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ABSTRACT

Medical device and analysis method developments often include tests on humans,
which are expensive, time consuming, and sometimes even dangerous. In order to
perform human tests, special safety conditions and ethical and legal requirements
must be taken into account. Emulators that can emulate the physiological
functions of the human body could solve these difficulties. In this study, the
heart rate depended electrocardiogram templates for this kind of an emulator
were extracted. The real-life electrocardiogram preprocessing included a high-
pass filter and a Savitzky-Golay filter. A beat detection algorithm was developed
to detect QRS complexes in the signals and classify beat artefacts based on
the RR interval sequences and two adaptive thresholds. Heart rate levels were
detected using the K-means clustering technique. Vectorcardiogram signals
were converted from the electrocardiogram signals using the inverse Dower’s
transformation matrix, and vectorcardiogram templates were extracted to the
respective heart rate levels. Finally, a graphical user interface was created for the
mentioned methods. The developed beat detection algorithm was tested with the
MIT-BIH Arrhythmia Database and the comparison was made with the state-of-
the-art algorithms. The beat detection algorithm resulted the sensitivity of 99.77
%, precision of 99.65 %, and detection error rate of 0.58 %. Based on the results,
the proposed methods and extracted vectorcardiogram templates were successful.

Keywords: QRS detection algorithm, vectorcardiogram, beat artefact, RR
interval, clustering
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TIIVISTELMÄ

Lääketieteellisten laitteiden ja analyysimenetelmien kehitystyö sisältää
usein ihmisille suoritettavia testejä, jotka ovat kalliita, aikaa vieviä
ja joskus jopa vaarallisia. Ihmiskokeiden toteuttamiseksi on otettava
huomioon erityisiä turvallisuusehtoja, sekä eettisiä ja laillisia vaatimuksia.
Emulaattorit, jotka pystyvät jäljittelemään ihmiskehon fysiologisia toimintoja,
voivat olla ratkaisu näihin ongelmiin. Tässä tutkimuksessa sykkeestä
riippuvia elektrokardiogrammimalleja poimittiin tämän tyyppiselle
emulaattorille. Tosielämän elektrokardiogrammisignaalien esikäsittely
sisälsi ylipäästösuodattimen ja Savitzky-Golay suodattimen. Sydämen
lyöntien tunnistussalgoritmi kehitettiin tunnistamaan QRS-komplekseja
signaaleista ja luokittelemaan lyöntiartefakteja RR-intervallisekvenssien
ja kahden adaptiivisen kynnysarvon perusteella. Syketasot tunnistettiin
käyttämällä K-means klusterointitekniikkaa. Vektorikardiogrammisignaalit
muunnettiin elektrokardiogrammisignaaleista käyttämällä käänteistä Dowerin
muunnosmatriisia ja vektorikardiogrammimallit poimittiin vastaaville
syketasoille. Lopuksi luotiin graafinen käyttöliittymä mainituille menetelmille.
Kehitetty lyöntien tunnistusalgoritmi testattiin MIT-BIH Arrhythmia
Database-tietokannalla ja vertailu suoritettiin vastaavien algoritmien kanssa.
Algoritmi suoriutui 99,77 % herkkyydellä, 99,65 % spesifisyydellä ja 0,58
% virheprosentilla. Tulosten perusteella ehdotetut menetelmät ja poimitut
vektorikardiogrammimallit olivat onnistuneita.

Avainsanat: QRS tunnistusalgoritmi, vektorikardiogrammi, lyöntiartefakti, RR-
intervalli, klusterointi
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VCG vectorcardiogram
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PX, PY, PZ potentials of the individual electrode clips
fs sampling frequency
fc cut-off frequency
H(z) transfer function
D% difference percentage
V VCG lead matrix
M transformation matrix
E ECG lead matrix
D inverse Dower’s matrix
Φ electric potential
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1. INTRODUCTION

Medical device development focuses on developing different innovations (such as
instruments, machines and software) to enhance the health of humans and the quality
of medical treatments. Often, in the development of such innovations, the best source
of data would be people. However, interacting with the human body is expensive,
time consuming, and even dangerous in certain situations. Tests with human subjects
involves special safety conditions, and ethical and legal requirements. Hence, the
demand of emulators that can emulate the physiological functions of the human body
is increasing.

This study is part of the project, which aims to develop a phantom, an artificial
human torso that can be used for testing medical devices and analysis methods.
Phantom emulates human physiological properties and the motion of a human torso.
Physiological signals induced in the emulator can be used on testing the properties for
medical devices. The motion of the phantom is produced by using a hexapod platform.

In the earlier developments in the project, the base structure of the electrocardiogram
(ECG) signal synthesis for the human torso emulator has been implemented. This
includes some preprocessing methods for the real-life ECG signal, RR-interval
generation model, and vectorcardiogram (VCG) template extraction to the different
heart rate levels. However, the limitation of the earlier developments is that they are
designed to work only for a specific ECG data. In addition, none verification methods
exists for the aforementioned processes. Since the goal of the project is to be able to
generate several ECG synthesis templates for different situations, it is important to be
able to work with various ECG data. Furthermore, the verification of the beat detection
is an important factor for the quality of the generated VCG templates. Hence, the
overall goal of this research is to further develop the existing methods, their accuracy,
and ability to work with several ECG data.

The aim of this study is to develop heart rate related ECG templates for the
aforementioned emulator environment. ECG signal template generation aims to
develop realistic heart beat intervals and workload related heart rate (HR) models.
These developed models can be used as source signals to generate realistic modeling
cardiac signals in the phantom utilizing three dipole sources placed within the thorax.
Inside the phantom, the current is carried by ions mixed to the gel. Potential differences
across the surface of the phantom are measured with electrodes placed on the torso. In
addition, this study aims to create a graphical user interface (GUI) for the template
extraction process. This way the user can adjust the parameters used in the process.
The developed GUI is presented in Section 4.4.

This research does not include other physiological signal implementations. These
other signal libraries are required to build a multimodal physiological signal library,
which is the ultimate goal of the project. This paper also does not cover the mechanical
or electrical properties of the phantom, except to the extent of this chapter. In
addition, there are various methods for the ECG synthesis. However, this study
mainly focuses on the development of the beat detection algorithm and other internal
functions inside the ECG synthesis process. Therefore, this research only focuses on
the method selected for this study and only refers to the other methods with an extend
of acknowledgment.
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This thesis is structured in the following manner: Chapter 2 describes the anatomical
and electrical properties of the heart, ECG measurement, ECG signal properties and
artefacts, and vectorcardiography. Chapter 3 includes heart rate and its variability,
ECG signal preprocessing methods, beat detection and related researches, and
clustering properties. Chapter 4 introduces the methods and tools used in this research,
including signal preprocessing methods, beat detection algorithm functions, VCG
template generation methods, and graphical user interface implementation. Chapter
5 presents the results. Chapter 6 and Chapter 7 represents the discussion and summary
parts, respectively.
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2. ELECTROCARDIOGRAPHY

Electrocardiography is a noninvasive method to measure the electrical activity of the
heart. The signal produced is called an electrocardiogram (ECG). It records potential
differences between given sites on the body surface that vary during the cardiac cycle
[1]. More specifically, it reflects the differences in transmembrane voltages in cardiac
muscle cells that appear during depolarization and repolarization within each cardiac
cycle. One ECG beat corresponds to one cycle of the electrical activity of the heart.
The traditional ECG measurement and the ECG signal are further explained in Section
2.3.1 and Section 2.3.2, respectively.

The first human ECG was recorded in the year 1887 by Augustus Waller (1856-
1922) using a capillary electrometer [2, 3, 4]. However, the ECG did not become
clinically relevant until the year 1901, when Willem Einthoven (1860-1927) developed
his string galvanometer for this purpose [3]. Einthoven was awarded the Nobel Prize
in the year 1924 in the field of physiology or medicine, "for the discovery of the
mechanism of the electrocardiogram"1. Nowadays, the ECG has become the most
widely used noninvasive tool for cardiac investigation [5].

2.1. Anatomy of the Human Heart

The heart is about the size of a fist and weighs around 250-300 grams. It is located in
the chest between the lungs behind the sternum and above the diaphragm, about 1.5
centimetres (cm) to the left of the midsagittal plane. The orientation of the heart is
tilted slightly in a way that the right side of the heart covers the anterior aspect and the
left side the posterior aspect, respectively. The heart is surrounded by a fibroserous sac
called the pericardium [6]. The walls of the heart are consisted of the cardiac muscle,
called myocardium. [7 p.182-183]

The heart contains four chambers: two atria (the right and left) and two ventricles
(the right and left). Connected to the heart are the great vessels: the superior and
inferior vena cava, the pulmonary artery and vein, as well as the aorta. The heart has
four valves that control the heart’s blood flow. Between the right atrium and ventricle
lies the tricuspid valve, which controls the blood flow from the right atrium to the right
ventricle. The pulmonary valve is located at the border of the right ventricle and the
pulmonary artery. The mitral valve stands between the left atrium and ventricle, and
the aortic valve controls the blood flow from the left ventricle to the aorta. [7 p.182-
184]

The anatomy of the heart is shown in Figure 1. The colors in the figure demonstrate
the blood flow in the heart. Blue color indicates deoxygenated blood and red
oxygenated blood, respectively. The deoxygenated blood returns from the systemic
circulation to the right atrium via the superior and inferior venae cavae. The superior
vena cava drains blood from the upper half of the body, and the inferior vena cava
returns blood from the lower half of the body [6]. From the right atrium, the blood
continues through the tricuspid valve to the right ventricle. The right ventricle pumps
the blood into the pulmonary artery via the pulmonary valve. The pulmonary artery

1https://www.nobelprize.org/prizes/medicine/1924/summary/
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divides into the right and left pulmonary arteries, which carry the blood to the right
and left lungs, respectively.

Figure 1. The anatomy of the heart.

In the lungs, the blood is oxidized and the carbon dioxide produced by cellular
respiration is removed from the blood. Oxygenated blood returns from the lungs
via the pulmonary veins to the left atrium. From there, the blood travels to the left
ventricle through the mitral valve. Finally, the blood is pumped into the aorta from
the left ventricle through the aortic valve. Since the left ventricle pumps the blood
to the systemic circulation, its pressure is much higher than in the right ventricle,
which pumps the blood to the pulmonary circulation [7 p.183]. The cardiac cycle
is composed of systole (ventricular contraction) and diastole (ventricular relaxation).
During systole, blood pressure is at its highest (systolic pressure) and during diastole,
blood pressure reaches its lowest level (diastolic pressure) [8].

Oxygen is not delivered to the heart from the blood circulating inside it, but to
transport the blood, the heart needs its own blood vessels. Coronary arteries are arteries
running on the surface of the heart that carry oxygen and nutrients to the heart muscle
itself [9]. The left and right coronary arteries are the earliest branches of the aorta,
and divide into smaller branches along the heart. Mainly, the right coronary artery
supplies the right side of the heart and the left coronary artery the left side of the heart,
respectively. Typically, the right coronary artery is bigger than the left.

2.2. Electrical Activity of the Heart

The simplified ionic flow of a cardiac muscle cell (cardiomyocyte) during an action
impulse is illustrated in Figure 2. Cardiac muscle cells and their environment contain
different concentrations of ions, mainly sodium (Na+), potassium (K+) and calcium
(Ca2+). Potassium occurs at a higher concentration inside the cells, while sodium and
calcium concentrations are higher in the extracellular space [10]. In cardiac muscle
cells, an action potential of about 100 millivolts (mV), propagates due to sequential
activation and inactivation of ion channels. Electric activation takes place from the
inflow of sodium and calcium ions across the cell membrane [10, 11]. This phase is
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called depolarization. The cells are connected together by gap junctions, which have
a low resistance, and so the activity in one cell is easily spread to neighboring cells
[12, 13, 14].

Figure 2. The ionic flow of the cardiomyocyte.

The conduction system of the heart is presented in Figure 3. The action potential
of the heart is generated in the sinus node (sinoatrial or SA node), located in the right
atrium at the superior vena cava [14]. The cells of the SA node are self-excitatory, so
called pacemaker cells. The depolarization propagates from the SA node throughout
the atria into the atrioventricular node (AV or A-V node), which is located at the
borderline of the atria and ventricles [7 p.188]. The atria and the ventricles are isolated
electrically, and the electrical impulses can only pass from the atria to the ventricles
via the AV node.

Figure 3. The conduction system of the heart.
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The AV node, like the SA node, is a pacemaker. The propagation system of the AV
node is proximally consist of a common bundle, called the bundle of His [7 p.188].
More distally, this common bundle separates into two bundle branches, which spread
along each side of the septum, forming the right and left bundle branches. These
bundles ramify into Purkinje fibers, which diverge to the inner sides of the ventricular
walls. The propagation through the AV node is characterized by a conduction delay
that ensures that the ventricular contraction occurs after the atria empty its blood into
the ventricles [7 p.392]. If the AV node does not receive a stimulus from the atria, it
will generate an electrical impulse at a rate of 40-60 beats per minute (bpm).

After cardiac depolarization, a plateau phase takes place. In this phase, the
membrane potential (or transmembrane voltage, Vm) of the cells remains almost
constant [7 p.185]. Repolarization follows the plateau phase and is a result of
the outflow of potassium ions [10]. Unlike depolarization, repolarization is not a
propagating phenomenon. Repolarization occurs because the action pulse has only
a certain duration, not because the repolarization of a neighboring cell [7 p.195]. At
the outer side of the cardiac muscle (epicardium), the duration of the action impulse
is much shorter than at the inner side of the cardiac muscle (endocardium) [7 p.188].
This creates an illusion, where the termination of the activity appears as if it were
propagating from the epicardium towards the endocardium.

Figure 4 shows the action impulse of the cardiac muscle cell. The duration of the
cardiomyocyte’s action impulse is about 300 milliseconds (ms). The time to cardiac
muscle cell to complete the activation is relatively short, roughly 1 ms, where the
recovery of the cell takes approximately 100 ms. The resting region of the cell is
around -80 mV. [7 p.185-196]

Figure 4. The action impulse of the cardiomyocyte.
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2.3. ECG Measurement

2.3.1. Conventional 12-Lead ECG

The methods for measuring ECG have been developed since Waller made the first
human ECG recordings. Waller used five electrodes, one on each of the four
extremities and the mouth, with 10 leads derived from the different combinations
[15]. Willem Einthoven reduced the number of electrodes to three, including only both
arms and the left leg. Remaining electrodes resulted three leads, which formed the so
called Einthoven’s triangle. Frank Norman Wilson (1890-1952) improved Einthoven’s
system by adding a central terminal in the center of Einthoven’s triangle [16]. This
increased the accuracy of electrocardiographic diagnosis. In the year 1942, Emanuel
Goldberger presented augmented leads, which produced 50 % larger signals than the
Wilson central terminal. Precordial leads (chest leads) were presented by Wilson in
the year 1944. [7 p.387-401]

Today, the standard 12-lead ECG consists of 3 bipolar limb leads (I, II and III), 3
augmented unipolar limb leads (aVL, aVR and aVF), and 6 precordial leads (V1-V6).
The limb leads view the heart in a frontal and sagittal plane, where the precordial
leads record the heart’s electrical activity in a transverse plane. The American College
of Cardiology, together with the American Heart Association (AHA) and the Heart
Rhythm Society, has formulated guidelines and set technical standards for ECG
equipment [1]. Limb lead electrodes are placed on the arms and legs distal to the
shoulders and hips, and six electrodes are placed on the chest. In addition, two general
color codes for leads by the International Electrotechnical Commission (IEC) and
the AHA have been made to avoid misplacement. The color code used depends on
the location of use. More detailed electrode placements and proper color codes for
the standard 12-lead ECG are shown in Table 1. Electrode placements are further
demonstrated in Figure 5. [1]

Figure 5. Electrode placements for the 12-lead ECG.

