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Abstract

Let E/Q be an elliptic curve. For a prime p of good reduction, let E(Fp) be the set of rational points
defined over the finite field Fp . We denote by ω(#E(Fp)), the number of distinct prime divisors of #E(Fp).
We prove that the quantity (assuming the GRH if E is non-CM)

ω(#E(Fp)) − log logp√
log logp

distributes normally. This result can be viewed as a “prime analogue” of the Erdős–Kac theorem. We also
study the normal distribution of the number of distinct prime factors of the exponent of E(Fp).
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

For n ∈ N := {1,2,3, . . .}, define ω(n) to be the number of distinct prime divisors of n. The
Erdős–Kac theorem [6] is about the existence of a Gaussian normal distribution for the quantity

ω(n) − log logn√
log logn

.
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More precisely, for x, γ ∈ R, x > 1, Erdős and Kac proved that

lim
x→∞

1

x
#

{
n � x: n satisfies

ω(n) − log logn√
log logn

� γ

}
= G(γ ) := 1√

2π

γ∫
−∞

e
−t2

2 dt.

The idea behind Erdős–Kac’s proof was essentially probabilistic. Further development of prob-
abilistic idea led Kubilius [9] and Shapiro [15] to prove independently a generalization of the
Erdős–Kac theorem. Their result is applicable to what are called “strongly additive functions.”
An interested reader can find a comprehensive treatment of it in the monograph of Elliott [4,5].

Instead of the sequence of natural numbers, we consider only the set of primes now. In 1955,
Halberstam [8] proved that for a prime p,

lim
x→∞

1

π(x)
#

{
p � x: p satisfies

ω(p − 1) − log logp√
log logp

� γ

}
= G(γ ),

where π(x) is the number of primes p � x. This theorem can be viewed as a “prime analogue”
of the Erdős–Kac theorem.

Another prime analogue of the Erdős–Kac theorem which can be described as “non-abelian”
was discovered by Murty and Murty. Let τ(n) denote the Ramanujan τ -function. Assuming the
GRH (i.e., the Riemann hypothesis for all Dedekind zeta functions of number fields), they proved
that [14]

lim
x→∞

1

π(x)
#

{
p � x: p satisfies τ(p) �= 0 and

ω(τ(p)) − log logp√
log logp

� γ

}
= G(γ ).

In this paper, we provide another “non-abelian” prime analogue of the Erdős–Kac theorem.
Let E be an elliptic curve defined over Q. For a prime p of good reduction, we denote by E(Fp)

the set of rational points defined over the finite field Fp . We prove the theorem.

Theorem 1. Let E/Q be an elliptic curve. For x, γ ∈ R, x > 1, we have (assuming the GRH if
E has no complex multiplication (non-CM))

lim
x→∞

1

π(x)
#

{
p � x: p is of good reduction and

ω(#E(Fp)) − log logp√
log logp

� γ

}
= G(γ ).

Indeed, the full strength of the GRH is not needed to prove Theorem 1, but any “quasi-RH” is
enough (see Remark at the end of Section 4).

It is well known that the group of Fp-rational points E(Fp) is isomorphic to

E(Fp) ∼= (Z/fpZ) × (Z/mpZ),

for unique integers fp and mp with mp|fp . The number fp is called the exponent of E(Fp) and
is the largest possible order of points on E(Fp). Since #E(Fp) = fp · mp and mp|fp , we have

ω(fp) = ω
(
#E(Fp)

)
.

Hence, as a direct consequence of Theorem 1, we have:
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Theorem 2. Let E/Q be an elliptic curve. For x, γ ∈ R, x > 1, we have (assuming the GRH if
E is non-CM)

lim
x→∞

1

π(x)
#

{
p � x: p is of good reduction and

ω(fp) − log logp√
log logp

� γ

}
= G(γ ).

The idea behind our proof is essentially probabilistic. In this paper, we will indeed prove a
generalization of the Erdős–Kac theorem which is applicable to the classical Erdős–Kac theorem
and all of its prime analogue (see Theorem 3). In Section 2 of this paper, we review some facts
in probability theory that are essential for a generalized Erdős–Kac theorem. We state and prove
this generalization in Section 3 and apply it in the following sections to show that the quantity

ω(#E(Fp)) − log logp√
log logp

distributes normally (assuming the GRH if E is non-CM). In Section 6, we conclude this paper by
discussing a possible strategy to remove the GRH assumption for “non-abelian” prime analogues
of the Erdős–Kac theorem.

