth and development, using combined soil and
microbial technologies, we found that the Technosol produced from organic and inorganic
wastes improved the physicochemical characteristics and soil enzymatic activities of the
FLU and, consequently, plant development and vegetative and reproductive growth.

The presence of wastes, particularly the organic ones, in the TEC resulted in an
improvement in nutrient concentrations compared to the original FLU. At the beginning of
the experiment, the TEC had higher levels of extractable P, organic C, as well as total N,
N-NO3, Ca, Na, Mg, Cu, and Zn (Table 2). Over time, nutrient concentrations decreased,
likely due to their absorption and utilization by plants and microorganisms to support
growth and metabolic activities. However, even at the end of the experiment, the TEC
treatment still exhibited higher concentrations of organic C, P, total N, N-NH4, and Zn
compared to the FLU treatment (Tables 3 and 4). This demonstrates the usefulness of this
technology for improving the soil physicochemical characteristics of poor-quality soils, as
also found in other works [38,61–63].

Regarding soil enzymes, their activities were also significantly higher in TEC than in
FLU, especially acid phosphatase, β-glucosidase, and urease activities, which are associated
to P, C, and N cycles, respectively [64], as well as soil dehydrogenase, which was the
enzymatic activity showing the highest differences between both soil types. This enzyme
activity serves as an indicator of the microbiological redox system and microbial oxidative
activities in soils [65], and its activity stimulation can even occur in the absence of plants,
as observed by [66]. Our results are, thus, in agreement with other authors [67] who also
reported a significant stimulation of enzymatic activities in a saline soil (EC: 9.1 dS/m)
with the application of different organic wastes. This demonstrates that the addition of
inorganic and organic amendments stimulated the activity of soil microorganisms, leading
to an improvement in soil functions in TEC when compared to the FLU.

However, after L. algarvense plant growth for 4 months, in both FLU and TEC, de-
hydrogenase showed a strong activity decrease in both soil types. Furthermore, notable
reductions were also observed in β-glucosidase and cellulase activities, especially in the
TEC. The significant increase in soil salinity may be responsible for such changes since
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salinity is known to be an important stress factor for microbial communities, and it can
have a profound impact on their activities and overall nutrient cycling functioning [68–73].
Relevantly, at the end of the assay, an increase in EC, as well as extractable Na and Mg
concentrations, were observed in both FLU and TEC, which became extremely saline
(>3.2 dS/m; [74]). This could be attributed to the high salinity of the irrigation water
(Table 1).

Some microorganisms, such as PGPB, are involved in soil nutrient cycles (e.g.,
by fixing atmospheric N, solubilizing inorganic phosphates, degrading organic matter
through exo-enzyme excretion) [75]. At the end of the experiment, in pots with FLU
and AMF + PGPB-inoculated plants, significantly higher organic C, total N, Mg, and Zn
concentrations were found when compared to pots with AMF-inoculated plants (without
PGPB). This could be attributed to the lytic enzymes produced by those bacteria that could
contribute to the degradation of organic matter and the release of some nutrients into
the soil [76,77]. Contrastingly, in TEC, no significant effects of either PGPB or AMF were
found on soil enzyme activities. Since this soil was much richer in organic matter, the
effect of PGPB in soil nutrient concentrations may have not been as evident as in the FLU,
with significantly lower organic C concentrations.

Interestingly, in the TEC, inoculation with AMF + PGPB led to lower EC and Na values
compared to the non-inoculated treatment. The microorganisms used in our study are
halotolerant, as demonstrated by previous studies [78,79]. This kind of microorganism
has evolved a series of mechanisms to tolerate salinity conditions, among which are the
formation of biofilms [76], which may have contributed to reduce the concentration of salts
in the soil. In addition, the mutualistic symbiosis of L. algarvensewith those microorganisms
may have led to changes in the root exudation of some compounds (e.g., polysaccharides,
organic acids) that may also affect the growth, composition, and activity of microorganisms
and improve soil properties [80]. This might, ultimately, lead to a decrease in EC and Na
concentration. Another interesting hypothesis is that PGPB and AMFmight have enhanced
Na uptake, translocation, and further excretion in L. algarvense leaves by salt glands [10],
contributing to a decrease in soil Na concentration.

4.2. Microbial and Soil Technologies Improve Limonium algarvense Development
In our study, considering that the applied wastes were rich in macro and micro-

nutrients [27] and lead to soil fertility enhancement, the observed growth improvement
in plants grown in the TEC was also highly expected. Accordingly, a greater number
of leaves, as well as increased shoot and root dry biomass, were found in AMF and
AMF + PGPB-inoculated plants grown in the TEC compared to those grown in the saline
FLU (Table 5B).

Regarding microbial inoculations, to our knowledge, this is the first report showing
beneficial effects of L. algarvense’s inoculation by AMF and PGPB, although some previous
studies indicated successful mycorrhizal colonization in other species of the same genus,
such as in Limonium echioides L. (Mill.) and Limonium sinuatum (L.) Mill [81,82]. The myc-
orrhizal fungus used in this study (R. irregulare BEG 72) was already tested in saline soils
and halophyte species, with positive results found in improving plant growth under such
conditions [78]. On the other hand, root colonization by different PGPB (species from the
genera Bacillus, Glutamicibacter, Streptomyces, Pseudomonas, Klebsiella, Serratia, Arthrobacter,
Isoptericola, andMicrobacterium) has also been reported in Limonium sinense (Girard) Kuntze
and Limonium vulgareMill [83–89]. Furthermore, the inoculation of L. sinense plants with
halotolerant PGPB has demonstrated to be a suitable strategy to improve plant growth
under saline conditions [84].

