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I

Abstract

This master’s thesis was built on the previously developed Koopman-Wiener nonlinear
model predictive controller, and the goal of this thesis was to find a suitable strategy
for rejecting steady-state offset, caused by plant model mismatch. This thesis also
aimed to enable the controller to perform in applications where the full state is not
measured and the available measurements are corrupted with noise.

The work in this thesis considered multiple strategies for handling plant model mis-
match, but disturbance rejection was selected as the main approach. It is proposed
in this thesis that the disturbance model for disturbance rejection can be chosen by
calculating empirical observability Gramian at a single initial point for every consid-
ered augmented model option and then picking the model which is interpreted as the
most observable. The proposed observability analysis provides information about weak
observability of the disturbance augmented model only at the single initial point. Nev-
ertheless, it was argued in this thesis that the results can be assumed to represent
the relevant operation region, and thus the method is applicable for choosing a distur-
bance model. As an alternative to compare against disturbance rejection, this thesis
also investigated recursive least squares method that adapts the Koopman-Wiener
model within the controller online. For state estimation, this thesis utilized unscented
Kalman filter.

This thesis demonstrated performance of the chosen methods with two nonlinear sys-
tem case studies commonly studied in the literature: a simulated continuous stirred
tank reactor and a simulated distillation column. This paper provides three main
results. Firstly, the controller with disturbance rejection is successful in eliminating
steady-state offset in a closed-loop system. Secondly, the controller is unable to reach
satisfactory performance while using the recursive least squares method. Thirdly, the
results from case studies support the chosen disturbance modeling approach, since
the disturbance models chosen with the approach lead to improved or equal controller
performance compared to using other disturbance models. Furthermore, the results
support presenting a useful heuristic about how to perform disturbance modeling with
Koopman-Wiener models by having the disturbances affect the slow dynamics of the
model.



II

Tiivistelmä

Tämä diplomityö perustui aiemmin kehitettyyn epälineaariseen Koopman-Wiener mal-
liprediktiiviseen säätimeen. Diplomityön tavoitteena oli löytää sopiva strategia elimi-
noimaan tasapainotilan säätöpoikkeama, joka on seurausta tilanteesta, jossa säätimen
käyttämä malli ei vastaa ohjattavaa prosessia. Työssä tavoiteltiin myös säätimen toi-
minnan mahdollistamista sovelluksissa, joissa prosessin jokaista tilamuuttujaa ei mitata,
ja saatavilla olevissa mittauksissa on kohinaa.

Diplomityössä harkittiin useita eri strategioita vastaamaan säätimen ja prosessin mal-
lien yhteensopimattomuuteen, mutta häiriön torjunta valikoitui pääasialliseksi lähesty-
mistavaksi. Diplomityössä ehdotetaan, että häiriön torjuntaan käytettävä häiriömalli
voidaan valita laskemalla empiirinen havaittavuus Gramin matriisi yhdessä alkupistees-
sä jokaiselle harkitulle häiriömallille ja sitten valitsemalla malli, joka tulkitaan eniten
havaittavaksi. Ehdotettu havaittavuusanalyysi tuottaa tietoa heikosta havaittavuudes-
ta häiriöaugmentoidulle mallille vain valitussa alkupisteessä. Siitä huolimatta, tässä
työssä argumentoitiin, että tulosten voidaan olettaa kuvastavan olennaista prosessin
toiminta-aluetta, ja menetelmä soveltuu täten häiriömallin valitsemiseen. Vaihtoehto-
na häiriön torjunnalle, tässä työssä tutkittiin myös rekursiivista pienimmän neliösum-
man menetelmää adaptoimaan säätimessä käytettävää Koopman-Wiener-mallia ajon
aikana. Tilaestoimointiin tässä työssä käytettiin hajustamatonta Kalman suodinta.

Diplomityö demonstroi valittujen menetelmien suorituskykyä kahdella epälineaarisella
tapaustutkimuksella: simuloitu jatkuvatoiminen sekoitusreaktori ja simuloitu tislausko-
lonni. Tässä työssä esitetään kolme tärkeää tulosta. Ensimmäiseksi, säädin joka käyttää
häiriön torjuntaa, onnistuu poistamaan tasapainotilan säätöpoikkeaman takaisinkytke-
tyssä systeemissä. Toiseksi, säädin ei saavuta tyydyttävää suorituskykyä rekursiivis-
ta pienimmän neliösumman menetelmää käytettäessä. Kolmanneksi, tapaustutkimuk-
set tukevat ehdotettua lähestymistapaa häiriömallinnukseen, koska valitut häiriömal-
lit johtavat parempaan tai yhtä hyvään säätimen suorituskykyyn verrattuna muiden
häiriömallien käyttämiseen. Lisäksi tulokset tukevat hyödyllisen heuristisen säännön
esittämistä Koopman-Wiener-mallien häiriömallintamiselle siten, että häiriömuuttujat
vaikuttavat mallin dynaamisesti hitaisiin tilamuuttujiin.
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The task
The task for this thesis is enabling offset-free nonlinear model predictive control using
data-driven reduced order models, more specifically, using Koopman-Wiener models.
Additionally to the considered plant model mismatch, the case studies in this thesis
consider not having full state measured, and that the available measurements include
measurement noise.
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1

1 Introduction

Being able to model a controlled system is often useful in control engineering applica-
tions because it helps in understanding and analyzing the system behavior. In Model
Predictive Control (MPC), the model has an essential role, since it is used to make
predictions about the system response, in order to choose the optimal control actions.
For MPC applications it is not sufficient to only model steady-state behavior of the
system. Instead, it is required to model the transient behavior of a system. Espe-
cially in chemical industry applications, this often requires nonlinear models, resulting
in Nonlinear Model Predictive Control (NMPC). [36]

Nonlinear models introduce more challenges compared to linear models. Identifying and
maintaining a nonlinear model is more challenging than a linear model [36]. Especially
identifying a white-box model for a nonlinear system might be infeasible due to a lack
of understanding about the process and required high development effort [14]. More-
over, analyzing properties and optimizing nonlinear systems is more difficult and costly
in terms of computational resources compared to well developed and available tools
regarding Linear-Time-Invariant (LTI) systems [36]. Additionally, nonlinear systems
are often high dimensional, which can further increase the computational requirements
regarding NMPC, unless model reduction is considered [41].

This thesis builds on the previous work of Schulze et al. [49], where a nonlinear
model structure called Koopman-Wiener model was developed. The model utilizes
Koopman theory to transform the system into a space where the dynamics are linear.
The model structure is also well suited for model reduction, which enables applications
with high number of state variables. The Koopman-Wiener model utilizes Artificial
Neural Network (ANN) to transform the state into linear space, and the whole model is
identified using deep learning. A later paper by Schulze et al. [50] extends the previous
work by constructing NMPC framework that uses the Koopman-Wiener model in the
controller.

Data-driven models, such as the Koopman-Wiener model, can have reduced per-
formance because of unsuitable model structure, non-representative training data,
used identification methods, and possibly time varying dynamics of the real plant
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[13, 14, 57, 33]. For real-life control applications of a model, there needs to be con-
sideration for mismatch between the plant and the developed model. For that reason,
the main focus of this thesis is to extend the Koopman-Wiener NMPC framework from
[50] to be able to handle plant model mismatch. Additionally, in chemical engineering
applications, all of the system states may not be measured and the available measure-
ments can be corrupted with noise, which is why this thesis considers systems with
incomplete and noisy measurements.

This thesis is structured into five different chapters apart from the introduction. Chap-
ter 2 introduces theoretical foundation for the methods used in the thesis. Chapter 3
explains the chosen methods used for the task in this thesis, and how they form the
proposed closed-loop control framework. Chapter 4 introduces the case studies used
in this thesis to examine the performance of the utilized methods. Chapter 5 presents
and discusses the results from the case studies. Chapter 6 finishes by drawing the main
conclusions of the thesis and providing ideas for future research.
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2 State of the art

This chapter discusses topics that form the foundation for this thesis. Section 2.1
introduces Koopman-Wiener models. This is continued by an explanation of MPC in
Section 2.2. Afterwards Section 2.3 discusses problems that arise when the model
within MPC does not match the controlled system, and the section explains the main
categories of strategies for handling the issue. Section 2.4 narrows the focus and
introduces disturbance modeling as a means to mitigate the effects of plant model
mismatch. Section 2.5 completes the picture of a closed-loop control system by estab-
lishing basic working principles of state estimation. The chapter finishes by defining
the concept of observability and introduces methods which can determine observability
of a system in Section 2.6.

2.1 Koopman-Wiener models

2.1.1 Wiener models

Wiener models are block model structures, that consist of two blocks in series. The
first block of a Wiener model is a linear dynamical block and the second is a nonlinear
steady-state block. In the model, the control input affects the states within the linear
dynamics block directly [51, 64, 49]. The block structure of Multiple-Input-Multiple-
Output (MIMO) Wiener model is shown in Figure 2.1, where u is control input vector,
z is state vector of the linear dynamics, and y denotes system output vector.

Linear dynamics Static nonlinearityu z y

Figure 2.1: MIMO Wiener model block structure.

If the static nonlinear block is placed in series before the linear dynamics block,
and the input variable affects the state indirectly through the nonlinearity, such a
structure is called Hammerstein model. Hammerstein model can be extended to a
Hammerstein-Wiener model by placing static nonlinear blocks before and after the
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linear dynamics. [61]

Wiener models can be seen as a special case of Volterra series [49, 61], making them
capable of modeling wide variety of phenomena [51]. Wiener models are most com-
monly used for data-based modeling [51, 49, 64, 61, 63]. The model structure has
been used for nonlinear modeling purposes extensively on chemical engineering includ-
ing applications on pH processes [42, 27], fluid-flow systems [60], separation processes
[58] as well as for biological systems [23]. There are many options for choosing the
nonlinear block [51]. Some examples include ANNs [49], polynomial functions [63] and
kernel functions [51].

One advantage of a serial block-structure model is that it can be efficiently optimized
in model predictive control [49]. The separation between linear dynamics and non-
linear block can enable tools from linear algebra to simplify mathematical analysis or
optimization despite the model being nonlinear overall [64]. This is especially true for
Koopman-Wiener models and will be discussed more in following sections and chap-
ters.

2.1.2 Koopman theory

Koopman theory was first presented by B. O. Koopman in 1931 [29]. The theory
states that a nonlinear dynamical autonomous system can be represented in infinite-
dimensional space, where the lifted state advances through time according to linear
dynamics. Koopman theory has been more recently researched by Mezic & Banaszuk
[38] and Mezic [37], and the renewed interest has resulted in enabling Koopman theory
to be applied to data-driven modeling [8]. Koopman theory is nowadays utilized in
many fields with nonlinear models, such as system identification, state estimation and
control [26].

Consider a nonlinear system [49]:

dx

dt
= f(x), (2.1)

where x(t) ∈ X ⊆ Rnx is the system state at time t, X is set of possible states, nx is
the number of state variables, and f : X → Rnx describes the nonlinear dynamics. The
state can be transformed into an infinite-dimensional space. Transformation is carried
out by nonlinear observable functions g, which can represent any possible functions
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derived from elements of x. In general g ∈ F : X → C, where F is some (infinite-
dimensional) function space, such as Hilbert space [49]. It may be worth mentioning
that calling functions g ”observable” does not refer to concept of observability in
control theory and g can be called measurement functions [8].

The special property and reason for transforming into the infinite dimensional space is
that the observables g of the system states advance linearly in time. This allows for a
linear representation of the nonlinear system dynamics. The linear dynamics affecting
the observables is described by the Koopman operator. For continuous systems the
Koopman operator is called the Lie operator Lf [8]:

dg

dt
= Lfg, (2.2)

Lfg ≡ ∇xg(x) · f(x). (2.3)

Even though in theory there is a linear representation of the original nonlinear dynamics,
such theory is not practical unless there is a way to present the infinite dimensional
set of observable functions in finite dimensional representation. As a consequence, the
goal in applied Koopman theory is to find key observable functions that represent the
system well and have representable dynamics. As shown next, eigendynamics of the
Koopman operator are applicable in finding a good finite set of observable functions.
[8]

Since the Koopman operator is linear, we can find eigenfunctions φi : X → C and
corresponding eigenvalues λi ∈ C, which satisfy [26, 49]:

dφi

dt
= Lfφi = λiφi. (2.4)

Representing all eigenfunctions in a vector φ we can write [49]:

dφ

dt
= Λφ, (2.5)

where Λ is a block diagonal matrix (Jordan normal form) containing the eigenvalues.
It is worth noting that Λ is time-invariant due to the nature of eigenfunctions. If we
restrict ourselves to only considering observables g within the span of the Koopman
eigenfunctions φ, then the dynamics of those observables can be fully described with
Linear-Time-Invariant (LTI) dynamics. [8]
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The goal for applications is to find a finite set of eigenfunctions of Koopman operator,
or at least a subset of observables that allow for approximation of eigendynamics well
enough locally [49]. With a finite set of observables approximating the eigenfunctions,
the Koopman operator can be represented in subspace Z as a finite dimensional time-
invariant matrix A : Z → Z [49]. The coordinate transform from original system state
x to a basis of approximated eigenfunctions z ∈ Z is denoted by T : X → Z and later
referred to as encoding or encoder [49]. The continuous-time autonomous Koopman
model is given by [49]:

dz

dt
= Az, (2.6)

z(t) = T (x(t)). (2.7)

In this thesis it is decided to restrict the consideration so that z ∈ Rnz and A ∈ Rnz×nz ,
meaning that the eigenfunctions and eigenvalues of the Koopman operator are also real-
valued. A has a block-diagonal structure. It is also assumed that the system has point
spectrum. Same restrictions and assumption are made in [49] and [50].

2.1.3 Introducing control input to Koopman models

The original Koopman theory considers only autonomous systems, meaning that there
are no external input variables that affect the states [29]. In control engineering
applications, we are naturally interested in having control inputs to our systems, and
there are different assumptions one can make about the system, leading to different
Koopman model structures. Schulze et al. [49] investigated three options: linear,
bilinear and Wiener-type Koopman models. The last of which is a novelty development
of the paper.

Surana [54] and Goswami & Paley [17] have shown that universal Koopman form exists
for input-affine continuous time systems described by:

dx

dt
= f(x) +

nu∑
i=1

hi(x)ui, (2.8)

where f(x) is the nonlinear autonomous dynamics and hi(x) are nonlinear functions
of the state that determine the effect of external inputs u(t) ∈ U ⊆ Rnu . [49]
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Assume that a finite set of eigenfunctions φ(x) can be found that represent dynamics
of f(x). Then Eq. (2.8) can be transformed into [54]:

dφ

dt
= Λφ+

nu∑
i=1

∇xφ(x)
Thi(x)ui. (2.9)

Surana [54] assumed that all of the original states can be linearly constructed from
a finite number of eigenfunctions of the Koopman operator: x = Cφφ(x), and the
eigenfunctions φ(x) also include ∇xφ(x)

Thi(x) in their span. Then following time-
invariant bilinear Koopman model exactly represents the system [54]:

dz

dt
= Az +

nu∑
i=1

B(i)zui, (2.10)

x = Cz, (2.11)
z0 = T (x0), (2.12)

where B(i) ∈ Rnz×nz , C ∈ Rnx,nz . From Eq. (2.10) it can be seen that dynamics of
this model are bilinear, since z is multiplied by ui. The linear state reconstruction is
visible in Eq. (2.11).

By making a further assumption that:

∇xφ(x)
Thi(x) ≡ constant, (2.13)

it is possible to simplify Eq. (2.10) into linear form and derive the linear Koopman
model [41]:

dz

dt
= Az +Bu, (2.14)

x = Cz, (2.15)
z0 = T (x0), (2.16)

where B ∈ Rnz ,nu .

In an alternative derivation, Schulze et al. [49] did not assume linear state recon-
struction of Eq. (2.11), but rather have nonlinear state reconstruction based on the
(pseudo)inverse of the encoding, T−1 : Z → X. However, they do assume LTI dynam-
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ics for control inputs from Eq. (2.13). Resulting Koopman-Wiener model is defined as
follows: [49]

dz

dt
= Az +Bu, (2.17)

x = T−1(z), (2.18)
z0 = T (x0). (2.19)

The paper by Schulze et al. [49] demonstrates superior performance of Koopman-
Wiener model over linear and bilinear Koopman models in case studies. The Koopman-
Wiener model is also more suitable for model reduction because considering models
with nz < nx can contradict the assumption of linear state reconstruction in Eq. (2.11)
[49]. For these reasons, the work in this thesis will focus solely on using Koopman-
Wiener models.

2.2 Model predictive control

Model Predictive Control, MPC, is based on the controller solving a finite-horizon
constrained optimal control problem that features a model of the controlled process at
every sampling instance [48]. The model of the process that is available for the MPC
is denoted as control model within this thesis. Next, this section proceeds to formulate
the optimal control problem.

Consider a discrete nonlinear control model [43]:

x(k + 1) = f(x(k),u(k)), (2.20)
y(k) = h(x(k)), (2.21)

where k represents the time instance, x ∈ Rnx is the state, u ∈ Rnu are the control
inputs (manipulated variables), y ∈ Rny are the system outputs (measured variables),
f describes the nonlinear dynamics, and h describes a static output function.