Notation. For x ∈ R, x > 0, let f (x) and g(x) be two functions of x. If g(x) is positive and
there exists a constant C > 0 such that |f (x)| � Cg(x), we write either f (x) � g(x) or f (x) =
O(g(x)). If limx→∞ f (x)

g(x)
= 0, we write f (x) = o(g(x)).

2. Review of probability theory

In this section, we review some probability theory.
Let X be a random variable with a probability measure Pr. Let F be its associated distribution

function. Let E{X} and Var{X} be the expectation and variance of X, respectively.

Definition. Given a sequence of random variables {Xk} and α ∈ R, we say {Xk} converges in
probability to α if for any ε > 0,

lim
k→∞ Pr

{|Xk − α| > ε
} = 0.

We denote it by

Xk
p−→ α.

Now, we are in a position to state some results from probability theory that are needed to
prove Theorem 1; their proofs can be found in [1,7].

Proposition 1. [1, p. 134] Given a sequence of random variables {Xk}, if

lim
n→∞ E

{|Xk|
} = 0,

we have

Xk
p−→ 0.
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Proposition 2. ([1, pp. 134, 135], [7, p. 247]) Let {Xk}, {Yk}, and {Uk} be sequences of random
variables with the same probability measure Pr. Let U be a distribution function. Suppose

Xk
p−→ 1 and Yk

p−→ 0.

For all γ ∈ R, we have

lim
k→∞ Pr{Uk � γ } = U(γ )

if and only if

lim
k→∞ Pr

{
(XkUk + Yk) � γ

} = U(γ ).

For γ ∈ R, let G(γ ) denote the Gaussian normal distribution, i.e.,

G(γ ) = 1√
2π

γ∫
−∞

e
−t2

2 dt.

For r ∈ N, the r th moment of G is defined by

μr :=
∞∫

−∞
t r dG(t).

The following proposition shows that G is uniquely determined by these moments.

Proposition 3. [7, pp. 262, 263] Let {Fk} be a sequence of distribution functions. Suppose for
all r ∈ N,

lim
k→∞

∞∫
−∞

t r dFk(t) = μr.

Then for all γ ∈ R, we have

lim
k→∞Fk(γ ) = G(γ ).

This next proposition is an analogue of the Lebesgue Dominated Convergence Theorem.

Proposition 4. [7, pp. 244, 245] Let r ∈ N and {Fk} a sequence of distribution functions. Sup-
pose

lim Fk(γ ) = G(γ ), for all γ ∈ R,

k→∞
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and

sup
k

{ ∞∫
−∞

|t |r+δ dFk(t)

}
< ∞, for some δ = δ(r) > 0.

We have

lim
k→∞

∞∫
−∞

t r dFk(t) = μr.

The next proposition is a special case of the Central Limit Theorem.

Proposition 5. [7, pp. 256–258] Let X1,X2, . . . ,Xi, . . . be a sequence of independent random
variables and Im(Xi) the image of Xi . Suppose

(1) supi{Im(Xi)} < ∞.

(2) E{Xi} = 0 and Var{Xi} < ∞ for all i.

For k ∈ N, let Gk be the “normalization” of X1,X2, . . . ,Xk , i.e.,

Gk :=
∑k

i=1 Xi(∑k
i=1 Var{Xi}

)1/2
.

If
∑∞

i=1 Var{Xi} diverges, we have

lim
k→∞ Pr{Gk � γ } = G(γ ).

3. A generalized Erdős–Kac theorem

In this section, we prove a generalization of the Erdős–Kac theorem which can be applied to
the classical Erdős–Kac theorem and its prime analogues.

Let S be an infinite subset of N. For x ∈ R, x > 1, define

S(x) = {n � x: n ∈ S}.

We assume that S satisfies the following cardinality condition, say (C),

∣∣S(
x1/2)∣∣ = o

(∣∣S(x)
∣∣), (C)

where |S(x)| is the cardinality of S(x). Let f be a map from S to N. For each prime l, we write

1
#

{
n ∈ S(x): f (n) is divisible by l

} = λl(x) + el(x),
|S(x)|
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where λl := λl(x) can be thought of as a main term (and is usually chosen to be independent
of x) and el := el(x) is an error term. For any u-tuples of distinct primes (l1, l2, . . . , lu), we write

1

|S(x)| #
{
n ∈ S(x): f (n) is divisible by l1l2 · · · lu

} =
u∏

i=1

λli + el1l2···lu (x).

