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PRIME DIVISORS OF THE NUMBER OF RATIONAL POINTS
ON ELLIPTIC CURVES WITH COMPLEX MULTIPLICATION

YU-RU LIU

Abstract

Let E/Q be an elliptic curve. For a prime p of good reduction, let E(Fp ) be the set of rational
points defined over the finite field Fp . Denote by ω(#E(Fp )) the number of distinct prime divisors
of #E(Fp ). For an elliptic curve with complex multiplication, the normal order of ω(#E(Fp )) is
shown to be log log p. The normal order of the number of distinct prime factors of the exponent
of E(Fp ) is also studied.

1. Introduction

For n ∈ N, define ω(n) to be the number of distinct prime divisors of n. The Turán
theorem is concerned with the second moment of ω(n) (see [14]); it states that

∑

n�x

(ω(n) − log log x)2 � x log log x.

This result implies a theorem of Hardy and Ramanujan [6], namely that

#{n � x | |ω(n) − log log n| > ε log log n} = o(x).

In other words, the normal order of ω(n) is log log n.
Instead of all n ∈ N, we consider only the set of primes. Since ω(p) = 1 for each

prime p, the normal order of ω(p) is not log log p. However, an analogue of the
Turán theorem holds for ω(p − 1). It was proved by Erdős [5] in 1935 that

∑

p�x

(ω(p − 1) − log log x)2 � π(x) log log x,

where π(x) is the number of primes p � x. An immediate corollary of the Erdős
theorem is that the normal order of ω(p − 1) is log log p.

Another ‘prime analogue’ of the Turán theorem which can be described as ‘non-
abelian’ was discovered by Murty and Murty [12] in 1984. Assuming that the GRH
(that is, the Riemann hypothesis for all Dedekind zeta functions of number fields)
holds, they proved that

∑

p�x
τ (p) �=0

(ω(τ(p)) − log log x)2 � π(x) log log x,

where τ(p) is the Ramanujan τ -function. Thus (conditionally) the normal order of
ω(τ(p)) is log log p. Their method is indeed applicable to a wider class of functions
arising as Fourier coefficients of modular forms.
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Let E be an elliptic curve defined over Q. For a prime p of good reduction,
we denote by E(Fp) the set of rational points defined over the finite field Fp . It
was proved by Miri and Murty [11] that if E is an elliptic curve without complex
multiplication (non-CM), assuming the GRH, we have

∑

p�x
p : good reduction

(ω(#E(Fp)) − log log x)2 � π(x) log log x.

The same result was also obtained independently by the author in her Ph.D. thesis;
see [8].

The purpose of this paper is to investigate the case of elliptic curves with complex
multiplication (CM). We prove that the same result holds unconditionally.

Theorem 1.1. Let E/Q be a CM elliptic curve. We have
∑

p�x
p : good reduction

(ω(#E(Fp)) − log log x)2 � π(x) log log x.

This theorem is the first ‘non-abelian’ prime analogue of the Turán theorem
that can be proved unconditionally. The following corollary follows directly from
Theorem 1.1.

Corollary 1.2. If E/Q is a CM elliptic curve, then for a prime p of good
reduction, the normal order of ω(#E(Fp)) is log log p.

It is well known that the group of Fp -rational points E(Fp) is isomorphic to

E(Fp) ∼= (Z/fpZ) × (Z/mpZ),

for unique integers fp and mp with mp | fp . The number fp is called the exponent of
E(Fp), and is the largest possible order of points on E(Fp). Since #E(Fp) = fp ·mp

and mp | fp , we have

ω(fp) = ω(#E(Fp)).

Hence, as a direct consequence of Theorem 1.1 and the result of Miri and Murty
[11], the next statement holds.

Theorem 1.3. Let E/Q be an elliptic curve. We have (assuming that the GRH
holds if E is non-CM)

∑

p�x
p : good reduction

(ω(fp) − log log x)2 � π(x) log log x.

As usual, Theorem 1.3 implies a prime analogue of the Hardy–Ramanujan
theorem, as follows.