There are many ways to define the optimal control problem but based on [43, 48], it
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can be defined as:

min
x,u

J(k) =

k+Nph−1∑
j=k

ℓ(x(j),u(j)) + Jf (x(k +Nph)) (2.22)

subject to x(k) = x̂(k), (2.23)
x(j + 1) = f(x(j),u(j)), (2.24)
u(j) ∈ U , ∀j, (2.25)
x(j) ∈ X , ∀(j), (2.26)
x(k +Nph) ∈ Xf , (2.27)

where j is an index for time instance. Index k is the current time instance, so that the
current state x(k) is fixed, but the current control action u(k) is still unset, and will be
determined by the solution to the optimization problem. The value of the current state
x(k) is fixed to the current best estimate of the state x̂(k) in Eq. (2.23). In closed-
loop operation the information of x̂(k) originates from a state estimator or a direct
measurement, and the topic of state estimation will be discussed later in Section 2.5.
Eq. (2.24) is used to predict the dynamics of the state for optimization. U and X
are input and state constraints respectively, and Xf is terminal state constraint. Nph

is the prediction horizon of the controller. J is the cost function, with stage cost
ℓ(x(j),u(j)), and terminal cost Jf (x(k +Nph)).

The stage cost ℓ(x(j),u(j)) always includes controlled variables whose values the con-
troller aims to bring towards a given setpoint while keeping any costs associated with
using the control inputs at a minimum. The controlled variables can be a general func-
tion of the state x [48]. However, in this thesis the controlled variables are considered
to be a function of the system outputs [43]:

yCV = r(y), (2.28)

where yCV ∈ RnyCV are the controlled variables, nyCV
is the number of controlled

variables, and r is a static function describing how the controlled variables relate to
the system outputs. The setpoint is provided to the controller by an external source
and it is denoted ySP ∈ RnyCV . The tracking error, also called the offset, is given by
[39]:

e(j) = yCV (j)− ySP (j) (2.29)
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The most common type of stage cost is a weighted quadratic cost based on e(j)

[22].

The terminal components (Jf (x(k + Nph)) and Xf ) are special terms because they
mitigate the effect of MPC only considering a finite prediction horizon instead of
an infinite one [48]. They can have a large impact on the stability of the con-
trolled system [48]. However, terminal components are not always included when
constructing MPC [48]. Regardless of the type of cost function J used, solving the
optimal control problem in Eq. (2.22) will result in a sequence of optimal control
inputs (u(k),u(k + 1), ...,u(Nph − 1)) and corresponding predictions for the state
(x(k + 1),x(k + 2), ...,x(k + Nph)). However, only the first input, u(k), will be
implemented on the process, while the rest of the sequence will be discarded, and the
optimal control problem will be solved again on the next sampling instance without
utilizing the previous solution. The act of only using the first input of the sequence by
MPC is called a receding horizon implementation. [43]

2.3 Plant model mismatch

2.3.1 Causes

There is a famous aphorism written by statistician George Box stating ”All models are
wrong but some are useful.” [7]. When the control model of MPC does not match
the actual plant dynamics, the situation is called plant model mismatch (model plant
mismatch in some sources) [14]. It accounts for the majority of MPC performance
degradation in industrial applications [33]. Plant model mismatch can be divided into
two classes. The mismatch can be parametric, meaning that the model structure is
adequate but the parametric values are incorrect. The mismatch can also be structural
meaning that the model structure itself is inadequately chosen. [13]

There can be many causes for plant model mismatch in data-driven models [36].
Firstly, any reduction of model complexity is bound to cause at least some amount of
mismatch [36]. For MPC applications computational runtimes are crucial, so compro-
mising between model accuracy and computational load to solve the optimal control
problem is unavoidable [36]. For example with Koopman-Wiener models, the data-
driven approach to find the eigenfunctions of Koopman operator can easily introduce
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parametric and structural mismatch. There is a risk of choosing too few linear states
to describe the true eigenfunctions of the Koopman operator, i.e., choosing too drastic
model reduction.

Second cause for plant model mismatch can be inadequate training data. Data-driven
models commonly perform poorly when extrapolating outside the region of their train-
ing data [14]. Hence, it is very important to have training data that represents the
entire relevant operation region of the controlled plant and that the used data is of
good quality. Avoiding overfitting to training data, by using good quality validation
data and including regularization in training, is also important [49].

Thirdly, another challenge causing plant model mismatch is that the plant dynamics
are not necessarily time-invariant. In chemical industry applications the dynamics can
shift for example due to equipment aging, fouling or changes in operating regimes
[57]. Especially for controlled chemical reactions, mismatch can be caused by catalyst
deactivation [33]. Moreover, the process equipment can get changes and upgrades
with yearly maintenance, raw material composition might fluctuate and sometimes
even environmental factors like ambient air temperature can affect the process. This
means, that even a well-performing MPC can over time lose performance if those
factors are not modeled.

2.3.2 Effects

Because of feedback from closed-loop operation, the control performance of MPC does
not necessarily deteriorate significantly from small plant model mismatch [57]. With
larger mismatch, however, MPC can produce substantially suboptimal control inputs
leading to significant offset. Large plant model mismatch can even lead to closed-loop
instability. [33]

The offset can be dynamic or steady-state offset. Dynamic offset is difference between
setpoint and controlled variable during transient state and steady-state offset means
offset during a reached steady state [39]. With steady-state offset, even the steady-
state behaviour of the plant is not matched by the control model [39]. Modeling
steady-state behaviour of a system is usually a simpler task, compared to modeling
transient behavior, which can require a more complex model [36]. An illustrative
example of dynamic and steady-state offset is shown in Figure 2.2. In the figure t
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denotes time and y stands for system output which is also the controlled variable.

y

t

Setpoint

Controlled variable

Steady-state offsetDynamic offset

Figure 2.2: Illustration of offset caused by plant model mismatch in a closed-loop op-
erated control system.

2.3.3 Mitigation strategies

Because of plant model mismatch, MPC needs some way of adapting itself based on
measurements from the plant in order to eliminate the offset. Such a control scheme
can be called adaptive control, which is described by Åström & Wittenmark [4] as:
”An adaptive controller is a controller with adjustable parameters and a mechanism
for adjusting the parameters.” However, the authors admit that there is no universally
accepted definition for which methods count as adaptive control. As a result, there are
many different ways to categorize adaptive control methods and plant model mismatch
handling in general. [4]

Hewing et al. [22] consider adaptive control from the perspective of MPC using term
learning-based MPC. They divide the methods further between three classes: i.) Learn-
ing the system dynamics, ii.) Learning controller design, and iii.) MPC for safe learn-
ing. In addition, this thesis considers two more categories: iv.) Direct input adaptation
[4, 13], and v.) Disturbance rejection [48]. Unlike the other four categories, distur-
bance rejection is not classified as adaptive control, but nevertheless it is an essential
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strategy for plant model mismatch handling [48]. The five categories are discussed in
more detail below.

i.) Learning the system dynamics means updating the control model of MPC online.
Hewing et al. [22] subdivide the class further depending on if the model is stochastic
or robust, and if it is parametric or non-parametric. The authors also introduce the
concept of dual control, also called active learning. In dual control the control actions
are optimized not only to minimize setpoint deviation or other performance criteria,
but to also reduce uncertainty about the plant dynamics by including deliberate per-
turbations (probing) in an optimal manner [4]. However, dual control is much more
complex than its counterpart, passive learning, and dual control is generally too com-
plicated for applications. In passive learning the control model uncertainty is not taken
into account when controller decides control input. [22, 4].

ii.) Learning the controller design consists of adapting the terms of optimal control
problem, such as cost function, constraints or terminal components. The terms could
be adapted by stochastic optimization scheme, reinforcement learning or by inverse
learning (learning parameters for previously mentioned terms from desired inputs).
The aim in learning the controller design is to steer the solution of the optimal control
problem to match the optimum of the real plant despite the control model being
inaccurate. [22]

iii.) MPC for safe learning is a control scheme with two separate controllers operat-
ing in an override control fashion. One controller is responsible for optimization of
performance, and is not concerned with (state) safety constraints. The performance-
focused controller is adaptive. The second controller is monitoring the action of the
first controller and if it notices the process being steered into trajectory where safety
is violated, the safety controller takes over with less economically optimal, but more
safe control actions. The strategy ensures a safe way to implement adaptive control
even with a method, that could not otherwise guarantee meeting of safety constraints.
[22]

iv.) In direct input adaptation there is a feedback controller that receives some sort of
update criterion (most often deviation from setpoint) and calculates the control action
solely based on the criterion [13]. The control input is not a solution to an optimization
problem including the system model [13]. Hence, plant model mismatch is not a crucial
concern [13]. However, direct input adaptation is a form of adaptive control, because
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the controller parameters can be updated automatically online based on system inputs
and outputs. An example of direct input adaptation is model-reference adaptive system.
In such scheme, the plant could be controlled with a regular PID controller, that has
its parameters modified online by a separate adjustment mechanism. [4]

v.) A common way of handling plant model mismatch in model based controllers is
with disturbance rejection [48]. It consists of offline disturbance modeling and online
estimation of disturbance variables, which allows the controller to compensate for
the effect of plant model mismatch [48]. In disturbance modeling the state vector
of the control model is augmented with disturbance variables and the control model
dynamics are augmented with disturbance dynamics [48]. Important to note, is that
the augmented disturbances and their dynamics do not need to represent real-life plant
disturbances in order to capture the effect of plant model mismatch [39]. Disturbance
rejection is often referred to as offset-free control within research papers [39, 43, 64,
52, 10], as it is able to reject steady state offset of a system despite plant model
mismatch [39]. The details of the method and requirements for implementation will
be discussed later.

2.3.4 Selection of strategies

This section discusses the previously presented strategies, proceeding as an elimination
of unsuitable approaches regarding the task in this thesis. The section begins from the
least suitable choices and progress towards a selection of applicable strategies.

Because this thesis is about improving the previously developed MPC [50], the use
of direct input adaptation (iv.) is unfitting to the existing framework. Direct input
adaptation is unable to utilize the MPC and would require adding a parallel controller.
In this thesis it is believed that this would cause the overall control scheme to become
overly complicated, and there could be conflicts between the two controllers.

Using the concept of learning the controller design (ii.) is also regarded as unsuitable
for the task. Compared to other methods it is less intuitive, and does not bring the
benefit of improving prediction capabilities of the model. The ability to predict the
system behavior with a model is not only useful in deciding the control action, but it
is also required for state estimation, which will be discussed later in this thesis.
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MPC for safe learning (iii.) is considered unnecessarily complicated, because it requires
the development of two separate controllers. Since the task of this thesis does not focus
on meeting safety constraints of the controlled plant, there is no motivation to choose
the approach.

Learning the system dynamics (i) is regarded as an applicable class of approaches for
the task of this thesis. However, it is possible to be more specific and narrow the
focus on certain subdivisions within the class. It is relevant to only consider stochastic
methods, since robust approaches would be unviable with the data-driven and physically
non-interpretable Koopman-Wiener model. The focus can be further narrowed to only
passive learning, because of the complexity associated with dual control. Also, since
the Koopman-Wiener model is parametric, there is no consideration of methods for
non-parametric models. With the narrowed focused, the term ”model adaptation”
from Chachuat et al. [13] is used in place of learning the system dynamics from here
on forward in this thesis.

There exist several applications of model adaptation, which are relevant regarding the
task of this thesis. Bhadriraju et al. [6] used an ANN to adapt the control model
parameters of MPC online. The ANN estimates the model parameters based on in-
puts and outputs of the controlled system, and the method was applied to a chemical
reactor case study [6]. Wills et al. [61] employed a likelihood maximization algorithm
to adapt parameters of a Hammerstein-Wiener model. Likelihood maximization al-
gorithm operates online by iteratively estimating model parameters and solving state
estimation problem until convergence, and the approach is used to mitigate difficulty
that measurement noise can introduce into parameter estimation [61]. Lüthje et al.
[34] developed an ANN control model that is continuously trained online during the
operation of MPC. The training scheme includes adaptation of the ANN structure in
terms of adding more hidden neurons, in a situation where adjusting the parameters
does not result in a satisfactory performance [34]. Lüthje et al. [34] demonstrated
their method on a distillation column case study. Further regarding ANN models,
there are works discussing meta-learning, which means reinforcement learning ANN
model (hyper)parameters that allow for quicker online retraining to adjust the model
to a new task [15, 40]. Lastly, there are works demonstrating the use of recursive
least squares algorithm to adjust the parameters of the linear dynamical block within
a Wiener model online [3, 28, 63].

Stepping away from model adaptation, disturbance rejection is also a suitable approach
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regarding the task in this thesis. There are works laying the theoretical foundations and
required conditions for successful disturbance rejection on systems with nonlinear MPC
[39, 43]. There is also a work presenting and comparing offset-free MPCs with different
linearization algorithms on systems described by Wiener models [64]. Moreover, Son
et al. [52] demonstrated successful control of a chemical reactor process with offset-
free MPC, in which the the control model is a Koopman-linear model. Additionally,
Caspari et al. [10] developed an approach for generating optimal disturbance mod-
els by combining observability analysis and nonlinear optimization with semi-infinite
programming.

Based on the simplicity, intuitiveness, and already proven capabilities on a similar MPC
problem [52], this thesis will mainly focus on disturbance rejection approach, instead
of model adaptation. However, a comparison is made between disturbance rejection
and model adaptation using recursive least squares algorithm.

2.4 Disturbance modeling

Disturbance modeling is needed in order to eliminate steady-state offset of a con-
trolled system with disturbance rejection. When considering steady-state offset, the
setpoint is assumed asymptotically constant ySP (k) → ySP,∞, and the offset is also
asymptotically constant e(k) → e∞ as the time instance k → ∞. [39]

For the control model to take into account unmodeled dynamics, unknown distur-
bances, uncertain system parameters or modeling errors that are causing the steady-
state offset, the nominal control model of Eq. (2.20) and Eq. (2.21) needs to be
augmented with a disturbance model. The disturbance model augmentation can be
represented in general form by following equations [39]:

x(k + 1) = faug(x(k),d(k),u(k)), (2.30)
d(k + 1) = d(k), (2.31)
y(k) = haug(x(k),d(k)), (2.32)

where the disturbances d(k) ∈ Rnd are assumed to be asymptotically constant, i.e.
d(k) → d∞ as k → ∞, which is represented by Eq. (2.31). Function faug is a general
representation of disturbance augmented nonlinear dynamics, and haug is a general rep-
resentation of disturbance augmented static output function. Noteworthy is that the
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disturbance model is not required to model the possible real plant disturbances realisti-
cally in order to capture the effect of the plant model mismatch and for the controller
to achieve offset-free performance for the system (e(k) → 0 as k → ∞). [39]

When constructing the disturbance augmented model, the first question might be, how
to choose the dimension of the disturbance variable, nd. We cannot have more unique
disturbances than the system has unique outputs, because estimating the values for
all of the disturbances would be impossible (observability and state estimation will
be introduced in later sections). Hence, for the augmented model it is required that
nd ≤ ny [43]. For systems with unique outputs, there also needs to be nd ≥ ny in order
to enable having a solution which eliminates the steady-state offset [39]. Combined,
these two requirements require setting nd = ny [39, 43, 52, 10].