We will use el1l2···lu to abbreviate el1l2···lu (x) below.
Suppose there exist a constant β (independent of x) with 0 < β � 1 and a function y =

y(x) < xβ such that the following conditions hold:

(1) For each n ∈ S(x), the number of distinct prime divisors l of f (n) with l > xβ is bounded
uniformly.

(2)
∑

y<l�xβ λl = o((log logx)1/2), where the sum is over primes l.

(3)
∑

y<l�xβ |el | = o((log logx)1/2).

(4)
∑

l�y λl = log logx + o((log logx)1/2).

(5)
∑

l�y λ2
l = o((log logx)1/2).

(6) For r ∈ N, let u = 1,2, . . . , r . We have

∑′′|el1···lu| = o
(
(log logx)−r/2),

where
∑′′ extends over all u-tuples of distinct primes (l1, l2, . . . , lu) with li � y.

Given S and f satisfying the above conditions, we have the following generalization of the
Erdős–Kac theorem.

Theorem 3. Let S be an infinite subset of N satisfying condition (C) and f :S → N. Suppose
there exist a constant β with 0 < β � 1 and y = y(x) < xβ such that conditions (1)–(6) hold.
Then for γ ∈ R, we have

lim
x→∞

1

|S(x)| #

{
n ∈ S(x): n satisfies

ω(f (n)) − log logn√
log logn

� γ

}
= G(γ ).

We divide our proof of Theorem 3 into Lemmas 1–5 below. For n ∈ S, we define

PrS,x{n: n satisfies some conditions} := 1

|S(x)| #
{
n ∈ S(x): n satisfies some conditions

}
.

Notice that PrS,x is a probability measure on S. Let g be a function from S to R. The expectation
of g with respect to PrS,x is denoted by

ES,x

{
g(n)

} := 1

|S(x)|
∑

n∈S(x)

g(n).

Our goal is to prove that

lim
x→∞ PrS,x

{
n: n satisfies

ω(f (n)) − log logn√ � γ

}
= G(γ ).
log logn
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The following lemma gives an equivalent statement of Theorem 3. More precisely, it says that
we can replace the term log logn by log logx.

Lemma 1. Let S be an infinite subset of N satisfying condition (C) and f :S → N. Then for
γ ∈ R, we have

lim
x→∞ PrS,x

{
n: n satisfies

ω(f (n)) − log logn√
log logn

� γ

}
= G(γ )

if and only if

lim
x→∞ PrS,x

{
n: n satisfies

ω(f (n)) − log logx√
log logx

� γ

}
= G(γ ).

Proof. Write

ω(f (n)) − log logx√
log logx

= ω(f (n)) − log logn√
log logn

·
√

log logn√
log logx

+ log logn − log logx√
log logx

.

Consider those integers n ∈ S(x) with n > x1/2. Given ε > 0, if we have

√
log logn√
log logx

< 1 − ε,

it follows that

log logx <
log 2

ε(2 − ε)
.

Hence, for x large enough, we have

PrS,x

{
n: n satisfies

∣∣∣∣
√

log logn√
log logx

− 1

∣∣∣∣ > ε

}
� PrS,x

{
n: n � x1/2} = o(1).

The last equality follows from condition (C). Thus we have

√
log logn√
log logx

p−→ 1.

Similarly, we can prove

log logn − log logx√
log logx

p−→ 0.

By Proposition 2, we obtain the equivalence of the statements in the lemma. �
Remark. This lemma is the only place where condition (C) is applied. Notice that the lemma
still holds if the exponent 1/2 is replaced by any constant between 0 and 1.
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For y = y(x), define

ωy(n) = #{l � y: l is a prime and l | n}.

It is a truncation function of ω(n). We can restate Theorem 3 in terms of ωy instead of ω.

Lemma 2. Let S be an infinite subset of N and f :S → N. Suppose there exist a constant β with
0 < β � 1 and y = y(x) < xβ such that conditions (1) to (3) hold. Then for γ ∈ R, we have

lim
x→∞ PrS,x

{
n: n satisfies

ω(f (n)) − log logx√
log logx

� γ

}
= G(γ )

if and only if

lim
x→∞ PrS,x

{
n: n satisfies

ωy(f (n)) − log logx√
log logx

� γ

}
= G(γ ).

