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Abstract

In this thesis, we propose a novel data-driven neural network (NN) optimization frame-
work for solving an optimal stochastic control problem under stochastic constraints. The
NN utilizes customized output layer activation functions, which permits training via stan-
dard unconstrained optimization. The optimal solution of the two-asset problem yields a
multi-period asset allocation and decumulation strategy for a holder of a defined contribu-
tion (DC) pension plan. The objective function of the optimal control problem is based
on expected wealth withdrawn (EW) and expected shortfall (ES) that directly targets
left-tail risk. The stochastic bound constraints enforce a guaranteed minimum withdrawal
each year. We demonstrate that the data-driven NN approach is capable of learning a
near-optimal solution by benchmarking it against the numerical results from a Hamilton-
Jacobi-Bellman (HJB) Partial Differential Equation (PDE) computational framework. The
NN framework has the advantage of being able to scale to high dimensional multi-asset
problems, which we take advantage of in this work to investigate the effectiveness of various
factor investing strategies in improving investment outcomes for the investor.

iv



Acknowledgements

Thank you to my family and my friends for supporting me and taking joy in my journey.
Thank you to my advisers Yuying Li and Peter Forsyth for guiding me and challenging me
to discover my own capability.

v



Table of Contents

Author’s Declaration ii

Statement of Contributions iii

Abstract iv

Acknowledgements v

List of Figures ix

List of Tables xiii

1 Introduction 1

1.1 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 6

2.1 Optimal Control Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Stochastic Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Neural Networks and Function Approximation . . . . . . . . . . . . . . . . 9

2.3.1 Basic NN Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Universal Approximation Theorems . . . . . . . . . . . . . . . . . . 11

2.4 Factor Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

vi



3 Portfolio Decumulation 14

3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.2 Stochastic Process Model . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.3 Notational Conventions . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.4 Risk: Expected Shortfall . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.5 Reward: Expected Total Withdrawals . . . . . . . . . . . . . . . . . 20

3.1.6 Defining a Common Objective Function . . . . . . . . . . . . . . . 20

3.1.7 Induced Time Consistent Policy . . . . . . . . . . . . . . . . . . . . 21

3.2 HJB Dynamic Programming Optimization Framework . . . . . . . . . . . . 23

3.2.1 Deriving Auxiliary Function from PCEEt0 (κ) . . . . . . . . . . . . 23

3.2.2 Applying Dynamic Programming at Rebalancing Times . . . . . . . 24

3.2.3 Conditional Expectations between Rebalancing Times . . . . . . . . 26

3.2.4 Equivalence with PCEEt0 (κ) . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Computational Details: Hamilton-Jacobi-Bellman (HJB) PDE Framework 27

3.4 Neural Network Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 Neural Network Optimization for PCEEt0 (κ) . . . . . . . . . . . . 29

3.4.2 Neural Network Framework . . . . . . . . . . . . . . . . . . . . . . 29

3.4.3 NN Estimate of the Optimal Control . . . . . . . . . . . . . . . . . 32

3.5 Computational Details: NN Framework . . . . . . . . . . . . . . . . . . . . 33

3.5.1 NN Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5.2 Transfer learning between different κ points . . . . . . . . . . . . . 33

3.5.3 Running minimum tracking . . . . . . . . . . . . . . . . . . . . . . 34

3.5.4 Standardization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

vii



4 Computational Results: HJB and NN Frameworks 36
4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Strategies Computed from HJB Equation . . . . . . . . . . . . . . . 39
4.2.2 Accuracy of Strategy Computed from NN framework . . . . . . . . 42
4.2.3 Detailed efficient frontier comparisons . . . . . . . . . . . . . . . . . 43
4.2.4 NN-approximated control . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 NN Model Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.1 Out-of-sample testing . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.2 Out-of-distribution testing . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.3 Control sensitivity to training distribution . . . . . . . . . . . . . . 48

5 Dynamic Factor Investing 52
5.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1.2 Asset and Wealth Dynamics . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Neural Network Model for Factor Investing with Decumulation . . . . . . . 57
5.2.1 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.2 Activation Functions for Asset Allocation Constraints . . . . . . . . 59
5.2.3 Neural Network Structure . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Investment Scenario and Factor Selection . . . . . . . . . . . . . . . . . . . 62
5.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.5 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5.1 Constant Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.5.2 Results: DS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.5.3 Results: DS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Conclusion 76
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

References 79

viii



List of Figures

3.4.1 Illustration of the NN framework as per Section 3.4.2. Additional technical
details can be found in 3.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 EW-ES frontier, computed from problem (3.1.22). Note: Scenario in Table
4.2.1. Comparison of HJB solution performance with varying grid sizes.
HJB solution performance computed on 2.56×106 observations of synthetic
data. Parameters for synthetic data based on cap-weighted real CRSP, real
10 year treasuries (see Table 4.1.1). qmin = 35, qmax = 60. ϵ = 10−6. Units:
thousands of dollars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.2 Effect of ϵ: fraction in stocks computed from the problem (3.1.22). Note:
investment setup is as in Table 4.2.1. HJB solution performance computed
on 2.56× 106 observations of synthetic data. Parameters for synthetic data
based on cap-weighted real CRSP, real 10 year treasuries (see Table 4.1.1).
qmin = 35, qmax = 60, κ = 1.0. W ∗ = 58.0 for PIDE results. (a) ϵ = 10−6.
(b) ϵ = −10−6. Units: thousands of dollars. . . . . . . . . . . . . . . . . . 42