Next to consider is how to choose the disturbance augmented model faug and haug.
There is necessarily no need to choose disturbance model in which the disturbances
would affect directly both, the state x and the outputs y [39]. Instead, it can be
sufficient to simplify the modeling and only consider using either state disturbance
[64]:

x(k + 1) = faug(x(k),dx(k),u(k)), (2.33)
dx(k + 1) = dx(k), (2.34)
y(k) = h(x(k)), (2.35)

or output disturbance [64]:

x(k + 1) = f(x(k),u(k)), (2.36)
dy(k + 1) = dy(k), (2.37)
y(k) = haug(x(k),dy(k)). (2.38)

Moreari & Maeder [39] suggest that using output disturbance often leads to slower
rejection of steady-state offset, and there can be issues with observability if the real
plant dynamics have integrators. They write that modeling the disturbances to affect
the states often results in better closed loop performance of the controlled system.
As a side note, one could also consider a pure input disturbance model, where the
disturbances affect the control inputs directly and thus indirectly affect the states.
[39]
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2.5 State estimation

Closed-loop operation of MPC with a control model described by Eq. (2.20) and
Eq. (2.21) requires state estimation for mainly two reasons. Firstly, in most appli-
cations, all of the system states x are not directly measured, meaning x is not fully
included in the outputs y. This is especially true in the case of disturbance augmented
control models as in Eqs. (2.30) to (2.32), because then it is required to also estimate
the value of the disturbance variables d. Secondly, the measurements that are available
are incorporated with measurement noise [48]:

y(k) = hreal(x(k)) + v(k), (2.39)

where the lower index signifies that the output dynamics, hreal, of the real plant can
differ from the control model. The measurement noise v ∈ Rny is a vector of normally
distributed independent random variables with zero mean and covariance R ∈ Rny×ny

[48]:

v(k) ∼ N(0,R). (2.40)

The measurement noise leads to a need to filter the output signal in order to determine
what part of the measurements represents the true system. [48]

To describe the working principles of state estimation, this section next provides a
surface level introduction to one of the most common type of state estimator, called
Kalman filter. Kalman filter estimates the current state of a system based on two-step
approach. First the estimator makes a prediction of the state based on the state and
control input of the previous instance and the control model. The forming of this first
estimate is called a prediction step and the resulting estimate is called a prior estimate.
A limitation of the prior estimate that prevents relying solely on prediction is the plant
model mismatch that exists between the prediction model and the real plant. Just
as the measurement noise covariance R quantifies the reliability of the measurements
(smaller values imply more reliability), process noise covariance Q ∈ Rnx×nx quantifies
the trust placed on the predictions made with the control model Eq. (2.20). [31]

Once the measurement becomes available for the current instance, a second step called
the update step improves the estimate, which is then called a posterior estimate.
The calculation of posterior state is based on the difference between the measured
variables and the prediction of the measured variables using the prior. A coefficient
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called the Kalman gain weights the difference, in order to determine how strongly the
measurement affects the posterior, so that a larger valued Kalman gain results in a
posterior that is more far away from the prior and closer to a state indicated by the
measurements. The computation of posterior is illustrated conceptually in Figure 2.3.
[31]

Prior 
𝒉𝒉(ෝ𝒙𝒙 𝑘𝑘 𝑘𝑘 − 1 )

Measurement 
𝒚𝒚(𝑘𝑘)

Residual
𝝐𝝐 𝒌𝒌 = 𝒚𝒚 𝑘𝑘 − 𝒉𝒉(ෝ𝒙𝒙 𝑘𝑘 𝑘𝑘 − 1 )

(Old) Posterior
𝒉𝒉(ෝ𝒙𝒙 𝑘𝑘 − 1 𝑘𝑘 − 1 )

Up
da

te
(New) Posterior
𝒉𝒉(ෝ𝒙𝒙 𝑘𝑘 𝑘𝑘 )

Figure 2.3: Illustration of the principle behind Kalman filters (adapted from Labbe
[31]).

In Figure 2.3, k represents current time instance. Term x̂(b|a) is the estimated state
of time instance b, when the estimate is formed with information available at time a.
Function h represents the static output function from Eq. (2.21). However, it should
be mentioned that the standard Kalman filter is only suitable for linear systems, and
for a nonlinear system a modified version of Kalman filter is required. The current
posterior x̂(k|k) is calculated as [31]:

x̂(k|k) = x̂(k|k − 1) +K(k)ϵ(k), (2.41)
ϵ(k) = y(k)− h(x̂(k|k − 1)), (2.42)

where K(k) ∈ Rnx×ny is the Kalman gain. The calculation of Kalman gain involves
the process noise covariance Q and measurement noise covariance R. Having large
values in Q results in larger values of K, and larger values of R results in smaller
values of K. For a detailed description of the Kalman filter equations the reader is
referred to [31, 48].

The role of state estimation in a closed-loop system controlled by an offset-free MPC
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is illustrated with a block diagram in Figure 2.4. In the figure, the state estimator
receives the current noisy measurement y(k) and the last control action u(k − 1).
The state estimator also has a prediction model of the system, and it possesses the
information of the previous state x̂(k − 1|k − 1), d̂(k − 1|k − 1). Combining the
available information allows forming the posterior estimate x̂(k|k), d̂(k|k), which the
controller uses in deciding the current control input u(k). The current control action
affects the system resulting in the future output y(k + 1), thus closing the loop.

State 
estimator

Plant
Model 

Predictive 
Controller

Measurement 
sensor

𝒚𝒚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

ෝ𝒙𝒙 𝑘𝑘 𝑘𝑘
𝒅𝒅(𝑘𝑘|𝑘𝑘)
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Plant model mismatch
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delay𝒖𝒖(𝑘𝑘 − 1)

Figure 2.4: Illustration of the closed loop controlled system with state estimator.

2.6 Observability

2.6.1 Definitions

In general terms, observability is the ability to distinguish state of a system based on
the information about the systems inputs and outputs [21]. Observability is relevant for
this thesis because of disturbance modeling and state estimation. In order to eliminate
steady state-offset the augmented system needs to be observable [39]. There would
be no benefit in augmenting the nominal control model with disturbance variables, if
we are unable to estimate their values.

For linear systems given by:

ẋ(t) = Ax(t) +Bu(t) (2.43)
y(t) = Cx(t), (2.44)
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there is only one concept of observability, and it does not depend on what input the
system is given or how long the outputs are measured [21]. However, for nonlinear
systems:

ẋ(t) = f(x(t),u(t)) (2.45)
y(t) = h(x(t)), (2.46)

the concept of observability is not as straightforward. For nonlinear systems there is not
a single concept regarding observability, but rather four different forms of observability
with varying properties [21].

To discuss observability, the definition of indistinguishability adapted from Hermann &
Krener [21] is introduced first:

Definition 2.6.1 (Indistinguishability). Pair of points xa
0 and xb

0 are indistinguish-
able (denoted xa

0Ix
b
0), if for every admissible input trajectory u(t), t ∈ [t0, tl],

initial points xa
0 and xb

0 realize same input-output map. I(xa
0) denotes the points

that are indistinguishable from xa
0.

Using the concept of indistinguishability, Hermann & Krener [21] define observability
as:

Definition 2.6.2 (Observability). A system is said to be observable at point xa
0,

if point xa
0 is not indistinguishable from any other point than itself (denoted as

I(xa
0) = xa

0). The system is observable if I(x) = x, for every possible x.

Noteworthy is that observability does not imply it would be necessarily possible to
distinguish the states using any input trajectory, and it does not also mean that any
length of output trajectory can distinguish the states. In an extreme case it could be
required to measure the system outputs for a very long time before revealing what
the initial state was. To answer the arbitarity of required output trajectory length, a
stricter form of observability exists. [21]
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However, to get to the stricter form of observability, a stricter concept of indistin-
guishability needs to be introduced from Hermann & Krener [21]:

Definition 2.6.3 (V -indistinguishability). Pair of points xa
0 and xb

0 are
V -indistinguishable, if for every admissible input trajectory u(t), t ∈ [t0, tl], where
resulting trajectories from xa

0 and xb
0, (respectively xa

0(t) and xb
0(t)) both lie in

subspace V of state space, the resulting input output maps are identical. V -
indistinguishability is denoted as xa

0 IV xb
0.

Using the previous definition, Hermann & Krener [21] define the stricter form of ob-
servability called local observability as following:

Definition 2.6.4 (Local observability). System is locally observable at point xa
0

if for every possible open neighborhood V of xa
0, IV (xa

0) = xa
0. System is locally

observable if for every V , IV (x) = x, for every possible x.

This signifies that no matter what size of an area of the state space around the initial
point is considered, we are always able to distinguish the initial state. In other words,
it does not matter how short measurement trajectory or how wide area containing a lot
of different initial states is considered. As a result, local observability means the ability
to instantly distinguish a state from all the others (based only on one measurement,
when measurement noise is not considered) [21].

For a nonlinear system, establishing proof for either of the previous forms of observ-
ability can be difficult, leading to a need for a less global and less strict concept, which
Hermann & Krener [21] define as weak observability:

Definition 2.6.5 (Weak observability). System is weakly observable at xa
0, if there

exists some open neighborhood W of xa
0, so that within W I(xa

0) = xa
0. System

is weakly observable if it is weakly observable at every possible x.

Weak observability only ensures we are able to distinguish the initial state from its
local neighborhood after observing for arbitarily long time [21]. Weak observability at
a point is illustrated in Figure 2.5. In the figure the upper plot shows a 2-dimensional
state space of the system (dimensions x1 and x2). System behavior is shown with
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three different initial points xa
0,x

b
0,x

c
0, their corresponding trajectories when fed the

same inputs, and a neighborhood W of xa
0. Lower plot shows output in time, and

that xa
0 does not need to be distinguishable from xc

0 in order for the system to be
weakly observable at xa

0, illustrating limitations of the condition. Furthermore, even
the trajectory originating from point xb

0 can require a long time of measuring, before
xb
0 can be distinguished from xa

0, despite xb
0 being in the neighborhood W .
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Figure 2.5: An illustrative example of weak observability at xa
0.
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Lastly, there is a form of observability that is in between of locally observable and
weakly observable in terms of strictness. Hermann & Krener [21] define local weak
observability as:

Definition 2.6.6 (Local weak observability). System is locally weakly observable
at point xa

0, if there exists an open neighborhood W of xa
0, so that for every open

neighborhood V of xa
0 that is contained within W , IV (xa

0) = xa
0. The system is

locally weakly observable if it is so for every possible x.

Local weak observability conveys that we are instantly able to distinguish the initial
state from its immediate neighborhood, but we do not have assurance if that holds
more globally in the state space, as there could be another point further away that
produces the same output [21].

Relations between the different forms of observability are illustrated in Figure 2.6,
where it is shown what form of observability is implied by which others. The arrows in
the figure originate from an observability form that implies the form at the arrowhead.
It can be shown that for linear systems the different forms of observability are equal
[21].

Locally observable Observable

Locally weakly observable Weakly observable

Figure 2.6: Implications between different forms of observability. Adapted from Her-
mann & Krener [21].
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2.6.2 Methods for investigating

This section opens by introducing the main methods to investigate observability on
linear systems. Subsequently, it is explained how the methods can be expanded to
include nonlinear systems.

When discussing linear models, this thesis recognizes three different approaches to
determine the observability of a system:

1. Observability matrix rank condition: Linear system as in Eq. (2.43) and Eq. (2.44)
is observable if [21]:

rank


C

CA
...

CAnx−1

 = nx (2.47)

where nx is the dimension of the system state. The condition is binary, indicating
only whether or not the system is observable. It does not reveal how easy it might
be to observe the system in quantitative terms. Even if a system is observable,
measurement noise and numerical errors can have larger impact on estimation
error in systems that are quantitatively less observable. [30]

2. Observability Gramian: A stable linear system as in Eq. (2.43) and Eq. (2.44),
is observable if matrix [18]:

WO =
[∫∞

0
eA

T tCTCeAtdt
]

has full rank nx, (2.48)

where T stands for transpose, and e is Euler’s number. WO is the unique positive
definite solution of the Lyapunov equation ATWO+WOA = −CTC [18]. It is
worth mentioning that the integral upper limit of infinity can often get replaced
by some finite time limit tfinal [53]. The observability Gramian quantifies the
general energy (referring to the mathematical and abstract meaning of the word)
transfer EO from initial state x(0) to the output trajectory [16]:

EO =

∫ ∞

0

yT (t)y(t)dt = xT (0)WOx(0). (2.49)

Due to this, observability Gramian can also tell quantitively about how observable
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different state space directions of the system are by magnitude of the singular
values of the Gramian. Larger singular values mean comparatively better observ-
ability. The system is unobservable if even one of the singular values is zero.
When valuing the system observability it is common to focus on the minimum
singular value, as it represents the ”bottleneck” in terms of system observability.
[30, 16]

3. Hautus condition for observability: A linear system as in Eq. (2.43) and Eq. (2.44),
is observable if

rank
[
λI −A

C

]
= nx ∀λ ∈ C, Re λ ≥ 0, (2.50)

where λ are the eigenvalues of A. The Hautus condition can be derived from ob-
servability matrix condition of Eq. (2.47), and it also determines the observability
of a system as a binary condition. [53]

Next this section proceeds to consider nonlinear systems, and that necessitates to pay
attention to the class of observability that a method is able to reveal about a system.

1. There exists Lie algebra based observability rank condition, which is a more
general case of the (linear) observability rank condition from Eq. (2.47) [21].
The condition tells that a nonlinear system given by Eq. (2.45) and Eq. (2.46)
is locally weakly observable at x if [30]:

rank


dh(x)

dLf (h)(x)
...

dLk
f (h)(x)

 = nx for some k, (2.51)

where the differential is given by dh(x) = ∂h
∂x
(x),

the Lie derivative of h by f is Lf (h)(x) = dh(x)f(x),
and the Lie derivative is iterative Lk

f (h)(x) = Lk−1
f (h)(x)f(x).

The condition of Eq. (2.51) is sufficient and binary [21]. That entails the method
is unable to provide information on how locally weakly observable the system is
in quantitive terms. The computations can be difficult to perform even if the
differentials of the system model can be calculated analytically, and the method
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is unsuitable for systems where the differentials cannot be calculated. [30]

2. The observability Gramian from Eq. (2.48) is only defined for linear systems.
By linearizing the nonlinear system described by Eq. (2.45) and Eq. (2.46), it is
possible to extend Eq. (2.48) into local observability Gramian, which is suitable
for nonlinear systems. Consider an initial point x0, a fixed input trajectory u(t),
and a resulting state trajectory x0(t), t ∈ [0, tfinal]. Then a following local
linearization around the state trajectory is carried out by calculating Jacobian
matrices for the system in regard of the state trajectory [30]:

F (t) =
∂f

∂x
(x0(t)), (2.52)

H(t) =
∂h

∂x
(x0(t)), (2.53)

δx(t) ≈ x(t)− x0(t), (2.54)
δy(t) ≈ y(t)− y0(t), (2.55)

dδx(t)

dt
= F (t)δx(t), (2.56)

dδy(t)

dt
= H(t)δy(t), (2.57)

where F ∈ Rnx×nx and H ∈ Rny×nx are the Jacobians. The local observability
Gramian is defined by [30]:

W δ
O(x0) =

∫ tfinal

0

Φδ T (t)HT (t)H(t)Φδ(t)dt, (2.58)

where Φδ is the fundamental matrix solution to [30]:

dΦδ(t)

dt
= F (t)Φδ(t), (2.59)

Φδ(0) = I (2.60)

The resulting local observability Gramian W δ
O ∈ Rnx×nx is able to determine

the weak observability at the initial point x0 for input trajectory u(t). As
was the case for Eq. (2.48) the local observability Gramian is also a quanti-
tive method, and the quantitive measure is the magnitude of the singular values
of the Gramian. [30]
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3. Calculating the Jacobians in Eq. (2.52) and Eq. (2.53) along the state trajectory
for a nonlinear system might be costly and difficult. In order to bypass the need
for linearization, there is a method that approximates the local observability
Gramian, called the empirical observability Gramian. Calculating the empirical
observability Gramian only requires simulating the system. [30]

For the nonlinear system described by Eq. (2.45) and Eq. (2.46), the empirical
observability Gramian is calculated by first choosing a point in space, x0, at
which the weak observability is examined. Then from x0 small perturbations are
made into each positive and negative basis direction of the state space. The
perturbed points are the initial points for the simulations. An input trajectory
u(t), t ∈ [0, tfinal] is chosen, and the system is simulated starting from each
initial point. The resulting output trajectories are saved to calculate the empirical
observability Gramian given by [47]:

W ε
O(tfinal,x0,u) =

1

4ε2

∫ tfinal

0

ΦεT (t,x0,u)Φ
ε(t,x0,u), (2.61)

where

Φε(t,x0,u) =
[
[y+1(t)− y−1(t)], ..., [y+nx(t)− y−nx(t)]

]
, (2.62)

and

y±i(t) = h(x(t,x0 ± εei,u)), (2.63)

where u denotes the input trajectory up to time t,
ei is a basis vector, where lower index i tells the direction in state space, i ∈
[1, nx], so that for example e2 =

[
0 1 0 . . . 0

]T
∈ Rnx ,

ε > 0 signifies the amount of perturbation,
y±i(t) is the output of the system at time t, when the initial point for the
simulation is perturbed ε amount from x0 in the negative or positive direction
of ei.
The dimensions for the matrices are Φε ∈ Rny×nx and W ε

O ∈ Rnx×nx . Figure 2.7
illustrates the role of perturbed initial points for simulations on a system that
has two dimensional state space (x1, x2) and output dimension of one. [47]
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𝑥𝑥1

𝑥𝑥2

𝑦𝑦

𝑡𝑡

𝑦𝑦−1(t)

𝒙𝒙0 + 𝜀𝜀𝒆𝒆2

𝑦𝑦+1 (𝑡𝑡)

𝑦𝑦+2(𝑡𝑡)

𝑦𝑦−2(𝑡𝑡)

𝒙𝒙0 𝒙𝒙0 + 𝜀𝜀𝒆𝒆1

𝒙𝒙0 − 𝜀𝜀𝒆𝒆2

𝒙𝒙0 − 𝜀𝜀𝒆𝒆1

Figure 2.7: Illustration of simulations needed to compute the empirical observability
Gramian.

As for the local observability Gramian, the singular values of the empirical observ-
ability Gramian determine the weak observability of the system at x0 for input
trajectory u(t) [47]. There is some estimation error introduced when using the
empirical observability Gramian instead of the local observability Gramian, and
the upper limit for the estimation error can be defined [47]. However, the esti-
mation error is not considered within this thesis.

