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Abstract

Quantum materials offer tremendous potential for advancing electronic devices beyond tra-
ditional semiconductor-based technologies. Understanding the dynamics of these materials
requires the use of quantum simulators. Quantum simulators are controlled many-body
quantum systems that mimic the dynamics of a targeted quantum system. The three key
features of a quantum simulator are controllability, scalability, and interactability. Con-
trollability denotes the ability to address an individual quantum system. Scalability refers
to extending this control to multiple quantum systems while maintaining their interconnec-
tivity with a polynomial increase in resources. Interactability, on the other hand, denotes
the capability to establish strong tunable interactions between a pair of quantum systems.

This thesis addresses the challenges of attaining controllability and scalability within the
current Noisy Intermediate-Scale Quantum (NISQ) era, characterized by limited and error-
prone qubits, for a neutral atom-based quantum simulator.

The constraints in qubit interconnectivity necessitate the use of additional swap gates for
operations between non-adjacent qubits, increasing errors. To reduce these gate-based
errors, we improve qubit interconnectivity by displacing atoms during simulation, thus
enhancing our simulator’s scalability. We compare approaches with and without atom dis-
placement analytically and numerically, employing metrics like circuit fidelity and quantum
volume. Our analysis introduces a novel metric, denoted as ηprotocol, for comparing compi-
lation protocols incorporating atom displacement. Additionally, we establish an inequality
involving the ηplatform metric to compare operational protocols with and without atom dis-
placement. We conclude from our quantum volume study that protocols assisted by atom
displacement can achieve a quantum volume of 27, a significant improvement over the 26

attainable without atom displacement with the state-of-the-art two-qubit gate infidelity of
5e-3 and atom displacement infidelity of 1.8e-4.

Implementing a dedicated closed-loop control and acquisition system showcases our sim-
ulator’s controllability. The system integrates machine learning techniques to automate
experiment composition, execution, and analysis, resulting in faster and automated con-
trol parameter optimization. A practical demonstration of this optimization is conducted
through imaging an atomic cloud composed of Rb-87 atoms, the first step in undertaking
quantum simulations with neutral atom arrays.

The research presented in this thesis contributes to the understanding and advancement of
quantum simulators, paving the way for developing new devices with quantum materials.
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Chapter 1

Introduction

1.1 Motivation

Quantum materials have the potential to advance electronic devices beyond tradi-
tional semiconductor-based technologies. The emergent properties of quantum materi-
als stem from the collective behavior of a macroscopic number of strongly interacting
quantum particles. Among such materials, two-dimensional layered materials (2DLMs)
have gained considerable attention following the discovery of graphene. The weak inter-
layer interactions enabled by van der Waals (vdW) forces in 2DLMs allow the engineer-
ing of diverse vdW hetero-structures (vdWHs) tailored to specific requirements. These
vdWHs have paved the way for specialized electronic devices, including tunneling tran-
sistors, flexible electronics, and optoelectronic components such as photo-detectors and
photovoltaics [Geim and Grigorieva, 2013]. The development of such devices showcases
the immense potential of quantum materials and contributes to the realization of secure,
environmentally friendly, and sustainable technologies [Tokura et al., 2017].

The discovery and development of new quantum materials follow a continuous cycle of
five essential steps: design, fabrication, characterization, assembly, and testing. This iter-
ative process drives the advancement of existing materials and the creation of innovative
devices. During the design phase, simulating quantum materials is crucial in predicting and
understanding their properties. However, simulating these properties on classical comput-
ers faces substantial challenges due to the exponential growth in parameter space and the
complexities involved in capturing the emergent phenomena resulting from the interaction
among strongly correlated quantum particles.
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Classical simulations fall short in accurately capturing the behavior of quantum ma-
terials. The complex nature of these materials, characterized by long-range entanglement
and exponential growth in variables, renders classical computational methods inadequate
to study their intricate dynamics. To overcome these limitations, dedicated quantum simu-
lators are necessary to gain insights into the properties and behavior of quantum materials
in regimes inaccessible to classical simulators.

The proposal for quantum simulation has paved the way to overcome these limitations
in comprehending the complexities of quantum systems. Quantum simulation entails us-
ing a controlled many-body quantum system, referred to as a quantum simulator, that
mimics the dynamics of a quantum-mechanical system under investigation, as illustrated
in Fig. 1.1. Through controlled studies on the dynamics of these materials using quantum
simulators, we aim to better understand their unique properties using fewer computa-
tional resources than classical computers. This approach accelerates the discovery of novel
materials by identifying optimal design and fabrication strategies.

Realizing a quantum simulator requires three key features: controllability, scalability,
and interactability. Controllability denotes the ability to address an individual quantum
system, including state initialization, manipulation, and read-out. Scalability refers to the
possibility of extending this control to multiple quantum systems while maintaining their
interconnectivity with a polynomial increase in resources. Interactability, on the other
hand, denotes the capability to establish strong tunable interactions between a pair of
quantum systems.

Quantum simulators are an invaluable tool for investigating complex quantum dynam-
ics. However, they face significant challenges in the Noisy Intermediate-Scale Quantum
(NISQ) era [Preskill, 2018]. Decoherence, the rapid loss of quantum properties due to
interactions with the environment, leads to errors that compromise simulation reliability.
Additionally, imperfections in physical qubits and quantum gates contribute to a high error
rate. When theses error rates exceed the maximum tolerable limit set by quantum error
codes, they limit the circuit depth. As a result, the complexity of feasible computations
on quantum simulators is constrained.

In response to the challenges posed by quantum decoherence and high error rates inher-
ent to the NISQ era, this thesis puts forth the concept of dynamic architecture for quantum
simulators to enhance scalability. Unlike static architecture, where qubit adjacencies are
fixed, dynamic architecture permits programmable on-demand adjacency. This capability
mitigates the need for SWAP operations typically required for interactions among non-
adjacent qubits in partially connected quantum simulators. Consequently, it leads to a
reduction in circuit depth, thereby minimizing the total accumulated error.
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Figure 1.1: Quantum simulation for novel material discovery.
A quantum simulator is a controlled many-body quantum system that mimics the

dynamics of a quantum-mechanical system under investigation. Quantum simulators
provide a powerful tool for studying the dynamics of quantum materials, expediting the
discovery of novel materials. Here, a quantum simulator maps the dynamics of quantum

materials to accelerate the discovery of novel materials.

This thesis further presents protocols for embodying this dynamic architecture in neu-
tral atom arrays by shuttling atomic qubits and tailoring adjacency to match quantum cir-
cuit requirements. The superiority of the dynamic architecture over the static architecture
is then numerically evaluated via cross-benchmarking under error conditions. Moreover, to
enhance the simulator’s controllability, the thesis details a control and acquisition system
for conducting quantum simulations. A machine learning-based approach is also outlined
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to automate this system to achieve faster and automated convergence. Collectively, these
approaches seek to address the challenges imposed in the NISQ era and enhance the effec-
tiveness of a quantum simulator.

1.2 Thesis outline

In Chapter 2, I first motivate the need for quantum simulators to tackle a range of
issues, including the design of novel quantum materials, as discussed in Section 2.1. The
chapter then dissects the key features - controllability, scalability, and interactability -
necessary for building a quantum simulator. Section 2.5 outlines how a neutral atom array-
based quantum simulator actualizes these features. This perspective offers a foundational
understanding of how quantum simulators operate and lays the groundwork for future
development.

In Chapter 3, I outline the experimental procedures for performing quantum simulation
on a neutral atom array-based quantum simulator. Section 3.1 presents the sequence
of operations required in such simulations, without the involved apparatus. Section 3.2
provides an overview of the systems and hardware used in these quantum simulations.
This chapter, in essence, amalgamates a comprehensive literature review and experimental
methodologies to conduct quantum simulations on a neutral atom array-based quantum
simulator.

In Chapter 4, I describe static and dynamic architectures for quantum simulators, fo-
cusing on improving the simulator’s scalability. Section 4.1 discusses these architectures,
followed by the recent advancements on neutral-atom platform that enable dynamic ar-
chitecture in Section 4.2. Section 4.3 introduces atom displacement protocol designed
to realize dynamic architecture, while Section 4.4 considers the associated errors for the
protocol. Section 4.5 outlines the circuit compilation protocol for both architectures. In
Section 4.6, the circuit fidelity of both architectures is evaluated and compared, highlight-
ing specific conditions under which the dynamic architecture surpasses the static one. In
conclusion, Section 4.7 contrasts the attainable quantum volume in both architectures,
indicating the maximum two-qubit gate error thresholds. This chapter offers a holistic
perspective on the potential and challenges of static and dynamic architectures.

In Chapter 5, I describe a control and acquisition system designed to enhance our quan-
tum simulator’s controllability. Section 5.1 provides an overview of the control hardware
and its integration with our current experimental setup. Section 5.2 details the software
architecture underpinning the control and acquisition system, including a summary of Lab-
script suite components utilized for comprehensive experiment management. Section 5.3
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further breaks down the systematic steps in managing and executing experiments. It also
introduces a closed-loop control and acquisition system leveraging machine learning to
automate the experimental process.

In Chapter 6, I demonstrate the capability of our control and acquisition system to
create an atomic cloud of Rb-87 atoms, the first step in undertaking quantum simulations
with neutral atom arrays. Section 6.1 outlines the process of creating an atomic cloud
in our experimental setup and optimizes control parameters to maximize the number of
atoms in the cloud. In Section 6.2, M-LOOP, a machine learning technique, is employed to
optimize these control parameters automatically. This effort underscores the critical role
of automation and machine learning in multi-parameter space exploration.
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Chapter 2

Features of a quantum simulator:
controllability, scalability, and
interactability

2.1 Unlocking New Frontiers: Need for quantum simu-
lators

The development of quantum computing marks a new era in scientific computation,
pushing the limits beyond classical computing devices. At the heart of this revolution
lies quantum mechanics’ unique principles, such as superposition [Einstein et al., 1935]
and entanglement [Dirac, 1930]. By leveraging these principles, we can realize a quan-
tum advantage, which signifies the ability to execute specific computational tasks more
efficiently than any existing classical algorithm. This advantage is no longer a theoreti-
cal promise and has been empirically validated in several cutting-edge experiments across
various platforms [Arute et al., 2019] [Zhong et al., 2020] [Madsen et al., 2022]. The mile-
stones attained suggest an expansive application scope for quantum computing. It extends
from solving complex optimization problems [Shor, 1994] to enabling more efficient search
algorithms [Grover, 1996] to enhanced cryptographic protocols [Ekert, 1991].

However, developing a fully functional quantum computer to solve above stated prob-
lems involves addressing technical challenges related to qubit coherence, error minimization,
and scalability. Ensuring precise qubit control, cross-talk reduction, and optimizing quan-
tum algorithms adds further complexity. Each of these challenges represents a significant
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area of research in the quest to unlock the full potential of quantum computers.

While developing a universal fault-tolerant quantum computer is a long-term goal,
current interest lies in evaluating the performance of quantum algorithms on near-term
quantum devices. Such devices, known as Noisy Intermediate-Scale Quantum (NISQ)
devices [Preskill, 2018], offer insights into the practical aspects of quantum computation.
Despite their limitations in qubit number and susceptibility to errors, they allow us to
assess and refine quantum algorithms, nudging us closer to the ultimate goal.

Similarly, quantum simulators are tailor-made instruments designed to tackle distinct
quantum problems. Notably, they are instrumental in accelerating the process of quantum
materials discovery. A quantum simulator is a controllable many-body quantum system
that emulates the dynamics of a target quantum system under investigation. It equips us
with the necessary tools to understand complex quantum phenomena beyond the scope
of classical computations [Feynman, 1982]. Therefore, quantum simulators complement
quantum computing efforts and serve as powerful tools in their own right, enabling the
study of quantum systems in a controlled environment.

A practical quantum simulator should have controllability, scalability, and interactabil-
ity, aligning with DiVincenzo’s criteria [DiVincenzo, 2000] for a viable quantum computer.
Controllability means efficiently initializing, manipulating, and reading qubit states, mir-
roring with DiVincenzo’s guidelines for initialization and readout. Scalability involves
linearly increasing resources to handle more qubits, reflecting the requirement of physical
scalability in DiVincenzo’s principles. Lastly, interactability and controllability also meet
DiVincenzo’s standards for a universal set of quantum gates and gate operations faster
than qubits lose coherence (decoherence time). This convergence of features in quantum
simulators represents a significant stride toward the broader objective of realizing full-scale
quantum computers.

2.2 Controllability: Addressing an individual quantum
system

Quantum information is generally encoded in the energy eigenstates of the quantum
simulator. Controllability refers to the ability to initialize a quantum state accurately,
precisely manipulate the state via defined control sequences and measure the state with
efficient read-out techniques.

Initialization of desired quantum state: In the initialization step, the quantum
simulator is prepared in a well-defined starting state, such as a known ground state or
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a specified superposition state. Reliable and efficient initialization methods are essential
to set the quantum simulator at a suitable starting point for the desired simulation or
computation. Techniques like quantum state tomography [Cramer et al., 2010] and state
preparation algorithms [Araujo et al., 2021] guide us to achieve the selected quantum states
accurately.

Manipulation of quantum state: Quantum state manipulation is accomplished
through well-defined control pulses that control the qubit’s physical variables, such as en-
ergy levels, coupling strengths, and interaction times. Precisely controlling these variables
allows the quantum system to transition from one desired state to another, simulating spe-
cific physical systems or implementing targeted quantum operations [Cirac and Zoller, 1995].
The ability to manipulate quantum states with high fidelity is crucial for executing quan-
tum algorithms and conducting quantum information processing tasks.

Measurement of quantum state: After the quantum system undergoes evolution
or computation, efficient and accurate read-out techniques are required to extract informa-
tion about the final state. Measurement techniques in quantum simulators involve mapping
the quantum state onto classical measurement outcomes that can be recorded and ana-
lyzed. Accurate measurement techniques are essential for validating simulation outcomes,
assessing the effectiveness of quantum algorithms, and extracting valuable insights from
the simulated system.

The controllability of quantum systems is a fundamental theoretical notion in quantum
control and has practical importance because of its close connection with the universality
of quantum computation [Dong and Petersen, 2010]. These aspects collectively enable ef-
ficient simulation, computation, and analysis of complex quantum systems using quantum
simulators.

2.3 Scalability: Controlling multiple quantum systems
with linear increase in resources

Scalability refers to a linear increase in resources to control multiple quantum systems
and manage their interconnectivity to interact. Key factors contributing to scalability
include the hardware’s control infrastructure and connectivity of the qubits.

Scalable control infrastructure: Scalability necessitates a linear increase in re-
sources to initialize, manipulate and measure qubits. An ideal infrastructure must be able
to individually address and control many qubits simultaneously with minimal interference
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and high fidelity. For instance, a study demonstrated the parallel execution of gates to
create entanglement [Levine et al., 2019]. Furthermore, measurement systems should be
capable of handling many qubits, mitigating any noise that could compromise accuracy.

Connectivity of the hardware: As the number of qubits grows, the simulator can
model more realistic physical systems. Such systems require quantum simulators to have
high connectivity between qubits. The ability to couple qubits and create entanglement
between them is crucial for executing deep quantum circuits. These circuits enable the
exploration of quantum dynamics with long-range quantum entanglement.

Further advancements in hardware technology and error correction techniques are es-
sential to improve scalability. Scalability enhances the utility of quantum simulators in
diverse areas such as material science, drug discovery, and optimization problems by en-
abling larger parameter spaces.

2.4 Interactability: Facilitating strong tunable interac-
tions between individual quantum systems

Interactability refers to the ability to couple two qubits with strong tunable interactions,
which can be switched as required. Two key requirements for tunable interactions are
customizable Hamiltonians and the digital-analog programmability of simulators.

Customizable Hamiltonians: Tunable interaction plays a role in dynamically modu-
lating the coupling strengths of qubits, turning on or off the exchange of quantum informa-
tion. Such a feature can only be achieved by modulating the system’s Hamiltonian, which
describes the energy levels and interactions of the quantum system. The coupling param-
eters of the Hamiltonian can be adjusted through various techniques such as changing the
distance between qubits [Bluvstein et al., 2022], modifying the strengths of the coupling
fields [Kim et al., 2009], or altering the properties of the coupling medium [Majer et al., 2007].
By making these interactions tunable, the effective Hamiltonian of the system can be tai-
lored to match the physical Hamiltonian of the system under study.

Digital-Analog programmability: Digital quantum or gate-based quantum simu-
lation offers versatility as it can encode any Hamiltonian using one and two-qubit gates.
However, achieving the high coherence, gate fidelity, and error correction required for deep
quantum circuits is challenging. Conversely, a model closer to digital quantum computers
incorporates analog-like elements, allowing for the activation and deactivation of multi-
qubit interactions rather than decomposing them into single and two-qubit gates. This
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approach can lead to shorter-depth circuits and the simulation of more complex problems,
even with limited coherence and gate fidelity. Hybrid models of simulation bridge the gap
between digital and analog approaches. Analog devices replicate the target Hamiltonian
by mapping it to the simulator’s customizable Hamiltonian. Additional capabilities, such
as single-qubit gates and single-site addressability, offer increased control and expand the
range of Hamiltonians that can be simulated.

Interactability in quantum simulators grants the ability to control and manipulate the
interactions between qubits by customizing the system’s Hamiltonian. Such customizability
facilitates adaptable quantum simulations enabling the study of fundamental physics and
the development of new quantum algorithms.

2.5 Neutral Atom Arrays: Potential platform for quan-
tum simulation

Neutral atoms containing a single valence electron can be excited to high-energy states,
resulting in atoms known as Rydberg atoms [Gallagher, 1988]. Due to their unique elec-
tronic configuration, Rydberg atoms possess exceptionally large electric dipole moments
compared to ground state atoms, facilitating strong interactions. Importantly, these in-
teractions can be controlled with external electromagnetic fields like lasers or microwave
fields. This high controllability makes neutral atom systems ideal for constructing quantum
many-body simulators with tunable parameters [Wu et al., 2021].

Quantum simulators with neutral atoms present a distinct pathway for achieving scal-
able quantum simulation and information processing. These systems operate within ultra-
high vacuum chambers and use lasers, microwaves, and magnetic fields, to exert precise
control over atom positions and their quantum state. Atoms are trapped into optical
tweezers created by tightly focused lasers, generating trapping potentials at desired loca-
tions. Optical tweezers, ranging from tens to hundreds in 2D [Barredo et al., 2016] and
3D [Barredo et al., 2018], have been demonstrated in the last decade, and further scalabil-
ity can be achieved by augmenting the laser power.

Once desired geometry is initialized, exciting atoms to the Rydberg state introduce
strong tunable Rydberg interactions [Browaeys et al., 2016]. These interactions give rise to
a diverse quantum spin model encompassing various quantum phases, each arising from the
interplay between interactions and coherent driving [Bernien et al., 2017] [Ebadi et al., 2021].
Moreover, these interactions enable the implementation of various quantum information
and entanglement generation protocols [Saffman et al., 2010].
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Significant advancements in experimental techniques involving neutral atom-based sys-
tems have greatly contributed to the understanding and utilization of Rydberg atoms.
Over the past few decades, impressive progress has been made in various areas, including
the preparation of ultra-cold atomic gases [Phillips, 1998], high-resolution imaging of single
atoms[Sherson et al., 2010], and the trapping of individual atoms using reconfigurable opti-
cal tweezer arrays [Endres et al., 2016] [Barredo et al., 2016]. These experimental achieve-
ments have unveiled the captivating features and potential of highly excited Rydberg states,
establishing them as one of the most prominent platforms for quantum information pro-
cessing based on neutral atoms. This section examines how neutral atom-based quantum
simulators realize the features mentioned above.

2.5.1 Controllability: Laser pulse driven atomic transitions

Any quantum system with multiple distinguishable states can encode quantum infor-
mation. Neutral atoms, like trapped ions, offer a variety of species and quantum states,
presenting numerous options for physical qubits with distinct internal quantum properties.
The choice of specific atoms and quantum states is primarily determined by balancing
well-isolated states with longer coherence times and readily accessible quantum levels that
facilitate initialization, manipulation, and detection. Recent developments in laser cooling
and optical and magnetic trapping techniques have led to focused experiments exploring
heavy alkali atoms, such as Rb (rubidium) and Cs (cesium).

