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Abstract. We construct a shifted version of the Turán sieve method developed by R.
Murty and the second author and apply it to counting problems on tournaments. More
precisely, we obtain upper bounds for the number of tournaments which contain a fixed
number of restricted r-cycles. These are the first concrete results which count the number
of cycles over “all tournaments”.

1. Introduction

In 1934, P. Turán [20] gave a very simple proof of a celebrated result of Hardy and
Ramanujan [6] that the normal order of distinct prime factors of a natural number n is
log log n. If ω(n) denotes the number of distinct prime factors of n, Turán proved that∑

n≤x

(
ω(n)− log log x

)2 � x log log x;

from which the normal order of ω(n) is easily deduced. Turán’s original derivation of the
Hardy-Ramanujan Theorem was essentially probabilistic and concealed in it an elemen-
tary sieve method. In [9], R. Murty and the second author introduced the Turán sieve
method and applied it to probabilistic Galois theory problems. This method was further
generalized to a bipartite graph in [10] to investigate a variety of combinatorial questions,
including graph colourings, Latin squares, and etc.

Let X be a bipartite graph with finite partite sets (A,B). For a ∈ A and b ∈ B, we
write a ∼ b if there is an edge that joins a and b. For b ∈ B, we define the degree of b to
be

deg b := #
{
a ∈ A | a ∼ b

}
.

For b1, b2 ∈ B, we define that the number of common neighbors of b1 and b2 to be

n(b1, b2) := #{a ∈ A | a ∼ b1 and a ∼ b2}.

For a ∈ A, we define

ω(a) := #{b ∈ B | a ∼ b}.
Notice that ∑

a∈A

ω(a) =
∑
b∈B

deg b and
∑
a∈A

ω2(a) =
∑

b1,b2∈B

n(b1, b2).

Then R. Murty and the second author proved the following theorem [10, Theorem 1].
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Theorem 1.1. Suppose that A and B are partite sets of a bipartite graph X. Then∑
a∈A

(
ω(a)− 1

|A|
∑
b∈B

deg b
)2

=
∑

b1,b2∈B

n(b1, b2)−
1

|A|

(∑
b∈B

deg b
)2
.

From which, they derive the Turán sieve method [10, Corollary 1] which states that

Corollary 1.2. (The Turán Sieve)

#
{
a ∈ A |ω(a) = 0

}
≤ |A|2 ·

∑
b1,b2∈B n(b1, b2)(∑

b∈B deg b
)2 − |A|.

The extension of sieve methods to a combinatorial setting has been attempted before.
For example, R. Wilson [24] and T. Chow [2] have formulated the Selberg sieve in a
combinatorial context (see also [11, §2]). However, due to difficulty of computation of
the Möbius function of a lattice in abstract setting, it is not clear how one can apply the
Selberg sieve to general combinatorial problems. This obstruction is eliminated by the
Turán sieve as the bound in Corollary 1.2 does not involve the Möbius function, and thus
it can be applied to many questions in combinatorics.

For combinatorial applications, one could be interested in estimating the number of
a ∈ A with ω(a) > 0. Thus, to allow us more flexibility in some counting questions, we
construct a “shifted” version of the Turán sieve. For a fixed integer k ∈ N ∪ {0},

#
{
a ∈ A |ω(a) = k

}
·
(
k − 1

|A|
∑
b∈B

deg b
)2
≤
∑
a∈A

(
ω(a)− 1

|A|
∑
b∈B

deg b
)2
.

Combining this inequality with Theorem 1.1, we obtain the following ‘shifted’ version of
the Turán sieve method.

Corollary 1.3. (The shifted Turán sieve) For k ∈ N ∪ {0}, we have

#
{
a ∈ A |ω(a) = k

}
≤
|A|2

∑
b1,b2∈B

n(b1, b2)− |A|
(∑

b∈B
deg b

)2
(
|A| · k −

∑
b∈B

deg b
)2 .

We notice that for k = 0, Corollary 1.3 implies Corollary 1.2. In this paper, we apply
Corollary 1.3 to some counting problems on tournaments.

For t ≥ 2, let X1, X2, . . . , Xt be t pairwise disjoint sets of points with |Xi| = mi

(1 ≤ i ≤ t). We join each pair of points that are not in the same Xi by a line oriented
towards exactly one point and thus obtain a complete oriented t-partite graph. Such a
graph is called a t partite tournament with m1 × · · · × mt players, and we let Tm1,...,mt

denote the set of all such tournaments. If m1 = m2 = · · · = mt = 1, we denote it by Tt,
which is the set of all complete oriented graph of t elements. In all subsequent sections,
if {x, y} is an oriented edge toward y, we write x→ y meaning that y defeates x.

For a tournament T , suppose that V = {x1, x2, . . . , xr} ⊆ T is a set of players (vertices)
such that x1 → x2 → · · · → xr → x1. We call this subgraph an r-cycle on T and denote
it by (V, τ) = (x1, x2, . . . , xr, τ), where τ represents the collection of games x1 → x2 →
· · · → xr → x1, and we say τ generates T |V , the restriction of T on V . An r-cycle (V, τ) is
called a restricted r-cycle on a t-partite tournament T if every partite set X1, X2, . . . , Xt

contains at most one point in V . Otherwise we say that it is an unrestricted r-cycle.