Skin preparation and electrode placement have important effects on the ECG. It has
been shown, that cleaning and gentle abrasion before electrode placement can reduce
noise and thus improve the quality of the recorded ECG [17]. If possible, the patient
should be placed in the supine position, generally with a pillow under the head. Patient
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Table 1. Electrode placements and lead color codes
Electrode IEC1 AHA2

placement Electrode Color code Electrode Color code
Right arm R Red RA White
Left arm L Yellow LA Black
Right leg N Black RL Green
Left leg F Green LL Red

Fourth intercostal space C1 Red V1 Red
right sternal border

Fourth intercostal space C2 Yellow V2 Yellow
left sternal border

Midway between V2 C3 Green V3 Green
and V4

Fifth intercostal space in C4 Brown V4 Blue
the midclavicular line

In the horizontal plane of V4 C5 Black V5 Orange
at the anterior axillary line

In the horizontal plane of V4 C6 Purple V6 Purple
at the midaxillary line

1) International Electrotechnical Commission.
2) American Heart Association.

positional change, such as elevation or rotation, can affect the recorded amplitudes and
axes. [1]

Although the 12-lead system has become the standard method for ECG
measurement, various alternative lead applications have been developed [18]. Placing
the limb leads on the torso can reduce the noise caused by the motion of the arms and
legs during ambulatory or exercise ECG, as suggested by Mason and Likar [19] in the
year 1966. The Mason-Likar modification is the most important modification of the
12-lead system used in exercise ECG. Motion artefacts of the limbs are also a particular
problem in routine recordings of young children, and torso leads are sometimes utilized
in those situations. [1]

Nowadays, most of the electrocardiograms are recorded by digital machines, which
can generate automatically preliminary findings based on the morphology criteria.
These modern ECG machines are equipped with software that measures ECG intervals
and amplitudes, provides a virtually instantaneous interpretation, and compares the
tracing to earlier measurements. Machine learning methods, like deep learning, are
often utilized in these innovations [20, 21]. [1]

Currently, large amounts of data are available and the computational power to
handle them have increased significantly. The World’s four international standard
ECG databases (Massachusetts Institute of Technology-Beth Israel Hospital (MIT-
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BIH) Arrhythmia Database2, AHA ECG Arrhythmia Database3, European Society of
Cardiology Database4, and European ST-T ECG Database5) offers large quantities of
ECG data. Besides this, wide volumes of ECG data has been recorded in hospitals,
research institutions, and homes. [26]

2.3.2. ECG Signal

Formation

Cardiac cells are coupled together by gap junctions. This helps the activation to
propagate to the neighboring cells. In the rest, the transmembrane voltage is negative.
When the cell is depolarized, the transmembrane voltage is in the plateau phase, and
hence positive. While the activation front propagates, it produces voltage differences
between the activated cells and the cells that are still at rest. This phenomenon
causes dipole moments along the propagation front, and the resulting source can be
approximated as a double layer. If the observation point is much greater distance than
the radius of the source, the field appears to originate from a single dipole, whose
strength and orientation are the vector sum of the source components. The resulting
vector is called the electric heart vector (EHV). [7 p.265-271]

Electrodes record the electric potential occurring beneath them. The potential at the
electrode E is the scalar product of the source dipole vector p and the lead vector c.
This is demonstrated in Equation (1):

ΦE = c • p = |c||p| cos θ (1)

where ΦE is the electric potential at the electrode, p is the sum of the potentials of each
dipole component, and θ is the angle between the vectors c and p. The lead vector
c is a three-dimensional transfer coefficient which describes how the dipole source
influences the potential at a given electrode relative to the potential at the reference
location. The value of the lead vector depends on the locations of the dipole source,
the electrode, the reference point, and the distribution of resistivity of the materials
surrounding the dipole source. [7 p.272-275]

The lead voltage measurement is performed as a potential difference between two
electrodes (bipolar) or between an electrode and a reference point (unipolar). The
reference point can be, for example, the Wilson central terminal [27, 28], which is the
average of the limb potentials. The potential difference between any two points Pi and
Pj is defined as in Equation (2):

Vij = Φi − Φj (2)

where V means the lead voltage and Φ is the electric potential at a given point [7
p.274]. In the case of unipolar electrode, the reference point is usually approximated
as a zero-potential point.

2MIT-BIH Arrhythmia Database. PhysioNet URL: https://doi.org/10.13026/C2F305 [22, 23]
3Not available for public use. PhysioNet URL: https://doi.org/10.13026/C27P4P [24, 23]
4European Society of Cardiology. Website URL: https://www.escardio.org. Accessed 10.5.2023
5European ST-T ECG Database. PhysioNet URL: https://doi.org/10.13026/C2D59Z [25, 23]
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ECG machines convert the lead voltages into waves. If the dipole sum vector is
pointing away from the positive unipolar electrode, it is shown as a negative wave
(downward). If the dipole sum vector is pointing towards the unipolar electrode, it is
introduced as a positive wave (upwards). When the unipolar electrode is somewhere
between the above scenarios, the resulting wave is a combination of the positive
deflection for the energy pointing towards the electrode and the negative deflection for
the energy pointing away from it. This is visualized in Figure 6. If the polarity of the
electrode is changed to negative, these rules are reversed. Depolarization produces the
EHV pointing in the direction of the propagation. Conversely, repolarization generates
the EHV pointing at the opposite direction of the propagation. Although repolarization
is not a propagation phenomenon, it can be considered as a such for this purpose. [7
p.389-396]

Figure 6. ECG wave formation due to different unipolar electrode placement. The
arrow indicates the direction of the dipole sum vector.

The ECG electrodes are placed in the way that they capture a 3-dimensional
recording of the heart’s electrical axes. The placements of the electrodes were
introduced in Section 2.3.1. The leads are formed between the electrodes as shown
in Figure 7. The formed leads can be moved to pass the center of the heart, because
vectors are equal if they are parallel and of the same intensity [29 p.26].

Figure 7. An example of the leads formed between the electrodes. The leads can be
moved to pass the center of the heart.
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The limb leads (I, II and III) together with the augmented leads (aVL, aVR, aVF)
cover the frontal plane of the heart, and the precordial leads (V1-V6) the transverse
plane, respectively [7 p.402-403]. The sagittal plane of the heart is recorded by one
precordial lead and one augmented limb lead. The projections of the lead vectors are
presented in Figure 8. Sometimes the polarity of the lead aVR is changed to -aVR.

Figure 8. The projections of the lead vectors. The positive pole of the lead is indicated
by an arrow and name.

Morphology

A 10 second (s) 12-lead ECG recording is showed in Figure 9. ECG machines convert
the electrical activity recorded by the electrodes into waves and draw a trace on a
moving electrocardiograph paper or to a digital screen. The paper moves at a speed
of 25 millimetres per second (mm/s). Time is plotted on the x-axis and voltage on the
y-axis. The x-axis is divided into large and small squares, which represents 0.2 s and
0.04 s, respectively. If the ECG machine is calibrated correctly, an increase of voltage
by 1 mV should move the stylus by 1 cm. [30]

ECG signal morphology is demonstrated in Figure 10. The deflections in the signal
are marked in an alphabetical order starting with the letter P, which represents atrial
depolarization. The right atrium gets depolarized before the left atrium because the
SA node is located in the right atrium [30]. This causes the first half of the P-
wave to be formed by the depolarization of the right atrium, and the second half by
the depolarization of the left atrium. Ventricular depolarization produces the QRS
complex, and ventricular repolarization results the T-wave. Atrial repolarization occurs
during the QRS complex, but its amplitude is so low that it cannot be seen on a normal
ECG. U-wave is a small, flat wave sometimes seen after the T-wave and before the next
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Figure 9. The 12-lead ECG. The lead signals are on their own rows. This figure has
been captured from PhysioNet’s PTB-XL dataset7.

P-wave. Its origin is still not established and it is rarely used for diagnosis in clinical
practise [31]. [7 p.392-397]

Figure 10. Morphology of the electrocardiogram signal.

A segment is a specific portion of the ECG. For instance, the P-R segment indicates
the portion between the end of the P-wave and the beginning of the Q-wave, and
represents the phase of the cardiac cycle when the impulse travels from the AV node

7[23, 32, 33]
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to the ventricles. The S-T segment represents an electrically neutral time for the heart,
where the ventricles are between depolarization and repolarization. Physically, it refers
to the time that the cardiac muscle maintains contraction in order to push the blood out
of the ventricles. [29 p.41-46]

An interval is the distance between two cardiac events, measured as time. For
example, the time interval between the beginning of the P-wave and the beginning
of the QRS complex is called the P-R interval. It corresponds to all of the events
from the generation of an electrical impulse in the SA node to the moment of
ventricular depolarization. The Q-T interval represents all of the events of ventricular
systolic phase, including the beginning of ventricular depolarization to the end of
repolarization. The time between the end of ventricular depolarization and the end
of ventricular repolarization is marked as the S-T interval. [29 p.41-49]

2.3.3. Artefacts

There are several factors that can cause distortions and affect the quality of the ECG
signal. These distortions are also called artefacts. They may be subtle with no
interference with correct interpretation, or they can be substantial and cause major
deformations in the signal. Artefacts can also be misinterpreted and expose patients to
needless or risky treatments [34]. [35]

ECG artefacts are originated from the external causes or from the patient’s body [36].
The first can be induced by a dysfunction of the electrodes or cables (misplacement,
damaged or detached equipment, improper filters) or by an electromagnetic field
(electrical devices, light fixtures). Artefacts originated from the patient’s body are
caused by muscles, skin, respiration and inhomogeneities of the body. Voluntary and
involuntary movements cause muscle contractions that are often the cause of artefacts.
Skin can induce artefacts through a poor contact with electrodes, perspiration, or
stretch of the epidermis, which produces an electric potential. Electrocardiographic
artefacts can closely mimic the native ECG waves and deviated S-T segment [34].
Generally, common ECG artefacts can be identified by looking their clinical context,
morphology, and relation to the normal cardiac rhythm. [35]

Electrode misplacement is a common cause of distortions in the ECG signal. The
effects of different electrode placements on the ECG signal formation were illustrated
in Figure 6. In the year 2007, Rudiger with his colleagues found that electrode
misplacement was occurred frequently in outpatient clinics (0.4 %) and even more
often in intensive care units (4 %) [37]. Another study, done by Hedén and his
colleagues with a total of 11,432 ECG recordings, showed that misplacement was done
in nearly 2 % of the instances [38]. Electrode misplacement can lead to changes in the
ECG morphology and lead to misdirected therapeutic decisions. For instance, a normal
ECG without signs of ischemia in patients with ischemic heart disease have been
resulted by electrode misplacement [39]. On the other hand, electrode misplacement
have been reported to cause erroneous diagnoses for healthy patients [39, 40].

Baseline wandering is a phenomenon where ECG signal’s baseline, so called
isoelectric line is distorted. An illustration of the baseline wandering can be seen
in Figure 11. The baseline seems to go up and down (’wander’) rather than been
straight. This kind of distortion is usually caused by the electrode-skin impedance
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mismatch, motion of the patient, or respiration. Baseline wandering occurs with the
low-frequency bandwidth below 1 hertz (Hz). It has also been noted that cell phones
near to an ECG machine can produce artefacts that occur as sharp, fast, and low-
amplitude spikes [36]. This kind of disturbance is called electromagnetic interference
(EMI). [41, 42]

Figure 11. Illustration of the baseline wandering. This figure has been captured from
the signal collected from the Physionet’s MIT-BIH Arrhythmia Database9.

Respiration affects the ECG signal due to the movement of the thorax, the so-called
mechanical interaction [43]. This is caused by two factors. Firstly, the volume changes
in the lungs that alter the electrical impedance. The distribution of resistivity of the
materials surrounding the dipole source was one factor that affected the lead vector
described in Section 2.3.2. Secondly, the position of the electrodes with respect to
the heart is changing due to the movement of the thorax. The importance of the
electrode placement with respect to the dipole source was discussed also in Section
2.3.2. Both of these factors affect the morphology of the ECG signal. In addition,
respiration modulates the heart rate. Respiration sinus arrhythmia (RSA) is a well-
known phenomenon in the heart rate variability. This is further explained in Section
3.1, where the heart rate variability is introduced.

Movement produces artifacts in the ECG signal. Even small movements of the
patient during the measurement phase creates skin movements that can influence the
ECG signal. In addition, any muscle activation creates electromyographic (EMG)
noise with the degree depended on the activation level. During walking or running, the
body center of the mass (BCOM) is constantly moving on a path [44]. When walking,
both legs touch the ground simultaneously and the BCOM reaches its highest point
at the middle of the stance phase [45]. During running, the ground contact is much
shorter and the BCOM reaches its lowest point at the middle of the stance phase. It has
been showed that body position can change the ECG signal and heart rate [46]. When
the heart rate is higher in the standing stage than in supine, the resulting signal have

9[22, 23]
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a decreased amplitude in the R-wave. Also, different postures affect the conducting
media adjacent to the heart in different ways and therefore the resultant ECG signals
are different.

High-frequency noise is often the consequence of powerline interference (50-60 Hz)
and EMG noise (100-500 Hz) [47]. The noise wave from powerline interference is
typically sinusoidal with random phase but constant frequency [48]. Its origin is, as
its name suggests, the power line to recording machines. Powerline interference is
always present, even if special precautions are taken. A demonstration of the powerline
interference is shown in Figure 12.

Figure 12. Demonstration of the powerline interference. The signal is noisy between
R-peaks. This signal is from the Physionet’s MIT-BIH Arrhythmia Database11.

Beat artefacts

In this paper, the ’beat artefact’ term is used for general definition of various abnormal
RRI values in the ECG signal. These artefacts are divided into three categories: ectopic
beats, missed beats, and extra beats. Ectopic beats are caused by physiological factors,
and they can be seen as morphological abnormalities in the ECG signal. Morphological
variations of the ECG signal and heart rate are further discussed in Section 3.1.2.

In this study, beat detection errors can also be referred as beat artefacts. When the
initial beat detection is performed, the software makes detection errors by detecting
invalid points in the signal, or ignoring correct R-peaks. Incorrect detection points are
called extra beats and missed R-peaks are referred as missed beats. The beat detection
algorithm developed in this research is based on the detection of morphological
beat artefacts as well as the notice of R-peak detection errors. The functions and
architecture of the algorithm are explained in more detail in Section 4.2.

11[22, 23]
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2.3.4. Vectorcardiography

In Section 2.3.2, the vector behavior of signals generated by the heart was
introduced. The measurement and display of the electric heart vector (EHV) is called
vectorcardiography (VCG). The first VCG was introduced by Hubert Mann in the year
1920 [49]. He constructed a monocardiogram from the Einthoven’s limb leads, which
was the projection of the vector loop in the frontal plane. Therefore, it only consist
two-dimensional data that did not include back-to-front information from the sagittal
and transverse planes. [7 p. 404-406]

Nowadays, the VCG gives a spatial representation of the electric forces generated
during cardiac activity, analyzed in three spatial planes. The frontal plane is located
between the X and Y leads, the transverse plane between the X and Z leads, and the
sagittal plane between the Y and Z leads [50]. In VCG, electrical activity of the heart is
described by three loops. The first loop represents the P-wave, the second one, which
is the largest loop, corresponds to the QRS complex, and the third loop represents the
T-wave.

The method that follows the trajectory of the end point of the vector projected
on to principal planes is called spatial vectorcardiography. This kind of a VCG is
usually presented in a 2-dimensional (2D) or 3-dimensional (3D) coordinate system,
which axes can be either the body axes or the cardiac axes. Figure 13 and Figure 14
illustrate the 2D and 3D VCG, respectively. In the 2D and 3D images, the dependence
between individual leads is displayed on the mV scale. The temporal information can
be displayed by modulating the intensity of the beam so that the trace is periodically
interrupted. Each segment has a teardrop shape, which indicates the direction of the
trajectory. [7 p. 404]

Figure 13. 2D spatial vectorcardiography. a) XY-plane, b) XZ-plane, c) YZ-plane.
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Figure 14. 3D spatial vectorcardiography.

The VCG signal can also be displayed in a 1-dimensional (1D) image as three vector
components (X, Y and Z) as functions of time like shown in Figure 15. This is called
scalar vectorcardiography.

Figure 15. Scalar vectorcardiography. Vector components are displayed as functions
of time.