Proof. Since

ωy(f (n)) − log logx√
log logx

= ω(f (n)) − log logx√
log logx

+ ωy(f (n)) − ω(f (n))√
log logx

,

by Propositions 1 and 2, it suffices to prove that

lim
x→∞ ES,x

{∣∣∣∣ω(f (n)) − ωy(f (n))√
log logx

∣∣∣∣
}

= 0.

Consider ∑
n∈S(x)

∣∣ω(
f (n)

) − ωy

(
f (n)

)∣∣ =
∑

y<l�xβ

∑
n∈S(x)
l|f (n)

1 +
∑

n∈S(x)

∑
l>xβ

l|f (n)

1.

By condition (1), the second sum is bounded by

∑
n∈S(x)

∑
l>xβ

l|f (n)

1 = O
(∣∣S(x)

∣∣).

By conditions (2) and (3), we have

∑
y<l�xβ

∑
n∈S(x)
l|f (n)

1 =
∑

y<l�xβ

∣∣S(x)
∣∣(λl + el) = o

(∣∣S(x)
∣∣(log logx)1/2).

Hence, we have ∑ ∣∣ω(
f (n)

) − ωy

(
f (n)

)∣∣ = o
(∣∣S(x)

∣∣(log logx)1/2).

n∈S(x)
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It follows that as x → ∞,

ES,x

{∣∣∣∣ω(f (n)) − ωy(f (n))√
log logx

∣∣∣∣
}

= o(|S(x)|(log logx)1/2)

|S(x)|(log logx)1/2
= o(1).

Thus Lemma 2 follows. �
From Lemmas 1 and 2, we see that to prove Theorem 3, it suffices to prove

lim
x→∞ PrS,x

{
n: n satisfies

ωy(f (n)) − log logx√
log logx

� γ

}
= G(γ ).

The ωy function can be associated to a sum of the following independent random variables. For
a prime l, define an independent random variables Xl by

Pr{Xl = 1} = λl and Pr{Xl = 0} = 1 − λl.

For y = y(x), let Sy be a random variable defined by

Sy :=
∑
l�y

Xl.

By conditions (4) and (5), we have

E{Sy} =
∑
l�y

λl = log logx + o(log logx)1/2,

Var{Sy} =
∑
l�y

λl(1 − λl) = log logx + o(log logx)1/2.

The terms log logx in Lemma 2 can be replaced by E{Sy} and Var{Sy}.

Lemma 3. Let S be an infinite subset of N and f :S → N. Suppose there exist a constant β with
0 < β � 1 and y = y(x) < xβ such that conditions (4) and (5) hold. Then for γ ∈ R, we have

lim
x→∞ PrS,x

{
n: n satisfies

ωy(f (n)) − log logx√
log logx

� γ

}
= G(γ )

if and only if

lim
x→∞ PrS,x

{
n: n satisfies

ωy(f (n)) − E{Sy}√
Var{Sy}

� γ

}
= G(γ ).

Proof. Write

ωy(f (n)) − E{Sy}√
Var{S } = ωy(f (n)) − log logx√

log logx
·
√

log logx√
Var{S } + log logx − E{Sy}√

Var{S } .

y y y
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The above computations of E{X} and Var{X} imply that

√
log logx√
Var{Sy}

p−→ 1 and
log logx − E{Sy}√

Var{Sy}
p−→ 0.

By Proposition 2, the lemma follows. �
Now, for a prime l, let δl : N → {0,1} be a random variable defined by

δl(n) :=
{

1 if l | n,

0 otherwise.

Hence, we can write

ωy

(
f (n)

) =
∑
l�y

δl

(
f (n)

)
.

Notice that

PrS,x

{
n: n satisfies δl

(
f (n)

) = 1
} = λl + el(x).

Hence the expectations of random variables Xl and δl are close. Thus, the sum Sy of Xl is a good
approximation of the sum ωy of δl . Indeed, the r th moments of their normalizations are equal as
x → ∞.

