
GAUSSIAN LAWS ON DRINFELD MODULES

WENTANG KUO AND YU-RU LIU

Abstract. Let A = Fq[T ] be the polynomial ring over the finite field Fq, k = Fq(T ) the
rational function field, and K a finite extension of k. Let φ be a Drinfeld A-module over
K of rank r. For a place P of K of good reduction, write FP = OP/MP, where OP is
the valuation ring of P and MP its maximal ideal. Let PP,φ(X) be the characteristic
polynomial of the Frobenius automorphism of FP acting on a Tate module of φ. Let
χφ(P) = PP,φ(1), and let ν(χφ(P)) be the number of distinct primes diving χφ(P). If φ
is of rank 2 with EndK̄(φ) = A, we prove that there exists a normal distribution for the
quantity

ν(χφ(P))− log degP√
log degP

.

For r ≥ 3, we show that the same result holds under the open image conjecture for
Drinfeld modules. We also study the number of distinct prime divisors of the trace of
the Frobenius automorphism of FP acting on a Tate module of φ and obtain similar
results.

1. Introduction

For n ∈ N := {1, 2, 3, · · · }, let ω(n) denote the number of distinct rational primes
dividing n. For x ∈ R with x ≥ 1, a theorem of Turán [28] states that∑

n≤x

(
ω(n)− log logn

)2 � x log log x,

from which we can derive the earlier result of Hardy and Ramanujan [14] that the normal
order of ω(n) is log log n. In 1940, Erdős and Kac [5] gave a remarkable refinement
of Turán’s Theorem by showing the existence of a normal distribution for ω(n). More
precisely, they proved that for γ ∈ R,

lim
x→∞

1

x
#
{
n
∣∣n ≤ x and

ω(n)− log logn√
log log n

≤ γ
}

= G(γ) :=
1√
2π

∫ γ

−∞
e

−t2
2 dt.

Instead of the sequence of natural numbers, we now consider the sequence of rational
primes p. Since ω(p) = 1, to obtain results analogous to those of Turán and Erdős-Kac,
we estimate ω(f(p)), where f is a function from the set of primes to N. In the case that
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f(p) = p− 1, Erdős [4] proved that∑
p≤x

(
ω(p− 1)− log log p

)2 � π(x) log log x,

where π(x) is the number of rational primes p with p ≤ x. Thus the normal order of
ω(p − 1) is log log p. In 1955, Halberstam [13] improved Erdős’s result and showed that
the quantity

ω(p− 1)− log log p√
log log p

distributes normally. One can also take f(p) = τ(p), where τ(n) denotes the Ramanujan τ -
function. Assuming the GRH (i.e. the Riemann hypothesis for all Dedekind zeta functions
of number fields), R. Murty and K. Murty [23] proved that∑

p≤x
τ(p)6=0

(
ω(τ(p))− log log p

)2 � π(x) log log x.

Under the GRH, they [24] also proved that the quantity

ω(τ(p))− log log p√
log log p

distributes normally. Their general theorem is applicable to a wide class of functions
arising as Fourier coefficients of modular forms.

Let E be an elliptic curve of conductor N defined over Q. For a rational prime p
with p - N , we denote by #E(Fp) the cardinality of the set of rational points on E
defined over the finite field Fp. One can consider ω(f(p)) with f(p) = #E(Fp). Note
that #E(Fp) = Pp,E(1), where Pp,E(X) is the characteristic polynomial of the Frobenius
automorphism of Fp acting on a Tate module of E. In [22], Miri and K. Murty proved
that if E is without complex multiplication (non-CM), assuming the GRH, we have∑

p≤x
p -N

(
ω(#E(Fp))− log log p

)2 � π(x) log log x.

If E is with complex multiplication, the second author [20] proved that the above inequality
holds unconditionally. She [21] also proved that for γ ∈ R (assuming the GRH if E is
non-CM),

(1) lim
x→∞

1

π(x)
#
{
p
∣∣ p ≤ x, p - N, and

ω(#E(Fp))− log log p√
log log p

≤ γ
}

= G(γ).

This provides us an elliptic analogue of the Erdős-Kac theorem.

It is natural to ask if a function field analogue of the above result holds unconditionally.
Let A = Fq[T ] be the polynomial ring over the finite field Fq and k = Fq(T ) the rational
function field. Let K be a finite extension of k and FK the constant field of K. Given a
place P of K, let OP be the valuation ring of P and MP the maximal ideal of OP. Let
FP denote the residue field OP/MP and degP = [FP : FK ]. Throughout this paper, we
use “primes” to denote monic irreducible polynomials of A and “places” to denote discrete
valuations of K.
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To consider a function field analogue of the above result, one may ask, for a given elliptic
curve Eq/K, if the quantity

ω(#Eq(FP))− log degP√
log degP

distributes normally. At this point, we encounter a difficulty in establishing such a result.
The main obstacle is that the estimate involves the quantity

∑
n≤x ω(qn − 1), and it is

difficult to obtain an asymptotic formula for this sum (see [16, Section 1] for further
discussion of this issue). Thus we consider a function field analogue of (1) in a different
formulation.

An A-field L is a field L equipped with a morphism ι : A → L. The prime ideal w
which is the kernel of ι is called the A-characteristic of L. We say that L has generic A-
characteristic if w = (0); otherwise we say L has finite A-characteristic.

Let L be an A-field, and let τ be the Frobenius endomorphism relative to Fq, i.e.,
τ(X) = Xq. In the ring EndL(Ga) of all L-endomorphisms of the additive group scheme
Ga|L, by identifying the element b ∈ L with the endomorphism defined by multiplication
by b, τ generates a subalgebra L{τ}. It is a non-commutative polynomial algebra in τ
subject to the rule τb = bqτ for all b ∈ L. We have two homomorphisms, ε : L → L{τ}
defined by ε(b) = b and D : L{τ} → L defined by D(

∑n
i=0 biτ

i) = b0.

A Drinfeld A-module φ over L is an algebra homomorphism

φ : A −→ L{τ} ⊆ EndL(Ga), a 7→ φa

such that ι = D ◦ φ and φ 6= ε ◦ ι. Let degτ φa denote the degree of φa in τ and deg a the
degree of a in T . There exists a unique positive integer r such that degτ φa = r · deg a for
all a ∈ A with a 6= 0 (see [3, Proposition 2.1]). The integer r is called the rank of φ. Let
B be an L-algebra. Then the composition

A→ EndL(Ga)→ End(Ga(B))

gives B another A-module structure, which we denote by φ(B).