In our lab, we plan on encoding quantum information in the hyper-fine ground state
of Rb-87 atoms due to their long coherence times. Rydberg properties (discussed in Sec-
tion 2.5.3) are realized by exciting the atoms to n = 70 with a two-photon excitation
mechanism using 420 nm and 1013 nm lasers as shown in Fig. 2.1. State initialization in
the ground state manifold is achieved by optically pumping the atoms to the ground state.
To prepare an arbitrary known state, additional steps for coherent population transfer are
required. Single qubit operations are performed by two focused laser beams using a three-
level Λ-type Raman scheme, where coherent transfer between hyperfine ground state |g0⟩
and |g1⟩ is mediated by an excited intermediate state |e⟩. Two-qubit entangling operations
are mediated through Rydberg interactions and can be actuated in parallel with fidelity
as high as 0.995[Evered et al., 2023]. State-readout is achieved by fluorescence imaging of
atoms using a 780 nm laser. This destructive measurement technique can achieve a high
fidelity of 0.9997 [Nelson et al., 2007].
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Figure 2.1: Relevant Rb-87 atomic levels for quantum information processing.
The quantum information is encoded in the hyper-fine ground state of Rb-87 atoms due
to their long coherence time. Rydberg properties are realized by exciting the atoms to
n = 70 with a two-photon excitation mechanism using 420 nm and 1013 nm lasers.
State-readout is achieved by fluorescence imaging of atoms using a 780 nm laser.

2.5.2 Scalability: Parallel control over an array of neutral atoms

Because neutral atoms are indistinguishable, the requirements for physical resources,
such as laser frequencies, do not significantly increase with the scaling up of qubits. This
inherent identical property simplifies the experimental setup and reduces the complexity of
implementing larger-scale qubit systems. Weak magnetic dipole-dipole and Van der Waals
(vdW) interactions between the ground state atoms enable precise trapping of large num-
bers of atoms in various configurations of optical tweezer trap arrays [Barredo et al., 2018]
or magnetic trap arrays [Wang et al., 2016].

The optical tweezer platform offers advantages such as rapid experimental cycle times
and relative experimental simplicity. One of the most significant challenges in neutral atom-
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based quantum computing platforms arises from the stochastic nature of atom loading into
individual traps. This issue is primarily caused by operating in a ‘collisional blockade’
regime, which imposes limitations on the probability of loading a single atom into a small-
volume trap site, resulting in an efficiency of approximately 50% [Schlosser et al., 2001].
Defect-free atomic array requires atom rearrangement, using dynamic optical tweezers to
fill incomplete traps by moving atoms [Endres et al., 2016][Barredo et al., 2016].

In our lab, we plan to create static optical tweezers using Spatial Light Modulator
(SLM) as shown in Fig. 2.2b and dynamic optical tweezers using two crossed Acousto-optic
deflectors (AODs) to rearrange Rb-87 atoms in two dimensions. Fig. 2.3 depicts dynamic
trap arrays generated by two crossed AODs. We also plan to employ in-house developed
reconfiguration algorithms [Cimring et al., 2022][Sabeh et al., 2022] to rearrange the atoms
and create defect-free arrays. The Spatial Light Modulator (SLM) enables the creation of
arbitrary optical tweezers’ geometry. As depicted in Fig. 2.2c, from a single collimated
Gaussian beam (Fig. 2.2a), a honeycomb lattice can be formed by applying a phase mask
using SLM. This allows individual addressing of atomic qubits, enabling parallel control
and manipulation.

(a) (b) (c)

Figure 2.2: Generating arbitrary geometry of optical tweezers with diffractive
optical elements.

a. A collimated Gaussian beam which is directed onto a Spatial Light modulator (SLM).
b. A Spatial Light Modulator (SLM) which imparts a pre-calculated phase mask on the
input beam to generate the desired geometry of optical tweezers. c. A honeycomb lattice

of optical tweezers created using SLM.
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Figure 2.3: Multiplexed beams for parallel execution.
Multiplexed beams created by two-crossed AODs act as optical tweezers trapping single
atoms. Static optical tweezers are employed for trapping atoms, while dynamic optical

tweezers enable the movement of atoms in a Manhattan geometry. Image
source: [Cooper et al., 2018].

2.5.3 Interactability: Engineering strong interactions between two
atoms via Rydberg blockade mechanism

Neutral atoms can be excited to a high principal quantum number n leading to Rydberg
interactions. The dipole moments of Rydberg atoms scale as n2, resulting in significantly
large dipole-dipole interactions that increase rapidly with increasing principal quantum
number, n. By selecting appropriate Rydberg states, it is possible to control various
aspects of the interaction, including its strength, sign, anisotropy, and spatial dependence.
Additionally, the interaction can be switched off by transferring the atoms back to their
ground state, providing control over the system as shown in Fig. 2.4 [Pritchard et al., 2010].
These strong interactions among Rydberg atoms lead to a phenomenon called Rydberg
blockade. Only one atom can be excited from the ground state to a Rydberg state within
a specific volume, called Rydberg blockade radius 2.5a. This is because the first excited
Rydberg atom causes a shift in the Rydberg energy levels of all other nearby atoms, taking
them off-resonance as shown in Fig. 2.5b. The Rydberg blockade phenomenon enables
conditional dynamics that are highly desirable for quantum information processing.
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(a) (b)

Figure 2.4: Atoms exhibiting Rydberg properties when excited to a high
energy state.

a. Ground state configuration of atoms with minimal interactions. b. Rydberg state of
atoms, where a single electron is excited to a high energy level with principal quantum
number n. The strong interactions between atoms in the Rydberg state arise due to the

dipole moments scaling as n2.

(a)
(b) Energy level shift if two atoms are

within blockade radius

Figure 2.5: Rydberg blockade mechanism.
a. A large ensemble of atoms arranged in a regular square array with spacing a and a

Rydberg blockade radius Rb. b. Within the Rydberg blockade radius, only one atom can
be excited to the Rydberg state due to energy level shift. Image

source: [Browaeys and Lahaye, 2020]
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Chapter 3

Experimental methods for quantum
simulation with neutral atom arrays

3.1 Experimental Workflow: Load, rearrange, evolve,
and readout neutral atom arrays

The experimental workflow for quantum simulation with neutral atom arrays can be
broken down into four steps, namely loading atoms in optical traps, rearranging atoms for
defect-free geometry, letting the system evolve under targeted dynamics, and reading out
the resulting state as shown in Fig. 3.1.

Loading atoms in arbitrary geometries of optical traps: The process of quantum
simulation begins by creating a dilute atomic vapor within an ultra-high vacuum system
operating at room temperature. Laser cooling and trapping techniques are utilized to
prepare a cold ensemble of approximately 106 atoms within a 3D magneto-optical trap (3D
MOT) [Metcalf and van der Straten, 2003]. The resulting volume of such an atomic cloud
is approximately 1 mm3.

Subsequently, a second trapping laser system isolates individual atoms within the en-
semble. High numerical aperture lenses strongly focus the trapping beam into multiple
spots called optical tweezers [Schlosser et al., 2001] with a diameter of around 1 µm. Each
optical tweezer can hold at most one atom at a time within a trapping volume of a few
µm3. The number and arrangement of these tweezers can be customized to form arbitrary
1D, 2D, or 3D geometries using holographic methods [Nogrette et al., 2014]. Before pass-
ing through the focusing lens, the trapping beam is directed onto a spatial light modulator
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(SLM), which applies an adjustable phase pattern to the light. In the focal plane of the lens,
the phase modulation is converted into a desired intensity pattern. The number of optical
tweezers is only constrained by the available trapping laser power and the performance of
the optical system that generates the optical tweezers.

(a) (b) (c) (d)

Figure 3.1: Experimental workflow for quantum simulation with neutral atom
arrays.

a. Atoms are loaded in arbitrary geometries of optical traps, with a 50% loading
efficiency due to stochastic processes. b. Atom rearrangement is performed to achieve

defect-free geometries. c. The system evolves under targeted dynamics once the desired
geometry is attained. d. The simulation outcome is calculated by reading-out atoms via

destructive measurements. Image source: [Ebadi et al., 2021]

Rearranging atoms for defect-free geometries: Although each tweezer can ac-
commodate at most one atom, in approximately 50% of the cases, the tweezer remains
empty due to stochastic loading, as shown in Fig. 3.1a. As shown in Fig. 3.1b, atoms
are moved from one site to another using programmable moving optical tweezers to cre-
ate compact geometries. Once atomic qubits are loaded at the desired location, control
sequences are played on individual atoms to execute quantum circuits or the system is
allowed to evolve under its natural Hamiltonian to simulate the dynamics of a target sys-
tem as shown in Fig. 3.1c. The processing is highly efficient, occurring in less than 100
µs, while the overall sequence, including loading and readout, takes approximately 200
ms [Henriet et al., 2020].

Evolving the system under targeted dynamics: Analog and digital quantum
simulations are possible with neutral atom arrays [Henriet et al., 2020]. In the case of
digital quantum computing, quantum algorithms are decomposed into a series of quantum
logic gates, forming a quantum circuit. These gates are implemented by applying well-
defined laser pulses to individual atomic qubits. On the other hand, analog computing
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involves the realization of a Hamiltonian using control pulses (here realized using laser and
microwave pulses). The commonly studied natural Hamiltonian for neutral atom arrays
involves atoms excited to the Rydberg state, expressed by Equation 3.1, where σ̂x

j denotes
the Pauli σ̂x matrix on the jth qubit, and n̂j represents the Rydberg state occupancy.
The control parameters Ω(t) and δ(t) correspond to the Rabi frequency and detuning,
respectively, and can be adjusted by modifying the laser field’s intensity and frequency.
The third term represents the energy penalty when two qubits are simultaneously in the
Rydberg states. The interaction between qubits i and j follows a van der Waals-type
coupling that depends on the inverse sixth power of the distance rij between them and a
coefficient C6 associated with the Rydberg state. The qubits then evolve according to the
Schrödinger equation.

H(t) = ℏ
2
Ω(t)

∑
j

σ̂x
j − ℏδ(t)

∑
j

n̂j +
∑
i ̸=j

C6

r6ij
n̂in̂j (3.1)

Reading-out atoms via destructive measurements: After the evolving stage, the
atomic qubits are read out by capturing a final fluorescence image. The readout process
is designed such that each atom in the qubit state |0⟩ appears bright, while atoms in the
qubit state |1⟩ remain dark, as depicted in Fig. 3.1d. Multiple such computation cycles
are repeated to gather sufficient data for reconstructing the relevant statistical properties
of the final quantum state.

3.2 Experimental Architecture: Systems and hardware
for neutral atom arrays

The experimental setup of our neutral atom-based quantum simulator can be divided
into six systems, namely the vacuum and cooling system, trapping system, imaging system,
reconfiguration system, rydberg system, and control and acquisition system, as shown in
Fig. 3.2.

The vacuum and cooling system creates a 3DMOT, making an atomic cloud of Rb-87
atoms. The trapping system generates a desired configuration of optical tweezers using
SLM or AODs to trap individual atoms. The imaging system acquires images using an
electron-multiplying charge-coupled-device (EMCCD) camera, which converts fluorescence
photons from atoms into measurable electronic signals. As the loading efficiency of atoms
in traps is non-unity, a reconfiguration system moves atoms with dynamic optical tweezers
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to create a desired compact geometry of atoms. On achieving the desired geometry for
quantum simulations, the rydberg system shines a laser to excite atoms to the Rydberg
state, complying with a pre-defined control sequence on selected qubits, and the imaging
system reads out the resultant states. The control and acquisition system coordinates with
all the systems by composing, executing, and imaging defined experimental sequences.

Figure 3.2: Systems in a neutral atom-based quantum simulator experimental
setup.

The illustration showcases the six key systems: vacuum and cooling, trapping, imaging,
reconfiguration, rydberg, and control and acquisition systems. Image

source: [Ebadi et al., 2021]
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3.2.1 Vacuum and cooling system

A vacuum chamber is at the vacuum system’s core, which serves as a controlled environ-
ment with extremely low pressure. A current-modulated Rb-87 atomic source cell, which
releases Rb-87 atoms into the vacuum chamber, is positioned on top of the chamber. The
bottom of the chamber is connected to a glass cell, the heart of any neutral atom-based
quantum simulator. Fig. 3.3 shows the complete assembly constructed in our laboratory.
The assembly is mounted on a linear translation stage to make the setup modular. The
glass cell is descended during experiments and moved up to set up optics and install MOT
coils without damaging the glass cell.

(a) Atomic source, vacuum chamber, and
glass cell assembly

(b) Assembly descended to perform
experiments within glass cell

Figure 3.3: Modular vacuum chamber assembly on a linear translation stage.
Mounting the assembly on a linear translation stage makes the experimental setup

modular. The assembly is descended during experiments and moved up to set up optics
and install MOT coils without damaging the glass cell.
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The Rb-87 atoms dispensed from the atomic source cell are trapped within a 3D
Magneto-optical trap (MOT). This trap consists of cooling and repumping beams that
drive cooling transitions in the atoms, leading to energy loss and temperature reduction.
The relevant cooling and repumping transitions for Rb-87 atoms are shown in Fig. 3.4. The
frequencies of cooling and repumping beams are swept to fine-tune the atom-capturing pro-
cess and maximize the density of trapped atoms.

Figure 3.4: Rb-87 D2 transition for cooling atoms.
Image source: [Wiegand et al., 2019]

The vacuum and cooling system creates a controlled environment where Rb-87 atoms
can be cooled and trapped, setting the stage for subsequent quantum simulation.

3.2.2 Trapping system

The trapping system allows for the precise confinement of individual atoms. The system
utilizes optical tweezers, created using diffractive optical elements such as Spatial Light
Modulator (SLM) or Acousto-Optic Deflector (AOD) as shown in Fig. 2.2b and Fig. 3.6,
respectively. These optical tweezers are capable of trapping at most one atom because the
system operates in the collision blockade regime. The process of loading atoms into the
optical tweezers is stochastic, resulting in a loading rate of approximately 60%. However,
the loading rate can be increased up to 90% by techniques like Λ-enhanced grey molasses
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cooling [Rosi et al., 2018]. Molasses involves further cooling the atoms in the 3D Magneto-
optical trap (MOT), effectively increasing the efficiency of loading single atoms into the
optical tweezers.

The atoms confined within the 3DMOT are transferred into optical tweezers created
by trapping laser beams. The 3DMOT beams are switched off when the trapping laser
beams are activated to load a single atom in each optical tweezer. The trapping system
allows the creation of arbitrary geometries of optical tweezers, including 1D, 2D, and
3D configurations. This flexibility enables the arrangement of atoms in desired spatial
patterns tailored to the specific requirements of the quantum simulation. As an example,
Fig. 3.5 demonstrates the capability of the trapping system to create optical tweezers in
arbitrary shapes. In this case, the face of my lab mates is detected using an edge-detection
algorithm. A numerical technique called the Gerchberg-Saxton algorithm generates an
associated phase profile to create traps in the shape of the detected face. The phase profile
is fed to the SLM, which embeds the phase on the input beam.

(a) Alex (b) Anastasiia (c) Artem

(d) Kent (e) Parth

Figure 3.5: 2D Arbitrary geometries of optical tweezers created by SLM.
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The trapping system’s ability to generate optical tweezers and trap single atoms in
desired geometries provides the necessary control to address individual atoms and their
positions.

3.2.3 Imaging system

The imaging system comprises multiple cameras that capture images of the optical
tweezers and the fluorescence signals emitted by the atoms. The primary goal of imaging
the optical tweezers is to achieve uniform optical tweezer intensities, leading to uniform
trap depths. A closed-loop optimization algorithm ensures uniform intensity across the
optical tweezers. This algorithm involves capturing images of the optical tweezers using a
CMOS camera in a feedback loop. Based on these images, it calculates new phase profiles
to uniformize the trap depths and updates them on the Spatial Light Modulator (SLM).
By achieving uniformity, the algorithm minimizes the likelihood of atoms being attracted
to deeper traps, resulting in a more uniform trapping environment.

We employ an Electron-Multiplying Charge-Coupled-Device (EMCCD) camera to cap-
ture the fluorescence emitted by the atoms. This fluorescence is induced by shining imaging
light onto the atoms, specifically targeting the 780 nm transition from the ground state
|g0⟩ to the 5P3/2 state, as depicted in Fig. 2.1. The EMCCD camera efficiently converts
fluorescence photons into measurable electronic signals. Detection efficiencies exceeding
98.6% have been achieved in previous studies [Fuhrmanek et al., 2011]. The captured im-
ages provide valuable information regarding the number of traps filled with atoms and
empty traps, enabling assessment of the loading process’s success. Additionally, this data
provides actionable insights to reconfigure atom positions for defect-free geometries.

The imaging system enables the imaging of atoms, which is essential for creating defect-
free geometries and for read-out of the atomic qubit state. Moreover, the imaging system
facilitates the imaging of optical tweezers, which is instrumental in achieving uniform trap
depths.

3.2.4 Reconfiguration system

The reconfiguration system utilizes dynamic optical tweezers to create defect-free ge-
ometries of atoms. Two multiplexed Acousto-Optic Deflectors (AODs) in the X and Y
directions create dynamic optical tweezers in 2D, enabling atom moves in a Manhattan ge-
ometry. These dynamic optical tweezers are designed to be deeper than the static tweezers,
allowing atoms to migrate from the static traps to the dynamic traps, as shown in Fig. 3.6.
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An algorithm analyzes EMCCD images in real-time and computes a series of moves for
the dynamic tweezers, reconfiguring the initial atom arrangement into the desired fully
assembled geometry.

The atom reconfiguration process is iterative, designed for speed and efficiency to max-
imize the quantum simulation time within the atoms’ trap lifetime. The images captured
by the EMCCD camera are transferred to a computer via a Frame Grabber Card (FGC),
facilitating the reconfiguration process. A real-time analysis algorithm parses the image
and determines a sequence of atom moves to create defect-free geometries. The defined
atom moves are relayed to an Arbitrary Waveform Generator (AWG), which controls the
Acousto-Optic Deflectors (AODs). The entire reconfiguration process forms a closed-loop
optimization system: it encompasses consecutive stages of image capture, image analy-
sis, waveform creation, and waveform streaming. This iterative mechanism ensures the
generation of defect-free atom geometries.

Figure 3.6: Dynamic optical tweezers moving an atom from one trap to
another.

Dynamic optical tweezers are designed to have deeper trap depths than the static
tweezers, allowing atoms to migrate from the static traps to the dynamic traps. Image

source: [Henriet et al., 2020]

The reconfiguration system uses dynamic optical tweezers to move atoms and create
arbitrary defect-free geometries of atoms. It employs low-latency reconfiguration algo-
rithms [Cimring et al., 2022] [Sabeh et al., 2022] to maximize the quantum simulation time
within the atoms’ trap lifetime.
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3.2.5 Rydberg system

The Rydberg system facilitates the excitation of atoms to the Rydberg state. A straight-
forward method for this excitation involves single-photon transition, offering direct laser
excitation. However, dipole selection rules restrict this approach to couple ground S states
and Rydberg P states. This transition requires ultraviolet range wavelengths (e.g., 297
nm for Rb-87), which present several challenges, including material degradation, limited
availability of optical fibers, and low-loss optics. Moreover, Rydberg P states are character-
ized by a higher degree of structural complexity, anisotropy, and susceptibility to external
perturbations, complicating coherent manipulation [de Léséleuc et al., 2018]. An alterna-
tive approach is the two-photon laser excitation, which can couple ground S states with
Rydberg S states via an intermediate P state.

In our laboratory, we use two lasers to induce the two-photon transition required for
exciting the atoms to the Rydberg state. The first laser operates at a wavelength of 420
nm, corresponding to the transition from the ground state (5S1/2) to the intermediate
state (6P3/2). The second laser operates at a wavelength of 1013 nm, corresponding to the
transition from the intermediate state (6P3/2) to the Rydberg state (70S1/2), as illustrated
in Fig. 2.1. By designing optimal control laser pulses, the atoms are excited to the Rydberg
state within a finite time, minimizing the spontaneous emission and reducing decoherence
effects. Depending on the needs of the simulation, the entire atom array or only individual
atoms are excited to the Rydberg state. For site-selective excitation, the addressing laser
beams employ a strategy analogous to the trapping system, enabling excitation of the
targeted atoms to the Rydberg state.