The benefits of the VCG have been recognized for decades [51]. The spatial
orientation and the magnitude of the vectors give a better idea of the magnitude and
direction of the electrical forces at any moment. Since these properties, the VCG
provides a better tool for the diagnosis for some cardiac dysfunctions [51, 52, 53, 54].
Some studies have also shown the combined use of the ECG and VCG to be beneficial
[55, 56]. Despite all the benefits of the VCG, ECG is increasingly being used.
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Frank lead system

In 1956 Ernest Frank published his orthogonal VCG lead system [57], which nowadays
is the most used VCG system throughout the world [58]. Frank’s orthogonal lead
system consist 7 electrodes as demonstrated in Figure 16. The points of the electrodes
are indicated by letters A, C, E, F, H, I and M [7 p. 412]. Electrodes A and I are in
the left and right central axillary line, respectively. Electrode E is in the middle of the
chest, and electrode M is on the back, opposite to electrode E. The placement of the
electrode C is between the electrodes A and E. Electrode F is located on the left leg
and electrode H on the neck.

Figure 16. Frank VCG system electrodes.

The right-to-left component is represented as the x-axis, the y-axis is the head-to-
foot component, and the z-axis is the front-to-back component [59]. The individual
electrodes are routed to the resistor network, which is illustrated in Figure 17 [57].
Mathematical Equation (3), Equation (4), and Equation (5) are used to derive the
signals from the leads:

PX = 0,610A+ 0,171C − 0,781I (3)

PY = 0,655F + 0,345M − 1,000H (4)

PZ = 0,133A+ 0,736M − 0,264I − 0,374E − 0,231C (5)

where P illustrates the potentials on the individual electrode clips and other letters
represent the individual electrodes.
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Figure 17. Frank’s lead system resistor network.

Other lead systems

In addition to the Frank lead system, various other VCG lead systems have been
developed. Schmitt and Simonson developed many versions of VCG lead systems,
calling them stereovectorelectrocardiography (SVEC). The third version, SVEC III,
was published in 1955 [60]. It requires a total of 14 electrodes and creates a lead field
in the thorax which is symmetric in relation to the sagittal plane.

In year 1961, McFee and Parungao published a simple VCG system called the
axial system [61], based on a lead field theoretic approach and which consist of three
uniform lead fields. They made discover that the closer to the heart the electrodes are
placed the more electrodes are needed to achieve a homogeneous lead field within the
heart’s area.

In his book [7 p.419-420], Malmivuo presents Nelson lead system, which was
developed in the year 1971 by Nelson and his colleagues. This lead system, suitable for
clinical use, based on the Gabor-Nelson theorem. The lead system includes electrodes
placed on three levels of the thorax with eight on each level, one electrode on the head,
and one on the left leg. According to Malmivuo, Nelson and his collaborators claimed
that on the basis of their measurements, their VCG lead system is much more accurate
than the McFee-Parungao or Frank lead systems. In addition, the Nelson lead system
should be very insensitive to electrode misplacement.

VCG from ECG

In clinical practice, measurement of the VCG is not usually used because it
requires additional electrodes placed on the patient’s body. Instead, mathematical



27

transformations can be used for deriving the VCG from 12-lead ECG and vice versa.
The first consideration of the transformation of individual lead systems was introduced
by Burger and his colleagues in 1952 [62]. After that, various transformation methods
have been developed [59]. In order to convert the ECG leads to VCG, a mathematical
transformation can be implemented as a multiplication of two matrices, as shown in
Equation (6),

V = ME (6)

where M is the transformation matrix, E is a matrix which rows are formed by the
independent ECG leads and V is a matrix which rows correspond to the derived VCG
signals. [50]

Quasi-orthogonal transformation is based on the transformation coefficients used on
certain leads in order to achieve the orthogonal leads [50]. Several different quasi-
orthogonal transformation methods with different transformation coefficients have
been presented. In the quasi-orthogonal, transformation matrix’s all input leads have
coefficients equal to zero, except for the selected three ECG leads.

In many model-based methods, each ECG lead contributes to a certain extend to
a specific orthogonal lead [50]. The individual weight coefficients then form the
resulting transformation matrix. The difference between quasi-orthogonal systems and
this kind of an approach is that individual VCG leads in the quasi-orthogonal system
correspond to exactly one ECG lead, while in this approach the VCG leads are formed
by the weight coefficients of the individual ECG leads.

The transformation matrix derived by a regression technique was presented by Kors
and his research team in 1990 [63]. The transformation coefficients were derived by
minimizing the sum of the squared differences between the measured VCG and the
transformed VCG. Guillem et al. [64] introduced a transformation matrix derived
using the regression approach, which is optimized for P wave. They named the
transformation matrix as PLSV. In addition, they also developed a matrix optimized
only for the QRS complex, called QLSV. Both of these matrices were derived from
a total of 124 patients. Regression model for each patient were found by the least
square value method, and the resulting matrix was given as the mean value of the
transformation matrices for all patients.

In 1980, Dower and his colleagues introduced transformation coefficients for
deriving the 12-lead ECG from three leads measured by the Frank lead system [65].
Their transformation coefficients are shown in Table 2. Eight years later, Edenbrandt
and Pahlm derived a pseudo-inverse matrix that can be used for transformation from 8
independent ECG leads to VCG [66].

In year 1990, Kors et al. [63] compared the Kors quasi-orthogonal transform,
the inverse Dower transform, the Kors regression model, and the Frank orthogonal
lead system. They used a total 90 recordings. Based on the measurement of the
mean absolute deviation and the evaluation of the cardiologists, Kors concluded
that the regression and the inverse Dower transformations achieved better results
than the quasi-orthogonal transformation. The differences between the regression
transformation and the inverse Dower transformation were negligible.

Edenbrandt and his colleagues [67] compared the inverse Dower transformation
with the directly measured Frank lead VCG and two quasi-orthogonal methods. The
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Table 2. Dower’s transformation matrix
Lead X Y Z

I 0.632 -0.235 0.059
II 0.235 1.066 -0.132
III -0.397 1.301 -0.191

aVR -0.434 -0.415 0.037
aVL 0.515 -0.768 0.125
aVF -0.081 1.184 -0.162
V1 -0.515 0.157 -0.917
V2 0.044 0.164 -1.387
V3 0.882 0.098 -1.277
V4 1.213 0.127 -0.601
V5 1.125 0.127 -0.086
V6 0.831 0.076 0.230

research was performed on 80 people with different types of heart attacks. The best
result was achieved by the inverse Dower transformation and its recording was the
most similar to the Frank lead system.

Guillem et al. [64] tested their PLSV and QLSV methods. They compared their
models with the inverse Dower transformation method during the QRS complex and
P wave detection on 247 recordings. In the P-wave transformation, the PLSV yielded
the best results and the QSLV achieved the best results for the QRS complex detection.
Both methods gave better results than the inverse Dower transformation.

Jaros et al. [59] tested different transformation methods in their research
including 549 recordings with mixed contribution of healthy patients and patients with
pathological heart diseases. They included the Kors regression transformation, the
Kors quasi-orthogonal transformation, the inverse Dower transformation, the PLSV,
and the QLSV. They made conlcusions based on the correlation coefficients and mean
squared error in relation to the reference Frank lead system. The Kors regression
method yielded the best results for the X and Y leads. In case of the Z lead, none of
the methods were statistically significant compared to others. The smallest accuracy
was performed by the Kors quasi-orthogonal method.
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3. ECG ANALYSIS AND PROCESSING

In this chapter, the ECG analysis and signal processing concepts relevant to this study
are reviewed. Heart rate (HR) and heart rate variability (HRV) can be calculated
from the ECG signal. HRV has been shown to be an useful tool for analyzing the
physiological status of the subject and is widely used for different ECG analysis
methods. HRV is affected by different morphological variations of the ECG signal
due to artefacts or physiological factors. Therefore, it is important to understand the
effects and backgrounds of these factors. HRV and morphological variations of the
ECG signal are discussed in Section 3.1.

Artificial ECG signal development process starts by real-life ECG signal processing.
Signal acquisition can be done by implementing own ECG measurement process or
utilizing already acquired signals. The data used in this research is introduced in
Section 5.1. ECG signals contain noise due to the measurement situation and other
physiological signals, and therefore the ECG signals need to be preprocessed before
they can be used by any manner. Preprocessing reduces artefacts in the signal and
makes it clearer. Signal processing methods are generally discussed in Section 3.2 and
presented further in the aspect of this research in Section 4.1.

Typically, some kind of beat detection algorithm is utilized to detect QRS-complexes
in the signal and calculate signal properties, such as heart rates and beat intervals (RR
intervals). This study comprises the development of a beat detection algorithm, that
can be used to detect normal heartbeats from several ECG signals. The algorithm
calculates heart rates and beat intervals from the signals. In addition, the algorithm
locates and classifies artefact beats (missed, extra, and ectopic beats), and makes the
right corrections for them. State-of-the-art beat detection algorithms are presented in
Section 3.3 and the developed beat detection algorithm is introduced in Section 4.2.

Artificial ECG signal generation includes extracting VCG templates from the
ECG signal to the correct heart rate levels using mathematical models. In this
study, these heart rate levels are detected using clustering method. Clustering is
introduced generally and in the aspect of this research in Section 3.4 and Section 4.3.1,
respectively.

As mentioned in Chapter 1, there are several different ECG synthesis methods
developed [68, 69, 70, 71, 72]. However, the main focus of this study is on the technical
aspects of the selected method. Therefore, other ECG synthesis methods are excluded
from this research.

3.1. Heart Rate and Its Variability

Heart rate (HR) is the number of heartbeats per minute. Normal HR is 60 to 100 beats
per minute (bpm). If the rate is lower, it is referred to as bradycardia, and if higher, it
is called tachycardia [30]. The time interval between two successive R-peaks is called
RR interval (RRI) (also NN interval) or beat interval. Heart rate variability (HRV) is
the variation of RR intervals over the time period.

HR is regulated by the autonomic nervous system (ANS), which consist of the
sympathetic nervous system (SNS) and the parasympathetic nervous system (PNS).
The parasympathetic nerve is often indicated as the vagal nerve since it is the primary
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parasympathetic nerve [73]. Increased activity of the SNS or decreased activity of the
PNS causes acceleration of the HR [74]. Conversely, increased activity of the PNS or
decreased activity of the SNS induces deceleration of the HR.

The SNS activation boost is occurring in response to stress and exercise. It increases
the action impulse generation rate of pacemaker cells in the SA node [73]. The PNS
regulates the function of circulatory system, glands, digestion system and urinary
organs. Its activation increases due to the function of internal organs (for instance,
increased activity of the digestive system after eating), trauma, or allergic reactions.
Increased activation of the PNS decreases the firing rate of the SA node. The
differential effects of the ANS on the SA node, and thus the HR, are due to the
differential effects of the neurotransmitters for the SNS (norepinephrine) and PNS
(acetylcholine) [75]. Together, these nervous systems provide a regulatory balance
of physiological autonomic functions.

HRV has been associated with several physiological factors and health status. In
general, increased HRV is usually seen as associated with a good health condition,
whereas lowered HRV might imply pathological changes [76]. One of the main clinical
implementations of the HRV is the risk prediction of sudden cardiac death after acute
myocardial infraction [74, 77]. In addition, HRV is noticed to provide early warning
signs of diabetic neuropathy [74]. Studies show that HRV decreases with depression,
and therefore depression has a negative impact on survival after myocardial infraction
[78, 79]. It has been studied that HRV also depends on the gender and age. The
variation of the HR for healthy subjects with the age between 20 and 70 were studied
by Bonnemeier et al. [80]. They found that HRV decreased with age and the variation
was greater in women than in men. Nagy and her colleagues studied HR differences
in human neonates [81]. Their research showed that HRV is lower in boys than in
girls. Kiviniemi and his research group suggests based on their research, that HRV
may serve as an objective tool for tailoring an aerobic training program in men and
women [82]. Besides these, HRV has been studied with relation to renal failure, blood
pressure, drugs, smoking, alcohol, and sleep [74].

3.1.1. Heart Rate Variability Analysis Methods

Since HR is regulated by the ANS, HRV is a useful tool for analyzing the status of
the ANS noninvasively [74]. The degree of variability in the HR gives information
about the functioning of the nervous control on the HR and the heart’s ability to adapt.
Since the SNS increases the HR and thus reduces the intervals between the beats,
it decreases the HRV. Consequently, when the PNS increases, it raises the intervals
between the beats and increases the HRV. Figure 18 shows HR and a tachogram of
beat intervals during incremental exercise of a healthy subject. As the intensity of the
exercise increases, the effect of increased activity of the SNS causes a decrease in the
HRV. This can be seen as a reduced amplitude of the signals.

In the year 1996, an international Task Force published standards for the HRV
analytical methods and definitions of the HRV measures [83]. HRV can be assessed
with various analytical approaches. The most commonly used are the time domain
analysis and the frequency domain analysis, which can also be called power spectral
density (PSD) [8].
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(a) (b)

Figure 18. The effect of incremental exercise on beat interval and heart rate of a healthy
subject. a) Heart rate (bpm) as a function of time b) Beat interval (s) as a function of
time.

Time domain analysis

In the time domain methods, either the heart rate at any point in time or the intervals
between normal successive sinus beats (RR intervals) are determined [84]. Some
variables can be derived from the obtained values. Those are the mean value of RR
intervals, the mean heart rate, and the difference between the longest and the shortest
RR interval.

From a series of instantaneous heart rates or cycle intervals, particularly those
recorded over longer periods (usually 24 hours), more complex statistical measures
can be calculated. These can be divided into to categories: those derived from the
direct measurements of the RR intervals or instantaneous heart rate, and those derived
from the differences between RR intervals. These variables can be derived from the
analysis of the total ECG recording or may be calculated using smaller segments of the
recording period. The latter method allows comparison of the HRV to be made during
different activities (for instance, rest, sleep, exercise, and so on). [83]

The standard deviation of RR intervals (SDNN) reflects the overall variation within
the RR interval series. The root mean square of successive differences (RMSSD)
can be used as a measure of the short-term variability. The standard deviation of the
average RR intervals calculated over the 5 minute segments (SDANN) is an estimate of
the changes in heart rate due to cycles longer than 5 minutes. Table 3 shows the normal
values of the main time domain measures during a long-term recording according to
the Task Force [83]. [85]

Table 3. Normal values of standard time domain measures of the heart rate variability
Measure Value (mean ± SD) Unit
SDNN 141 ± 39 ms

SDANN 127 ± 35 ms
RMSSD 27 ± 12 ms
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Many of the time time domain analysis measures are depended on the length of
recording period. Thus, it is inappropriate to compare measures obtained from the
recordings of different durations. Therefore, the international Task Force has published
the standardized recording durations for short-term recordings (5 minutes) and nominal
long-term recordings (24 hours) [83].

Frequency domain analysis

The HRV is consisted of four frequency components: high-frequency (HF) component,
low-frequency (LF) component, very-low-frequency (VLF) component, and ultra-
low-frequency (ULF) component. Parasympathetic nervous activity is seen in the
high-frequency (HF) range (0.15-0.4 Hz), and this HF component is mediated almost
solely by the PNS [73]. HF band is frequently called the respiratory band because it
corresponds to the HR variations related to the respiratory cycle [8]. HR accelerates
during inspiration and slows during expiration. These HR changes are known as the
respiratory sinus arrhythmia (RSA).

The low-frequency (LF) component (0.04-0.15 Hz) is generally thought of being
both of sympathetic and parasympathetic origin [73]. However, it has also been
shown that the LF component could be used to assess sympathetic efferent activity,
especially with the normalized value [86, 87]. In general, sympathetic effects are slow,
on the time scale of seconds, and parasympathetic effects are fast, on the time scale
of milliseconds. Therefore the parasympathetic influences are the only ones that can
produce rapid changes in the beat to beat timing of the heart [73].

