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1. Introduction

Let N = {0, 1, 2, . . . , }. When s, k ∈ N \{0} with k ≥ 2, let Rs,k(n) denote the number 
of representations of the positive integer n as the sum of at most s kth powers of positive 
integers. In 1920s, Hardy and Littlewood (see [16–18]) obtained an asymptotic formula 
for Rs,k(n). More precisely, they proved that when s ≥ (k − 2)2k−1 + 5, then

Rs,k(n) = Γ(1 + 1/k)s

Γ(s/k) Ss,k(n)ns/k−1 + o(ns/k−1), (1.1)

where Γ(x) =
∫∞
0 yx−1e−ydy, and Ss,k(n) is the singular series which satisfies 1 �

Ss,k(n) � 1. Hardy and Littlewood introduced the notation G(k) for the least integer s
such that Rs,k(n) > 0 for all sufficiently large n. Thus their result implies that

G(k) ≤ (k − 2)2k−1 + 5.

Various improvements on the upper bounds for G(k) were achieved by Davenport [6,7], 
Vinogradov [36], Vaughan [33,34], etc. For large k, Wooley [37, Corollary 1.2.1] obtained 
the best known upper bound

G(k) ≤ k
(
log k + log log k + O(1)

)
.

It is important to the success of the asymptotic relation in (1.1) that the singular series 
satisfies Ss,k(n) � 1. Also, when s ≥ max{k + 1, 4}, one can decompose Ss,k(n) as a 
product of the local densities at all finite primes as follows

Ss,k(n) =
∏
p

(
lim
h→∞

λs,k(h; p;n)
)

with
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λs,k(h; p;n) = ph(1−s) · card{x (mod ph) |xk
1 + · · · + xk

s ≡ n (mod ph)},

where x = (x1, . . . , xs). Let Γ1(k) be the least integer s with the property that, for every 
prime p, there is a positive number Cs,k(p) such that whenever h is sufficiently large in 
terms of s, k and p, one has

λs,k,d(h; p;n) ≥ Cs,k(p) for all n.

Hardy and Littlewood (see [19,20]) showed that Ss,k(n) � 1 whenever s ≥ max{Γ1(k),
k + 1, 4}. For k > 2, they showed that Γ1(k) = 4k when k is a power of 2 and that 
Γ1(k) ≤ 2k otherwise.

One can consider a more refined question for Rs,k(n). Let G̃(k) denote the least integer 
s for which the asymptotic formula (1.1) holds for n sufficiently large. The aforementioned 
work of Hardy and Littlewood naturally implies that G̃(k) ≤ (k − 2)2k−1 + 5. Various 
improvements for G̃(k) were obtained by Vinogradov [35], Hua [21], Boklan [4], Vaughan 
[31,32], Wooley [38], etc. In 1995, Ford proved in [13] that

G̃(k) ≤ (1 + o(1))k2 log k.

Due to the recent progress on the efficient congruencing method introduced by Wooley 
[14,39–44] and the decoupling method developed by Bourgain, Demeter and Guth [5], the 
main conjecture of Vinogradov’s mean value theorem has been proved. As a consequence 
of their results, one can largely sharpen the upper bounds for G̃(k). In particular, Wooley 
proved in [44, Corollary 14.7] that

G̃(k) ≤ k2 − k + 2�
√

2k + 2
 − 1.

Let d ∈ N with d ≥ 2. It is natural to ask the d-dimensional Waring’s problem. In 
order to state our question more precisely, we now introduce some notation. Write

M =
{
(i1, . . . , id) ∈ Nd

∣∣ i1 + · · ·+ id = k
}

and � = card(M) =
(
k + d− 1
d− 1

)
. (1.2)

For positive integers P and ni (i ∈ M), denote by Rs,k,d(n; P ) the number of solutions 
of the system of equations

xi1
11 · · ·xid

1d + · · · + xi1
s1 · · ·xid

sd = ni (i ∈ M) (1.3)

with xij ∈ {1, 2, . . . , P}. For simplicity, a monomial of the shape xi1
1 · · ·xid

d will be 
abbreviated by xi. For a semiring S and n ∈ N \ {0}, write

S(M;n) =
{(

xi
1 + · · · + xi

n

)
i∈M

∣∣∣xj ∈ Sd(1 ≤ j ≤ n)
}

(1.4)

and
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S(M) =
∞⋃

n=1
S(M;n). (1.5)

For every prime p, let Zp denote the ring of p-adic integers. Let

D =
⋂
p

(
N� ∩ Zp(M)

)
. (1.6)

We note that for n ∈ N�, if n /∈ D, i.e., n /∈ Zp(M) for some prime p, then Rs,k,d(n; P ) =
0 for any positive integer P . Hence it suffices to consider only n ∈ D. From a heuristic 
argument of multidimensional variant of the circle method, in the system (1.3), whenever 
the number of variables sd is greater than the sum of degrees k�, a conjectural asymptotic 
estimate of Rs,k,d(n; P ) takes the following shape

Rs,k,d(n;P ) = Js,k,d(n;P )Ss,k.d(n)P sd−k� + o(P sd−k�), (1.7)

where Js,k,d(n; P ) and Ss,k,d(n) are the related (normalized) singular integral and sin-
gular series. To ensure that the first term in (1.7) dominates, one needs Js,k,d(n; P ) � 1
and Ss,k,d(n) � 1, where the implicit constants are independent of n and P . For a prime 
p, h ∈ N \ {0}, and n = (ni)i∈M ∈ Zp(M), define

λs,k,d(h; p;n) = ph(�−sd)·card
{
x (mod ph)

∣∣ xi
1+· · ·+xi

s ≡ ni (mod ph) (i ∈ M)
}
. (1.8)

The fabric of the circle method also suggests that for s ≥ ck� with c a positive constant 
depending at most on d, the singular series should satisfy

Ss,k,d(n) =
∏
p

(
lim
h→∞

λs,k,d(h; p;n)
)
� 1 for all n ∈ D. (1.9)

Assuming additionally that for every n ∈ D and every prime p, the system (1.3) has 
a nonsingular p-adic solution, Parsell [26] conjectured that the singular series would 
satisfy (1.9) (for more details, see [26, Section 9]). In this paper, we will prove Parsell’s 
conjecture. We will also establish the existence of the nonsingular local solutions required 
in this conjecture. For a semiring S, let γ(S; M) be the least integer � such that

S(M) = S(M; �) (1.10)

if such � exists.

Theorem 1.1. Let k, d ∈ N with k, d ≥ 2. Define M and � as in (1.2). Fix a prime p. 
Then the following hold.

(1) Let γ(Zp; M) be defined by (1.10). Then γ(Zp; M) ≤ 4k�.
(2) Whenever s ≥ γ(Zp; M) + �, for every n ∈ Zp(M), the system (1.3) has a 

non-singular p-adic solution.
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(3) Whenever s ≥ γ(Zp; M) + � and h is sufficiently large in terms of s, k, d and p, 
there is a constant Cs,k,d(p) > 0, such that

λs,k,d(h; p;n) ≥ Cs,k,d(p) for all n ∈ Zp(M).

We remark here that the upper bound in Theorem 1.1(1) is independent of p and the 
lower bound in Theorem 1.1(3) is independent of n. Such properties are essential for 
us to obtain the following uniform lower bound for the singular series Ss,k,d(n) in (1.9)
free of any assumption on the nonsingular local solubility of the system (1.3). In other 
words, we obtain a result that is stronger than Parsell’s conjecture. Our bound on s is 
also near-optimal.

Theorem 1.2. Let k, d ∈ N with k, d ≥ 2. Define M and � as in (1.2). Suppose that 
s ≥ 4k� + �. For n ∈ D with D defined by (1.6), one has

1 �
∏
p

(
lim
h→∞

λs,k,d(h; p;n)
)
� 1,

where the implicit constants depend at most on s, k and d, but independent of the choice 
for n.

As in the standard argument as in [26, Section 8], the lower bound for singular integral 
holds on assuming the local solubility at ∞ as follows.

Definition 1.1. Let s ∈ N \ {0}. Fix real numbers μi (i ∈ M) with the property that the 
system

ηi
1 + · · · + ηi

s = μi (i ∈ M)

has a non-singular solution with 0 < ηij < 1. Let n = (ni) ∈ N� and P ∈ N. If there 
exist δ = δ(s, k, μ) > 0 and an absolute constant α ≥ 0 such that

|niP
−k − μi| < δP−α (i ∈ M).

Then we say that the tuple n is rescaled to μ by (P, δ, α).

For the special case d = 2, we have M = {(i, k − i) | 0 ≤ i ≤ k} and so � = k + 1. 
Arkhipov and Karatsuba [1] first investigated this case. Suppose that s ≥ ck3 log k, 
where c is an absolute constant and fix real numbers μ0, . . . , μk with the property as in 
Definition 1.1. The result [1, Theorem 1] of Arkhipov and Karatsuba states that there 
exist positive numbers P0 = P0(s, k, μ) and δ = δ(s, k, μ) such that, whenever P > P0
and n is rescaled to μ by (P, δ, α) with α = 0.5, the asymptotic relation (1.7) holds, 
where Js,k,2(n; P ) � 1 and Ss,k,2(n) ≥ 0. Since they fail to show Ss,k,2(n) � 1, one 
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cannot obtain the correct magnitude of Rs,k,2(n; P ) from their result. This obstacle is 
surmounted by Theorem 1.2. In particular, we see that when d = 2, the system (1.3)
satisfies the Hasse principle. In addition, when dealing with other variants of the circle 
method for multidimensional Waring’s problem, we can provide via Theorem 1.2 the 
corresponding uniform estimates for singular series. For example, Theorem 1.2 allows us 
to improve Parsell’s result in [26, Theorem 4] by removing the nonsingular local solubility 
assumption for the singular series.

Theorem 1.3. Suppose that s ≥ 14
3 k2 log k + 10

3 k2 log log k + O(k2) and fix real numbers 
μ0, . . . , μk with the property as in Definition 1.1. There exist positive numbers P0 =
P0(s, k, μ) and δ = δ(s, k, μ) such that, whenever P > P0 and n ∈ D is rescaled to μ by 
(P, δ, α) with α = 0, one has

Rs,k,2(n;P ) � P 2s−k(k+1).

In particular, when d = 2, the system (1.3) satisfies the Hasse principle.

It is the first time that the asymptotic estimates and Hasse principle for the 
2-dimensional Waring’s problem can be established without any nonsingular local solu-
bility assumption. For the higher dimensional cases, one can obtain a major arc estimate 
by combining Theorem 1.2 with the standard arguments in [26]. The minor arc estimate 
can be delivered through the work in [27] or [28]. Thus one can establish the asymptotic 
estimates and the Hasse principle for Rs,k,d(n; P ) as desired.

Let A = Fq[t] be the ring of polynomials over the finite field Fq of q elements whose 
characteristic is denoted by char(Fq). Let A∞ = Fq�1/t� be the ring of formal power 
series in 1/t over Fq. We now consider a multidimensional analogue of Waring’s problem 
in A. For fixed k, d ∈ N with k, d ≥ 2, define M and � as in (1.2). For P ∈ N, write

IP = {x ∈ A | deg x < P}.

For m =
(
mi
)
i∈M with mi ∈ A (i ∈ M) and P ∈ N, let Rq,s,k,d(m; P ) denote the 

number of solutions of the system

xi
1 + · · · + xi

s = mi (i ∈ M)

with xj ∈ IdP (1 ≤ j ≤ s). Let A∞(M) be defined as in (1.5). Note that for every 
x ∈ IP , t1−Px ∈ A∞. Since each i = (i1, . . . , id) ∈ M satisfies i1 + · · · + id = k, 
whenever x1, . . . , xd ∈ IP , we have tk(1−P )xi = (t1−Px1)i1 · · · (t1−Pxd)id ∈ A∞(M). 
Therefore if Rq,s,k,d(m; P ) > 0, then tk(1−P )m ∈ A∞(M). We will show in Section 7
(see Corollary 7.1) that whenever char(Fq) � k, for every m ∈ A�, there exists N such 
that tk(1−N)m ∈ A∞(M). Thus, for m ∈ A�, define

T (m) = min{N ∈ N | tk(1−N)m ∈ A∞(M)}. (1.11)
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It will turn out that whenever char(Fq) � k, one has

0 ≤ T (m) − min{N ∈ N | k(N − 1) ≥ degmi (i ∈ M)} ≤ C,

where C = C(q, k, d) > 0 is a constant, independent of m. Note that if P ≥ T (m), then 
tk(1−P )m ∈ A∞(M), and vice versa. Thus it suffices to consider Rq,s,k,d(m; P ) with 
P ≥ T (m). For the infinite place ∞, m ∈ A� and P ≥ T (m), define

λq,s,k,d(P ;∞;m) = qP (�−sd) · card
{
x ∈ IsdP

∣∣ deg
(
xi

1 + · · · + xi
s −mi

)
< (k − 1)P (i ∈ M)

}
.

Let P denote the set of all monic irreducibles in A. For every w ∈ P, let Aw denote the 
completion of A at the place w and let Aw(M) be defined as in (1.5). For h ∈ N \ {0}, 
w ∈ P and m ∈ Aw(M), define

λq,s,k,d(h;w;m) =
(
qdeg w

)h(�−sd) · card
{
x (modwh)

∣∣xi
1 + · · · + xi

s

≡ mi (modwh) (i ∈ M)
}
.

In this paper, we also aim to establish the following asymptotic formula for Rq,s,k,d(m; P )
via a variant of the circle method in function fields.

Theorem 1.4. Let k, d ∈ N with k, d ≥ 2. Define M and � as in (1.2). Suppose that 
p = char(Fq) � k and that s ≥ 2ϑk+2ϑ +1 where ϑ =

(
k+d
d

)
−
([k/p]+d

d

)
. Then for m ∈ A�

with P ≥ T (m) defined by (1.11), there exists a positive number P0 = P0(q, s, k, d) such 
that whenever m ∈ Aw(M) for every w ∈ P and P ≥ P0, one has

Rq,s,k,d(m;P ) = Cq,s,k,d(m;P )
(
qP
)sd−�k + O

(
(qP )sd−�k−δ

)
,

where

Cq,s,k,d(m;P ) = λq,s,k,d(P ;∞;m)
∏
w∈P

(
lim
h→∞

λq,s,k,d(h;w;m)
)

satisfying 1 � Cq,s,k,d(m; P ) � 1. Here the implicit constants and δ depend at most on 
q, s, k and d, but independent of m and P .

Due to our recent work on polynomial analogue of multidimensional Vinogradov’s 
mean values (see [23, Theorem 1.1]), the minor arc contribution can be treated similarly 
as in [23, Section 6]. In this paper we will focus on the major arc contribution with an 
emphasis on the estimates for singular series and singular integral. The main difficulty in 
this work is to show the validity of the corresponding uniform local density hypothesis for 
λq,s,k,d(P ; ∞; m) and λq,s,k,d(h; w; m). For the asymptotic estimates in the 1-dimensional 
Waring’s problem in function fields, we refer the interested readers to [22], [24] and [45].
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For every 
 ∈ P ∪ {∞}, let A� denote the completion of A at 
. Instead of only 
considering the uniform local density hypothesis over every A�, we will indeed study 
the hypothesis over a more general algebraic setting. Let K be a complete field with 
respect to the norm | · | associated to a discrete non-archimedean valuation. Let O =
{x ∈ K| |x| ≤ 1}, π a primitive element, and F = O/(π).

Definition 1.2 (Uniform Local Density Hypothesis over O). For k, d ∈ N with k, d ≥ 2, 
let M and � be defined by (1.2). For (fi)i∈M ∈ O(M) and h ∈ N \ {0}, define

λs,k,d(h;π; f) = (card(F ))h(�−sd) · card
{
x (modπh)

∣∣ xi
1 + · · · + xi

s

≡ fi (modπh) (i ∈ M)
}
.

If there exists a nonnegative integer u∗ = u∗(s, k, d, π) such that whenever h ≥ u∗, one 
has

λs,k,d(h;π; f) ≥ (card(F ))u
∗(�−sd) for all f ∈ O(M),

then we say that the system of polynomials xi
1 + · · · + xi

s (i ∈ M) satisfies the uniform 
local density hypothesis over O.

For the case of O = Zp, this definition is consistent with Theorem 1.1(3) on taking 
Cs,k,d(p) = pu

∗(�−sd) for some nonnegative integer u∗ = u∗(s, k, d, p). In what follows, 
for a semiring S and k, n ∈ N \ {0}, write

S(k;n) =
{
xk

1 + · · · + xk
n

∣∣xj ∈ S(1 ≤ j ≤ n)
}

(1.12)

and

S(k) =
∞⋃

n=1
S(k;n). (1.13)

Theorem 1.5. Let k, d ∈ N with k, d ≥ 2. Define M and � as in (1.2). Let O be a 
complete discrete valuation ring with the finite residue field F and define F (k) by (1.13). 
Let γ(O; M) be defined by (1.10). Suppose that char(F ) � k.