Corollary 1.4. Let E/Q be an elliptic curve, and p a prime of good reduction.
We find (assuming that the GRH holds if E is non-CM) that the normal order of
ω(fp) is log log p.
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2. Preliminaries

The most important ingredients in our proof are theorems of Bombieri and
Vinogradov [1, 3, 15] and Wilson [16]. For m ∈ N and a ∈ Z, define

π(x, a,m) = #{p � x | p : prime, p ≡ amod m}.
We have the following theorem.

Theorem 2.1 (Bombieri and Vinogradov [1, 3, 15]). For any positive constant
A, there exists a positive constant B such that

∑

m�Z

max
(a,m )=1

max
y�x

∣∣∣∣π(y, a,m) − li y
φ(m)

∣∣∣∣ � x(log x)−A ,

where Z = x1/2(log x)−B and φ(m) is the Euler φ-function.

An analogue of the Bombieri–Vinogradov theorem in algebraic number fields
has been proved by Wilson. Let L/Q be a number field of degree nL with r1 real
embeddings. Let OL be its ring of integers with the class number h. Let a and m

be ideals of OL and N(m) = |OL/m|. Define

π(x, a,m) = #{N(p) � x | p : prime ideal, p ∼ a mod m},
where ‘∼’ denotes an equivalence relation for ideals, following Landau [7]. The order
of the m-ideal class group h(m) is equal to

h(m) =
h2r1φ(m)

T (m)
,

where φ(m) is the number of invertible residue classes (of elements in OL ) mod m

(that is, φ(m) = |(OL/m)∗|) and T (m) is the number of residue classes mod m

containing a unit. We have the following theorem.

Theorem 2.2 (Wilson [16]). For any positive constant A, there exists a positive
constant B such that

∑

N (m)�Z

max
(a,m)=1

max
y�x

1
T (m)

∣∣∣∣π(y, a,m) − li y
h(m)

∣∣∣∣ � x(log x)−A ,

where Z = x1/(nL +1)(log x)−B .

We also need a result of Mertens, in connection with Dirichlet’s work on primes
in an arithmetic progression.

Theorem 2.3 (Mertens [10]; see also [3, Chapter 7]).
∑

p�x
p≡a (mod m )

1
p

=
1

φ(m)
log log x + O(1).

3. Proof of Theorem 1.1

We now prove Theorem 1.1. Let E/Q be an elliptic curve with complex
multiplication by a quadratic imaginary field K = Q(

√
−D). Let OK be the ring
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of integers of K. For a prime p of good reduction, E(Fp) is the set of Fp -rational
points of E. We use the notation

∑′ for the sum over primes of good reduction.
We consider
∑′

p�x

(ω(#E(Fp)) − log log x)2

=
∑′

p�x

ω2(#E(Fp)) − 2 log log x
∑′

p�x

ω(#E(Fp)) + (log log x)2
∑′

p�x

1.

The third term above is

π(x)(log log x)2 + O((log log x)2).

Let δ ∈ R with 0 < δ < 1 (a choice of δ will be made later). The sum in the second
term can be written as

∑′

p�x

ω(#E(Fp)) =
∑′

p�x

∑

l|#E (Fp )

l�xδ

1 +
∑′

p�x

∑

l|#E (Fp )

l>xδ

1

=
∑

l�xδ

∑′

p�x
l|#E (Fp )

1 + O(π(x)).

The last inequality holds since #E(Fp) � (p + 2
√

p + 1) � 3x.
We now estimate the quantity

∑

l�xδ

∑′

p�x
l|#E (Fp )

1.

We divide the primes p into two cases: p is supersingular (ss), or p is ordinary
(ord). Notice that p is supersingular if and only if p is ramified or inert in K; see
[4]. Since there are only finitely many primes ramified in K, it suffices to consider
only primes that are inert in K. This corresponds to the case where the Legendre
symbol (−D

p ) = −1 if p is odd [9]. Moreover, p is a supersingular prime if and only if
#E(Fp) = p+1; see [13]. Let a1, a2, . . . , arl

∈ (Z/lDZ)∗ be such that ai ≡ −1mod l
and (−D

ai
) = −1. Applying Theorem 2.1, we have

∑

l�xδ

∑′

p�x, ss
l|#E (Fp )