The Rydberg system enables the coherent excitation of atoms to the Rydberg state
using a two-photon excitation mechanism.

3.2.6 Control and acquisition system

The control and acquisition system serves as the brain of the experiment enabling
the coordination of heterogeneous hardware in the laboratory. It provides the ability to
compose and execute experiments using two analog modules and one digital module for
generating control sequences required for the experiment. Analog signals modulate param-
eters like current, light intensity, magnetic field strengths, and Acousto-optic modulator
(AOM) frequencies. Digital signals control mechanical shutters and microwave switches
and provide TTL signals for camera triggers.

The digital and analog modules are interfaced with Labscript suite, a comprehensive
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software framework designed for experiment composition, execution, and analysis [P.T. Starkey, 2019].
M-LOOP, a machine learning library, is integrated with the Labscript suite automating
the decision-making process to navigate the control parameter space, thus accelerating pa-
rameter optimization [Wigley et al., 2016]. By leveraging these tools, we can quickly find
the optimal control settings for our experiments.

The control and acquisition system enables the creation of experimental sequences,
conducts the experiments, acquires and stores images during the process, and incorporates
analysis to form a closed-loop procedure for optimizing control parameters.
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Chapter 4

Increasing the simulation power of
neutral atom arrays with dynamic
architecture

Quantum simulators can be categorized as digital or analog, each with distinct char-
acteristics. Digital quantum simulators use quantum gates to create a series of operations
that simulate any quantum phenomena. However, this versatility comes with the potential
for errors and computational overhead. Conversely, analog quantum simulators exploit
the natural evolution of a controlled quantum system to mimic target quantum dynamics,
providing meaningful solutions to specific problems.

In digital quantum simulations, qubit connectivity is crucial. Due to physical con-
straints, systems with partial connectivity can’t directly achieve specific qubit-to-qubit
interactions required for particular computations. Consequently, auxiliary operations such
as SWAP gates are necessary to facilitate gate operations between non-adjacent qubits.
Advanced compilation algorithms are needed to minimize these additional gate operations,
adding complexity in executing the computation on the quantum simulator. Additionally,
these auxiliary operations introduce opportunities for errors to propagate in the current
NISQ era.

On the contrary, all-to-all connectivity allows direct interaction between any pair of
qubits, simplifying quantum circuit execution without intermediary SWAP operations.
This enhanced connectivity reduces errors and increases the depth of successfully imple-
mented circuits.

We introduce a dynamic architecture approach to tailor the connectivity between qubits
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on the neutral atom array platform. Dynamic architecture provides on-demand connectiv-
ity by moving atoms during the simulation, leading to a trade-off between SWAP operations
and atom movements. We evaluate the capabilities of static and dynamic architecture by
computing and comparing the circuit fidelity and Quantum Volume for each approach.

In this chapter, Section 4.1 introduces static and dynamic architecture, while Sec-
tion 4.2 highlights the recent advancements in neutral atom platforms enabling dynamic
architecture. Section 4.3 outlines the atom displacement protocol embodying dynamic ar-
chitecture, and the associated errors of the protocol are discussed in Section 4.4. Section
4.5 presents the circuit compilation protocol for both architectures. Section 4.6 compares
the circuit fidelity of both architectures and analytically examines scenarios where dynamic
architecture outperforms static one by evaluating error bounds. In conclusion, Section 4.7
contrasts the trend in allowed maximum error to attain particular quantum volume in both
architectures.

4.1 Architecture: Topology of underlying qubits

We can use the analogy of x86 and ARM processors within classical computing to
draw a parallel between different quantum simulator architectures. Both x86 and ARM
architectures serve the same fundamental purpose - to decode and execute instructions
based on their respective Instruction Set Architecture (ISA). Despite their shared purpose,
the methodologies by which they break down tasks into executable instructions lead to
varying levels of efficiency.

The x86 architecture, primarily used in personal computers, is designed around Com-
plex Instruction Set Computer (CISC) architecture. It provides powerful processing capa-
bilities and a wide range of features. However, these benefits come at the cost of increased
power consumption. On the contrary, the ARM architecture operates based on a Reduced
Instruction Set Computer (RISC) architecture, resulting in more efficient power usage.
Its efficiency and straightforward design allow for better control at the fundamental level,
making ARM processors ideally suited for mobile and embedded devices. Due to its effi-
ciency, ARM processors have recently paved their way into high-performance computing
and personal computing.

This analogy extends into the quantum simulator domain, contrasting static and dy-
namic architectures. Both architectures share a common objective: executing quantum
algorithms and performing quantum simulations. However, similar to the x86 and ARM
architectures in classical computing, the underlying execution mechanisms of static and
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dynamic architectures differ, resulting in variations in accuracy and efficiency. Static ar-
chitecture, similar to the x86, is resource-intensive and carries an operational overhead
for circuit compilation, which is unsuitable for noisy quantum computations and simula-
tions. Conversely, dynamic architecture, reminiscent of the ARM, allows on-the-fly qubit
displacements to enhance simulation efficiency. However, this flexibility may introduce
additional complexities in control and the potential for errors.

In this section, we formalize two types of architecture in quantum simulators: static
and dynamic. We first introduce coupling and connectivity graphs for a quantum simulator
to classify these architectures.

4.1.1 Coupling graph: Graphical representation of physical inter-
actions

A quantum simulator consists of an assembly of individual quantum systems. The
interactions between these systems stem from various physical forces, including Coulomb
interactions and dipole-dipole interactions, or are mediated through a shared bosonic mode.
These interactions form the foundation of coupling between two quantum systems, which
encode qubits. The coupling graph is a representative diagram for a quantum simulator as
a weighted, undirected graph. Each vertex of the coupling graph corresponds to a qubit,
with edges between vertices indicating the variable coupling strengths between respective
qubit pairs.

Definition 1. Coupling graph: Each quantum simulator has an associated coupling graph
denoted as Q = (V,E,w), where:

• V = x1, x2, . . . , xn, n ∈ N, is a finite set of graph vertices that represent the set of
qubits.

• E ⊂ V × V is a finite set of undirected edges that connect a subset of vertices,
symbolizing the subset of coupled qubits.

• w : E → R is an edge weight function indicating the coupling strength between adja-
cent qubits.

Implication 1. Implications of definition 1

• |V| = n, where n is the number of qubits in the simulator.
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• |E| = total number of two-qubit couplings in the simulator.

• The degree of a vertex, deg(x), for x ∈ V, implies the number of qubits to which the
given qubit x is directly coupled. It can vary from 0 (completely uncoupled) to n− 1
(maximally coupled).

• |E| ≤ n(n−1)
2

, the total number of couplings is upper-bounded by the number of pairs
of qubits.

However, not all couplings possess the potential to execute two-qubit operations. As
such, a truncated coupling graph can be considered. This graph is a sub-graph of the
coupling graph and only considers couplings that are equal to or stronger than a specific
minimum coupling strength.

Definition 2. Truncated coupling graph: Let Q = (V,E,w) represent the coupling
graph. The truncated coupling graph, Q’ = (V,E ′), of a quantum simulator is defined as
an unweighted subgraph of the original coupling graph Q, where:

• V is the finite set of graph vertices corresponding to the set of qubits, identical to that
in Q.

• E’ = {(x, y) ∈ E|w(x, y) ≥ wmin} is a finite set of undirected edges, signifying the
subset of couplings that exceed the minimum coupling strength.

Implication 2. Implications of definition 2

• |V| = n, where n is the number of qubits in the simulator. The set of vertices in Q’
remains unchanged from Q.

• |E’| = total number of two-qubit couplings in the simulator that satisfy the minimum
coupling strength wmin.

• |E’| ≤ |E| ≤ n(n−1)
2

, the total number of couplings is upper-bounded by the number of
pairs of qubits.

• The degree of a vertex, deg′(x), for x ∈ V, implies the number of qubits to which
the given qubit x is coupled with coupling strength exceeding the minimum coupling
strength. It can vary from 0 (completely uncoupled) to n− 1 (maximally coupled).

• deg′(x) ≤ deg(x) for all x ∈ V.
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The truncated coupling graph, Q’, is a filtered version of the original coupling graph,
Q, preserving only the robust couplings. The threshold for this filtering is defined by the
minimum coupling strength wmin. This graph eliminates the weaker couplings that might
not be strong enough to execute two-qubit operations or might induce noise in the quantum
simulator.

In superconducting qubits, the coupling between two qubits is achieved by connecting
both qubits to an intermediate electrical coupling circuit. The strength of the coupling is
related to the overlapping of their wavefunctions. Depending on the design and operation
parameters, the coupling can be tuned dynamically during the operation, which makes
it possible to execute two-qubit gates or to isolate qubits to prevent unwanted interac-
tions [Wendin, 2017].

In trapped ion quantum simulators, the coupling between qubits is predominantly
achieved through shared vibrational modes of the ion crystal. External laser pulses can
modulate these motional modes to modify the coupling between each pair of qubits. These
customizable interactions lead to a fully connected coupling graph [HAFFNER et al., 2008].

In neutral atom array quantum simulators, the interaction between two atoms can be
tuned by exciting the atoms to high-energy Rydberg states. The nature of interactions
between these Rydberg atoms is van der Waals interaction, characterized by Equation 4.1.
The atomic species and the excited Rydberg state’s principal quantum number determine
the C6 co-efficient, and R is the distance between two atoms.

UvdW = C6/R
6 (4.1)

For example, consider a linear chain of 16 atoms, labeled from 1 to 16 (beginning from
the left), positioned a few micrometers apart, as displayed in Fig. 4.1a. In this setup, the
interaction strength between two qubits, i and j, will decay according to 1/|Ri − Rj|6.
Here, Ri and Rj refer to the respective positions of qubits i and j. Fig. 4.1b illustrates
this atom configuration’s logarithmic scale coupling graph. Each vertex in this graph
corresponds to an atomic qubit, and the width of the connecting edge signifies the strength
of the interaction between them, thereby indicating the weight of the edge. However, not
all physical interactions are potent enough to facilitate quantum information exchange,
prompting us to establish a threshold. Only interactions equivalent to or stronger than
the nearest neighbor interaction strength are considered, producing a truncated coupling
graph depicted in Fig. 4.1c.
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(a)

(b) (c)

Figure 4.1: Truncated coupling graph of a neutral atom array platform.
a. A 1D array of 16 atoms evenly spaced a few micrometers apart. b. The corresponding
coupling graph for a neutral atom array simulator comprising a 1D linear chain of 16
atoms, each atom encoding a qubit. The interaction strength between the atoms decays
proportional to 1/|Ri − Rj|6. For improved clarity, these interactions are represented on
a logarithmic scale. Every vertex represents an atomic qubit, while the connecting edge’s
width signifies the strength of the interaction between them, indicating the edge’s weight.
c. The corresponding truncated coupling graph after thresholding the interaction strengths
to the nearest neighbor interaction strength.

4.1.2 Connectivity graph: Graphical representation of qubit con-
nectivity

A quantum simulator’s scalability depends on the topology of the constituent qubits
and the connectivity established amongst them. This connectivity underpins the potential
interactions and facilitates the exchange of quantum information. The connectivity graph,
an undirected graph, depicts the inter-qubit connectivity within a quantum simulator.
Each vertex of the connectivity graph corresponds to a qubit, with edges between vertices
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denoting the possibility of performing a two-qubit entangling operation on them in a single
gate operation.

Definition 3. Connectivity Graph: Each quantum simulator has an associated connec-
tivity graph, denoted as C = (V,E), where:

• V = x1, x2, . . . , xn, n ∈ N, is a finite set of graph vertices that represent the set of
qubits

• E ⊂ V × V is a finite set of undirected edges that connect a subset of vertices,
symbolizing that a two-qubit entangling operation can be performed on the associated
qubits in a single gate operation.

Implication 3. Implications of definition 3

• |V| = n, where n is the number of qubits in the simulator.

• |E| = total number of distinct two-qubit entangling operation that can be performed
in a single gate operation.

• The degree of a vertex, deg(x), for x ∈ V, implies the number of qubits to which the
given qubit x can be entangled in a single gate operation. It can vary from 0 (isolated)
to n− 1 (maximally connected).

• |E| ≤ n(n−1)
2

, the total number of unique two-qubit entangling operations is upper-
bounded by the number of pairs of qubits.

Depending on the degree of each vertex, the connectivity of a quantum simulator can
be classified as partial or full.

Definition 4. Partial Connectivity: A quantum simulator exhibits partial connectivity
if its connectivity graph, C = (V,E), is not a complete graph.

Implication 4. Implications of definition 4

• ∃x ∈ V such that deg(x) < n− 1, where n is the number of qubits in the simulator.

• |E| < n(n−1)
2

, the total number of unique two-qubit entangling operations is strictly
less than the number of pairs of qubits.
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• Limited direct interactions: Not every pair of qubits can interact through a single
unitary operation, thereby increasing the complexity of entangling operations by in-
troducing SWAP gates.

Executing quantum circuits on partially connected quantum simulators presents chal-
lenges in today’s Noisy Intermediate-Scale Quantum (NISQ) era. This is primarily because
not all qubits are interconnected, necessitating additional SWAP operations to entangle
non-adjacent qubits. Novel compilation algorithms are needed to strategically compile
the circuit in a way that minimizes these SWAP operations [Mukhopadhyay et al., 2022].
However, these auxiliary operations introduce additional errors, limiting the number of
layers successfully executed on the quantum simulator. For instance, Fig. 4.2 illustrates
the connectivity of superconducting qubits on three different IBM platforms.

(a) (b) (c)

Figure 4.2: Connectivity graphs of IBM’s superconducting qubit platforms
exhibiting partial connectivity.

a. The five-qubit system, named Vigo, has the “T” connectivity. b. The sixteen-qubit
system is named Guadalupe c. The five-qubit system, named Athens, has linear

connectivity. Image source: [Zhang et al., 2021]

Definition 5. Full Connectivity: A quantum simulator exhibits full connectivity if its
connectivity graph, C = (V,E), is a complete graph.

Implication 5. Implications of definition 5

• ∀x ∈ V, deg(x) = n− 1, where n is the number of qubits in the simulator.

• |E| = n(n−1)
2

, the total number of unique two-qubit entangling operations equals the
number of pairs of qubits.
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In contrast to partially connected systems, fully connected systems eliminates the need
for auxiliary SWAP operations to entangle any two qubits. Such direct interaction capa-
bilities facilitate the execution of deeper quantum circuits than partially connected sys-
tems. For instance, the ion-trap platform exhibits an all-to-all coupled system, as shown
in Fig. 4.3.

Figure 4.3: Connectivity graph of an ion-trap platform with five qubits.
Ion-trap platform witnesses full connectivity of qubits, because qubits are all-to-all

coupled via a shared vibrational mode of the ion-crystal. Image
Source: [Linke et al., 2017]

4.1.3 Static architecture: Connectivity graph = truncated cou-
pling graph

If the truncated coupling graph of the quantum simulator is the same as its connectivity
graph, then the platform’s architecture is static.

Definition 6. Static Architecture: For a quantum simulator, let its coupling graph be
represented as Q = (V,E,w) and its truncated coupling graph as Q’ = (V,E ′), where
E ′ ⊂ E includes edges e such that w(e) ≥ wmin for all e ∈ E. If C = (V,E ′′) is the
connectivity graph, the architecture is static if and only if Q’ = C.

Implication 6. Implications of definition 6

• The qubit coupling is fixed and doesn’t vary over time, simplifying control, but it may
incur SWAP gate overheads for specific operations due to partial connectivity.

35



4.1.4 Dynamic architecture: Connectivity graph ̸= truncated cou-
pling graph

If the truncated coupling graph of the quantum simulator changes over time while the
connectivity graph remains constant, and all the unique time-defined coupling graphs are
subgraphs of the connectivity graph, then the platform’s architecture is dynamic. We
define the dynamic architecture in a way that’s similar to the static architecture but with
the introduction of a time variable to account for the temporal changes in the coupling
graph.

Definition 7. Dynamic Architecture: For a quantum simulator, let its coupling graph at
time t be represented as Qt = (V,Et, wt) and its truncated coupling graph as Q’t = (V,E ′

t),
where E ′

t ⊂ Et includes edges e such that wt(e) ≥ wmin for all e ∈ Et. If C = (V,E ′′)
is the connectivity graph, the architecture is dynamic if and only if for all time points t,
Q’t ⊂ C and Q’t ̸= Q’t′ for at least one pair of distinct time points (t, t′).

Implication 7. Implications of definition 7

• The qubit coupling can be programmed to vary over time and typically offers full
connectivity, eliminating the need for SWAP gate overheads.

4.2 Neutral atom array: A dynamic architecture ap-
proach

The qubit couplings on the neutral atom array platform are determined by van der
Waals interactions, producing a coupling graph as illustrated in Fig. 4.1b. However, only
nearest neighbor interactions, robust enough for quantum operations, are considered in
the truncated coupling graph (Fig. 4.1c). The qubit connectivity graph (Fig. 4.5a) follows
the truncated coupling graph because a two-qubit entangling gate can only be performed
on neighboring qubits in a single operation. However, recent experimental breakthroughs
have shown that entanglement can be maintained even when atoms are relocated, enabling
dynamic atom coupling through distance manipulation. This yields a fully connected
system, as shown in Fig. 4.5b. We refer to these programmable couplings as a dynamic
architecture. Another experimental demonstration of such a system exists on ion-trap
platforms. Ion crystals containing a few ions (qubits) are moved during the simulation to
connect to different ion crystals, enhancing the system’s connectivity [Pino et al., 2021].
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Figure 4.4: Coherent transport of entangled atoms.
The approach facilitates entangling operations with remotely situated qubits by

transporting them, thereby establishing programmable couplings. Image
source: [Bluvstein et al., 2022]

(a) (b)

Figure 4.5: Connectivity graph of the neutral atom array platform changes
after introducing atom moves.

a. The connectivity graph of a neutral atom array simulator comprising a 1D linear chain
of 16 atoms as shown in Fig. 4.1a. b. A fully connected graph of the neutral atom platform
by relocating atoms during the simulation process, facilitating interactions across all qubits.
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4.3 Five-step atom displacement protocol for dynamic
architecture

The proposed five-step atom displacement protocol can be visually represented as in
Fig. 4.6. The experimental region is divided into two distinct regions: the storage region
and the control region. All the qubit registers are initially stored in the storage region,
where control operations are restricted. To perform a unitary operation between two qubits,
the respective qubits are transferred to the control region. This enables the execution of
the desired unitary operation. Notably, if the control region allows for multiple control
operations, gate operations can be parallelized efficiently. Parallelization reduces the total
circuit execution time by enabling simultaneous execution of multiple gate operations. The
ability to exploit parallelism in the control region contributes to the scalability of quantum
simulation on neutral atom platforms.

Table 4.1: Five-step atom displacement protocol to realize dynamic
architecture on neutral atom platform.

Operation Function Parameters

Tsc Move relevant atoms to
control region

number of atoms, location
in storage region

Tcc Move atoms within the
control region to bring

them next to each other

Location of atoms in
control region

U Allow atoms to interact Interaction time

T ′
cc Revert the steps to move

atoms to original location
in control region

Previous location in control
region

Tcs Bring back atoms to their
original position in storage

region

Previous location in
storage region

The five-step atom displacement protocol, designed to avoid collision of atoms, is out-
lined in Table 4.1. The protocol starts by moving relevant atoms from the storage region
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to the control region (Tsc). Subsequently, atoms within the control region are rearranged
to bring them into proximity (Tcc), facilitating their interaction. The interaction between
the atoms is accomplished by allowing them to interact for a specified duration to realize a
unitary operation (U). After the desired interaction time, the steps are reversed to restore
the atoms to their original positions in the control region (T ′

cc). Finally, the atoms are
returned to their original locations in the storage region (Tcs). This protocol strategically
moves atoms, providing the programmability to reconfigure the system’s coupling between
two qubits.

Figure 4.6: Five-step atom displacement protocol for neutral atom arrays with
dynamic architecture.

Storage and control regions divide the experimental region. Gate operations in the
storage region are prohibited. Performing an operation between two qubits necessitates
bringing them close in the control region in two steps Tsc and Tcc. After executing the
operation (U), the atomic qubits are brought back via same path in two steps T ′

cc and
Tcs.
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4.4 Error sources in dynamic architecture

4.4.1 Coherent error

Coherent errors are deterministic and potentially correctable. Error-correction tech-
niques can be employed to counteract such errors, essentially "retrieving" the original
state. Within the scope of this work, we focus on two prominent forms of coherent errors
- gate error and dephasing error.