There are many results on cycles in t-partite tournaments. For example, the paper
[15] contains a study on the average number of 4-cycles on random bipartite tournaments
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(i.e., t = 2) and a proof that the distribution of the 4-cycles satisfies the same conclusion
as the Central Limit Theorem. In addition, the paper [25] exhibits conditions to ensure
that some bipartites tournaments contains 2s-cycles for every 2 ≤ s ≤ r. In addition,
some results valid for bipartite tournaments were extended to t-partite tournaments in
[3]. For 3-partite tournaments, [21] and [22] consider certain lengths of cycles contained
in tournaments. [23], [14], and [5] consider different types of cycles contained in general
t-partite tournaments.

Given k ∈ N ∪ {0} and r ∈ N, one can ask how many tournaments have exactly k
restricted, or unrestricted, r-cycles. In this paper, we work on the restricted case. We
first consider the case of complete oriented graphs.

Notation. For x ∈ R, x > 0, let f(x) and g(x) be two functions of x. If g(x) is a
positive function and there exists a constant C > 0 such that |f(x)| ≤ Cg(x), we write
f(x) � g(x) or f(x) = O(g(x)); if limx→∞ f(x)/g(x) = 0, write f(x) = o(g(x)). In all
theorems of this paper, the O-terms mean absolute constants.

Theorem 1.4. Let 0 ≤ k ≤
(
n
r

)
r! and 3 ≤ r ≤ n be integers. We have

#
{
T ∈ Tn |T contains exactly k restricted r-cycles

}
≤ 2(n

2) ·
(
n

r

)
r! ·

2nr−3 +O
((

6r
e

)r · nr−4·r−4

(r−4)!

)
[
2rk − (r − 1)!

(
n
r

)]2
 .

Notice that as n → ∞, the above bound is of size 2(n
2) · O( 1

n3 ). Since the size of Tn

is 2(n
2), this result gives a non-trivial upper bound of the number of tournaments in Tn

containing exactly k restricted r-cycles.

The proof of Theorem 1.4 is based on the shifted Turán sieve. The main technical
difficulty in applying Corollary 1.3 lies in the counting of the sum of n(b1, b2). In the
earlier applications of the Turán sieve method on combinatorial problems, such estimates
were often done by considering various cases and their subcases (see the Latin square
counting in [10]). However, this approach could become computationally impossible if
the associated bipartite graph has a more complicated structure. For example, in our
case, the partite sets A and B are respectively chosen to be all tournaments in Tn and
the set of all r-cycles on {1, 2, . . . , n}. To count the number of tournaments a ∈ A that
associate to both r-cycles b1, b2 ∈ B, we need to first discuss how cycles b1 and b2 intersect
each other. This involves much more case studying than the one in Latin square, and
hence increases the difficulty to compute the sum of n(b1, b2). In this paper, we develop a
new counting method to estimate the sum of n(b1, b2). The central idea is to first “omit
some existing cases” and “include some non-existing cases” to get the expected main
contribution. Then we compare the “under-counting” and “over-counting” of the main
contribution to get the correct estimate. Such an approach greatly simplifies many of
our calculations. For example, in Section 2, for the case l = 2, since one can argue that
the numbers of under-counting and over-counting are the same, only the estimate of the
expected main term is required.

Because of the new counting method, we can also consider the restricted cycle problem
on general t-partite tournaments now. For m1, · · · ,mt ∈ N and s ∈ Z with 0 ≤ s ≤ t,
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write σs = σs(m1, · · · ,mt) to be the s-symmetric sum of m1, . . . ,mt (0 ≤ s ≤ r), i.e.,

(1)
t∏
i=1

(x+mi) =
t∑

s=0

σsx
t−s.

We prove the following theorem.

Theorem 1.5. Let 3 ≤ r ≤ t and m1, · · · ,mt ∈ N. For 0 ≤ s ≤ t, let σs =
σs(m1, · · · ,mt) be the s-symmetric sum of m1, . . . ,mt. If 0 ≤ k ≤ σrr!, then we have

#
{
T ∈ Tm1,...,mt |T contains exactly k restricted r-cycles

}
≤ 2σ2 · (r − 3)!2σr ·

{
12
(
r
3

)
σr−3 +O(6rσr−4)

[2rk − (r − 1)!σr]
2

}
.

Notice that as m1, . . . ,mt →∞, the above bound is of size 2σ2 ·O(σr−3

σr
). Since the size

of Tm1,...,mt is 2σ2 , this result gives a non-trivial upper bound of the number of tournaments
in Tm1,...,mt containing exactly k restricted r-cycles.

We remark that the values of k are also bounded according to the other parameters.
For example, in Theorem 1.4, each subset with r vertices can form at most r! cycles and
hence k ≤

(
n
r

)
r!. Analogously, in Theorem 1.5, we have k ≤ σrr!.