Lemma 4. Let S be an infinite subset of N and f :S → N. Suppose there exist a constant β with
0 < β � 1 and y = y(x) < xβ such that condition (6) holds. Then for r ∈ N, we have

lim
x→∞

∣∣∣∣ES,x

{(
ωy(f (n)) − E{Sy}√

Var{Sy}
)r}

− E

{(
Sy − E{Sy}√

Var{Sy}
)r}∣∣∣∣ = 0.

Proof. For 0 � k � r , write

E
{
Sk

y

} =
k∑

u=1

∑′ k!
k1! · · ·ku!

∑′′
E
{
X

k1
l1

· · ·Xku

lu

}
,

where
∑′ extends over all u-tuples (k1, k2, . . . , ku) of positive integers such that k1 + k2 +

· · · + ku = k and
∑′′ extends over all u-tuples of distinct primes (l1, l2, . . . , lu) with li � y.

Since each Xli takes values 0 or 1 and the Xli are independent, we have

E
{
X

k1
l1

· · ·Xku

lu

} =
u∏

i=1

λli .

Similarly, if we abbreviate ωy(f (n)) and δl(f (n)) by ωy and δl , respectively, we have

ES,x

{
ωk

y

} =
k∑∑′ k!

k1! · · ·ku!
∑′′

ES,x

{
δ
k1
l1

· · · δku

lu

}
,

u=1
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with the same
∑′ and

∑′′ as above. Notice that by definitions of λl and el , we have

∣∣E{
X

k1
l1

· · ·Xku

lu

} − ES,x

{
δ
k1
l1

· · · δku

lu

}∣∣ = | el1l2···lu |.
Write

E
{(

Sy − E{Sy}
)r} =

r∑
k=0

(
r

k

)
E
{
Sk

y

}
E{Sy}r−k

and

ES,x

{(
ωy − E{Sy}

)r} =
r∑

k=0

(
r

k

)
ES,x

{
ωk

y

}
E{Sy}r−k.

Since

E{Sy} = log logx + o(log logx)1/2,

by condition (6), we have

∣∣ES,x

{(
ωy − E{Sy}

)r} − E
{(

Sy − E{Sy}
)r}∣∣

�
r∑

k=0

(
r

k

)(
k∑

u=1

∑′ k!
k1!k2! · · ·ku!

∑′′|el1···lu | (log logx)r−k

)

= o
(
(log logx)r/2).

Notice that

Var{Sy} = log logx + o(log logx)1/2.

Thus the lemma follows. �
Following the same argument as in [11, Lemma 7], we have the following lemma which is

about the r th moment of Sy .

Lemma 5. Let S be an infinite subset of N. Then for r ∈ N, we have

sup
y

∣∣∣∣E
{(

Sy − E{Sy}√
Var{Sy}

)r}∣∣∣∣ < ∞.

Combine Lemmas 1–5. Applying Propositions 3–5, using the same argument as in [11, The-
orem 1], we conclude that: if S is an infinite subset of N satisfying condition (C) and f :S → N

satisfying conditions (1)–(6), for γ ∈ R, we have

lim
x→∞

1

|S(x)| #

{
n ∈ S(x): n satisfies

ω(f (n)) − log logn√
log logn

� γ

}
= G(γ ).

Thus we obtain Theorem 3.



166 Y.-R. Liu / Journal of Number Theory 119 (2006) 155–170
Although it seems difficult at first to check all conditions in Theorem 3, in most cases, they
can be verified very easily. For example, let S = N, f the identity map, and β = 1. Then con-
ditions (C) and (1) follow. If we take λl = 1

l
, we can bound |el | and |el1l2···lu | by O( 1

x
). By

choosing y = x1/ log logx , conditions (2) and (4) follow from the classical Mertens theorem [12]
and the series in condition (5) is convergent. Also, we have

∑
y<l�x

|el | � x · 1

x
� 1 and

∑′′|el1l2···lu | � yu · 1

x
� xε−1,

where ε → 0 as x → 0. Hence, all conditions are satisfied and we recover from Theorem 3 the
classical Erdős–Kac theorem.

In the following sections, we consider only the set of rational primes. The following corollary
is a direct consequence of Theorem 3.

Corollary 1. Let S ⊆ N be a set of all but finitely many primes. For a map f :S → N, suppose
there exists a constant δ > 0 such that f (p) � pδ for all p ∈ S. Define λl , el , el1l2···lu , y, and β

as before. Assuming they satisfy conditions (2)–(6), for γ ∈ R, we have

lim
x→∞

1

π(x)
#

{
p ∈ S(x): p satisfies

ω(f (p)) − log logp√
log logp

� γ

}
= G(γ ).