Now, we consider the A-field K, which is a finite extension of k of degree d. Let FK
be the constant field of K, which is of degree dK over Fq. Let φ be a Drinfeld A-module
over K of rank r. For all but finitely many places P of K, φ has good reduction at P
(see [12, Definition 4.10.1, p88]). Let Pφ be the set of places of K at which φ has good
reduction. For a place P ∈ Pφ, we can consider φ⊗FP, the reduction of φ at P. Then we
write φ(FP) to denote the A-module (φ⊗ FP)(FP).

To consider an analogue of #E(Fp) in the Drinfeld module setting, let PP,φ(X) be the
characteristic polynomial of the Frobenius of FP acting on a Tate module of φ⊗ FP (see
the next section for the definition). Write

χφ(P) = PP,φ(1).

Since the ideal χφ(P)A is the Euler-Poincaré characteristic of φ(FP) [11, Theorem 5.1],
and |φ(FP)|, the cardinality of φ(FP), is equal to |FP|, we have

(2) degχφ(P) = dK degP,
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where degχφ(P) is the degree of χφ(P) ∈ A in T and degP = [FP : FK ].

For m ∈ A with m 6= 0, let ν(m) denote the number of distinct primes dividing m. One
can consider the distribution of ν(χφ(P)) over the places P ∈ Pφ. In the special case that
φ is the Carlitz module (i.e., φT = Tτ0 + τ and r = 1) and K = k, for a prime l ∈ A and
l = lA, we have χφ(l) = l − 1 [11, Theorem 5.1]. In [18], the second author proved that∑

deg l=x

(
ν(l − 1)− log deg l

)2 � πk(x) log x,

where πk(x) is the number of primes l ∈ A of degree x. From which we can conclude that
the normal order of ν(l − 1) is log deg l. She also showed that the quantity

ν(l − 1)− log deg l√
log deg l

distributes normally.

In this paper, we study analogous questions for ν(χφ(P)) when φ is of rank r = 2 and K
is a finite extension of k. What distinguishes the case r = 2 from r = 1 is its “non-abelian
character.” For r = 1 and K = k, divisibility properties of (l − 1) depend only on primes
in arithmetic progressions. In other words, what is latent in this case is the distribution
of primes in cyclotomic function fields, which are abelian extensions of k. However, in the
case when r = 2, divisibility properties of χφ(P) are in the intervention of the distribution
of primes in the division fields of φ, and they are no longer abelian. This difference makes
the study of ν(χφ(P)) much more difficult than that of ν(l − 1).

Our estimate for ν(χφ(P)) can be generalized to any φ of rank r ≥ 2 provided that the
open image conjecture for φ is satisfied. We will discuss this conjecture in more detail in
Section 2. Let EndK̄(φ) denote the endomorphism ring of φ over the algebraic closure K̄
of K, and let πK(x) be the number of places P of K of degree x. We now state the major
results of this paper.

Theorem 1. (i) Let φ be a Drinfeld A-module over K of rank 2 with EndK̄(φ) = A. For
x ∈ N, ∑

degP=x
P∈Pφ

(
ν(χφ(P))− log degP

)2 � πK(x) log x.

(ii) Let φ be a Drinfeld A-module over K of rank r ≥ 3 with EndK̄(φ) = A. Assuming the
open image conjecture for φ, the above inequality holds.

This theorem can be viewed as a Drinfeld module analogue of the result of Miri and K.
Murty in [22, Theorem 2]. As a direct consequence of Theorem 1, we have

Corollary 2. Let φ be a Drinfeld A-module over K of rank r ≥ 2 with EndK̄(φ) = A.
Assume the open image conjecture for φ when r ≥ 3. Then the normal order of ν(χφ(P))
is log degP.

We can also consider the distribution of ν(χφ(P)). The following theorem is analogous
to [21, Theorem 1].
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Theorem 3. (i) Let φ be a Drinfeld A-module over K of rank 2 with EndK̄(φ) = A. For
x ∈ N and γ ∈ R,

lim
x→∞

1

πK(x)
#
{
P ∈ Pφ

∣∣ degP = x and
ν(χφ(P))− log degP√

log degP
≤ γ

}
= G(γ).

(ii) Let φ be a Drinfeld A-module over K of rank r ≥ 3 with EndK̄(φ) = A. Assuming the
open image conjecture for φ, the above equality holds.

For a place P ∈ Pφ, the exponent λφ(P) of φ(FP) is defined to be the monic polynomial
of A which generates the ideal containing the polynomials that annihilate all elements of
φ(FP). By the definitions of λφ(P) and χφ(P), we have

ν(λφ(P)) = ν(χφ(P)).

Hence, as a direct consequence of Theorems 1 and 3, we have

Corollary 4. Let φ be a Drinfeld A-module over K of rank r ≥ 2 with EndK̄(φ) = A.
Assume the open image conjecture for φ when r ≥ 3.
(i) For x ∈ N, we have∑

degP=x
P∈Pφ

(
ν(λφ(P))− log degP

)2 � πK(x) log x.

Thus the normal order of ν(λφ(P)) is log degP.
(ii) For x ∈ N and γ ∈ R, we have

lim
x→∞

1

πK(x)
#
{
P ∈ Pφ

∣∣ degP = x and
ν(λφ(P))− log degP√

log degP
≤ γ

}
= G(γ).

For a place P ∈ Pφ, let aφ(P) ∈ A be the trace of the Frobenius of FP acting on a
Tate module of φ⊗ FP (see the next section for the definition). We can also consider the
quantity ν(aφ(P)) provided that aφ(P) 6= 0. The following theorems can be viewed as
Drinfeld module analogues of the results of R. Murty and K. Murty in [23] and [24].

Theorem 5. Let φ be a Drinfeld A-module over K of rank r ≥ 2 with EndK̄(φ) = A.
Assume the open image conjecture for φ when r ≥ 3. For x ∈ N, we have∑

degP=x
P∈Pφ
aφ(P)6=0

(
ν(aφ(P))− log degP

)2 � πK(x) log x.

Thus the normal order of ν(aφ(P)) is log degP.

Theorem 6. Let φ be a Drinfeld A-module over K of rank r ≥ 2 with EndK̄(φ) = A.
Assume the open image conjecture for φ when r ≥ 3. For x ∈ N and γ ∈ R, we have

lim
x→∞

1

πK(x)
#
{
P ∈ Pφ

∣∣ degP = x, aφ(P) 6= 0, and
ν(aφ(P))− log degP√

log degP
≤ γ

}
= G(γ).

Let a ∈ A be a fixed polynomial. As we will see from our proofs of Theorems 5 and 6,
the above two statements are also valid if we replace aφ(P) by (aφ(P) − a). Moreover,
for m ∈ A with m 6= 0, let V(m) denote the number of primes dividing m, counted with
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multiplicity. Since the difference between ν(m) and V(m) is small on average, all the
results in this paper hold when ν is replaced by V. In Section 2, we state the open image
conjecture for Drinfeld modules and discuss some of its consequences. We also recall the
Chebotarev density theorem for function fields. In Section 3, we review the basic results
in probability theory which are required in our proofs of Theorems 3 and 6. We prove
Theorems 1 and 3 in Sections 4 and 5, and we conclude this paper by proving Theorems
5 and 6 in Section 6.