We will prove the above theorems in Section 2 and Section 3. We remark here that
estimates on the number of restricted 3-cycles on a tournament can be found in [1], [4],
[7], [13], [16] and [18] (see also [12, §5 §6]), and estimates on the number of restricted
4-cycles on a tournament can be found in [8] and [19]. Although research on restricted
3-cycles and 4-cycles has been active, the previous results are focused on the number of
restricted cycles on “one tournament”. Thus, the theorems in this paper are the first to
at once deal with all tournaments and cycles of any length.

From our proofs, it is possible to find the average number of cycles of certain length in
the tournaments we studied (see Corollaries 2.2 and 3.2). We can compare this average
with existing results. For example, in [17], the number of 6-cycles in a regular tournament
of order n is bounded by (n+ 1)n(n− 1)(n− 3)(n2− 6n+ 3)/384, yet the average number
of 6-cycles in Corollary 2.2 is (n+ 1)n(n− 1)(n− 3)(n2 − 6n+ 8)/384. Thus, the bound
in [17] is very close to the average.

The upper bounds given by Theorems 1.4 and 1.5 are not always tight. For example,
for the case k = 0 in Theorem 1.4, the tournaments which do not contain 3-cycles are
exactly the transitive tournaments (i.e., satisfying the property “x → y and y → z =⇒
x→ z”). Therefore

#{T ∈ Tn |T contains no cycles of any length} = n!.

One might expect that

#{T ∈ Tm1,...,mt |T contains no cycles of any length} = t!m1!m2! . . .mt!.

Although the above result and conjecture indicate that our results are not sharp in this
case, for general k ∈ N ∪ {0}, since it is difficult to compute the number of tournaments
containing exactly k r-cycles, our theorems do provide non-trivial upper bounds for the
first time in the literature.

Acknowledgement. This project started when the second author visited Queen’s Uni-
versity as a graduate student. She would like to thank the Mathematics and Statisctis
department for its hospitality. She would also like to thank Professor R. Murty for his
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valuable comments on the first version of the paper. This project was completed when the
third author visited the University of Waterloo in 2015-2016. He would like to thank the
Pure Mathematics department for its hospitality. He would also like to thank Ciência sem
Fronteiras for the Exchange Student Fellowship. Finally, all authors would like to thank
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2. Restricted r-cycles on tournaments

In this section, we apply the shifted Turán sieve to count the number of tournaments
in Tn which contains a fixed number of restricted r-cycles. All cycles considered in this
section are restricted cycles. For simplicity, we drop the word “restricted”.

Proof: (of Theorem 1.4) Let A = Tn and B be the set of all r-cycles on n vertices. An
element of B can be denoted by (V, τ), where V ⊆ {1, 2, . . . , n}, |V | = r, and τ is a cyclic
permutation of V . Since there are

(
n
r

)
choices for V and (r − 1)! ways to form an r-cycle

with vertices on V , we have

|A| = 2(n
2) and |B| =

(
n

r

)
(r − 1)!.

For a = Ta ∈ A and b = (Vb, τb) ∈ B, we say a ∼ b if τb generates Ta|Vb . Thus,

ω(a) = # of r-cycles contained in Ta and deg b = #
{
a ∈ A | τb generates Ta|Vb

}
.

Since τb generates an r-cycle on Ta|Vb , it determines r games of Ta. Thus, deg b = 2(n
2)−r

and it follows that ∑
b∈B

deg b =

(
n

r

)
2(n

2)−r(r − 1)!.

For b1 = (Vb1 , τb1) ∈ B and b2 = (Vb2 , τb2) ∈ B, consider

n(b1, b2) = #
{
a ∈ A | τb1 generates Ta|Vb1 and τb2 generates Ta|Vb2

}
.

For 0 ≤ l ≤ r, suppose that |Vb1 ∩ Vb2| = l. We consider the following possibilities for l:

(i) l = 0; in this case, there are
(
n
r

)
ways to choose Vb1 and

(
n−r
r

)
ways to choose Vb2 .

Also, there are (r − 1)! ways to construct each cycle and there are 2r determined
games. Thus, ∑

b1,b2∈B
|Vb1∩Vb2 |=0

n(b1, b2) =

(
n

r

)(
n− r
r

)
2(n

2)−2r(r − 1)!2.

(ii) l = 1; in this case, there are
(
n
r

)
ways to choose Vb1 ,

(
r
1

)
ways to choose the intersection

point and
(
n−r
r−1

)
ways to choose the other points of Vb2 . Also, there are (r− 1)! ways

to construct each cycle and there are 2r determined games. Thus,∑
b1,b2∈B

|Vb1∩Vb2 |=1

n(b1, b2) =

(
n

r

)(
n− r
r − 1

)(
r

1

)
2(n

2)−2r(r − 1)!2.