4.4.1.1 Gate error

Gate error occurs due to experimental inaccuracies leading to deviations from the ideal
gate operations. These errors accumulate with each subsequent gate operation. An upper
limit can be estimated on these cumulative errors based on the total number of gate
applications.

For instance, let’s consider a probabilistic error model where the probability of an
erroneous operation is pg. Let’s say the initial density matrix is ρ0 and the final density
matrix with ideal operations and imperfect operations are ρm and ρ̄m, respectively. A
simple inequality using the Frobenius norm on the difference between two density matrices
indicates that the quantum error should be upper bounded by a constant [Yu and Li, 2022]:

∥ρ̃− ρ∥2F = ∥ρ̃∥2F + ∥ρ∥2F − 2 tr(ρ̃ρ) ≤ 2 (4.2)

Because the product of two semi-definite matrices always has a non-negative trace, and
the Frobenius norm of a density matrix is always less than 1.

If at least one error occurs in applying m gates then using the above bound ∥ρ̄m − ρm∥2F ≤
2. The expected error propagation can be bounded as,

E ∥ρ̄m − ρm∥2F ≤ ∥ρ̄m − ρm∥2F · P (at least one error occurs) + ∥ρm − ρm∥2F · P (no error)
≤ 2 · P (at least one error occurs) + 0 · P (no error)

= 2 (1− (1− pg)
m) , (4.3)

where the probability of no error is (1− pg)
m, and at least one error occurs is 1 −

(1− pg)
m.
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Thus, the accumulation of errors upon applying an erroneous gate m times can be
approximated as:

E ∥ρ̄m − ρm∥2F ≤ 2 (1− (1− pg)
m) (4.4)

4.4.1.2 Dephasing error

Dephasing error, on the other hand, originates from the unwanted interaction of a
quantum system with its environment. These interactions cause the quantum states to
lose phase coherence over time without changing the states’ populations, undermining the
fidelity of quantum simulations.

4.4.2 Incoherent error

Incoherent errors, unlike coherent errors, are characterized by their irretrievability.
These errors are often the result of uncontrolled interactions between the quantum system
and its surrounding environment. Incoherent errors lead to a loss of quantum information
by degrading the coherence of quantum states. We focus on atom loss error, an artifact
of atom displacement operation that shrinks the Hilbert space by a factor of 2, decreasing
the accuracy of quantum simulation.

4.4.2.1 Atom loss error

Atom loss or erasure error occurs when an atom leaks from the computational space.
While dynamic optical tweezers are moving the atoms, there’s a probability of losing the
atom during transportation. Atom loss leads to a complete loss of a qubit, thus reducing
the size of the Hilbert space by a factor of 2. Such an error can be represented as a
completely positive trace-preserving (CPTP) map [Wood and Gambetta, 2018], a type of
mathematical operation used to model the evolution of quantum states, given by:

E(ρ) = (1− pν)ρ+ pν |Ψl⟩ ⟨Ψl| (4.5)

Here, ρ is the state of the quantum system, |Ψl⟩ is a state in the atom-lost subspace.
The atom-lost subspace can be thought as a 1- dimensional system which keeps track of
the lost atoms. After n applications of the channel, the state leakage pν(n) is given by:

pν(n) = 1− (1− pν)
n (4.6)
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Thus the resulting state after n applications of the error channel is:

E◦n(ρ) = (1− pν)
nρ+ pν(n) |Ψl⟩ ⟨Ψl| (4.7)

This shows that as n increases, the leakage probability approaches 1, meaning that all
of the atoms eventually end up in the atom-lost subspace.

Figure 4.7: Atom loss error demonstration.

4.5 Quantum circuit compilation protocol

Quantum circuit compilation protocol is a systematic method to translate a given quan-
tum circuit into a set of operations executable on a specific quantum hardware platform.
This protocol’s task is two-fold: ensuring the circuit’s admissibility on the hardware and
minimizing the the number of quantum gate operations and atomic movements.

In the context of quantum circuit compilation, Definition 8 introduces the quantum
circuit graph U = (Q, I), which provides an abstract representation of the circuit’s struc-
ture. The admissibility of the circuit on a given hardware, as outlined in Definition 9,
determines whether U fits into the hardware’s connectivity graph. Both these concepts
are foundational to the understanding and application of the compilation protocol.

Definition 8. Quantum Circuit Graph: Each quantum circuit has an associated quan-
tum circuit graph, denoted as U = (Q, I), where:

• Q = q1, q2, . . . , qn, n ∈ N, is a finite set of graph vertices that represent the set of
qubits in the circuit.

• I ⊆ Q×Q is a finite set of undirected edges. An edge (qi, qj), for qi, qj ∈ Q, signifies
that a two-qubit gate operates on qubits qi and qj in the circuit.

Implication 8. Implications of definition 8
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• |Q| = n, where n is the number of qubits in the circuit.

• |I| = total number of distinct two-qubit gates in the circuit.

• The degree of a vertex, deg(q), for q ∈ Q, implies the number of distinct qubits with
which the qubit q shares a two-qubit gate within the circuit. It can range from 0 to
n− 1.

• |I| ≤ n(n−1)
2

, the total number of unique two-qubit gates is upper-bounded by the
number of pairs of qubits.

Definition 9. Admissibility of a Quantum Circuit: For a given circuit, let the asso-
ciated quantum circuit graph be U = (Q, I) and let the connectivity graph of the quantum
simulator be C = (V,E). The quantum circuit is admissible on the simulator if and only
if U is a subgraph of C.

Implication 9. Implications of definition 9

• Admissibility signifies the feasibility of executing all two-qubit gates in the circuit on
the given quantum simulator, without additional swap operations.

• Non-admissibility of a quantum circuit requires circuit compilation, often involving
extra swap gates, to align the circuit with the simulator’s connectivity graph.

Fig. 4.8 illustrates these concepts. Fig. 4.8a shows an example of a quantum circuit,
and Fig. 4.8c presents its associated quantum circuit graph U. Figures 4.8b and 4.8d
represent the connectivity graph C of a quantum simulator with partial and full connec-
tivity, respectively. As depicted by the magenta arrows, the circuit is inadmissible on the
simulator with partial connectivity, but admissible on the simulator with full connectivity.

Definition 10. Compilation Protocol: A compilation protocol for a given quantum
circuit with quantum circuit graph U = (Q, I) and g gates, generates an equivalent and
admissible circuit with quantum circuit graph U’ = (Q, I ′) and g’ gates for a quantum
simulator with connectivity graph C = (V,E). This protocol aims to minimize both the
gate count g’ and atom moves (if allowed) in the compiled circuit.

Implication 10. Implications of definition 10

• For inadmissible circuits, i.e., U ⊈ C, the compiled equivalent U’ ⊆ C usually has
more gates: g’ ≥ g, owing to the addition of swap gates.

• For admissible circuits, i.e., U ⊆ C, the compiled equivalent U’ ⊆ C usually has
fewer gates: g’ ≤ g. However, there may be additional atom move operations.
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q1 • •

q2 •

q3

q4 •

(a) (b)

(c) (d)

inadmissible

adm
issible

Figure 4.8: Quantum circuit admissibility illustration.
a. A quantum circuit with four qubits and four CNOTs. c. Corresponding quantum
circuit graph U = (Q, I) based on definition 8. b. A quantum simulator’s connectivity
graph C = (V,E) with partial connectivity where the circuit is not admissible (U ⊈ C).
d. A quantum simulator’s connectivity graph C = (V,E) with full connectivity where the
circuit is admissible (U ⊆ C).

4.5.1 Compiling CNOT circuits for static architecture

Circuit compilation for static, partially connected quantum hardware requires generat-
ing an equivalent circuit that respects the hardware’s specific connectivity constraints. A
notable approach to this problem, as detailed in [Mukhopadhyay et al., 2022], employs the
Steiner tree method. This strategy introduces additional swap gates, enabling the trans-
formation of the original circuit into an equivalent form compatible with the hardware’s
architecture. For instance, consider a quantum circuit as shown in Fig. 4.9. When this cir-
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cuit is compiled for a static architecture with nearest-neighbor connectivity, the algorithm
generates the equivalent circuit presented in Fig. 4.10.

q1 • •
q2
q3
q4 •
q5 •
q6
q7 •
q8 • • •

Figure 4.9: An exemplary circuit comprising eight qubits and eight CNOTs.

When compiling for a static architecture with nearest-neighbor connectivity, the two-
qubit gates can only be applied between neighboring qubits. The stated technique generates
a compiled circuit by introducing swap operations. It decomposes the swap operation into
three CNOT gates and optimizes the circuit to minimize the number of CNOT gates.

q1 •
q2 • • • •
q3 • • • • • •
q4 • • • • • • • • • •
q5 • • • • • • • •
q6 • • • • • •
q7 • • • • • •
q8 • • •

Figure 4.10: Circuit compiled for static architecture with nearest-neighbor
connectivity.

4.5.2 Compiling CNOT circuits for dynamic architecture

Circuit compilation for a dynamic, fully connected neutral atom platform initiates by
forming a transformation matrix that captures all CNOT gates within the circuit. This
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approach, however, does not maintain the sequential order of the CNOTs, leading to the
possibility of distinct circuits corresponding to an identical transformation matrix. Having
derived the transformation matrix, a subsequent algorithm aims to reverse the circuit’s op-
erations to minimize gate count and atom movements in compliance with the hardware’s
constraints. This reversed execution generates an equivalent circuit, often characterized
by fewer gates. Below are the transformation matrix construction algorithm and a tai-
lored circuit optimization method that minimizes gate operations and atom movements.
It’s important to note that the underlying atom topology strongly influences the atom
movement minimization strategy. Therefore, any changes in this topology may necessitate
modifications to the optimization routine.

The transformation matrix generation algorithm, as described in Algorithm 1, creates
a matrix that encapsulates the transformations performed by a sequence of CNOT gates in
a quantum circuit. The algorithm begins by initializing an identity matrix of size Nq×Nq,
where Nq represents the total number of qubits. It then iteratively applies each CNOT
gate in the provided list to the transformation matrix. Specifically, for every CNOT gate,
the algorithm modifies the row corresponding to the target qubit by performing a bitwise
XOR operation with the row corresponding to the control qubit.

Algorithm 1 Generate transformation matrix for Nq qubits
Input: CNOT gate sequence list
Output: Nq ×Nq transformation matrix T

1: T ← INq ▷ Initialize T as Nq ×Nq identity matrix
2: procedure Transformation(T, list)
3: for each CNOT in list do
4: c← CNOT[control-qubit]
5: t← CNOT[target-qubit]
6: T [t, .]← T [c, .]⊕ T [t, .]

The key advantage of this transformation matrix approach is its capacity to simplify
the quantum circuit by identifying and eliminating redundant gate operations. Notably, it
can detect and cancel out pairs of consecutive CNOT gates that negate each other’s effects.
Furthermore, by transforming the circuit into a matrix, this method offers a concise and
abstract representation for further circuit optimization.

The circuit optimization algorithm for dynamic architecture, as described in Algorithm
2, takes as input a transformation matrix that encapsulates the actions of a sequence of
CNOT gates. It outputs an optimized sequence of CNOT gates. The algorithm begins by

46



initializing an empty list to store the resultant CNOT gate sequence. It then traverses each
column in the transformation matrix in order. For each column, the algorithm examines
elements below and above the current diagonal entry in the matrix. If any of these elements
are one, indicating the presence of a CNOT gate, the algorithm adds this gate to the
sequence, with the current column as the control qubit and the respective row as the
target qubit. Again, it updates the transformation matrix via an XOR operation on the
corresponding rows.

This algorithm’s main strength lies in its capacity to structure the compiled CNOT
gate sequence in dynamic architecture, thus reducing gate count and minimizing atom
movements, all in alignment with the atom topology shown in Fig. 4.11. The presented
topology features a 1D chain of eight qubits. Any CNOT operation necessitates bringing
the control qubit near the target qubit. The control operation fields are stacked vertically,
with the control qubit always positioned at the top and the target qubit at the bottom.
Furthermore, this linear chain can be extended following the same pattern, offering a
scalable solution to increase the system size when necessary.

Figure 4.11: Atom topology for circuit optimization.

For instance, consider the quantum circuit shown in Fig. 4.12a (same as Fig. 4.9),
including eight qubits and eight CNOTs. The compiled circuit contains only seven CNOTs,
as shown in Fig. 4.12b.

The compilation protocol generates a systematically arranged CNOT sequence where
the control qubit index strictly increases. This means that when a control qubit is selected
for movement, all related operations are completed, and the qubit isn’t moved again,
reducing the total number of atom movements.
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Algorithm 2 Circuit optimization for dynamic architecture
Input: Transformation matrix T
Output: CNOT gate sequence list C

1: Initialize C ← ∅ ▷ Create an empty list to store the CNOT sequence
2: for each column i from 1 to Nq do
3: if Tii = 0 then
4: Find the nearest row j(j > i) with Tji = 1
5: Add CNOTj,i to C
6: T [i, .]← T [j, .]⊕ T [i, .]

7: for j from i+ 1 to Nq do
8: if Tji = 1 then
9: Add CNOTi,j to C

10: T [j, .]← T [i, .]⊕ T [j, .]

11: for j from i− 1 down to 1 do
12: if Tji = 1 then
13: Add CNOTi,j to C
14: T [j, .]← T [i, .]⊕ T [j, .]

q1 • •
q2

q3

q4 •
q5 •
q6

q7 •
q8 • • •

(a)

q1 • •
q2

q3

q4 •
q5 •
q6

q7 •
q8 • •

(b)

Compilation

Figure 4.12: Compilation protocol illustration for an eight-qubit CNOT circuit.
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1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


R7⊕R2→R2−−−−−−−→



1 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


R8⊕R2→R2−−−−−−−→



1 0 0 0 0 0 0 0
0 1 0 0 0 0 1 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



R1⊕R7→R7−−−−−−−→



1 0 0 0 0 0 0 0
0 1 0 0 0 0 1 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


R5⊕R2→R2−−−−−−−→



1 0 0 0 0 0 0 0
0 1 0 0 1 0 1 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


R8⊕R6→R6−−−−−−−→



1 0 0 0 0 0 0 0
0 1 0 0 1 0 1 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1
1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


R4⊕R6→R6−−−−−−−→



1 0 0 0 0 0 0 0
0 1 0 0 1 0 1 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 1 0 1
1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


R1⊕R2→R2−−−−−−−→



1 0 0 0 0 0 0 0
1 1 0 0 1 0 1 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 1 0 1
1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



R8⊕R7→R7−−−−−−−→



1 0 0 0 0 0 0 0
1 1 0 0 1 0 1 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 1 0 1
1 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1


Figure 4.13: Transformation matrix generation.
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Figure 4.13 and Figure 4.14 demonstrates the process of compiling a quantum cir-
cuit. Initially, a transformation matrix is generated from the original circuit (Fig. 4.12a).
Then, this matrix is used to produce the optimized, compiled circuit. Row-reduction-like
operations are performed for each diagonal element in ascending order. This systematic
procedure guarantees a consistent control qubit order in the compiled circuit, an essential
factor in minimizing atom movements.



1 0 0 0 0 0 0 0
1 1 0 0 1 0 1 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 1 0 1
1 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1


R1⊕R2→R2−−−−−−−→



1 0 0 0 0 0 0 0
0 1 0 0 1 0 1 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 1 0 1
1 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1


R1⊕R7→R7−−−−−−−→



1 0 0 0 0 0 0 0
0 1 0 0 1 0 1 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1



R4⊕R6→R6−−−−−−−→



1 0 0 0 0 0 0 0
0 1 0 0 1 0 1 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1


R5⊕R2→R2−−−−−−−→



1 0 0 0 0 0 0 0
0 1 0 0 0 0 1 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1


R7⊕R2→R2−−−−−−−→



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1


R8⊕R7→R7−−−−−−−→



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


R8⊕R6→R6−−−−−−−→



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


Figure 4.14: Circuit optimization algorithm for dynamic architecture.
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4.5.3 Cross-benchmarking compilation protocols for static and dy-
namic architecture

To conduct cross-benchmarking of static and dynamic architecture for randomly sam-
pled CNOT circuits, we employ a systematic process as detailed in Algorithm 3. This
process begins with the number of qubits and the count of CNOT gates as inputs and
subsequently generates circuits possessing a randomized sequence of these gates. The cir-
cuits were then compiled for static and dynamic architecture, and the respective number of
CNOT gates after compilation was recorded. Additionally, for the dynamic architecture,
we calculate the number of atom displacements before and after the compilation. Based
on these values, we calculated the ηprotocol metric (derived in Section 4.6), which indicates
the efficiency of the compilation protocols.

Algorithm 3 Benchmarking compilation protocols
Input: Number of qubits Nq, Number of CNOT gates M
Output: cnotStatic, cnotDynamic, atomDispBefore, atomDispAfter, ηuncomp,
ηcomp

1: Initialize all the outputs as 0
2: cnotSeq ← randomCNOTs(qubits:Nq, gates:M) ▷ Sample M random CNOT gates
3: procedure compileStatic(cnotSeq)
4: cnotStatic← compile(cnotSeq) ▷ Compile for static architecture
5: return cnotStatic
6: procedure compileDynamic(cnotSeq)
7: atomDispBefore← computeDisplacement(cnotSeq) ▷ Compute disp before
8: cnotDynamic← compile(cnotSeq) ▷ Compile for dynamic architecture
9: atomDispAfter ← computeDisplacement(cnotSeq) ▷ Compute disp after

10: return atomDispBefore, cnotDynamic, atomDispAfter

11: procedure computeEta(cnotSeq1,atomDisp, cnotSeq2)
12: return atomDisp

numcnotSeq2−numcnotSeq1

13: cnotStatic← compileStatic(cnotSeq)
14: atomDispBefore, cnotDynamic, atomDispAfter ← compileDynamic(cnotSeq)
15: ηuncomp ← computeEta(cnotSeq, atomDispBefore, cnotStatic) ▷ Calculate ηprotocol
16: ηcomp ← computeEta(cnotDynamic,atomDispAfter, cnotStatic) ▷ Calculate ηprotocol
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Figure 4.15: Compilation protocol results.
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This benchmarking process was applied to systems with 8, 16, and 32 qubits, and the
number of gates varied up to 2n where n is the number of qubits. To ensure statistical
significance and account for the randomness in our process, we performed this bench-
marking procedure on 50 randomly sampled circuits with the same parameters, essentially
implementing a Monte Carlo simulation. The results of this extensive benchmarking are
presented in Fig. 4.15. Each data point in the graphs represents the outcome of the bench-
marking process for one set of 50 sampled circuits.

Our results highlight the efficiency of the compilation protocol for dynamic architecture.
From the three figures on left 4.15a, 4.15c, and 4.15e, we observe a notable reduction in
CNOT gates compared to static architecture. On the right, the three figures 4.15b, 4.15d,
and 4.15f show fewer atom moves in compiled versus uncompiled circuits because of the
structure imposed by compilation.

4.6 Performance metric: Circuit fidelity for static and
dynamic architecture

In this section, we analyze the performance of dynamic architecture compared to static
architecture in executing a series of two-qubit gates on a quantum simulator. We consider
the impact of coherent gate error (pg) and incoherent atom loss error (pν) on the fidelity
of circuit execution. The key parameters involved are:

• pg: Coherent gate error probability.

• pν : Incoherent atom loss error probability.

• N s
g : Number of gates in the static architecture.

• Nd
g : Number of gates in the dynamic architecture.

• Nν : Number of atom displacements in the dynamic architecture.

We compare the fidelity of circuit execution between static and dynamic architecture,
considering the number of gates and displacements involved. The table below summarizes
the fidelity comparison:
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Table 4.2: Fidelity comparison of static and dynamic architecture.