In this paper, we only consider a Drinfeld A-module φ over K, where EndK̄(φ) = A and
the A-field K is of generic characteristic. One could ask questions analogous to these in
the paper when EndK̄(φ) 6= A or when K is of finite characteristic. We intend to return
to these matters in future papers.

Notation For x ∈ N, let f(x) and g(x) be functions of x. If g(x) is positive and there
exists a constant c > 0 such that |f(x)| ≤ cg(x), we write either f(x) � g(x) or f(x) =
O(g(x)). In this paper, all the implicit constants depend only on the Drinfeld A-module
φ over K.

2. Preliminaries

The most important ingredients in our proof are the open image conjecture for Drinfeld
modules and the Chebotarev density theorem for function fields. In this section, we recall
some related results.

Let L be an A-field with A-characteristic w, and let φ be a Drinfeld A-module over L
of rank r. For m ∈ A with m 6= 0, we denote by φ[m] the m-division points of φ in the
algebraic closure L̄ of L. By adjoining to L the m-division points, we obtain L(φ[m]), the
m-division field of φ, which is a finite Galois extension of L. If m is coprime to w, we have
[3, Proposition 2.2]

φ[m] ' (A/mA)r.

By choosing a basis, we have a natural injection

Φm : Gal(L(φ[m])/L) ↪→ Aut(φ[m]) ' GLr(A/mA).

For a prime l ∈ A coprime to w, let

φ[l∞] =
⋃
n∈N

φ[ln]

be the direct limit of the ln-division points of φ. Let Al and kl be the completion of A
and k at l, respectively. The l-adic Tate module of φ, Tl(φ), is defined to be

Tl(φ) = HomAl(kl/Al, φ[l∞]),

which is a free Al-module of rank r. By choosing a basis, we have the l-adic representation
ρl,φ of φ, defined by

ρl,φ : Gal(Lsep/L)→ Aut(Tl(φ)) ' GLr(Al),
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where Lsep is the maximal separable extension of L. By putting together the l-adic repre-
sentations ρl, we obtain a continuous representation

ρφ =
∏
l

ρl,φ : Gal(Lsep/L)→ GLr(Â),

where Â is the profinite completion of A. The open image conjecture for φ concerns the
nature of the map ρφ. The following statement is a special case of the general conjecture.

Conjecture 7. (Open image conjecture for Drinfeld modules) Let L be an A-field of
generic A-characteristic, and let φ be a Drinfeld A-module over L of rank r ≥ 2 with
EndL̄(φ) = A. Then the image of ρφ is open.

Although the general open image conjecture remains unsolved, exciting progress has
recently been made. In particular, by the work of Gardeyn [9, Remark 3.15] [10, Remark
1.15] and Pink [26, Theorem 0.1], we now know that this conjecture holds for r = 2.

Now we come back to our original setting. Write A = Fq[T ] and k = Fq(T ). Let K be a
finite extension of k, and let FK be the constant field of K. Let φ be a Drinfeld A-module
over K, and let Pφ be the set of places of K at which φ has good reduction. The following
properties of Φm and K(φ[m]) are consequences of the open image conjecture.

Proposition 8. Let φ be a Drinfeld A-module over K of rank r ≥ 2 with EndK̄(φ) = A.
Assume Conjecture 7 holds for φ if r ≥ 3. Then there exists B(φ) ∈ A (depending only
on φ) such that for every m ∈ A with (m,B(φ)) = 1,
(i) the map Φm is an isomorphism.
(ii) K(φ[m])/K is a geometric extension.

Proof: We note that (i) is a direct consequence of the openness of the image of ρφ and the
Chinese remainder theorem. Hence, it remains to prove (ii). The following argument has
been implicitly discussed by David in [2]. For the completeness of the paper, we include a
proof here following an idea from [2].

Let B1(φ) be the product of all primes l such that ρl is not an isomorphism. For distinct
primes l1, l2 ∈ A with (l1l2, B1(φ)) = 1, since Φl1 and Φl2 are isomorphisms, we have∣∣Gal(K(φ[l1l2])/K)

∣∣ =
∣∣Gal(K(φ[l1])/K)

∣∣ · ∣∣Gal(K(φ[l2])/K)
∣∣.

Hence the fields K(φ[l1]) and K(φ[l2]) are disjoint. Let Kφ be the field obtained by
adjoining to K all division points of φ, and let F̄K be the algebraic closure of FK . For
K = k, it was proved by Gekeler in [2, Lemma 3.2] that

[kφ ∩ F̄k : Fk] <∞.

One can generalize his argument to a finite extension K of k and obtain

[Kφ ∩ F̄K : FK ] <∞.

Therefore, by the disjoint property of K(φ[l]), there are only finitely many primes l ∈ A
such that K(φ[l]) ∩ F̄K 6= FK . Let B2(φ) be the product of such exceptional primes.
By taking B(φ) = B1(φ) · B2(φ), Statement (ii) follows. This completes the proof of
Proposition 8.
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For a place P of K, let p = P ∩ A and let p ∈ A be the prime with pA = p. Let l ∈ A
be a prime with (l, p) = 1. By the work of Drinfeld [3] on the theory of good reduction,
which is analogous to the classical result of Ogg-Néron-Shafarcvich for elliptic curves, φ
has a good reduction at P if and only if K(φ[l∞])/K is unramified at P for all primes
l ∈ A with (l, p) = 1. In this case, let σP be the Artin symbol of P in Gal(K(φ[l∞])/K),
and let φ ⊗ FP be the Drinfeld module over FP, which is the reduction of φ at P. Then
one can identify Tl(φ) and Tl(φ ⊗ FP), and the action of σP is the same as that of the
Frobenius of FP. Moreover, the characteristic polynomial of σP on Tl(φ) is independent
of l (see [11, Corollary 3.4] and [29, Theorem 2(b)]) and we denoted it by PP,φ(X). Thus
we have

Proposition 9. Let P ∈ Pφ and m ∈ A with (m, p) = 1.
(i) The characteristic polynomial of Φm(σP) is equal to PP,φ(X) (modm).
(ii) If aφ(P) is the trace of the Frobenius of FP on Tl(φ⊗ FP), then

tr (Φm(σP)) = aφ(P) (modm).