(iii) l = 2; in this case, there are
(
n
r

)
choices for Vb1 and

(
n−r
r−2

)(
r
2

)
choices for Vb2 . For

fixed Vb1 and Vb2 , observe that the game between their two intersection points, say
x and y, may or may not belong to either cycle. We first ignore the possibility that
τb1 and τb2 share the game x→ y or y → x, and denote by D2 := D2,b1,b2 the number
of tournaments where the games in τb1 and τb2 are chosen independently. Thus, we
have
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D2 = 2(n
2)−2r(r − 1)!2.

This term gives the expected main contribution and we now estimate its difference
from the actual case. Let Gx→y := Gx→y;b1,b2 be the collection of all tournaments
with fixed Vb1 and Vb2 which share the game x → y. We notice that for each
tournament in Gx→y, since there are (2r− 1) games determined by τb1 and τb2 , there

are 2(n
2)−(2r−1) = 2 · 2(n

2)−2r possible games aside from τb1 and τb2 . However, in the

counting of D2, for such a tournament, we only count 2(n
2)−2r possible games aside

from τb1 and τb2 . Thus we “undercount” some games for tournaments in Gx→y. On
the other hand, in the counting of D2, we “overcount” invalid tournaments which
have x→ y in τb1 and y → x in τb2 . However, by reversing the direction of the cycle
τb2 , these cases are in one-to-one correspondence with the cases that x→ y belongs
to both cycles. In other words, the undercounting of tournaments in Gx→y balances
out its overcounting. The same conclusion holds for Gy→x. Since the numbers of
undercounting and overcounting in D2 are the same, we have∑
b1,b2∈B

|Vb1∩Vb2 |=2

n(b1, b2) =

(
n

r

)(
n− r
r − 2

)(
r

2

)
·D2 =

(
n

r

)(
n− r
r − 2

)(
r

2

)
2(n

2)−2r(r − 1)!2.

(iv) l = 3; in this case, there are
(
n
r

)
choices for Vb1 and

(
n−r
r−3

)(
r
3

)
choices for Vb2 . For

fixed Vb1 and Vb2 , observe that the game between their three intersection points, say
x, y and z, may or may not belong to either cycle. Similar to the case l = 2, we first
ignore the sharing games among {x, y, z} and denote by D3 := D3,b1,b2 , the number
of tournaments where the games in τb1 and τb2 are chosen independently. Thus, we
have

D3 = 2(n
2)−2r(r − 1)!2.

We now consider the undercounting and overcounting in D3. There are three cases:
(a) τb1 and τb2 have no game among {x, y, z}: in this case, there is no undercounting

or overcounting in D3.
(b) τb1 and τb2 share one game among {x, y, z}, say x → y: we have seen in (iii)

that in this case, the numbers of undercounting and overcounting in D3 are the
same. Thus, there is no adjustment required here.

(c) τb1 and τb2 share two or more games among {x, y, z}: we notice that if τb1 and
τb2 share two games, since they are r-cycles and the games among {x, y, z} do
not form a cycle, we need to have r ≥ 4. On the other hand, if τb1 and τb2 share
three games among {x, y, z}, it means that they form a 3-cycle and so r = 3.
(c-1) Suppose that τb1 and τb2 share two games and r ≥ 4. Notice that there

are 3! = 6 possible choices for two games among {x, y, z}. Fix one of such
games, say x→ y → z. Let Gx→y→z = Gx→y→z;b1,b2 be the collection of all
tournaments with fixed Vb1 and Vb2 which contains the game x → y → z.
We notice that for each tournament in Gx→y→z, since there are (2r − 2)

games determined by τb1 and τb2 , there are 2(n
2)−(2r−2) = 4 ·2(n

2)−2r possible
games aside from τb1 and τb2 . However, in the counting of D3, for such a

tournament, we only count 2(n
2)−2r possible games aside from τb1 and τb2 .

Thus we “undercount” 3 · 2(n
2)−2r possible games for each tournament in

Gx→y→z. On the other hand, in the counting of D3, we “overcount” invalid
tournaments which have x→ y → z in τb1 and z → y → x in τb2 . However,
by reversing the direction of the cycle τb2 , these cases are in one-to-one
correspondence with the cases that x → y → z belongs to both cycles.
Thus for a tournament in Gx→y→z, the difference between undercounting
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games and overcounting games in D3 is 2 ·2(n
2)−2r. Furthermore, for such a

tournament, there are ((r−3)!)2 choices for τb1 and τb2 . The same argument
can be applied to all other five permutations of {x, y, z}. Combining this
with (a) and (b), we see that if r ≥ 4,

∑
b1,b2∈B

|Vb1∩Vb2 |=3

n(b1, b2) =

(
n

r

)(
n− r
r − 3

)(
r

3

)
·
(
D3 + 6 · 2 · 2(n

2)−2r((r − 3)!)2
)

=

(
n

r

)(
n− r
r − 3

)(
r

3

)
2(n

2)−2r[(r − 1)!2 + 12(r − 3)!2].