4. Hautus condition for observability of Eq. (2.50) can also be extended for nonlinear
systems given by Eq. (2.45) and Eq. (2.46) if the system is linearized. Consider
a fixed point x0 with a fixed input u0. The system is locally weakly observable
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at x0 with input u0 if [39]:

rank
[
F − I

H

]
= nx, (2.64)

where F and H are the Jacobians defined in Eq. (2.52) and Eq. (2.53) respec-
tively, calculated at x0. [35, 39]
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3 Methods

This chapter constructs an offset-free strategy for a Koopman-Wiener NMPC (Non-
linear Model Predictive Controller), while using the concepts from the previous chap-
ter. Section 3.1 discusses the identification of Koopman-Wiener models based on
previous work [49]. Section 3.2 shows how the identified Koopman-Wiener model
forms a nominal control model of NMPC, which is also based on previous work [50].
In Section 3.2.1 a steady-state target calculation is added to the existing nominal
Koopman-Wiener NMPC. In Section 3.3 this thesis introduces disturbance rejection
to the existing framework by augmenting the nominal Koopman-Wiener control model
with a disturbance model. In Section 3.3.1 a strategy is developed for choosing the
disturbance model based on observability analysis done using empirical observability
Gramian. Section 3.4 introduces a state estimator method of unscented Kalman fil-
ter developed by [25], and explains how this thesis adds the estimator to the control
framework of disturbance augmented Koopman-Wiener NMPC. Section 3.5 finishes
the chapter by presenting an alternative control scheme to the disturbance rejection
that uses recursive least squares algorithm to adapt the Koopman-Wiener model.

3.1 Identification of Koopman-Wiener models

In the two papers by Schulze et al. [49, 50], which this thesis builds on, the Koopman-
Wiener models are identified as data-driven discrete time models. The models utilize
ANN autoencoders to transform between original system state x and the finite observ-
ables z, referred to as linear states from here on in this thesis. Encoder has as many
input nodes as there are state variables nx and as many output nodes as there are
linear states nz. Number of encoder hidden layers and used activation function type,
and even the number of linear states are model hyperparameters the user decides. The
ANN architecture is the same but reversed order for decoder as it is for encoder.

The equations defining the model are similar to Eqs. (2.17) to (2.19). The differences
being the use of discrete time and that decoder from Eq. (2.18) is defined as an
approximate of the inverse † due to data-driven approach. The equations defining the
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discrete-time data-driven Koopman-Wiener model are stated below [49]:

z(k + 1) = Az(k) +Bu(k), (3.1)
x(k) = T †(z(k)), (3.2)
z(0) = T (x(0)), (3.3)

where k = 0, 1, ... is the time index. The model structure is illustrated graphically
in Figure 3.1. The structure is indeed Wiener model and not Hammerstein-Wiener
despite having linear dynamic block sandwiched by static nonlinear ones, since the input
variable affects the linear dynamics block directly [61]. In Figure 3.1, the linear states
z advance in time starting from an encoded initial point. At every time instance, the
linear states are affected by the preceding instance of linear states and control inputs
u according to the linear dynamics despite the figure only illustrating one instance.
At any time, the state vector x can be retrieved from the linear states by using the
decoder, as is illustrated for the time instance k + 1.

Encoder
𝑻(𝒙)

𝒛 0

𝒖(𝑘)

𝒛(𝑘 + 1)𝒙 0 𝒙(𝑘 + 1)
Linear dynamics
𝒛 𝑘 + 1
= 𝑨𝒛 𝑘 + 𝑩𝒖(𝑘)

Decoder
𝑻†(𝑧)

Figure 3.1: Koopman-Wiener block model structure, showing state advance from time
instance 0 to k+1. Adapted from Schulze at al. [49].

The parameters for the model are all trained simultaneously using deep learning, even
the linear dynamics. In training, there are different loss terms for the Koopman-Wiener
model corresponding to different tasks during training [49]:
L1) Only encoding and decoding, without time advancement,
L2) One step ahead prediction,
L3) Multistep (p) ahead prediction.
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The loss terms involve the use of mean squared error (MSE) and are defined by [49]:

L1 =
1

p

p∑
k=0

∥∥x(k)− T †(T (x(k))
∥∥
MSE

, (3.4)

L2 =
1

p− 1

p−1∑
k=0

∥∥x(k + 1)− T †(z(k + 1)(x(k))
∥∥
MSE

, (3.5)

L3 =
1

p− 1

p−1∑
k=0

∥∥x(k + 1)− T †(z(k + 1)(x(0))
∥∥
MSE

. (3.6)

The model is trained using weighted and normalized linear combination of all loss
terms. During training, l1-regularization is also implemented on all parameters to
inhibit overfitting. Figs. 3.2 to 3.4 illustrate graphically the different loss terms. In
the figures x̂ stands for predicted state by the Koopman-Wiener model as opposed to
actual state provided by the data. [49]

𝑻†
𝒛(𝑘) ෝ𝒙(𝑘)

𝑻
𝒙(𝑘)

Figure 3.2: Illustration of Eq. (3.4).

LTI 𝑻†
𝒛(𝑘) 𝒛(𝑘 + 1)

𝒖(𝑘)

ෝ𝒙(𝑘 + 1)

𝑻
𝒙(𝑘)

Figure 3.3: Illustration of Eq. (3.5). Adapted from [49].
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LTI

𝑻†

𝒛(0) 𝒛(1)

𝒖(0)

ෝ𝒙(1)

𝑻
𝒙(0)

LTI

𝑻†

𝒛(2)

𝒖(1)

ෝ𝒙(2)

... LTI

𝑻†

𝒛(𝑝)

𝒖(𝑝 − 1)

ෝ𝒙(𝑝)

𝒛(𝑝 − 1)

Figure 3.4: Illustration of Eq. (3.6). Adapted from [50].

Training data for parameter identification does not require a special type of input signal
(such as unit impulses), and the system can have input multiplicity in outputs as long
as the steady state is unique. Full state x information must be available for the training
as it is needed for the encoder. The data samples are time-series data since the trained
model is dynamical. Data must be first divided into shorter trajectories containing
some chosen amount, p, individual samples. Randomly picked short trajectories are
combined into batches so that each batch contains some chosen amount of short
trajectories. Then the available system data is split into training and validation, where
each set contains chosen portion of the batches. [49]

3.2 Nominal Koopman-Wiener nonlinear model
predictive controller

With the identification of Koopman-Wiener model settled, the next step is to formulate
the NMPC framework, in order to assimilate the Koopman-Wiener model as the control
model. To establish notation, it is already revealed at this point that the control case
studies in this thesis are only considering systems in which the outputs y, are linear
combinations of full state x:

y(k) = Cx(k), (3.7)

where C ∈ Rny×nx , and is different from C used in Eq. (2.11) and Eq. (2.15). Having
system output be linear combination of the state is not a limitation of the Koopman-
Wiener model structure, but rather a chosen simplifying restriction for the controlled
systems. In a similar fashion, the controlled variables yCV are considered to be a subset
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of the system outputs:

yCV (k) = Rry(k), (3.8)

where Rr ∈ RnyCV
×ny , and the individual elements ri ∈ {0, 1}.

The Koopman-Wiener NMPC uses a receding horizon implementation and adapting
from Schulze at al. [50], the optimal control problem is formulated:

min
z,u

J(k) =

k+Nph−1∑
j=k

ℓ(y(j + 1)), (3.9)

subject to z(k) = ẑ(k|k), (3.10)
z(j + 1) = Az(j) +Bu(j), (3.11)
x(j) = T †(z(j)), (3.12)
y(j) = Cx(j), (3.13)
u(j) ∈ U , ∀j, (3.14)
x(j + 1) ∈ X , ∀j, (3.15)

where k represents the current time instance, and j is a time index spanning the
prediction horizon. The stage cost ℓ(y(j + 1)) of the cost function J(k), is set as a
weighted squared tracking error in the case studies:

ℓ(y(j + 1)) = eT (j + 1)We(j + 1), (3.16)

in which W ∈ RnyCV
×nyCV . When combining Eq. (2.29) and Eq. (3.8) the tracking

error can be written as:

e(j + 1) = Rry(j + 1)− ySP (k). (3.17)

The setpoint ySP (k) in Eq. (3.17) describes setpoint the controller has received at time
instance k, and the controller assumes the setpoint to remain unchanged throughout
the whole prediction horizon. Eq. (3.11), Eq. (3.12) and Eq. (3.13) are model con-
straints, and it is noteworthy that the only dynamics advancing the system in time
are that of the linear state in Eq. (3.11). Permissible control inputs are described in
Eq. (3.14), and state constraints of the full state can be implemented in Eq. (3.15).

Eq. (3.10) describes initialization for the linear state. Linear state initial value is fixed
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to the current best estimate of the linear state ẑ(k|k). Arriving to the estimate can
exploit the encoder if information on the full state x is available, but in general the
encoder is not a necessity for the MPC and the encoder can be irrelevant if a state
estimator is used to directly estimate the linear state. State estimation implementation
will be discussed more in Section 3.4.

3.2.1 Steady-state target calculation

Next this thesis discusses solving the optimal control problem and an optional way
to simplify the required calculations is introduced. The optimal control problem of
Eq. (3.9) is nonlinear due to the ANN decoder of Eq. (3.12). Thus, finding a solution
to the optimization problem requires nonlinear programming. Son et al. [52] use
steady-state target calculation with linear Koopman MPC, and as a consequence the
optimal control problem does not need to consider the decoder.

Steady-state target calculation is an optimization problem that solves steady state
targets for the states (x, z), inputs and outputs. The steady-state target calculation
is solved on every time instance before solving the optimal control problem. The
purpose of steady-state target calculation is usually to ensure a unique solution to the
optimal control problem, since the cost function Eq. (2.22) can have multiple equal
minimums [43, 52]. However, when using a Wiener model, calculating a steady state
target presents an advantage of simplifying the nonlinear optimal control problem into a
quadratic programming problem. Solving the steady state target does require nonlinear
programming, but it is less heavy computationally than the nonlinear optimal control
problem due to not tracking multiple time instances. Steady state target calculation
solves the optimal steady state of the system by [43]:

min
z,u

Jss(k) = ℓss(yss), (3.18)

subject to zss = Azss +Buss, (3.19)
xss = T †(zss), (3.20)
yss = Cxss, (3.21)
uss ∈ U , (3.22)
xss ∈ X , (3.23)

where the lower index ss refers to steady state. The steady state cost term ℓss(yss)
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can be set freely, but in this thesis it is chosen to utilize the original stage cost term:

ℓss = eT
ssWess, (3.24)

ess = yss − ySP (k) (3.25)

where W is the same weighting matrix as in Eq. (3.16). The solution from Eq. (3.18)
is steady state target values for all variables, solved with information available at time
instance k: zss(k),xss(k),yss(k),uss(k).

The solution zss(k) can then be used as a setpoint for the linear states, simplifying
the nonlinear optimal control problem into a quadratic problem:

min
z,u

Jz(k) =

k+Nph−1∑
j=k

ℓz(z(j + 1)), (3.26)

subject to z(k) = ẑ(k|k), (3.27)
z(j + 1) = Az(j) +Bu(j), (3.28)
u(j) ∈ U , ∀j, (3.29)
z(j + 1) ∈ Z , ∀j, (3.30)

where the linear state stage cost is given by:

ℓz(z(j + 1)) = (z(j + 1)− zss(k))
TWz(z(j + 1)− zss(k)), (3.31)

where Wz ∈ Rnz×nz . However, an important issue needs to be noticed with con-
straints for linear state in Eq. (3.30). The set of permissible states X of the original
optimization problem from Eq. (3.15) is difficult to map to the permissible linear states
Z due to the ANN autoencoding. There are no guarantees for the set of permissible
linear states Z to be continuous and representing such a set may be impractical. This
can make enforcing state constraints unviable in the quadratic optimal control problem
when using steady state target calculation.

The case studies of this thesis are not considering state constrained systems and as a
result the nonlinear optimal control problem is reduced to a quadratic problem by using
the steady state target calculation. However, the use of steady state target calculation
is not an essential part of the implementation within the case studies of this thesis,
and none of the other used methods rely on it. This means the other methods used in
this thesis are viable even in applications where state constraints are crucial.
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3.3 Augmenting Koopman-Wiener model with
disturbance model

In order to handle plant model mismatch, the nominal Koopman-Wiener model intro-
duced in earlier sections is augmented with a disturbance model. First considering the
number of disturbance variables required for steady-state offset removal, it is impor-
tant to realize that sometimes there can be fewer linear states than there are outputs,
nz < ny. In such a case there would not be enough linear states to use only linear
state disturbance and have ny number of independent disturbances. This is because
linear state disturbance variables are estimated based on the residual between poste-
rior and prior estimation of linear states. In such a case, relying solely on linear state
disturbance is able to reject the steady-state error for only nz number of outputs, and
the outputs from which offset is removed cannot be chosen. Nevertheless, it is chosen
in this thesis to use linear state disturbance, when ny ≤ nz, because it is seen concep-
tually more fitting to affect the linear states rather than outputs with the disturbances.
The reasoning being that by affecting the linear states, the disturbances can prevent
the linear states drifting away from representing the real system. The recommendation
in [39] to use state disturbance over output disturbance is also contributing to the
choice of linear state disturbance.

This thesis is limited to consider only linear disturbance model dynamics due to sim-
plicity and to not introduce nonlinear dynamics into the otherwise linear block of the
model. This results in disturbance augmented model of following form (adapting from
[43, 10]):

z(k + 1) = Az(k) +Bddz(k) +Bu(k), (3.32)
dz(k + 1) = dz(k), (3.33)
y(k) = CT †(z(k)), (3.34)

where Bd ∈ Rnz ,ny ,dz ∈ Rny . The form can be restructured to augment the distur-

bance variables in the linear state vector zaug =

[
z

dz

]
, which results in [43]:

zaug(k + 1) = Aaugzaug(k) +Baugu(k)), (3.35)
y(k) = CT †(z(k)), (3.36)
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where Aaug =

[
A Bd

0 Iny ,ny

]
∈ Rnzaug ,nzaug , Baug =

[
B

0

]
∈ Rnzaug ,nu and z =[

Inz ,nz 0
]
zaug. I refers to identity matrix of the size given by lower indices.

After deciding how to structure the augmented model, the next question is how to
identify the linear disturbance matrix Bd coefficients. The work done by Caspari et al.
[10] considers how to choose the disturbance model in an optimal manner. Because
in this thesis, it is not sought to model real plant disturbances and due to using linear
disturbance model, few simplifying realizations can be made: [10]

1. One disturbance variable should only affect one linear state.

2. One linear state should only be affected by one disturbance at maximum.

3. It is irrelevant which specific disturbance variable affects a linear state. For

example, Bd =

[
1 0

0 1

]
would result in identical performance for the system as

Bd =

[
0 1

1 0

]
.

4. For nonzero entries of Bd the exact value of coefficient does not matter, because
changing the coefficient value would be compensated by the estimated value
of the corresponding disturbance variable. The overall effect of a disturbance
variable to a linear state in steady-state always corresponds to the steady-state
offset of a nominal model regardless of the coefficient value. Hence, the nonzero
entries of Bd are set to 1, in order to eliminate unnecessary parameters.
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Based on the previous realizations, Caspari et al. [10] parameterize the disturbance
coefficient matrix Bd as:

Bd(b
d) =



bd1,1 0 0
... . . . 0

bd1+nz−ny ,1
. . . bd1+nz−ny ,ny

0
. . . ...

0 0 bdnz ,ny


, (3.37)

where bdi,j ∈ {0, 1}, (3.38)
nz∑
i=1

bdi,j = 1 ∀j ∈ {1, ..., ny}, (3.39)

ny∑
j=1

bdi,j ≤ 1 ∀i ∈ {1, ..., nz}, (3.40)

ny∑
j=1

nz∑
i=1

bdi,j = ny. (3.41)

The sparsity of the matrix in Eq. (3.37) is a result from the third realization. The
bounds for the coefficients in Eq. (3.38) result from the fourth realization. Eq. (3.39)
is a result of the first realization and Eq. (3.40) results from the second realization.
The last condition of Eq. (3.41) is set by the number of disturbances being set to
ny.

To choose optimal Bd from the multiple options, Caspari et al. [10] use semi-infinite
programming method that systematically tests the local weak observability at multiple
points for all possible augmented systems. The aim is to find as large as possible
orthotope of observable subspace within the state space. Then the system with the
largest observable orthotope is regarded as the most observable and is deemed to be
the most optimal choice for the disturbance model. Observability testing in [10] is
based on the extension of Hautus observability condition for nonlinear systems from
Morari & Maeder [39] that was introduced in Section 2.6.

This thesis will not employ the semi-infinite programming method from [10]. Firstly,
this thesis seeks to avoid calculating Jacobians for the Koopman-Wiener model, as
it could be computationally demanding in a case where the gradients have not been
saved during training. Even more importantly, semi-infinite programming itself can be
so computationally expensive that it would prohibit the use of the method in large-scale
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applications [10]. Additionally, basing the observability analysis on the use of Hautus
rank condition, the method gives no quantitive information on observability. Because
of these shortcomings, this thesis instead opts to use a less rigorous method, that is
less complex, gives more quantitive results, and that better takes advantage of the
Koopman-Wiener model structure. This leads to using empirical observability Gramian
to perform observability analysis in order to determine the most suitable disturbance
model.

3.3.1 Empirical observability Gramian

This section provides the equations for calculating the empirical observability Gramian
for the disturbance augmented Koopman-Wiener model. The section also discusses
how the resulting Gramian is interpreted to determine the suitability of a disturbance
model.