(1) One has

γ(O;M) ≤ (k + 1)�.

Further, when F �= F (k), one has k ≥ 3 and a better upper bound:

γ(O;M) ≤
{√

(72/13)k(�− d/2), if k ≥ 7,
2
√
k + 1(�− d/2), if 3 ≤ k ≤ 6.
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(2) If s ≥ γ(O; M) + �, then the system of polynomials xi
1 + · · · + xi

s (i ∈ M) satisfies 
the uniform local density hypothesis over O.

It is natural to consider local obstructions; i.e., the elements in O� \ O(M). We also 
give the following sufficient condition to ensure that no local obstruction exists.

Theorem 1.6. Let k, d ∈ N with k, d ≥ 2. Define M and � as in (1.2). Let O be a complete 
discrete valuation ring with the finite residue field F and define F (k) by (1.13). Suppose 
that char(F ) � k and card(F ) > (k − 1)2. Then one has F = F (k) and O(M) = O�.

We now go back to the polynomial ring A. On taking O to be A�, the completion of A
at the place 
 ∈ P∪{∞}, the following corollary is a direct consequence of Theorem 1.5.

Corollary 1.1. Let k, d ∈ N with k, d ≥ 2. Define M and � as in (1.2). Suppose that 
char(Fq) � k. Then the following hold.

(1) For each 
 ∈ P ∪ {∞}, one has γ(A�; M) ≤ (k + 1)�.
(2) For each 
 ∈ P ∪ {∞}, if s ≥ γ(A�; M) + �, then the system of polynomials 

xi
1 + · · · + xi

s (i ∈ M) satisfies the uniform local density hypothesis over A�.

Since the residue field of Aw with w ∈ P is A/(w) of cardinality qdeg w, it follows from 
Theorem 1.6 that when char(Fq) � k and qdeg w > (k − 1)2, we have

A� ⊆ A�
w = Aw(M).

Let P0 = {w ∈ P | qdeg w ≤ (k − 1)2}. Hence whenever m ∈ A� ∩ Aw(M) for every 
w ∈ P0, the asymptotic formula in Theorem 1.4 implies Rq,s,k,d(m; P ) → ∞ as P → ∞. 
We thus establish the Hasse principle for multidimensional Waring’s system in function 
fields.

Theorem 1.7. Let k, d ∈ N with k, d ≥ 2. Define M and � as in (1.2). Suppose that p =
char(Fq) � k and that s ≥ 2ϑk+2ϑ +1 where ϑ =

(
k+d
d

)
−
([k/p]+d

d

)
. Let m ∈ A�∩Aw(M)

for every w ∈ P0. Then the system of equations xi
1 + · · ·+xi

s = mi (i ∈ M) has infinitely 
many solutions in A.

By applying Corollary 1.1 within another variant of the circle method introduced in 
[24], we will improve the lower bound for s in Theorem 1.7 in our future work. Let A(M)
be defined by (1.5). The above theorem implies that

A(M) =
⋂

w∈P0

(
A� ∩Aw(M)

)
.

In order to consider the solutions counted by Rq,s,k,d(m; P ) with the box IsdP as small as 
possible, a multidimensional analogue of restricted Waring’s problem in function fields 
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concerns Rq,s,k,d(m) = Rq,s,k,d(m; T (m)) for m ∈ A(M). Thus we can derive an asymp-
totic formula for Rq,s,k,d(m) from Theorem 1.4.

Theorem 1.8 (Restricted multidimensional Waring’s problem). Let k, d ∈ N with k, d ≥ 2. 
Define M and � as in (1.2). Suppose that p = char(Fq) � k and that s ≥ 2ϑk + 2ϑ + 1
where ϑ =

(
k+d
d

)
−
([k/p]+d

d

)
. Then for m ∈ A(M) with T = T (m) defined by (1.11), 

there exists a positive number P0 = P0(q, s, k, d) such that whenever T ≥ P0, one has

Rq,s,k,d(m) = Cq,s,k,d(m)
(
qT
)sd−�k + O

(
(qT )sd−�k−δ

)
,

where 1 � Cq,s,k,d(m) � 1. Here the implicit constants and δ depend at most on q, s, k
and d, but independent of m.

For the 1-dimensional restricted Waring’s problem, Liu and Wooley [24] chose the 
least box IsP by using the notion of exceptional polynomials. We will show in Section 7
that the 1-dimensional analogue of (1.11) delivers the same least box as the former (see 
Proposition 7.4).

We then end this section by applying Theorem 1.3 and Theorem 1.6 to obtain the 
Hasse principle for the two-dimensional analogue of the classical Waring’s problem. This 
result can be also extended to higher dimensions.

Corollary 1.2. Suppose that s ≥ 14
3 k2 log k + 10

3 k2 log log k + O(k2) and fix real numbers 
μ0, . . . , μk with the property as in Definition 1.1. Let n = (ni)i∈M ∈ N� ∩ Zp(M) for 
every prime p with p|k or p ≤ (k−1)2. Then there exist positive numbers P0 = P0(s, k, μ)
and δ = δ(s, k, μ) such that, whenever P > P0 and n is rescaled to μ by (P, δ, α) with 
α = 0, the system of equations xi

1 + · · · + xi
s = ni (i ∈ M) has a solution in N.

In Section 2, we aim to prove Theorem 1.1 and Theorem 1.2. In Sections 3-6, we de-
velop several results to establish Theorem 1.5, and we prove Theorem 1.6 in Section 7. In 
Sections 8-9, we apply Corollary 1.1 to investigate the uniform lower bounds for singular 
series and singular integral required in a multidimensional analogue of restricted War-
ing’s problem in function fields. We then establish the asymptotic formula Theorem 1.4
in Section 10. Finally, in Section 11, we will return to Theorem 1.5 and discuss some 
special cases to improve our result.

To conclude this section, we describe briefly the main difficulties in establishing The-
orem 1.1 and Theorem 5.1 as well as our new ideas to overcome them. For a ring O, 
to solve a system of equations such as (1.3), the standard way is to start with a given 
n ∈ O(M), and then find solutions for the corresponding equations. However, instead of 
a single n, we consider the set O(M) of all possible n which are soluble. It turns out that 
O(M) is an O(k)-module (see Lemma 3.1). Moreover, if O is a discrete valuation ring, 
we prove the unexpected property that O(k) is a local ring (see Theorem 5.1). Then by 
applying some module theory, we obtain a near-optimal upper bound of the number of 
generators of O(M) over O(k). This allows us to establish the asymptotic estimates and 
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Hasse principle for the 2-dimensional Waring’s problem without any nonsingular local 
solubility assumption. The same results hold for d-dimensional Waring’s problem. We 
also intend to use this technique to study similar problems for more general systems.
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2. Proofs of Theorem 1.1 and Theorem 1.2

In what follows, for each prime p, let Zp denote the ring of p-adic integers and write 
| · |p for the usual p-adic norm, normalized with |p|p = p−1. Let M and � be defined as 
in (1.2) and let Zp(M) be defined as in (1.5). For s ∈ N \ {0}, write

Φs,i(x) = xi
1 + · · · + xi

s (i ∈ M)

and let Φs =
(
Φs,i
)
i∈M. For a prime p, h ∈ N \ {0} and n = (ni)i∈M ∈ Zp(M), define 

λs,k,d(h; p; n) as in (1.8).

Definition 2.1. Let n, r ∈ N with 1 ≤ n ≤ r. Let ϕ = (ϕi)1≤i≤n with each ϕi ∈
Zp[x1, . . . , xr] (1 ≤ i ≤ n). For a = (a1, . . . , ar) ∈ Zr

p, denote by |Δ(ϕ; a)| the maximal 
value of the determinants of all n ×n submatrices of the Jacobian matrix 

(
∂ϕi/∂xj

)
n×r

when taking x1 = a1, . . . , xr = ar. If |Δ(ϕ; a)|p �= 0, we write |Δ(ϕ; a)|p = p−v for some 
v = v(ϕ; a; Zp) ∈ N, and say that the pair (ϕ; a) has a nonsingular p-adic weight of v. 
For any S ⊆ Zp, we further define

|Δ(ϕ;S)|p = max
{
|Δ(ϕ;a)|p

∣∣a ∈ Sr
}
.

Lemma 2.1. Let n = (ni)i∈M ∈ Zp(M). Suppose that the system

Φs,i(x) = ni (i ∈ M)

has a solution a ∈ Zsd
p with |Δ(Φs; a)|p = p−v0 , where v0 = v0(Φs; a; Zp) ∈ N. Then 

whenever h ≥ 2v0 + 1, one has

λs,k,d(h; p;n) ≥ p(2v0+1)(�−sd).

Proof. It follows from the standard Hensel-type arguments (for example, see [26, Lemma 
9.9]). �

We observe that the above lower bound for λs,k,d(h; p; n) depends on the nonsingular 
weight v0 of the pair (Φs; a) and thus on n. To obtain a uniform lower bound for all 
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λs,k,d(h; p; n), when n runs over Zp(M), we need to find a nonsingular weight of v0 which 
is independent of n.

Lemma 2.2. For k ∈ N \ {0}, let ν = ν(k) = 4k and let Zp(k; ν) be defined by (1.12). 
Then the following hold.

(1) Zp = Zp(k; ν).
(2) Zp(M) is a submodule of the Zp-module Z�

p.

Proof. (1) Since Zp(k; ν) = {xk
1 + · · · + xk

ν | x1, . . . , xν ∈ Zp}, it suffices to show that 
Zp ⊆ Zp(k; ν). Let a ∈ Zp. Let pτ be the highest power of p dividing k. Take

v =
{
τ + 1, p > 2,
τ + 2, p = 2.

By [8, Lemmas 5.5-5.6], whenever h ≥ v, the congruence

xk
1 + xk

2 + · · · + xk
ν ≡ a (mod ph)

is soluble with x1, . . . , xν not all divisible by p. Take h = 2v. Then there exist 
a1, a2, . . . , aν ∈ {1, . . . , ph} with (a1, p) = 1 such that

ak1 + ak2 + · · · + akν ≡ a (mod ph).

Let f(x) = xk + ak2 + · · · + akν − a. Then |f(a1)|p ≤ p−h = p−2v. Also, |f ′(a1)|p =
|kak−1

1 |p = |k|p = p−τ . Since 2v > 2τ , we have |f(a1)|p < |f ′(a1)|2p. By Hensel’s Lemma 
[15, Lemma 5.9], there exists b ∈ Zp such that f(b) = 0, namely,

bk + ak2 + · · · + akν = a.

Therefore a ∈ {xk
1 + · · · + xk

ν | x1, . . . , xν ∈ Zp}.
(2) In view of the definition of Zp(M), it is closed under addition of the Zp-module 

Z�
p. Let a1, . . . , ad, c ∈ Zp. By Part (1), c can be decomposed as a sum of ν k-th powers 

xk with x ∈ Zp. Since i1 + · · · + id = k for every i = (i1, . . . , id) ∈ M, we have

xk(ai11 · · · aidd ) = (xa1)i1 · · · (xad)id (i ∈ M).

It follows that Zp(M) is closed under scalar multiplication by the elements in Zp. This 
completes the proof of the lemma. �

For � = card(M), let Ψ =
(
Ψi
)
i∈M with Ψi = xi

1 + · · · + xi
� for each i ∈ M. Write 

up = up(Ψ; Zp) for the nonnegative integer defined by

|Δ(Ψ;Zp)|p = p−up . (2.1)
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For every n ∈ N \ {0}, let Zp(M; n) be defined by (1.4).

Proposition 2.1. Suppose that Zp(M) = Zp(M; �) for some positive integer �. Suppose 
also that s ≥ � + �. Let up be defined as in (2.1). Let n = (ni)i∈M ∈ Zp(M). Then the 
following hold.
(1) The system

Φs,i(z) = ni (i ∈ M)

has a solution a∗ ∈ Zsd
p with

|Δ(Φs;a∗)|p ≥ p−up .

(2) Whenever h ≥ 2up + 1, one has

λs,k,d(h; p;n) ≥ p(2up+1)(�−sd) for all n ∈ Zp(M).

In other words, the system of polynomials Φs =
(
Φs,i
)
i∈M satisfies the uniform local 

density hypothesis over Zp.

Proof. Let (ni)i∈M ∈ Zp(M). Take ã1, . . . , ̃a� ∈ Zd
p such that

|Δ(Ψ; ã)|p = |Δ(Ψ;Zp)|p = p−up .

Write ñi = ni − (ãi
1 + · · · + ãi

�) for each i ∈ M. Since (ni)i∈M ∈ Zp(M) and Zp(M)
is a module over Zp, then ñi = ni + (−1)(ãi

1 + · · · + ãi
�) ∈ Zp(M). Then there exist 

a1, . . . , a� ∈ Zd
p such that

ñi = ai
1 + · · · + ai

� (i ∈ M).

Therefore

ni = ãi
1 + · · · + ãi

� + ñi

= ãi
1 + · · · + ãi

� + ai
1 + · · · + ai

� (i ∈ M).

Take s ≥ � + �. Then the system

Φs,i(z) = ni (i ∈ M)

has a solution a∗ ∈ Zsd
p with

|Δ(Φs;a∗)|p ≥ |Δ(Φs; ã)|p ≥ p−up .

By application of Lemma 2.1 for all h ≥ 2up + 1, we have
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λs,k,d(h; p;n) ≥ p(2up+1)(�−sd).

Since up is independent of n, this completes the proof of the proposition. �
It remains to find a positive integer � such that Zp(M) = Zp(M; �).

Lemma 2.3. For k ∈ N \ {0}, let ν = ν(k) = 4k. Let Ωp = {
(
ai)

i∈M | a ∈ Zd
p}. Suppose 

that there exists a finite subset B ⊆ Ωp such that the Zp-module Zp(M) can be generated 
by B over Zp. Let � = ν · card(B). Then Zp(M) = Zp(M; �).

Proof. Write κ = card(B) and B =
{
(bi

j)i∈M
∣∣bj ∈ Zd

p, 1 ≤ j ≤ κ
}
. Let (ni)i∈M ∈

Zp(M). Then there exist c1, . . . , cκ ∈ Zp such that

ni =
κ∑

j=1
cjbi

j (i ∈ M).

By Lemma 2.2, every cj can be decomposed as a sum of ν kth powers in Zp. More 
specifically, there exist cj,1, . . . , cj,ν ∈ Zp such that

κ∑
j=1

cjbi
j =

κ∑
j=1

(ckj,1 + · · · + ckj,γ)bi
j =

κ∑
j=1

(
(cj,1bj)i + · · · + (cj,νbj)i

)
(i ∈ M),

where the last equality holds because i1 + · · · + id = k for every i = (i1, . . . , id) ∈ M. 
Therefore

ni =
κ∑

j=1

(
(cj,1bj)i + · · · + (cj,νbj)i

)
(i ∈ M).

This completes the proof of the lemma. �
Proposition 2.2. Suppose that R is a local ring with the maximal ideal m and that M is a 
finitely generated R-module. Then the elements x1, . . . , xm ∈ M generate the R-module 
M if and only if x1 + mM, . . . , xm + mM span the vector space M/mM over R/m.

Proof. This is [2, Proposition 2.8]. �
Proposition 2.3. Let � = 4k�. Then Zp(M) = Zp(M; �).

Proof. We first notice that Zp is a complete discrete valuation ring, and thus a local ring 
and a principal ideal domain. Since Z�

p is a free Zp-module of rank �, the submodule 
Zp(M) has a generating set of cardinality not exceeding �. Let κp denote the dimension 
of the vector space Zp(M)/pZp(M) over Fp. Then κp ≤ �. Let
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Ωp = {
(
ai)

i∈M |a ∈ Zd
p}.

Since κp ≤ � and the vector space Zp(M)
/(

pZp(M)
)

can be generated by Ωp +(
pZp(M)

)
over Zp/pZp, there exist � elements in Ωp +

(
pZp(M)

)
which generate 

Zp(M)
/(

pZp(M)
)
. By Proposition 2.2, there exist � elements in Ωp forming a gen-

erating set of the Zp-module Zp(M). Then the proposition follows from Lemma 2.3
immediately. �

On combining Proposition 2.3 with Proposition 2.1, we deduce the following theorem 
immediately.

Theorem 2.1. Let γ(Zp; M) be defined by (1.10). Let up be defined as in (2.1). Suppose 
that s ≥ γ(Zp; M) + �. Then the following hold.
(1) One has

γ(Zp;M) ≤ 4k�.