4. Elliptic curves without complex multiplication

Let E/Q be an elliptic curve. For a prime p of good reduction, let E(Fp) be the set of rational
points of E defined over a finite field Fp . If E is a non-CM elliptic curve, assuming the GRH,
Miri and Murty [13] proved that the normal order of ω(#E(Fp)) is log logp. For a CM elliptic
curve, the author [10] showed that the same conclusion holds unconditionally. These results
suggest a possible existence of a normal distribution for the quantity

ω(#E(Fp)) − log logp√
log logp

.

In this section, we prove Theorem 1 in the case of elliptic curves without complex multipli-
cation. Let E/Q be a non-CM elliptic curve and S ⊆ N the set of primes of good reduction.
Let f be a map from S to N defined by p �→ #E(Fp). Notice that #E(Fp) � p + 1 + 2

√
p � p3.

In [13], we have seen that for all but finitely many primes l, assuming the GRH, we have

#
{
p � x: #E(Fp) is divisible by l

} = (l3 − 2l)

(l2 − 1)(l2 − l)
lix + O

(
l3x1/2 log l4Nx

)
,

where N is the conductor of E and lix = ∫ x

2
dt

log t
. We define

λl = (l3 − 2l)

2 2
.

(l − 1)(l − l)
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Let y = x1/ log logx and 0 < β � 1 (a choice of β will be made later). Since

∑
l: prime

∣∣∣∣λl − 1

l

∣∣∣∣ � 1,

Conditions (2) and (4) follow from the Mertens theorem [12] and the series in (5) is convergent.
Consider

∑
y<l�xβ

|el | � 1

π(x)

∑
y<l�xβ

l3x1/2 log l4Nx � 1

π(x)

∑
y<l�xβ

x(1/2+ε)l4 � x(ε−1/2+5β).

By taking β = 1/11, condition (3) follows. Consider the product of primes l1l2 · · · lu. Using the
same argument as the one for el , for all but finitely many l1l2 · · · lu, assuming the GRH, we have

|el1l2···lu | � x(ε−1/2)l4
1 l4

2 · · · l4
u.

For r ∈ N, let
∑′′ be the sum over all u-tuples of distinct primes (l1, l2, . . . , lu) with li � y. We

have

∑′′| el1···lu | � xε−1/2 ·
( ∑

l�y

l4
)u

� xε−1/2 · y5u � xε−1/2.

The last inequality holds since y = o(xε) for any ε > 0. Combine all the above results. Applying
Corollary 1, we conclude that under the GRH, for a non-CM elliptic curve E, we have

lim
x→∞

1

π(x)
#

{
p � x: p is of good reduction and

ω(#E(Fp)) − log logp√
log logp

� γ

}
= G(γ ).

Remark. Let L/Q be a number field and ζL(s) the Dedekind zeta function of L. A generalized
Riemann Hypothesis states that ζL(s) has no zero in the region Re(s) > 1/2. For some δ ∈ R with
1/2 < δ < 1, we assume a weaker condition that ζL(s) has no zero in the region Re(s) > δ. It
is called the δ-quasi-Riemann Hypothesis. Assuming the δ-quasi-Riemann Hypothesis, the term
x1/2 appearing as a part of error term for #{p � x: #E(Fp) is divisible by l} is replaced by xδ .
Choosing 0 < θ < (1− δ)/10 in the above proof, it follows that the δ-quasi-Riemann Hypothesis
is sufficient to prove Theorem 1 in the case of non-CM elliptic curves.

5. Elliptic curves with complex multiplication

In this section, we prove Theorem 1 in the case of CM elliptic curves. Let E/Q be an elliptic
curve with complex multiplication. Let S and f be defined as in Section 4. For each prime l, we
write

1
#

{
p ∈ S(x): #E(Fp) is divisible by l

} = 1 + el,

π(x) ϕ(l)
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where ϕ(l) is the Euler function and

el = 1

π(x)

[
#
{
p ∈ S(x): #E(Fp) is divisible by l

} − π(x)

ϕ(l)

]
.