1 =
∑

l�xδ

rl∑

i=1

∑

p�x
p≡ai mod lD

1 + O(xδ )

=
∑

l�xδ

rl∑

i=1

π(x, ai, lD) + O(xδ )

=
∑

l�xδ

rl

φ(lD)
li x + O(x(log x)−A ),

for any positive constant A, provided that δ < 1/2. Notice that rl/φ(lD)=
1/2(l − 1). We have

∑

l�xδ

∑′

p�x, ss
l|#E (Fp )

1 =
1
2
π(x) log log x + O(π(x)).
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Now we consider ordinary primes p of good reduction. Let πp and πp be roots of
x2 − apx + p, where ap = (p + 1 − #E(Fp)). We have [2, Lemma 5.1.2]

Q(πp) = K.

Since there are only finitely many primes l ramified in K, we consider l in only the
following two cases: l is inert or l is split. We consider first the primes l that are
inert in K. Let (l) be the ideal lOK . Since

#E(Fp) = (πp − 1)(πp − 1),

l | #E(Fp) implies that πp ≡ 1mod (l). Notice see there are at most six units in K.
By Theorem 2.2, we have

∑

l�xδ

l : inert

∑′

p�x, ord
l|#E (Fp )

1 �
∑

NK / Q((l))=l2�x2δ

l : inert

∑′

p�x, ord
(πp )∼(1) mod (l)

1

�
∑

NK / Q((l))=l2�x2δ

l : inert

li x
h((l))

+ O(x(log x)−A ),

provided that 2δ < 1
3 . Since K has class number 1 and r1 = 0, we have

h((l)) � φ(l2)
6

.

It follows that
∑

l�xδ

l : inert

∑′

p�x, ord
l|#E (Fp )

1 � π(x).

Now we consider
∑

l�xδ

l : split

∑′

p�x, ord
l|#E (Fp )

1.

For l split, we write (l) = l1l2. Hence l | #E(Fp) implies that

πp ≡ 1mod l1 or πp ≡ 1mod l2.

We have
∑

l�xδ

l : split

∑′

p�x, ord
l|#E (Fp )

1 =
1
2

∑

NK / Q(l)=l�xδ

l : split

∑′

p�x, ord
πp ≡1 mod l

1

=
1
2

∑

NK / Q(l)=l�xδ

l : split

1
T (l)

∑′

NK / Q((πp ))=p�x, ord
(πp )∼(1) mod l

1

=
1
2

∑

NK / Q(l)=l�xδ

l : split

1
φ(l)

li x + O(x(log x)−A ).

The last equality follows from Theorem 2.2, provided that δ < 1
3 .
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Since (l) = l1l2, it follows that
∑

l�xδ

l : split

∑′

p�x, ord
l|#E (Fp )

1 =
1
2
· 2

∑

l�xδ

l : split

1
φ(l)

lix + O(x(log x)−A )

=
1
2
π(x) log log x + O(π(x)).

The last inequality follows from Theorem 2.3, combined with the fact that an odd
prime l splits if and only if the Legendre symbol (−D

l ) = 1 (see [4]). Combine all
the above calculations. Choosing δ = 1/7, we obtain

∑′

p�x

ω(#E(Fp)) = π(x) log log x + O(π(x)).

Using the same arguments as above, we have
∑

l1,l2�xδ

l1 �=l2

∑′

p�x, ss
l1l2|#E (Fp )

1 =
1
2
π(x)(log log x)2 + O(π(x) log log x)

and
∑

l1,l2�xδ

l1 �=l2

∑′

p�x, ord
l1l2|#E (Fp )

1 =
1
2
π(x)(log log x)2 + O(π(x) log log x),

provided that 4δ < 1
3 . Choosing δ = 1

13 , it follows that
∑′

p�x

ω2(#E(Fp)) = π(x)(log log x)2 + O(π(x) log log x).

Combining all the above results, we obtain
∑

p�x
p : good reduction

(ω(#E(Fp)) − log log x)2 � π(x) log log x.

This completes the proof of Theorem 1.1.
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