We now state the Chebotarev density theorem for function fields. For a finite Galois
extension L/K, we denote by G the Galois group of L/K and by C a union of conjugacy
classes of G. For x ∈ N, define

πC
(
x, L/K

)
= #

{
P
∣∣ degP = x, P is a place unramified in L/K, and σP ⊆ C

}
,

where σP is the Artin symbol of P in Gal(L/K). The following result of Ishibashi provides
an estimate for πC

(
x, L/K

)
.

Theorem 10. (Ishibashi [15, p 55]) If L/K is a geometric extension, then for x ∈ N,

πC
(
x, L/K

)
=
|C|
|G|

πK(x) +O
(

(qdK )x/2 |G| d(L/K)
)
,

where πK(x) is the number of places P of K of degree x, and d(L/K) is the degree of the
different of L over K.

We remark here that the error term we state above has been improved by K. Murty
and Scherk in [25] and M. Fried and M. Jarden in [7].

In order to estimate the error term in Theorem 10 when L = K(φ[m]), one can apply
the following result of Gardeyn.

Proposition 11. (Gardeyn [8, Proposition 6]) For m ∈ A \ Fq, there exists a constant
C(φ) (depending only on φ) such that

d(K(φ[m])/K) ≤ C(φ) · [K(φ[m]) : K] · degm.

In order to estimate ν(aφ(P)), we need to exclude places P ∈ Pφ with aφ(P) = 0. The
following result of David [2] provides an upper bound for such P.

Theorem 12. (David [2, Theorem 1.1]) Let φ be a Drinfeld A-module over K of rank
r ≥ 2 with EndK̄(φ) = A, and let a ∈ A be fixed. For x ∈ N, there exists a constant D(φ)
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(depending only on φ) such that

#
{
P ∈ Pφ

∣∣ degP = x and aφ(P) = a
}
≤ D(φ) · (qdK )θ(r)x

x
,

where θ(r) = 1− 1
2(r2+2r)

.

We remark here that although in [2] David only stated the result for K = k, her
argument can be extended to a finite extension K of k without modification.

3. Review of probability theory

To prove Theorem 3, we need the following results from the probability theory; their
proofs can be found in [1] and [6]. For x ∈ N, let Vx be a real-valued random variable with
a probability measure Px. Let Fx be its associated distribution function and Ex{Vx} the
expectation of Vx with respect to Fx.

Definition Given a sequence of random variables {Vx} and α ∈ R, we say {Vx} converges
in probability to α if for any ε > 0,

lim
x→∞

Px
{
|Vx − α| > ε

}
= 0.

We denote it by

Vx
p−−−−→ α.

Proposition 13. ([1, p 134]) Given a sequence of random variables {Vx}, if

lim
x→∞

Ex
{
|Vx|

}
= 0,

then we have
Vx

p−−−−→ 0.

Proposition 14. ([1, p 134-135], [6, p.247]) Let {Vx}, {Wx}, and {Ux} be sequences of
random variables with the same probability measure Px. Let F be a distribution function.
Suppose that

Vx
p−−−−→ 1 and Wx

p−−−−→ 0.

Then for all γ ∈ R, we have

lim
x→∞

Px
{
Ux ≤ γ

}
= F (γ)

if and only if
lim
x→∞

Px
{

(VxUx +Wx) ≤ γ
}

= F (γ).

For γ ∈ R, let G(γ) denote the Gaussian normal distribution, i.e.,

G(γ) =
1√
2π

∫ γ

−∞
e

−t2
2 dt.

For s ∈ N, the s-th moment µs of G is defined by

µs =

∫ ∞
−∞

tsdG(t).

The following proposition shows that G is uniquely determined by these moments.
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Proposition 15. ([6, p 262-263]) Let {Fx} be a sequence of distribution functions. Sup-
pose that for all s ∈ N,

lim
x→∞

∫ ∞
−∞

tsdFx(t) = µs.

Then for all γ ∈ R, we have

lim
x→∞

Fx(γ) = G(γ).

This next proposition is an analogue of the Lebesgue Dominated Convergence Theorem.

Proposition 16. ([6, p 244-245]) Let s ∈ N and {Fx} a sequence of distribution functions.
Suppose that for all γ ∈ R,

lim
x→∞

Fx(γ) = G(γ),

and for some δ = δ(s) > 0,

sup
x

{∫ ∞
−∞
|t|s+δdFx(t)

}
<∞.

Then we have

lim
x→∞

∫ ∞
−∞

tsdFx(t) = µs.

The next proposition is a special case of the Central Limit Theorem.

Proposition 17. ([6, p 256-258]) Let V1, V2, · · · , Vi, · · · be a sequence of independent ran-
dom variables with a probability measure P, and let E

{
Vi
}

and Var
{
Vi
}

be the expectation
and the variance of Vi, respectively. Also, we denote by ImVi the image of Vi. Suppose
that

(1) sup
i

{
ImVi

}
<∞,

(2) E
{
Vi
}

= 0 and Var
{
Vi
}
<∞ for all i ∈ N.

For x ∈ N, let Gx be the normalization of V1, V2, · · · , Vx, i.e.,

Gx =
( x∑
i=1

Vi

)/( x∑
i=1

Var
{
Vi
}) 1

2
.

If

∞∑
i=1

Var
{
Vi
}

diverges, we have

lim
x→∞

P
{
Gx ≤ γ

}
= G(γ).

4. Proof of Theorem 1

Let K be a finite extension of k of degree d, and let FK be the constant field of K,
which is of degree dK over Fq. Given a Drinfeld A-module φ over K of rank r ≥ 2 with
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EndK̄(φ) = A, let Pφ be the set of places of K at which φ has good reduction. In this
section, we provide a proof of Theorem 1, which states that for x ∈ N,∑

degP=x
P∈Pφ

(
ν(χφ(P))− log degP

)2 � πK(x) log x.

To prove this inequality, we need the following lemma, which can be derived from the
result of Lang and Weil in [17, Theorem 1].

Lemma 18. For r ∈ N, r ≥ 2, and l ∈ A a prime, define

Cl,r =
{
g ∈ GLr(A/lA)

∣∣det (g − Ir) ≡ 0 (mod l)
}
,

where GLr is the general linear group of dimension r and Ir the r × r identity matrix.
Then we have ∣∣Cl,r∣∣ = q(r2−1) deg l +O

(
q(r2−2) deg l

)
,

which implies that

|Cl,r|
|GLr(A/lA)|

=
1

qdeg l
+O

(
1/q2 deg l

)
.

Now, we are ready to prove Theorem 1. We remark here that the following proof works
for any φ of rank r ≥ 2 provided that when r ≥ 3, the open image conjecture for φ is
satisfied.

