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Abstract. We give a survey of the Erdő-Kac theorem and its various generalizations. In
particular, we discuss an open conjecture of Erdős and Pomerance about the distribution
of the number of distinct prime divisors of the order of a fixed integer in the multiplicative
groups (Z/nZ)∗. We also formulate a Carlitz module analogue of this conjecture and
provide a sketch of its proof.

For n ∈ N := {1, 2, 3, · · · }, let ν(n) denote the number of distinct prime divisors of n.
For x ∈ R, a theorem of Turán [19] states that∑

n≤x

(
ν(n)− log log x

)2 � x log log x;

from which we can derive an earlier result of Hardy and Ramanujan [6] that for any ε > 0,

#
{
n
∣∣n ≤ x and |ν(n)− log logn| > ε log logn

}
= o(x).

In other words, the normal order of ν(n) is log log n.

The idea behind Turán’s proof is essentially probabilistic. Further development of
probabilistic ideas led Erdős and Kac [3] to prove that the quantity

ν(n)− log log x√
log log x

is distributed normally. More precisely, for γ ∈ R, Erdős and Kac proved that

lim
x→∞

1

x
#

{
n
∣∣n ≤ x and

ν(n)− log log x√
log log x

≤ γ
}

= G(γ),

where

G(γ) =
1√
2π

∫ γ

−∞
e−t

2/2 dt

is the Gaussian normal distribution.

In their original proof, Erdős and Kac used the central limit theorem and the full force
of Brun’s sieve. By estimating the moments∑

n≤x
(ν(n)− log log x)k
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for all k ∈ N, Halberstam [7] gave a more probabilistically natural approach to this
problem. In 1969, by applying the concept of independent random variables, Billings-
ley [1] provided an elementary proof of the Erdős-Kac theorem. Recently, Granville and
Soundararajan [5] further investigated this idea and obtained a relatively easy proof for
the asymptotic formulas of the above moments. Their results hold uniformly in a wide
range of k.

The celebrated theorem of Erdős and Kac opened a door to probabilistic number theory.
In the 60s and 70s, the theory was refined by many authors, culminating in a generalized
Erdős-Kac theorem, proved independently by Kubilius [10] and Shapiro [18]: let f : N→
R be a strongly additive function, i.e., f(n1n2) = f(n1) + f(n2) for n1, n2 ∈ N with
(n1, n2) = 1, and f(ps) = f(p) for all primes p and s ∈ N. Define

A(x) =
∑
p≤x

f(p)

p
and B(x) =

(∑
p≤x

f2(p)

p

) 1
2

≥ 0.

If for each fixed ε > 0,

lim
x→∞

1

B2(x)

∑
p≤x

|f(p)|>εB(x)

f2(p)

p
= 0,

then we have

lim
x→∞

1

x
#

{
n
∣∣n ≤ x and

f(n)−A(x)

B(x)
≤ γ

}
= G(γ).

In fact, the result of Kubilius and Shapiro is applicable to a more general class of distribu-
tion functions. One can find a comprehensive treatment of it in the monograph of Elliott
[2, Chapter 12].

We can also consider functions that are not strongly additive, say Euler’s ϕ-function. In
this case, the result of Kubilius and Shapiro can not be applied directly. Using a nontrivial
transform of ϕ(n) into a strongly additive function, Erdős and Pomerance [4] showed that

lim
x→∞

1

x
#

{
n
∣∣n ≤ x and

ν(ϕ(n))− 1
2(log log x)2

1√
3
(log log x)3/2

≤ γ
}

= G(γ).

We remark here that the estimates of the number of prime divisors of ϕ(n) involve the
distributions of primes in an arithmetic progression. In other words, what is latent here is
the distribution of primes in cyclotomic fields Q(ζn), where, for each n, ζn is a primitive
n-th root of unity. Each of these fields is an abelian extension of Q.