By combining information from Glotzbach et al. [16] and Powell & Morgansen [47] this
thesis defines the empirical observability Gramian for a discrete disturbance augmented
Koopman-Wiener system of Eq. (3.35) and Eq. (3.36) as following:

W ε
O(kfinal, zaug,0,u) =

1

4ε2

kfinal∑
k=0

ΦεT (k, zaug,0,u)Φ
ε(k, zaug,0,u)∆t, (3.42)

where

Φε(k, zaug,0,u) =
[
[y+1(k)− y−1(k)], ..., [y+nzaug (k)− y−nzaug (k)]

]
, (3.43)

and

y±i(k) = CT †(z(k, zaug,0 ± εei,u)), (3.44)

where time instance k ∈ {0, ..., kfinal}, Φϵ ∈ Rny×nzaug , W ϵ
O ∈ Rnzaug×nzaug , ei ∈

Rnzaug and ∆t is the sampling time. Rest of the variables in the equations are defined
similarly to the continuous time empirical observability Gramian that was introduced in
Eqs. (2.61) to (2.63). For the calculation, all state coordinates and output coordinates
should be scaled, so the results based on the Gramian are easier to interpret [30].

Calculating the empirical observability Gramian reveals information about the weak
observability at the chosen point zaug,0 in state space, with the chosen control inputs
u. Naturally, it results in asking, how many points should be considered, how the
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points should be chosen, and how the control inputs should be chosen. Glotzbach et
al. [16] and Lall et al. [32] assume that calculating the empirical observability Gramian
only at a single point is enough to generalize the results being valid for rest of the state
space, as long as the point used represents a typical operation point for the system.
They also consider only one typical control input sequence. These assumptions are
adopted in this thesis, and the simplified approach to observability analysis is deemed
sufficient for the purposes of picking a disturbance model.

To get results about weak observability at the point, a singular value decomposition is
performed on the empirical observability Gramian. If the singular values are all large,
it is relatively easy to distinguish zaug,0 from its neighbors [30]. Krener & Ide [30]
consider evaluating the results by two indicators: reciprocal of the smallest singular
value (smaller the better), and by ratio of the largest singular value to the smallest
(smaller the better). Other works simply focus on the smallest singular value [16, 47].
The two previous indicators were found unsuitable regarding the disturbance model
comparisons for the Koopman-Wiener model in this thesis. That is because introducing
a perturbation to the disturbance variable causes much more difference to the output
trajectory instead of when perturbing a linear state variable. This causes the direction of
state space corresponding to the disturbances to be the most observable. Chapter 5 will
show resulting output trajectories and empirical observability Gramians from choosing
different disturbance models, but it is clear based on them that the minimum singular
values can be unaffected by the choice of different disturbance models. This thesis
proposes that in order to draw meaningful comparisons between disturbance models
it is necessary to focus on all of the singular values. This work also proposes that for
choosing the disturbance model the aim should be to maximize all of the singular values,
instead of minimizing the maximum singular value while maximizing the minimum
singular value, as suggested by [30].

3.4 Unscented Kalman filter

It was chosen for this thesis that there would be only one state estimator estimating
the whole augmented state. That is instead of two estimators, where one would be
estimating the linear states, and the second would estimate the disturbances, such as
the use of Luenberger observer (or steady-state Kalman filter) in many previous works
[52, 39, 64]. Because of the nonlinear Koopman-Wiener model, purely linear Kalman
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filter or Luenberger observer for the linear state, like used in [55], is not viable for
this thesis. Instead, the state estimator could be for example: Extended Kalman filter
(EKF) [10], Moving horizon estimator [56], particle filter [61] or Unscented Kalman
filter (UKF) [25]. Unscented Kalman filter is the method of choice for this thesis. It was
easier to implement than moving horizon estimator, because there is a readily available
Python package called FilterPy including the UKF [31]. UKF was also seen simpler
due to not needing to perform linearization, such as in the case of EKF [25]. The
computational requirements of UKF are also significantly less than those for particle
filter, and similar to EKF [31]. The use of Unscented Kalman filter is also recommended
over the better known EKF, since it has better performance for highly nonlinear systems
[31, 25, 59].

Unscented Kalman filter was first developed by Julier & Uhlmann [25]. The name
unscented is merely a joke by the developers and only refers to UKF not having the
same shortcomings as EKF [31]. The main idea of the UKF is to use something called
the unscented transform to track the distribution of the system [25]. It uses only a few
(2nzaug +1) deterministically selected sample points, called sigma points, from around
the previous instances posterior [25]. The nonlinear prediction function advances the
sigma points one instance forward in time, resulting in a cloud of transformed points
[25]. The new prior is calculated as a weighted average based on the transformed points
[25]. The posterior is calculated based on the measurements, prior and the Kalman
gain, as is the case for regular Kalman filter, but the calculation of Kalman gain is
different because the system covariance is also calculated based on the sigma points
[25]. Even though the principle is similar, UKF is different from using a Monte Carlo
method such as the particle filter because Monte Carlo methods track a much larger
number of sample points [59]. The equations for UKF algorithm are not provided in
this thesis, and for the complete description the reader is referred to [25, 59, 31].

Instead of the equations defining the UKF, only a brief explanation of the parameters
affecting the action of state estimation in case studies is provided here. First set of
discussed parameters is associated with the sigma points and how they get sampled.
Parameter α determines the spread of the sigma points around the previous posterior.
The larger α is, the more spread and more weakly weighted the sigma points (other
than the center) are going to be. Parameter α typically has a small value above zero,
for example 0.001 [59]. Parameter κ is also affecting the weights of the sigma points,
and it is recommended by Julier & Uhlmann to be set so that n + κ = 3, where n is
the amount of states (nzaug in this thesis) [25]. Lastly there is parameter β that affects
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the unscented transform. It signifies assumptions made about the type of distribution
for the system. β = 2 is the optimal choice for Gaussian distributions. [59]

Other parameters that are not unique to UKF are the previously mentioned process
and measurement noise covariances, Q and R respectively. In real life applications
the measurement noise covariance can be known from the type of sensors being used,
since the manufacturers can provide information about the measurement accuracy and
expected noise. In a simulated environment it is trivial to set the measurement noise
covariance to the exact values that are used for simulating the noise. Finding suitable
values for process noise covariance can be more difficult however. It is difficult to
know beforehand how accurate the prediction model is going to be and the plant
model mismatch can also change over time. Hence, the process noise covariance is
usually a tunable parameter, and the value can be searched through trial and error, so
that stable and converging performance is achieved. [31]

3.4.1 Adaptive uncscented Kalman filter

Finding values for the process noise covariance that work in every situation can be a
difficult task. Especially, when the system in question has time variable dynamics. At
some time the prediction model may match the plant very well and one would like to
have small valued Q to cause the prediction model to be believed more strongly over
the noisy measurements. However, at another time it may be that the quality of the
prediction model has deteriorated due to plant model mismatch and then one would
require larger valued Q in order to avoid the estimated state diverging from reality.
Adaptive filtering can answer such a problem. In adaptive filtering the values of Q can
be changed during operation among other things. [31]

Adjusting the process noise covariance during operation can be based on normalized
squared residual between prior and measurement [5]:

ϵN(k) = ϵ(k)TS(k)−1ϵ(k), (3.45)

where T is transpose and S is the system uncertainty covariance, which is used in
calculating the Kalman gain. When ϵN exceeds some preset limit ϵN,max, the adjusting
mechanism for Q is activated [5]. The adjustment mechanism can be a continuous
function of ϵN , or Q can get scaled by a constant at every instance ϵN is over the
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limit [5]. There can also be prechosen discrete levels for Q [5]. Regardless of the
mechanism, the main idea is that Q increases when based on ϵN it is known that
there is an extremely low possibility that the received measurements would be coming
from a system described by our current prediction model [5]. The specific adjusting
mechanisms for Q within this thesis will be discussed with the case studies.

3.5 Recursive least squares for model adaptation

As an alternative to disturbance rejection, this thesis also investigates an adaptive con-
trol method of using Recursive Least Squares (RLS) to update the parameters of linear
dynamics of the Koopman-Wiener model in one case study within this thesis. When
utilizing RLS, the Koopman-Wiener model is not augmented by disturbance variables.
Instead, the elements of matrix A are updated online on each time instance by solving
RLS problem [20]. Using RLS to adapt the model assumes that the experienced offset
is parametric. The use of RLS method to update the control model in a closed-loop
system is illustrated in Figure 3.5. In the figure, a state estimator estimates the linear
state as in the Figure 2.4, but without the disturbances. Information about ẑ(k|k) and
u(k−1) are then used to provide the current best estimate of the linear state dynamics
A(k). Matrix A(k) is then used to update the control models used in MPC and the
state estimator. For MPC, the A(k) is regarded as constant in the optimal control
problem. In the state estimator, A(k) affects the estimation of prior and posterior of
the next instance k+ 1, but it does not change the already calculated estimate of the
instance k.

In this thesis RLS method is implemented by using Python package called Padasip
(Python Adaptive Signal Processing library) [12]. The use of readily available package
allows quick implementation, but requires that the problem is presented in a formulation
where the adapted parameters are presented in a vector form and the control inputs are
not considered. Without going into the details about the theory behind the algorithm,
the computation proceeds as follows:

1. A column vector θ is formed from the parameters of A, so that:

z(k + 1)−Bu(k) = z∗(k + 1) = θ(k)zT (k). (3.46)

This is unlike in the sources [20, 63], where the equations are set up for Single-



3 Methods 46

State 
estimator

Plant
Model

Predictive
Controller

Measurement
sensor

𝒚𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡

ො𝒛 𝑘 𝑘

𝒖(𝑘)

Plant model mismatch

𝒙(𝑘 + 1) 𝒚(𝑘 + 1)

𝒗(𝑘 + 1)
Measurement noise

Unit
delay𝒚(𝑘)

Unit
delay𝒖(𝑘 − 1)

RLS block

𝒛 − 𝑩𝒖

Unit
delay

ො𝒛∗ 𝑘 𝑘

ො𝒛 𝑘 − 1 𝑘 − 1

𝑨(k)

Figure 3.5: Illustration of the adaptive control scheme with RLS block that estimates
parameters of A.

Output systems. The reason for having linear states on the left-hand side of
the equation is because RLS is only defined for linear systems. Consequently,
the actual system outputs y cannot be incorporated into the algorithm. Also,
the Padasip package is not built for systems with control input, so only the free
response of the system is investigated. It is chosen not to adapt values of B, as
it could provide more instability to the overall scheme to adapt multiple factors
at once.

2. A state estimator provides the current linear state posterior ẑ(k|k). It is com-
pared to the prior:

ẑ∗(k|k − 1) = θ(k − 1)ẑT (k − 1|k − 1), (3.47)

so that the difference is ϵz(k) = ẑ∗(k|k)− ẑ∗(k|k − 1).

3. To update the parameters a following calculation is run [20, 12]:

θ(k + 1) = θ(k) + ∆θ(k), (3.48)
where

∆θ(k) = Ω(k)ẑT (k − 1|k − 1)ϵz(k). (3.49)

Ω(k) ∈ Rnz ,nz stands for inverse of autocorrelation matrix, and it has its own
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update function [20]:

Ω(k) =
1

µ
(Ω(k − 1)− Ω(k − 1)zT (k − 1)z(k − 1)Ω(k − 1)

µ+ zT (k − 1)Ω(k − 1)z(k − 1)
), (3.50)

where z(k− 1) = ẑ(k− 1|k− 1), and µ stands for forgetting factor, which is a
tuning parameter determining in how large steps θ updates. µ ∈ R ∈ [0, 1] and
larger values make the adaptation scheme slower [12]. Ω can be initialized for
example Ω(0) = Inz ,nz [12].

4. The updated parameters θ(k) are used to update A within the prediction models
of MPC and state estimator.
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4 Definition of case studies

This chapter introduces the systems that are used as the case studies to investigate the
performance of offset-free Koopman-Wiener NMPC with the methods from Chapter 3.
In Section 4.1, information is provided about the overall simulation framework, used
programs and hardware. Later, Section 4.2 and Section 4.3 describe the simulated
systems and present parameters for the systems, Koopman-Wiener model identification
and the controllers.

4.1 General details on implementation

All case studies in this thesis feature a simulated plant as the controlled process. The
Koopman-Wiener model is identified using training data generated by simulating the
process in question as in [49]. During the training data generation, the simulated plant
has its model parameters remain constant, while random sequences of control inputs
are given for the system. After the Koopman-Wiener model has been trained, it is used
in constructing the controller and state estimator. During closed-loop simulation of the
controlled system, parameters of the simulated plant are modified, creating plant model
mismatch, and allowing to perceive the performance of the used methods. Additionally,
the disturbance augmented Koopman-Wiener models are simulated in order to compute
the empirical observability Gramians and compare different disturbance models.

All computations are done using Python version 3.9.5. The modeling and simulating
of plant models is done using Pyomo version 6.42 [19, 9]. ANNs are implemented
using Tensorflow version 2.10.0 [1]. The used training algorithm for deep learning
of Koopman-Wiener model is Adam. In the controller the optimal control problem,
and steady state target calculation are also formulated using Pyomo, and in order to
include the ANNs into the Pyomo models OMLT (Optimization and Machine Learning
Toolkit) version 1.1 [11] is used. To solve the control optimization problem formulated
with Pyomo, IPOPT (Interior Point Optimizer) version 3.11.1 [62] is utilized. UKF is
implemented with FilterPy version 1.4.5 [31]. Used hardware included Intel(R) Xeon(R)
CPU E5-2630 v2 @ 2.60GHz, and 128 GB RAM.
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4.2 Case study I: Chemical reactor

4.2.1 The simulated plant

First case study concerns a Continuous Stirred Tank Reactor (CSTR) from Alanqar et
al. [2]. The reactor facilitates an exothermic, irreversible, nonisothermal, second-order
chemical reaction of the form: 2A → B (not referring to matrices A and B). The
reactor is presumed to be ideally well mixed, and it has a jacket for heating and cooling.
The corresponding mass and energy balances are:

dCA

dt
=

F

V
(CA0 − CA)− k0e

−E
RT C2

A, (4.1)

dT

dt
=

F

V
(T0 − T )− ∆Hk0

ρLCp

e
−E
RT C2

A +
Q

ρLCpV
, (4.2)

where the symbols are explained in Table 4.1.

Character Explanation Unit Initial/ con-
stant value

CA Concentration of A kmol/m3 1.1

T Temperature in the reactor K 446.5

Q Heating (+) or cooling (-) rate kJ/h 2504.4

F Volumetric inflow to reactor m3/h 5.0

CA0 Inflow concentration of A kmol/m3 4.0

T0 Inflow temperature K 300.0

V Volume of the reactor m3 1.0

k0 Pre-exponential factor of the reaction m3

h kmol
8.46 · 106

E Activation energy of the reaction kJ/kmol 5.0 · 104

R Molar gas constant kJ
kmol K

8.314

ρL Liquid density kg/m3 1000.0

∆H Enthalpy of the reaction kJ/kmol 1.15 · 104

Cp Liquid heat capacity kJ
kg K

0.231

Table 4.1: Plant model variables and parameters of the CSTR case study.
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4.2.2 Identifying the Koopman-Wiener models

The state variables are CA and T , so nx = 2. There is only one manipulated
variable Q, so nu = 1. The heating and cooling rate is limited in the range of:
Q ∈ [−2000, 10000]kJ/h. Training data is generated similarly as in [49]. The plant
model is simulated with 500 control sequences, and each of the control sequences lasts
for 4 hours. During each 4 hour sequence the manipulated variable has a constant
random value in its range. The sampling time is 1min and during sampling, the values
of all states and manipulated variable are saved, i.e., during training data generation,
full state information is available.

For training the Koopman-Wiener model the generated data is scaled with MinMaxS-
caler [46], so the values of states and control inputs fit between 0 and 1. Then the
data is split 80% into training set and 20% into validation set. The individual 4 hour
sequences are collected into batches containing 32 sequences each, and the training is
performed in a way described in Section 3.1. Activation function type for the autoen-
coder is chosen to be hyperbolic tangent function (tanh). The encoder and decoder
both have one hidden layer, that has 10 neurons. Matrix A is chosen to have diagonal
form. The training is done over 1000 epochs and the learning rate is 0.001.

There are two Koopman-Wiener models being trained for the CSTR case study. They
differ in the amount of linear states:

Ia.) The first model has nz = 1 as in [49]. Since nz < nx, there is model reduction,
which represents a realistic use of Koopman-Wiener NMPC. Hence, this model is used
to mainly investigate the controller performance.

The trained Koopman-Wiener model Ia.) has:
A =

[
0.9481

]
,

B =
[
−0.07393

]
.

Ib.) For further investigation into disturbance modeling a second Koopman-Wiener
model is identified with nz = 2. For the training, A is deliberately fixed this time, so
that one eigenvalue has large value and the second eigenvalue has orders of magnitude
smaller value. This is done to create comparison between disturbance affecting the
fast (linear state corresponding to the small diagonal value in A) or slow dynamics
(linear state corresponding to the large diagonal value in A) of the system.
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The trained Koopman-Wiener model Ib.) has:

A =

[
0.93 0

0 0.01

]
,

B =

[
−0.1122

0.2221

]
.