Let y = x1/ log logx and 0 < β � 1 (a choice of β will be made later). Choosing λl = 1/ϕ(l),
conditions (2), (4), and (5) are satisfied.

Consider

∑
y<l�xβ

|el | = 1

π(x)

∑
y<l�xβ

[
#
{
p ∈ S(x): #E(Fp) is divisible by l

} − π(x)

ϕ(l)

]
.

We subdivide the elements of S into two classes according to whether p ∈ S is supersingular or
p ∈ S is ordinary. If p is supersingular, by Deuring’s lemma [3] and the Bombieri–Vinogradov
theorem [2,16], it was proved in [10] that

∑
y<l�xβ

#
{
p ∈ S(x): p is supersingular and l | #E(Fp)

} =
∑

y<l�xβ

li x

2ϕ(l)
+ O

(
x(logx)−A

)
,

for any constant A > 1, provided the constant β < 1/2. If p is ordinary, by Wilson’s result [17]
on an analogue of the Bombieri–Vinogradov theorem in number fields, it was proved in [10] that
if 2β < 1/3,

∑
y<l�xβ

#
{
p ∈ S(x): p is ordinary and l | #E(Fp)

} =
∑

y<l�xβ

lix

2ϕ(l)
+ O

(
x(logx)−A

)
.

Combine all the above results. By choosing β = 1/7, we have

∑
y<l�xβ

|el | � 1

π(x)

(
x(logx)−A

) � 1.

Thus condition (3) follows.
For distinct primes l1, l2, . . . , lu, we have

el1l2···lu = 1

π(x)
#
{
p � x: #E(Fp) is divisible by l1l2 · · · lu

} − 1

ϕ(l1l2 · · · lu) .

Following the same arguments as in the verification of condition (3), the Bombieri–Vinogradov
theorem and Wilson’s theorem imply that

∑′′
#
{
p � x: #E(Fp) is divisible by l1l2 · · · lu

} = li x

ϕ(l1l2 · · · lu) + O
(
x(logx)−A

)
,

for any constant A > 1. Hence, for all r ∈ N, we have

∑′′|el1···lu | �
1 (

x(logx)−A
) � 1.
π(x)
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Thus condition (6) follows. Applying Corollary 1, we conclude that for a CM elliptic curve E/Q,
we have

lim
x→∞

1

π(x)
#

{
p � x: p is of good reduction and

ω(#E(Fp)) − log logp√
log logp

� γ

}
= G(γ ).

Thus, we complete the proof of Theorem 1.

6. Conclusion

In the proof of the existence of a normal distribution, the main difference between the se-
quence of natural numbers and the sequence of primes is the estimate of |el1l2···lu | appearing in
conditions (3) (i.e., u = 1) and (6). In the case of natural numbers, we have

|el1l2···lu | �
1

x
,

for products of distinct primes l1l2 · · · lu. However, in the case of primes, we do not have such a
good control of |el1l2···lu |. There are two strategies that we can apply. One is to assume the GRH
and get an estimate for |el1l2···lu |. For example, in the proof of Theorem 1 for non-CM elliptic
curves, assuming the GRH, we have

|el1l2···lu | � x(ε−1/2)l4
1 l4

2 · · · l4
u.

Another method to verify conditions (3) and (6) is to get an average result for |el1l2···lu | over
u-tuples of distinct primes (l1, l2, . . . , lu) with li � y. The case of CM elliptic curves is one of
these types where we have

∑′′[
#
{
p � x: #E(Fp) is divisible by l1l2 · · · lu

} − π(x)

ϕ(l1l2 · · · lu)
]

� x(logx)−A,

for some A > 1. Thus we omit the assumption of the GRH. Following the philosophy of the
second approach, we see that in the case of a non-CM elliptic curve E/Q, to remove the condi-
tion of the GRH, it suffices to prove an analogous result of Bombieri–Vinogradov for E. More
precisely, if we have

∑′′
[

#
{
p � x: #E(Fp) is divisible by l1l2 · · · lu

} − π(x)

u∏
i=1

λli

]
� x(logx)−A,

we can obtain Theorem 1 without the GRH. The same principle can be applied to all previous
prime analogues of the Erdős–Kac theorem that were obtained under the GRH. However, it seems
that the recent techniques in analytic number theory are not able to tackle such a “non-abelian”
analogue of the Bombieri–Vinogradov theorem. It is certainly a project worth to be investigated.
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