One can also obtain a ‘non-abelian’ generalization of the Erdős-Kac theorem if we as-
sume the Riemann Hypothesis for all Dedekind zeta functions of number fields (GRH). Let
τ(n) be the Ramanujan τ -function. In [15], assuming the GRH and Lehmer’s conjecture
(i.e., τ(n) never vanishes [12]), R. Murty and K. Murty proved that

lim
x→∞

1

x
#

{
n
∣∣n ≤ x and

ν(τ(n))− 1
2(log log x)2

1√
3
(log log x)3/2

≤ γ
}

= G(γ).

As shown in [15], their general theorem is applicable to a wider class of functions arising as
Fourier coefficients of modular forms. One can also derive from it the result of Erdős and
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Pomerance on ν(ϕ(n)). What distinguishes this result from the classical theory is its ‘non-
abelian’ nature. The divisibility properties of τ(n) are associated to the distribution of the
Frobenius elements of trace 0 in certain l-adic representations, and their corresponding
fields are GL2-extensions of Q.

In [4], Erdős and Pomerance proposed the following question. For b ∈ Z, n ∈ N with
(b, n) = 1, let lb(n) be the multiplicative order of b modulo n. Thus lb(n) is a divisor of
ϕ(n). Based on the belief that the difference between ν(ϕ(n)) and ν(lb(n)) is ‘small on
average’, Erdős and Pomerance conjectured that if |b| > 1, then the quantity

ν(lb(n))− 1
2(log log x)2

1√
3
(log log x)3/2

is distributed normally. This conjecture remains open today. The first breakthrough on
this problem was recently achieved by Murty and Saidak [16]. Under the GRH, they
proved that

lim
x→∞

1

x
#

{
n
∣∣n ≤ x, (b, n) = 1, and

ν(lb(n))− 1
2(log log x)2

1√
3
(log log x)3/2

≤ γ
}

=
ϕ(b)

|b|
G(γ).

Li and Pomerance provided an alternative proof of this result in [13]. The difficulty of this
conjecture lies in the role played by certain non-abelian extensions of Q. More precisely,
we need to bound the quantity

∑
ν(ib(n)), where ib(n) = ϕ(n)/lb(n), and this estimate

involves the distribution of primes in the Kummer extensions Q(ζn,
n
√
b), where n

√
b is a

n-th root of b.

Given a result involving the GRH, it is natural to ask if its polynomial analogue holds
unconditionally. Let A = Fq[T ] be the polynomial ring over the finite field Fq. For a ∈ A,
a monic polynomial m ∈ A with (a,m) = 1, let la,q(m) be the multiplicative order of a
modulo m. We can consider the distribution of ν(la,q(m)). Let ϕq(m) be the order of the
multiplicative group (A/mA)∗, where mA is the ideal of A generated by m. Following
the approach of Murty and Saidak, we seek to estimate the quantity

∑
ν(ia,q(m)), where

ia,q(m) = ϕq(m)/la,q(m). In this case, we obtain unconditionally the desired upper bound.
Hence, the distribution of ν(la,q(m)) is the same with the one of ν(ϕq(m)), provided the
latter exists. At this point, as the values of ϕq(m) involve sums of q-powers, we encounter
a difficulty to establish the existence of a normal distribution for ν(ϕq(m)). More precisely,
a heuristic argument shows that estimating ν(ϕq(m)) involves an asymptotic formula for
the sum ∑

w≤x

1

lq(w)
,

where the sum is over primes w and each lq(w) is the multiplicative order of q modulo w.

In [17], R. Murty and Srinvasan proved that if the above quantity is bounded by O(x1/4),
then the Artin primitive root conjecture holds for q. However, the conjecture remains
unsolved. Moreover, since to estimate ν(ϕq(m)), we require not just an upper bound for
the above sum, but an asymptotic formula for it, this problem seems quite intractable.

Because of the above complication for polynomials, we consider the Erdős-Pomerance
conjecture in a different formulation. From the point of view of class field theory, the
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Carlitz module has properties remarkably similar to those of the multiplicative group Gm.
Thus one may formulate a Carlitz module analogue of this problem. Let A = Fq[T ] and τ
the Frobenius element defined by τ(X) = Xq. We denote by A{τ} the ‘skew polynomial
ring’ whose multiplication is defined by

τf = f qτ, ∀ f ∈ A.