In addition to the HF and LF components, there is a very-low-frequency component
(VLF) and an ultra-low-frequency component (ULF). Their frequency ranges are
0.0033-0.04 Hz and below 0.0033 Hz, respectively [8]. The pathological explanation
and mechanisms involved in the generation of the VLF component have not been as
well studied as the HF and LF components. Long-term regulation systems and the ANS
activity related to thermoregulation and renin-angiosystem may contribute the VLF
band [8, 88, 89]. However, it has been showed that VLF band has a strong association
with mortality in the case of congestive heart failure and multiple organ dysfunction
syndrome [90, 91]. In healthy individuals, the VLF power increases during the night
and peaks before waking [8]. The ULF band reflects oscillations in the heart rhythm
with a period of 5 minutes or greater. It can only be assessed with 24-hour and longer
recordings. The circadian oscillation in the heart rate and other very slow regulatory
processes are the primary source of the ULF band [8].

Power spectral density (PSD) analysis provides the information of how the power
distributes as a function of frequency. The plot of the PSD as function of frequency is
called a periodogram. Methods for calculating the PSD can be generally classified as
a nonparametric and parametric [83].

In the nonparametric method, usually the fast Fourier transformation (FFT) is
utilized, and is characterized with discrete peaks for the frequency components [92].
In the parametric approach, the autoregressive model (AM) estimation is often used.
Other common parametric methods are the autoregressive moving average (ARMA)
model and the moving average (MA) model. For the above methods, the FFT is
a simpler and faster method, while the parametric methods have smoother spectral
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components and other qualitative benefits [83]. However, the parametric methods are
more complex and need verification of the suitability of the chosen model.

In short-term recordings, three spectral components are distinguished in a spectrum:
the VLF, LF and HF components [92]. In long-term recordings, the ULF component
is included. The measurement of the components is usually made in absolute values of
power expressed as milliseconds squared (ms2). The LF/HF ratio reflects the total ANS
balance. Table 4 shows the normal values of the main frequency domain measures
during a stationary supine 5-minute recording according to the Task Force [83].

Table 4. Normal values of standard frequency domain measures of heart rate variability
Measure Value (mean ± SD) Unit

Total power 3466 ± 1018 ms2

LF 1170 ± 416 ms2

HF 975 ± 203 ms2

LF/HF ratio 1.5-2.0

3.1.2. Morphological Variations

Identification of the normal QRS complex from the P- and T-waves does not create
difficulties in normal sinus beats. The QRS complex has a characteristic waveform
and dominating amplitude, which is usually about 1 mV in a normal heart [93]. The
usual duration of the QRS complex is 0.08-0.09 s [7 p.440]. However, QRS complexes
with a duration of 0.1 s can also be classified as normal [30, 94]. If the beat is normal,
the P-wave has an amplitude of about 0.1 mV and duration of 0.1 s. For the T-wave,
both of these values are about double. The T-wave follows the QRS complex after
around 0.2 s.

The morphology of the ECG signal can be influenced by the fluctuations in the HR or
artefacts caused by internal or external factors. In general, it can be said that when the
HR is increased, the duration of the QRS complex is deceased [95]. The magnitude of
the QRS complex is generally greatest for young males and the duration of the complex
is shorter for females than for males. In addition, the QRS complex size is known to
decrease with age. An important factor related to this study is that when the HR is
very high, the T-wave and the successive P-wave from the next activation cycle may
sometimes be very close to each other. This comes significant when choosing window
lengths for the VCG templates later in this study.

Changes in the HR over time provide morphological information for different types
of heartbeats (normal, ectopic, artefact, pacing). If the heart’s rhythm changes rapidly,
it causes an increase of the HRV and affects the HR signal seen in Figure 18.a. This
leads to difficulties in the HR-level detection, which is discussed subsequently in this
study. Different efforts, like averaging, beat correction, and outlier detection, can be
made to reduce these effects. Those are included in this research and will be discussed
later.

Heart’s rhythm is regulated by the ANS, but several cardiac dysfunctions can affect
the function of the heart. Cardiac rhythms can be divided into supraventricular
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and ventricular rhythms. Next, various cardiac rhythms and their impact on the
morphology of the ECG signal and HR are explained.

Supraventricular rhythms

The origin of the supraventricular rhythm is in the atria or AV junction [7 p.440]. In
these situations, the activation proceeds to the ventricles along the conduction system
in a normal way. In the normal sinus rhythm, the cardiac activation is triggered from
the SA node [94]. The deflections, P-QRS-T, follow this order and are differentiable.
The sinus rhythm can be seen as normal if its frequency is between 60 and 100 bpm.

Sinus bradycardia means a sinus rhythm, which frequency is below 60 bpm. Sinus
bradycardia is common in normal individuals during sleep and in those with high PNS
activity, such as athletes and young healthy adults [96]. When the sinus rhythm is
higher than 100 bpm, it is called sinus tachycardia. It occurs in response to increased
activity of the SNS. Usually, this is due to physical exercise or stress, but may also
result from congestive heart failure [7 p.441-442].

If the sinus rhythm is considerably irregular, the situation is called sinus arrhythmia.
In his book, Malmivuo defines a threshold value of 0.16 s between the longest PP
interval or RR interval and the shortest interval [7 p.442-443]. If the threshold value is
exceeded, the rhythm is defined as sinus arrhythmia. This arrhythmia is common in all
age groups. In fact, according to Malmivuo, this kind of arrhythmia is so common in
young people, that it is not even considered as a heart disease. Origin of this arrhythmia
might be the vagus nerve, which mediated respiration as well as heart rhythm. This
can be seen in the case of RSA.

Atrial contraction origin may be located somewhere else than the SA node. If
the location is close to the AV node, the atrial depolarization occurs in the opposite
direction than the normal one. As a consequence, the polarity of the P-wave is reversed.
The origin of atrial contraction may also vary, in which case the polarity of the P-wave
and the PQ interval will also vary. This is referred as wandering pacemaker. [7 p.443-
444]

Atrial flutter is a situation when the heart rate is sufficiently elevated so that the
isoelectric interval between the T-wave and P-wave is disappeared. The frequency
of these fluctuations is around 220 to 300 bpm. The AV node and the ventricles are
activated approximately by every second (2:1 heart block) or third atrial impulse (3:1
heart block). [7 p.444]

The activation in the atria can also be irregular and chaotic. In this case, the
situation is called atrial fibrillation [97]. Irregular fluctuations appear at the baseline
and ventricular rate is rapid and irregular, but usually the QRS contour is normal.
Fibrillation waves have a frequency of 350 to 600 bpm. The amplitude can vary
and may easily to be mistaken for flutter waves. Atrial fibrillation can occur as a
consequence of rheumatic disease, hyperthyroidism, or atherosclerotic disease, but it
can also occur in healthy subjects with a strong sympathetic activation [7 p.445].

If the origin of the cardiac rhythm is in the AV node, the heart rate is slow (around
40-55 bpm) and the P-waves are possibly hard to detect. However, the QRS complex
is usually normal. This is called junctional rhythm, since the origin is in the junction
between the atria and ventricles. The activation of the atria is in the opposite direction
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and can occur before, simultaneously, or after the ventricles. If the activations happen
at the same time, the P-wave will be superimposed and cannot be seen. [7 p.445]

Figure 19 shows different supraventricular rhythms. The signals are captured
from the MIT-BIH Arrhythmia Database, and the presentations of the figures are
based on the cardiologists’ annotations. Some sub-figures contain a red triangular
to demonstrate the location of that rhythm phenomenon.

(a) (b)

(c) (d)

Figure 19. Supraventricular rhythms. a) Normal sinus rhythm b) Atrial flutter c) Atrial
fibrillation d) Atrial premature beat. The original signals have been collected from
Physionet’s MIT-BIH Arrhythmia Database13.

Ventricular rhythms

In ventricular rhythms, the ventricular activation does not originate from the AV node
and/or does not progress in the ventricles in a normal way. If the ventricular conduction
system is broken or the ventricular activation starts far from the AV node, it takes
longer time for the activation to progress throughout the ventricular mass. According to
Malmivuo, the criterion for normal ventricular activation is a QRS interval shorter than
0.1 s [7 p.446]. If the interval is longer, it indicates abnormal ventricular activation.

In premature ventricular contraction (PVC), the beat occurs abnormally early [7
p.446]. Its origin can be in the atrium or in the AV node. In that case, the origin is

13[22, 23]
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supraventricular, and the produced complex lasts less than 0.1 s. The origin can also
be in the ventricular muscle, in which case the QRS complex has notably abnormal
shape and it lasts longer than 0.1 s. Paired PVCs, also called ventricular couplet, is the
situation where two PVCs occur in a row [98 p.92-120]. Multiform PVCs is used as a
designation for the situation where PVCs look different on one another. If PVCs occur
every other beat, phenomenon is called bigeminy, and if every third beat, it is called
trigeminy.

A run of three or more consecutive PVCs is termed ventricular tachycardia [98 p.92-
120]. Ventricular tachycardia is a result of the activation of the ventricular muscle
at a high rate (>120 bpm) [7 p.446-447]. This causes rapid, abnormal, and wide QRS
complexes. Ventricular tachycardia is often a consequence of ischemia and myocardial
infraction.

If the ventricular depolarization occurs chaotically, the situation is called ventricular
fibrillation. In the ECG signal this can be seen as irregular waving without the QRS
complexes. The cause of fibrillation is usually involving diseased heart muscle, and
the ventricular muscle is unable to pump the blood effectively. The lack of blood
circulation causes to almost immediate loss of consciousness and death within minutes.
This can be stopped with an external defibrillator pulse and appropriate medication. [7
p.447]

Sometimes an external pacemaker is needed to produce the contraction of the
heart. The pacemaker is usually located in the right ventricle and activation does not
involve the conduction system. Thus, a ventricular rhythm originating from a cardiac
pacemaker is associated with the wide QRS complexes. The ventricular contraction is
usually preceded by a clearly visible pacer impulse spike. Generally, the rhythm of the
pacemaker is set to 72 bpm. [7 p.447-448]

Different ventricular rhythms can bee seen in Figure 20. The original source of the
signals is the same than in Figure 19, and the presentations of the figures are based on
the cardiologists’ annotations.

Activation sequence disorders

In addition to the above, the morphology of the ECG signal can be affected by disorders
in the activation sequence. If the P-wave precedes the QRS complex with a PR interval
of 0.12-0.2 s, the rhythm is considered as a normal sinus rhythm. If the PR-interval
is shorter than normal, the origin of the impulse is closer to the ventricles, or the
atrioventricular conduction is utilizing an abnormal tract, which causes pre-excitation
of the ventricles. [7 p.448]

The PR interval can also be longer than normal, which is usually caused by some
conduction block in the conduction system. If the block is located in the AV node, it
is called atrioventricular block (A-V block) [7 p.448]. These can be further divided
into the first-, second-, and third-degree A-V blocks. When the P-wave precedes the
QRS complex, but the PR-interval is longer than 0.2 s, the situation is called first-
degree atrioventricular block [96]. If the PR interval is longer than normal, and the
QRS complex is not always following the P-wave, the atrioventricular block is second-
degree. The PR interval can increase progressively, leading finally to the dropout
of the QRS complex. In these situations, the phenomenon is called a Wenkenbach
phenomenon. The third-degree A-V block is characterized by a complete lack of
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(a) (b)

(c)

Figure 20. Ventricular rhythms. a) Ventricular premature beat b) Ventricular
tachycardia c) Paced rhythm. The original signals have been collected from
Physionet’s MIT-BIH Arrhythmia Database15.

synchrony between the P-wave and the QRS complex. This can also be referred as
a total block.

Bundle-branch block denotes conduction errors in the bundle branches. If the
two bundle branches are blocked simultaneously, the progress of activation from the
atria to the ventricles is completely inhibited. This is referred as the third-degree
atrioventricular block, as discussed above. If the left or right bundle branch is blocked,
the activation of the ventricle must await the activation by the opposite ventricle. This
results much slower activation propagation, and the result is abnormally shaped and
long QRS complexes. [7 p.450]

In the right bundle-branch block (RBBB), the electrical impulse cannot travel to
the right ventricle via the bundle branch, and the activation proceeds to the right
ventricle via the left ventricle. This propagation is much slower than through the
normal conduction system, resulting in a QRS complex wider than 0.12 s [96]. Often
the activation of the right ventricle is so much delayed, that it can be seen following
the activation of the left ventricle. The RBBB is seen in the ECG signal as a broad
S-wave or as a double R-wave, which is also named as RSR’ complex [7 p.450-451].

15[22, 23]
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The left bundle-branch block (LBBB) is similar to RBBB, but the activation
propagation is opposite. Since the activation front is about to normal direction in the
LBBB, the polarities of the signal are normal. Nonetheless, the activation point of the
left ventricle occurs in a different location than normal, and this leads to a broad and
tall R-wave in the signal. The duration criterion for the QRS complex in the LBBB is
the same as in the RBBB (> 0.12 s). [7 p.451-452]

The RBBB and LBBB beats are represented in Figure 21. The same annotation data
has been utilized as in the previous two figures.

(a) (b)

Figure 21. Bundle-branch block beats. a) Right bundle-branch block b) Left bundle-
branch block. The original signals have been collected from Physionet’s MIT-BIH
Arrhythmia Database17.

Effects of physical stress and myocardial ischemia and infarction

Cardiac muscles enlarge with an increased amount of physical stress. The extra tension
may be as a result of increased pressure load or volume load. Pressure overload is
due to increased resistance in the outflow of the particular section. Volume overload is
caused by the inefficient function of either the outflow or the inflow valve. The increase
of the atrial or ventricular size is called atrial or ventricular enlargement. The increase
of the wall thickness of either compartment is called hypertrophy of that area. Usually,
both of these are referred as hypertrophy. Particularly in the ventricular hypertrophy, a
tall S- or R-wave can be seen in the signal. [7 p.453-456]

If the blood flow of the coronary artery is disturbed, the transport of oxygen to the
cardiac muscle is decreased. This causes an oxygen deficiency in the muscle, and is
called ischemia. Ischemia affects the repolarization of the muscle cells, and is seen as
changes in the T-wave. If the oxygen transport is terminated in a certain area, the heart
muscle dies in that area. This is called infarction. The infarct area is electrically silent.
[7 p.456-457]

17[22, 23]
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3.2. Signal Preprocessing

ECG signal preprocessing includes several steps. This contains signal acquisition,
data transformation and several filtering procedures. Subsequent signal processing
steps include feature extraction (or QRS detection), which is further discussed in
Section 3.3. The quality of the ECG beat detection and classification depends on
the preprocessing stage [99]. Therefore, it is important to perform signal processing
correctly and efficiently.

3.2.1. Sampling Rate Selection

Sampling rate (or sampling frequency, fs) refers the number of samples taken per
second (Hz). The correct sampling rate is crucial to avoid aliasing. The basic concept
of choosing the sampling rate is that minimum sampling rate (also called Nyquist rate)
must be twice as much as the highest frequency component of the signal. Nyquist
frequency is half of the sampling frequency and it corresponds to the highest frequency
which a sampled data can be reproduced without error.[100 p.81-83]

The selected sampling frequency must also meet the requirements of the filter
specifications. The cut-off frequencies (fc) of the filters set limitations for the sampling
frequency. According to the Nyquist theorem, the sampling frequency must be twice
as high than the desired high-frequency cut-off. However, the recommended sampling
frequencies are set to be at 2 or 3 times the theoretical minimum [101]. For instance, a
sampling frequency of at least 500 Hz is required for the 150 Hz cut-off. This sets the
Nyquist frequency at 250 Hz.