(2) Let n = (ni)i∈M ∈ Zp(M). The system

Φs,i(z) = ni (i ∈ M)

has a solution a∗ ∈ Zsd
p with

|Δ(Φs;a∗)|p ≥ p−up .

(3) Whenever h ≥ 2up + 1, one has

λs,k,d(h; p;n) ≥ p(2up+1)(�−sd) for all n ∈ Zp(M).

In other words, the system of polynomials Φs =
(
Φs,i
)
i∈M satisfies the uniform local 

density hypothesis over Zp.

We remark that the proof of Theorem 2.1 can be applied to any nonempty subset of 
M. For convenience of future reference, we state the result in the following theorem. Let 
M̃ be a nonempty set of M, �̃ = card(M̃), Φ̃s =

(
Φs,i
)
i∈M̃ and Ψ̃ =

(
Ψi
)
i∈M̃ with 

Ψi = xi
1 + · · · + xi

�̃ for each i ∈ M̃. Write ũp = ũp(Ψ; Zp) for the nonnegative integer 
defined by

|Δ(Ψ̃;Zp)|p = p−ũp .

Theorem 2.2. Define γ(Zp; M̃) to be the least integer � for which

Zp(M̃) =
{(

xi
1 + · · · + xi

�

) ∣∣∣xj ∈ Zd
p (1 ≤ j ≤ �)

}
.

i∈M̃
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Suppose s ≥ γ(Zp; M̃) + �̃. Then the following hold.
(1) One has

γ(Zp;M̃) ≤ 4k�̃.

(2) Let n = (ni)i∈M ∈ Zp(M). The system

Φs,i(z) = ni (i ∈ M̃)

has a solution b ∈ Zsd
p with

|Δ(Φ̃s;b)|p ≥ p−ũp .

(3) Whenever h ≥ 2ũp + 1, one has

λs,k,d(h; p; ñ) ≥ p(2ũp+1)(�−sd) for all ñ ∈ Zp(M̃).

In other words, the system of polynomials Φ̃s =
(
Φs,i
)
i∈M̃ satisfies the uniform local 

density hypothesis over Zp.

Theorem 1.1 follows from Theorem 2.1 immediately. We are now in a position to prove 
Theorem 1.2.

Proof of Theorem 1.2. For a prime p, and n ∈ D, we may deduce from the work of 
Parsell [27] that whenever s ≥ �k + k + 1, we have

∏
p

(
lim
h→∞

λs,k,d(h; p;n)
)
� 1 for all n ∈ D.

On recalling Theorem 2.1, for s ≥ 4k� + �, we have

lim
h→∞

λs,k,d(h; p;n) ≥ p(2up+1)(�−sd) for all n ∈ D.

On combining this with the arguments in [26, Section 9], we have

1 �
∏
p

(
lim
h→∞

λs,k,d(h; p;n)
)
� 1 for all n ∈ D,

where the implicit constants are independent of the choice for n. �
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3. Uniform local density hypothesis over complete discrete valuation rings

To consider the multidimensional analogue of Waring’s problem in number fields or 
function fields, it is also necessary to ask whether the corresponding local densities have a 
uniform lower bound. In this section, we aim to extend the strategy in Section 2 to more 
general complete discrete valuation rings. It will allows our result to cover both finite 
places and infinite place of function fields. Let K be a complete field with respect to the 
norm | · | associated to a discrete non-archimedean valuation. Let O = {x ∈ K| |x| ≤ 1}, 
π a primitive element, n = πO and F = O/n, where F is a finite field. Let M and � be 
defined as in (1.2). Let O(M) and O(k) be defined as in (1.5) and (1.13) respectively. 
We see from Lemma 2.2 that Zp = Zp(k). However, it might happen that O �= O(k). In 
this case, O(M) is not necessarily a module over O. We therefore have to replace O by 
O(k) as in (1.13) and study the properties of O(k). First of all, O(k) is a ring.

Lemma 3.1. Let O(k) be defined by (1.13). Then O(k) is subring of O with −1 ∈ O(k). 
In addition, O(M) is a module over O(k).

Proof. Since O(k) is closed under addition and multiplication of O, it suffices to show 
that −1 ∈ O(k). To see this, we divide into two cases.

When char(O) > 0, Let p1 = char(F ) and so −1 = (p1 − 1)(1k) ∈ O(k).
When char(O) = 0, then O can be viewed as an extension form some Zp and so 

−1 ∈ O(k) by Lemma 2.2.
Thus O(k) is a subring of O and O(M) is a module over O(k). �

Definition 3.1. Let n, r ∈ N with 1 ≤ n ≤ r. Let ϕ = (ϕi)1≤i≤n with each ϕi ∈
O[x1, . . . , xr] (1 ≤ i ≤ n). For a = (a1, . . . , ar) ∈ Or, denote by |Δ(ϕ; a)| the maximal 
value of the determinants of all n ×n submatrices of the Jacobian matrix 

(
∂ϕi/∂xj

)
n×r

when taking x1 = a1, . . . , xr = ar. If |Δ(ϕ; a)| �= 0, we may write |Δ(ϕ; a)| = |π|u for 
some integer v = v(ϕ; a; O), and say that the pair (ϕ; a) has a nonsingular weight of v. 
For any S ⊆ Or, we further define

|Δ(ϕ;S)| = max
{
|Δ(ϕ;a)|

∣∣a ∈ S
}
.

For s ∈ N \ {0}, write

Φs,i(x) = xi
1 + · · · + xi

s (i ∈ M)

and let Φs =
(
Φs,i
)
i∈M. For h ∈ N \ {0} and f = (fi)i∈M ∈ O(M), define λs,k,d(h; π; f)

as in Definition 1.2.

Lemma 3.2. Let (fi)i∈M ∈ O(M). Suppose that the system

Φs,i(x) = fi (i ∈ M)
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has a solution a ∈ Osd with |Δ(Φs; a)| = |π|v0 , where v0 = v0(Φs; a; O) ∈ N. Then 
whenever h ≥ 2v0 + 1, one has

λs,k,d(h;π; f) ≥ (card(F ))(2v0+1)(�−sd).

Proof. It follows from the standard Hensel-type arguments (for example, see [26, Lemma 
9.9]). �

We then establish the existence of the nonsingular solution required in Lemma 3.2.

Lemma 3.3. Let ψ = (ψi)1≤i≤n with each ϕi ∈ O[x1, . . . , xn] (1 ≤ i ≤ n). Let Δ(ψ; x)
be the Jacobian of ψ. suppose that a = (a1, . . . , an) ∈ On satisfies∣∣ψj(a)

∣∣ < ∣∣Δ(ψ;a)
∣∣2 (1 ≤ j ≤ n).

Then there exists a unique b = (b1, . . . , bn) ∈ On such that

ψj(b) = 0 (1 ≤ j ≤ n) and
∣∣bi − ai

∣∣ < ∣∣Δ(ψ;a)
∣∣ (1 ≤ i ≤ n).

Proof. This is [15, Proposition 5.20]. �
Lemma 3.4. Let ξi ∈ O\{0} (i ∈ M). For every i ∈ M, we let φi(z) denote the polynomial 
Φs,i(x) −ξi with x = (x1, . . . , xs) replaced by z = (z1, . . . , zsd). Let φ = (φi)i∈M. Suppose 
that η ∈ Osd satisfies that

|φi(η)| <
∣∣Δ(φ;η)

∣∣2 (i ∈ M).

Then there exists η̃ ∈ Osd such that

φi(η̃) = 0 (i ∈ M) and |Δ(φ; η̃)| ≥ |Δ(φ;η)|.

Proof. Suppose that 
∣∣Δ(φ; η)

∣∣ = |π|u. Thus at the point η there exist columns i1, . . . , i�
in the Jacobian matrix of (φi)i∈M forming a submatrix whose determinant has value 
|π|u. We then regard φi(z) as a polynomial in � variables zi1 , . . . , zi� after substituting 
zi = ηi for i /∈ {i1, . . . , i�}. By applying Lemma 3.3, we obtain η̃i1 , . . . , ̃ηi� ∈ O such that

φi(η̃) = 0 (i ∈ M)

and

η̃j ≡ ηj (modπu+1) (j = i1, . . . , i�).

Therefore
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Δ(φ; η̃i1 , . . . , η̃i�) ≡ Δ(φ; ηi1 , . . . , ηi�) (modπu+1).

On setting η̃j = ηj for j /∈ {i1, . . . , i�}, we find that |Δ(φ; ̃η)| ≥ |Δ(φ; η)|. �
In what follows, for every i ∈ M, let Ψi(z) denote the polynomial xi

1 + · · · + xi
�

with (z1, . . . , zd�) = (x11, . . . , xd1, . . . , x1�, . . . , xd�). Write Ψ =
(
Ψi
)
i∈M. For every n ∈

N \ {0}, let O(M; n) be defined by (1.4). By viewing O(M) as a module over O(k), we 
deduce the following criterion from standard arguments as in Proposition 2.1.

Proposition 3.1. Suppose that there exists a positive integer � such that

O(M) = O(M; �). (3.1)

Suppose also that |Δ(Ψ; O)| �= 0. Let u0 ∈ N and r0 ∈ N such that

|Δ(Ψ;O)| = |π|u0 and r0 ≥ 2u0 + 1. (3.2)

Then the following hold.
(1) Suppose that (fi)i∈M ∈ O� and (gi)i∈M ∈ O(M) satisfy that

fi ≡ gi (modπr0) (i ∈ M).

Whenever s ≥ � + �, the system

Φs,i(z) = fi (i ∈ M)

has a solution a∗ ∈ Osd with

|Δ(Φs;a∗)| ≥ |π|u0 .

(2) Whenever s ≥ � + �, the system of polynomials Φs =
(
Φs,i
)
i∈M satisfies the uniform 

local density hypothesis over O.

Proof. (1) Take ã1, . . . , ̃a� ∈ Od such that

|Δ(Ψ; ã)| = |Δ(Ψ;O)| = |π|u0 .

Write ̃fi = fi− (ãi
1 + · · ·+ ãi

�) for each i ∈ M. Since −1 ∈ O(k) and fi ≡ gi (modπr0) (i ∈
M) where (gi)i∈M ∈ O(M), then there exist a1, . . . , an ∈ Od such that

f̃i = fi + (−1)(ãi
1 + · · · + ãi

�) ≡
n∑

j=1
ai
j (modπr0) (i ∈ M).

By the assumption, there exist ã�+1, . . . , ̃a�+� ∈ Od such that
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n∑
j=1

ai
j = ãi

�+1 + · · · + ãi
�+� (i ∈ M).

Therefore

fi = ãi
1 + · · · + ãi

� + f̃i

≡ ãi
1 + · · · + ãi

� + ãi
�+1 + · · · + ãi

�+� (modπr0) (i ∈ M).

Since r0 ≥ 2u0 + 1 and s ≥ � + � and hence there exist ã�+1, . . . , ̃as ∈ Od such that

fi ≡ ãi
1 + · · · + ãi

� + ãi
�+1 + · · · + ãi

s (modπr0) (i ∈ M).

Thus

|Φs,i(ã) − fi| ≤ |π|r0 < |π|2u0 (i ∈ M)

and

|Δ(Φs; ã)| ≥ |Δ(Ψ; ã)| = |π|u0 .

We can deduce from Lemma 3.4 that the system

Φs,i(z) = fi (i ∈ M)

has a solution a∗ ∈ Osd with

|Δ(Φs;a∗)| ≥ |Δ(Φs; ã)| ≥ |π|u0 .

(2) In combination of Lemma 3.2 with Part (1), for all h ≥ 2u0 + 1, we have

λs,k,d(h;π; f) ≥ (card(F ))(2u0+1)(�−sd).

Since u0 is independent of f, this completes the proof of the proposition. �
By carrying out similar argument in Lemma 2.3, we may obtain the following criterion 

for seeking the positive integer � required in Proposition 3.1.

Proposition 3.2. Suppose that there exists a positive integer θ∗ such that O(k) = O(k; θ∗)
with O(k; θ∗) defined by (1.12). Let Ω = {

(
ai)

i∈M | a ∈ Od}. Suppose also that there exist 
μ∗ elements in Ω which form a generating set of the O(k)-module O(M). Let �∗ = θ∗μ∗. 
Then

O(M) = O(M; �∗).
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Let γ(O; M) be defined by (1.10). Then

γ(O;M) ≤ θ∗μ∗.

In order to find θ∗ and μ∗, we need to extract more algebraic properties of O, O(k)
and O(M).

Definition 3.2. Let S be a semiring. For k, n ∈ N \{0}, let S(k; n) and S(k) be defined by 
(1.12) and (1.13) respectively. Let γ(S; k) be the least integer u for which S(k) = S(k; u)
if such u exists.

Thus the positive integer θ∗ in Proposition 3.2 exists if and only if γ(O; k) ≤ θ∗. To 
this end, our idea is motivated by the following facts.

Lemma 3.5. For k ∈ N with k ≥ 2, one has
(1) F (k) is a subfield of F .
(2) γ(F ; k) ≤ k.

Proof. (1) and (2) are [30, Lemma 1] and [30, Theorem 1] respectively. �
By applying Hensel-type arguments as in [29, Lemma 1], we can extend the result 

about Waring’s problem in the finite field F to the complete valuation ring O.

Proposition 3.3. Suppose that char(F ) � k. Consider the surjective homomorphism fO
from O to O/n = F . The following hold.
(1) One has

O(k) = f−1
O
(
F (k)

)
.

(2) γ(O; k) ≤ γ(F ; k) + 1.
(3) O(k) is a local ring with the maximal ideal n. In addition,

O(k)/n = F (k).

(4) Suppose that O(M) is a finitely generated module over O(k). Let μ be the mini-
mal number of generators of O(M). Then μ is equal to the positive integer μ∗ defined 
in Proposition 3.2. More precisely, there exist μ elements in Ω which form a minimal 
generating set of the O(k)-module O(M). In addition,

γ(O;M) ≤ γ(O; k)μ.

Proof. When the characteristic of O is 0, Parts (1) and (2) have been proved in [29, 
Lemma 1] (use γ(F, k) in place of k). The same proof technique can apply to the case 
when the characteristic of O is positive. It remains to show Part (3) and Part (4).
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(3) It follows from Part (1) that n = f−1
O (0) and thus an ideal of O(k). Moreover, we 

have

O(k)/n = F (k).

Therefore Lemma 3.5(1) implies that n is a maximal ideal of O(k). Let x ∈ n. Then 
1 + x is a unit in O and so there exists y ∈ O such that (1 + x)y = 1. We then get 
y = 1 − xy ∈ 1 + n. Since 1 + n = (1 + n)k ∈ F (k), we deduce from Part (1) that 
y ∈ O(k). Therefore, 1 + x is a unit in O(k). By [2, Proposition 1.6], we conclude that 
O(k) is a local ring with the maximal ideal n.
(4) Note that O(M)

/(
nO(M)

)
is a vector space over F (k). By Proposition 2.2, μ is 

equal to the dimension of the vector space O(M)
/(

nO(M)
)
. Let

Ω = {(ai)i∈M |a ∈ Od}.

Thus there exist μ elements in Ω +
(
nO(M)

)
which form a basis of O(M)

/(
nO(M)

)
. 

By Proposition 2.2, there exist μ elements in Ω forming a minimal generating set of the 
O(k)-module O(M). �

On combining Lemma 3.5(2) with Proposition 3.3(2), we have

γ(O; k) ≤ k + 1.

In Section 4, we aim to refine this upper bound when F �= F (k). In Section 5, we will 
show that O(M) is a finitely generated module over O(k) and estimate the minimal 
number of generators of O(M) via the Noetherian module theory. In Section 6, to prove 
Theorem 1.5, it remains to show that |Δ(Ψ; O)| �= 0 as required in Proposition 3.1.

4. Refinements over finite fields

In this section, let K, O, π and F be defined as in Section 3. Let p1 = char(F ). We 
focus on the case when F �= F (k). For convenience, since p1 = char(F ), we may consider 
F as a finite extension of Fp1 , and define

κ = [F : F (k)], σ = [F (k) : Fp1 ], τ = [F : Fp1 ] (4.1)

and

L =
{
l ∈ N

∣∣∣∣ l < τ, l|τ, and pτ1 − 1
pl1 − 1

∣∣∣k}. (4.2)

Our work stems from the following fact.

Proposition 4.1. Let k ∈ N with k ≥ 2. One has κ = 1 if and only if L = ∅.
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Proof. This is [3, Theorem G]. �
Our goal is to improve the upper bound for γ(F ; k) from k to O(k1/2/κ) when κ > 1. 