Number of gates Number of displacements Fidelity

Static N s
g 0 (1− pg)

Ns
g

Dynamic Nd
g Nν (1− pg)

Nd
g (1− pν)

Nν

Dynamic architecture offers an advantage when the fidelity of circuit execution is higher
than that of static architecture. By analyzing the equations, we find that:

(1− pg)
Nd

g (1− pν)
Nν > (1− pg)

Ns
g (4.8)

Dividing both sides by (1− pg)
Nd

g :

(1− pν)
Nν > (1− pg)

Ns
g−Nd

g (4.9)

Taking log on both sides:

Nν log(1− pν) > (N s
g −Nd

g ) log(1− pg) (4.10)

Given N s
g > Nd

g and log(x) < 0,∀x < 1, the inequality sign flips:

Nν

N s
g −Nd

g

<
log(1− pg)

log(1− pν)
(4.11)

Defining ηprotocol =
Nν

Ns
g−Nd

g
as the efficiency of the compilation protocol for the platform

and ηplatform = log(1−pg)

log(1−pν)
as a metric of the experimental setup, we find that:

ηprotocol < ηplatform (4.12)

The equation 4.12 offers two interpretations. First, it helps determine the necessary
conditions for a compilation protocol on dynamic architecture to outperform the static
architecture given a specific experimental setup. Such a comparison enables the strate-
gic design of compilation protocols that align with the capabilities and limitations of the
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experimental setup. Second, it identifies the error probability range where dynamic archi-
tecture would outperform static architecture for a given compilation protocol. Fig. 4.16
visually illustrates the gate versus atom displacement error relationship. For a given com-
pilation protocol efficiency (ηprotocol), the advantageous region for dynamic architecture is
the bottom right half of ηprotocol curve.

10-4 10-3 10-2 10-1 100

two-qubit gate error (pg)
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Figure 4.16: Trade-off between two-qubit gate error and atom loss error to
design a protocol where dynamic outperforms static architecture.

4.6.1 Cross-benchmarking operational protocols for CNOT circuit
execution

Using the performance metric derived in the previous section, we evaluate our compi-
lation protocols described in Sec. 4.5.

Comparing the ηprotocol of compiled and uncompiled circuits, we find that a smaller
value, denoting superior efficiency, is consistently associated with compiled circuits. This
firmly establishes the effectiveness of our compilation protocol for dynamic architecture.
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Figure 4.17: Efficiency of compilation protocol.
a. Protocol performance for uncompiled circuits. b. Protocol performance for compiled
circuits.

In this context, we utilize the circuit fidelity metric to compare two operational protocols
within dynamic architecture. The uncompiled circuit involves executing the initial circuit
directly on a fully connected architecture, resulting in a rapid increase in ηprotocol due to
the larger number of required atom movements. Conversely, the compiled circuit designed
for dynamic architecture offers structural advantages for our platform, resulting in fewer
atom movements and, consequently, a reduction in ηprotocol.

To estimate ηplatform, we consider the cutting-edge two-qubit gate fidelity and atom
movement fidelity within the neutral atom platform. The two-qubit gate fidelity has
demonstrated exceptional performance, reaching as high as 99.5% [Evered et al., 2023],
equivalent to pg = 0.005. Additionally, research has shown that the infidelity related to
atom displacement is approximately ∼1.8e-4 [Tan et al., 2023]. As a result, ηplatform is es-
timated to be around 25. This value significantly exceeds the ηprotocol associated with our
compilation protocol, implying that compiled circuits designed for dynamic architecture
are more likely to succeed than uncompiled circuits.
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4.7 Performance metric: Quantum volume for static
and dynamic architecture

Quantum Volume (QV) is a unified metric introduced by IBM to assess the computa-
tional capabilities and error susceptibilities of quantum processors. This metric quantifies
the largest square quantum circuits a system can execute effectively. The structure of
these square circuits remains consistent across different computing architectures, although
architecture-specific compilers can optimize and adapt them to leverage the unique fea-
tures of each architecture. Consequently, QV accounts for factors such as error rates,
inter-qubit connectivity, compilation algorithm efficiency, and qubit routing strategies.
This standardization allows for meaningful comparisons between diverse quantum archi-
tectures [Cross et al., 2019] [Jurcevic et al., 2020].

A prototypical square circuit C with n qubits and a depth of n can be visualized
as shown in Fig. 4.18. Each layer of this circuit is defined by a randomly permuted
arrangement of qubit indices and includes ⌊n

2
⌋ two-qubit gates U , drawn from the Haar

measure on SU(4).

Figure 4.18: An exemplary square quantum volume circuit.
[Baldwin et al., 2022]

The success of a model quantum circuit on a quantum architecture is determined by
addressing the heavy output generation problem. The ideal output of the circuit C is
pC(x) = | ⟨x|C |0⟩ |2, where x ∈ {0, 1}m corresponds to an observable bit string. The
heavy outputs are identified by comparing individual output probabilities to the median
of the output probability set, formally defined as:

HC = {x ∈ {0, 1}m such that pC(x) > pmedian}. (4.13)

If the probability of obtaining a heavy output from the experimental distribution ex-
ceeds 2

3
, it indicates that the quantum simulator has successfully passed the quantum
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volume test for the circuit C [Aaronson and Chen, 2016]. Considering the observed exper-
imental distribution as qC(x), the probability of sampling a heavy output is calculated as
follows:

hC =
∑
x∈HC

qC(x) (4.14)

To analyze the quantum volume for static and dynamic architectures, I introduce the
simplest way to incorporate errors. We assume single-qubit gates are error-free. The
native two-qubit gate of a neutral atom-based quantum simulator is the CZ gate. CZ
gate is a controlled rotation by π about the z-axis and then a phase gate (S) on the first
qubit, i.e., (CRZ(π))(S⊗ I). We introduce physically motivated error wherein the rotation
deviates from ideal rotation by a small δ. The erroneous CZ operation thus becomes
(CRZ(π − δ))(S ⊗ I). The matrix representation of the erroneous CZ gate is:

ŨCZ =


1 0 0 0

0 1 0 0

0 0 cos δ
2
+ isin δ

2
0

0 0 0 −cos δ
2
+ isin δ

2

 (4.15)

The average gate fidelity of this erroneous operation can be evaluated using Eq. 4.16,
where Ũ denotes the closest achievable operation on the quantum hardware to the ideal
operation U [Cross et al., 2019], which results in Eq. 4.17.

Favg

(
U, Ũ

)
=

∣∣∣Tr(U †Ũ
)∣∣∣2 /2m + 1

2m + 1
(4.16)

Favg

(
UCZ , ŨCZ

)
= (cos2

δ

2
+ 2cos

δ

2
+ 2)/5 (4.17)

Subsequently, we calculate the average gate error as ϵ = 1− Favg, leading to:

ϵ = 1− Favg = (3− cos2
δ

2
− 2cos

δ

2
)/5 (4.18)

To demonstrate the effect of architecture and compilation for static and dynamic ar-
chitecture, I show an exemplary 3-qubit quantum volume circuit and its decomposition to
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realize on our platform. All the circuit simulations done below are performed using the
Qiskit library [Qiskit contributors, 2023].

(a)

(b)

(c)

Figure 4.19: Decomposing 3-qubit quantum volume circuit to native gate set.
a. An exemplary 3-qubit quantum volume circuit. b. Decomposing SU(4) gates to single
qubit and two-qubit gates using Qiskit. c. Replacing CNOT gates with native two-qubit
CZ gates.

Compiling the circuit in Fig. 4.19b for static architecture using tket library [Sivarajah et al., 2020],
introduces additional swap gates (which are decomposed into three CNOT gates) as shown
in Fig. 4.21b. It is important to note that the compilation also routes the qubit to minimize
the number of gates, thus node0 = q0, node1 = q2, and node2 = q1.
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Figure 4.20: Compiling quantum volume circuit for static architecture.
The circuit is compiled for static architecture with the nearest neighboring interaction,

leading to additional SWAP operations, which are decomposed into 3 CNOT gates.

Errors are introduced in the circuit by replacing the CZ gate with an erroneous gate. For
instance, the δ (as introduced in Eq. 4.17) for the circuit shown in Fig. 4.21a is 0.01 (<0.5%
relative error). This is the circuit that is implemented on the platform with dynamic
architecture by allowing atom moves.

(a)

(b)

Figure 4.21: Erroneous quantum volume circuits for both architectures.
a. Dynamic architecture. b. Static architecture.

Introducing error in two-qubit CZ gate with imperfect rotation about Z quantified as δ.
With δ of 0.01 (<0.5% relative error), the CRZ angle is 3.15 rad instead of π rad for CZ.
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Given the erroneous circuit for static and dynamic architecture, I provide an example of
checking if a circuit passes the quantum volume test. Consider the 4-qubit quantum volume
circuit given in Fig. 4.22. The output probabilities of the circuit are shown in Fig. 4.23a
and are shown in sorted order in Fig. 4.23b to visualize the set of states that belong to
heavy outputs. The heavy outputs of the circuit add to 0.84 (> 2

3
). Thus, the circuit passes

the quantum volume test. For an ideal device, the expected heavy output probability is
asymptotically 1+ln2

2
∼ 0.85 [Cross et al., 2019], while for a completely depolarized device

it drops to ∼ 0.5. An important verification is to check if the output probabilities of the
sampled quantum quantum volume circuits follow Haar randomness. The evidence of Haar
randomness in the output probabilities of sampled circuits is demonstrated in Fig. 4.24.

Figure 4.22: A 4-qubit quantum volume circuit.
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Figure 4.23: Output probability distribution.
a. Output probability distribution of ideal and experimental output probability distribu-
tions. b. Sorted ideal output probability distribution to visualize heavy output states.
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Figure 4.24: Evidence of Haar randomness in 4-qubit quantum volume circuits.

The primary question addressed by this analysis is the determination of the maximum
allowed gate error required to achieve a specific quantum volume for both architectural
approaches, as visualized in Fig. 4.25. Each data point is calculated by evaluating 500
quantum volume circuits. Here, ϵ retains its meaning from Eq. 4.18.

The maximum allowed two-qubit gate error thresholds needed to attain a particular
quantum volume are notably smaller for the dynamic architecture. It is essential to note
that in dynamic architecture, the number of atom moves for n-qubit circuits is upper-
bounded by 2n2. This distinction becomes evident when observing the plot of maximum
allowable two-qubit gate error thresholds for dynamic architecture, considering scenarios
both with and without atom loss errors. The atom loss error value of 1.8e-4 is sourced
from [Tan et al., 2023]. In our calculations, we’ve considered the current state-of-the-art
in error rates, including a two-qubit gate fidelity of 99.5% [Evered et al., 2023], which
translates to a 0.005 two-qubit gate error. Given these error rates, the attainable quantum
volume on both static and dynamic architectures is summarized in Table 4.3.
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Figure 4.25: Maximum allowed two-qubit gate error to achieve a certain
quantum volume with static and dynamic architectures.

Table 4.3: Achievable quantum volume on static and dynamic architectures
with the state-of-the-art two-qubit gate and atom move fidelities.

Architecture Achievable quantum volume (VQ)

Static architecture 26

Dynamic architecture w/o atom loss 28

Dynamic architecture w/ atom loss 27

To further understand the outcomes of this analysis, the distribution of heavy output
probabilities for the 500 quantum volume circuits is depicted in Fig. 4.26a and Fig. 4.26b
for the static and dynamic architectures (with loss), respectively. Additionally, taking
into account the state-of-the-art two-qubit gate and atom move fidelities, Fig. 4.27a and
Fig. 4.27b illustrate the trend in observed heavy output probabilities on a neutral atom
platform.
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(a) (b)

Figure 4.26: Maximum allowed two-qubit gate error and its associated heavy
output probability distribution.

a. Static architecture. b. Dynamic architecture with loss.
Achieving a certain quantum volume requires passing the quantum volume test by

sampling heavy outputs with a probability greater than 2
3
. Here, the plot shows two-qubit

gate errors that are just enough to pass the test and its associated HOP distribution.

(a) (b)

Figure 4.27: Heavy output probability distribution for current state-of-the-art
two-qubit gate and atom move fidelities on neutral atom platform.

a. Static architecture. b. Dynamic architecture with loss.
Considering the state-of-the-art two-qubit gate error of 0.005 and atom move infidelity of

1.8e-4, the static architecture’s HOP drops faster than dynamic architecture.
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4.8 Conclusions and outlook

In this chapter, I formalized the dynamic architecture approach for a neutral atom plat-
form by comparing coupling and connectivity graphs of a quantum simulator. I presented
a five-step protocol for implementing dynamic architecture, leveraging atom movement.
Towards the end, I conducted analytical and numerical benchmarking to demonstrate that
dynamic architecture outperforms static architecture with state-of-the-art two-qubit gate
and atom move fidelities. I introduced a metric ηprotocol for comparing dynamic architec-
ture operational protocols and an inequality involving ηplatform to compare dynamic and
static architectures. Numerical results using the quantum volume metric showed that dy-
namic architecture achieves double the attainable quantum volume compared to static
architecture. Thus, the dynamic architecture approach directly enhances the scalability of
a neutral atom-based quantum simulator.

Future work will involve generalizing the five-step protocol for more complex geometries.
Additionally, the compilation protocols can be extended to circuits that include single-qubit
gates by recursively breaking down and merging circuits to compile for CNOT sequences
within the circuit.

The error analysis for quantum volume presented in the previous section assumed a
constant error rate. A more comprehensive analysis could involve sampling errors from a
probability distribution, providing more realistic estimates of error thresholds. Further-
more, a more precise approximation of error thresholds can be achieved by considering
additional error types, such as dephasing errors. These advancements will contribute to
a more comprehensive understanding of the capabilities and limitations of dynamic archi-
tecture on a neutral atom-based quantum simulator.
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Chapter 5

Closed-loop control and acquisition
system

Controllability is a fundamental requirement for quantum simulators, enabling the ini-
tialization, manipulation, and measurement of quantum systems. In our experimental
setup, controllability plays a central role in initializing large configurations of atoms in
their ground state, manipulating atom positions to tune Rydberg-Rydberg interactions,
and imaging atoms to extract the results of the quantum simulation.

The complexity of our experimental setup and the rapid timescales of the processes we
study necessitate a control and acquisition system that can ensure synchronized operation
across multiple hardware devices. Our control and acquisition system relies on a collection
of precisely timed analog and digital modules and image acquisition hardware to meet
these requirements. They interface with a broad array of hardware components distributed
across multiple computing platforms. This setup also ensures the reproducibility of our
measurements on the quantum simulator.

To achieve the desired level of controllability, we utilize two control systems: a slow sys-
tem and a fast system. This distinction stems from the realization that different hardware
components require varying levels of timing precision.

The slow system is responsible for preparing the initial state and measuring the final
state of atomic qubits. It modulates the frequency and amplitude of the laser beams
that are used to cool atoms in a magneto-optical trap and trap individual atoms in a
multi-dimensional array of optical traps. This system ensures reliable initialization of the
quantum system for subsequent experiments.
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On the other hand, the fast control system enables real-time manipulation of atom
positions for dynamic atom array rearrangement. This system ensures rapid movements of
trapped atoms, maximizing operations within their trapping lifetimes in optical tweezers.

Furthermore, considering the importance of data traceability in our experimental stud-
ies, our control and acquisition system incorporates meticulous record-keeping. This allows
us to archive all the relevant data from each experiment, including experimental parame-
ters, raw images produced during the experiment, and any supplementary metadata in a
single directory. By consolidating all the information about each experiment, the system
promotes data integrity for ongoing studies and retrospective investigations.

In this chapter, I outline the control and acquisition system that enhances the con-
trollability of our quantum simulator. Section 5.1 details the current control hardware
architecture and how it integrates with the rest of the experiment’s hardware. Section 5.2
focuses on the software architecture designed to conduct experiments using a software
framework called Labscript suite for comprehensive experimental management. Lastly,
Section 5.3 outlines the procedure undertaken to execute experiments on our neutral atom-
based quantum simulator.

5.1 Hardware architecture

Our experimental setup incorporates two distinct types of control systems: a slow
control system and a fast control system. These control systems serve different purposes
and operate at different clock rates to meet the specific requirements of our quantum
simulation experiments with neutral atoms.

The slow control system operates at a clock rate of 1 MHz. This clock rate is sufficient
for the experimental time scale required for neutral atom quantum simulators. The primary
role of the slow control system is to compose experiments and coordinate with all the
experimental apparatus involved in our setup. It is the central hub for communication and
synchronization, ensuring seamless integration of various components. The slow control
system also acts as an intermediary between the fast control system and the rest of the
experimental apparatus, facilitating smooth data exchange and coordination between these
subsystems.

In contrast, the fast control system is integral to our reconfiguration system, designed
to rearrange atoms into desired defect-free geometries for quantum simulations. Given the
short lifetime of atoms in traps, it is crucial to have a low-latency reconfiguration system
that can quickly and efficiently create these defect-free geometries. The fast control system
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operates at a clock rate of up to 625 MHz, allowing for rapid and precise maneuvering of
the atoms. By achieving compact geometries quickly, we increase the available time to
perform quantum simulations.

5.1.1 Slow control system

The slow control system consists of four modules from National Instruments, all housed
within the NI PXIe-1082 chassis, as illustrated in Fig. 5.1. Each of these modules is critical
for the precise control and coordination of various aspects of our experimental apparatus.
The ensemble includes the NI PXIe 8398 communication module, a pair of NI PXIe 6739
analog output modules, and the NI PXIe 6537 digital I/O module.

Figure 5.1: PXIe chassis to mount digital and analog modules.
The chassis acts as a central hub to communicate with all the mounted modules via a

PCI cable connected to a desktop PC.

The first module, NI PXIe 8398 (Fig. 5.2a), serves as a communication interface between
the PXI Express chassis and an external host, such as a desktop PC. It enables seamless
control and interaction with the chassis from the external host, facilitating the smooth
operation of the slow control system.
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For analog signal generation, we use two NI PXIe 6739 analog output modules, as
shown in Fig. 5.2b. Each module features 16 Analog Out (AO) banks, and every bank
comprises 4 analog outputs, summing up to 64 output channels per module as shown in
Fig. 5.3. For the sake of optimal performance, we utilize one channel from each AO bank,
which permits an update speed of up to 1 MHz. If all channels are used simultaneously,
the update speed decreases to 350 kHz. Consequently, with 16 channels utilized from each
module, and considering two analog modules, we use a cumulative of 32 analog channels.

To handle digital input and output tasks, we utilize the NI PXIe 6537 digital I/O
module (Fig. 5.2c). This module provides a maximum update speed of 50 MHz and offers
32 channels. It enables precise control and monitoring of digital signals, enhancing the
coordination and synchronization of our experimental processes.

(a) NI PXIe 8398 (b) NI PXIe 6739

(c) NI PXIe 6537

Figure 5.2: Digital, Analog and timing modules from National instrument.
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Figure 5.3: NI PXIe 6739 analog output banks and analog output channels.
An Analog Out (AO) bank features 4 analog output channels. Utilizing all channels

results in an update speed of 350 kHz while using a single channel per AO bank increases
this to 1 MHz.

5.1.2 Fast control system

Our fast control system is designed to be a robust and efficient system to displace
atoms and form defect-free geometries of atoms. The system encompasses five modules:
Image Acquisition, Image Processing, Reconfiguration, Waveform synthesis, and Waveform
Streaming. These modules work in a sequential closed loop as shown in Fig. 5.4 to arrange
atoms into various geometries while keeping operational latency minimal.

After loading the atoms into optical traps, at least 50% of the optical traps are empty
due to non-unity loading efficiency. A closed-loop optimization process is employed to
create defect-free geometries. The closed loop starts with Image acquisition, wherein an
Arbitrary Waveform Generator (AWG) triggers the EMCCD camera to capture an image
at a specific timestamp. The captured image is sent to a computer via a Frame Grab-
ber Card (FGC). The image is processed on the processor of the computer to identify
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empty traps. A reconfiguration algorithm [Cimring et al., 2022] [Sabeh et al., 2022] then
determines a sequence of atom moves meant to get the desired configuration. These atom
moves are translated into control waveforms to be loaded and streamed on the AWG. This
five-stage process repeats after all waveforms have been streamed, only ending if the de-
sired configuration has been reached or not enough atoms are present to get the desired
configuration.

Figure 5.4: Fast control system modules.

5.1.3 Integrating control hardware with the experimental setup

We’ve designed a modular approach to integrate the control hardware with our ex-
perimental framework, ensuring efficient signal tracing. Our laboratory comprises three
distinct areas: the experiment room, the control room, and the backroom (Fig. 5.5).