The A-Carlitz module C is the Fq-algebra homomorphism

C : A −→ A{τ}, f 7→ Cf ,

given on the generator T by

CT = T + τ.

Let B be a commutative A-algebra and B+ the additive group of B. We can view an
element of A{τ} as an endomorphism of B+ in the following way: let b ∈ B and

∑
fiτ

i ∈
A{τ} (fi ∈ A), then (∑

fiτ
i
)

(b) =
∑

fib
qi .

Using the A-Carlitz module C, we can define a new A-action on B as follows: for f ∈ A
and b ∈ B,

f · b := Cf (b) ∈ B.
We denote B with this new A-module structure by C(B).

For g ∈ A and m ∈ A a monic polynomial, let ḡ be the reduction of g modulo mA.
Consider C(A/mA), the reduction of C modulo mA. For a fixed non-zero polynomial
a ∈ A, consider the set {

f ∈ A,Cf (ā) = 0̄
}

on C(A/mA). This is an ideal of A because C is a ring homomorphism. Since A is a
principle ideal domain, there exists a unique monic polynomial fa(m) ∈ A which generates
the above ideal. Let ω(fa(m)) denote the number of distinct monic irreducible factors of
fa(m). Then we have

Theorem 1. Let A = Fq[T ], C the A-Carlitz module, and 0 6= a ∈ A. For a monic poly-
nomial m ∈ A, let C(A/mA) and ā be the reduction of C and a modulo mA respectively.
Let fa(m) be the monic generator of the ideal {f ∈ A,Cf (ā) = 0̄} on C(A/mA). If q 6= 2,
or q = 2 and a 6= 1, T , or (1 + T ), then for γ ∈ R, we have

lim
x∈N
x→∞

1

qx
#

{
m
∣∣ degm = x and

ω(fa(m))− 1
2(log x)2

1√
3
(log x)3/2

≤ γ
}

= G(γ).

We recall that for b ∈ Z, n ∈ N with (b, n) = 1, lb(n) is the multiplicative order of an
integer b modulo n. Since it is the positive generator of the set {z ∈ Z, bz ≡ 1 (modn)},
the above result can be viewed as an analogue of the Erdős-Pomerance conjecture for the
Carlitz module. We remark here that the requirement q 6= 2 and a 6= 0, or q = 2 and
a 6= 0, 1, T, or (1 + T ) is analogous to the condition that an integer b satisfies |b| > 1 in
the classical case. In the following, we will provide a sketch of a proof of Theorem 1. For
a complete treatment of this result, we refer the reader to [11].
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Proof: (Sketch) For m ∈ A, 0 6= a ∈ A, by the Chinese remainder theorem, we have

fa(m) = lcm
{
fa(p

α), pα‖m
}
.

Here each p is a monic irreducible polynomial in A, and for α ∈ N, pα‖m denotes that
pα|m and pα+1 - m. Using the fact that Cp(X)/X is an Eisenstein polynomial, one can
show that [11, Lemma 8]

(1) fa(p
α) = fa(p)p

β for some 0 ≤ β ≤ α− 1.

Define

Fa(m) =
∏
pα‖m

fa(p
α),

and let Ω(m) denote the total number of irreducible polynomials dividing m, counting
with multiplicity. Then we have

ω(Fa(m)) = ω(fa(m)) ≤ Ω(fa(m)) ≤ Ω(Fa(m)).

Consider the difference

Ω(Fa(m))− ω(fa(m)) = Ω(Fa(m))− ω(Fa(m)).

Since

Fa(m)
∣∣ ∏
pα‖m

fa(p)p
α−1,

if l2|Fa(m), it implies that either (A) l2|fa(p) for some irreducible polynomial p|m, or (B)
there exists two distinct irreducible polynomials p1, p2 such that l|fa(p1), l|fa(p2), and
p1p2|m, or (C) l|m. By estimating the contributions in these three cases, it was proved in
[11, Lemma 11] that ∑

degm=x

(
Ω(Fa(m))− ω(fa(m))

)2
� qx (log x)2.