In this case, the above proposition implies that L �= ∅.

Theorem 4.1. Let k ∈ N with k ≥ 2. Define κ, σ, τ and L as in (4.1) and (4.2). Suppose 
that κ > 1. For l ∈ L, let Fl denote the subfield of F with [Fl : Fp1 ] = l, and let

kl = k(pl1 − 1)
/
(pτ1 − 1).

Then the following hold.
(1) For every l ∈ L, one has F (k) = Fl(kl) and γ(F ; k) = γ(Fl; kl).
(2) One has σ = min{l | l ∈ L} and Fσ = F (k) = Fσ(kσ).
(3) One has

γ(F ; k) ≤ kσ = k/(1 + pσ1 + · · · + p
σ(κ−1)
1 )

and

κ < logpσ
1
k + 1.

(4) One has

card(F ) ≤ min
{( k

kl
− 1
)2 ∣∣∣ l ∈ L

}
.

Proof. (1) Consider the norm map NF/Fl
of the extension of finite fields F/Fl. For 

every x ∈ F , NF/Fl
(x) = x(pτ

1−1)/(pl
1−1) = xk/kl . Thus for every x ∈ F , we have xk =

(xk/kl)kl ∈ Fl(kl). Hence F (k) ⊆ Fl(kl). Also, since the norm map is surjective, we have 
Fl(kl) ⊆ F (k). Therefore,

F (k) = Fl(kl).

For any x1, . . . , xn ∈ F , since

xk
1 + · · · + xk

n =
(
x
k/kl

1
)kl + · · · +

(
xk/kl
n

)kl ,

it follows from the surjectiveness of the norm map that

γ(F ; k) = γ(Fl; kl).

(2) Since κ > 1, we have σ = τ/κ < τ . Let a0 be a generator of F×. Then ak0 ∈ F (k). 
Since cardF (k) = pσ1 and card(F ) = pτ1 , we have
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a
k(pσ

1−1)
0 = 1

and thus

pτ−1
1
∣∣((pσ1 − 1)k).

Therefore σ ∈ L. By Part (1), Fσ = F (k) = Fσ(kσ). In addition, for every l ∈ L, we 
have

Fσ = F (k) = Fl(kl) ⊆ Fl

and thus

σ ≤ l.

Therefore

σ = min{l | l ∈ L}.

(3) By Part (2) and Lemma 3.5, we have

γ(F ; k) = γ(Fσ; kσ) ≤ kσ.

Since τ = κσ, we have

kσ = k(pσ1 − 1)
/
(pτ1 − 1) = k

/
(1 + pσ1 + · · · + p

σ(κ−1)
1 ).

Note that

kσ ≤ k/(1 + p
σ(κ−1)
1 ).

Thus

κ < logpσ
1
k + 1.

(4) Let l ∈ L. Then there exists n ∈ N with n ≥ 2 such that τ = ln. Thus

k

kl
= pτ1 − 1

pl1 − 1
= p

l(n−1)
1 + · · · + pl1 + 1.

Then we have

p
l(n−1)
1 ≤ k

kl
− 1.

Therefore
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card(F ) = pτ1 = k

kl
(pl1 − 1) + 1 = k

kl

((
p
l(n−1)
1

) 1
n−1 − 1

)
+ 1 ≤ k

kl

(( k
kl

− 1
) 1

n−1 − 1
)

+ 1.

Since n ≥ 2, we have

card(F ) ≤
(
k

kl
− 1
)2

.

This completes the proof of the theorem. �
We now discuss further improvement on γ(F ; k).

Lemma 4.1. Suppose that F is of cardinality pτ1 . Let k∗ = gcd(k, pτ1 − 1). Then

γ(F ; k) ≤ k∗.

Proof. Suppose that a is a generator of the cyclic group F×. Then the order of a is 
pτ1 − 1. Since k∗ = gcd(k, pτ1 − 1), then k∗ = gcd(k∗, pτ1 − 1). Thus ak and ak

∗ have the 
same order so that they generate the same subgroup. Therefore F (k) = F (k∗). It then 
follows from Lemma 3.5 that

γ(F ; k) ≤ k∗. �
We then begin to consider the case when κ = [F : F (k)] > 1.

Proposition 4.2. Suppose that κ = [F : F (k)] = 2. Then k ≥ 3 and

γ(F ; k) ≤ (k + 1)1/2 − 1.

Proof. We deduce from Theorem 4.1 that

γ(F ; k) = γ(Fσ; kσ),

where kσ = k/(1 +pσ1 ), and Fσ = F (k) = Fσ(kσ) with [Fσ : Fp1 ] = σ. Thus k ≥ 1 +pσ1 ≥ 3. 
Let k∗ = gcd(kσ, pσ1 − 1). We then obtain from Lemma 4.1 that

γ(F, k) = γ(Fσ, kσ) ≤ k∗.

In view of the definition of k∗, we obtain

k∗ ≤ kσ and k∗ ≤ pσ1 − 1.

Thus

k∗(k∗ + 2) ≤ kσ(pσ1 + 1) = k,
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and so

(k∗ + 1)2 ≤ k + 1.

This completes the proof of the proposition. �
Proposition 4.3. Suppose that κ = [F : F (k)] ≥ 3. Then k ≥ 7. In addition, one has

γ(F ; k) ≤
√

(18/13)k/κ.

Proof. We first observe from Theorem 4.1(3) that

k

kσ
= 1 + pσ1 + · · · + p

σ(κ−1)
1 .

Since p1 ≥ 2, σ ≥ 1 and κ ≥ 3, we have k ≥ 7kσ. By Theorem 4.1(1) and (2), we have

γ(F ; k) = γ(Fσ; kσ),

where Fσ = F (k) with card
(
F (k)

)
= pσ1 . Let k∗ = gcd(kσ, pσ1 − 1). We then deduce from 

Lemma 4.1 that

γ(F, k) = γ(Fσ, kσ) ≤ k∗.

In view of the definition of k∗, we obtain

k∗ ≤ kσ and k∗ ≤ pσ1 − 1.

Thus

k2
∗ ≤ kσ(pσ1 − 1) = (pσ1 − 1)k

1 + pσ1 + · · · + p
σ(κ−1)
1

= (pσ1 − 1)2k
pσκ1 − 1 .

For x ∈ N \ {0}, define

fκ(x) = x2

(x + 1)κ − 1 .

Let Mκ = sup
{
fκ(x) | x ∈ N \ {0}

}
. Then

γ(F ; k) ≤ k∗ ≤
(
fκ(pσ1 − 1)k

)1/2 ≤ M1/2
κ k1/2.

For κ = 3, we have

f3(x) = x2

3 2
x + 3x + 3x
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and thus M3 = 2/13. Therefore, when κ = 3, we find

γ(F ; k) ≤
√

2/13k1/2 =
√

18/13k1/2/κ.

For κ ≥ 4, we now claim that Mκ ≤ (2κ−1)−1. Since (x +1)κ−1 =
(
κ
κ

)
xκ+

(
κ

κ−1
)
xκ−1 +

· · · +
(
κ
3
)
x3 +

(
κ
2
)
x2 +

(
κ
1
)
x, we have

1
fκ(x) = (x + 1)κ − 1

x2 =
(
κ

κ

)
xκ−2 + · · · +

(
κ

3

)
x +
(
κ

2

)
+
(
κ

1

)
x−1.

For κ ≥ 4 and x ≥ 1, because 
(

κ
κ−1
)
xκ−2 +

(
κ
1
)
x−1 ≥

(
κ

κ−1
)
x +
(
κ
1
)
x−1 ≥

(
κ

κ−1
)
+
(
κ
1
)
, we 

then find

1
fκ(x) ≥

(
κ

κ

)
+
(

κ

κ− 1

)
+ · · · +

(
κ

3

)
+
(
κ

2

)
+
(
κ

1

)
= 2κ − 1.

Therefore

Mκ ≤ 1
2κ − 1

and so

γ(F ; k) ≤ k∗ ≤ (Mκk)1/2 ≤ k1/2

(2κ − 1)1/2
.

For x ≥ 4, define g(x) = x/(2x − 1)1/2. Since supx≥4 g(x) ≤ 4/
√

15, for κ ≥ 4, we have

γ(F ; k) ≤ k1/2

κ
· κ

(2κ − 1)1/2
≤ (4/

√
15)k1/2/κ.

This completes the proof of the proposition. �
Corollary 4.1. Suppose that char(F ) � k. Let κ = [F : F (k)]. Then the following hold.
(1) If κ = 1, then

γ(O; k) ≤ k + 1.

(2) If κ = 2, then k ≥ 3 and

γ(O; k) ≤
√
k + 1.

(3) If κ ≥ 3, then k ≥ 7 and

γ(O; k) ≤
√

(18/13)k/κ + 1 ≤
√

(72/13)k/κ.
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Proof. On recalling Proposition 3.3(2), we have

γ(O; k) ≤ γ(F ; k) + 1.

Part (1) and Part (2) then follow from Lemma 3.5(2) and Proposition 4.2 respectively. 
To deduce Part (3) from Proposition 4.3, it suffices to notice that

1 ≤ γ(F ; k) ≤
√

(18/13)k/κ

and 2
√

18/13 =
√

72/13. This completes the proof of the corollary. �
5. Multidimensional Waring’s problem over complete discrete valuation rings

Let K, O, π and F be defined as in Section 3. Throughout this section, we always 
assume that char(F ) � k. It is a natural observation from Proposition 3.3(3) that O(k) =
O if and only if F (k) = F . When O(k) �= O, since O(k) is a subring of O, one can regard 
O as an O(k)-module, and ask the minimal number of generators of O over O(k). In 
particular, to investigate the minimal number of generators of O(M) over O(k), it is 
also necessary to seek similar Noetherian properties about On for n ∈ N with n ≥ 1.

We now introduce some notations and concepts in the theory of Noetherian modules.

Definition 5.1. Let R be a ring and M be an R-module. Given a submodule N of M , let 
μ(N) = μR(N) to be the minimal number of generators of N as an R-module. Define

v(M) = vR(M) := sup{μ(N)|N ⊂ M, a submodule}.

For the special case M = R, submodules are ideals. Then

v(R) := sup{μ(I)|I ⊂ R, an ideal}.

We are interested in the bound for v(M). In general, v(M) is not a finite number.

Definition 5.2. Let R be a ring and M be an R-module. We say that M is Noetherian if 
every R-submodule of M is finitely generated. In particular, if M = R, R is a Noetherian 
ring.

Our first goal in this section is to show that the O(k)-module O is Noetherian 
and v(O) = [F : F (k)]. To this end, we now summarize some basic facts about the 
O(k)-module O.

Lemma 5.1. Let κ = [F : F (k)]. One has O/n ∼= F as vector spaces over F (k). For 
b1, . . . , bκ ∈ O, the following are equivalent.

(1) b1 + n, . . . , bκ + n span O/n.
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(2) b1 + n, . . . , bκ + n form a basis of O/n.
(3) b1 + n, . . . , bκ + n ∈ O/n are linearly independent over O(k)/n. Namely, given 

c1, . . . , cκ ∈ O(k), whenever c1b1 + · · · + cκbκ ∈ n, then c1, . . . , cκ ∈ n.
(4) b1, . . . , bκ form a generating set of the O(k)-module O.

Proof. First off, note that (1)⇔(2)⇔(3) and (4)⇒(1) are elementary facts in linear 
algebra and the module theory. (1)⇒(4) is a direct consequence of Proposition 2.2. This 
completes the proof. �
Remark. For a1, . . . , ar ∈ O, if a1 + n, . . . , ar + n span O/n, then r ≥ κ. Thus

μ(O) = κ.

Lemma 5.2. Let M be an O(k)-module. Then nM is an O-module.

Proof. Since the multiplication of O on nM satisfies the axioms of modules, it is enough 
to show that nM is closed under the multiplication of O. From the fact that n is an ideal 
of O,

O · (nM) = (O · n)M = nM.

Thus nM is closed under the multiplication of O and nM is an O-module. �
It is worth a remark that nM is also an O(k)-submodule of M . In addition, M/nM

is a module over O(k)/n and thus a vector space over F (k).

Lemma 5.3. Let I ⊂ O be an O(k)-module. Then there exists l ∈ N with l ≥ 1 such that

I ⊂ nl−1 and nI = nl

with the convention n0 = O.

Proof. By the previous lemma, nI is an O-module and therefore an ideal of O. Since O
is a discrete valuation ring with the maximal ideal n, there exists l ∈ N such that

nI = nl = O · πl.

For all a ∈ I, there exists aI ∈ O such that

π · a = aI · πl.

It implies that a = aI · πl−1 ∈ O · πl−1 = nl−1; i.e.,

I ⊂ nl−1.



30 W. Kuo et al. / Advances in Mathematics 353 (2019) 1–66
This completes the proof. �
Proposition 5.1. Let I ⊂ O be an O(k)-submodule of O. Let κI be the dimension of the 
vector space I/(nI) over O(k)/n. Then

μ(I) = κI ≤ κ.

Proof. From Lemma 5.3, there exists l ∈ N with l ≥ 1 such that

I ⊂ nl−1 and nI = nl.

Thus I/nl is a subspace of nl−1/nl. Note that nl−1/nl is isomorphic to O/n as vector 
spaces over O(k)/n. We thus have

κI ≤ κ.

We now choose a subset {b1, . . . , bκI
} of O such that {b1πl−1 + nl, . . . , bκI

πl−1 + nl} is a 
basis of I/nl. We claim that {b1πl−1, . . . , bκI

πl−1} is a generating set of I as a module 
over O(k). We then have

μ(I) ≤ κI .

Given a ∈ I, there exist c1, . . . , cκI
∈ O(k) such that

a + nl =
κI∑
i=1

cibiπ
l−1 + nl.

Then there exists ã ∈ n such that

a =
κI∑
i=1

cibiπ
l−1 + ãπl−1.

Since ã ∈ n, we then have ã ∈ O(k). In addition, since b1πl−1 /∈ nl, then b1 /∈ n and so 
b1 is a unit in O. Thus

ã = (ãb−1
1 )b1

where ãb−1
1 ∈ n. Therefore
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a =
κI∑
i=1

cibiπ
l−1 + ãπl−1

=
κI∑
i=1

cibiπ
l−1 + (ãb−1

1 )b1πl−1

= (c1 + ãb−1
1 ) · (b1πl−1) +

κI∑
j=2

cj · (bjπl).

It remains to show that μ(I) ≥ κI . Suppose that a1, . . . , ar ∈ I generate I as an 
O(k)-module. Then a1 + nI, . . . , ar + n span the vector space I/(nI) over O(k)/n. Thus 
r ≥ κI and so μ(I) ≥ κI . This completes the proof. �
Theorem 5.1. Let κ = [F : F (k)]. The O(k)-module O is Noetherian and

v(O) = κ

In particular, O(k) is a Noetherian ring.

Proof. Let I ⊂ O be an O(k)-submodule of O. It follows from Proposition 5.1 that

μ(I) ≤ κ.

Thus

v(O) ≤ κ

Since v(O) ≥ μ(O) = κ, we have

v(O) = κ.

This completes the proof. �
The goal of the remainder of this section is to extend the previous Noetherian prop-

erties to On. More precisely, we aim to prove that

v(On) = κn.

Noetherian modules enjoy many nice properties under various operations of modules. 
However, we need the quantitative version of those properties.

Lemma 5.4. Let M be an R-module. Suppose that L and N are submodules of M with 
μ((L + N)/N) < ∞ and μ(L ∩N) < ∞. Then

μ((L + N)/N) ≤ μ(L) ≤ μ((L + N)/N) + μ(L ∩N).
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In particular, suppose further that N ⊆ L. Then

μ(L/N) ≤ μ(L) ≤ μ(L/N) + μ(N).

Proof. Let x1, . . . , xm ∈ L with m = μ((L + N)/N) such that x1 + N, . . . , xm + N

generate (L + N)/N , and let y1, . . . , yl ∈ L ∩N with l = μ(L ∩N) generate L ∩N . For 
any x ∈ L, we have

x ≡ r1x1 + · · · + rmxm (mod N)

for some ri ∈ R, so x −
∑

rixi ∈ L ∩N . Therefore

x−
∑

rixi =
∑

sjyj

with sj ∈ R, so x =
∑

rixi+
∑

sjyj . It proves that L is generated by x1, . . . , xm, y1, . . . , yl, 
and

μ(L) ≤ m + l = μ((L + N)/N) + μ(L ∩N).

Note that the reduction of the generators of L modulo N will generate (L + N)/N as 
an R-module. Thus, we have

μ((L + N)/N) ≤ μ(L).

It completes the proof. �
Proposition 5.2. Let M be an R-module and N be a submodule. Then M is Noetherian 
if and only if N and M/N are Noetherian. Moreover,

v(M) ≤ v(M/N) + v(N).