The experiment room houses two optical tables on which all the optical components
are mounted. Underneath these tables, device-specific control hardware, including device
controllers, related electronics, and BNC cables, are arranged. This organization considers
the proximity of the hardware to its respective power and control inputs.
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The control room is equipped with four desktop monitors, which serve as our primary
interface for monitoring device states, conducting experiments, and subsequent data analy-
sis. Additionally, a ‘control room rack’ is positioned in this room, enabling real-time signal
measurement during experiments.

Lastly, the backroom comprises two main racks. The ‘control rack’ manages the gen-
eration of control signals, while the ‘distribution rack’ functions as the pivotal point for
signal distribution throughout the setup.

Figure 5.5: Routing control signals to the experiment.
The control signal distribution system is designed in a modular fashion to ensure efficient

signal tracing. The ‘control rack’ in the backroom manages the generation of control
signals, while the ‘distribution rack’ functions as the pivotal point for signal distribution

throughout the setup.
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The analog and digital signal modules are mounted on the NI PXIe-1082 chassis, as
seen in Fig. 5.1. This chassis is installed at the back of the control rack in our backroom.
Using BNC cables, all control signals from these modules are routed to the front patch
panel of the control rack. Hence, the front patch panel of the control rack is the primary
output junction for both analog and digital control signals.

The distribution rack links the control rack to different hardware components, ensuring
signals are directed correctly. As shown in Fig. 5.5, the distribution rack is connected to
system-specific racks like the vacuum and cooling systems that reside in the experiment
room. These intermediaries then send control signals to their respective devices. This
coordination is achieved through a network of BNC cables, making the distribution rack a
bridge between the control system and the equipment we use in experiments.

Figure 5.6: Spatial arrangement of the control rack (left) and the distribution
rack (right).

Both racks are the core for creating and distributing control signals. Our design allows
easy signal changes by swapping cables between racks, simplifying updates and

troubleshooting.
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The spatial configuration of these racks, with the control rack on the left and the
distribution rack on the right, is shown in Fig. 5.6. Together, they form the central hub
for generating and distributing the control signals. A set of BNC cables facilitates the
connection between them. A testament to our modular design philosophy is the ability
to add or update control signals by just switching out the short cables between the racks.
This makes both updates and problem-solving easier.

The current control signal pathways are outlined in Fig. 5.7: from the control rack,
through the distribution rack, to the system-specific rack, and finally to the device con-
troller. The rows are categorized by shades, with darker rows representing digital signals
and lighter ones denoting analog signals. The integration encompasses 25 digital signals,
14 analog signals, and 10 reference clocks. Providing reference clock signals to clocked de-
vices is a good practice to synchronize all components of the experimental setup, ensuring
optimal coordination. This integrated control hardware system forms the backbone of our
experiment.

5.1.3.1 Integrating control hardware with the cooling system

Among the various control signals integrated with the experiment’s hardware, we briefly
examine the specific integration of control signals with the cooling system. This system’s
primary role is the cooling of Rb-87 atoms, resulting in the formation of an atomic cloud.
Subsequently, atoms from this cloud are loaded into optical traps.

The two main laser components drive this system: the cooler and repumper beams.
Their interaction with the atomic system is depicted in Fig. 3.4. To maximize the density
of the atomic cloud, both beams’ frequency and amplitude are carefully optimized.

We modulate the amplitude of cooler and repumper beams using Acousto-Optic Modu-
lators (AOMs). The process starts with an RF synthesizer generating a constant frequency
tone. This tone, at a steady power, goes through a double-balanced frequency mixer and
is then amplified before reaching the AOM. To achieve amplitude modulation, we adjust
the DC analog signal sent to the mixer. After the mixer, a microwave switch toggles its
output, and a mechanical shutter is placed post-AOM to block the beam when necessary
for the experiment. Details of the hardware components, their manufacturers, models, and
control signal types are summarized in Table 5.1. Currently, our cooling system includes
7 each of AOMs, double-balance frequency mixers, microwave switches, and mechanical
shutters. Each AOM is tasked with modulating the amplitude of the beams used for 2D+
MOT, 3D MOT, and PGC, each of which plays a distinct role in creating and imaging the
Rb-87 atomic cloud.
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Table 5.1: Control hardware integrated with the cooling system for amplitude
modulation.

Component Maker and model Control signal type

Double-balanced mixer Mini-Circuits
ZFM-2-S+

Analog

Microwave switch Mini-Circuits
ZASWA-2-50DRA+

Digital

Mechanical shutter Standford Re-
search Systems (SRS)

SR475

Digital

We modulate the frequency of cooler and repumper beams using the Moglabs ARF421
RF synthesizer. While this device supports both manual and analog modulation methods,
however, we prefer the analog approach. Analog modulation ensures immediate response,
which is crucial for the experiment’s timing precision. Manual or software methods could
introduce unpredictable delays, potentially impacting experimental outcomes.

In manual modulation, one adjusts frequency using the device’s physical buttons or its
software interface. Conversely, analog modulation permits continuous frequency variations
by converting a -1 V to 1 V analog signal into a desired frequency range using a gain factor.

For the cooler beam, we operate within a frequency range of [70 MHz, 98.25 MHz].
With the Moglabs synthesizer’s maximum permissible modulation depth of ±250MHz and
a chosen gain factor of 60127707, this beam achieves a modulation depth of ±14MHz.
By setting the central frequency to 84.5 MHz, we attain a sweepable range of [70.5 MHz,
98.5 MHz].

The repumper beam operates in a tighter frequency range of [82.75 MHz, 83.75 MHz].
With a selected gain of 1717934, its modulation depth is ±0.4MHz. When the central
frequency is set to 83.25MHz, the achievable range is [82.85 MHz, 83.65 MHz].
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Figure 5.7: A detailed list of control signals distributed to various hardware
and their associated cable paths.
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5.2 Software architecture

5.2.1 Labscript suite

Labscript suite is a software package developed by Philip Starkey and his colleagues
during his PhD at Monash University [P.T. Starkey, 2019]. This software was specifically
designed for ultra-cold atom experiments and has since become a widely used tool. Lab-
script suite is an open-source code repository hosted on Github (link), where researchers
from around the world contribute to its continuous development and expansion.

One of the significant advantages of the labscript suite is its flexibility, allowing re-
searchers to integrate customized functionalities into their experiments. This capability has
led to the development of additional tools and extensions that complement the core func-
tionality of the labscript suite. Its user-friendly interface, extensive documentation, and
active community support make it accessible to both novice and experienced researchers.

5.2.2 Components and technologies in labscript suite

In our lab, we rely on five key components of the labscript suite to streamline the exper-
imental processes. These components, namely the labscript API, runmanager, runviewer,
BLACS1, and lyse work together seamlessly to facilitate the execution and analysis of ex-
perimental shots. Each component features a graphical interface, except for the labscript
API. The role of each component is described briefly in Table 5.2.

The communication between components is established through a ZeroMQ (discussed
in Section 5.2.2.8) network socket, ensuring error-free data exchange. The communicated
data is generally the path of the HDF5 experimental shot file. We look at each technology
and component in detail.

1Originally B.L.A.C.S. was an acronym standing for the ‘BEC lab apparatus control system’. This
was later updated to the ‘better lab apparatus control system’ when it became clear the software could
be generalized to other experiments before being dropped in favor of just using ‘BLACS’ as a name.
[P.T. Starkey, 2019]
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Table 5.2: Components of the Labscript suite and their applications.

Component Application

Labscript API Composing the desired control sequence to frame an
experiment

Runmanager Compiling the control sequence into an HDF5
experimental shot

Runviewer Visualising the control sequence in an HDF5
experimental shot

BLACS Executing the control sequence in an HDF5
experimental shot

Lyse Analysing the data collected during the experiment

5.2.2.1 Labscript API: Compose and define experimental shots

The labscript API serves as a tool for choreographing the experiment. A script defining
the input and output hardware devices involved in an experiment and the connections
between them is called a connection table. The connection table used in our laboratory is
outlined in Appendix A.1. Python objects representing each hardware device are created,
which are later used in experimental logic.

The experimental logic section is where users specify the desired state of each out-
put at different times throughout the experiment. The Labscript API provides methods
for manipulating these objects, depending on the type of Python object. It can be in-
put/output of type analog or digital. The API generates the necessary instructions for
the pseudoclock(s), which are responsible for managing the timing of each hardware de-
vice. An exemplary experimental sequence used in our lab to image 3DMOT is shown in
Appendix A.2.

5.2.2.2 Runmanager: Compile experimental shots

The Runmanager component of the labscript suite serves as a Graphical User Interface
(GUI) that primarily focuses on defining and managing global parameters for experiments.
It also plays a key role in compiling the experimental logic written using the labscript
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API into an HDF5 file format. This file contains a tabular representation of the hardware
sequence and is further discussed in Section 5.2.2.6.

When using Runmanager, the documentation recommends grouping global parameters
based on the types of experimental sequences that will be executed. For example, in our lab,
we group parameters as static and dynamic parameters for creating 2DMOT and 3DMOT.
This grouping enables the enable/disable functionality of parameters, providing modularity
to the experiment. As our experiments progress, additional groups of parameters will be
added to define control parameters for trapping and imaging atoms in tweezers.

One notable feature of Runmanager is its ability to automate the traversal of parameter
space. By defining a global parameter as a list, Runmanager automatically generates
multiple shots by taking the outer product of all the lists. It also allows for random
shuffling of parameters when necessary. Further details on unpacking global parameters
can be found in work by Starkey [P.T. Starkey, 2019].

5.2.2.3 Runviewer: Visualize experimental shots

The Runviewer component of the labscript suite serves as a tool for visualizing the
hardware instructions at each channel during an experiment. By parsing the HDF5 file
generated by Runmanager, Runviewer creates informative time-based plots that accurately
represent the behavior of each output channel. This visualization is particularly useful
when control pulses are abstracted using for-loops or when trying to understand the shape
of complex ramps utilized in the experiment. It also enables comparisons between the
expected output displayed in the tool and the observed output on an oscilloscope. This
feature can significantly expedite the process of debugging hardware issues, as any discrep-
ancies between the expected and observed outputs can be easily identified and investigated.

5.2.2.4 BLACS: Execute experimental shots

The BLACS component serves as an interface between the labscript suite and hardware
devices. It is responsible for managing device handlers and serially executing experimental
shots (as discussed in Section 5.2.2.6). These shots, stored as HDF5 files, contain hardware
instructions for each channel, which BLACS parses and interprets. The two most used
modes of operation on BLACS are manual and buffered modes. In manual mode, BLACS
provides a graphical user interface (GUI) that enables users to control device outputs,
facilitating the debugging of hardware behavior. On the contrary, in buffered mode, as the
name implies, the control sequence is buffered within the hardware device. Upon the tick
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of the pseudoclock, the buffered sequence is executed, resulting in changes to the device
outputs. If configured accordingly, BLACS also sends software triggers to the camera
servers (discussed in Section 5.2.2.7), signaling that an experimental shot is about to be
executed.

5.2.2.5 Lyse: Analyse experimental shots

The Lyse component enables real-time analysis of the acquired data. Once the exe-
cution of an experimental shot is completed in BLACS, the corresponding HDF5 file is
passed on to Lyse. Depending on the implementation, the HDF5 file may either contain
the actual images or the path to the captured images acquired during the experiment.
By leveraging the readily available data in the HDF5 file, lyse facilitates closed-loop pa-
rameter space exploration, as shown in Section 5.3.5. This is achieved by incorporating
experiment-specific Python analysis files into lyse. Lyse supports both single-shot analysis
and multi-shot analysis. For instance, in single-shot analysis, lyse performs calculations
such as computing the integrated intensity of the captured image. The resulting processed
information is then stored in shot-specific HDF5 files for future reference. On the other
hand, multi-shot analysis involves extracting relevant values from each shot-specific HDF5
file and generating plots that illustrate the variation of integrated intensity with different
parameters.

5.2.2.6 Experimental shots: Comprehensive record of the experiment

Following the terminology of architects of the labscript suite, an individual experimental
shot refers to a specific control sequence that is executed in the experiment. An experiment
is a sequence of shots with varying shot-to-shot parameters. It is important to note that it is
generally advised not to vary parameters within a single shot. Instead, the documentation
of the Labscript suite recommends creating a sequence of shots, each with its own set
of varying parameters. This approach ensures better experimental control and facilitates
systematic exploration of parameter space.

The result of compiling a control sequence script on runmanager is an HDF5 file (ex-
perimental shot file) that serves as a comprehensive record of the experimental setup.
This HDF5 file contains information, including global parameters, the control sequence
applied to each channel, and the underlying script itself. By encapsulating these details,
the HDF5 file provides a consolidated representation of the experiment. In addition to the
experimental parameters and control sequence, the HDF5 file can also be configured to
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store images captured during the execution of the shot. This capability allows for a more
comprehensive record of the experimental process. The HDF5 file plays a central role in
facilitating communication and data exchange between the runmanager, BLACS, and lyse
components. These components interact by passing the HDF5 files, allowing for seamless
integration and analysis of experimental data.

The runmanager component, with its ability to compile the experimental shot file and
generate the HDF5 output, serves as the initial step in the workflow. It captures all the
relevant information about the experiment, providing a structured and organized format
for further processing.

BLACS, as the hardware interface component, utilizes the HDF5 file to access the nec-
essary control sequences and parameters defined in runmanager. This enables BLACS to
effectively communicate with the experimental apparatus and execute the desired opera-
tions in a synchronized manner.

Finally, the analysis component, Lyse, leverages the HDF5 files to import the experi-
mental data and associated parameters. This allows for efficient and consistent analysis of
the data, as the required information is readily available within the HDF5 file structure.

5.2.2.7 Camera server: Acquire images synchronously

The Camera server is critical to synchronize control and acquisition processes, mainly
because both processes run on different computers. The camera server is first initialized
on the acquisition computer, which initializes the associated camera and sets its static
and acquisition properties. The control computer, on the other hand, acts as a client-to-
camera server. The connection between these two computers is established by providing
the BIAS port number of the camera server to the control computer. Once set, every time
BLACS transfers to buffered mode, a set of instructions defined in the camera server script
is executed, which may include asking the camera to wait for a finite number of triggers
and setting up the image-saving path following the experimental shot path on a network
shared drive. It also permits adding instructions when BLACS transfers to static mode,
enabling functionalities like stopping waiting for the image acquisition trigger and saving
images at the defined locations. Having these functionalities makes it easier to control and
organize image acquisition and saving on a shot-to-shot basis. The modified camera server
script used in our laboratory is outlined in Appendix A.3.4. In addition to its primary
functions, we also use the camera server’s software-triggering capability to gather data
from auxiliary monitoring devices, such as the Raspberry Pi. This allows us to record
experimental conditions, including parameters like laser power.
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5.2.2.8 ZeroMQ: Network socket for communication between labscript suite
components

ZeroMQ is an open-source package link that plays an essential role in managing inter-
process communication. Its primary function is to facilitate the sharing of HDF5 experi-
mental shot file paths among the components of the labscript suite. Moreover, it ensures
secure access to these HDF5 experimental shot files when multiple processes attempt to
access them concurrently. Since concurrent access attempts can lead to file corruption,
ensuring serialized access becomes crucial. As a solution, the architects of Labscript suite
monkey-patched 2 ZeroMQ onto the h5py library. This results in the serialization of HDF5
shot access by generating a semaphore, which effectively manages the file access process.

5.2.2.9 Unit conversion class: Control signals mapped to physical values

Unit conversion classes streamline the work with hardware devices by offering cus-
tomized parameter mapping for each hardware device. Labscript API functions typically
expect the inputs in the form of SI units. However, these values control a different physical
quantity, such as current, frequency, or magnetic field strength. Writing experimental logic
directly in base units can sometimes lead to errors. Unit conversion classes tailored for each
hardware device are employed to circumvent this issue. These classes automate the conver-
sion process between the device’s physical and control values, helping avoid mistakes and
increase efficiency. Two examples of unit conversion classes are given in Appendix A.3.1
and Appendix A.3.2.

5.3 Software workflow

The complete software workflow established to conduct quantum simulations using a
neutral atom platform can be divided into three steps: experiment composition, experiment
execution, and experiment analysis. These steps, each incorporating various components
and technologies, are comprehensively depicted in Table 5.3.

Our software architecture is deliberately modular and structured around these essential
steps. This segmentation enhances system maintainability, encourages code re-usability,
and facilitates potential future enhancements and adaptations.

2a technique to alter code behavior at run-time by adding or modifying object attributes or methods
using external code, potentially diverging from the object’s original design.

82

https://zeromq.org/


The first step, ‘experiment composition’, involves formulating the experimental setup
and scripting the experimental procedure using components and technologies from the
Labscript suite. This is the stage where the main body of the quantum simulation is
defined.

During the subsequent ‘experiment execution’ step, we employ various technologies, in-
cluding message queuing, camera servers, and device handlers, to execute the experimental
sequence. This process ensures a seamless transition from theoretical design to practical
execution.

The concluding step, ‘experiment analysis’, encompasses evaluating and interpreting the
data generated from the execution phase. We extract insights from the data using various
analytical software tools and produce actionable information for future experiments.

A pivotal aspect of our software workflow is incorporating M-LOOP, a machine learning
technique detailed in Section 5.3.5. Integrating machine learning with our modular archi-
tecture automates the decision-making process for selecting and navigating the control
parameter space, resulting in a closed-loop optimization process. This iterative refinement
and high level of integration are essential to conduct experiments efficiently.

In the following sections, we delve deeper into each step, elaborating on their spe-
cific roles, the technologies employed, and the collective function in facilitating quantum
simulations using a neutral atom platform.

Table 5.3: Software components and technologies used at various steps of the
experiment.

Experimental
Step

Labscript suite components Labscript suite technologies

API Run
manager

Run
viewer

BLACS Lyse Shot
file

ZeroMQ Camera
Server

Unit
conversion

Composition ✓ ✓ ✓ ✓ ✓ ✓

Execution ✓ ✓ ✓ ✓

Analysis ✓ ✓ ✓

5.3.1 Experiment composition

The experiment composition step consists of three key sub-steps: creating the connec-
tion table, scripting the experiment, and compiling the experiment.
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Creating the connection table: The first sub-step of experiment composition in-
volves the creation of a connection table. This table comprehensively lists and maps the
physical connections between various devices used in the experiment. It delineates the
communication channels of the devices, providing a clear map of the device network. Ad-
ditionally, during this stage, the unit conversion class for each hardware device is scripted
and incorporated into the connection table script (examples of unit conversion classes used
in our lab are provided in Appendix A.3.1 and Appendix A.3.2). This inclusion ensures
that any physical parameter inputs are automatically translated into corresponding con-
trol parameter values. This table serves as a central reference for the remaining stages,
ensuring that each element of the experiment understands its role and interaction with
other components. An instance of such a connection table, as used in our laboratory and
crafted using the Labscript API, is provided in Appendix A.1 for reference.

Scripting the experiment: Once the connection table is established, the experi-
ment’s core procedure is scripted using Labscript API. This scripting involves formulating
sequences of operations, specifying the time-based control of hardware devices, and defin-
ing the desired measurements. Given the Pythonic nature of the Labscript API, it allows
for sophisticated control pulse scripting, facilitated by the use of common programming
structures such as for and while loops.

Within this scripting stage, we also program the camera server on the acquisition system
(an example of a camera server used in our lab is provided in Appendix A.3.4). The server
is programmed to wait for hardware triggers during the experiment execution. This enables
the synchronized capture of images precisely timed with the experiment’s crucial moments.
An instance of how this technique is used to image a cloud of atoms in our laboratory,
crafted using the Labscript API, is illustrated in Appendix A.2.

Compiling the experiment: The final sub-step involves compiling the scripted exper-
iment via Runmanager. This process translates the high-level language of the experiment
script into a sequence of low-level instructions, which are subsequently written into an
HDF5 file, also referred to as the ‘experimental shot file’. As shown in Fig. 5.8, Run-
manager serves a critical role in maintaining and managing the global variables of the
experiment, which are essential in formulating the experimental procedure.

Runmanager extends its function to generate multiple experimental shots when a vari-
able is a list type. Each value within the list corresponds to a unique experimental shot, al-
lowing for an expansive control parameter space exploration. Moreover, Runmanager is de-
signed to facilitate these lists’ inner and outer products, enabling linear exploration over the
parameter space. For instance, consider the global variables ‘moglabs_opll_cooler_freq’
and ‘moglabs_opll_repumper_freq’ shown in Fig. 5.8. These variables are of type list
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with 10 elements, and all the dependent variables are computed as inner products of these
lists. This results in a total of 100 experimental shots obtained by taking the outer product
of the two lists.