4.2.3 Simulation specifications

In the simulations CA is the only controlled variable. It is also the only measured
variable, in all cases except where it is specifically told otherwise, so in general ny =

1 = nd = nyCV
. In the simulations where noise is considered, the measurement

has Gaussian white noise added to it, with standard deviation of 0.02 kmol/m3. The
random variable for noise is generated with a fixed seed between different simulation
runs to produce repeatable results.

Ia.) For the first Koopman-Wiener model, there is only one option for disturbance
model, since nd = nz = 1. Therefore, the disturbance model is chosen as:
Bd =

[
1
]
.

The alternative method of RLS to adapt A is employed only for the reactor case study
and using model Ia.

Ib.) For the second Koopman-Wiener model there are two options for disturbance
model:

Bd1 =

[
1

0

]
,

or

Bd2 =

[
0

1

]
.

Both of the options are evaluated by first open-loop simulating the Koopman-Wiener
models to calculate the empirical observability Gramians, and then both models are
tested in NMPC for a closed-loop simulation. For the calculation of empirical observ-
ability Gramians, the initial state is encoded initial state of the plant. The perturbation
amount done to the augmented linear state zaug is ε = 0.01, because of a recommen-
dation in Krener & Ide [30]. The open-loop simulation runtime is 1 hour with sampling
time of 1min, and during the open-loop simulation, control input is kept constant at
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2600 kJ/h.

During closed-loop simulations the sampling time is 1min. The total simulation run-
time is 6 h. Plant model mismatch is introduced by making a step change to the
inflow F at 2 hours and by shifting the activation energy E one unit at each sampling
instance. In real-life reactor, the shifting of activation energy could be caused by
catalyst deactivation. Step change to the inflow could be caused by another unit
process upstream changing the operation regime. The parameter changes are presented
in Figure 4.1. All controllers in the case study have a prediction horizon of 10 instances,
corresponding to 10min. For all the controllers, the weights used in stage costs of
cost functions (W ,Wz) are appropriately sized identity matrices. All scenarios with
UKF or adaptive UKF have sigma point parameters: α = 0.1, β = 2, κ = 3− nzaug .

Figure 4.1: Plant parameter changes during closed-loop simulations for the CSTR.

4.3 Case study II: Distillation column

4.3.1 The simulated plant

The second case study concerns a distillation column used in [49, 45, 24] that sep-
arates methanol-propanol mixture. Overhead product is enriched in methanol and
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bottoms product is enriched in propanol [45]. The process model assumes constant
relative volatility, immediate vapor and liquid responses, and perfect level control on
condenser and reboiler [45]. Provided below, are the equations describing the system.
Explanations, units and nominal values for the variables and parameters can be found
in Table 4.2.

The mass balances for the system are given by [45]:

Mb
dxb

dt
= L1x1 − Bxb − V yb, (4.3)

Md
dxd

dt
= V yN −Rxd −Dxd, (4.4)

MNf

dxNf

dt
= V (yNf−1 − yNf

) + LNf+1xNf+1 − LNf
xNf

+ FxF , (4.5)

MN
dxN

dt
= V (yN−1 − yN) + RxdLNxN , (4.6)

Mi
dxi

dt
= V (yi−1 − yi) + Li+1xi+1 − Lixi, (4.7)

where Eq. (4.3) describes the bottom tray, Eq. (4.4) describes the condenser, Eq. (4.5)
describes the feed tray, Eq. (4.6) describes the top tray, and Eq. (4.7) describes all the
other trays.

In the entirety of the column, vapor-liquid equilibrium is given by [45]:

yi =
αxi

1 + (α− 1)xi

. (4.8)

Distillate, bottoms, and ith tray liquid flow rates are [45]:

D = V −R, (4.9)
B = F −D, (4.10)

Li =

R + F, i ≤ Nf

R, i > Nf

. (4.11)
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Character Explanation Unit Initial/ constant value
i Index for tray number i ∈

{1, ..., Nf , ..., N}
- -

N Number of trays - 8
Nf Feed tray - 4

xi Tray i liquid composition -



x1

x2

x3

x4

x5

x6

x7

x8


=



0.6776
0.7687
0.7978
0.8061
0.9276
0.9755
0.9921
0.9975


yi Tray i vapor composition - -
Mi Tray i holdup kmol 0.5
Li Tray i liquid flow kmol/min -
Mb Bottoms holdup kmol 0.5
xb Bottoms liquid composition - 0.4669
B Bottoms flow rate kmol/min 1.0
V Boilup kmol/min 2.0
yb Bottoms vapor composition - -
Md Condenser holdup kmol 0.5
xd Distillate composition - 0.9993
R Molar reflux kmol/min 1.7
D Distillate flow rate kmol/min 1.0
F Feed flow rate kmol/min 1.0
xf Feed composition - 0.6
α Relative volatility - 3.55

Table 4.2: Variables and parameters of the distillation column case study process
model.

4.3.2 Identifying the Koopman-Wiener models

The state variables are the bottom, tray and distillate liquid compositions xb, xi, xd,
which results in x = [xb x1 x2 x3 x4 x5 x6 x7 x8 xd]

T , nx = 10. Molar reflux and feed
composition are the manipulated variables during identification. The limits for the
manipulated variables are: R ∈ [1.55, 1.95]kmol/min, xf ∈ [0.5, 0.7]. The training
data is generated by simulating the system similarly to [49]. The plant model is
simulated with 400 control sequences that each lasts 2 h. During a sequence the
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control inputs hold a constant random value from within their ranges. Sampling time
is 1 min, and full state information and used inputs are saved.

Similarly as in [49], the state variables are log10-transformed and then scaled by using
MinMaxScaler [46] to avoid issues with numerical accuracy. The log10-transformation
is done differently for stripping and rectifying sections of the column:

xi,log =

log10 xi, i ≤ Nf

log10(1− xi), i > Nf

, (4.12)

xi,scaled = MinMaxScaler(xi,log). (4.13)

The bottoms composition xb is scaled similarly to the stripping section (i ≤ Nf ) and
the distillate composition xd is scaled similarly to the rectifying section (i > Nf ).
[49]

For the distillation column case study, a Koopman-Wiener model is obtained with two
linear states nz = 2, as in [49]. Activation function type for the autoencoder is chosen
to be hyperbolic tangent function (tanh). The encoder and decoder both have one
hidden layer, that has 10 neurons. Matrix A is chosen to have diagonal form. For
the training of the model, the 2 hour data sequences are collected into batches of 32
sequences. 80% of the generated data was split to training set and 20% into validation
data set. The training ran 10000 epochs as described in Section 3.1 with learning rate
of 0.001.

The trained Koopman-Wiener model IIa.) has:

A =

[
0.5581 0

0 0.1171

]
,

B =

[
0.5787 0.5845

0.1204 0.5274

]
.

4.3.3 Simulation specifications

For the closed loop simulations, the distillate composition xd is the only controlled
variable. It is also the only measured variable unless explicitly told otherwise, so in
general, ny = 1 = nd = nyCV

. In scenarios which consider noise, the measurement has
Gaussian white noise added to it, with standard deviation of 5.0 · 10−5. The random
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variable for noise is generated with a fixed seed between different simulation runs to
produce repeatable results.

During the closed-loop simulation the manipulated variables are not the same as for
the model identification. To represent a more realistic situation and to observe effect
of measured disturbance the feed concentration is not governed by the NMPC. It is
measured without measurement noise and the trained Koopman-Wiener model is uti-
lized to model the effect of xf . This results in making the molar reflux R the only
control input nu = 1.

The control input vector is: u = R, and B =

[
0.5787

0.1204

]
.

The measured disturbance is: γ = xf , and the related dynamics are: Γ =

[
0.5845

0.5274

]
.

The Koopman-Wiener model IIa. has two options for (non-measured, artificial) distur-
bance model:

Bd1 =

[
1

0

]
,

or

Bd2 =

[
0

1

]
.

Both of the options are evaluated by first open-loop simulating the Koopman-Wiener
models to calculate the empirical observability Gramians, and then both models are
tested in NMPC for a closed-loop simulation. For the calculation of empirical observ-
ability Gramians, the initial state is encoded initial state of the plant. The perturbation
amount done to the augmented linear state zaug is ε = 0.01. The open-loop simu-
lation runtime is 15 minutes with sampling time of 1min, and during the open-loop
simulation, R is kept constant at 1.7 kmol/min and xf is kept constant at 0.6.

During closed-loop simulations the control model with disturbance rejection is formu-
lated as:

z(k + 1) = Az(k) +Bu(k) + Γγ(k) +Bddz(k). (4.14)

The sampling time for all the controllers is 1min and the total closed-loop simulation
time is 13 hours. All the controllers have prediction horizon of 10 instances, corre-
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sponding to 10 minutes. For all the controllers, the weights used in stage costs of cost
functions (W ,Wz) are appropriately sized identity matrices. Plant model mismatch
is introduced by making a step change to the feed flow rate F at 1 hour, representing
a change in operation of an upstream process. Furthermore, the measured disturbance
of feed composition xf has ramp changes during simulation, also representing changes
in an upstream process. The first ramp begins at 15 minutes and finishes at 45 min-
utes. The second ramp begins at 11 hours and finishes at 11 hours 30 minutes. The
parameter changes to the plant model are presented in Figure 4.2. In the figure the
green color of xf indicates a difference from F in the sense that the feed composition
xf is measured for the controller. All scenarios with UKF or adaptive UKF have sigma
point parameters: α = 0.1, β = 2, κ = 3− nzaug .

Figure 4.2: Plant parameter changes during closed-loop simulations for the distillation
column.
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5 Results and discussion

This chapter presents the simulation results for the case studies that are specified in
Chapter 4. The results are interpreted to discuss suitability of different methods and
parameter choices. The chapter includes two sections that divide between the case
studies of CSTR and distillation column. The CSTR section is further subdivided
into two subsections, where the two Koopman-Wiener models (Ia., Ib.) are discussed
separately. One layer deeper, the subsections are divided based on the considered
simulation scenario. The distillation column case study only features one Koopman-
Wiener model (IIa.), and thus it is subdivided into subsections based on the considered
simulation scenario.

5.1 Case study I: Chemical reactor

5.1.1 Koopman-Wiener model Ia.

Nominal NMPC, constant plant parameters

The CSTR case study begins with a scenario that demonstrates the capability of the
Koopman-Wiener NMPC in an ideal situation. The scenario presents a closed-loop
simulation where the NMPC uses the nominal Koopman-Wiener model (Ia.) and the
plant model parameters remain unchanged during the simulation. In this scenario, full
state is measured without noise in order to represent perfect state estimation. The
simulation results are presented in Figure 5.1. In the figure the controlled variable CA

follows the setpoint well until demanding an unreachable setpoint of 1.5 kmol/m3 after
4 hours. Overall, this simulation shows that without changing the plant parameters,
plant model mismatch is insignificant.
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Figure 5.1: CSTR closed-loop simulation, results of states and control input, with nom-
inal Koopman-Wiener NMPC and ideal state estimator. The plant param-
eters remain constant.

Nominal NMPC, dynamic plant parameters

Next the system is simulated similarly as with the previous scenario, in regards that the
NMPC has nominal control model and the full state is measured without noise. How-
ever, the difference is that this time plant model mismatch is introduced by changing
the reactor inflow F and activation energy E as presented in Figure 4.1. The purpose
of the simulation is to show the effect of plant model mismatch with a nominal con-
troller (without adaptive control or disturbance rejection), while also not considering
offset originating due to imperfect state estimation.

The results of the full 6 hour simulation are shown in Figure 5.2, and Figure 5.3 shows
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the controlled variable until 4 hours, since the scale of the controlled variable is large in
the 6 hour figure. From the figures it is visible that even before F changes at 2 hours,
there is small constantly increasing offset. This is due to the constantly increasing
activation energy. At 2 hours the inflow step change causes a large overshoot, which
levels into slowly increasing offset of more than 0.1 kmol/m3.

At 4 hours there is a setpoint change, which results in a runoff situation. The inaccurate
control model causes too drastic cooling of the reactor, which in turn drives the process
into an operation region from where it cannot be governed back towards the setpoint,
despite heating the reactor as much as possible. Due to the changed plant parameters,
in this scenario the setpoint of 1.5 kmol/m3 is reachable (before the runoff) unlike
in the simulation where the plant parameters are constant. However, reaching the
setpoint is a difficult task for the controller, since the operation point of the setpoint
is not included in the training data for the model.
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Figure 5.2: CSTR closed-loop simulation, results of states and control input, with nom-
inal Koopman-Wiener NMPC and ideal state estimator. The plant param-
eters are dynamic.

Figure 5.3: The first 4 hours of CSTR closed-loop simulation, controlled variable tra-
jectory, with nominal Koopman-Wiener NMPC and ideal state estimator.
The plant parameters are dynamic.



5 Results and discussion 62

Disturbance augmented NMPC with UKF

Next to be presented, is a simulation where disturbance rejection is used to allow the
Koopman-Wiener NMPC to respond to the offset caused by plant model mismatch.
The plant parameters are changed as presented in Figure 4.1. In addition, the full state
is not measured, and the measurement has noise as described in Section 4.2.3. UKF
is used for state estimation with parameters:

R =
[
0.022

]
Q =

[
0.0052 0

0 0.00022

]
, P0 =

[
0.1 0

0 0.001

]

The resulting state and control input trajectories are shown in Figure 5.4, and the
functioning of the controller is further explained by Figure 5.5, where the plots show
trajectories of linear state z and estimated disturbance dz. In Figure 5.4, the plot for
CA shows the actual concentration in green solid line. Instead of the actual concentra-
tion, the state estimator receives a noisy measurement that is portrayed by the red line
in the plot. The controller only receives the posterior estimate of linear state z that
is portrayed by blue dashed line in Figure 5.5. The blue dashed lines for the posteriors
of states in Figure 5.4 are decoded transformations from the z-posterior. The state
x posteriors are not used in any calculations, and they are only used as visual aids in
understanding the results.

From the figures, it is visible that the disturbance rejection succeeds in eliminating
steady-state offset, given enough time. It is interesting to notice that the ability to
estimate temperature T accurately is not needed in order to successfully track the
setpoint. However, the performance by the controller is not perfect. The estimated
disturbance in Figure 5.5 shows oscillations as a result to setpoint changes and it
reflects as oscillations of the controlled variable in Figure 5.4 especially after 4 hours.
Also, the state estimation is slow in converging the linear states to accurately represent
CA. The slow convergence is visible for example in Figure 5.4 after 2 hours.

The problem arising from the slowly converging state estimation is also visible in Fig-
ure 5.4 at 2 hours when looking at the plot for the control input. In order to best
answer the sudden increase of reactor inflow, which steers CA higher, the controller
should accelerate the chemical reaction by heating the reactor. However, due to the
slowly converging state estimate, the controller increases the heating rate of the reac-
tor slower than it would be possible. Tuning Q higher is not a good solution to the
issue because then the steady-state operation would suffer more from noise.



5 Results and discussion 63

Figure 5.4: CSTR closed-loop simulation, results of states and control input, with dis-
turbance augmented Koopman-Wiener NMPC and UKF.
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Figure 5.5: CSTR closed-loop simulation, results of linear state and disturbance vari-
able, with disturbance augmented Koopman-Wiener NMPC and UKF.

Disturbance augmented NMPC with adaptive UKF

The next scenario is otherwise as the previous, except that adaptive UKF is utilized
instead of UKF. The chosen state estimator parameters and adaptation strategy are
given by:

ϵN,max = 3.0, R =
[
0.022

]
, P0 =

[
0.1 0

0 0.001

]
,

Q =





(1.0 · 10

−3 · ϵN)2 0

0 (5.0 · 10−5 · ϵN)2


 ϵN > ϵN,max


(5.0 · 10

−3)2 0

0 (1.0 · 10−4)2


 ϵN ≤ ϵN,max

. (5.1)

Figure 5.6 displays trajectories for states and control input. The trajectories of dz, ϵN

and diagonal values of Q are shown in Figure 5.7. It is visible in the third and fourth
plots in Figure 5.7 how the values of Q spike as a reaction to ϵN going over its limit
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displayed as a red line in the second plot of the figure. As a result to higher level of
model uncertainty indicated by Q, the disturbance variable as shown in the first plot
of Figure 5.7, rises faster to the value of 0.06 after 2 hours than it rises in Figure 5.5
in the previous scenario.

From Figure 5.6 it can be seen how the adaptation of Q causes the resulting state
estimation of CA to follow the real state more closely during the overshoots compared
to Figure 5.4. The control input also rises slightly more sharply after 2 hours in
Figure 5.6 compared to Figure 5.4. However, focusing on the controlled variable
trajectories, there are only extremely small differences between the setpoint tracking
of Figure 5.6 and Figure 5.4. When looking at performance indicators collected from
the 6 hour simulations, the Root Mean Square Error (RMSE) between the setpoint
and controlled variable is 0.08594 kmol/m3 for the scenario with UKF, and RMSE is
only slightly better 0.08124 kmol/m3 for the adaptive UKF scenario. The maximum
overshoot from the setpoint is 0.291 kmol/m3 at 2.25 hours for the UKF scenario and it
is again slightly better 0.272 kmol/m3 at 2.23 hours for the adaptive UKF scenario.