Proof: (of Theorem 1) Given a Drinfeld A-module φ over K of rank r ≥ 2 with EndK̄(φ) =
A, let B(φ) ∈ A be defined as in Proposition 8. We denote by

∑∗ the sum over places
P ∈ Pφ, and by

∑∗∗ the sum over primes l ∈ A with (l, B(φ)) = 1. For x ∈ N, we consider∑∗

degP=x

(
ν(χφ(P))− log degP

)2
=

∑∗

degP=x

ν2(χφ(P))− 2 log x
∑∗

degP=x

ν(χφ(P)) + (log x)2
∑∗

degP=x

1.
(3)

Since all but finitely many places P satisfying P ∈ Pφ, we have

(4)
∑∗

degP=x

1 = πK(x) +O(1),

where

πK(x) =
(qdK )x

x
+O

(
(qdK )x/2

)
.

Let δ ∈ R with 0 < δ < 1/d (a choice of δ will be made later). We have seen in (2) that
degχφ(P) = dK degP = dKx. Thus there are at most O(1) many primes l with l|χφ(P)
and deg l > δx. Also, there are at most O(1) many primes l with (l, B(φ)) 6= 1. Hence,
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the second sum in (3) can be written as∑∗

degP=x

ν(χφ(P)) =
∑∗

degP=x

∑
deg l≤δx
l|χφ(P)

1 +
∑∗

degP=x

∑
deg l>δx
l|χφ(P)

1

=
∑∗∗

deg l≤δx

∑∗

degP=x
l|χφ(P)

1 +O
(
πK(x)

)
.

Let p = P ∩ A and let p ∈ A be the prime with pA = p. Since [K : k] = d and
[FK : Fq] = dK we have

[FP : A/p] ≤ d, and deg p · [FP : A/p] = [FP : Fq] = degP · dK .

Therefore, we have

deg p ≥ (degP · dK)/d ≥ x/d.
We note that since δ < 1/d, if l is a prime with deg l ≤ δx, we have (l, p) = 1. Since
l |χφ(P) if and only if PP,φ(1) ≡ 0 (mod l), by Proposition 9(i), this is equivalent to say
that Φl(σP) has an eigenvalue 1, i.e., Φl(σP) belongs to one of the conjugacy classes of
Cl,r as defined in Lemma 18. Applying Theorem 10, Propositions 8, 11, and Lemma 18,
we have∑∗∗

deg l≤δx

∑∗

degP=x
l|χφ(P)

1 =
∑∗∗

deg l≤δx

(( 1

qdeg l
+O

(
1/q2 deg l

))
πK(x) +O

(
(qdK )x/2 q2r2 deg l deg l

))

= πK(x)
∑∗∗

deg l≤δx

1

qdeg l
+O

(
πK(x)

)
+O

(
(qdK )x/2

∑
deg l≤δx

(
q2r2 deg l deg l

))
= πK(x) log x+O

(
πK(x)

)
+O

(
q((2r2+2)δ+dK/2)x

)
.

The last equality follows from the prime number theory for polynomials. Hence, if (2r2 +
2)δ < dK/2, we obtain

(5)
∑∗

degP=x

ν(χφ(P)) = πK(x) log x+O
(
πK(x)

)
.

Now, we consider ∑∗

degP=x

ν2(χφ(P)).

Let δ ∈ R with 0 < δ < 1/(2d). Since χφ(P) has at most O(1) many prime divisors l
satisfying either deg l > δx or (l, B(φ)) 6= 1, using the estimate in (5), we have∑∗

degP=x

ν2(χφ(P)) =
∑∗

degP=x

( ∑∗∗

deg l≤δx
l|χφ(P)

1 +O(1)

)2

=
∑∗∗

deg l1,deg l2≤δx
l1 6=l2

∑∗

degP=x
l1l2|χφ(P)

1 +O
(
πK(x) log x

)
.
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For distinct primes l1, l2 with deg l1 ≤ δx and deg l2 ≤ δx, since δ < 1/(2d) and deg p ≥
x/d, we have (l1l2, p) = 1. Since l1l2 |χφ(P) if and only if PP,φ(1) ≡ 0 (mod l1l2), by
Proposition 9(i), this is equivalent to say that Φl1l2(σP) belongs to one of the conjugacy
classes of Cl1l2,r, where

Cl1l2,r =
{
g ∈ GLr(A/l1l2A)

∣∣det (g − Ir) = 0
}
.

Since l1 6= l2, by the Chinese remainder theorem, we have

|Cl1l2,r | = |Cl1,r | |Cl2,r | and |GLr(A/l1l2A) | = |GLr(A/l1A) | |GLr(A/l2A) |.
Combining this with Theorem 10, Propositions 8, 11, and Lemma 18, we get∑∗∗

deg l1,deg l2≤δx
l1 6=l2

∑∗

degP=x
l1l2|χφ(P)

1 = πK(x)
∑∗∗

deg l1,deg l2≤δx
l1 6=l2

1

qdeg l1 qdeg l2
+ O

(
πK(x)

)

+O

(
(qdK )x/2

∑
deg l1,deg l2≤δx

(
q2r2 deg l1 q2r2 deg l2 deg l1l2

))
= πK(x)(log x)2 + O

(
πK(x) log x

)
+ O

(
q(2(2r2+2)δ+dK/2)x

)
.

Hence, if 2(2r2 + 2)δ < dK/2, we have

(6)
∑∗

degP=x

ν2(χφ(P)) = πK(x)(log x)2 +O
(
πK(x) log x

)
.

Combining (3), (4), (5), and (6), by choosing δ such that

0 < δ < min

{
1

2d
,

dK
4(2r2 + 2)

}
,

we obtain ∑∗

degP=x

(
ν(χφ(P))− log deg x

)2 � πK(x) log x.

This completes the proof of Theorem 1.

5. Proof of Theorem 3

In this section, we provide a proof of Theorem 3. For x ∈ N and γ ∈ R, let

Px

{
P
∣∣P satisfies

ν(χφ(P))− log degP√
log degP

≤ γ
}

denote the quantity

1

πK(x)
#
{
P ∈ Pφ

∣∣ degP = x and
ν(χφ(P))− log degP√

log degP
≤ γ

}
.

Our goal is to prove that

lim
x→∞

Px

{
P
∣∣P satisfies

ν(χφ(P))− log degP√
log degP

≤ γ
}

= G(γ).

We remark here that Px is the probability measure that places weights 1/πK(x) at each
place P of K of degree x. Following the approach in [19, Theorem 1], which is based
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on the idea of Billingsley in [1], we divide our proof into four lemmas. Again, under the
assumption of the open image conjecture for Drinfeld modules, our proof holds for any
rank r ≥ 2.

Given a Drinfeld A-module φ over K, let B(φ) be defined as in Proposition 8. Let∑∗ and
∑∗∗ be defined as in the proof of Theorem 1. For x ∈ N with x ≥ 3, let

y = y(x) = [x/ log x]. For m ∈ A, let νy(m) denote the number of distinct primes l
dividing m, which satisfy deg l ≤ y and (l, B(φ)) = 1. It is a truncation function of ν(m).
The following lemma shows that we can replace ν by νy in Theorem 3.