Proof. If M is Noetherian, in view of definition, N is Noetherian. In addition, every 
submodule of M/N has the form L/N where L is a submodule of M with N ⊆ L ⊆ M . 
It follows from Lemma 5.4 that

μ(L/N) ≤ μ(L) < ∞.

Thus M/N is Noetherian.
For another direction, let L be a submodule of M . Then the image of L in M/N

is (L + N)/N . Since N and M/N are Noetherian, we have μ((L + N)/N) < ∞ and 
μ(L ∩N) < ∞. Then Lemma 5.4 implies that

μ(L) ≤ μ((L + N)/N) + μ(L ∩N) < ∞.
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Thus M is Noetherian and satisfies

v(M) ≤ v(M/N) + v(N).

It completes the proof. �
As a corollary of the previous proposition, we have

Corollary 5.1. Let M and N be Noetherian R-modules. Then their direct sum M ⊕N is 
a Noetherian R-module and

v(M ⊕N) ≤ v(M) + v(N). (5.1)

Proof. Take the submodule M ⊕ 0 of M ⊕N and consider the exact sequence

0 → M ∼= M ⊕ 0 → M ⊕N → (M ⊕N)/(M ⊕ 0) ∼= N → 0.

By applying Proposition 5.2, we have

v(M ⊕N) ≤ v(M) + v(N). �
Remark. It might happen that

v(M ⊕N) < v(M) + v(N).

For example, when we take R = Z, M = Z/(3), and N = Z/(5), then M ⊕N = Z/(15). 
Since v(M) = v(N) = v(M ⊕N) = 1, we have

v(M ⊕N) < v(M) + v(N).

However, in the special case when R is a local ring, the equality in (5.1) always holds.

Proposition 5.3. Suppose that R is a local ring with the maximal ideal m. Let M and N
be Noetherian R-modules. Then their direct sum M ⊕N is a Noetherian R-module and

v(M ⊕N) = v(M) + v(N).

In particular, for n ∈ N with n ≥ 1,

v(Mn) = n · v(M).

Proof. By Corollary 5.1, it suffices to show that

v(M ⊕N) ≥ v(M) + v(N).



34 W. Kuo et al. / Advances in Mathematics 353 (2019) 1–66
If v(M) = ∞ or v(N) = ∞, inequality trivially holds. We now assume that v(M) < ∞
and v(N) < ∞. Choose M ′ ⊕N ′, where M ′ ⊆ M and N ′ ⊆ N with μ(M ′) = v(M) and 
μ(N ′) = v(N). Proposition 2.2 implies that

μ(M ′) = dimR/m(M ′/mM ′), μ(N ′) = dimR/m(N ′/mN ′),

and

μ(M ′ ⊕N ′) = dimR/m

(
(M ′ ⊕N ′)/(m(M ′ ⊕N ′))

)
.

Since (M ′ ⊕N ′)/(m(M ′ ⊕N ′)) is isomorphic to (M ′/mM ′) ⊕ (N ′/mN ′) as R/m vector 
spaces, we have

μ(M ′ ⊕N ′) = μ(M ′) + μ(N ′) = v(M) + v(N).

Therefore,

v(M ⊕N) ≥ v(M) + v(N).

This completes the proof. �
By Proposition 3.3(3), O(k) is a local ring. On combining Theorem 5.1 with Propo-

sition 5.3, we deduce the following result.

Theorem 5.2. Let n ∈ N with n ≥ 1. One has

v(On) = κn.

In view of the definition of v(On), “every” O(k)-submodule of On, as an O(k)-module, 
can be generated by κn elements.

Since O is a Noetherian O(k)-module, O� is Noetherian. Thus, the O(k)-submodule 
O(M) of O� is also Noetherian.

Proposition 5.4. Let κ = [F : F (k)]. Then

μ
(
O(M)

)
≤ κ(�− d + κ−1d).

Proof. Let i ∈ M, define

O(i) =
∞⋃

n=1
{xi

1 + · · · + xi
n |x1, . . . ,xn ∈ Od}

Given an integer j, 1 ≤ j ≤ d, let kj = (kj,i)1≤i≤d ∈ M be the index in M such that 
kj,j = k. Then O(kj) = O(k). There is a natural projection fk such that
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�

fk : O(M) →
d∑

j=1
O(kj) ∼= O(k)d

By restricting to kj coordinates, the kernel of fk, ker fk, is a submodule of 
∑

i∈M,i�=kj
1≤j≤d

O(i).

We claim that fk is surjective. Since the image of fk, imagefk, is an O(k)-module, 
by symmetry, it is enough to show that (1, 0, 0, . . . , 0) ∈ O(k)d is contained in imagefk. 
Now just choose x1 ∈ Od with x1,1 = 1, x1,2 = · · · = x1,d = 0. Then

(xk1
1 , . . . ,xkd

1 ) = (1, 0, 0, . . . , 0).

Thus the claim is true.
We then deduce from Lemma 5.4 that

μ
(
O(M)

)
≤ μ
(
ker fk)+μ(imagefk) = μ

(
ker fk)+μ

(
O(k)d

)
≤ v
(
O�−d

)
+d = κ(�−d)+d.

Theorem 5.3. One has

γ(O;M) ≤ (k + 1)�.

In particular, when F �= F (k), one has k ≥ 3 and

γ(O;M) ≤
{√

(72/13)k(�− d/2), if k ≥ 7,
2
√
k + 1(�− d/2), if 3 ≤ k ≤ 6.

Proof. Let κ = [F : F (k)]. In combination of Proposition 5.4 with Proposition 3.3(4), 
we get

γ(O;M) ≤ γ(O; k)κ(�− d + κ−1d).

When κ = 1, we obtain from Corollary 4.1(1) that

γ(O;M) ≤ (k + 1)�.

When κ = 2, Corollary 4.1(2) implies that k ≥ 3 and

γ(O; k)κ ≤ 2
√
k + 1

and so

γ(O;M) ≤ 2
√
k + 1(�− d/2).

When κ ≥ 3, Corollary 4.1(3) implies that k ≥ 7 and
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γ(O; k)κ ≤
√

(72/13)k,

and hence

γ(O;M) ≤
√

(72/13)k(�− d/2).

Since 2
√
k + 1 <

√
(72/13)k for all k ≥ 7, on combining the above estimates, the theorem 

follows. �
6. Proof of Theorem 1.5

Let K, O, π and F be defined as in Section 3. Let M and � be defined as in (1.2). 
In what follows, for every i ∈ M, let Ψi(z) denote the polynomial xi

1 + · · · + xi
� with 

(z1, . . . , zd�) = (x11, . . . , xd1, . . . , x1�, . . . , xd�). Write Ψ =
(
Ψi
)
i∈M. Let |Δ(Ψ; O)| be 

defined as in Proposition 3.1. In order to prove Theorem 1.5, based on Proposition 3.1(2), 
Proposition 3.3 and Theorem 5.3, it remains to show the existence of nonsingularity

|Δ(Ψ;O)| �= 0.

By contrapositive law, our approach starts with the singularity of the system the pair 
Ψ over the residue field F , via Dedekind’s Lemma.

Lemma 6.1 (Dedekind’s Lemma). Let G be a group and L a field. Let τ1, . . . , τn be distinct 
group homomorphisms from G to L×. Then the τi are linearly independent over L; that 
is, if 

∑
i ciτi(g) = 0 for all g ∈ G, where the ci ∈ L, then all ci = 0.

Proof. This is [25, Lemma 2.12]. �
Consider the group (F×)d. For every n = (n1, . . . , nd) ∈ Zd, define a mapping τn

from (F×)d to F× as follows:

τn(a1, . . . , ad) = an1
1 · · · and

d = an.

Then τn is a group homomorphism.

Lemma 6.2. Let n = (n1, . . . , nd), m = (m1, . . . , md) ∈ Nd. Suppose that nv �= mv for 
some v with 1 ≤ v ≤ d. If τn = τm, then

card(F×) ≤ |nv −mv|.

Proof. Without loss of generality, we may assume that n1 > m1. For every a =
(a, 1, . . . , 1) with a ∈ F×, since τn = τm, we have
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an = am,

that is,

an1 = am1 .

Thus every element in F× is a root of the polynomial xn1−m1 = 1, and hence

card(F×) ≤ n1 −m1.

This completes the proof of the lemma. �
For every n ≥ 1, write

Jac
(
(xi)i∈M,1≤l≤d; z1, . . . , zn) =

((∂xi

∂xl

)
i∈M,1≤l≤d

(z1); . . . ;
(∂xi

∂xl

)
i∈M,1≤l≤d

(zn)
)
.

For c = (ci)i∈M ∈ F � \ {0} and 1 ≤ l ≤ d, let

ϕl(c,x) =
∑
i∈M

ciilxix−1
l .

Lemma 6.3. Suppose char(F ) � k. Let c = (ci)i∈M ∈ F � \ {0}. There exists v ∈ N with 
1 ≤ v ≤ d such that ϕv(c, x) is a nonzero polynomial in F [x].

Proof. Let p1 = char(F ). Define

M1 =
{
i ∈ M

∣∣ p1 � i1
}

and Ml =
{
i ∈ M

∣∣ p1|i1, . . . , p1|il−1, p1 � il
}

(2 ≤ l ≤ d).

Since p1 � k, then M is a disjoint union of M1, . . . , Md. Also, define M′
l = {i ∈ Ml | ci �=

0} (1 ≤ l ≤ d). Since the ci are not all zero, there must exist some l such that M′
l is 

nonempty. Let v = min{l | 1 ≤ l ≤ d, M′
l �= ∅}. For each i ∈ Mv, since p1 � iv and 

∂xi/∂xv = ivxix−1
v , we have

∑
i∈Mv

ci
∂xi

∂xv
=
∑

i∈M′
v

ciivxix−1
v �= 0

in F [x]. By the minimality of v, for any i ∈ Ml with l < v, ci = 0 and so

∑
i∈Ml
l<v

ci
∂xi

∂xv
= 0

in F [x]. For l > v, i ∈ Ml implies that p|iv and hence ∂xi/∂xv = 0. Thus
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ϕv(c,x) =
∑
i∈M

ci
∂xi

∂xv
=
∑

i∈M′
v

ci
∂xi

∂xv
�= 0.

This completes the proof of the lemma. �
Lemma 6.4. Suppose that char(F ) � k and |Δ(Ψ; O)| < 1. Then card(F ) ≤ k.

Proof. We first claim that when |Δ(Ψ; O)| < 1, for every n ≥ � and every choice of 
z1, . . . , zn ∈ F d, one has

rk Jac
(
(xi)i∈M; z1, . . . , zn

)
< �.

To see this, suppose that there exist z1, . . . , zn ∈ F d with n ≥ � such that

rk Jac
(
(xi)i∈M; z1, . . . , zn

)
= �.

Thus there exist � tuples, say z1, . . . , z�, such that

rk Jac
(
(xi)i∈M; z1, . . . , z�

)
= �.

This means that

|Δ(Ψ;O)| = |π|0 = 1,

contradicting that |Δ(Ψ; O)| < 1.
We now divide into two cases.
Case 1 : Suppose that card(F d) ≥ �. Take n = card(F d) and list the elements in F d

as a1, . . . , an. We then have

rk Jac
(
(xi)i∈M;a1, . . . ,an) < �.

Thus there exist ci ∈ F (i ∈ M), not all zero, such that for all 1 ≤ l ≤ d and 1 ≤ j ≤ n,

∑
i∈M

ci
∂xi

∂xl
(aj) = 0. (6.1)

By Lemma 6.3, there exists v ∈ N with 1 ≤ v ≤ d such that

ϕv(c,x) =
∑
i∈M

ci
∂xi

∂xv

is a nonzero polynomial in F [x]. By (6.1), for all a ∈ F d, we have

ϕv(c,a) = 0.
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Write

N =
d⋃

l=1

{(i1, . . . , il − 1, . . . , id) | (i1, . . . , il, . . . , id) ∈ M, char(F ) � il}.

It then follows from Lemma 6.1 that the group homomorphisms τn, where n runs over 
N , are not distinct. For every n ∈ N , in view of the definition, we have |n| = k − 1. By 
Lemma 6.2, we can conclude that

card(F×) ≤ k − 1.

Case 2 : Suppose that card(F d) < �. On recalling that

� =
(
k + d− 1
d− 1

)
= (k + d− 1) · · · (k + 1)

(d− 1)! ,

we get

�

kd
= k + 1

k2

d−1∏
j=2

k + j

kj
.

Note that kj − k − j + 1 = (k − 1)(j − 1), when j ≥ 2, since k ≥ 2, we have

kj − k − j + 1 ≥ 1

and so kj ≥ k + j. Thus

�

kd
≤ k + 1

k2 ≤ 1.

Hence

card(F ) < �1/d ≤ k.

On combining the two cases, we have

card(F ) ≤ k.

This completes the proof of the lemma. �
Lemma 6.5. Suppose that |Δ(Ψ; O)| = 0. Then for any complete discrete valuation ring 
Õ with the same characteristic as O, one has

|Δ(Ψ; Õ)| = 0.
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Proof. Recall that for a = (a1, . . . , a�) ∈ Od�, we define |Δ(Ψ; a)| to be the maximal 
value of the determinants of all � × � submatrices of the Jacobian matrix of the system 
Ψ at the point a. Also, recall that

|Δ(Ψ;O)| = max
{
|Δ(Ψ;a)|

∣∣a ∈ Od�
}
.

Suppose that |Δ(Ψ; O)| = 0. Then |Δ(Ψ; a)| = 0 for all a ∈ Od�. Note that ev-
ery element of the Jacobian matrix of the system Ψ takes the form of ∂xi

j/∂xj,l =
ilx

i1
j,1 · · ·xil−1

j,l · · ·xid
j,d with i1 + · · · + id = k, 1 ≤ j ≤ � and 1 ≤ l ≤ d. Thus the deter-

minant of every � × � submatrix is a homogeneous polynomial in x1, . . . , x�. Therefore 
|Δ(Ψ; a)| = 0 for all a ∈ Kd�. Since K is an infinite field, the determinant of every � ×�

submatrix must be the zero polynomial in K[x1, . . . , x�]. We now consider two cases 
according to the characteristic of O.

Case 1: Suppose that char(O) = p1. Since the elements in the Jacobian matrix of the 
system Ψ lie in Fp1 [x1, . . . , x�], we may regard the determinant of every � ×� submatrix 
as the zero polynomial in Fp1 [x1, . . . , x�] and so in Õ[x1, . . . , x�] where Õ is any complete 
discrete valuation ring of characteristic p1. Thus

|Δ(Ψ; Õ)| = 0.

Case 2: Suppose that char(O) = 0. Then the elements in the Jacobian matrix of the 
system Ψ lie in Z[x1, . . . , x�]. Thus we may regard the determinant of every � × �

submatrix as the zero polynomial in Z[x1, . . . , x�] and so in Õ[x1, . . . , x�] with charÕ =
0. Hence

|Δ(Ψ; Õ)| = 0.

On combining the two cases, the lemma follows. �
We are now prepared to prove the existence of nonsingular weight.

Proposition 6.1. Let k, d ∈ N with k, d ≥ 2. Suppose that char(F ) � k. Then one has

|Δ(Ψ;O)| �= 0.

Proof. Suppose that |Δ(Ψ; O)| = 0. By Lemma 6.5, for any complete discrete valuation 
ring Õ with the same characteristic as O, we have

|Δ(Ψ; Õ)| = 0.

When char(O) = p1 with char(F ) � k, we may choose Õ with residue field F̃ satisfying 
that char(F̃ ) = p1 and cardF̃ > k. This contradicts Lemma 6.4.
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When char(O) = 0, we may take Õ = Zp̃ with p̃ > k. Since the residue field is Fp̃, 
Lemma 6.4 implies that

p̃ ≤ k,

a contradiction again. We then finish the proof of this proposition. �
We are now in a position to prove Theorem 1.5.

Proof of Theorem 1.5. On combining Proposition 3.1 with Theorem 5.3 and Proposi-
tion 6.1, the result follows immediately. �
7. Local obstructions

Let K, O, π and F be defined as in Section 3. The uniform local density hypothesis 
works only for elements in O(M). We will refer to the elements in O� \ O(M) as local 
obstructions. In this section, we aim to show that no local obstruction exists, except for 
the case when O has small residue field F . In what follows, we define F (M) as in (1.5).

Proposition 7.1. Suppose that char(F ) � k. Let u0 ∈ N and r0 ∈ N be defined as in (3.2). 
The following hold.
(1) Let f = (fi)i∈M ∈ O�. Then f ∈ O(M) if and only if there exists g = (gi)i∈M ∈
O(M) such that

fi ≡ gi (modπr0) (i ∈ M).