Overall, it can be stated that using adaptive UKF instead of UKF provides marginal per-
formance improvement in this case study. During tuning it was noticed that adaptive
UKF also had an increased tendency to cause oscillations and instability, depending
on the tuning parameters. However, when considering more broadly than this case
study, the more accurate state estimation adaptive UKF enables during sudden and
severe plant model mismatch might be substantially beneficial. The improved state
estimation could result in considerably better controller performance in other applica-
tions. Additionally the more accurate state estimation can benefit higher level plant
automation and information collecting systems. The latter alone could justify the
added complexity of adaptive UKF, even if the performance gains would be marginal.
Also, the more accurate state estimation of adaptive UKF may be helpful in preventing
state estimation divergence from reality in cases where the plant model mismatch is
extremely large.
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inflow

Figure 5.6: CSTR closed-loop simulation, results of states and control input, with dis-
turbance augmented Koopman-Wiener NMPC and adaptive UKF.
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Figure 5.7: CSTR closed-loop simulation, results of disturbance variable, normalized
residual, and diagonal of Q, with disturbance augmented Koopman-Wiener
NMPC and adaptive UKF.

Adaptive Koopman-Wiener NMPC using RLS

The next scenario features the RLS scheme described in Section 3.5 instead of incor-
porating any disturbance rejection to the controller. The RLS method is acting online
to adapt the diagonal value of A, a1,1, within the Koopman-Wiener NMPC. During
the closed-loop simulation, the CSTR plant parameters are changed as presented in
Figure 4.1 and CA is measured with noise, as described in Section 4.2.3. UKF is uti-
lized for state estimation with parameters:
R =

[
0.022

]
Q =

[
0.0152

]
, P0 =

[
0.1

]
.
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The forgetting factor was tuned to µ = 0.92. The resulting controlled variable tra-
jectory is visible in Figure 5.8. The figure shows a runoff after the 4 hour setpoint
change. Due to the large scale of Figure 5.8, a zoomed in view of the first 4 hours
is visible in Figure 5.9. In Figure 5.9 it is visible that even before the 4 hour runoff a
steady state is not reached. Figure 5.10 shows the estimated value of a1,1 throughout
the simulation. The estimation is stable until 4 hours, but even then the adapted A

does not represent the system well in the wider operation region, since the setpoint
change at 4 hours causes the controller to fail. This could be interpreted as the model
overfitting to a small operation region. Another factor for why the estimation of A
fails after 4 hours might be originating from the linear state z1 having zero value some
time after 4 hours. The zero value of z1 can be seen in Figure 5.5 to correspond to
some value of CA between 1.3 kmol/m3 and 1.5 kmol/m3. The z1 being close to zero
is a problem for RLS, because around zero the Koopman-Wiener model predicts the
linear state dynamics to be completely dominated by the control input, yet the mea-
surements might provide completely opposite results, leading to huge over-corrections
of the linear dynamics.

Despite multiple trials, tuning µ or Q were found incapable to improve the control per-
formance. That is because increasing Q from the already high value would incorporate
too much noise. Increasing µ even to 0.93 would cause a1,1 to be estimated into value
over 1 as soon as the inflow changes at 2 hours. A with such value would indicate an
unstable system and the control inputs resulting from such a model were oscillating
constantly between lower and upper limits, resulting in an oscillating trajectory of CA

that would not settle to a steady state.

Overall, the RLS approach could perhaps be improved by incorporating further param-
eter tuning, adaptive estimation, and a strategy for handling linear state reaching zero
value. However, in this work it is decided that it does not seem worth the effort to
spend further time improving the RLS approach. Based on the previous CSTR scenar-
ios, disturbance rejection is more intuitive, easier to tune, and more reliable in achieving
good results. For that reason, the second case study does not feature a scenario with
the RLS approach, and the case study focuses solely on disturbance rejection.
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Figure 5.8: CSTR closed-loop simulation, controlled variable trajectory, with
Koopman-Wiener NMPC utilizing RLS to adapt the control model.

Figure 5.9: The first 4 hours of CSTR closed-loop simulation, controlled variable tra-
jectory, with Koopman-Wiener NMPC utilizing RLS to adapt the control
model.
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Figure 5.10: CSTR closed-loop simulation, adapted values of A, with Koopman-
Wiener NMPC utilizing RLS to adapt the control model.

Comparisons against ideal control model NMPC

To further evaluate the performance of disturbance augmented Koopman-Wiener NMPC
with UKF and adaptive UKF, a NMPC is constructed with the exact plant model of
Eq. (4.1) and Eq. (4.2) as a control model instead of the Koopman-Wiener model.
At every sampling instance this ”ideal” control model is provided with the current
plant parameters. This means the control model is an accurate representation of the
plant during the moment when the optimal control problem is solved. However, dur-
ing prediction horizon, the ideal model NMPC does not anticipate changes to the
plant parameters, which shift during the simulation according to Figure 4.1. The ideal
model NMPC has the full state measured without noise to also represent ideal state
estimation.

The resulting controlled variable trajectory from closed-loop simulation using the ideal
model NMPC is shown in Figure 5.11 as a green line. The figure also features the
controlled variable trajectory from Figure 5.4 as a blue line and from Figure 5.6 as
a red line. For the ideal model NMPC, the figure shows that despite the use of
the plant model, there are still overshoots after 2 hours and after 4 hours. Some
portion of the overshoots, for example the smaller overshoot after 4 hours, might
be originating from the solver failing to find global minimum to the optimal control
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problem. However, especially after 2 hours the majority of the overshoot is caused by
the lack of anticipation to the plant parameter changes and the limited range of control
input. Once the inflow (F ) changes at 2 hours, the process would require infeasibly
large heating to keep the controlled variable at the setpoint. The inflow change could
also be compensated by controlling the concentration to a value below setpoint before
2 hours, but it might be unrealistic to assume that a controller could have information
available about the future inflow changes. RMSE for the simulation with the ideal
model NMPC is 0.05804 kmol/m3.

Figure 5.11: CSTR closed-loop simulations, controlled variable trajectories, with ideal
model NMPC and two disturbance augmented Koopman-Wiener NMPCs.
The first Koopman-Wiener NMPC utilizes UKF and the second utilizes
adaptive UKF.
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5.1.2 Koopman-Wiener model Ib.

Next the focus is shifted to investigate the Koopman Wiener model with two linear
states (nz = 2) to make comparisons between the two options for disturbance models
presented in Section 4.2.3.

Observability analysis for disturbance modeling

The observability analysis begins by open-loop simulating the Koopman-Wiener (Ib.)
models that are augmented with different disturbance models Bd1,Bd2. The open loop
simulations are done starting from the perturbed initial points for augmented linear
state zaug as described in Section 4.2.3 and in Section 3.3.1. The decoded output
(CA) trajectories resulting from open-loop simulations are shown in Figure 5.12 for
disturbance model Bd1, and in Figure 5.13 for disturbance model Bd2. In the figures,
the purple and brown lines are corresponding to the trajectories caused by making
a perturbation to the disturbance variable. In both of the figures the perturbations
to the disturbance variable cause a more significant difference in the trajectory when
compared to making perturbations to the linear states (perturbations to z1 shown in
blue and orange, perturbations to z2 shown in green and red). However, it visible
comparing the figures that the difference is more pronounced with Bd1.

Figure 5.12: Koopman-Wiener model Ib. augmented with Bd1, open-loop simulations,
decoded CA trajectories.
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Figure 5.13: Koopman-Wiener model Ib. augmented with Bd2, open-loop simulations,
decoded CA trajectories.

For the model with Bd1 the empirical observability Gramian computed from the open-
loop simulations has singular values: 66.72, 0.05550, 0.01396.
The singular value decomposition also reveals the disturbance augmented linear state

eigenvectors
[
z1 z2 dz

]T
that relate to the singular values. The largest singular

value (66.72) corresponds almost exclusively to the direction of the disturbance vari-

able, since the related eigenvector is:




−0.01172

−4.019 · 10−6

−0.9999


.

The eigenvectors related to the second largest and the smallest eigenvalue are respec-

tively:



−0.9502

−0.3113

−0.1114


 and




0.3113

−0.9503

−3.644 · 10−3


.

For the model with Bd2 the empirical observability Gramian computed from the open-
loop simulations has singular values: 1.102, 0.04231, 0.01195.
For this second model, the largest singular value also corresponds mostly to the di-
rection of the disturbance variable, but not as strongly as with the first model. The

eigenvector related to the maximum singular value is




−0.1512

−0.001880

−0.9885


.

The eigenvectors related to the second largest and smallest eigenvalue are respectively:
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−0.8846

−0.4460

−0.1361

 and

 0.4411

−0.8950

−0.06577

.

Both disturbance augmented Koopman-Wiener models are weakly observable at the
initial point, because all of the singular values are nonzero. This thesis assumes that
the weak observability results are extendable to the entire relevant state space. The
minimum and second largest singular values are very similar between the two mod-
els. This makes intuitive sense, as the non-maximum singular values correspond to
eigenvectors that lie mostly in the span of the two linear states, and the linear states
evolve similarly regardless of the disturbance model when the disturbance variable is
not perturbed.

However, the maximum singular values have orders of magnitude difference between
the models. When Bd1 is the disturbance model, the disturbance dz affects a linear
state corresponding to a larger diagonal value in A, a1,1 = 0.93 (slower dynamics),
compared to disturbance model Bd2 affecting linear state corresponding to a2,2 = 0.01.
The singular values and the figures show that for this Koopman-Wiener model, affecting
the linear state with slower dynamics affects the output more.

As mentioned earlier in Section 3.3.1, this thesis argues that evaluation of observability
by the indicators in [30] is unsuitable to disturbance modeling, because indicators in
[30] would prefer the model with Bd2 over the model with Bd1 due to the maximum
and minimum singular values having smaller relative difference. On the contrary, in this
thesis it is believed that Bd1 is the better option, because it causes the maximization
of all the singular values. Especially observing and thus estimating the disturbance
variable should be easier with Bd1 due to the significantly larger corresponding singular
value.

Closed-loop simulations

Next, both of the disturbance models are tested in closed-loop simulations. In the first
simulation the CSTR is controlled by Koopman-Wiener (Ib.) NMPC that is augmented
with Bd1. The second simulation uses Bd2 instead. The system parameters change
according to Figure 4.1, CA is the only measured variable, and there is measurement
noise as described in Section 4.2.3. Adaptive UKF is used as state estimator for the
both controllers. The state estimator parameters for simulation using NMPC with Bd1
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are:

ϵN,max = 3.0, R =
[
0.022

]
, P0 =

0.1 0 0

0 0.1 0

0 0 1.0 · 10−9

,

Q =




(0.01 · ϵN)2 0 0

0 (0.01 · ϵN)2 0

0 0 (2.0 · 10−4 · ϵN)2

 ϵN > ϵN,max


0.012 0 0

0 0.012 0

0 0 (2.0 · 10−4)2

 ϵN ≤ ϵN,max

. (5.2)

The state estimator parameters for simulation using NMPC with Bd2 are:

ϵN,max = 3.0, R =
[
0.022

]
, P0 =

0.1 0 0

0 0.1 0

0 0 1.0 · 10−9

,

Q =




(0.01 · ϵN)2 0 0

0 (0.01 · ϵN)2 0

0 0 (2.0 · 10−3 · ϵN)2

 ϵN > ϵN,max


0.012 0 0

0 0.012 0

0 0 (2.0 · 10−4)2

 ϵN ≤ ϵN,max

. (5.3)

The resulting controlled variable trajectories from the closed-loop simulations are visible
in Figure 5.14 for the controller with Bd1 and in Figure 5.15 for the controller with
Bd2. The Koopman-Wiener (Ib.) NMPC augmented with Figure 5.14 displays very
similar behaviour than the previous Koopman-Wiener (Ia.) NMPC in Figure 5.6. RMSE
for the Koopman-Wiener (Ib.) NMPC augmented with Bd1 is: 0.1080 kmol/m3. The
performance of the controller with Bd2 is significantly worse compared to the controller
with Bd1. The Bd2 augmented Koopman-Wiener (Ib.) NMPC fails to eliminate offset
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after the setpoint change at 4 hours. Additionally, even before 4 hours, the offset
is not removed as precisely as with the Bd1 augmented controller. RMSE for the
Koopman-Wiener (Ib.) NMPC augmented with Bd2 is: 0.1540 kmol/m3.

inflow

inflow

Figure 5.14: CSTR closed-loop simulation, controlled variable trajectory, with
Koopman-Wiener NMPC disturbance augmented with Bd1.

inflow

inflow

Figure 5.15: CSTR closed-loop simulation, controlled variable trajectory, with
Koopman-Wiener NMPC disturbance augmented with Bd2.

Figure 5.16 shows the trajectories for the estimated linear states and disturbance vari-
able for the simulation where the controller is augmented with Bd1. Figure 5.17 shows
the corresponding trajectories for the controller with Bd2. Discussing the latter fig-
ure first, it is visible that after 4 hours, the model is constantly failing to predict z1,
because the prior and posterior are differing considerably. Meanwhile, the value of z2
seems to be very strongly dominated by the disturbance variable. However, despite
the disturbance variable and z2 settling to quite steady values, it does not translate to
successful estimation of CA. Compared to Figure 5.17, the estimation of linear states
is successful in Figure 5.16, since there are no large and lasting differences between
priors and posteriors.

From the figures and the previously discussed singular values, it can be interpreted
that z1 has a larger impact on the output than z2, and thus ”fixing” z1 prediction
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by the disturbance estimation instead of z2 brings better performance. At least with
this particular Koopman-Wiener model, the linear state that is more observable is
corresponding to a larger diagonal value in A. Another observation from both figures,
Figure 5.16 and Figure 5.17, is seeing that the Koopman-Wiener model Ib. being at
the setpoint of CA = 1.5 kmol/m3 results in z1 being very close to zero. This could
further explain the problems with using Bd2, as the disturbance model. At the setpoint
the Koopman-Wiener model is extrapolating outside of its training data range, and z1

reaching zero is likely not descriptive of the real system because at zero the dynamics
of z1 would be completely dominated by the control input.

Lastly as an interesting side note, it is visible by comparing Figure 5.16 and Figure 5.17
that the different disturbance models result in different linear state values before 4
hours, despite the system outputs being similar at the time. The linear state values for
in Figure 5.16 remain well between [-1, 1], while the linear state values in Figure 5.17
are estimated outside of this range. This is interesting considering that both models do
use the same decoder, so the observation illustrates that the decoder is non-injective,
meaning multiple combinations of linear states can produce the same output.

Figure 5.16: CSTR closed-loop simulation, results of linear states and disturbance vari-
able, with Koopman-Wiener NMPC disturbance augmented with Bd1.
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Figure 5.17: CSTR closed-loop simulation, results of linear states and disturbance vari-
able, with Koopman-Wiener NMPC disturbance augmented with Bd2.
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5.2 Case study II: Distillation column

Nominal NMPC, dynamic plant parameters

The distillation column case study begins with a simulation that has the plant param-
eters change as described by Figure 4.2, but the controller uses nominal Koopman-
Wiener model without any disturbance rejection or adaptation method. The control
model would correspond to Eq. (4.14), if the unmeasured disturbance Bd,dz would
be removed. The nominal Koopman-Wiener NMPC has full state measured without
noise in addition to the measured disturbance of xf to consider ideal state estimation.
The trajectory of the controlled variable xd resulting from the closed-loop simulation
is shown in Figure 5.18.

From the figure it is visible that despite the measured disturbance xf the nominal
NMPC is able to track the setpoint almost perfectly until the unmeasured disturbance
to F starts at 1 hour. After that the plant model mismatch causes offset, and the
magnitude of the steady-state offset is operation point dependant. Interestingly, the
second measured disturbance ramp starting at 11 hours does slightly increase the offset,
most likely due to the already present plant-model mismatch.

Figure 5.18: Distillation column closed-loop simulation, controlled variable trajectory,
with nominal Koopman-Wiener NMPC and ideal state estimator. The
plant parameters are dynamic.
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Observability analysis for disturbance modeling

Next investigated are the two choices for disturbance modeling in the distillation column
case study. The investigation begins by performing open-loop simulations of the two
differently disturbance modeled Koopman-Wiener models presented in Section 4.3.3.
The resulting trajectories of xd are shown in Figure 5.19 for Bd1 and in Figure 5.20
for Bd2.

Figure 5.19: Koopman-Wiener model IIa. augmented with Bd1, open-loop simulations,
decoded xd trajectories.

Figure 5.20: Koopman-Wiener model IIa. augmented with Bd2, open-loop simulations,
decoded xd trajectories.

For the model with Bd1 the empirical observability Gramian calculated from the open-
loop simulations has singular values: 16.12, 0.8398, 0.008587. The largest singular
value corresponds mostly to the direction of the disturbance variable, since the related

eigenvector is:



−0.04333

0.01798

−0.9989


.