As a direct consequence of the above inequality, for all but o(qx) monic polynomials m ∈ A
with degm = x, we have

Ω(Fa(m))− ω(fa(m)) = O
(
(log x)(log log x)

)
= o
(
(log x)3/2

)
.

Thus to prove Theorem 1, it suffices to show that for γ ∈ R,

(2) lim
x∈N
x→∞

1

qx
#

{
m
∣∣ degm = x and

Ω(Fa(m))− 1
2(log x)2

1√
3
(log x)3/2

≤ γ

}
= G(γ).

One can see from (1) that∑
p|m

Ω(fa(p)) ≤ Ω(Fa(m)) ≤
∑
p|m

Ω(fa(p)) + Ω(m).

It follows that

(3) Ω(Fa(m)) =
∑
p|m

Ω(fa(p)) +O
(
Ω(m)

)
.
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Since the normal order of Ω(m) is logm, for all but o(qx) monic polynomials m ∈ A with
degm = x, we have

(4) Ω(m) = (1 + o(1)) log x = o
(
(log x)3/2

)
.

Define

g(m) =
∑
p|m

Ω(fa(p)),

Combining (2), (3), and (4), we see that to prove Theorem 1, it suffices to show that the
quantity

g(m)− 1
2(log x)2

1√
3
(log x)3/2

is distributed normally.

We note that the function g(m) is a strongly additive function on A, i.e., for m1,m2 ∈ A
with (m1,m2) = 1, an irreducible polynomial p ∈ A, and s ∈ N,

g(m1m2) = g(m1) + g(m2) and g(ps) = g(p).

Let

A(x) =
∑

deg p≤x

g(p)

qdeg p
and B(x) =

( ∑
deg p≤x

g2(p)

qdeg p

)1/2

≥ 0.

Then a theorem of Zhang [20] on the function field analogue of the Kubilius-Shapiro
theorem shows that if for each fixed ε > 0,

(5) lim
x→∞

1

B2(x)

∑
deg p≤x

|g(p)|>εB(x)

g2(p)

qdeg p
= 0,

then the quantity
g(m)−A(x)

B(x)

is distributed normally.

Since C(A/pA) ' A/(p− 1)A, we can write

p− 1 = fa(p) · ia(p);

thus

(6) Ω(fa(p)) = Ω(p− 1)− Ω(ia(p)).

It was shown in [8, Proposition 1.1] that if q 6= 2, or q = 2 and a 6= 1, T , or (1 + T ), the
divisibility properties of ia(p) are associated to the distributions of primes in the fields
obtained by adjoining roots of Cm(X) = 0 and Cm(X) = a to Fq(T ), the fraction field
of A. Then by applying the Chebotarev density theorem for function fields [9], one can
prove that [11, Lemma 7]

(7)
∑

deg p=x

Ω2(ia(p))� π(x),
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where π(x) is the number of monic irreducible polynomials in A of degree x. Also, one
can deduce from the estimates in [14, p 326] that

(8)
∑

deg p=x

Ω(p− 1) = π(x) log x+O(log x).

and

(9)
∑

deg p=x

Ω2(p− 1) = π(x)(log x)2 +O
(
(log x)2

)
.

Combining (6), (7), (8), and (9), by partial summations, one can prove that

A(x) =
∑

deg p≤x

Ω(fa(p))

qdeg p
=

1

2
(log x)2 +O(log x)

and

B2(x) =
∑

deg p≤x

Ω2(fa(p))

qdeg p
=

1

3
(log x)3 +O

(
(log x)2

)
.

Moreover, one can deduce from (8) and (9) that condition (5) is valid. Thus we have

lim
x∈N
x→∞

1

qx
#

{
m
∣∣ degm = x and

g(m)−A(x)

B(x)
≤ γ

}
= G(γ).

This completes the proof of Theorem 1.
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