(2) Suppose that u0 = 0. Then O(M) = O� if and only if F (M) = F �.

Proof. (1) follows from Proposition 3.1(1) immediately. By putting u0 = 0 and taking 
r0 = 1, (2) holds as a special case of (1). �
Lemma 7.1. Let ci ∈ F for each i ∈ M. Suppose that 

∑
i∈M ciai = 0 for all a ∈ F d. If 

card(F ) > k, then ci = 0 for all i ∈ M.

Proof. Suppose that the ci (i ∈ M) are not all zero. Let N0 = M and Nl = {i ∈ M | i1 =
0, . . . , il = 0} for 1 ≤ l ≤ d − 1. Let ϕl(x) =

∑
i∈Nl

cixi for 0 ≤ l ≤ d − 1. We now claim 
that for each l with 0 ≤ l ≤ d − 2, if ϕl(a) = 0 for all a ∈ F d and the ci (i ∈ Nl) are 
not all zero, then ϕl+1(a) = 0 for all a ∈ F d and the ci (i ∈ Nl+1) are not all zero. By 
repeatedly applying this claim, we have ϕd−1(a) = 0 for all a ∈ F d and the ci (i ∈ Nd−1)
are not all zero. Since Nd−1 = {i ∈ M | i1 = 0, . . . , id−1 = 0} = {(0, . . . , 0, k)}, we have 
ϕd−1(a) = c(0,...,0,k)a

0
1 · · · a0

d−1a
k
d = 0 for all a1, . . . , ad ∈ F and c(0,...,0,k) �= 0. This gives 

a contradiction.
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It remains to show the claim. For all a ∈ F d, since ϕl(a) = 0 we have

ϕl+1(a) = ϕl+1(a) − ϕl(a) = −
∑

i∈Nl\Nl+1

ciai.

For each i = (i1, . . . , id) ∈ Nl \ Nl+1, we have i1 = · · · = il = 0 and il+1 > 0. For all 
a = (a1, . . . , ad) ∈ F d, since

ϕl+1(a1, . . . , ad) =
∑

i∈Nl+1

cia
0
1 · · · a0

l+1a
il+2
l+2 · · · aidd =

∑
i∈Nl+1

ci00 · · · 00a
il+2
l+2 · · · aidd ,

it follows that

ϕl+1(a1, . . . , ad) = ϕl+1(0, . . . , 0, al+2, . . . , ad) = −
∑

i∈Nl\Nl+1

ci00 · · · 0il+1a
il+2
l+2 · · · aidd = 0.

Assume that the ci (i ∈ Nl+1) are all zero. Then the coefficients ci (i ∈ Nl \ Nl+1) are 
not all zero. On viewing −ϕl+1(x) as a linear combination of the group homomorphisms 
xi (i ∈ Nl \Nl+1) from (F×)d to F×, it follows from Lemma 6.1 that there exist distinct 
i, j ∈ Nl \ Nl+1 such that ai = aj for all a ∈ (F×)d. By Lemma 6.2, we have

card(F×) ≤ |il+1 − jl+1| ≤ k − 1,

contradicting that card(F ) > k. This completes the proof of the lemma. �
Proposition 7.2. Suppose that card(F ) > k. Then F (M) = F � if and only if F (k) = F .

Proof. Suppose that F (M) = F �. Let a ∈ F and (ai)i∈M ∈ F � where

ai =
{
a, if i = (k, 0, . . . , 0),
0, otherwise.

Since F � = F (M), there exist aj = (aj,1, . . . , aj,d) ∈ F d (1 ≤ j ≤ n) such that

ai =
n∑

j=1
ai1j,1 · · · aidj,d (i ∈ M).

When i = (k, 0, . . . , 0), we get

a =
n∑

j=1
akj,1 ∈ F (k).

Thus F ⊆ F (k). In combination with F (k) ⊆ F , we have F (k) = F .
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Conversely, suppose that F (k) = F . Let A be the matrix over F formed by the vectors 
Ω1 =

{
(ai11 · · · aidd )i∈M | a1, . . . , ad ∈ F

}
. Assume that rkA < �. Then there exist ci ∈ F , 

not all zero, such that for all a ∈ F d, one has

∑
i∈M

ciai = 0,

contradicting Lemma 7.1. Thus rkA = � and so we can find a basis of the vector space 
F � from the set Ω1. Since Ω1 ⊆ F (M), F (M) contains a basis of F �. Recall that F (M)
is a vector space over F (k). When F (k) = F , we have F (M) = F �. This completes the 
proof of the proposition. �
Lemma 7.2. Suppose that char(F ) � k. Let u0 ∈ N be defined as in (3.2). Suppose that 
u0 > 0. Then card(F ) ≤ k.

Proof. If u0 > 0, then |Δ(Ψ; O)| = |π|u0 < 1. The result follows from Lemma 6.4
immediately. �
Proposition 7.3. Suppose that char(F ) � k and card(F ) > k. Then O(M) = O� if and 
only if F (k) = F .

Proof. It follows from Lemma 7.2 that u0 = 0. Thus Proposition 7.1(3) implies that 
O(M) = O� if and only if F (M) = F �. We then conclude from Proposition 7.2 that 
O(M) = O� if and only if F (k) = F . �

If card(F ) > k and O(M) �= O�, then F (k) �= F . Next, we aim to discuss the size of 
the residue field F in this case.

Lemma 7.3. Suppose that F (k) �= F . Then card(F ) ≤ (k − 1)2.

Proof. This follows from Theorem 4.1(4) immediately. �
We are now in a position to prove Theorem 1.6.

Proof of Theorem 1.6. When k ≥ 3 and card(F ) > (k − 1)2, by Lemma 7.3, we have 
F (k) = F . Since (k − 1)2 > k for all k ≥ 3, it thus follows from Proposition 7.3
that O(M) = O�. When k = 2, it follows from Corollary 4.1 that F (k) = F . Since 
char(F ) � k, we have card(F ) ≥ char(F ) ≥ 3 > k. By applying Proposition 7.3 again, we 
get O(M) = O�. This completes the proof of the theorem. �

We now end this section by applying Proposition 7.1 to show the existence of P defined 
in (1.11).
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Corollary 7.1. Let m = (mi)i∈M ∈ A� and T0 = C+min{N ∈ N | k(N−1) ≥ degmi (i ∈
M)} where C = 1 +2u0(Ψ; A∞). Suppose that char(Fq) � k. Then tk(1−T0)m ∈ A∞(M). 
In addition, define T = T (m) as in (1.11). Then T ≤ T0 and

T ≥ min{N ∈ N | k(N − 1) ≥ degmi (i ∈ M)}.

Proof. In view of definitions of T0 and C, for each i ∈ M, we have

ord
(
tk(1−T0)mi

)
= k(1 − T0) + ordmi ≤ −kC,

and so

tk(1−T0)mi ≡ 0 (mod (t−1)C).

It thus follows from Proposition 7.1 that tk(1−T0)m ∈ A∞(M). For each i ∈ M, we have

k(T − 1) ≥ degmi (i ∈ M).

Therefore

T ≥ min{N ∈ N | k(N − 1) ≥ degmi (i ∈ M)}. �
Remark. This relation actually is consistent with the 1-dimensional case considered in 
[24]. More precisely, for m ∈ A, let c(m) denote the leading coefficient of m. We say that 
m is exceptional if k| degm and c(m) /∈ Fq(k). Let R = Rk(m) + 1 where

Rk(m) =
{
�(degm)/k�, if m is not exceptional,
(degm)/k + 1, if m is exceptional.

The following proposition implies that

R = min{N ∈ N | tk(1−N)m ∈ A∞(k)}.

Proposition 7.4. Let m ∈ A and N ∈ N. Suppose that char(Fq) � k. Then the following 
are equivalent.

(1) tk(1−N)m ∈ A∞(k).
(2) tk(1−N)m ∈ A∞ and tk(1−N)m (mod t−1) ∈ Fq(k).
(3) When m is not exceptional, N ≥ �(degm)/k� +1; otherwise, N ≥ �(degm)/k� +2.

Proof. (1)⇔(2) It follows from Proposition 3.3(1) when O = A∞ = Fq�1/t� and π = t−1

with residue field F = Fq.
(2)⇔(3) First off, note that tk(1−N)m ∈ A∞ if and only if k(1 − N) + degm ≤ 0, 

namely,
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N ≥ �(degm)/k� + 1.

It suffices to show that when N ≥ �(degm)/k� + 1, tk(1−N)m (mod t−1) /∈ Fq(k) if and 
only if m is exceptional and N = �(degm)/k� + 1. Recall that c(m) denotes the leading 
coefficient of m. We then have

tk(1−N)m (mod t−1) =

⎧⎪⎪⎨⎪⎪⎩
0, N = �(degm)/k� + 2,
0, N = �(degm)/k� + 1, k � degm,

c(m), N = �(degm)/k� + 1, k | degm.

Thus tk(1−N)m (mod t−1) /∈ Fq(k) if and only if m and N satisfy the following three 
conditions simultaneously: c(m) /∈ Fq(k), N = �(degm)/k� + 1 and k | degm. On 
recalling that m is defined to be exceptional when c(m) /∈ Fq(k) and k | degm, we 
can conclude that tk(1−N)m (mod t−1) /∈ Fq(k) if and only if m is exceptional and 
N = �(degm)/k� + 1. This completes the proof of the proposition. �
8. Local densities at finite places and singular series

We begin with introducing a standard additive character for function fields, used 
throughout Sections 8, 9 and 10. First off, write K = Fq(t) be the field of fractions of 
A and let K∞ = Fq((1/t)) be the completion of K at ∞. We may write each α ∈ K∞
as α =

∑
i≤v ait

i for some v ∈ Z and ai = ai(α) ∈ Fq (i ≤ v), where a−1 is often 
referred to as the residue of α, denoted by resα. If av �= 0, we define ordα = v and 
write 〈α〉 = qord α. We adopt the convention that ord 0 = −∞. Let p = char(Fq) and let 
tr : Fq → Fp denote the familiar trace map. There is a non-trivial additive character 
eq : Fq → C× defined by taking eq(a) = e2πitr(a)/p for each a ∈ Fq. This character 
induces a map e : K∞ → C× by defining e(α) = eq(resα) for each element α ∈ K∞. Let 
M and � be defined as in (1.2). Let s ∈ N \ {0}. For α = (αi)i∈M, ν = (νi)i∈M, and 
x = (x1, . . . , xs) where xj = (xj,1, . . . , xj,d), write

G(α;x;ν) =
∑
i∈M

αi
(
xi

1 + · · · + xi
s − νi

)
. (8.1)

In this section, we assume that char(Fq) � k. In addition, for X ∈ R, let X̂ = qX . For 
each w ∈ P, let Aw denote the completion of A at the place w and define Aw(M) by 
(1.5). For h ∈ N, w ∈ P and m ∈ Aw(M), recall that

λq,s,k,d(h;w;m) = 〈w〉h(�−sd) · card
{
x (mod g)

∣∣xi
1 + · · · + xi

s ≡ mi (mod g) (i ∈ M)
}
.

To prove that when h goes to ∞, the limit of λq,s,k,d(h; w; m) exists, we start with 
the following congruences and rational exponential sums. For monic g ∈ A and m =
(mi)i∈M ∈ A�, let
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M(g;m) = card
{
x (mod g)

∣∣xi
1 + · · · + xi

s ≡ mi (mod g) (i ∈ M)
}
. (8.2)

For simplicity, given a = (ai)i∈M ∈ A� and g ∈ A, denote by (a, g) the monic greatest 
common divisor of g and all the ai. For monic g ∈ A and m ∈ A�, define

S(g;m) = 〈g〉−sd
∑

a (mod g)
(a,g)=1

∑
x (mod g)

e

(
G(a;x;m)

g

)
. (8.3)

Therefore, for h ∈ N, w ∈ P and m ∈ A� ∩Aw(M), we have

λq,s,k,d(h;w;m) = 〈w〉h(�−sd) ·M(wh;m). (8.4)

To continue, some preliminaries are now required.

Lemma 8.1. The exponential function e : K∞ → C× has the following properties.
(1) e is a continuous function.
(2) e(α + β) = e(α)e(β).
(3) e(x) = 1, if x ∈ A.
(4) If x, g ∈ A with g �= 0, then

1
〈g〉

∑
a(mod g)

e
(xa

g

)
=
{

1, if g | x,
0, if g � x.

(5) For monic g ∈ A and m ∈ A�, one has∑
g1|g

g1monic

S(g1;m) = 〈g〉�−sdM(g;m).

(6) For monic g ∈ A and m ∈ A�, for any small positive number ε > 0, one has

S(g;m) � 〈g〉�− s
2k+ε.

Proof. The first four items are part of [22, Lemma 1]. It remains to show that last two 
parts.

(5) Let g be a monic polynomial in A. For every i ∈ M, by Part (4), we have

〈g〉−1
∑

ai (mod g)

e

(
ai
(
xi

1 + · · · + xi
s −mi

)
g

)
=
{

1, if xi
1 + · · · + xi

s ≡ mi (mod g),
0, otherwise.

On recalling (8.1) and (8.2), it then follows from Part (2) that
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M(g;m) =

∑
x (mod g)

∏
i∈M

〈g〉−1
∑

ai (mod g)

e

(
ai xi

1 + · · · + xi
s −mi

g

)

= 〈g〉−�
∑

x (mod g)
a (mod g)

e

(
G(a;x;m)

g

)
.

From Parts (2) and (3), we then have

M(g;m) = 〈g〉−�
∑
g1|g

g1 monic

∑
a (mod g)
(a,g)=g1

∑
x (mod g)

e

(
G(a;x;m)

g

)

= 〈g〉−�
∑
g1|g

g1 monic

∑
b (mod g/g1)
(b,g/g1)=1

〈g1〉sd
∑

x (mod g/g1)

e

(
G(b;x;m)

g/g1

)

= 〈g〉−�
∑
g1|g

g1 monic

〈g/g1〉sd
∑

b (mod g1)
(b,g1)=1

∑
x (mod g1)

e

(
G(b;x;m)

g1

)

= 〈g〉sd−�
∑
g1|g

g1 monic

〈g1〉−sd
∑

b (mod g1)
(b,g1)=1

∑
x (mod g1)

e

(
G(b;x;m)

g1

)
.

In view of (8.3), we thus find∑
g1|g

g1monic

S(g1;m) = 〈g〉�−sdM(g;m).

(6) Let a = (ai)i∈M ∈ A� and g ∈ A \ {0}. If char(Fq) � k and (a, g) = 1, it then 
follows from [47, Corollary 1.1] that

∑
z (mod g)

e

(
1
g

∑
i∈M

aizi
)

� 〈g〉d−1/(2k)+ε,

where z ∈ Ad runs through all congruence classes modulo g. We then note that

∣∣∣∣ ∑
x (mod g)

e

(
G(a;x;m)

g

)∣∣∣∣ = ∣∣∣∣ ∑
x (mod g)

e

(
G(a;x;0)

g

)∣∣∣∣ = ∣∣∣∣ ∑
z (mod g)

e

(∑
i∈M aizi

g

)∣∣∣∣s.
When (a, g) = 1, we have∣∣∣∣ ∑

e

(
G(a;x;m)

g

)∣∣∣∣� 〈g〉sd− s
2k+ε.
x (mod g)
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On recalling that S(g; m) is defined by (8.3), we then find∣∣S(g;m)
∣∣� 〈g〉�− s

2k+ε.

This completes the proof of the lemma. �
Proposition 8.1. Let w ∈ P and m ∈ A� ∩ Aw(M). Suppose that s ≥ 2k(� + 1) + 1. 
Define

χ(w;m) = χq,s,k,d(w;m) = lim
h→∞

λq,s,k,d(h;w;m).

Then the following hold.
(1) The limit χ(w; m) exists and

χ(w;m) =
∞∑
h=0

S(wh;m).

(2) One has ∣∣χ(w;m) − 1
∣∣� 〈w〉�− s

2k+ε.

(3) There exists a constant c = c(s, k, d; w) such that

χ(w;m) ≥ 〈w〉c(�−sd).

Proof. For h ∈ N, on recalling (8.4) and taking g = wh, it follows from Lemma 8.1(5) 
that

λq,s,k,d(h;w;m) = 〈wh〉�−sd ·M(wh;m) =
h∑

l=0

S(wl;m).

Thus

χ(w;m) =
∞∑
h=0

S(wh;m).

On taking g = wh, when s ≥ 2k(� + 1) + 1, by Lemma 8.1(6), we get

S(wh;m) � 〈wh〉�− s
2k+ε (h ∈ N).