Since a modern ECG device is a digital system, the analog signal is directly
converted into a digital form. This is called analog-to-digital conversion (A/D).
Oversampling technique is often used in the ECG devices, which refers to an initial
A/D conversion sampling rate. Oversampling frequency is usually from 1000 Hz to
2000 Hz, but newest converters can sample at 10 000 Hz to 15 000 Hz [1]. This
sampling rate is many times higher than the target final data resolution sampling
rate, which is used further signal processing steps of the ECG signal. To convert
an oversampled signal to a lower sampling rate, a decimation process is used, which
includes low-pass filtering and resampling (downsampling) the resulting smoothed
signal. [102]

3.2.2. Filter Selection

Filtering is used to attenuate or remove desired frequencies from the signal. An ideal
filter removes the noise without changing the actual signal. In the real life scenario,
desired signals and noise are often overlapping in the frequency range. This means
that when the filter attenuates the frequency components of the noise, it can also affect
the desired signal and induce magnitude distortion. Additionally to the magnitude
response, filters have also a feature called the phase response. If filter’s phase response
is not a linear function of frequency, the phase distortion occurs. Filter’s phase
distortion can generate substantial influence on data accuracy. Digital filters can be



40

designed to have linear or zero-phase characteristics, and this avoids some of the
distortion caused by the analog filters. [102]

In general, low-pass filters (LPF) are used to remove high-frequency noise and
high-pass filters (HPF) low-frequency noise, respectively. The cut-off frequency (fc)
is the frequency where 3-decibel (3-dB) attenuation occurs. The cut is not perfect,
and the filter has so called transition band from the passband to the stopband. Filter
specification recommendations vary depending on whether the filter is analor or digital
[1]. Principally, filter design is a tradeoff between magnitude distortion reduction and
noise cancellation, while trying to minimizing the phase distortion. [102]

The low-frequency artefacts, such as baseline wandering and respiration, are
removed by the HPF, but it can also change the important morphology of the ECG
signal and generate time delay. The low-frequency cut-off is recommended to be 0.5
Hz for analog filter, and 0.67 Hz for linear digital filters with zero phase distortion [1].
The frequency of 0.67 Hz corresponds to a heart rate of 40 bpm. Heart rates below 40
bpm are uncommon in practice. Figure 22 shows removal of the baseline wandering
introduced in Figure 11 using HPF. [102]

(a) (b)

Figure 22. Correction of the baseline wandering. a) The distorted signal, which
was introduced in Section 2.3.3. b) The high-pass filtered signal, where the baseline
wandering is clearly attenuated.

The high-frequency artefacts (like EMG noise) are filtered by the LPF. Insufficient
low-pass filtering can reduce the amplitude of the QRS complex and so impair the
ability to detect small deviations. The high-frequency cut-off is recommended to be at
least 150 Hz to reduce amplitude error measurements to around 1 % in adults [1]. An
upper-frequency cut-off of 250 Hz is more suitable for infants. [102]

Some distortions do not fall within the limits of the HPF’s low-frequency and the
LPF’s high-frequency cut-off in their frequency domain. One of this kind distortion is
powerline interference, which occurs usually in the frequency band of 50-60 Hz. To
be able to filter this kind of noise, a notch filter can be utilized. The notch filter, also
called the line-frequency filter (LFF), is a bandstop filter, which have a low-frequency
cut-off and a high-frequency cut-off, and its stopband is between this range. It is
usually activated already during the ECG acquisition, but it can also be used in later
signal processing stages. However, the LFF can induce ringing artefacts or so called
oscillatory behavior, after the QRS complexes. The principle behind this is that if the
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bandstop is steep in the frequency domain, ringing appears near the sharp edge of time
domain. [102]

In addition to the above, various smoothing filters exists, which use different
mathematical methods to smooth the data. They are, for instance, the median filter,
the Savitzky-Golay filter [103], and the moving average filter. Smoothing the ECG
data makes it more legible. The smoothing process changes the data points of the
signal in such way that the noises are reduced, and the points that are lower than their
neighboring points are increased. In practice, the result is amplified low-frequencies
and attenuated high-frequencies. Figure 23 visualizes the effect of smoothing on the
signal using the Savitzky-Golay filter. [104]

(a) (b)

Figure 23. The effect of the smoothing filter. a) The noisy signal, which was introduced
in Section 2.3.3. b) The smoothed signal with reduced noise.

3.3. QRS Detection

The heart beat period is commonly evaluated as the time difference between the
detectable QRS complexes. A typical QRS detector consists of a preprocessing
part followed by a decision rule. However, it is challenging task to implement
the algorithm to identify the QRS complexes since the QRS complexes are varying
with the physiological variability and affected easily by the various noise sources.
Therefore, several different QRS detectors have been proposed within last decades.

Benitez and his colleagues [105] presented the use of the first differential of the
ECG signal and its Hilbert transformed data to locate the R-wave peaks in the ECG
waveform. They used adaptive threshold detection to locate the peaks, which was
based on the average RRI of the previous R-peaks located. The decision was made in
base of the amplitude of the peak and its position in relation to the previous R-peak.
They then used the second stage detector which utilized the information provided by
the first detector. A window subset was used from the location of the detected R-
peak to locate the actual point of the real peak. This was done by a simple amplitude
comparison between the values of the subset.

Afonso with his associates [106] designed a signal processing algorithm based on
the filter bank strategy. The algorithm incorporated a filter bank which decomposed
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the ECG into sub-bands with uniform frequency bandwidths. The filter bank -based
algorithm enabled independent time and frequency analysis. Features computed from a
set of sub-bands and a heuristic detection strategy were used to fuse the decisions from
multiple one-channel beat detection algorithms. Three different thresholds and timing
information was used in detection. A threshold was used to decide if an incoming
peak is due to the QRS complex or noise. If a period of time corresponding to the
average heartbeat interval elapsed without a beat detection, the "search-bank" strategy
was used to check the ECG again for the presence of a beat.

The morphological approaches, such as slope, amplitude, and width by derivative
and squaring or integration processing were used by Pan and Tompkins [107],
Hamilton and Tompkins [108], and Paoletti and Marchesi [109]. Pan and Tompkins
developed an algorithm, which had four adaptive thresholds. The average RRI
information was utilized for correction decisions in situations where the algorithm had
not detected a possible peak. Hamilton and Tompkins further developed this algorithm
and added more complex decision rules. Paoletti and Marchesi used four adaptive
thresholds and their characterization was based on the clustering method called K-
harmonic means. According to their paper, the algorithm was especially designed for
noisy applications.

Christov [110] proposed a real-time detection method based on the moving average
filter and adaptive threshold. The threshold was combined by three parameters: an
adaptive steep-slope, an integrating value which rises when HF noise occurs, and a beat
expectation value. Two algorithms were developed. The first one detected the current
beat, and the second one performed the pseudo-real-time detection with additional
triggering of potentially missed beats in the last interval by RRI analyses.

Sequential filtering method such as wavelet denoising, moving average filter based
high-pass filter and low-pass filter was introduced by Chen et al. [111]. They applied
adaptive threshold for decision-making to detect QRS complexes. Poli et al. [112]
suggested the polynomial filter approach. Their algorithm consist of three modules,
which were linear and nonlinear polynomial filter, and maxima detector. The maxima
detector detected the maxima of the filter output and only amplitudes higher than
the threshold were accepted. Their algorithm was genetic. Genetic algorithms are
optimization and search procedures inspired by genetics and the process of natural
selection in which the individuals of a population which are fitter with respect to the
environment tend to survive and reproduce longer than the others.

Lee et al. [113] and Cvikl et al. [114] processed the ECG signals by phase portraits
based on delay-coordinate mapping method. Lee and his associates used two multi-
adaptive thresholds with refractory blanking rule and search back rule for the detector
stage. Refractory blanking rule stated that any QRS complex within 200 ms followed
by the detected QRS complex is ignored due to the physiological constraint imposed
by a refractory period on a cardiac muscle. Search bank rule was that if any QRS
detection occurred within 150% of the latest mean RRI, a new QRS search is attempted
by applyin 80% and 50% of the previous threshold values. Cvikli and his research
team applied a rule-based decision system. They also used refractory blanking rule
and search back rule.

Choi et al. [115] designed ECG segmentation method using an irregular RRI
checkup strategy into five sequential RRI patterns. Their algorithm, as usually all
the algorithms designed for this purpose, was comprised of signal processing stage and
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beat detection stage. The beat detection included the candidate ECG beat detection and
segmentation by one threshold and by irregular RRI checkup strategy, respectively.

Pal and Mitra [116] presented a method based on empirical mode decomposition
for detection of the QRS complexes in the ECG. They introduced empirical mode
decomposition as a fully adaptive signal decomposition technique that generates
Intrinsic Mode Functions as a decomposition output. They selected a set of Intrinsic
Mode Functions that represented the QRS region and a nonlinear transformation was
done for the QRS enhancement. According to Pal and Mirta, this method improved
beat detection accuracy.

3.4. Clustering

Clustering aims to divide data sets into subsets (clusters), where objects in the same
subset are similar to each other with a respect to a given similarity measure. On the
contrary, objects in different clusters are dissimilar. Cluster analysis has been used in
a large variety of fields, and various cluster analysis methods have been developed. In
general, a clustering method is a multivariate statistical procedure that starts with a data
set containing information about a samples and attempts to reorganize these samples
into relatively homogeneous groups. Many medical or physiological analyses involve
partitioning samples or variables into clusters.

Clustering quality can be checked using the within-cluster similarity and between-
cluster similarity [117]. Within-cluster similarity is ideally high, whereas between-
cluster similarity is ideally low. Sometimes it is better to plot the objects in order to
determine how variable the objects are and whether there are clusters that have very
similar profiles and therefore should be merged. Also exploration of the cluster quality
as a function of the number of clusters is sometimes used.

Clustering methods

Clustering algorithms can be broadly divided into the hierarchical clustering and
partitional clustering. The hierarchical clustering recursively find nested clusters either
in the agglomerative mode or in the divisive mode. In the agglomerative mode,
algorithm starts with each data point in its own cluster and merging the most similar
pair of clusters successively to form a cluster hierarchy. In the case of the divisive
mode, the algorithm starts with all the data points in one cluster and recursively
dividing each cluster into smaller clusters. The most used hierarchical methods are the
single-link and complete-link. Figure 24 demonstrates the complete linkage clustering
of 5 objects. The results of the hierarchical clustering are usually introduced by a
binary tree or dendrogram. [118]

In their book [119 p.31-62], Xu and Wunsch comprehensively describe the function
of the hierarchical algorithms. The advantage of these methods is that they are
conceptually easy to understand. The common criticism of the hierarchical clustering
methods is a high computational complexity, which limits their use in the large-scale
data sets. Another problem of these methods is that they make only one pass through
the data, which means that once an object is assigned to a cluster, it will not be
considered again. This leads to the fact that hierarchical clustering methods are not
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Figure 24. The demonstration of the complete linkage clustering of 5 objects. On
the left (tables 1-4), pairwise maximum distances are used to merge objects. At each
merging step (1-4), the shortest distance is selected (marked in red color). On the right,
a dendrogram with a vertical axis indicating the distance between merged objects is
showed. To create clusters, one can cut the tree at a fixed height.

capable of reacting to a possible previous misclassification. On the other hand, this has
motivated the development of new, more efficient algorithms that have shown a great
potential.

Partitional clustering directly divides data points into some predetermined number
of clusters without the hierarchical structure. This procedure usually involves the
optimization of a prespecified criterion function. The most popular partitional
clustering method is the K-means, which is one of the best-known and most popular
clustering algorithms. [119 p.63-67]

The K-means clustering is an iterative clustering method, which usually uses
Euclidean or correlation distance [117]. It is known that the k-mean of a distribution
can numerically be calculated by the Lloyd’s iterative algorithm published by Lloyd
[120]. The K-means algorithm starts by selecting the number of clusters (K). Then the
algorithm selects K data points as the ’centroids’. These data points can be randomly
generated within the range of the data, or some mathematical operations can be used
for the cluster center initialization. In the first step, the similarity between each point
and each centroid is computed, utilizing the selected measure method. Usually, the
squared error between the mean µk of the cluster ck and the points is defined as in
Equation (7):

J(ck) =
∑
xi∈ck

||xi − µk||2 (7)

where xi represents the data points, k = (1, . . . , K), and K is the number of clusters
[118].

The points are then grouped with the nearest centroid. This follows the nearest-
neighbor rule and therefore is the so-called Voronoi partition [119 p.68]. Subsequently,
the position of each centoid is recalculated on the basis of the objects assigned to it,
and the object assignment is repeated with the new centroid positions. These steps are
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repeated until the centroids and clusters no longer change. Consequently, the goal of
the K-means is to minimize the sum of the squared error over all K clusters computed
like in Equation (8):

J(C) =
K∑
k=1

∑
xi∈ck

||xi − uk||2 (8)

where C represents all the clusters C = {ck, k = 1, . . . , K} [118]. Figure 25 visualizes
the K-means algorithm technique.

(a) (b)

(c) (d)

Figure 25. The K-means clustering visualization. Centroids are marked as circles
and data points as squares. The number of clusters is 3. a) Starting point, initial
centroids are randomly selected. b) The points are connected with the nearest centroid.
c) The position of each centroid is recalculated and the step b) is repeated. d) The final
location of the centroids is achieved and clusters are formed. Each cluster is indicated
by the corresponding centroid color. In a real simulation, steps b) and c) are repeated
multiple times before the step d) is achieved.

The K-means algorithm requires three specified parameters: the number of clusters
K, cluster initialization, and criteria metric. The most critical is the K. This brings
a limitation to the K-means technique since sometimes the number of clusters is
unknown for some clustering practices, and estimating it becomes a problem for
cluster validation [119 p.110]. In addition, different initializations can lead to different
outcome since the K-means only converges to the local minima [118]. The basic K-
means algorithm has been extended in many ways. Xu and Wunsch discuss different
partitional clustering methods in their book [119 p.63-110].

Benabdellah et al. [121] compared clustering algorithms in their survey. The
Self-Organization Map was the best performed algorithm, but the performance was
decreased as the number of clusters increased. The hierarchical clustering was the
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most sensitive to noisy dataset. Also, the K-means reached a higher performance
for big data than several other algorithms. They made a conclusion, that none of the
algorithms performed well for all the validity measures.

Yin et al. [122] tested the K-means algorithm along the Fuzzy C-means algorithm
for automated determination of the arterial input function. In their study, the K-
means performed more accurate and the results were more reproducible. However,
the execution time was longer in the K-means than in the Fuzzy C-means.

Comparison between clustering algorithms is not a simple task. Each algorithm can
be thought to have its own pros and cons. Although some comparisons are possible, the
results depends highly on the specific scenario. These comparisons are mostly based
on some specific applications, under certain conditions, and the results may become
different if the conditions change. In general, it can be said that there is no clustering
algorithm that can be universally used to solve all problems. A comprehensive review
of clustering algorithms is offered by Xu and Wunsch [123], Ezugwu et al. [124], and
Xu and Tian [125].
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4. METHODS

The goal of this study was to develop heart rate dependent electrocardiogram templates
that can be used in a body emulator environment. This contained the following areas:

1. Real-life ECG signal preprocessing
2. Development of a beat detection algorithm
3. HR-level clustering based on the detected beats
4. VCG template extraction for each HR-level

The goal was to develop templates for various heart rates. In this manner, these
different templates could be used in the emulator to produce ECG signals for different
heart rates. The extracted VCG signals represent a specific HR-level, and these VCG
signals could be used as an input to the dipoles attached to the emulator. In addition to
this, the aim was to develop a graphical user interface (GUI) for the above processes.

It must be noted, that because the intended use of the models developed in this
study, the developed models are designed to work with already acquired ECG data.
Therefore, the developed algorithms are not so called live algorithms, that can operate
with the live ECG data. This is also relevant to the selections of the methods used in
the following sections.

Each area and the techniques included in them are presented in this chapter in their
own sections. The implementation of the work was performed with the MATLAB18

software (MATLAB_R2022b). The GUI was developed using the MATLAB App
Designer.

4.1. Preprocessing Methods

A high-pass Butterworth infinite impulse response (IIR) digital filter was designed
to reduce baseline wandering and other low-frequency noise in the signals. The
filter order was selected at 12 and the normalized cut-off frequency at 0.00268. The
normalized cut-off frequency was derived by taking the recommended low-frequency
cut-off (0.67 Hz) [1] and dividing it by the Nyquist frequency like shown in Equation
(9). This was done since the filter design was implemented by the MATLAB built in
code19, and the normalized cut-off frequency was required. The sampling frequency
fs was 500 Hz, so the Nyquist frequency was 250 Hz.

fc normalized =
0,67Hz

fs/2
=

0,67Hz

250Hz
(9)

In addition, the zero phase distortion method was used in the design20. In this way,
the filtering was performed by processing the data in both the forward and reverse
directions. Zero phase filtering helps to preserve features in a filtered time waveform
exactly where they occur in the unfiltered signal. The transfer function H(z) of the IIR
filter is determined as in Equation (10):

18MATLAB - https://www.mathworks.com/products/matlab.html
19MATLAB designfilt function - https://se.mathworks.com/help/signal/ref/designfilt.html
20MATLAB filtfilt function - https://se.mathworks.com/help/signal/ref/filtfilt.html
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H(z) =
Y (z)

X(z)
=

P∑
i=0

biz
−i

Q∑
j=0

ajz−j

(10)

where Y (z) and X(z) are the Z-transforms of the output and input, respectively, P is
the feedforward filter order, Q is the feedback filter order, and b and a are the filter
coefficients. The designed filter coefficients expressed as a second-order section are
displayed in Table 5. In the second-order section, each row of the matrix is of the form
[b0, b1, b2, a0, a1, a2].