Reviewing the compiled experiment is critical to ensure the control hardware transmits
the intended control signals. The Runviewer component of the Labscript suite serves a
vital role in debugging the control signals. It graphically represents the control signals
over time, providing a virtual oscilloscope output. This allows to validate and adjust the
signals before executing the experiment.

Figure 5.8: Runmanager GUI compiles experimental shots.

5.3.2 Experiment execution

The compiled experimental shots are stored on a shared network drive and are auto-
matically transferred to BLACS. BLACS serves as an interface between the user and the
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experimental hardware by managing all the device handlers. For instance, in Fig. 5.9,
BLACS occupies the device handlers of four hardware devices as instructed in the connec-
tion table. It also manages a queue of experimental shots and executes them sequentially.
When executing a shot, BLACS switches to ‘buffered_mode’; after execution, it transitions
back to ‘manual_mode’. While in ‘buffered_mode’, manual modifications to the hardware
channels are not allowed. The camera server saves the images captured during each shot in
the same directory as the experimental shot on the shared network drive upon completion
of the shot.

Furthermore, BLACS automatically places the shot in the Lyse queue if the Lyse ad-
dress is configured correctly. In the example shown in Fig. 5.9, BLACS sends the shot
to another computing device with the hostname ‘rack-server’. If any interruption occurs
during the experiment, BLACS outputs the error in the respective output of the hardware
tabs. The connection table names mapped to hardware channels are imported into the
BLACS GUI, facilitating easy manual control for debugging.

5.3.3 Experiment analysis

Experimental analysis in our setup can be done either on Lyse or independently by
importing the HDF5 files containing control parameters and acquired raw data. Lyse
offers the advantage of parsing these files into Pandas data frames, which can be accessed
by analysis scripts promoting code re-usability. Lyse categorizes analysis into single-shot
and multi-shot routines, as shown in Fig. 5.10. Customized analysis scripts can be added
to Lyse as per experimental needs, and storing analysis results in the same HDF5 file
promotes data integrity and traceability.

In our lab, we perform real-time single-shot analysis, storing the results in the ex-
perimental shot file. Multi-shot analysis, on the other hand, is done offline to extract
meaningful trends from parameter sweeps. In the following section, we explain how M-
LOOP integration automates decision-making for control parameter selection, minimizing
human intervention in conducting experiments.

5.3.4 Experiment workflow

The execution and management of our experiments predominantly occur on a dedicated
‘control’ computer, which serves as the central hub for running Labscript API and Run-
manager. The experimental sequences written with Labscript API are compiled to generate
shot files stored on a shared network drive. Each experiment can produce multiple such

86



Figure 5.9: BLACS GUI manages and executes a queue of experimental shots.

shots, and all of them are stored on this network drive. The experiment is visualized using
Runviewer to gain intuition into the sequence and debug any potential errors.

Once these experimental shot files are available on the shared network drive, the acqui-
sition system, comprising a computer connected to a camera, comes into play. This system
parses the shot files, extracting information regarding the number of images to capture for
each shot. It then instructs the camera to await a specific number of hardware triggers.

The execution of the experimental sequence is initiated from the ‘control’ computer,
which is equipped with BLACS. While running Runmanager and BLACS on different
computers is possible, our current practice involves composing and executing experiments
from the same ‘control’ computer.

Finally, as the experimental sequence concludes, the collected data and images are sent
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Figure 5.10: Lyse GUI manages analysis routines and a queue of executed
experimental shots.

to Lyse, where in-depth analysis is performed. The complete workflow of our experiments
can be summarized with Fig. 5.11 and Fig. 5.12.

The components of the Labscript suite — Runmanager, Runviewer, BLACS, and Lyse
— have the capability to operate on separate computers. This adaptability proves ad-
vantageous when tailoring the software distribution in alignment with our experimental
hardware. In our specific laboratory configuration, as illustrated in Fig. 5.12, we mainly
use three computers: ‘control’, ‘imaging’, and ‘analysis’. Data sharing among these systems
is efficiently facilitated through a network-shared drive, employing the Labscript suite’s Ze-
roMQ protocol for fetching and storing experimental shot files. In the current state, the
additions and modifications done in implementing the Labscript suite are described in Ap-
pendix A.3. The bugs faced while integrating the Labscript suite with our experiment are
documented in Appendix A.4.
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Figure 5.11: Data flow between components of labscript suite.
Image Source: [P.T. Starkey, 2019].

Runmanager creates experimental shots that contain all the information about the
experimental sequence. These shots are passed to Runviewer for visualization and to
BLACS for execution. After execution, shot files are passed to Lyse, where they are

analyzed. References to a shot file are passed via ZeroMQ between components of the
labscript suite.
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5.3.5 Closed-loop control and acquisition system

The closed-loop control and acquisition system integrates various components and
technologies from the labscript suite, automating the experiment execution through M-
LOOP [Wigley et al., 2016] (as shown in Section 6.2). The central concept behind this
closed-loop optimization process is identifying a specific cost function to optimize, such as
total atom count, atom density, or atom temperature. Once the cost function is defined,
M-LOOP is provided with the relevant parameters to be swept to maximize or minimize
the cost. M-LOOP utilizes diverse machine learning techniques, including the Gaussian
process, neural networks, and differential evolution, among others, to optimize the defined
cost function. Crucial experiment details are stored in a configuration file, as illustrated
below. The M-LOOP configuration file is utilized by a multi-shot analysis script on Lyse.

1 % [COMPILATION]
2 mock = false
3

4 % [ANALYSIS]
5 cost_key = [" characterizing_2DMOT_cooler_and_repumper", "

gaussian_fit_amplitudes "]
6 maximize = true
7

8 % [MLOOP]
9 mloop_params = {

10 "moglabs_opll_cooler_freq ": {"min": 81, "max": 84, "start ":
83},

11 "moglabs_opll_repumper_freq ": {"min": 83.4, "max": 83.55, "
start": 83.42}

12 }
13 num_training_runs = 40
14 max_num_runs_without_better_params = 50
15 max_num_runs = 150
16 trust_region = 0.1
17 cost_has_noise = true
18 controller_type = "gaussian_process"

Listing 5.1: An exemplary M-LOOP Configuration file with relevant parameters.

The configuration includes the choice of cost key for evaluating the experiment’s per-
formance. By setting ‘mock’ to ‘false’, we enable M-LOOP to execute real experimen-
tal runs, optimizing the system in a closed loop. In the ‘MLOOP’ section, crucial pa-
rameters are defined, such as ‘mloop_params’, which sets the range and initial values
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of control parameters, and ‘num_training_runs’, determining the number of initial runs
for training the optimization algorithm. Additionally, the parameters ‘max_num_runs’
and ‘max_num_runs_without_better_params’ set limits on the number of iterations for
optimization. Finally, the ‘controller_type’ determines the preferred machine learning
technique to optimize the cost function.

After configuring M-LOOP to optimize the control parameters based on a specified cost
function, a predefined number of training runs are performed to learn the cost function
iteratively. Subsequently, M-LOOP generates new experimental shots and sends them
to BLACS for execution. Once executed, the shot data are sent to Lyse. Single-shot
analysis routines calculate the cost, and the multi-shot analysis file, utilizing the M-LOOP
configuration file, determines the next set of optimal control parameters. The iterative
process continues, refining control parameters and optimizing performance in a closed loop.
The seamless integration of M-LOOP, BLACS, and Lyse enables closed-loop control and
acquisition, facilitating systematic parameter space exploration.

5.4 Conclusions and outlook

In this chapter, I presented a detailed overview of our lab’s control hardware and
software infrastructure. We reviewed the features of the labscript suite, an open-source
software package that forms the core of our experiment management. It handles everything
from composing experiments to their execution and analysis, serving as our control and
acquisition system. Additionally, I demonstrated the integration of machine learning via M-
LOOP. This has enabled us to establish a closed-loop feedback control system, automating
the optimization of control parameters. This chapter emphasizes the role of infrastructure
and automation in advancing our quantum simulator’s controllability.

Future work will focus on expanding the control system’s capabilities. We plan to
integrate both single-shot and multi-shot image analysis routines into our framework to
detect and reconfigure atoms during experiments. Furthermore, on the hardware side of
things, we aim to unite the slow and fast control systems, which involves establishing a
hardware handshake protocol. In this setup, the slow control system will trigger the fast
control system to execute atom reconfiguration. Upon completion, it will signal back to the
slow control system, allowing it to proceed with the subsequent steps of the experiment.
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Figure 5.12: Software workflow of the closed-loop control and acquisition
system.

The software workflow of the closed-loop control and acquisition system can be broken
down into six distinct steps. Step 1: Use the Labscript API to define the control sequence.
Step 2: The control sequence is compiled by the Runmanager into HDF5 experimental
shots and saved on a network drive. Step 3: The camera server extracts the number of
images to be taken from each HDF5 experimental shot and waits for that many hardware
triggers. Step 4: The experimental shot is executed on BLACS, which occupies all the
device handlers. Step 5: Once the shot is executed, the captured images are saved in the
same directory as the experimental shot for easy data tracking. Step 6: The acquired
data with control parameters are analyzed in real-time, creating a closed-loop control and
acquisition system that automatically produces the next set of control parameters until it
convergences to optimal parameters or hits an exit condition.
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Chapter 6

Characterizing cloud of atoms using
closed-loop control and acquisition
system

The quantum simulation process with neutral atom arrays initiates by creating a dense
atomic cloud. The trapping system then isolates individual atoms within the ensemble by
trapping single atoms in optical traps. It is crucial to ensure the atomic cloud contains
sufficient atoms for efficient optical trap loading.

This chapter underscores the capabilities of our closed-loop control and acquisition
system for creating and optimizing an atomic cloud. Instead of revisiting the extensively
documented physics of the 3D Magneto-Optical Trap (3D MOT) formation, our focus shifts
to the technical details of our experimental setup that assist in creating and optimizing the
3D MOT. The imaging process of the Rb-87 atom cloud is detailed in Section 6.1, while
Section 6.2 explains the automated parameter optimization using M-LOOP.

6.1 Imaging and optimizing a cloud of Rb-87 atoms

Creating a 3D MOT in our lab begins with generating a 2D MOT close to the atomic
source cell. A push beam is employed to push the atoms from 2D MOT into a glass cell,
subsequently loading them into a 3D MOT. The glass cell is positioned within a constant,
calibrated magnetic field required for the loading process. The setup is shown in Fig 3.3b.
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A comprehensive script in Appendix A.2 demonstrates the process of creating a 3D
MOT. During the loading phase, we activate the magnetic field coils, 2D MOT, and push-
beam for a specified period, allowing atoms to populate the 3D MOT within the glass cell.
Post-loading, we deactivate these elements, and the 3D MOT’s scattered light is captured
by a Complementary Metal-Oxide-Semiconductor (CMOS) camera.

The trend in the signal captured by the CMOS camera is shown in Fig 6.1 when
sweeping cooler frequency, where Γ (≡ 6.07 MHz) is the decay rate of the cooling transition
shown in Fig. 3.4. The total grayscale value of the CMOS camera serves as our metric.
This value is proportional to the total number of atoms in the 3D MOT. It is crucial to
note that while the atom cloud forms at the ‘cooler frequency’, the image capture always
occurs at a fixed ‘imaging frequency’. This approach eliminates any potential dependence
of scattered light on frequency variation.
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Figure 6.1: Linearly sweeping cooler frequency to find the optimal control
parameter.

A significant drawback of linearly sweeping control parameters is that the control
parameter space discretization constrains the optimal value precision. As illustrated in
Fig. 6.1, the cooler frequency is discretized from −6Γ to 2Γ with equal spacing of 0.1Γ.
This results in an optimal value precision extending only to one decimal place. For en-
hanced precision, the sweep would require repetition with a finer resolution.

Moreover, linear sweeping is not an optimal strategy when dealing with multi-parameter
spaces, as the control parameter space can potentially increase exponentially. Additionally,
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the process of converging to the optimal value scales with the number of discretized points,
leaving no room to leverage the data collected for sub-optimal control parameters to expe-
dite the convergence. In the following section, we illustrate how M-LOOP overcomes these
issues inherent in linear control parameter sweeps.

6.2 Optimizing control parameters with M-LOOP to ex-
pedite convergence

As discussed in Section 5.3.5, M-LOOP enables closed-loop optimization of a cost func-
tion, which is generally physics-inspired. Automating the entire experimental cycle—from
composition and execution to analysis M-LOOP facilitates the convergence to optimal con-
trol parameters. As in the prior section, we demonstrate this efficiency in optimizing 3D
MOT cooler frequency.

The M-LOOP configuration file is fed with a cost function to maximize the number of
atoms, whose value is calculated using a single shot analysis routine on lyse. As shown
in the configuration file below, the ‘cost_key’ corresponds to the ‘raw_grayscale_values’
variable, which is the summation of all grayscale values acquired by the CMOS cam-
era, which is proportional to the number of atoms in the 3D MOT. The ‘maximize’
variable is true to maximize the cost function. The ‘mloop_params’ dictionary identi-
fies the control parameter necessitating optimization and defines a range within which
to seek the optimal value. In this context, the ‘cooler frequency’ of the 3D MOT is
optimized within the same search space as chosen above, i.e., −6Γ to 2Γ (≡ -36 MHz
to 12 MHz). Here, a controller, ‘gaussian_process’ optimizer, learns the cost function
over ‘num_training_runs’ and predicts the most suitable subsequent control parame-
ter within a ‘trust_region’ (0.1 in this context). Upon hitting an exit condition, either
‘max_num_runs’ or ‘max_num_runs_without_better_params’—the optimizer returns
the optimal value found.

M-LOOP’s avoidance of space discretization, a common feature of linear sweeps, en-
hances the speed of the optimal value determination due to adaptive stepping. It can be
postulated that M-LOOP optimizes within the continuous domain of the control parame-
ters.

In this example, the ‘gaussian_process’ controller employs a gradient descent approach
to maximize the cost function. As depicted in Fig.6.2a and Fig.6.2b, it is clear that the
cost function (in this case, the grayscale value) is optimized following a pattern akin to
gradient descent. The controller spends the initial 30 iterations learning the landscape of
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the cost function. Upon completing this learning phase, each subsequent iteration sees a
general increase in the grayscale value, as demonstrated in Fig. 6.2b.

1 %[ COMPILATION]
2 mock = false
3

4 %[ ANALYSIS]
5 cost_key = [" mot_analysis", "raw_grayscale_values "]
6 maximize = true
7 ignore_bad = false
8 analysislib_console_log_level = "INFO"
9 analysislib_file_log_level = "DEBUG"

10

11 %[MLOOP]
12 mloop_params = {" nu_cooler_2DMOT ": {"min": -36, "max": 12, "start":

-2}}
13 num_training_runs = 30
14 max_num_runs_without_better_params = 40
15 max_num_runs = 100
16 trust_region = 0.1
17 cost_has_noise = true
18 no_delay = false
19 visualisations = true
20 controller_type = "gaussian_process"
21 console_log_level = 10

Listing 6.1: M-LOOP Configuration used to optimize cooler frequency.

This process of control parameter optimization can be readily extended for multi-
parameter optimization in a closed-loop manner. The adjustment required is the spec-
ification of the control parameters’ names (as determined under runmanager) along with
the range within which the cost function is to be minimized/maximized. Moreover, it is
feasible to adopt a more complex cost function. For instance, the atom density or temper-
ature could serve as a basis for optimizing control parameters, aligning with the specific
requirements of the quantum simulation experiment. This flexibility allows us to tailor the
optimization process to the unique demands of the experimental procedure, potentially
unlocking greater efficiency and precision.
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Figure 6.2: Automated closed-loop optimization of control parameters via
M-LOOP.

a. The ‘gaussian_process’ controller operates by utilizing a method similar to gradient
descent, aiming to maximize the cost function (here, summed grayscale value captured on

CMOS camera). b. The controller dedicates the first 30 iterations to learn the cost
function’s landscape. Upon completion of this learning phase, each subsequent iteration
sees a general increase in the grayscale value, with the control parameter progressively

converging toward the optimal value.
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6.3 Conclusions and outlook

In this chapter, I demonstrated the use of M-LOOP to automate the optimization of
control parameters. The notable benefits of adopting this methodology include adaptive
stepping of parameters, reduced human oversight, and the potential for achieving faster
convergence in determining optimal values. This chapter underscores the critical role
that a well-developed infrastructure combined with automation plays in enhancing the
controllability of our quantum simulator.

Future work will focus on extending M-LOOP’s capabilities to multi-parameter op-
timization. We aim to incorporate M-LOOP in our daily practices to fine-tune our ex-
periment settings. By integrating this with possible improvements in machine learning
techniques, our goal is to enhance the controllability of our quantum simulator.
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Appendix A

Labscript suite codes

A.1 Connection table

#!/usr/bin/python
# -*- coding: utf-8 -*-

from multiprocessing import connection
from labscript import *
from labscript_utils.unitconversions import *
from labscript_devices.PrawnBlaster.labscript_devices import PrawnBlaster
from labscript_devices.NI_DAQmx.models.NI_PXIe_6739 import NI_PXIe_6739
from labscript_devices.NI_DAQmx.models.NI_PXIe_6537 import NI_PXIe_6537
from labscript_devices.FunctionRunner.labscript_devices import FunctionRunner
from labscript_devices.Camera import Camera

PrawnBlaster(name=’prawn’, com_port=’COM4’, num_pseudoclocks=4,
out_pins=[9, 11, 13, 15], in_pins=[2, 2, 2, 2])

NI_PXIe_6739(name=’analog_card_1’, parent_device=prawn.clocklines[0],
clock_terminal=’/PXI1Slot2/PFI0’,
clock_mirror_terminal=’/PXI1Slot2/PXI_Trig0’,
MAX_name=’PXI1Slot2’)

NI_PXIe_6537(name=’digital_card_1’, parent_device=prawn.clocklines[1],
clock_terminal=’PFI4’, MAX_name=’PXI1Slot6’)

FunctionRunner(’function_runner’)
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AnalogOut(name=’CS_1_Mod’, parent_device=analog_card_1, connection=’ao0’
, unit_conversion_class=current_source,
unit_conversion_parameters={’A_per_V’: 0.4})

AnalogOut(name=’CC_1’, parent_device=analog_card_1, connection=’ao4’,
limits=(-0.8, 0.8))

AnalogOut(name=’CC_2’, parent_device=analog_card_1, connection=’ao8’,
limits=(-0.8, 0.8))

AnalogOut(name=’CC_3’, parent_device=analog_card_1, connection=’ao12’,
limits=(-0.8, 0.8))

AnalogOut(name=’GC_1’, parent_device=analog_card_1, connection=’ao16’,
limits=(-0.8, 0.8))

AnalogOut(name=’GC_2’, parent_device=analog_card_1, connection=’ao20’,
limits=(-0.8, 0.8))

AnalogOut(name=’Mixer_1_cooler_3DMOT’, parent_device=analog_card_1,
connection=’ao24’, limits=(0, 0.128))

AnalogOut(name=’Mixer_2_cooler_2DMOT’, parent_device=analog_card_1,
connection=’ao28’, limits=(0, 0.128))

AnalogOut(name=’Mixer_3_cooler_PGC’, parent_device=analog_card_1,
connection=’ao32’, limits=(0, 0.128))

AnalogOut(name=’Mixer_4_master’, parent_device=analog_card_1,
connection=’ao36’, limits=(0, 0.128))

AnalogOut(name=’Mixer_5_repumper_main’, parent_device=analog_card_1,
connection=’ao40’, limits=(0, 0.128))

AnalogOut(name=’Mixer_6_repumper_3DMOT’, parent_device=analog_card_1,
connection=’ao44’, limits=(0, 0.128))

AnalogOut(name=’Mixer_7_repumper_2DMOT’, parent_device=analog_card_1,
connection=’ao48’, limits=(0, 0.128))

AnalogOut(name=’Mixer_8_repumper_PGC’, parent_device=analog_card_1,
connection=’ao52’, limits=(0, 0.128))