The eigenvectors related to the second largest and smallest eigenvalue are respectively:
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 0.8139

−0.5792

−0.04573

 and

 −0.5794

−0.8150

−0.01047

.

For the model with Bd2 the resulting empirical observability Gramian from the open-
loop simulations has singular values: 4.985, 0.7784, 0.008010. The largest singular
value corresponds less strongly to the direction of the disturbance variable than with

Bd2, and the related eigenvector is:

−0.1337

0.06903

−0.9886

.

The eigenvectors related to the second largest and smallest eigenvalue are respectively: 0.7995

−0.5820

0.1488

 and

 0.5856

0.8103

0.02265

.

As in the CSTR case, the observability analysis results for the distillation column case
show that the linear state corresponding to larger diagonal value in A (slower dynamics)
is more observable than the linear state corresponding to a smaller diagonal value. The
observability analysis also indicates that modeling the disturbance to affect the linear
state with slower dynamics results in better observability for the disturbance variable
and the overall system. Compared to the CSTR case, the smaller difference between
the maximum singular values in the distillation column case is explained by the smaller
difference between diagonal values of A.

Disturbance augmented NMPC using UKF

Next to be presented are the resulting control performances from augmenting the
Koopman-Wiener NMPC with the disturbance models when controlling the distillation
column in a closed-loop simulation. The only measurement available is the distillate
composition xd, and the measurement is noisy as described in Section 4.3.3. Both
controllers use UKF as state estimator. For the controller with Bd1 the parameters for
the UKF are:

R =
[
(5 · 10−5)2

]
Q =

0.01
2 0 0

0 0.012 0

0 0 (8.0 · 10−4)2

, P0 =

0.001
2 0 0

0 0.0012 0

0 0 (1.0 · 10−9)2

.

For the controller with Bd2 the UKF parameters are:
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R =
[
(5 · 10−5)2

]
Q =

0.01
2 0 0

0 0.012 0

0 0 (1.4 · 10−3)2

, P0 =

0.001
2 0 0

0 0.0012 0

0 0 (1.0 · 10−9)2

.

The resulting distillate trajectories are visible in Figure 5.21 for the NMPC with Bd1

and in Figure 5.22 for the NMPC with Bd2. The trajectories between the two figures
are practically identical and RMSE is 7.662 · 10−5 for the NMPC with Bd1 and RMSE
is 7.521 · 10−5 for the NMPC with Bd2. Both controllers produce good performance
despite the noise being relatively larger than in the CSTR case. The first offset in the
figures is after 1 hour and caused by the step change to the feed flow rate, F . There
are also large overshoots as a result to setpoint changes. In both of the figures the
disturbance rejection is able to slowly correct the performance of the controller and
reduce the offset caused by all sources almost completely. However, the state estimator
fails to reject the effect of measurement noise completely and that causes noisiness
also in the distillate composition. It is worth mentioning that the values of Q within
the UKF could be increased to reject noise at steady operation more effectively but
this would be at the cost of recovering from overshoots more slowly.
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Figure 5.21: Distillation column closed-loop simulation, controlled variable trajectory,
with Koopman-Wiener NMPC disturbance augmented with Bd1. State
estimation is done with UKF.
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Figure 5.22: Distillation column closed-loop simulation, controlled variable trajectory,
with Koopman-Wiener NMPC disturbance augmented with Bd2. State
estimation is done with UKF.

The augmented linear state trajectories are visible in Figure 5.23 for the NMPC with
Bd1 and in Figure 5.24 for the NMPC with Bd2. The figures show that the same system
output can correspond to more than one combination of linear states, confirming the
similar observation from the previous case study. Also, both figures show that the
setpoint changes at 2.5 hours and 8.5 hours cause the magnitude of the disturbance
variable to suddenly drop. At 6 hours the setpoint change causes a sudden requirement
to increase the magnitude of the disturbance estimate. These observations indicate
that the controller performance could be further improved if the state estimator could
utilize information about a change in the setpoint. Overall for the distillation column
case study, it does not seem to matter which of the disturbance models is chosen, as
the effect from state estimator tuning parameters completely overshadows any possible
differences between the two models.
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Figure 5.23: Distillation column closed-loop simulation, results of linear states and dis-
turbance variable, with Koopman-Wiener NMPC disturbance augmented
with Bd1. State estimation is done with UKF.
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Figure 5.24: Distillation column closed-loop simulation, results of linear states and dis-
turbance variable, with Koopman-Wiener NMPC disturbance augmented
with Bd2. State estimation is done with UKF.

Disturbance augmented NMPC using Bd1 and adaptive UKF

As the final simulation scenario for the distillation column case, this thesis investigates
improving the state estimation in order to achieve better performance for the Koopman-
Wiener NMPC that is augmented with Bd1 disturbance model. The state estimation
is changed in two ways:

1. UKF is replaced by adaptive UKF with following parameters:
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ϵN,max = 6.0, R =
[
(5.0 · 10−5)2

]
, P0 =

0.001 0 0

0 0.001 0

0 0 1.0 · 10−9

,

Q =




0.012 0 0

0 0.012 0

0 0 0.0052

 ϵN > ϵN,max


0.0052 0 0

0 0.0052 0

0 0 (2.0 · 10−4)2

 ϵN ≤ ϵN,max

. (5.4)

2. The state estimator receives information when a setpoint change is taking place,
and during those moments, the state estimator sets the disturbance variable dz

value to zero.

The resulting controlled variable trajectory is visible in Figure 5.25. The use of adaptive
UKF allows for greater noise rejection during steady operation, which can be seen for
example comparing Figure 5.25 and Figure 5.21 closely between 4 and 6 hours. During
that time, despite the similar measurements (red line), the controller with adaptive
UKF results in a smoother controlled variable trajectory (green line), because the state
estimation is less affected by the noise as indicated by the smoother estimated state
(blue dashed line). The benefit of adaptive UKF over UKF is that despite the greater
noise rejection during steady state, overshoots are not increased, and the recovery from
them is improved. This can be seen comparing Figure 5.25 and Figure 5.21 for example
after 1 hour or after 6 hours. RMSE for the Bd1 augmented Koopman-Wiener NMPC
using adaptive UKF is: 6.531 · 10−5.

The augmented linear state trajectories from the simulation are presented in Fig-
ure 5.26. From the figure it is visible how resetting disturbance variable to zero at
setpoint changes is able to reduce the time it takes to reach the steady state value
after 3 hours and after 9 hours compared to Figure 5.23. Around the same times, the
faster reached steady value for disturbance variable enables better setpoint tracking
in Figure 5.25 compared to Figure 5.21. Even though resetting the disturbance value
to zero around the setpoint changes is a simple ”trick” specific to this case study, it
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demonstrates the potential for a more elaborate scheme where information from a step
change to the setpoint could be utilized in order to adapt the disturbance estimate
faster to a new operation point. Overall, using adaptive UKF together with the dis-
turbance resetting is able to improve the already good performance of the disturbance
augmented Koopman-Wiener NMPC that was achieved while using UKF.

Figure 5.25: Distillation column closed-loop simulation, controlled variable trajectory,
with Koopman-Wiener NMPC disturbance augmented with Bd1. State
estimation is done with adaptive UKF.
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Figure 5.26: Distillation column closed-loop simulation, results of linear states and dis-
turbance variable, with Koopman-Wiener NMPC disturbance augmented
with Bd1. State estimation is done with adaptive UKF.
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6 Conclusions

To conclude this thesis, the results from the two case studies, CSTR and distilla-
tion column, demonstrate that using disturbance rejection is a viable approach to
handle plant model mismatch in Koopman-Wiener NMPC. Using the approach, the
controllers are successful in eliminating steady-state offset in both investigated case
studies. Model adaptation with RLS method does not bring satisfactory results in the
studied CSTR case study. Developing well performing RLS method for online adapta-
tion of the Koopman-Wiener model seems more challenging and the operation of such
controller seems more prone to instability than utilizing disturbance rejection. Despite
that, future work could investigate Koopman-Wiener NMPC that uses RLS method
for model adaptation in order to investigate if the approach could perform well in a
different application and by using a more developed method to stabilize the operation.
Furthermore, the disturbance rejection approach requires further research to prove the
effectiveness for a higher dimensional nonlinear system.

Moreover, this thesis finds that performing observability analysis by computing empir-
ical observability Gramians for the disturbance augmented Koopman-Wiener models is
a viable method for choosing the disturbance model. The case study results support
the idea that picking a disturbance model that maximizes all the singular values of
empirical observability Gramian is a valid strategy. In the case studies it is assumed
that calculating the empirical observability Gramian only for one initial point and with
one control input trajectory is enough to generalize the observability results for the
relevant operation region. This assumption does not produce problems within the case
studies. However, more case studies should be investigated to prove the effectiveness
of the proposed disturbance modeling strategy more broadly. The future investigations
should include higher dimensional and more complex nonlinear systems than what are
used in this thesis.

Based on the results and observations, this thesis concludes by proposing that a good
heuristic for picking a disturbance model for Koopman-Wiener model is modeling the
disturbances to affect the linear states that correspond to the largest Koopman operator
eigenvalues (diagonal values of A). Such a heuristic fits the results from the case stud-
ies in this thesis, and using the heuristic instead of performing any kind of observability
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analysis, would save time and resources when developing offset-free Koopman-Wiener
NMPC. Furthermore, the distillation column case study supports using a heuristic ap-
proach instead of performing rigorous observability analysis by demonstrating that the
specific choice of disturbance model can be inconsequential for the controller perfor-
mance in some applications.

To discuss future research more specifically, by expanding the work done in Schulze
et al. [50], this thesis is related to the Kopernikus project SynErgie 2 by the German
Federal Ministry of Education and Research. The overarching goal of the project is to
find solutions to enable flexible electricity demand management for energy intensive
industrial processes. Related to the project, the case study in [50] is a simulated air
separation unit process. Thus, it would be a natural continuation of this thesis to
investigate the developed offset-free Koopman-Wiener NMPC on a similar air sepa-
ration unit. Furthermore, the air separation unit process is higher dimensional and
more complex than the case studies of this thesis. For future work, besides continuing
to compare adaptive Koopman-Wiener NMPC against offset-free Koopman-Wiener
NMPC, another interesting comparison might be to compare the performance of a
linear offset-free MPC against offset-free Koopman-Wiener NMPC. Such a compari-
son could quantify how beneficial the added complexity of Koopman-Wiener models
is in control applications with plant model mismatch compared to using purely linear
models.
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Abbreviations and symbols

Abbreviations

ANN Artificial Neural Network

CSTR Continuous Stirred Tank Reactor

EKF Extended Kalman Filter

IPOPT Interior Point Optimizer

LTI Linear-Time-Invariant

MIMO Multiple-Input-Multiple-Output

MPC Model Predictive Control(ler)

MSE Mean Squared Error

NMPC Nonlinear Model Predictive Control(ler)

OMLT Optimization and Machine Learning Toolkit

RLS Recursive Least Squares

RMSE Root Mean Square Error

UKF Unscented Kalman Filter

Symbols

α In the context of UKF, parameter for spread of sigma points

α In the context of the distillation column, relative volatility [−]

β Parameter for assumed distribution in UKF

ϵ Vector of residual between measured and predicted output

ϵz Vector of residual between posterior and prior linear states

Γ Measured disturbance dynamics matrix (Not related to Bd)
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γ Measured disturbance vector (Not related to d)

Λ Block diagonal matrix containing eigenvalues of the Koopman opera-
tor

Ω Inverse of autocorrelation matrix in the RLS algorithm

Φε Matrix for calculating the empirical observability Gramian consisting
of output vector differences at some time

φ Vector of eigenfunctions of the Koopman operator

A Depending on the context, either general linear dynamics matrix, or
matrix of approximated eigendynamics of the Koopman operator

Aaug Disturbance augmented linear dynamics matrix

B Depending on the context, either general linear control input dynamics
matrix, or matrix of approximated linear control input dynamics of
linear or Wiener type Koopman models

B(i) Matrix of approximated control input dynamics of bilinear Koopman
models

Bd Linear disturbance dynamics matrix

bd Vector of nonzero elements of Bd

Baug Disturbance augmented linear control input dynamics matrix

C Depending on the context, either general linear output matrix, or linear
decoder transformation matrix of bilinear or linear Koopman models
z → x

d Vector of (unmeasured) disturbances

dx State disturbance vector

dy Output disturbance vector

dz Linear state disturbance vector

e Tracking error vector

ei Basis vector to the direction of the ith dimension in state space
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ess Steady state target for tracking error vector

F Jacobian matrix of f

f General nonlinear dynamics

faug General disturbance augmented nonlinear dynamics

g Observable functions

H Jacobian matrix of h

h General static nonlinear output function

hi Nonlinear function that determines control input dynamics

haug General disturbance augmented static nonlinear output function

hreal Real static output function of the controlled plant

I Identity matrix

K Kalman gain matrix

Q Process noise covariance matrix

R Measurement noise covariance matrix

r General static function relating controlled variables to outputs

Rr Matrix relating controlled variables to outputs

S System uncertainty covariance matrix

T Nonlinear encoder function to transform x → z

T−1 Nonlinear inverse of the encoder function for Koopman-Wiener models
z → x

u Control input vector

uss Steady state target for control input vector

v Vector of measurement noise

W Matrix for stage cost weights in ℓ
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WO Observability Gramian

W δ
O Local observability Gramian

Wz Matrix for stage cost weights in ℓz

x State vector

xss Steady state target for state vector

y Output vector

yCV Vector of controlled variables

ySP Vector of setpoints for controlled variables

yss Steady state target for output vector

z Linear state vector (finite set of approximated eigenfunctions of the
Koopman operator)

z∗ Free response of the linear state vector

zaug Disturbance augmented linear state vector

zss Steady state target for linear state vector

θ Vector containing parameters of A (the approximated eigendynamics
of the Koopman operator)

T † Approximate of T−1

W ε
O Empirical observability Gramian

y±i System output vector when simulation starts from initial point per-
turbed in the basis direction indicated by the upper index

∆H Reaction enthalpy [kJ/kmol]

∆t Sampling time

δ Small deviation from a point in the context of local observability
Gramian

ℓ Stage cost of the optimal control problem
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ℓz Stage cost of the quadratic optimal control problem using zss as a
setpoint

ℓss Stage cost of the steady state target problem

ϵN Normalized and squared residual ϵ

ϵN,max Upper limit for ϵN

κ Parameter affecting sigma points in UKF

λ Eigenvalue of the general linear dynamics matrix A

λi Eigenvalue of the Koopman operator

C Complex numbers

R Real numbers

Lf Lie operator

U Control input constraints

X State constraints

Xf Terminal state constraints

µ Forgetting factor in RLS algorithm

ρL Liquid density
[

kJ
kg K

]
ε Perturbation from the initial point in the context of empirical observ-

ability Gramian

φi Eigenfunction of the Koopman operator

A Substance A in the CSTR case study

B In the context of the CSTR case study, substance B

B In the context of the distillation column case study, bottoms flow rate
[kmol/min]

CA Concentration of A [kmol/m3]

Cp Liquid heat capacity [kJ/h]
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CA0 Inflow concentration of A [kmol/m3]

D Distillate flow rate [kmol/min]

E Activation energy of the reaction [kJ/kmol]

EO Energy transfer from initial state to the output trajectory

F In the context of the CSTR case study, volumetric inflow to the reactor
[m3/h]

F In the context of the distillation column case study, molar feed flow
rate [kmol/min]

I Denotes indistinguishability

J Cost function of the optimal control problem

j Time instance describing future predictions in the optimization prob-
lems

Jf Terminal cost term of the optimal control problem

Jz Cost function of the quadratic optimal control problem using zss as a
setpoint

Jss Cost function of the steady state target problem

k Time instance

k0 Pre-exponential factor of the reaction
[

m3

h kmol

]
L1 Model training loss term for encoding and decoding

L2 Model training loss term for one step ahead prediction

L3 Model training loss term for multiple steps ahead prediction

Li Tray i liquid flow rate [kmol/min]

Mb Bottoms holdup [kmol]

Md Condenser holdup [kmol]

Mi Tray i holdup [kmol]
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N Number of trays

nd Dimension of the disturbance vector d

Nf Feed tray

nu Dimension of the control input vector u

nx Dimension of the state vector x

ny Dimension of the output vector y

nz Dimension of the linear state vector z

Nph Prediction horizon of MPC

nyCV
Dimension of the controlled variables vector yCV

nzaug Dimension of the disturbance augmented linear state vector zaug

p Trajectory length for model training

Q Heating (+) or cooling (-) rate [kJ/h]

R Molar gas constant
[

kJ
kmol K

]
R Molar reflux [kmol/min]

T Temperature in the reactor [K]

t Time (continuous)

T0 Inflow temperature [K]

V In the context of observability, open neighborhood of an initial point,
related to the concept of V-indistinguishability

V In the context of the CSTR case study, volume of the reactor [m3]

V In the context of the distillation column case study, Boilup [kmol/min]

W Open neighborhood of an initial point, related to the concept of weak
observability

xb Bottoms liquid composition [−]

xd Distillate composition [−]
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xf Feed composition [−]

xi Tray i liquid composition [−]

yb Bottoms vapor composition [−]

yi Tray i vapor composition [−]
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