In our work, we also show, for the first time, Limonium species root colonization byDSE.
However, several previous works have dealt with the characterization of these endophytic
fungi [90–93]. Dark septate endophytes integrate a polyphyletic fungal group within the
Ascomycota. They colonize plant roots inter and intracellularly, forming septate (cross-
walled), and mostly melanised hyphae and microsclerotia [94,95]. Despite their ubiquitous
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distribution and wide diversity of plant hosts [94], DSE commonly associate with plants
growing in stressful environments affected by drought, soil salinity, potentially toxic
elements, contamination, or poor fertility, supporting the hypothesis of “habitat-adapted
symbiosis”, i.e., plant–DSE mutualism generally occurs under stressful conditions [96,97].
Although the exact ecological role of DSE is still not well-understood [94], their potential
benefits in promoting plant growth, particularly in enhancing the host’s tolerance to
environmental stress factors, have been proposed [96,98].

A month after L. algarvense plant transplantation into FLU, only the ones inoculated
with AMF (with or without PGPB) survived. Arbuscular mycorrhizal fungi are known to
alleviate transplant shock in crop plants (grapevine, riverhemp, avocado) [99–101] due to
their capacity to enhance water absorption and plant–water status [99]. This mechanism
may be crucial in saline Fluvisols, where plants have impaired water relations due to
osmotic stress [102]. Even though L. algarvense is a halophyte, it is important to note that,
prior to transplanting the seedlings into pots, all of them were irrigated with deionized
water for a period of 3 months. Therefore, a sudden root environmental change from
non-saline to saline conditions can cause saline stress that could lead to plant death if
their osmotic adjustment to the new environment is not fast enough. Since AMF improve
membrane integrity and permeability under saline conditions [103,104], in addition to stim-
ulating ABA production, accumulating osmolytes, and promoting the uptake of osmotic
equivalents such as K+ [76], mycorrhizal plants may have experienced faster adaptation to
the non-amended saline soil and, potentially, a less intense transplantation shock compared
to non-mycorrhizal plants.

In the FLU, the positive effect of PGPB inoculation in plants was only found 3 months
after plant transplantation (in September). Plants double-inoculated with PGPB and AMF
had higher PRI than the ones inoculated with the AMF alone. This trend was maintained
until the end of the experiment, although it was no longer significant. Given that this
parameter serves as an indicator of plant performance [30,105], our finding suggests that,
in the FLU, the double inoculation with both AMF and PGPB is a viable strategy to support
the development of L. algarvense.

The two vegetative indices, PRI and NDVI also showed a negative effect of the AMF
inoculation 1 and 2 months after plant transplant to TEC. Although AMF colonization
may have reduced transplantation shock, the AMF may drain a substantial amount of
carbon from the plant, especially when they are being establishing in new roots and/or
soil environments, which may cause an initial growth/performance decrease [106–109].
Nevertheless, at the end of the experiment (October), the trend inverted and both NDVI
and PRI, as well as in shoot biomass, tended to be higher in AMF-inoculated plants.

Moreover, a significant positive effect of mycorrhizal inoculation was found in in-
florescence fresh biomass. Several studies demonstrate that AMF may influence plant
reproduction by advancing flowering time, increasing flower size, the amount of pollen,
pollen germination, and pollen tube growth, as well as the seed number, biomass, and
seed germination percentage [110,111]. Nevertheless, differences exist depending on the
AMF species and soil P concentration [112]. In the current study, neither the AMF nor
the PGPB inoculation led to a significant improvement in L. algarvense pollen fertility, as
evaluated by pollen germination results. In commercial substrates, this species produced
heterogeneous pollen in morphology and size, with moderate-to-no viability, which germi-
nated poorly in vitro [113]. Since L. algarvense showed a high percentage of seeds per scape,
with moderate-to-high germination [113], they are most probably originated by apomixis
(asexual seed production).

Plant inoculation with PGPB in TEC also showed beneficial effects in L. algarvense
development since a significant positive effect was found in NDVI by the end of the exper-
iment (3 months after transplantation) and in PRI (2 months after transplant). However,
PGPB inoculation tended to decrease the number of leaves in plants grown in the TEC.
Since shoot fresh biomass did not differ from the non-inoculated plants, this result suggests
that leaves were slightly larger than in the other experimental treatments. The bacteria
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used in the present study possessed plant growth-promoting activities, such as siderophore
and auxin production, and were diazotrophic [49], which may have contributed to a better
vegetative and reproductive performance of those plants.

In summary, AMF-inoculation promoted higher growth and reproductive develop-
ment in TEC, while PGPB-inoculation led to higher NDVI values, supporting the use of
these microbial-based technologies in salt-affected soil recovery.

5. Conclusions

This study highlights that soil technologies offer a viable option for enhancing soil
characteristics and promoting the long-term development of L. algarvense while also re-
ducing plant mortality following transplantation. Additionally, AMF and PGPB can serve
as additional aids in improving plant survival, as well as in enhancing vegetative and
reproductive growth.

However, despite these promising findings, it is essential to acknowledge that further
validation, through field trials and collaboration with stakeholders, is an essential step
towards assessing the cost-effectiveness of large-scale use and for successfully applying
these combined soil and microbial technologies in real-world salt-affected soil recovery
and vegetation restoration efforts.

Supplementary Materials: The following supporting information can be downloaded at:
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