Table 5. The filter coefficients expressed as a second-order section
1 2 3 4 5 6

1 0.9989 -1.9978 0.9989 1 -1.9977 0.9978
2 0.9968 -1.9935 0.9968 1 -1.9935 0.9936
3 0.9949 -1.9898 0.9949 1 -1.9897 0.9898
4 0.9933 -1.9867 0.9933 1 -1.9867 0.9867
5 0.9923 -1.9845 0.9923 1 -1.9845 0.9846
6 0.9917 -1.9834 0.9917 1 -1.9834 0.9834

With the matrix, the transfer function equation can be expressed as in Equation (11).
For the clarity, only the first two rows in the matrix are displayed in the equation.

H(z) = (
0,9989− 1,9978z−1 + 0,9989z−2

1− 1,9977z−1 + 0,9978z−2
)(
0,9968− 1,9935z−1 + 0,9968z−2

1− 1,9935z−1 + 0,9936z−2
) . . .

(11)
After the HPF, the signals were smoothed by the Savitzky-Golay finite impulse

response (FIR) filter21. The Savitzky-Golay filter smooths out noise in the signal but
preserves the high frequency signal components. In general, Savitzky-Golay filter
consists of replacing each point of the signal by least-squares fitting an nth-order
polynomial through the signal values in the window frame and taking calculated central
point of the fitted polynomial curve as the new smoothed data point. The polynomial
order was set to 3 and the frame length to 15.

4.2. Beat Detection Algorithm

One of the main focus area of this study was the development of a beat detection
algorithm. The developed algorithm detects the R-peaks from the ECG signal and
classifies possible beat artefacts. Different morphological variations of the ECG signal
and their physiological background were discussed in Section 3.1.2. In addition,
the beat detection algorithm can identify incorrectly detected R-peaks. Once the
algorithm has classified morphological deviations and false detections, it makes the

21MATLAB sgolayfilt function - https://se.mathworks.com/help/signal/ref/sgolayfilt.html
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right corrections to them. The goal was an ECG signal with corrected R-peak
detections and smooth RR intervals without any distortions. In this manner the
generated VCG signals correspond their respective HR-levels as closely as possible.

The architecture of the algorithm was inspired by Lipponen and Tarvainen [126].
Their novel algorithm performed well in standard database tests and therefore a similar
approach was desired.

Next, the functionality of the developed beat detection algorithm is presented. The
steps of the algorithm are briefly presented in Figure 26. The filtered ECG signal is
the input of the algorithm. The output is the same signal with detected (and corrected)
beats and calculated heart rates and RR intervals.

Figure 26. The overview of the algorithm.

Each subsection of this section contains details on the specified function listed
above. The R-peak detection method is presented in Section 4.2.1, the decision
algorithm and artefact classification are introduced in Section 4.2.2, and the artefact
correction is showed in Section 4.2.3. The test results of the algorithm are discussed
in Chapter 5.

4.2.1. R-Peak Detection

R-peaks were detected using the MATLAB findpeaks function22, which finds the
local maxima in the given signal. Its properties can be modified by setting different
parameters. The parameters used in the detection were the minimum peak height, the
minimum peak distance, the reference height of width measurements, the maximum
peak width, and the minimum peak prominence. The function returns the amplitudes
of the peaks and their respective locations.

Minimum peak height determines how much the peak amplitude must be to be
classified as an R-peak. Only peaks that have higher amplitude than the specified value
are detected. Specifying the minimum peak height reduces the incorrect detection of
tall T-waves and other disturbances, and lowers the processing time. The downside is
that if the limit is set too high, low-amplitude R-peaks are not detected.

Minimum peak distance affects how close the acceptable R-peaks can be to each
other. The system chooses the tallest peak in the signal and ignores all other peaks
within this range. The function repeats the process for the longest remaining peak and
iterates until it runs out of the peaks to consider. Like the minimum peak height,
this parameter also reduces the change of false detection of non-R-waves. Large
disturbances in the signal obviously affect the behaviour of this parameter. If there

22MATLAB findpeaks function - https://se.mathworks.com/help/signal/ref/findpeaks.html



50

is a large spike in the signal, for example due to the movement of subject, the function
can incorrectly detect the large spike and ignore the possible real R-wave close to it.

Reference height of width measurements defines the reference line from which the
peak width is calculated. The reference method was selected as ’half height’, which
positions the reference line at one-half the peak height. This also has the effect
of discarding peaks with height less than zero. Maximum peak width specifies the
maximum peak width that is acceptable. Only those peaks that have the width at most
of this value are selected. Practically, this parameter improves the accuracy of the
detection, because the P- and T-waves have a longer duration.

Minimum peak prominence modifies the detection in a way that only the peaks that
have a relative importance of at least this value are accepted. The prominence of a
peak measures how much the peak stands out due to its intrinsic height and its location
relative to the other peaks. Setting the minimum peak prominence excludes small
peaks that are close to the bigger ones. This is desired in most of the cases, where for
example an unusually high P- or T-wave is present. However, this makes the detection
more vulnerable for the tall spikes caused by some distortion.

4.2.2. Artefact Classification

The algorithm uses the RRI information obtained from the initial beat detection. The
function of the artefact classification is based on two different time series (dRRs and
mRRs) and two time-varying adaptive thresholds (Th1 and Th2). The dRRs and mRRs
series are defined as in Equation (12) and Equation (13), respectively:

dRRs(i) = RR(i)−RR(i− 1), i = 2 . . . N (12)

mRRs(i) = RR(i)−median[RR(i− 5 . . . i+ 5)], i = 1 . . . N (13)

where N is the number of RR intervals and RR means the RR interval. The dRRs
series is computed as the difference between two successive RR intervals (RR). Since
the first interval is R(2) - R(1), the first element of the dRRs series is dRRs(1) = 0.
The mRRs series is defined as the difference between the individual RR intervals and
an 11-beat median RR interval.

In the median calculation, some modifications had to be made in the case of data
edges. The 11th order median filter was utilized via the medfilt1 function23. The
function considers the signal to be 0 beyond the endpoints. Therefore, the padding
parameter was selected to be ’truncate’, which enabled the median calculation with
smaller segments when approaching the edges.

The first threshold (Th1) was estimated from the dRRs series in order to adopt to
different HRV levels. The threshold is computed as α times quartile deviation (QD) of
the 91 surrounding beat interval differences as shown in Equation (14):

Th1(i) = α QD[|dRRs(i− 45 . . . i+ 45)|], i = 1 . . . N (14)

23MATLAB medfilt1 function - https://www.mathworks.com/help/signal/ref/medfilt1.html
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where α is a scaling factor, which was selected to be 5.2 according to Lipponen and
Tarvainen [126]. When i < 46 or i > N −45, the equation was customized to perform
the calculations with smaller segments. In order to define the QD, the interquartile
range was calculated. The interquartile range is the difference between the 75th and
25th percentiles of the data. This was done by using the iqr function24. The QD was
derived by dividing the interquartile range by 2.

Once the Th1 was defined, the dRRs series were normalized with the Th1 like
presented in Equation (15):

dRR(i) =
dRRs(i)

Th1
, i = 1 . . . N (15)

Each of the artefact beats had to fulfill the statement shown in Equation (16):

|dRR(i)| > 1 (16)

Based on the estimate that the extra beat would divide the normal beat interval in a
half: for the heart rate of 60 bpm, the mRRs is close to -0.5 s for extra beats and close
to 1 s for missing beats. To be able to provide equal threshold for the extra and missed
beats, the mRRs series were scaled as shown in Equation (17):

mRRs(i) =

{
2mRRs(i), if mRRs(i) < 0
mRRs(i), if mRRs(i) ≥ 0

, i = 1 . . . N (17)

This set the mRRs close to 0 s for normal beats, close to 1 s for missed beats and close
to -1 s for extra beats.

The second threshold (Th2) was computed from the mRRs series. This enabled
adaptation to different HRV levels. Equation (18) presents the calculation of the Th2.
The threshold is defined as α times the quartile deviaton (QD) of the 91 surrounding
beat differences.

Th2(i) = α QD[|mRRs(i− 45 . . . i+ 45)|], i = 1 . . . N (18)

As in the Th1 computation, equation customization was performed. The mRRs series
were normalized with the Th2 like introduced in Equation (19):

mRR(i) =
mRRs(i)

Th2
, i = 1 . . . N (19)

The series and thresholds calculated above were used to identify artefact beats. Each
artefact classification protocol is explained below.

Ectopic beats

Ectopic beats are consisted of premature atrial contraction and premature ventricular
contraction. The algorithm differentiates ectopic beats from the other artefact beats
and normal beats. Detection errors are not classified as ectopic beats.

24MATLAB iqr function - https://www.mathworks.com/help/matlab/ref/iqr.html
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Ectopic beats cause the negative-positive-negative and positive-negative-positive
segments to the dRR series. This pattern was utilized for the classification. Equation
(20) and Equation (21) show the formation of the two-dimensional space S1:

S11(i) = dRR(i), i = 1 . . . N (20)

S12(i) =

{
max[dRR(i− 1), dRR(i+ 1)], if dRR(i) ≥ 0
min[dRR(i− 1), dRR(i+ 1)], if dRR(i) < 0

(21)

S12 and −S11 gets simultaneously large values for the segments of negative-positive-
negative and small values for the segments of positive-negative-positive. Based on this
knowledge, Equation (22) was build to classify ectopic beats:

Ectopic beat =


S11(i) > 1 & S12(i) < −c1 S11(i)− c2

OR
S11(i) < −1 & S12(i) > −c1 S11(i) + c2

(22)

where c1 = 0,13 and c2 = 0,17 were estimated using simulations by Lipponen and
Tarvainen [126]. The classification of an ectopic beat required that one of the two
statements in Equation (22) was fulfilled and the beat satisfied the condition showed in
Equation (16). The first and last value were forced to be 0 (= non-ectopic beat) for the
sake of algorithm functionality.

Missed beats

A missed beat is a situation where an abnormally long RRI occurs. This can be due
to an undetected R-peak or a real escape beat. Missed beats form the positive-negative
segments to the dRR series. In order to detect missed (and extra beats), the second
two-dimensional space S2 was created as in Equation (23) and Equation (24)

S21(i) = dRR(i), i = 1 . . . N (23)

S22(i) =

{
min[dRR(i+ 1), dRR(i+ 2)], if dRR(i) ≥ 0
max[dRR(i+ 1), dRR(i+ 2)], if dRR(i) < 0

(24)

The S22(1) = dRR(1) and S22(2) = dRR(2) since the equation was inoperative for
the last two elements.

Equation (25) shows the three statements that were used to determine whether a beat
was a possible missed or extra beat. The fulfillment of one of the three statements was
enough.

Possible missed or extra beat =


S21 > 1 & S22 < −1

OR
S21 < −1 & S22 > 1

OR
|mRR| > 3

(25)
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The last two beats were forced to be normal beats since the algorithm was unable to
handle artefact beats at the end of the data.

A missed beat was classified if the beat satisfied the condition in Equation (16), any
of the statements in Equation (25), and if the RRI satisfied the following condition in
Equation (26):

Missed beat = |RR(i)

2
−medianRR(i)| < Th2 (26)

where the medianRR was calculated using the same principle as in Equation (13).

Extra beats

Extra beats create the negative-negative-positive or negative-positive-positive
segments to the dRR series. They are always originated from a detection error. A
extra beat was classified if the beat satisfied the condition in Equation (16), any of the
statements in Equation (25) and if the RRI satisfied the following condition in Equation
(27):

Extra beat = |RR(i) + RR(i+ 1)−medianRR(i)| < Th2 (27)

Architecture

Figure 27 summarizes the architecture of the algorithm.

Figure 27. The architecture of the developed beat detection algorithm. The decision
making starts from Equation (19) and continues in the direction indicated by the
arrows. Solid arrows indicate satisfied condition and dashed arrows unsatisfied
condition.

4.2.3. Artefact Correction

After artefact beat classification, the beats were corrected. The correction method
depended on the type of the artefact beat. Extra beats were corrected by removing
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the extra R-peak detection. Missed and ectopic beats were corrected by replacing the
missing or distorted beat by an interpolated one.

Correction for the missed and ectopic beats was done in stages, first for the missed
beats and then for the ectopic beats. Missed beat correction was started by inserting
NaN (= Not a Number) values inside the beat array at the positions of the missing beats.
The interpolation was performed over the NaN values using the interp1 function25.
For the interpolation method, ’spline’ was selected. The spline algorithm produce
cubic interpolation to generate piecewise polynomials with continuous second-order
deviates.

Ectopic beat correction was started by removing etopic beat detection points from
the beat array and replacing them by NaN values. Finally, the interpolation was
executed over the NaN values using the same function with the same properties. After
all corrections, the RR intervals and heart rates were recalculated. The resulted ECG
signal with detected R-peaks and artefact corrections was the output of the algorithm.

4.3. Template Extraction

After beat detection, VCG signal templates were extracted from the ECG signal to the
correct HR-levels. The HR in bpm was calculated from the RRI information, which is
shown in Equation (28):

HR(i) =
60

RR(i)
, i = 1 . . . N (28)

where N is the number of RR intervals. Since the HR was calculated from the RRI,
the actual number of the beats, and heart rates, was N + 1. Therefore, the HR for the
first beat was added and assumed to be the same as the second beat HR(1) = HR(2).

The HR data was smoothed by the moving average filter using the smooth function26.
The span parameter was decided to be 11, which means the number of data points used
for calculating the smoothed value.

4.3.1. Heart Rate Level-Based Clustering

The HR signal like the one visualized in Figure 18.a was utilized for the HR analysis.
The initial and end part of the signal were omitted, since the initial part often contained
a lot of noise and the end part contained the recovery phase after incremental exercise
(not seen in Figure 18.b). The K-means clustering was used to detect different HR-
levels in the signal. The function of the K-means clustering was described in Section
3.4. The number of clusters (i.e. HR-levels) was set to 18, and the kmeans function27

was used to perform the clustering.
The kmeans function uses the squared Euclidean distance metric and the k-means++

algorithm for the cluster center initialization. According to Arthur and Vassilvitskii

25MATLAB interp1 function - https://www.mathworks.com/help/matlab/ref/interp1.html
26MATLAB smooth function - https://www.mathworks.com/help/curvefit/smooth.html
27MATLAB kmeans function - https://www.mathworks.com/help/stats/kmeans.html
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[127], the k-means++ algorithm improves the running time and the quality of the final
solution of the Lloyd’s algorithm. The k-means++ algorithm works as follows:

1. An observation is selected randomly from the data set. The chosen observation
is the first centroid c1.

2. Distances from each data point to the c1 are computed. The distance between the
point xm and the centroid cj is denoted as d(xm, cj).

3. The next centroid c2 is selected randomly from the data set with the probability
P which is derived from Equation (29):

P (c2) =
d2(xm, c1)
n∑

j=1

d2(xj, c1)
(29)

where n is the number of data points.
4. To choose the centroid cj , the distances from each data point to each centroid is

computed. Each data point is assigned to its closest centroid. The centroid cj
is selected randomly from the data set with the probability P which is derived
from Equation (30):

P (cj) =
d2(xm, cp)∑

{h;xh∈Cp}
d2(xh, cp)

(30)

where m = 1, . . . , n and p = 1, . . . , j − 1. Cp is the set of all data points closest
to the centroid cp and xm belongs to Cp.