Lemma 19. For γ ∈ R, we have

lim
x→∞

Px

{
P
∣∣P satisfies

ν(χφ(P))− log x√
log x

≤ γ
}

= G(γ)

if and only if

lim
x→∞

Px

{
P
∣∣P satisfies

νy(χφ(P))− log x√
log x

≤ γ
}

= G(γ).

Proof: Since

νy(χφ(P))− log x√
log x

=
ν(χφ(P))− log x√

log x
+
νy(χφ(P))− ν(χφ(P))√

log x
,

by Propositions 13 and 14, to prove this lemma, it suffices to prove that

lim
x→∞

Ex

{∣∣∣ν(χφ(P))− νy(χφ(P))√
log x

∣∣∣} = 0.

Let δ ∈ R with 0 < δ < 1. Since there are at most O(1) many primes l with deg l > δx
which satisfy either l|B(φ) or l|χφ(P), we have∑∗

degP=x

∣∣ν(χφ(P))− νy(χφ(P))
∣∣ =

∑∗∗

y<deg l≤δx

∑∗

degP=x
l |χφ(P)

1 +O
(
πK(x)

)
.

Also, by Theorem 10, Propositions 8, 9(i), 11, and Lemma 18, if δ < 1/d and (2r2 + 2)δ <
dK/2, we have∑∗∗

y<deg l≤δx

∑∗

degP=x
l |χφ(P)

1 =
∑∗∗

y<deg l≤δx

(
πK(x)

qdeg l
+O

(
πK(x)

q2 deg l

)
+O

(
(qdK )x/2 q2r2 deg l deg l

))

� πK(x) log log x.

Thus by choosing δ such that

0 < δ < min

{
1

d
,

dK
2(2r2 + 2)

}
,

we have ∑∗

degP=x

∣∣ν(χφ(P))− νy(χφ(P))
∣∣� πK(x) log log x.
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It follows that as x→∞,

Ex

{∣∣∣ν(χφ(P))− νy(χφ(P))√
log x

∣∣∣}� πK(x) log log x

πK(x)
√

log x
−→ 0.

This completes the proof of Lemma 19.

In order to apply the central limit theorem, we now associate νy to a sum of independent
random variables. For a prime l ∈ A, define an independent random variable Vl by

P{Vl = 1} =
1

qdeg l
and P{Vl = 0} = 1− 1

qdeg l
.

Let Sy be a random variable defined by

Sy =
∑∗∗

deg l≤y
Vl.

Since y = [x/ log x], we have

E
{
Sy
}

=
∑∗∗

deg l≤y

1

qdeg l
= log x+O

(
log log x

)
and

Var
{
Sy
}

=
∑∗∗

deg l≤y

1

qdeg l

(
1− 1

qdeg l

)
= log x+O

(
log log x

)
.

The following lemma shows that the log x term in Lemma 19 can be replaced by E
{
Sy
}

and Var
{
Sy
}

.

Lemma 20. For γ ∈ R, we have

lim
x→∞

Px

{
P
∣∣P satisfies

νy(χφ(P))− log x√
log x

≤ γ
}

= G(γ)

if and only if

lim
x→∞

Px

{
P
∣∣P satisfies

νy(χφ(P))− E{Sy}√
Var{Sy}

≤ γ
}

= G(γ).

Proof: Write

νy(χφ(P))− E{Sy}√
Var{Sy}

=
νy(χφ(P))− log x√

log x
·
√

log x√
Var{Sy}

+
log x− E{Sy}√

Var{Sy}
.

The above computations of E{Sy} and Var{Sy} imply that
√

log x√
Var{Sy}

p−−−−→ 1 and
log x− E{Sy}√

Var{Sy}
p−−−−→ 0.

By Proposition 14, the lemma follows.

Now, for a prime l ∈ A, let δl : A→ {0, 1} be a random variable defined by

δl(m) =

{
1 if l |m,
0 otherwise.
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Hence, we can write

νy(χφ(P)) =
∑∗∗

deg l≤y
δl(χφ(P)).

By Theorem 10, Propositions 8, 9(i), 11, and Lemma 18, we have

Px

{
P
∣∣P satisfies δl(χφ(P)) = 1

}
=

1

qdeg l
+O

(
1/q2 deg l

)
.

Hence, the expectations of random variables Vl and δl are close. Thus the sum Sy of Vl is a
good approximation of the sum νy of δl. Indeed, the s-th moments of their normalizations
are equal as x→∞.

Lemma 21. For s ∈ N, we have

lim
x→∞

∣∣∣∣E{(Sy − E{Sy}√
Var{Sy}

)s}
− Ex

{(νy(χφ(P))− E{Sy}√
Var{Sy}

)s}∣∣∣∣ = 0.

Proof: For an integer t with 0 ≤ t ≤ s, write

E
{
Sty
}

=
t∑

u=1

∑′ t!

t1! · · · tu!

∑′′
E
{
V t1
l1
· · ·V tu

lu

}
,

where
∑′ denotes the sum over all u-tuples (t1, t2, · · · , tu) of positive integers such that

t1 + t2 + · · · + tu = t, and
∑′′ denotes the sum over all u-tuples of distinct primes

(l1, l2, · · · , lu) with deg li ≤ y and (li, B(φ)) = 1 (1 ≤ i ≤ u). Since Vli take only values 0
or 1 and they are independent, we have

E
{
V t1
l1
· · ·V tu

lu

}
= E

{
Vl1 · · ·Vlu

}
=

u∏
i=1

1

qdeg lu
.

Similarly, if we abbreviate νy(χφ(P)) and δl(χφ(P)) by νy and δl, respectively, we have

Ex
{
νty
}

=
t∑

u=1

∑′ t!

t1! · · · tu!

∑′′
Ex
{
δt1l1 · · · δ

tu
lu

}
.

Since δli take only values 0 or 1, combining the Chinese remainder theorem with Theorem
10, Propositions 8, 9(i), 11, and Lemma 18, we obtain

Ex
{
δt1l1 · · · δ

tu
lu

}
= Ex

{
δl1 · · · δlu

}
=

1

πK(x)

∑∗

degP=x
l1l2···lu |χφ(P)

1

=

u∏
i=1

1

qdeg lu
+O

(
x(qdK )−x/2 q2r2 deg l1+···+2r2 deg lu deg l1 · · · lu

)
.

It follows that∣∣∣E{V t1
l1
· · ·V tu

lu

}
− Ex

{
δt1l1 · · · δ

tu
lu

}∣∣∣� x(qdK )−x/2 q(2r2+1) deg l1+···+(2r2+1) deg lu .
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Thus∣∣∣E{Sty}− Ex
{
νty
}∣∣∣� t∑

u=1

∑′ t!

t1!t2! · · · tu!