We therefore obtain the absolute convergence of the series

χ(w;m) =
∞∑

S(wh;m)

h=0



W. Kuo et al. / Advances in Mathematics 353 (2019) 1–66 49
and

|χ(w;m) − 1| ≤
∞∑
h=1

|S(wh;m)| � 〈w〉�− s
2k+ε.

Since s ≥ 2k(� + 1) + 1 ≥ (k + 2)�, it follows from Corollary 1.1 that there exists a 
constant c = c(s, k, d; w) such that

χ(w;m) = lim
h→∞

λq,s,k,d(h;w;m) ≥ 〈w〉c(�−sd).

This completes the proof of the proposition. �
In the remainder of this section, we aim to transform the infinite product of local 

densities at finite places to singular series.

Lemma 8.2. Fix m ∈ A�. Then the function S(g; m) is multiplicative with respect to g.

Proof. Suppose that g1 and g2 are monic polynomials in A with (g1, g2) = 1. Thus

S(g1g2;m) = 〈g1g2〉−sd
∑

a (mod g1g2)
(a,g1g2)=1

∑
x (mod g1g2)

e

(
G(a;x;m)

g1g2

)
.

As bi runs through A�(mod gi) with (bi, gi) = 1 (i = 1, 2), by the Chinese Remainder 
Theorem, 

(
g2b1 + g1b2

)
runs through{

a (mod g1g2)
∣∣ (a, g1g2) = 1

}
.

Therefore,

S(g1g2;m) = 〈g1g2〉−sd
∑

b1 (mod g1)
(b1,g1)=1

∑
b2 (mod g2)
(b2,g2)=1

∑
x (mod g1g2)

e

(
G(g2b1 + g1b2;x;m)

g1g2

)
.

Note that

G(g2b1 +g1b2;x;m) = G(g2b1;x;m)+G(g1b2;x;m) = g2G(b1;x;m)+g1G(b2;x;m).

We then have

e

(
G(g2b1 + g1b2;x;m)

g1g2

)
= e

(
G(b1;x;m)

g1

)
e

(
G(b2;x;m)

g2

)
.

As y, z run through Asd(mod gi) (i = 1, 2) respectively, by the Chinese Remainder 
Theorem, 

(
g2y + g1z

)
runs through Asd(mod g1g2). Since
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e

(
G(b1; g2y + g1z;m)

g1

)
= e

(
G(b1; g2y;m)

g1

)
and

e

(
G(b2; g2y + g1z;m)

g2

)
= e

(
G(b2; g1z;m)

g2

)
,

it follows that

S(g1g2;m)

= 〈g1g2〉−sd
∑

b1 (mod g1)
(b1,g1)=1

∑
b2 (mod g2)
(b2,g2)=1

∑
y (mod g1)
z (mod g2)

e

(
G(b1; g2y;m)

g1

)
e

(
G(b2; g1z;m)

g2

)
.

In view of the hypothesis that (g1, g2) = 1, we find

S(g1g2;m) = 〈g1g2〉−sd
∑

y (mod g1)
b1 (mod g1)
(b1,g1)=1

e

(
G(b1;y;m)

g1

) ∑
z (mod g2)
b2 (mod g2)
(b2,g2)=1

e

(
G(b2; z;m)

g2

)
.

Thus

S(g1g2;m) = S(g1;m)S(g2;m).

This completes the proof of the lemma. �
Proposition 8.2. Suppose that s ≥ 2k(� + 1) + 1. Whenever m ∈ A� ∩Aw(M) for every 
w ∈ P, one has ∏

w∈P
χ(w;m) =

∑
g monic

S(g;m),

both of which converge absolutely.

Proof. It follows from Proposition 8.1 that∑
w∈P

∣∣χ(w;m) − 1
∣∣� ∑

w∈P
〈w〉�− s

2k+ε � 1.

We then obtain that the infinite product 
∏
w∈P

χ(w; m) converges absolutely. In combina-

tion of the absolute convergence with Proposition 8.1 and Lemma 8.2, we find∏
χ(w;m) =

∏ (
1 + S(w;m) + S(m;w2) + · · ·

)
=
∑

S(g;m).

w∈P w∈P g monic
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This completes the proof of the proposition. �
We now introduce the singular series to be

S(m) = Sq,s,k,d(m) =
∑

g monic
S(g;m).

Also for Q ∈ N with Q > 0, we define

S(m;Q) = Sq,s,k,d(m;Q) =
∑

〈g〉≤Q̂
g monic

S(g;m).

Next, we establish the upper and lower bounds of the singular series.

Proposition 8.3. Suppose that s ≥ 2k(� + 1) + 1.
(1) Whenever m ∈ A�, one has∣∣S(m)

∣∣ ≤ ∑
g monic

∣∣S(g;m)
∣∣� 1.

In addition, for any ε with 0 < ε < 1/(2k), one has∣∣S(m) −S(m;Q)
∣∣ ≤ ∑

〈g〉>Q̂
g monic

∣∣S(g;m)
∣∣� Q̂1+�− s

2k+ε.

(2) Whenever m ∈ A� ∩Aw(M) for every w ∈ P, one has

S(m) =
∏
w∈P

(
lim
h→∞

λq,s,k,d(h;w;m)
)
� 1.

Proof. (1) On recalling Lemma 8.1(6), we have∣∣S(g;m)
∣∣� 〈g〉�− s

2k+ε,

which implies that

∣∣S(m;Q)
∣∣ ≤ Q∑

h=0

∑
ord g=h
g monic

∣∣S(g;m)
∣∣� Q∑

h=0

qh+h(�− s
2k+ε) =

Q∑
h=0

qh(1+�− s
2k+ε).

Note that if s ≥ 2k(� +1) +1, we obtain 1 +� − s
2k + ε < 0 for any ε with 0 < ε < 1/(2k). 

It follows that

∣∣S(m)
∣∣ ≤ ∑ ∣∣S(g;m)

∣∣� ∞∑
qh(1+�− s

2k+ε) � 1

g monic h=0
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and ∣∣S(m) −S(m;Q)
∣∣ ≤ ∑

〈g〉>Q̂
g monic

∣∣S(g;m)
∣∣� Q̂1+�− s

2k+ε.

(2) By carrying over a standard argument as in [24, Lemma 5.2], there exists a constant 
C∗ = C∗(q, s, k, d) such that

1
2 <

∏
w∈P

ord w>C∗

χ(w;m) < 3
2 .

By Proposition 8.1, there exists a nonnegative integer c = c(q, s, k, d), independent of 
m, such that ∏

w∈P
ord w≤C∗

χ(w;m) ≥
∏
w∈P

ord w≤C∗

〈w〉c(�−sd).

On combining the above estimates, we have∏
w∈P

χ(w;m) � 1.

In combination with Proposition 8.2, this completes the proof of the proposition. �
Remark. We actually only need to apply the uniform local density hypothesis for w with 
ordw ≤ C∗.

9. Local density at ∞ and singular integral

Let M and � be defined as in (1.2). Let s ∈ N \ {0}. Recall that for m ∈ A� and 
P ≥ T (m) with T (m) defined by (1.11), λq,s,k,d(P ; ∞; m) is defined to be

P̂ �−sd · card
{
x ∈ IsdP

∣∣ ord (xi
1 + · · · + xi

s −mi) < (k − 1)P (i ∈ M)
}
.

In this section, we still assume that char(Fq) � k. To be prepared, recall that A∞ =
Fq�1/t� and A∞(M) is defined by (1.5). Thus A∞ = {α ∈ K∞ | ordα ≤ 0}.

Proposition 9.1. Let m = (mi)i∈M ∈ A� and P ∈ N with P ≥ T (m). Suppose that 
s ≥ (k + 2)� and P is sufficiently large in terms of s, k, d and q. Then there exists 
c̃ = c̃(q, s, k, d) > 0 such that

λq,s,k,d(P ;∞;m) ≥ qc̃(�−sd).
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Proof. We now need to take K = Fq((1/t)) for the completion of Fq(t) at ∞ and π = t−1. 
Since P ≥ T (m), we have tk(1−P )m ∈ A∞(M). On recalling Definition 1.2, for h > 0, 
we have

λs,k,d(h; t−1; tk(1−P )m)

=qh(�−sd) · card
{
y (mod t−h)

∣∣ yi
1 + · · · + yi

s ≡ tk(1−P )mi (mod t−h) (i ∈ M)
}
.

Since tk(1−P )m ∈ A∞(M) and char(Fq) � k, by Corollary 1.1, when s ≥ (k + 2)�, there 
exists a constant u∗ = u∗(s, k, d; t−1) such that h ≥ u∗, we have

λs,k,d(h; t−1; tk(1−P )m) ≥ qu
∗(�−sd).

Recall that IP = {x ∈ A | deg x < P}. Write LP = {t1−Px | x ∈ IP } and let Q = P −k+
1. On making a change of variables by y = t1−Px, since −Q = (k− 1)P + k(1 − P ) − 1, 
we have

card
{
x ∈ IsdP

∣∣ ord (xi
1 + · · · + xi

s −mi) < (k − 1)P (i ∈ M)
}

=card
{
y ∈ Lsd

P

∣∣ ord
(
yi

1 + · · · + yi
s − tk(1−P )mi

)
< (k − 1)P + k(1 − P ) (i ∈ M)

}
=card

{
y (mod t−P )

∣∣ yi
1 + · · · + yi

s − tk(1−P )mi ≡ 0 (mod t−Q) (i ∈ M)
}

=q(k−1)sdcard
{
y (mod t−Q)

∣∣ yi
1 + · · · + yi

s − tk(1−P )mi ≡ 0 (mod t−Q) (i ∈ M)
}
.

Thus on taking h = Q, we get

λs,k,d(Q; t−1; tk(1−P )m)

=qQ(�−sd) · card
{
y (mod t−Q)

∣∣ yi
1 + · · · + yi

s ≡ tk(1−P )mi (mod t−Q) (i ∈ M)
}

=qQ(�−sd) · q(1−k)sd · card
{
x ∈ IsdP

∣∣ ord (xi
1 + · · · + xi

s −mi) < (k − 1)P (i ∈ M)
}

=qQ(�−sd) · q(1−k)sd · q−P (�−sd) · λq,s,k,d(P ;∞;m).

Since Q = P − k + 1, we get

λs,k,d(Q; t−1; tk(1−P )m) = q(1−k)�λq,s,k,d(P ;∞;m).

Therefore, when P is sufficiently large, we have

λs,k,d(Q; t−1; tk(1−P )m) ≥ qu
∗(�−sd),

and so

λq,s,k,d(P ;∞;m) = q(k−1)�λs,k,d(Q; t−1; tk(1−P )m) ≥ q(k−1)�qu
∗(�−sd).

This completes the proof of the proposition. �
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To proceed, we now introduce some analytic properties for the exponential function 
e. Let T =

{
α ∈ K∞ | 〈α〉 < 1

}
. Given any Haar measure dα on K∞, we normalize it in 

such a manner that 
∫
T 1 dα = 1. In what follows, for � ∈ Z, define

J� = {α ∈ K∞ | 〈α〉 < �̂}.

For Q ∈ N, recall that IQ = {x ∈ A | 〈x〉 < Q̂} and write

t−QIQ = {t−Qx |x ∈ IQ}.

For α = (αi)i∈M, write

ord (α) = max
i∈M

ord (αi).

Lemma 9.1. The exponential function e : K∞ → C× satisfies the following properties.
(1) If Q ∈ N and x ∈ A, then

Q̂

∫
J−Q

e(xα)dα =
{

1, if x ∈ IQ,

0, otherwise.

(2) Let � ∈ Z and S ⊆ K∞ be measurable. If f : K∞ −→ C is integrable, then

q�
∫

t−�X

f(t�α)dα =
∫
X

f(β)dβ.

(3) Suppose that Q ∈ N and α = (αi)i∈M ∈ K�
∞ such that ord (α) < Q. Then

∑
x∈(t−QIQ)sd

e
(
G(α;x;m)

)
= Q̂sd

∫
Tsd

e
(
G(α;x;m)

)
dx.

Proof. The first two parts are proved in [22, Lemma 1] and [12, Equation (2.16)] respec-
tively.

(3) Let G(α; y; 0) be defined by (8.1). It then follows from [48, Lemma 3.2] that

∑
y∈(t−QIQ)sd

e
(
G(α;y;0)

)
= Q̂sd

∫
Tsd

e
(
G(α;y;0)

)
dy.

In view of the definition (8.1), we observe

e
(
G(α;y;m)

)
= e
(
G(α;y;0)

)
e(−α · m),

where α · m =
∑

i∈M αimi. Therefore,
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∑
y∈(t−QIQ)sd

e
(
G(α;y;m)

)
= Q̂sd

∫
Tsd

e
(
G(α;y;m)

)
dy. �

Lemma 9.2. Let m ∈ A� and P ≥ T (m) with T (m) defined by (1.11). Let G(β; x; m) be 
defined by (8.1). Then

λq,s,k,d(P ;∞;m) = P̂ �k−sd

∫
J�
−(k−1)P

∑
x∈Isd

P

e
(
G(β;x;m)

)
dβ.

Proof. By Lemma 9.1(1), on taking Q = (k−1)P , for every i ∈ M and x ∈ IsdP , we have

P̂ k−1
∫

J−(k−1)P

e
(
βi(xi

1 + · · · + xi
s −mi)

)
dβi =

{
1, if (xi

1 + · · · + xi
s −mi) ∈ I(k−1)P ,

0, otherwise.

Thus

P̂ (k−1)�
∫

J�
−(k−1)P

e
(
G(β;x;m)

)
dβ =

∏
i∈M

P̂ (k−1)
∫

J−(k−1)P

e
(
βi(xi

1 + · · · + xi
s −mi)

)
dβi.

Therefore

λq,s,k,d(P ;∞;m) = P̂ �−sdcard
{
x ∈ IsdP

∣∣ (xi
1 + · · · + xi

s −mi) ∈ I(k−1)P (i ∈ M)
}

= P̂ �−sd · P̂ (k−1)�
∑

x∈Isd
P

∫
J�
−(k−1)P

e
(
G(β;x;m)

)
dβ

= P̂ �k−sd

∫
J�
−(k−1)P

∑
x∈Isd

P

e
(
G(β;x;m)

)
dβ.

This completes the proof. �
Lemma 9.3. Let � ∈ Z and Q ∈ N with � ≤ (1 − k)Q. Let m ∈ A� and let G(β; x; m) be 
defined by (8.1). Then∫

J�
�

∑
x∈Isd

Q

e
(
G(β;x;m)

)
dβ = Q̂sd−�k

∫
J�
�+kQ

( ∫
Tsd

e
(
G(α;x; t−kQm)

)
dx
)
dα.

In particular, for P ≥ T (m) with T (m) defined by (1.11), one has

λq,s,k,d(P ;∞;m) =
∫
J�
P

( ∫
Tsd

e
(
G(α;x; t−kPm)

)
dx
)
dα.
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Proof. On recalling that the definition of G(α; x; m) in (8.1), we find from Lemma 8.1(1), 
(2), and Lemma 9.1(2) that

∫
J�
�

e
(
G(β;x;m)

)
dβ =

∫
J�
�

∏
i∈M

e
(
βi
(
xi

1 + · · · + xi
s −mi

))
dβ

=
∏
i∈M

∫
J�

e
(
βi
(
xi

1 + · · · + xi
s −mi

))
dβi

=
∏
i∈M

Q̂−k

∫
J�+kQ

e
(
t−kQαi

(
xi

1 + · · · + xi
s −mi

))
dαi

= Q̂−�k

∫
J�
�+kQ

e
(
G(t−kQα;x;m)

)
dα.

On letting y = t−Qx, we see that

∑
x∈Isd

Q

e
(
G(t−kQα;x;m)

)
=
∑

x∈Isd
Q

e

(∑
i∈M

t−kQαi
(
xi

1 + · · · + xi
s −mi

))

=
∑

y∈(t−QIQ)sd
e
(
G(α;y; t−kQm)

)
.

Thus ∫
J�
�

∑
x∈Isd

Q

e
(
G(β;x;m)

)
dβ = Q̂−�k

∫
J�
�+kQ

∑
x∈Isd

Q

e
(
G(t−kQα;x;m)

)
dα

= Q̂−�k

∫
J�
�+kQ

∑
y∈(t−QIQ)sd

e
(
G(α;y; t−kQm)

)
dα.

For α ∈ J�
�+kQ, we have

ord (α) < � + kQ ≤ (1 − k)Q + kQ = Q.

It follows from the above argument and Lemma 9.1(3) that

∫
J�
�

∑
x∈Isd

Q

e
(
G(β;x;m)

)
dβ = Q̂sd−�k

∫
J�
�+kQ

( ∫
Tsd

e
(
G(α;y; t−kQm)

)
dy
)
dα.