5. The step 4 is repeated until the specified number of centroids is selected.

4.3.2. VCG and Inverse Dower’s Matrix

An inverse Dower’s transformation matrix was used to convert the ECG to VCG.
Table 6 shows the transformation matrix, which is based on the mathematical
pseudoinversion of the Dower’s transformation matrix illustrated in Table 2. The leads
X, Y and Z are expressed by a linear combination of 8 leads.

The VCG beat matrix was constructed using Equation (31):

VCG = D · ECG (31)

where D is the inverse Dower’s transformation matrix. Templates were aligned to
the R-peak locations 200 ms before and 300 ms after. Finally the VCG signals
were combined to their corresponding HR-levels. It should be noted that each HR-
level contained a different number of VCG signals. The number of VCG signals
was specified by the clustering algorithm and was equal to the number of R-peaks
determined to correspond to that HR-level.
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Table 6. Inverse Dower’s transformation matrix
Lead X Y Z

I 0.1561 -0.2274 0.0217
II -0.0099 0.8865 0.1021
V1 -0.1724 0.0572 -0.2289
V2 -0.0738 -0.0190 -0.3100
V3 0.1222 -0.1064 -0.2459
V4 0.2310 -0.0220 -0.0634
V5 0.2393 0.0409 0.0548
V6 0.1936 0.0483 0.1085

4.3.3. Template Verification

In order to improve the accuracy and reliability of the extracted VCG signal templates,
an outlier detection algorithm was developed. First, the median VCG signal leads
corresponding to each HR-level were computed. The pointwise absolute difference D
between each VCG signal lead and the median mV CG was determined as in Equation
(32):

DL(j, i) = |V CGL(j, i)−mV CGL(j, h)|, i = 1, . . . , N (32)

where N is the number of VCG signals at a given HR-level h, j is a data point, and
L indicates a specific lead (X, Y, Z). The number of data points was 270, so j =
1, . . . , 270.

The difference percentages (D%) for each lead were computed from the obtained
results. Lastly, the total difference percent (Total D%) for each VCG signal was
obtained by combining the leads and calculating the mean difference percent like
shown in Equation (33) and Equation (34):

D%L(i) =

K∑
j=1

DL(j, i)

K∑
j=1

|mV CGL(j, h)|
(33)

Total D%(i) =

3∑
L=1

D%(L, i)

3
· 100 (34)

where K = 270 is the number of data points.
The decision was based on the specified threshold value, which was set to 100 (%).

The total difference percent for each signal was compared to the threshold value, and
if the value was exceeded, the signal was removed from the signal library. Histogram,
as shown in Figure 28, was used for visualize the differences. Finally, the mean VCG
signal for each HR-level was calculated to form the final templates.
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Figure 28. The outlier detection visualization. Histogram numbers (1-18) represent
specific heart rate level. The total difference percent is shown on the x-axis and the
number of signals is represented on the y-axis of the histograms.

4.4. Graphical User Interface

The GUI was developed for the processes mentioned above. The GUI enabled the
user to easily customize the parameters used in different steps and instantly inspect
the effects of new parameters. It consisted of two connected windows, that is, from
the first window one could move to the second. The first window included functions
for the preprocessing methods, beat detection, and HR-level clustering. The second
window contained properties for the VCG templates. The individual components of
the GUI are presented in Appendices 1 to 5.

An overview of the first window is presented in Figure 29. The window consisted
of the ECG data information and individual subtabs for each process. In addition,
the ECG signal and HR-levels were plotted to the top of the window. With the GUI,
additional properties could be added for the processes. For the beat detection, manual
R-peak detection was included. This allowed the user to manually add or remove any
beat detection. In addition, the possibilities to modify the heart rate signal limits and
view the high-pass filter were added.

The user could load a new ECG file or import the parameters and signals used in the
selected previous session. The save option was added to save the parameters used in
the session. The parameters and HR-levels with corresponding templates were stored
as a MATLAB .mat file in the selected directory. When the user wanted to end the
session, pressing the End button closed the GUI.
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Figure 29. The first window of the graphical user interface. Electrocardiogram signal
and heart rate graph are plotted to the top of the window.

The second window is presented in Figure 30. The second window contained two
views which are represented in Appendix 4. The first view responded to the final
template properties and the second view to the individual templates. The cut points
were added to the templates, because especially for the high HR-levels, the next signal
sometimes occurred at the end part of the template (or the previous signal was occurred
at the initial part of the template). The cut points could be modified by the user.

In the individual template view, the user could inspect all the VCG signals from a
specific HR-level. The user was able to drop signals out of the median calculations
related to the outlier detection algorithm. In this way, if some signal was clearly
differentiable to others, it did not affect to the median. Also, the threshold value used
for decision-making for the outlier detection was editable. When the user wanted to
stop the template customization and pressed the Return button, the software returned
to the first window.
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Figure 30. The second window of the graphical user interface. Vectorcardiogram
templates are displayed to the top of the window.
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5. RESULTS

In this chapter, the results for developed models are discussed. First, the data sets
used for testing purposes are introduced. Subsequently, the results for each method are
presented sequentially starting from the noise reduction methods and followed by the
beat detection algorithm and template extraction.

5.1. Data Used in Tests

In this study, the ECG data from stress exercises collected by Kiviniemi et al. [82] in
the year 2010 were utilized. The data set consisted of 42 separate ECG recordings from
healthy subjects (21 women, 21 men) aged 28-40 years. All the subjects had a body
mass index below 30 kg·m-2 and were non-smokers. Additionally, individuals with
diabetes mellitus, asthma, or cardiovascular disorders were excluded. The subjects
executed an incremental exercise test on a bicycle ergometer (Monark Ergomedic
839 E; Monark Exercise AB, Vansbro, Sweden) until voluntary exhaustion. The
measurements were performed in the Department of Exercise and Medical Physiology
at Verve (Oulu, Finland).

Incremental exercise denotes an exercise where the stress level is gradually
increased. In the aforementioned research, the starting resistance of the bicycle was set
at 25 watts (W) and was followed by an increase of 1 W·5 s-1. The demonstration of
the incremental stress exercise is shown in Figure 31. The ECG data from Kiviniemi
et al. [82] was used to test HR-level clustering and VCG template extraction, since the
ECG data from incremental exercise was a proper data set for this purpose. The ECG
data were 8-channel recordings.

Figure 31. The demonstration of the incremental exercise.

The developed beat detection algorithm was tested using the MIT-BIH Arrhythmia
Database [22, 23]. The database contains 48 half-hour two-channel ambulatory ECG
recordings from 47 subjects studied by the BIH Arrhythmia Laboratory between
1975 and 1979. Half of the recordings became freely available in 1999, and
remaining files were added to the freely available database in 2005. The recordings
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include annotations from cardiologists and several arrhythmias are present. The MIT-
BIH Arrhythmia Database is widely used database for evaluation of beat detection
algorithms and was therefore selected for this study. Since the annotations were
marked only for one of the two channels, only channel with annotations was included.

The records in the MIT-BIH Arrhythmia Database were originally sampled with
the sampling frequency of 360 Hz. The sampling frequency used in this study was
500 Hz, so in order to use the data, resampling was implemented. Signal resampling
was performed using the interp1 function28 with spline interpolation method. After
resampling, the positions of the annotations were rounded to the nearest integer.

5.2. Outcome

Noise reduction

The preprocessing of the ECG signals was done using the HPF and Savitzky-Golay
filter. The final output after filtering one example ECG signal from the MIT-BIH
Arrhythmia Database (record 101) is presented in Figure 32. The figure contains a
comparison between the original unfiltered and the filtered signal at three different
segments.

Beat detection algorithm

The beat detection algorithm was tested with all 48 records from the MIT-BIH
Arrhythmia Database. The performance of initial beat detection and after beat
correction were evaluated for the comparison purposes. The performance was
evaluated by the sensitivity (SEN), precision (PRE), and detection error rate (DER).
The metrics were defined as in Equation (35), Equation (36), and Equation (37),
respectively:

SEN =
TP

TP + FN
(35)

PRE =
TP

TP + FP
(36)

DER =
FN + FP

TP + FN
(37)

where TP means the number of true positive detections, FN stands for the number of
false negative detections, and FP is the number of false positive detections. Positive
indicates a detected R-peak and negative denotes a data point without detection.

The metrics were determined by the decision-making rule that a beat is true when
it is detected within 100 ms from the annotated time, otherwise false. The time limit
was decided on the basis of other studies on the same topic [115, 128]. The sensitivity
measured the ability of the algorithm to detect true beats, while the precision was used

28MATLAB interp1 function - https://www.mathworks.com/help/matlab/ref/interp1.html
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(a) (b)

(c) (d)

(e) (f)

Figure 32. Filtering results for MIT-BIH recording 101. Unfiltered signals are on the
left (a, c, e) and filtered signals on the right (b, d, f).

to evaluate the ability of the algorithm to distinguish between the true and false beats.
The detection error rate was used to measure the accuracy of the algorithm.

Beats were detected like shown in Figure 33, where the detected R-peaks are marked
with red marks. The figure presents the made detections in two separate segments for
an example recording from the MIT-BIH Arrhythmia Database.

The overall results of the beat detection algorithm for the MIT-BIH Arrhythmia
Database are presented in Appendix 6. The algorithm produced 630 false beats
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(a)

(b)

Figure 33. Detected beats marked with red diamonds in two segments. a) The bigger
segment b) The smaller segment.

including 382 false positive beats and 248 false negative beats, and succeeded in
detecting correctly 99.42 % of the ECG beats. In detail, the sensitivity of 99.77 % and
the precision of 99.65 % was achieved. The algorithm suffered the lowest performance
for the records 203 and 207, and these two records covered 36.03 % of all detection
errors.

The comparison between the initial beat detection and after artefact correction is
presented in Table 7. In addition, the table contains the results for beat artefact
classifications. A problem was encountered during the evaluation of the beat artefacts,
which can be seen in the results of the beat artefact classifications, where especially
the performance of the ectopic beat and missing beat classifications seems to be very
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poor. This was explained by the fact that the interpolated (corrected) beats did not fall
between the time limit. That is, the interpolated position of the beat often differed from
the annotation position by more than the allowed time limit. In addition, missed beat
classification might happen due to the unusually long RRI, which leaded the situation
where added beat occurred in the position where none original beat was present. These
aforementioned situations are demonstrated in Figure 34.

Table 7. Overall scores for the beat detections and beat artefact classifications
Method ANN TP FP FN FP + FN SEN PRE DER
Before algorithm 109,494 109,205 295 289 584 99.74 99.73 0.53
After algorithm 109,494 109,246 382 248 630 99.77 99.65 0.58
Ectopic beats - 1561 1358 8456 9814 15.58 53.48 97.97
Missed beats - 47 167 245 412 16.10 21.96 141.10
Extra beats - 51 51 0 51 100.00 50.00 100.00

(a) (b)

Figure 34. Placement differences between the corrected beats and annotations. Beats
by algorithm are marked by green diamonds and annotations by red circles. a)
Corrected ectopic beats b) Corrected missed beat.

Choi et al. [115] listed the performances of several developed QRS detection
algorithms. Comparative results for the MIT-BIH Arrhythmia Database are
summarized in Table 8. Furthermore, the comparison was made individually for the
normal sinus rhythm records to check the reliability of the algorithm for normal beats
and to minimize the effects of artefact beat time limit errors. Record 101 contained
normal sinus rhythm with couple severe changes possibly caused by body movement.
The comparison of the record 101 is summarized in Table 9. Record 105 consisted of
normal sinus rhythm with a high amount of noise and artefacts. The performances of
the record 105 are compiled in Table 10.

Template extraction

Data from Kiviniemi et al. [82] was used to test whether the HR-level clustering and
template extraction were successful. The evaluation was based on the observations
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Table 8. Comparison of QRS detection performance with several algorithms
Method ANN TP FP FN FP + FN SEN (%) PRE (%) DER (%)
Cvikl et al. (2007) [114] 109,494 109,294 200 200 400 99.82 99.82 0.37
Lee et al. (2002) [113] 109,486 109,151 137 335 472 99.69 99.87 0.43
Choi et al. (2010) [115] 109,494 109,118 218 376 594 99.66 99.80 0.54
Hamilton & Tompkins (1986) [108] 109,267 108,927 248 340 588 99.69 99.77 0.54
Present work 109,494 109,246 382 248 630 99.77 99.65 0.58
Christov (2004) [110] 110,050 109,762 387 287 674 99.74 99.65 0.61
Pan & Tompkins (1985) [107] 109,809 109,532 507 277 784 99.75 99.54 0.71
Afonso et al. (1999) [106] 90,909 90,535 374 406 780 99.55 99.59 0.86
Paoletti & Marchesi (2006) [109] 109,809 109,430 565 379 944 99.65 99.49 0.86
Poli et al. (1995) [112] 109,963 109,522 545 441 986 99.60 99.50 0.90
Chen et al. (2006) [111] 100,381 99,852 459 529 988 99.47 99.54 0.98
Benitez et al. (2001) [105] 45,856 45,828 30 28 58 99.94 99.93 0.13

Table 9. Performance comparison with several algorithms for the record 101
Method ANN TP FP FN FP + FN SEN (%) PRE (%) DER (%)
Choi et al (2010) [115] 1865 1865 1 0 1 100.00 99.95 0.05
Present work 1865 1865 1 0 1 100.00 99.95 0.05
Lee et al. (2002) [113] 1865 1865 2 0 2 100.00 99.89 0.11
Afonso et al. (1999) [106] 1523 1523 2 0 2 100.00 99.87 0.13
Benitez et al. (2001) [105] 1866 1865 3 1 4 99.95 99.84 0.21
Hamilton & Tompkins (1986) [108] 1859 1858 3 1 4 99.95 99.84 0.22
Cvikl et al. (2007) [114] 1865 1864 4 1 5 99.95 99.79 0.27
Christov (2004) [110] 1863 1862 4 1 5 99.95 99.79 0.27
Pan & Tompkins (1985) [107] 1865 1862 5 3 8 99.84 99.73 0.43
Chen et al. (2006) [111] 1865 1865 10 0 10 100.00 99.47 0.54
Paoletti & Marchesi (2006) [109] 1865 1860 7 5 12 99.73 99.63 0.64

Table 10. Performance comparison with several algorithms for the record 105
Method ANN TP FP FN FP + FN SEN (%) PRE (&) DER (%)
Benitez et al. (2001) [105] 2572 2569 7 3 10 99.88 99.73 0.39
Cvikl et al. (2007) [114] 2572 2567 34 5 39 99.81 98.69 1.52
Present work 2572 2554 24 18 42 99.30 99.07 1.63
Lee et al. (2002) [113] 2572 2568 41 4 45 99.84 98.43 1.75
Choi et al. (2010) [115] 2572 2541 21 31 52 98.79 99.18 2.02
Christov (2004) [110] 2567 2552 44 15 59 99.42 98.31 2.30
Hamilton & Tompkins (1986) [108] 2564 2542 53 22 75 99.14 97.96 2.93
Chen et al. (2006) [111] 2572 2567 78 5 83 99.81 97.05 3.23
Afonso et al. (1999) [106] 2139 2123 53 16 69 99.25 97.56 3.23
Pan & Tompkins (1985) [107] 2572 2550 67 22 89 99.14 97.44 3.46
Poli et al. (1995) [112] 2572 2567 86 5 91 99.81 96.76 3.54
Paoletti & Marchesi (2006) [109] 2572 2541 73 31 104 98.79 97.21 4.04

rather than on any metric values. Different HR-levels were detected and templates
were extracted for every HR-level. Figure 35 shows the HR-level detection for one
subject, where the number of clusters was 18.
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Figure 35. Heart rate level detection for 18 heart rate levels. Different clusters are
marked with colors in the signal. The signal has been cut so that the initial and recovery
parts were excluded.