(c-2) Suppose that τb1 and τb2 share three games and r = 3. In this case,
the games among {x, y, z} form a 3-cycle and there are 2 possible choices
for such a cycle. Fix one of such cycles, say x → y → z → x. Let
Gx→y→z→x = Gx→y→z→x;b1,b2 be the collection of all tournaments with fixed
Vb1 and Vb2 which contains the cycle x → y → z → x. We notice that for
each tournament in Gx→y→z→x, since there are 3 = (2r − 3) games deter-

mined by τb1 and τb2 , there are 2(n
2)−(2r−3) = 8 ·2(n

2)−2r possible games aside
from τb1 and τb2 . However, in the counting of D3, for such a tournament,

we only count 2(n
2)−2r possible games aside from τb1 and τb2 . Thus, we “un-

dercount” 7 ·2(n
2)−2r possible games for each tournament in Gx→y→z→x. On

the other hand, in the counting of D3, we “overcount” invalid tournaments
which have x → y → z → x in τb1 and x → z → y → x in τb2 . However,
by reversing the direction of the cycle τb2 , these cases are in one-to-one
correspondence with the case that x→ y → z → x belong to both cycles.
Thus, for a tournament in Gx→y→z→x, the difference between undercount-

ing games and overcounting game in D3 is 6·2(n
2)−2r. Furthermore, for such

a tournament, there are 12 = ((r− 3)!)2 choices for τb1 and τb2 . Combining
this with (a) and (b), we see that for r = 3,

∑
b1,b2∈B

|Vb1∩Vb2 |=3

n(b1, b2) =

(
n

r

)(
n− r
r − 3

)(
r

3

)
·
(
D3 + 2 · 6 · 2(n

2)−2r((r − 3)!)2
)

=

(
n

r

)(
n− r
r − 3

)(
r

3

)
2(n

2)−2r[(r − 1)!2 + 12(r − 3)!2].

We notice that this formula is exactly the same as the one in (c-1).
(v) 4 ≤ v ≤ r; in these cases, there are

(
n
r

)
choices for Vb1 ,

(
n−r
r−v

)(
r
v

)
choices for Vb2 and

the number of ways to form each cycle is at most (r − 1)!. Since the number of
determined games is at least (2r − (v − 1)), we have

∑
b1,b2∈B

4≤|Vb1∩Vb2 |≤r

n(b1, b2) ≤
(
n

r

)
2(n

2)−2r(r − 1)!2
∑

4≤v≤r

(
n− r
r − v

)(
r

v

)
2v−1.
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Combining all the above five possibilities, we obtain∑
b1,b2∈B

n(b1, b2) ≤ 2(n
2)−2r

(
n

r

)
(r − 1)!2

{(
n− r
r

)
+

(
n− r
r − 1

)(
r

1

)
+

(
n− r
r − 2

)(
r

2

)

+

(
n− r
r − 3

)(
r

3

)[
1 +

12

(r − 1)2(r − 2)2

]
+
∑

4≤v≤r

(
n− r
r − v

)(
r

v

)
2v−1

}
.

To estimate the sum in the error term, for n ≥ r, r ≥ v ≥ 4, we apply the inequality(
n− r
r − v

)
≤
(

n

r − v

)
≤
(

n

r − 4

)
·
(
r

v

)
·
(
r

4

)−1
to the summation in the error term, and get∑

4≤v≤r

(
n− r
r − v

)(
r

v

)
2v−1 ≤

(
n

r − 4

)
·

( ∑
4≤v≤r

(
r

v

)2

2v−1

)
·
(
r

4

)−1

≤
(

n

r − 4

)
·

( ∑
4≤v≤r

(
r

v

)
2v−1

)
· 2r ·

(
r

4

)−1
≤
(

n

r − 4

)
· 6r ·

(
r

4

)−1
.

Thus, we have

(2)
∑

b1,b2∈B

n(b1, b2) ≤ 2(n
2)−2r

(
n

r

)
(r− 1)!2

[(
n

r

)
+

12
(
n−r
r−3

)(
r
3

)
(r − 1)2(r − 2)2

+O

(
6r · nr−4

r4(r − 4)!

)]
.

By applying Corollary 1.3 and Stirling’s approximation, Theorem 1.4 follows. �

We notice that in the proof of Theorem 1.4, we have calculated explicitly the cases
r = 3 and r = 4. Thus, we can derive from the above estimates that

Corollary 2.1.

#
{
T ∈ Tn |T contains exactly k restricted 3-cycles

}
≤ 2(n

2) ·

{
3
16

(
n
3

)(
k − 1

4

(
n
3

))2
}
, and

#
{
T ∈ Tn |T contains exactly k restricted 4-cycles

}
≤ 2(n

2) ·

{
3
64

(
n
4

)
(4n− 11)(

k − 3
8

(
n
4

))2
}
.

Remark. We see from Theorem 1.4 that for n sufficiently large, we have

#
{
T ∈ Tn |T contains exactly k restricted r-cycles

}
� 2(n

2) ·
{

1

n3

}
.