By Lemma 9.2, on taking � = −(k − 1)P and Q = P , we obtain
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λq,s,k,d(P ;∞;m) =
∫
J�
P

( ∫
Tsd

e
(
G(α;x; t−kPm)

)
dx
)
dα.

This completes the proof of the lemma. �
Definition 9.1. For m ∈ A� and P ≥ T (m) with T (m) defined by (1.11), define the 
singular integral to be

J(m;P ) = Jq,s,k,d(m;P ) =
∫

K�
∞

( ∫
Tsd

G(α;x; t−kPm)dx
)
dα.

For Q ∈ N, define

J(m;P ;Q) =
∫
J�
Q

( ∫
Tsd

e
(
G(α;x; t−kPm)

)
dx
)
dα.

Lemma 9.4. Whenever s ≥ 2k� + 1, there exist two constants C = C(q, s, k, d) > 0 and 
C̃ = C̃(q, s, k, d) > 0 such that the following inequalities hold.

(1) 
∣∣J(m; P )

∣∣ ≤ ∫
K�

∞

∣∣∣∣ ∫
Tsd

e
(
G(α; x; t−kPm)

)
dx
∣∣∣∣dα ≤ C.

(2) 
∫

K�
∞\J�

Q

∣∣∣∣ ∫
Tsd

e
(
G(α; x; t−kPm)

)
dx
∣∣∣∣dα ≤ C̃Q̂−1/(4k�) (Q ∈ N).

Proof. In view of definition, we have∣∣∣∣ ∫
Tsd

e
(
G(α;x; t−kPm)

)
dx
∣∣∣∣ = ∣∣∣∣ ∫

Tsd

e
(
G(α;x;0)

)
dx
∣∣∣∣.

Then the lemma follows at once from [48, Theorem 3.2]. �
Proposition 9.2. Suppose that s ≥ 2k� +1. For m ∈ A� and P ∈ N with P ≥ T (m), one 
has

λq,s,k,d(P ;∞;m) = J(m;P ;P ) � 1

and

λq,s,k,d(P ;∞;m) − J(m;P ) � P̂−1/(4k�).

Whenever P is sufficiently large in terms of s, k, d and q, one has

λq,s,k,d(P ;∞;m) � 1.



58 W. Kuo et al. / Advances in Mathematics 353 (2019) 1–66
Proof. Since s ≥ 2k� + 1 ≥ (k + 2)�, by Proposition 9.1, the lower bound follows 
immediately. Lemma 9.3 implies that

λq,s,k,d(P ;∞;m) = J(m;P ;P ).

By Lemma 9.4(2), we deduce that∣∣J(m;P ) − J(m;P ;P )
∣∣� P̂−1/(4k�).

Thus

J(m;P ;P ) � 1

and

λq,s,k,d(P ;∞;m) − J(m;P ) � P̂−1/(4k�).

This completes the proof of the proposition. �
10. The asymptotic formula in Theorem 1.4

In this section, we will prove Theorem 1.4 via the Hardy-Littlewood circle method. 
We first recall the following orthogonality relation established in [22, Lemma 1]

∫
T

e(xα) dα =
{

1, when x = 0,
0, when x ∈ A \ {0}.

Therefore, for n ∈ N \ {0}, (x1, · · · , xn) ∈ An, and α = (α1, · · · , αn) ∈ Kn
∞, we have

∫
Tn

e(x1α1 + · · · + xnαn) dα =
n∏

i=1

∫
T

e(xiαi) dαi

=
{

1, when xi = 0 (1 ≤ i ≤ n),
0, otherwise.

(10.1)

Let M and � be defined as in (1.2). Let s ∈ N \ {0}. For α = (αi)i∈M ∈ T� and 
P ∈ N \ {0}, define

f(α;P ) =
∑
x∈Id

P

e

(∑
i∈M

αixi
)
.

By (10.1), for m =
(
mi
)

∈ A� and P ∈ N \ {0}, we have
i∈M
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Rq,s,k,d(m;P ) =
∫
T�

f(α;P )se(−α · m)dα,

where α ·m =
∑

i∈M αimi. To start the circle method, we divide T� into the Farey arcs 
defined as follows: given a = (ai)i∈M ∈ A� and g ∈ A for which the monic common 
divisor of g and all the ai is 1, denoted by (a, g) = 1, we define the Farey arc M(g, a)
about a/g by

M(g,a) =
{
α ∈ T�

∣∣ 〈gαi − ai〉 < P̂
1
2−k (i ∈ M)

}
. (10.2)

The set of major arcs M is defined to be the union of all M(g, a) with

a ∈ A�, g ∈ A, gmonic, (a, g) = 1, and 0 ≤ 〈ai〉 < 〈g〉 ≤ P̂
1
2 (i ∈ M). (10.3)

The conditions (10.2) and (10.3) ensure that the arcs M(g, a) comprising M are disjoint. 
Furthermore, we write m = T� \M for the complementary set of minor arcs.

We first consider the major arc contribution.

Proposition 10.1. Let M and � be defined as in (1.2). Suppose that char(Fq) � k and 
s ≥ 2k(� + 1) + 1. Then for m ∈ A� with P ≥ T (m) defined by (1.11), there exists a 
positive number P0 = P0(q, s, k, d) such that whenever m ∈ Aw(M) for every w ∈ P and 
P ≥ P0, one has∫

M

f(α;P )se(−α · m)dα = Cq,s,k,d(m;P )P̂ sd−�k + O
(
P̂ sd−�k−1/(16k�)),

where

Cq,s,k,d(m;P ) = λq,s,k,d(P ;∞;m)
∏
w∈P

(
lim
h→∞

λq,s,k,d(h;w;m)
)
.

In addition, one has 1 � Cq,s,k,d(m; P ) � 1.

Proof. Suppose that α = (αi)i∈M ∈ M(g, a) ⊆ M. Write β = α − a/g. Then 〈βi〉 <
〈g〉−1P̂

1
2−k
(
i ∈ M

)
. It follows from similar arguments as in [46, Lemma 3.3] that

f(α;P ) = 〈g〉−dT (g,a)f(β;P ),

where

T (g,a) =
∑

x∈Id
ord g

e

(∑
i∈M

ai

g
xi
)
.

Thus
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∑
(a,g)=1
a∈I�

ord g

∫
M(g,a)

f(α;P )se
(
−α · m

)
dα = S∗(g;m)

∫
Bg

f(β;P )se
(
− β · m

)
dβ,

where

S∗(g;m) = 〈g〉−sd
∑

(a,g)=1
a∈I�

ord g

T (g,a)se
(
−
∑
i∈M

aimi

g

)

and

Bg =
{
β = (βi)i∈M ∈ T�

∣∣ 〈βi〉 < 〈g〉−1P̂
1
2−k
(
i ∈ M

)}
.

Note that

S∗(g;m) = 〈g〉−sd
∑

(a,g)=1
a(mod g)

e

(
G(a;x;m)

g

)
= S(g;m).

Then we have∫
M

f(α;P )se
(
−α · m

)
dα =

∑
〈g〉<P̂ 1/2

g monic

S(g;m)
∫
Bg

f(β;P )se
(
− β · m

)
dβ.

For monic g ∈ A, when P > 0, since

−ord g + (1/2 − k)P < (1 − k)P,

by Lemma 9.3, we have∫
Bg

f(β;P )se
(
− β · m

)
dβ =

∫
Bg

∑
x∈Isd

P

e
(
G(β;x;m)

)
dβ = P̂ sd−�kJ(m; g;P ),

where

J(m; g;P ) =
∫
Cg

( ∫
Tsd

e
(
G(α;y; t−kPm)

)
dy
)
dα

with

Cg =
{
α = (αi)i∈M ∈ K�

∞
∣∣ 〈αi〉 < 〈g〉−1P̂ 1/2 (i ∈ M

)}
.

We then deduce that
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M

f(α;P )se
(
−α · m

)
dα = P̂ sd−�k

∑
〈g〉<P̂ 1/2

g monic

S(g;m)J(m; g;P ).
(10.4)

Note that s ≥ 2�k + 1. It follows from Lemma 9.4 that

J(m;P ) � 1 (10.5)

and for monic g ∈ A with 〈g〉 ≤ P̂ 1/2, since (P/2) − ord g ≥ 0, we get

−J(m;P ) + J(m; g;P ) � 1. (10.6)

Also, for monic g ∈ A with 〈g〉 ≤ P̂ 1/4, since (P/2) − ord g ≥ P/4 and we find from 
Lemma 9.4(2) that

−J(m;P ) + J(m; g;P ) � q−(P/2−ord g)/(4k�) ≤ P̂−1/(16k�). (10.7)

By Proposition 8.3, for s ≥ 2k(� + 1) + 1, on taking ε = 1/(4k), we obtain∑
〈g〉≤P̂ 1/4

g monic

∣∣S(g;m)
∣∣� 1 and

∑
〈g〉>P̂ 1/4

g monic

∣∣S(g;m)
∣∣� P̂−1/(16k). (10.8)

On combining (10.7) and the first equality in (10.8), we get∑
〈g〉≤P̂ 1/4

g monic

S(g;m)
(
− J(m;P ) + J(m; g;P )

)
�

∑
〈g〉≤P̂ 1/4

g monic

∣∣S(g;m)
∣∣P̂−1/(16k�) � P̂−1/(16k�).

By applying (10.6) with the second equality in (10.8), we have∑
P̂ 1/4<〈g〉<P̂ 1/2

g monic

S(g;m)
(
− J(m;P ) + J(m; g;P )

)
�

∑
〈g〉>P̂ 1/4

g monic

|S(g;m)| � P̂−1/(16k).

Therefore ∑
〈g〉<P̂ 1/2

g monic

S(g;m)
(
− J(m;P ) + J(m; g;P )

)
� P̂−1/(16k�).

It then follows from the equality in (10.4) and the above estimate that∫
M

f(α;P )se
(
−α · m

)
dα = P̂ sd−�k

∑
〈g〉<P̂ 1/2

g monic

S(g;m)J(m;P ) + O
(
P̂ sd−�k−1/(16k�)).

By (10.8), we have
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∑
〈g〉<P̂ 1/2

g monic

S(g;m) = S(m) −
∑

〈g〉≥P̂ 1/2

g monic

S(g;m) = S(m) + O
(
P̂−1/(16k)).

We thus deduce from (10.5) that∫
M

f(α;P )se(−α · m)dα = J(m;P )S(m)P̂ sd−�k + O
(
P̂ sd−�k−1/(16k�)).

In combination of Proposition 8.3 with Proposition 9.2, the proposition follows. �
We then consider the minor arc contribution.

Proposition 10.2. Suppose that p = char(Fq) � k. Define

R′ = {j = (j1, . . . , jd) ∈ Nd | gcd(j1, . . . , jd, p) = 1, 1 ≤ j1 + · · · + jd ≤ k}.

Let ϑ = cardR′ =
(
k+d
d

)
−
([k/p]+d

d

)
. Suppose that s ≥ 2ϑk + 2ϑ + 1. Then one has∫

m

|f(α;P )|sdα � P̂ sd−�k−δ,

where δ = 1/(8�ϑ(k + 1)).

Proof. Let Jkϑ+ϑ(P ) denote the number of solutions of the system

xj
1 + · · · + xj

kϑ+ϑ = yj
1 + · · · + yj

kϑ+ϑ (j ∈ R′),

with xj , yj ∈ IdP (1 ≤ j ≤ kϑ + ϑ). Let Θ =
∑

j∈R′(j1 + · · ·+ jd). By [23, Theorem 1.1], 
when p � k and k ≥ 2, for each ε > 0, one has

Jkϑ+ϑ(P ) �
(
P̂
)2(kϑ+ϑ)d−Θ+ε

.

Let M and � be defined as in (1.2). Let Ikϑ+ϑ(P ) denote the number of solutions of the 
system

xi
1 + · · · + xi

kϑ+ϑ = yi
1 + · · · + yi

kϑ+ϑ (i ∈ M)

with xj , yj ∈ IdP (1 ≤ j ≤ kϑ + ϑ). For z = (zj)j∈R′ ∈ Aϑ, write Jkϑ+ϑ(P ; z) for the 
number of solutions of the system(

xj
1 + · · · + xj

kϑ+ϑ

)
−
(
yj

1 + · · · + yj
kϑ+ϑ

)
= zj (j ∈ R′)

with xj , yj ∈ IdP (1 ≤ j ≤ kϑ + ϑ). For j ∈ R′, write
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I(P ; j) = {x ∈ A | ordx < (j1 + · · · + jd)P}.

Then Jkϑ+ϑ(P ; z) = 0 if z = (zj)j∈R′ /∈
∏

j∈R′ I(P ; j). Otherwise, if z = (zj)j∈R′ ∈∏
j∈R′ I(P ; j), by carrying out the argument in [23, Page 6, 2nd paragraph], we have

Jkϑ+ϑ(P ; z) ≤ Jkϑ+ϑ(P ).

Since p � k, we have M ⊆ R′, and hence

Ikϑ+ϑ(P ) =
∑
z

Jkϑ+ϑ(P, z) ≤ P̂Θ−�kJkϑ+ϑ(P ) � P̂ 2(kϑ+ϑ)d−�k+ε,

where the summation is over z ∈
∏

j∈R′ I(P ; j) with zi = 0 when i ∈ M. Thus∫
T�

∣∣f(α;P )
∣∣2(kϑ+ϑ)

dα = Ikϑ+ϑ(P ) � P̂ 2(kϑ+ϑ)d−�k+ε.

When s ≥ 2kϑ + 2ϑ + 1, we have∫
m

∣∣f(α;P )
∣∣sdα ≤ P̂ sd−(2kϑ+2ϑ+1)d sup

α∈m

∣∣f(α;P )
∣∣ ∫
T�

∣∣f(α;P )
∣∣2kϑ+2ϑ

dα.

It follows from standard argument as in [23, Lemmas 6.1-6.2] that

sup
α∈m

|f(α;P )| � P̂ d−1/(4�ϑ(k+1))+ε.

We therefore get∫
m

∣∣f(α;P )
∣∣sdα � P̂ sd−(2kϑ+2ϑ+1)d ·

(
P̂ d−1/(4�ϑ(k+1))+ε

)
· P̂ 2(kϑ+ϑ)d−�k+ε

� P̂ sd−�k−1/(8�ϑ(k+1)).

This completes the proof of the proposition. �
On recalling the definitions of M and R′ with � = card(M) and ϑ = card(R′), when 

char(Fq) � k, we have k < � < ϑ. Thus 2ϑk + 2ϑ + 1 ≥ 2k(� + 1) + 1. In combination of 
Proposition 10.1 with Proposition 10.2, Theorem 1.4 follows.

11. Further improvement on Theorem 1.5

In the proof of Theorem 1.5 we establish the following relation

γ(O;M) ≤ γ(O; k)κ(�− d + κ−1d).
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By Proposition 3.3, we have

γ(O; k) ≤ γ(F ; k) + 1.

When κ = [F : F (k)] = 1, namely F = F (k), recent work on Waring’s problem in finite 
fields establish refined bounds for γ(F ; k) as follows.

Proposition 11.1. Suppose that F = F (k) with card
(
F (k)

)
= pσ. Let k∗ = gcd(k, pσ−1). 

When σ = 1 and p − 1 = k∗ or p − 1 = 2k∗, one has

γ(F ; k) = k∗;

otherwise, one has

γ(F ; k) � (k∗)1/2.

Proof. The results are proved in [10, Theorem 4], [11, Theorem 1] and [9]. �
We now consider the case when κ = [F ; F (k)] > 1. Theorem 4.1(1) and (2) imply that

γ(F ; k) = γ(Fσ; kσ),

where kσ = k/(1 + pσ + · · ·+ pσ(κ−1)), and Fσ = F (k) = Fσ(kσ). Thus Proposition 11.1
can be applied to bound γ(Fσ, kσ).

Proposition 11.2. Suppose that κ = [F : F (k)] > 1 and card
(
F (k)

)
= pσ. Let k∗ =

gcd(kσ, pσ − 1). When σ = 1 and p − 1 = k∗ or p − 1 = 2k∗, one has

γ(F ; k) = γ(Fσ, kσ) = k∗;

otherwise, one has

γ(F ; k) = γ(Fσ, kσ) � (k∗)1/2.

On recalling Theorem 4.1(3), we may improve Theorem 1.5 in the latter case:

γ(O;M) � (k∗)1/2(log k)�.

On carrying out similar arguments as in Proposition 4.2, one has

k∗ � k1/2.

Thus

γ(O;M) � k1/4(log k)�.
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