Figure 36 shows all the signals before outlier detection and the final template for one
HR-level for one example subject. The figure includes scalar vectorcardiogram signals
differentiated with colors and respective final templates. An example of the final
templates of all the HR-levels is presented in Figure 37. The figure shows extracted
scalar vectorcardiogram templates for all the HR-levels for the same subject, where
different HR-levels are marked with colors. In addition, different HR-levels are listed
next to the templates.
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(a)

(b)

Figure 36. a) All vectorcardiogram signals (X, Y, X) before outlier detection. Different
signals are marked with colors. b) The final template for one heart rate level.
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Figure 37. The final vectorcardiogram signal templates (X, Y, Z) for all detected HR-
levels for one subject. Different HR-levels are marked with colors and listed next to
the templates.
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6. DISCUSSION

The goal of this study was to develop a beat detection algorithm and extract heart rate
dependent ECG templates for a body emulator environment. Real-life ECG signals
were preprocessed using the HPF and Savitzky-Golay filter. The developed beat
detection algorithm was used to detect heartbeats from the ECG signals. Different HR-
levels from the ECG signals were detected utilizing the K-means clustering algorithm.
The ECG signals were converted to the VCG using the inverse Dower’s transformation
matrix, and the VCG signals were extracted to the respective HR-levels. The GUI was
built to give a better view and customization properties to the processes. The developed
beat detection algorithm was tested with the MIT-BIH Arrhythmia Database. The HR-
level clustering and template extraction were validated using the incremental exercise
ECG.

The noise was successfully reduced from the signals. From Figures 32.a and 32.b
can be seen that the overall state of the signal is significantly smoother after filtering.
Baseline wandering has been reduced, which can be noted from Figures 32.c and 32.d.
The high-frequency noise has been remarkably attenuated as shown in Figures 32.e
and 32.f.

At the beginning of the beat detection algorithm tests, fixed parameters were used
to detect R-peaks in the ECG signal. It was quickly discovered that the records in the
MIT-BIH Arrhythmia Database were too variable and the results differed significantly
from each other. Consequently, it was decided to use variable parameters. This also
described better the situation for which the algorithm was actually developed, since it
is possible to modify the parameters in the GUI.

The QRS complexes were successfully detected in majority of the records
(Appendix 6), particularly for normal sinus rhythm. In addition, the algorithm achieved
good scores on records with LBBB, junctional premature beats, and PVCs (uni-
and multiform). The lowest performance was resulted for the records 203 and 207.
This might be due to the considerable noise, ventricular flutter, and idioventricular
rhythm. Especially the record 203 contained axis shifts, which caused the QRS
morphology changes. Cardiologists had marked the both records to an extremely
difficult. In addition, lower performance for the records 124 and 228 could be due
to the idioventricular rhythm and short occurrence tape slippages, respectively.

The comparison was made for the QRS detection performance with several
algorithms (Table 8). For overall scores, the results of the algorithm were slightly
better than the average. Especially the sensitivity of the algorithm was higher than
for many others. The algorithm performed well with normal sinus rhythm and many
high noise signals. The performance for the record 101 (Table 9), which was consisted
of mainly normal sinus rhythm, was equal to the best of all the algorithms. Record
105 contained normal sinus rhythm with a high amount of noise and artefacts, and the
developed algorithm produced the third best performance on this record (Table 10).
These results show that the preprocessing methods (Figure 32) were sufficient and the
algorithm was able to detect the QRS complexes from normal sinus rhythm with the
high accuracy.

A problem was occurred related to the evaluation for the beat artefact classification
and the results (Table 7) did not reflect the actual outcome of the classification
performance. The interpolated beats did not fall between the time limits, which



70

resulted false detections. For instance, one corrected ectopic beat which exceeded
the time limit resulted one false positive and one false negative detection (Figure 34).
Missed beats were corrected by adding the new beat detection, which was sufficient in
situations where detection error for the real beat was present. In contrast, if the missed
beat classification happened due to an unusually long RR interval, the added detection
was surely to be classified as a false positive beat. These difficulties might be due to the
insufficient interpolation methods or that the evaluation method (i.e. the comparison
to the original peak locations) was not suitable for this purpose.

Although the evaluation problems were present, there were also real classification
errors. Most often the ectopic beat classification occurred when there was not a
real ectopic beat present. Sometimes the missed beat classification happened when
a real ectopic beat was present, and vice versa. Nonetheless, most often these beat
corrections served their purpose of creating an ECG signal in which changes in the RR
interval occurred as a result of heart rate variability and not due to arrhythmias, noise,
or artefacts.

The initial beat detection resulted lower detection error rate than after the beat
artefact correction (Table 7). However, it should be noted that even those evaluation
errors presented above, the algorithm gained a better sensitivity score and more TP
detections than the initial beat detection. Furthermore, based on the observations
above, the performance of the algorithm can be supposed to be slightly better than
the obtained scores.

Heart rate levels were detected using the K-means clustering algorithm (Figure 35).
It can be seen that it is more challenging to detect HR-levels from the initial part of
the signal since the HRV is higher than elsewhere. However, lower heart rates are also
needed, and the figure shows that it was possible to detect HR-levels from different
heart rates.

Vectorcardiogram templates were extracted to the correct heart rate levels (Figure
37). It can be noted that the templates are uniform, although small differences can be
noticed close to the edges. That is normal because different heart rates have different
signal morphology. In addition, it can be noticed in Figure 36 that even when there
were some distorted signals involved, the final template was congruent to the majority
of the signals. Therefore it can be said, that the outlier detection worked as planned.

The GUI was created successfully, and it gave many beneficial function possibilities.
The manual beat detection and algorithm parameter customization properties enabled
basically 100 % beat detection accuracy. The number of desired heart rate levels was
easy to change, and the time limit modification helped to include only the relevant
part of the signals. The cut points of the templates enabled the customization of the
template lengths, which excluded disturbances from the adjacent beats.

The limitations of this study include the evaluation methods for artefact beat
classification. While the beat detection algorithm obtained relatively good results,
the assessment of the artefact beat classification remained unresolved. In addition,
extracted templates were not tested in the phantom, and the functionality of the
templates was only validated by a visual inspection. Although the templates seemed
successful, a more reliable evaluation would have been achieved with a real test in the
phantom.

The extracted templates in this study can be used as an input for the dipoles attached
to the emulator to produce realistic modeling cardiac signals. The developed GUI
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can be used to customize the template generation properties to obtain the desired
templates for each situation. These developed models are part of the larger picture
of the human emulator, that can emulate the physiological functions of the human
body. The phantom can be used for testing medical devices and analysis methods, and
could be one solution to the difficulties of human trials.

For the future developments, a re-evaluation of the artefact beat classification is
needed, since the current effects of the classifications and thus the functionality of the
algorithm are partially unknown. The evaluation method needs modification, since the
interpolated beats did not fall between the time limits. One approach could be a wider
time limit for artefact beats and a narrower time limit for normal beats. In addition, the
development of interpolation methods used should be considered. Furthermore, in the
future, the extracted templates could be tested in the phantom to assure the quality of
the developed models.
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7. SUMMARY

In this research, heart rate depended electrocardiogram templates were developed for
a body emulator environment. The real-life ECG signals were preprocessed with two
digital filters. The high-pass Butterworth IIR filter was used to reduce low-frequency
noise in the signals, and the Savitzky-Golay FIR filter was used to attenuate high-
frequency noise in the signals.

A beat detection algorithm was developed to detect QRS complexes in the ECG
signal. It consisted of the initial QRS detection followed by the artefact beat
classification and correction. The algorithm was based on the RR interval information
and the classifications were made based on the irregular RR intervals. The developed
algorithm was tested with the MIT-BIH Arrhythmia Database, and the results were
compared with the state-of-the-art algorithms. Out of 109 494 beats, 99.42 % were
correctly detected, and the algorithm resulted the sensitivity of 99.77 % and precision
of 99.65 %. The developed QRS detection algorithm performed successfully in
majority of the records, and was better for records contained normal sinus rhythm
and PVCs. The comparison of the QRS detection performance with several state-of-
the-art algorithms was made. The developed algorithm achieved the best results for a
low noise ECG signal with normal sinus rhythm and the third best results for a high
noise signal.

Heart rate levels were detected by the K-means clustering method. The K-means++
algorithm was used for the cluster center initialization. Vectorcardiogram signals were
converted from the electrocardiogram signals using the inverse Dower’s transformation
matrix. Vectorcardiogram templates were extracted to the related heart rate levels. The
outlier detection algorithm based on the mathematical median was used to improve the
quality of the templates. The incremental stress exercise ECG data was used to validate
the functionality of the methods.

Finally, a graphical user interface was created to enhance the process visibility and
customization properties. In the GUI, manual beat selection was developed to enable
the best possible outcome for the beat detection. Cut point modifications for the
heart rate signal and VCG templates were introduced to improve the quality of the
detected heart rate levels and final templates. The GUI was properly integrated into
the processes and the final templates were successfully obtained.

These final VCG templates can be used to generate an electrical impulse in the
phantom using dipoles placed at the heart location. The electrical impulses will
propagate in the phantom by ions mixed to the torso and produce cardiac signals that
emulate the real human heart. The signals from the heart emulator can be measured
with electrodes placed on the torso as a conventional ECG measurement. The phantom
will also emulate the motion of the human torso, such as respiratory and muscle
movement. These will make the signals even more realistic. The phantom will be a
platform for testing the ECG related devices and analysis methods instead of humans.
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Figure A1.1. The main view of the first window of the graphical user interface. The
components are marked with numbers.
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Figure A2.1. The subtabs of the first window. Each subtab contains properties for a
specific process.
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Table A3.1. The components of the first window of the graphical user interface
Index Component Information

1 Filtering tab Contains filtering parameters in two subtabs

2 Data Info section Contains information about the data

3 Import Previous button Downloads settings from the previous session

4 Load Data button Downloads the new ECG data

5 Highpass IIR subtab Contains the parameters used in high-pass IIR filter

6 View Filter button Opens a new window for filter visualization

7 Highpass IIR parameters The parameters used in the high-pass IIR filter

8 End button Closes the app

9 Save button Saves the parameters to a .MAT file

10 Parameter editing options Default: default parameters. Custom: enables parameter customization

11 Parameters section Contains parameter editing options

12 Heart rate graph Heart rate as a function of time. HR-levels showed with colors

13 ECG plot ECG as a function of time. Detected beats showed with red marks

14 Savitzky-Golay subtab Contains the parameters used in the Savitzky-Golay filter

15 Savitzky-Golay parameters Parameters used in the Savitzky-Golay filter

16 Beat Detection tab Contains beat detection parameters ans manual options

17 Parameters subtab Contains the parameters used in beat detection

18 Beat detection parameters Parameters used in beat detection

19 Run Beat Detection button Runs beat detection and shows the ECG signal with detections

20 Remove Detections button Enables the user to remove beat detections manually

21 Add Detections button Enables the user to add beat detections manually

22 R-peak Selection subtab Contains manual beat detection options

23 Reset Previous Selection button Resets the previous manual beat detection function

24 Reset All Selections button Resets all manual beat detection functions

25 Plot HR leves button Runs heart rate level clustering and plots the heart rate graph

26 Heart rate parameters Parameters used in heart rate level clustering

27 Heart Rate tab Contains the parameters used in heart rate level clustering

28 Move to Template Generation button Opens the template generation window

29 Templates tab Contains the button to template generation
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(a)

(b)

Figure A4.1. Two views of the second window of the graphical user interface. a) The
first view, where the final templates are plotted to the top of the window b) The second
view, where the individual signals of a specific template are visible before (left) and
after (right) the outlier detection algorithm.



Appendix 5. Graphical User Interface, Second Window Components 91

Table A5.1. The components of the second window of the graphical user interface
Index Component Information

1 VCG templates VCG template signals. Cut points are shown as lines on the x-axis

2 All Templates tab Contains HR level selection and cut point customization properties

3 HR level checkboxes All HR levels. Checked boxes are displayed

4 Cut Points section Contains cut point customization options

5 Cut point selection buttons Enables the user to select cut points

6 Save Cut Points button Saves the selected cut points

7 Cut point edit fields Shows current cut points. The user can edit the cut points by typing in the field

8 Next » button Displays the next template

9 HR level dropdown The list of all HR levels. HR level can be displayed by selecting it from the list

10 Return button Returns to the first window and stores template setting into temporary memory

11 View Histogram button Opens a new window for the histogram visualization

12 Threshold edit field The user can edit the threshold value by typing in the field

13 Threshold section Contains threshold customization and histogram visualization options

14 HR level legends Shows template colors and respective HR levels that are currently displayed

15 VCG signals X, Y, and Z signals before outlier detection algorithm

16 Individual Template tab Contains signal selection options for a specific template

17 Signals section Contains all signals for a specific template

18 Signal checkboxes All signals for a specific template. Checked signals are displayed

19 Use Selected Signals button Uses selected signals for outlier detection calculations

20 HR Level dropdown The list of all HR levels. The user can display respective signals by selecting HR level

21 Right side’s view section Display options for the right side’s plots

22 VCG signals X, Y, and Z signals after the outlier detection algorithm
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Table A6.1. The overall performance of the beat detection algorithm
Record ANN TP FP FN FP + FN SEN (%) PRE (&) DER (%)
100 2273 2273 0 0 0 100.00 100.00 0.00
101 1865 1865 1 0 1 100.00 99.95 0.05
102 2187 2187 0 0 0 100.00 100.00 0.00
103 2084 2084 0 0 0 100.00 100.00 0.00
104 2229 2226 4 3 7 99.87 99.82 0.31
105 2572 2554 24 18 42 99.30 99.07 1.63
106 2027 2020 10 7 17 99.65 99.51 0.84
107 2137 2133 3 4 7 99.81 99.86 0.33
108 1763 1749 9 14 23 99.21 99.49 1.30
109 2532 2532 0 0 0 100.00 100.00 0.00
111 2124 2124 0 0 0 100.00 100.00 0.00
112 2539 2539 0 0 0 100.00 100.00 0.00
113 1795 1795 2 0 2 100.00 99.89 0.11
114 1879 1879 2 0 2 100.00 99.89 0.11
115 1953 1953 0 0 0 100.00 100.00 0.00
116 2412 2398 2 14 16 99.42 99.92 0.66
117 1535 1535 0 0 0 100.00 100.00 0.00
118 2278 2278 6 0 6 100.00 99.74 0.26
119 1987 1987 1 0 1 100.00 99.95 0.05
121 1863 1863 0 0 0 100.00 100.00 0.00
122 2476 2476 0 0 0 100.00 100.00 0.00
123 1518 1515 0 3 3 99.80 100.00 0.20
124 1619 1596 9 23 32 98.58 99.44 1.98
200 2601 2595 23 6 29 99.77 99.12 1.12
201 1963 1958 7 5 12 99.75 99.64 0.61
202 2136 2135 8 1 9 99.95 99.63 0.42
203 2980 2932 46 48 94 98.39 98.46 3.15
205 2656 2652 2 4 6 99.85 99.92 0.23
207 1860 1816 89 44 133 97.63 95.33 7.15
208 2955 2946 14 9 23 99.70 99.53 0.78
209 3005 3005 0 0 0 100.00 100.00 0.00
210 2650 2646 18 4 22 99.85 99.32 0.83
212 2748 2748 0 0 0 100.00 100.00 0.00
213 3251 3251 0 0 0 100.00 100.00 0.00
214 2262 2259 4 3 7 99.87 99.82 0.31
215 3363 3363 8 0 8 100.00 99.76 0.24
217 2208 2206 1 2 3 99.91 99.95 0.14
219 2154 2148 32 6 38 99.72 98.53 1.76
220 2048 2040 3 8 11 99.61 99.85 0.54
221 2427 2427 4 0 4 100.00 99.84 0.16
222 2483 2480 13 3 16 99.88 99.48 0.64
223 2605 2604 2 1 3 99.96 99.92 0.12
228 2053 2039 20 14 34 99.32 99.03 1.66
230 2256 2256 0 0 0 100.00 100.00 0.00
231 1571 1570 7 1 8 99.94 99.56 0.51
232 1780 1777 7 3 10 99.83 99.61 0.56
233 3079 3079 1 0 1 100.00 99.97 0.03
234 2753 2753 0 0 0 100.00 100.00 0.00
48 records 109494 109246 382 248 630 99.77 99.65 0.58
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