Thus, as n→∞, the probability that a tournament contains exactly k restricted r-cycles
is 0. One can obtain various conclusions that are much stronger than the above one from
Theorem 1.4. For example, let f : N→ R+ such that f(n) = o(n3) and 3 ≤ r ≤ (log n)1−ε

for any ε > 0. By Theorem 1.4, one can show that as n→∞,

Prob
{
T ∈ Tn contains at most f(n) restricted r-cycles

}
−→ 0.

Since the total number of r-cycles in all tournaments is
∑

b∈B deg b and the number of

tournaments is |A|, the average number of r-cycles in a tournament is
(∑

b∈B deg b
)
/|A|.

We have the following result.

Corollary 2.2. The average number of r-cycles in a tournament is

(
n
r

)
(r − 1)!

2r
.
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3. Restricted r-cycles on t-partite tournaments

In this section, we consider restricted cycles on t-partite tournaments. All cycles con-
sidered in this section are restricted. For simplicity, we drop the word “restricted” as
before.

For m1, . . . ,mt ∈ N, we recall that Tm1,m2,··· ,mt is the set of all t-partite tournaments
with m1 ×m2 × · · · ×mt players. Also, for s ∈ Z with 0 ≤ s ≤ t, we recall the definition
of s-symmetric sum σs = σs(m1, . . . ,mt) given in Equation (1). In particular, we have

σ2 =
∑

1≤i<j≤t

mimj and σt =
t∏
i=1

mi.

Let 1 ≤ u ≤ s ≤ t. Since all mi ≥ 1, if {j1, . . . , ju} ⊆ {i1, . . . , is}, then the term
mi1 · · ·mis in σs is greater or equal to the term mj1 · · ·mju of σu. In this case, we say that
mi1 · · ·mis covers mj1 · · ·mju . Notice that each term mi1 · · ·mis in σs covers all terms
mj1 · · ·mju in σs with {j1, . . . , ju} ⊆ {i1, . . . , is} and there are

(
s
u

)
such terms. Thus in

the sum
(
s
u

)
· σs, each term mj1 · · ·mju in σu is covered

(
t−u
s−u

)
times. It follows that

σs

(
s

u

)
≥ σu

(
t− u
s− u

)
,

which implies that

(3)

(
t

s

)−1
·
(
t

u

)
σs ≥ σu.

We make a remark here that the factor
(
t
s

)−1 · ( t
u

)
is a decreasing function in t, and

therefore it reaches the maximum at the minimal value of t.

Next, we claim that for any positive integer u with 1 ≤ u ≤ t, we have

(4)
t∏
i=1

(mi − 1) =
u−1∑
j=0

(−1)jσt−j +O
(
σt−u

)
.

In fact, we can establish the following stronger statement

(5)

2b(u−1)/2c+1∑
j=0

(−1)jσt−j ≤
t∏
i=1

(mi − 1) ≤
2bu/2c∑
j=0

(−1)jσt−j.

We now prove the above claim by induction on t. For t = 1, it is clear. Assume that (5)
holds for all t < v and consider the case when t = v. We might assume that u is even and

the proof for the case of odd u is similar. For an integer s with 1 ≤ s ≤ (v− 1), let σ
(v−1)
s

denote the term of degree s in the expansion (m2 − 1) · · · (mv − 1). We have the relation

(6) σs = m1σ
(v−1)
s−1 + σ(v−1)

s .

By induction,

u−1∑
j=0

(−1)jσ
(v−1)
v−1−j ≤

v∏
i=2

(mi − 1) ≤
u∑
j=0

(−1)jσ
(v−1)
v−1−j.
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Since m1 ≥ 1, by multiplying (m1−1) on both sides of the above inequality and applying
(6), we can get

u−1∑
j=0

(−1)iσv−j ≤
u−1∑
j=0

(−1)jσv−j + σ
(v−1)
v−2u

≤
v∏
i=1

(mi − 1) ≤
u∑
j=0

(−1)jσv−j − σ(v−1)
v−2u−1 ≤

u∑
j=0

(−1)jσv−j.

It completes the proof of Inequality (5).

From now on, we apply the shifted Turán sieve to count the number of t-partite tour-
naments which contain a fixed number of r-cycles. In the special case when t = r, we can
obtain the following theorem which is sharper than Theorem 1.5. Since the proof of the
theorem is in the same spirit of Theorem 1.4, we will only provide a sketch of the proof
below.

Theorem 3.1. Let r ≥ 3 and m1, . . . ,mr ∈ N. For 0 ≤ s ≤ r, let σs = σs(m1, . . . ,mr)
be the s-symmetric sum of m1, . . . ,mt. If 0 ≤ k ≤ σrr! then we have

#
{
T ∈ Tm1,...,mr |T contains exactly k restricted r-cycles

}
≤ 2σ2 · (r − 3)!2σr ·

{
12σr−3 +O(3rσr−4)

[2rk − (r − 1)!σr]
2

}
.