AnalogOut(
name=’Mog_2C’,
parent_device=analog_card_1,
connection=’ao56’,
limits=(-1, 1),
unit_conversion_class=moglabs_opll,
unit_conversion_parameters={

’central_freq_MHz’: 84.50,
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’max_depth_MHz’: 250,
’max_gain_factor’: 1073709056,
’gain’: 60127707,
},

)

AnalogOut(
name=’Mog_2R’,
parent_device=analog_card_1,
connection=’ao60’,
limits=(-1, 1),
unit_conversion_class=moglabs_opll,
unit_conversion_parameters={

’central_freq_MHz’: 83.25,
’max_depth_MHz’: 250,
’max_gain_factor’: 1073709056,
’gain’: 1717934,
},

)

DigitalOut(name=’CS_1_power’, parent_device=digital_card_1,
connection=’port0/line0’)

DigitalOut(name=’Mi_Switch_1_cooler_3DMOT’,
parent_device=digital_card_1, connection=’port0/line1’)

DigitalOut(name=’Mi_Switch_2_cooler_2DMOT’,
parent_device=digital_card_1, connection=’port0/line2’)

DigitalOut(name=’Mi_Switch_3_cooler_PGC’, parent_device=digital_card_1,
connection=’port0/line3’)

DigitalOut(name=’Mi_Switch_4’, parent_device=digital_card_1,
connection=’port0/line4’)

DigitalOut(name=’Mi_Switch_5_repumper_main’,
parent_device=digital_card_1, connection=’port0/line5’)

DigitalOut(name=’Mi_Switch_6_repumper_3DMOT’,
parent_device=digital_card_1, connection=’port0/line6’)

DigitalOut(name=’Mi_Switch_7_repumper_2DMOT’,
parent_device=digital_card_1, connection=’port0/line7’)

DigitalOut(name=’Mi_Switch_8_repumper_PGC’,
parent_device=digital_card_1, connection=’port1/line0’)
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DigitalOut(name=’Me_Shutter_1_cooler_3DMOT’,
parent_device=digital_card_1, connection=’port1/line1’)

DigitalOut(name=’Me_Shutter_2_cooler_2DMOT’,
parent_device=digital_card_1, connection=’port1/line2’)

DigitalOut(name=’Me_Shutter_3_cooler_PGC’,
parent_device=digital_card_1, connection=’port1/line3’)

DigitalOut(name=’Me_Shutter_4’, parent_device=digital_card_1,
connection=’port1/line4’)

DigitalOut(name=’Me_Shutter_5_repumper_3DMOT’,
parent_device=digital_card_1, connection=’port1/line5’)

DigitalOut(name=’Me_Shutter_6_repumper_2DMOT’,
parent_device=digital_card_1, connection=’port1/line6’)

DigitalOut(name=’Me_Shutter_7_repumper_PGC’,
parent_device=digital_card_1, connection=’port1/line7’)

DigitalOut(name=’Me_Shutter_8_pushbeam’, parent_device=digital_card_1,
connection=’port2/line0’)

Camera(
name=’cmos_2DMOT’,
parent_device=digital_card_1,
connection=’port2/line1’,
BIAS_port=8765,
effective_pixel_size=4e-6,
exposure_time=1e-3,
)

Camera(
name=’cmos_3DMOT_1’,
parent_device=digital_card_1,
connection=’port2/line2’,
BIAS_port=8765,
effective_pixel_size=4e-6,
exposure_time=1e-3,
)

Camera(
name=’cmos_3DMOT_2’,
parent_device=digital_card_1,
connection=’port2/line3’,
BIAS_port=8765,
effective_pixel_size=4e-6,
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exposure_time=1e-3,
)

Camera(
name=’cmos_closed_loop_1’,
parent_device=digital_card_1,
connection=’port2/line4’,
BIAS_port=8765,
effective_pixel_size=4e-6,
exposure_time=1e-3,
)

Camera(
name=’cmos_closed_loop_2’,
parent_device=digital_card_1,
connection=’port2/line5’,
BIAS_port=8765,
effective_pixel_size=4e-6,
exposure_time=1e-3,
)

DigitalOut(name=’EMCCD_shutter_external’, parent_device=digital_card_1,
connection=’port2/line6’)

Camera(
name=’EMCCD’,
parent_device=digital_card_1,
connection=’port2/line7’,
BIAS_port=8765,
effective_pixel_size=4e-6,
exposure_time=1e-3,
)

if __name__ == ’__main__’:
start()
stop(1)

A.2 Imaging an atomic cloud of Rb-87 atoms

#!/usr/bin/python
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# -*- coding: utf-8 -*-

import numpy as np
from labscript import start, stop
from labscript_utils import import_or_reload
from labscriptlib.Rydberg.Utils.ModuleControl import *

loading_time: float
loading_imaging_times: list
camera_exposure_time: float
nu_cooler_2DMOT: float
nu_cooler_imaging: float
imaging_time_gap: float
nu_cooler_infinity: float
dissipation_time_gap: float
nu_opll_repumper_optimal: float
shutter_delay_time: float
flag_get_background_image: bool
flag_2DMOT_on: bool
flag_pushbeam_on: bool
flag_3DMOT_imaging_after: bool
convert_detuning_to_opll: str
photodiode_saturation_time: float
photodiode_server_updating_period: float

import_or_reload("labscriptlib.Rydberg.connection_table")
convert_detuning_to_opll = eval(convert_detuning_to_opll)

t = 0
start()

# Measuring MOT2D cooler beam powers
turn_on_2D_MOT(t)
turn_on_pushbeam(t)
Me_Shutter_2_cooler_2DMOT.go_high(t)
Me_Shutter_6_repumper_2DMOT.go_low(t)

t += photodiode_saturation_time
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t = trigger_monpi_pd2(t)

# Measuring MOT2D repumper beam powers
Me_Shutter_2_cooler_2DMOT.go_low(t)
Me_Shutter_6_repumper_2DMOT.go_high(t)

t += photodiode_saturation_time

t = trigger_monpi_pd2(t)

turn_off_2D_MOT(t)
turn_off_pushbeam(t)

t += dissipation_time_gap

# Loading stage

set_opll_repumper_freq(t, nu_opll_repumper_optimal)
set_opll_cooler_freq(t, convert_detuning_to_opll(nu_cooler_2DMOT))

turn_on_coils(t)
if flag_2DMOT_on:

turn_on_2D_MOT(t)
if flag_pushbeam_on:

turn_on_pushbeam(t)

turn_on_3D_MOT(t)

turn_off_PGC(t)

# Taking images from the MOT as it loads at specified times
for loading_imaging_time in loading_imaging_times:

if loading_imaging_time + camera_exposure_time > loading_time:
raise Exception(

"WARNING! Taking images during loading time"
)

)
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cmos_3DMOT.expose(
"{0}".format(loading_time), t + loading_imaging_time, frametype="frame_0"

)

t += loading_time

turn_off_coils(t)

turn_off_2D_MOT(t)
turn_off_pushbeam(t)

if flag_3DMOT_imaging_after:
set_opll_cooler_freq(t, convert_detuning_to_opll(nu_cooler_imaging))

if imaging_time_gap > 0:
turn_off_3D_MOT(t)

t += imaging_time_gap
turn_on_3D_MOT(t)

t += shutter_delay_time
cmos_3DMOT.expose("Main Image", t, frametype="frame_0")

t += camera_exposure_time
turn_off_3D_MOT(t)

else:
cmos_3DMOT.expose("Main Image", t, frametype="frame_0")

t += camera_exposure_time
turn_off_3D_MOT(t)

else:
turn_off_3D_MOT(t)

if flag_get_background_image:
set_opll_cooler_freq(t, convert_detuning_to_opll(nu_cooler_infinity))

t += dissipation_time_gap
turn_on_3D_MOT(t)
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t += shutter_delay_time
cmos_3DMOT.expose("Background Image", t, frametype="frame_0")

t += camera_exposure_time
stop(t)

else:
t += dissipation_time_gap
stop(t)

A.3 Additions and modifications in the Labscript suite
software package

A.3.1 Unit conversion class - Current source

from .UnitConversionBase import *

class current_source(UnitConversion):
base_unit = "V"
derived_units = ["A"]

def __init__(self, calibration_parameters={"A_per_V": 0.4}):
self.parameters = calibration_parameters

UnitConversion.__init__(self, self.parameters)

def A_to_base(self, amps):
volts = amps / self.parameters["A_per_V"]
return volts

def A_from_base(self, volts):
amps = volts * self.parameters["A_per_V"]
return amps
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A.3.2 Unit conversion class - Moglabs

from .UnitConversionBase import *

class moglabs_opll(UnitConversion):
base_unit = "V"
derived_units = ["MHz"]

def __init__(
self,
calibration_parameters={

"central_freq_MHz": 98,
"max_depth_MHz": 250,
"max_gain_factor": 1073709056,
"gain": 1,

},
):

self.parameters = calibration_parameters

UnitConversion.__init__(self, self.parameters)

def MHz_to_base(self, freq):
volts = (freq - self.parameters["central_freq_MHz"]) / (

self.parameters["max_depth_MHz"]
* self.parameters["gain"]
/ self.parameters["max_gain_factor"]

)
return volts

def MHz_from_base(self, volts):
freq = (

self.parameters["central_freq_MHz"]
+ self.parameters["max_depth_MHz"]
* (self.parameters["gain"] / self.parameters["max_gain_factor"])
* volts

)
return freq
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A.3.3 Updating BLACS UI

Earlier BLACS UI displayed all the 64 AO channels and the digital channels of NI_PXIe_6739
(analog card). Out of these 64 AO channels, only 16 channels are used to have an improved
update speed of 1MS/s (otherwise 350kS/s if all channels are wired). Thus, deleting the
extra channels from BLACS UI will make relevant channels more accessible.

Figure A.1: BLACS UI without any modifications.

To modify the UI layout, labscript_devices/NI_DAQmx/blacs_tabs.py is changed. The
script is updated by changing the AO_prop dictionary on line 67. The new dictionary
checks the MAX_name of the device and selects only the relevant AO output channels to
be displayed. Digital channels on the analog card aren’t used, thus, they are also removed
from the BLACS UI. Also, I updated the program_manual function in blacs_worker.py
by selecting every 4th channel.

Figure A.2: BLACS UI after selecting relevant analog channels for display.
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A.3.4 Customized camera server

The script from the Labscript suite is extended to make it compatible with our image
acquisition and analysis software package.

import sys
import time
import zprocess
import labscript_utils.shared_drive
import labscript_utils.h5_lock
import h5py
import numpy as np
import os, glob
from pathlib import Path
from datetime import datetime
import numpy as np

from experiment.instruments.camera.basler_ace2
.basler_ace2 import BaslerAce2

from experiment.toolkits
.image_acquisition_and_processing.image_toolkit
.image_acquisition import (
ImageAcquisition,

)
from experiment.utils.data.data_path import DataPath
from experiment.utils.data.data_transfer import DataTransfer
from experiment.instruments.camera

.andor_ixonultra888.andor_ixonultra888 import (
AndoriXonUltra888,

)

class CameraServer(zprocess.ZMQServer):
def __init__(self, port):

zprocess.ZMQServer.__init__(self, port, type="string")
self._h5_filepath = None

ia1 = ImageAcquisition({"cmos": BaslerAce2(0)})
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self.cmos = ia1.get("cmos")
with self.cmos:

self.cmos.update_configuration_files(
path\to\cmos_static_properties.yml,
"static",

)
self.cmos.update_configuration_files(

path\to\cmos_dynamic_properties.yml,
"dynamic",

)
self.cmos.set_static_properties()
self.cmos.set_acquisition_properties()

self.cmos.open_connection()

def handler(self, request_data):
try:

print(request_data)
if request_data == "hello":

return "hello"
elif request_data.endswith(".h5"):

self._h5_filepath = labscript_utils.shared_drive.path_to_local(
request_data

)
self.send("ok")
self.recv()
self.transition_to_buffered(self._h5_filepath)
return "done"

elif request_data == "done":
self.send("ok")
self.recv()
self.transition_to_static(self._h5_filepath)
self._h5_filepath = None
return "done"

elif request_data == "abort":
self.abort()
self._h5_filepath = None
return "done"

else:
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raise ValueError("invalid request: %s" % request_data)
except Exception:

if self._h5_filepath is not None and request_data != "abort":
try:

self.abort()
except Exception as e:

sys.stderr.write(
"Exception in self.abort() while handling another
exception:\n{}\n".format(str(e))

)
self._h5_filepath = None
raise

def get_exp_folder_name(self, shot_path):
exp_folder_name = "\\".join(shot_path.split("\\")[:-2])
return exp_folder_name

def get_shot_name(self, shot_path):
shot_name = shot_path.split("\\")[-1].split(".")[0]
return shot_name

def get_image_folder(self, exp_folder_name, category):
if category == "2DMOT":

image_folder = exp_folder_name + "\\cmos_images_2DMOT\\"
if category == "3DMOT":

image_folder = exp_folder_name + "\\cmos_images_3DMOT\\"
if category == "LoadingTest3DMOT":

image_folder = exp_folder_name + "\\raw_data\\"
return image_folder

def get_shot_globals(self, file):
params = {}
with h5py.File(file, "r") as f:

for name, value in f["globals"].attrs.items():
if isinstance(value, np.bool_):

value = bool(value)
if isinstance(value, np.int32):

value = int(value)
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if isinstance(value, h5py.Reference) and not value:
value = None

if isinstance(value, np.str_):
value = str(value)

if isinstance(value, bytes):
value = value.decode()

params[name] = value
return params

def transition_to_buffered(self, h5_filepath):
"""To be overridden by subclasses. Do any preparatory processing
before a shot, eg setting exposure times, readying cameras to receive
triggers etc."""
print("transition to buffered")
file_path = h5_filepath
params = self.get_shot_globals(file_path)
num_images = params["camera_images_per_shot"]
exposure = params["camera_exposure_time"] * 1e6
gain = params["camera_gain"]

for camera in self.cmos.camera_list.values():
camera.set_acquisition_properties({"exposure_time": exposure})
camera.set_static_properties({"gain": gain})

self.cmos.listen_for_hardware_trigger(image_count=num_images, line=2, delay=0)

print("done")

def transition_to_static(self, h5_filepath):
"""To be overridden by subclasses. Do any post processing after a
shot, eg computing optical depth, fits, displaying images, saving
images and results to the h5 file, returning cameras to an idle
state."""
print("transition to static")
file_path = h5_filepath
image_path_3D = self.get_image_folder(

self.get_exp_folder_name(file_path), "LoadingTest3DMOT"
)
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project_name = self.get_shot_name(file_path)
print("Stopping listening for hardware...")
self.cmos.stop_listening_for_hardware_trigger(

path=image_path_3D,
project_name=project_name,
filetype="png",
asyn=True,
save=True,
group=file_path,
timeout="INF",
from_control_system=True,

)

print("Stopped listening for hardware trigger")

def abort(self):
"""To be overridden by subclasses. Return cameras and any other state
to one in which transition_to_buffered() can be called again. abort()
will be called if there was an exception in either
transition_to_buffered() or transtition_to_static(), and so should
ideally be written to return things to a sensible state even if those
methods did not complete. Like any cleanup function, abort() should
proceed to further cleanups even if earlier cleanups fail. As such it
should make liberal use of try: except: blocks, so that an exception
in performing one cleanup operation does not stop it from proceeding
to subsequent cleanup operations"""
print("abort")

if __name__ == "__main__":

# How to run a camera server:

port = 8765
print("starting camera server on port %d..." % port)
server = CameraServer(port)
server.shutdown_on_interrupt()
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A.4 Summary of bug fixes

A.4.1 Summary of bug fixes during the installation process

• Installing labscript-suite:

– Create a conda environment with Python 3.8

– Follow the instructions: https://docs.labscriptsuite.org/en/latest/installation/regular-
anaconda/ to install the necessary packages for the labscript suite and create a
profile

• Important links:

– Documentation of labscript-suite: https://docs.labscriptsuite.org/en/latest/

– Labconfig file: https://docs.labscriptsuite.org/projects/labscript-utils/en/latest/labconfig/

• Setting up folder structure:

https://groups.google.com/g/labscriptsuite/c/LL1j-IcsFpg/m/xtFXh5SKAgAJ. Im-
portantly, to create the first connection table of a new experiment first run the
connection_table.py on runmanager and copy-paste the resulting .h5 file into the
BLACS connection_table.h5 folder after renaming it.

• To change the shot output folder on Runmanger, one needs to change the argument
for output_folder_format under [runmanger] in the config .ini file. In the original
version of the Labscript suite the makers have not included the script_name as
an argument to generate the shot folder path. To add this argument we modify
anaconda3/envs/dummy/Lib/site-packages/runmanager/__init__.py by changing
line 656 with the addition of script_basename=script_basename argument.

• To prevent printing the hg (mercurial) warning on Runmanager terminal, we can
disable the save_hg_info in the labscript file (anaconda3/envs/dummy/Lib/site-
packages/labscript/labscript.py) by changing boolean save_hg_info in class lab-
script_cleanup and compiler i.e. line 2542 and 2562 respectively to False.

• Instead of repeating the connection_table in the program, we can simply import the
connection_table file using the import_or_reload function. For eg:

from labscript_utils import import_or_reload

Import_or_reload(’labscriptlib.Rydberg.connection_table’)
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• To change the update time of the shot output folder in Runmanager (current update
time is 15 seconds) modify the script:

anaconda3/envs/dummy/Lib/site-packages/runmanager/__main__.py by changing
the value of sleep time in the function rollover_shot_output_folder on line 2461.

A.4.2 Summary of bug fixes while interfacing FunctionRunner

• The labscript suite is designed in a way such that only hardware instructions can be
realized once the experimental shot has begun. However, some devices need software
initialization too. To cater to this need, labscript suite developers have included
a functionality called FunctionRunner which behaves as a ‘device’ object and can
execute software instructions.

• An important note for FunctionRunner is that this can only be implemented at the
beginning or/and at the end of the shot execution.

• Here’s the source code for the FunctionRunner class: link

• While adding the function, I ran into the issue of the function name being encoded
in binary string format and this error

• After tracing the error, I figured that in ’blacs_worker.py’ file for FunctionRunner,
the deserialise_function_table function extracts the name of the added function. To
resolve the error, simply re-assigning the name variable as name.decode(’utf=8’) (on
line 40) works.

A.4.3 Summary of bug fixes while interfacing Pseudo-clocks

• For a long time, we were using analog_card1 in both manual and buffered mode with
a pseudo-clock connected to terminal PFI0 as shown below:

NI_PXIe_6739(name=’analog_card_1’, parent_device=prawn.clocklines[0],
clock_terminal=’/PXI1Slot2/PFI0’,
MAX_name=’PXI1Slot2’)
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• Analog_card2 is wired in the same way as analog_card1 so ideally giving the appro-
priate clock terminal (/PXI1Slot3/PFI0) should work. However, on executing the
script, the labscript suite throws an error which is related to the lack of a pseudo-clock
signal (this has been confirmed by disconnecting the pseudo-clock from analog_card1,
which throws the same error). At the end of the pulse labscript suite waits for all
the signals to be executed, but due to lack of pseudo-clock, analog_card2 times out
with WaitUntilDoneDoesNotIndicateDone error, implying that signals haven’t been
actuated by the device.

Figure A.3: Pseudo-clock integration error when analog module (NI PXIe 6739) is
introduced.

• After some research, this thread and this link explain how to allow for clock mir-
roring between two cards. Thus, mirroring the pseudo-clock from analog_card1 to
analog_card2 doesn’t throw any error and works as intended.

• The links above also suggest that having independent pseudo-clocks for each card
is more efficient. Thus, for now we have a working solution for two analog cards,
more investigation is needed to have an independent pseudo-clock for analog_card2.
I suspect that if two cards are the same, the chassis automatically assumes that the
clock is shared between them and doesn’t allow for an independent clock for the
second card. Labscript suite’s clock mirroring is simply creating that bridge using
the PXI_Trig0 terminal.
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• For digital_card, the first issue I faced was that the pseudo-clock can’t be connected
to PFI0, it needs to be connected to one of the options given below.

Figure A.4: Pseudo-clock integration error when digital module (NI PXIe 6537) is
introduced.

• Since the PFI4 wasn’t wired for the digital card, I wired the PFI4 terminal. The
pseudo-clock was then accepted by the digital card.
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