∑′′
x(qdK )−x/2 q(2r2+1) deg l1+···+(2r2+1) deg lu

� x(qdK )−x/2
( ∑

deg l≤y
q(2r2+1) deg l

)t
� xq−dKx/2+(2r2+2)ty.

Write

E
{(
Sy − E

{
Sy
})s}

=
s∑
t=0

(
s

t

)
E
{
Sty
}

E
{
Sy
}s−t

and

Ex
{(
νy − E

{
Sy
})s}

=

s∑
t=0

(
s

t

)
Ex
{
νty
}

E
{
Sy
}s−t

.

Since E
{
Sy
}

= log x+O(log log x) and y = [x/ log x]� log x, we have∣∣∣E{(Sy − E
{
Sy
})s}− Ex

{(
νy − E

{
Sy
}

)s
}∣∣∣� s∑

t=0

(
s

t

)
xq−dKx/2+(2r2+2)ty (log x)s−t

� xq−dKx/2
(
q(2r2+2)y + log x

)s
� xq−dKx/2+(2r2+2)sy.

Since y < εx for any ε > 0, as x→∞,∣∣∣E{(Sy − E
{
Sy
})s}− Ex

{(
νy − E

{
Sy
}

)s
}∣∣∣ −→ 0.

Thus the lemma follows.

By combining Lemmas 19, 20, and 21, we have reduced Theorem 3 into a purely prob-
abilistic problem which is about a normal distribution of the quantity

Sy − E{Sy}√
Var{Sy}

.

Hence, the remaining proof follows in the same way as the one in [19, Theorem 1]. More
precisely, as in [19, Lemma 7], we have the following lemma about the s-th moment of Sy.

Lemma 22. For s ∈ N, we have

sup
y

∣∣∣E{(Sy − E{Sy}√
Var{Sy}

)s}∣∣∣ <∞.
Combining Lemmas 19, 20, 21, 22 with Propositions 15, 16, and 17, the same argument

as the one in [19, Section 4] gives us

lim
x→∞

Px

{
P
∣∣P satisfies

ν(χφ(P))− log degP√
log degP

≤ γ
}

= G(γ).

This completes the proof of Theorem 3.
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6. Proofs of Theorems 5 and 6

In this section, we consider ν(aφ(P)). In order to prove Theorems 5 and 6, we need the
following result, which is similar to Lemma 18.

Lemma 23. For r ∈ N, r ≥ 2, and l ∈ A a prime, define

Dl,r =
{
g ∈ GLr(A/lA)

∣∣ tr g ≡ 0 (mod l)
}
.

Then we have ∣∣Dl,r

∣∣ = q(r2−1) deg l +O
(
q(r2−2) deg l

)
,

which implies that
|Dl,r|

|GLr(A/lA)|
=

1

qdeg l
+O

(
1/q2 deg l

)
.

Now, we are ready to prove Theorems 5 and 6. Since our approaches are similar to
those of Theorems 1 and 3, we will only sketch their proofs. In the following, let

∑∗ and∑∗∗ be defined as in the proof of Theorem 1.

Proof: (of Theorem 5) Using the same principle as the one in the proof of Theorem 1, to
prove Theorem 5, it suffices to estimate the sums∑∗

degP=x
aφ(P) 6=0

ν(aφ(P)) and
∑∗

degP=x
aφ(P)6=0

ν2(aφ(P)).

Let δ ∈ R with 0 < δ < 1. We have∑∗

degP=x
aφ(P)6=0

ν(aφ(P)) =
∑∗

degP=x
aφ(P)6=0

∑
deg l≤δx
l|aφ(P)

1 +O
(
πK(x)

)
=
∑∗∗

deg l≤δx

∑∗

degP=x
l|aφ(P), aφ(P)6=0

1 +O
(
πK(x)

)
.

By Theorem 12,∑∗∗

deg l≤δx

∑∗

degP=x
l|aφ(P), aφ(P)6=0

1 =
∑∗∗

deg l≤δx

∑∗

degP=x
l|aφ(P)

1 +O
(
q(δ+dKθ(r))x

)
.

Let p = P ∩ A and let p ∈ A be the prime with pA = p. If δ < 1/d, we have (l, p) = 1.
Then by Proposition 9(ii), we have l | aφ(P) if and only if Φl(σP) belongs to one of the
conjugacy classes of Dl,r as defined in Lemma 23. Applying Theorem 10, Propositions 8,
11, and Lemma 23, we have∑∗∗

deg l≤δx

∑∗

degP=x
l|aφ(P)

1 =
∑∗∗

deg l≤δx

(( 1

qdeg l
+O

(
1/q2 deg l

))
πK(x) +O

(
(qdK )x/2 q2r2 deg l deg l

))

= πK(x) log x+O
(
πK(x)

)
+O

(
q((2r2+2)δ+dK/2)x

)
.
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Combining the above estimates, if δ < 1/d, δ + dKθ(r) < dK , and (2r2 + 2)δ < dK/2, we
obtain

(7)
∑∗

degP=x
aφ(P)6=0

ν(aφ(P)) = πK(x) log x+O
(
πK(x)

)
.

Similarly, by Theorem 12, we have∑∗

degP=x
aφ(P) 6=0

ν2(aφ(P)) =
∑∗∗

deg l1,deg l2≤δx
l1 6=l2

∑∗

degP=x
l1l2|aφ(P), aφ(P) 6=0

1 +O
(
πK(x) log x

)

=
∑∗∗

deg l1,deg l2≤δx
l1 6=l2

∑∗

degP=x
l1l2|aφ(P)

1 +O
(
q(2δ+dKθ(r))x

)
+O

(
πK(x) log x

)
.

Combining the Chinese remainder theorem with Theorem 10, Propositions 8, 9(ii), 11,
and Lemma 23, if δ < 1/(2d), we have∑∗∗

deg l1,deg l2≤δx
l1 6=l2

∑∗

degP=x
l1l2|aφ(P)

1 = πK(x)(log x)2 + O
(
πK(x) log x

)
+ O

(
q(2(2r2+2)δ+dK/2)x

)
.

Hence, if δ < 1/(2d), 2δ + dKθ(r) < dK , and 2(2r2 + 2)δ < dK/2,

(8)
∑∗

degP=x
aφ(P)6=0

ν2(aφ(P)) = πK(x)(log x)2 +O
(
πK(x) log x

)
.

Combine (3) (with χφ(P) replaced by aφ(P)), (4), (7), and (8). Since θ(r) = 1− 1
2(r2+2r)

,

by choosing δ such that

0 < δ < min

{
1

2d
,

dK
4(r2 + 2r)

,
dK

4(2r2 + 2)

}
,

it follows that ∑∗

degP=x

(
ν(aφ(P))− log deg x

)2 � πK(x) log x.