Sketch of proof: Let A = Tm1,...,mr and B be the set of all r-cycles on Tm1,...,mr . An element
of B can be denoted by (x1, · · · , xr, τ), where {x1, · · · , xr} are taken from distinct partite
sets Xi (1 ≤ i ≤ r), and τ is a cyclic permutation of {x1, · · · , xr}. Since there are σr
choices for {x1, · · · , xr} and (r − 1)! ways to form an r-cycle with vertices x1, · · · , xr, we
have

(7) |A| = 2σ2 and |B| = σr(r − 1)!.

For a = Ta ∈ A and b = (x1,b, . . . , xr,b, τb) ∈ B, we say a ∼ b if τb generates Ta|{x1,b,...,xr,b}.
Thus, ω(a) is the number of r-cycles contained in Ta and deg b is the number of a ∈ A
such that τb generates Ta|{x1,b,...,xr,b}. Since τb generates an r-cycle on Ta|{x1,b,··· ,xr,b}, it
determines r games of Ta. Thus, deg b = 2σ2−r and it follows that

(8)
∑
b∈B

deg b = σr2
σ2−r(r − 1)!.

For b1 = (x1,b1 , . . . , xr,b1 , τb1) ∈ B and b2 = (x1,b2 , . . . , xr,b2 , τb2) ∈ B, consider

n(b1, b2) = #
{
a ∈ A | τb1 generates Ta|{x1,b1 ,...,xr,b1} and τb2 generates Ta|{x1,b2 ,...,xr,b2}

}
.

For i = 1, . . . , r, suppose

(9) |{xi,b1} ∩ {xi,b2}| = Ni,

where Ni ∈ {0, 1}. Let M(N1, N2, . . . , Nr) denote the collection of all pairs (b1, b2) ∈ B2

such that (9) holds. By counting the number of 1’s in Ni (1 ≤ i ≤ r), up to symmetry,
there are (r + 1) distinct possibilities for (N1, . . . , Nr), of which we group into five cases
with the similar estimates as in the proof of Theorem 1.4:

(i) (N1, N2 . . . , Nr) = (0, 0, . . . , 0); in this case,∑
(b1,b2)∈M(0,··· ,0)

n(b1, b2) = σr(m1 − 1)(m2 − 1)(m3 − 1) . . . (mr − 1)2σ2−2r(r − 1)!2.
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(ii) (N1, N2, N3, . . . , Nr) = (1, 0, 0, . . . , 0); in this case,∑
(b1,b2)∈M(1,0,··· ,0)

n(b1, b2) = σr(m2 − 1)(m3 − 1) . . . (mr − 1)2σ2−2r(r − 1)!2.

(iii) (N1, N2, N3, N4, . . . , Nr) = (1, 1, 0, 0, . . . , 0); in this case,∑
(b1,b2)∈M(1,1,0,··· ,0)

n(b1, b2) = σr(m3 − 1)(m4 − 1) . . . (mr − 1)2σ2−2r(r − 1)!2.

(iv) (N1, N2, N3, N4, N5, . . . , Nr) = (1, 1, 1, 0, 0, . . . , 0); in this case,∑
(b1,b2)∈M(1,1,1,0,··· ,0)

n(b1, b2) = σr(m4−1)(m5−1) . . . (mr−1)2σ2−2r
[
(r − 1)!2 + 12(r − 3)!2

]
.

(v) (N1, N2, . . . , Nv, Nv+1, Nv+2, . . . , Nr) = (1, 1, . . . , 1︸ ︷︷ ︸
v times

, 0, 0, . . . , 0); in these cases,

∑
4≤v≤r

(b1,b2)∈M(1,1,...,1︸ ︷︷ ︸
v times

,0,0,...,0)

n(b1, b2) ≤ σr2
σ2−2r(r − 1)!2

∑
4≤v≤r

(mv+1 − 1) . . . (mr − 1)2v−1.

Combining all these possibilities and their symmetrical cases, by (4), we get∑
b1,b2∈B

n(b1, b2) = 2σ2−2rσr(r − 1)!2 ×

{[
σr − σr−1 + σr−2 − σr−3 +O(σr−4)︸ ︷︷ ︸

symmetrical sum of
(0,...,0)

]
+

+
[
σr−1 − 2σr−2 + 3σr−3 +O(σr−4)︸ ︷︷ ︸

symmetrical sum of
(1,0,0,...,0)

]
+
[
σr−2 − 3σr−3 +O(σr−4)︸ ︷︷ ︸

symmetrical sum of
(1,1,0,0,...,0)

]
+

+

[(
1 +

12

(r − 1)2(r − 2)2

)
σr−3 +O(σr−4)︸ ︷︷ ︸

symmetrical sum of
(1,1,1,0,0,...,0)

]
+O

( ∑
4≤v≤r

2v−1σr−v

)
︸ ︷︷ ︸

symmetrical sum of
remainder cases

}

(10) = 2σ2−2rσr(r − 1)!2
[
σr +

12σr−3
(r − 1)2(r − 2)2

+O(3r · r−4σr−4)
]
,

where we use the estimate (3) and∑
4≤v≤r

2v−1σr−v ≤
∑

4≤v≤r

2v−1 · σr−4 ·
(

r

r − v

)
·
(

r

r − 4

)−1

≤ σr−4 ·
(
r

4

)−1
·

( ∑
4≤v≤r

(
r

v

)
2v−1

)
≤ σr−4 ·

(
r

4

)−1
· 3r.

By applying Corollary 1.3 with equations (7), (8) and estimate (10), Theorem 3.1 follows.
�

We now consider r-cycles on general t-partite tournaments with t ≥ r. Theorem 1.5 is
more general, but less sharp than Theorem 3.1. Since its proof is in the same spirit of
Theorem 3.1, we will only provide a sketch of proof below.
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Sketch of proof: (of Theorem 1.5) Let A and B be defined as in the proof of Theorem 3.1.
Thus, we have

(11) |A| = 2σ2 and
∑
b∈B

deg b = σr2
σ2−r(r − 1)!.

It remains to consider the sum of n(b1, b2). For b1, b2 ∈ B, write bi = {x1,bi · · · , xr,bi , τbi}
(1 ≤ i ≤ 2). Assume xj,b1 (1 ≤ j ≤ r) are in X1, · · · , Xr and xj,b2(1 ≤ j ≤ r) are in
X1, · · · , Xl, Xul+1

, · · · , Xur for some 0 ≤ l ≤ r and uj ∈ {r + 1, · · · , t} (l + 1 ≤ j ≤ r).

For v ∈ N, define σ
[v]
s = σs(m1, . . . ,mv, 0, . . . , 0). Thus σ

[t]
s = σs. Then using the same

argument as the one to prove (10), we can obtain that∑
b1,b2∈B

b1∈X1,...,Xr
b2∈X1,...,Xl,Xul+1

,...,Xur

n(b1, b2) ≤ 2σ2−2rm1 . . .mr(r − 1)!2×

×

[
σ
[l]
l +

12σ
[l]
l−3

(r − 1)2(r − 2)2
+O

(
r∑

v=4

2v−1σ
[l]
l−v

)]
muv+1 . . .mur .

We now summing over the symmetric cases of b2. Notice that the term with the factor

σ
[l]
l−3mul+1

. . .mur appears at most
(
r
3

)
times. Also, the error term appears at most

(
r
v

)
times for each 4 ≤ v ≤ r. Thus, similar to the end of proof of Theorem 1.4, using the
estimates (3), we have

r∑
v=4

2v−1
(
r

v

)
σr−v ≤

r∑
v=4

2v−1
(
r

v

)
·
(

r

r − v

)
·
(

r

r − 4

)−1
σr−4 ≤ 6r ·

(
r

4

)−1
σr−4.

Finally, we get

(12)
∑

b1,b2∈B

n(b1, b2) ≤ 2σ2−2rσr(r − 1)!2

[
σr +

12
(
r
3

)
σr−3

(r − 1)2(r − 2)2
+O

(
6r · r−4σr−4

)]
.

Then, using equations in (11) and estimate (12), Theorem 1.5 follows from Corollary 1.3.
�

Similar to Corollary 2.2, we have

Corollary 3.2. The average number of r-cycles in a t-partite tournament is
σr(r − 1)!

2r
.

Remark

(i) Notice that when we take m1 = · · · = mt = 1, by writing n = t, we have
T1,··· ,1 = Tt = Tn. Thus, in Theorem 1.5, we obtain∑

b1,b2∈B

n(b1, b2) ≤ 2(n
2)−2r

(
n

r

)
(r−1)!2

[(
n

r

)
+

12
(
r
3

)(
n
r−3

)
(r − 1)2(r − 2)2

+O

(
6r · r−4

(
n

r − 4

))]
.

Although this upper bound is different from the one in inequality (2), the main
terms in both expressions have the same order of magnitude in n. The inconsis-
tency in these expressions comes from the coarser estimate (4) used in the proof
of Theorem 1.5.

(ii) We see from Theorem 1.5 that for m1, · · · ,mt sufficiently large, we have

#
{
T ∈ Tm1,··· ,mt |T contains exactly k restricted r-cycles

}
� 2σ2 ·

{
σr−3
σr

}
.
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Thus, as one of m1, · · · ,mt → ∞, the probability that a tournament contains
exactly k restricted r-cycles is 0. Similar to the remark at the end of Section 2, one
can obtain various conclusions that are stronger than the above one from Theorem
1.5. In addition, the same conclusion is valid for fixed m1 = m2 = · · · = mt with
t→∞.

We see in this paper that the setting of the shifted Turán sieve is rather flexible. Also,
when the structure of the partite set B is more complicated, the new counting method
helps estimating the sum of n(b1, b2). Thus, the combination of these two methods will
allow us to investigate more combinatorial problems, and we will report further applica-
tions of these methods in our future papers. In particular, we plan to study problems
about unrestricted cycles in tournaments, which are more difficult to approach than the
restricted ones due to the repetitions on the sets Xi.
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(1943), 223-256. For a German translation, see Kombinatorische Untersuchungen über gerichtete
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