This completes the proof of Theorem 5.

Proof: (of Theorem 6) Let νy, Sy, E, and Ex be defined as in the proof of Theorem 3.
Suppose that we have

(9)
∑∗

degP=x

∣∣ν(aφ(P))− νy(aφ(P))
∣∣� πK(x) log log x,

and as x→∞,

(10)
∣∣∣E{(Sy − E

{
Sy
})s}− Ex

{(
νy − E

{
Sy
}

)s
}∣∣∣ −→ 0.

Then we can establish the normal distribution for ν(aφ(P)) as the remaining proof is the
same as that of Theorem 3 (i.e., Lemmas 19 to 22).
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To obtain (9), let δ ∈ R with 0 < δ < 1. For a place P ∈ Pφ, by Theorem 12, we have∑∗

degP=x

∣∣ν(aφ(P))− νy(aφ(P))
∣∣ =

∑∗∗

y<deg l≤δx

∑∗

degP=x
l | aφ(P), aφ(P) 6=0

1 +O
(
πK(x)

)

=
∑∗∗

y<deg l≤δx

∑∗

degP=x
l | aφ(P)

1 +O
(
q(δ+dKθ(r))x

)
+O

(
πK(x)

)
.

Then by Theorem 10, Propositions 8, 9(ii), 11, and Lemma 23, if δ < 1/d and (2r2 +2)δ <
dK/2, we have

∑∗∗

y<deg l≤δx

∑∗

degP=x
l | aφ(P)

1 =
∑∗∗

y<deg l≤δx

(
πK(x)

qdeg l
+O

(
(qdK )x/2 q2r2 deg l deg l

))

� πK(x) log log x.

Combine the above two estimates. By choosing δ such that

0 < δ < min

{
1

d
,

dK
2(r2 + 2r)

,
dK

2(2r2 + 2)

}
,

the inequality (9) follows.

To obtain (10), let

Sy =
∑∗∗

deg l≤y
Vl, and νy(aφ(P)) =

∑∗∗

deg l≤y
δl(aφ(P))

be defined as in the proof of Theorem 3. For an integer t with 0 ≤ t ≤ s, we have

E
{
Sty
}

=

t∑
u=1

∑′ t!

t1! · · · tu!

∑′′
E
{
V t1
l1
· · ·V tu

lu

}
and

E
{
V t1
l1
· · ·V tu

lu

}
=

u∏
i=1

1

qdeg lu
,

where
∑′, ∑′′ are defined as in the proof of Lemma 21. Similarly, if we abbreviate

νy(aφ(P)) and δl(aφ(P)) by νy and δl, respectively, we have

Ex
{
νty
}

=
t∑

u=1

∑′ t!

t1! · · · tu!

∑′′
Ex
{
δt1l1 · · · δ

tu
lu

}
.
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Combining the Chinese remainder theorem with Theorems 10, 12, Propositions 8, 9(ii),
11, and Lemma 18, we get

Ex
{
δt1l1 · · · δ

tu
lu

}
=

1

πK(x)

∑∗

degP=x
l1l2···lu | aφ(P), aφ(P)6=0

1

=
u∏
i=1

1

qdeg lu
+O

(
xqdK(θ(r)−1)x

)
+O

(
x(qdK )−x/2 q2r2 deg l1+···+2r2 deg lu deg l1 · · · lu

)
.

It follows that ∣∣∣E{V t1
l1
· · ·V tu

lu

}
− Ex

{
δt1l1 · · · δ

tu
lu

}∣∣∣
� xqdK(θ(r)−1)x + x(qdK )−x/2 q(2r2+1) deg l1+···+(2r2+1) deg lu .

Thus ∣∣∣E{Sty}− Ex
{
νty
}∣∣∣

�
t∑

u=1

∑′ t!

t1!t2! · · · tu!

∑′′ (
xqdK(θ(r)−1)x + x(qdK )−x/2 q(2r2+1) deg l1+···+(2r2+1) deg lu

)
� xqdK(θ(r)−1)x

( ∑
deg l≤y

1

)t
+ x(qdK )−x/2

( ∑
deg l≤y

q(2r2+1) deg l

)t
� xqdK(θ(r)−1)x+ty + xq−dKx/2+(2r2+2)ty.

Write

E
{(
Sy − E

{
Sy
})s}

=
s∑
t=0

(
s

t

)
E
{
Sty
}

E
{
Sy
}s−t

and

Ex
{(
νy − E

{
Sy
})s}

=
s∑
t=0

(
s

t

)
Ex
{
νty
}

E
{
Sy
}s−t

.

Since E
{
Sy
}

= log x+O(log log x) and y = [x/ log x]� log x, we have∣∣∣E{(Sy − E
{
Sy
})s}− Ex

{(
νy − E

{
Sy
}

)s
}∣∣∣

�
s∑
t=0

(
s

t

)(
xqdK(θ(r)−1)x+ty + xq−dKx/2+(2r2+2)ty

)
(log x)s−t

� xqdK(θ(r)−1)x
(
qy + log x

)s
+ x(qdK )−x/2

(
q(2r2+2)y + log x

)s
� xqdK(θ(r)−1)x+sy + xq−dKx/2+(2r2+2)sy.

Since y < εx for any ε > 0, as x→∞,∣∣∣E{(Sy − E
{
Sy
})s}− Ex

{(
νy − E

{
Sy
}

)s
}∣∣∣ −→ 0.

Hence, (10) is satisfied. This completes the proof of Theorem 6.
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For a fixed polynomial a ∈ A and a prime l ∈ A, define

Dl,r,a =
{
g ∈ GLr(A/lA)

∣∣ tr g ≡ a (mod l)
}
.

Note that the statement of Lemma 23 is also valid with |Dl,r| replaced by |Dl,r,a|. We recall
that the result of David in Proposition 12 works for any aφ(P) = a. Thus by adapting
the approach in this section (with aφ(P) replaced by aφ(P)− a), we can state Theorems
5 and 6 in a more general way. More precisely, let φ be a Drinfeld A-module over K of
rank r with EndK̄(φ) = A, and let a ∈ A be a fixed polynomial. Assuming the open image
conjecture for φ when r ≥ 3, we have∑

degP=x
P∈Pφ
aφ(P) 6=a

(
ν(aφ(P)− a)− log degP

)2 � πK(x) log x.

Also, for γ ∈ R, we have

lim
x→∞

1

πK(x)
#
{
P ∈ Pφ

∣∣ degP = x, aφ(P) 6= a, and
ν(aφ(P)− a)− log degP√

log degP
≤ γ

}
= G(γ).
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