4.2.3 Comparison of EW-ES frontier for the Neural Network (NN) and Hamilton-
Jacobi-Bellman (HJB) Partial Differential Equation (PDE) methods, com-
puted from the problem (3.1.22). Note: investment setup in Table 4.2.1.
HJB solution performance computed on 2.56×106 observations of synthetic
data. Parameters for synthetic data based on cap-weighted real CRSP, real
10 year treasuries (see Table 4.1.1). Control computed from the NN model,
trained on 2.56 × 106 observations of synthetic data. qmin = 35, qmax = 60.
ϵ = 10−6. Units: thousands of dollars. Labels on nodes indicate κ parameter. 43

ix



4.2.4 Heat map of controls: fraction in stocks and withdrawals, computed from
the problem (3.1.22). Note: problem setup described in Table 4.2.1. HJB
solution performance computed on 2.56×106 observations of synthetic data.
Parameters for synthetic data based on cap-weighted real CRSP, real 10 year
treasuries (see Table 4.1.1). NN model trained on 2.56 × 106 observations
of synthetic data. qmin = 35, qmax = 60, κ = 1.0. W ∗ = 59.1 for NN
results. W ∗ = 58.0 for the HJB results. ϵ = 10−6. Normalized withdrawal
(q − qmin)/(qmax − qmin). Units: thousands of dollars. . . . . . . . . . . . . 47

4.3.3 Training on historical data. EW-ES frontiers of controls generated by NN
model trained on 2.56 × 105 observations of historical data with expected
block sizes of a) 3 months and b) 12 months, each tested on 2.56× 105 ob-
servations of synthetic data. Parameters based on real CRSP index and real
10-year U.S. Treasuries (see Table 4.1.1). Historical data in range 1926:1-
2019:12. Units: thousands of dollars. qmin = 35; qmax = 60. The Bengen
(1994) results are based on bootstrap resampling of the historical data. La-
bels on nodes indicate κ parameter values. Simulated testing data refers to
Monte Carlo simulations using the SDEs (3.1.3) and (3.1.4). . . . . . . . . 49

4.2.5 Scenario in Table 4.2.1. NN and HJB controls computed from the prob-
lem (3.1.22). Parameters based on the real CRSP index, and real 10-year
treasuries (see Table 4.1.1). NN model trained on 2.56 × 105 observations
of synthetic data. HJB framework results from 2.56 × 106 observations of
synthetic data. qmin = 35, qmax = 60, κ = 1.0. W ∗ = 59.1 for NN results.
W ∗ = 58.0 for HJB results. Units: thousands of dollars. . . . . . . . . . . 50

4.3.1 Out-of-sample test. EW-ES frontiers, computed from the problem (3.1.22).
Note: Scenario in Table 4.2.1. Comparison of NN training performance
results vs. out-of-sample test. Both training and testing data are 2.56 ×
105 observations of synthetic data, generated with a different random seed.
Parameters for synthetic data based on cap-weighted real CRSP, real 10
year treasuries (see Table 4.1.1). qmin = 35, qmax = 60. ϵ = 10−6. Units:
thousands of dollars. Labels on nodes indicate κ parameter values. . . . . . 51

x



4.3.2 Out-of-distribution test. EW-ES frontiers of controls generated by NN
model trained on 2.56× 105 observations of synthetic data, tested on 2.56×
105 observations of historical data with varying expected block sizes. Com-
puted from the problem (3.1.22). Note: Setup as in Table 4.2.1. Parame-
ters based on real CRSP index and real 10-year U.S. Treasuries (see Table
4.1.1). Historical data in range 1926:1-2019:12. Units: thousands of dol-
lars. qmin = 35; qmax = 60. Simulated training data refers to Monte Carlo
simulations using the SDEs (3.1.3) and (3.1.4). . . . . . . . . . . . . . . . . 51

5.2.1 Illustration of the NN framework as per Section 5.2. Additional technical
details can be found in 3.4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4.1 Expected value and standard deviation of monthly returns of each candidate
asset, 1963:07-2022:12. Data is described in Table 5.4.1. . . . . . . . . . . . 66

5.4.2 Cumulative real return indexes of all candidate assets, 1963:07-2022:12.
Data is described in Table 5.4.1. . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5.1 EW-ES frontiers of controls generated by NN model for the basic asset
basket and the 2-factor asset basket (Size, Value, and basic assets) with
limit_type = indiv. Computational results for DS1, defined in Table 5.4.2.
NN methodology defined in Section 5.2. Investment scenario presented in
Table 5.3.2. Points showing the performance of associated constant strategy
benchmarks are also included. The constant strategy with "Basic 2 Asset"
portfolio is essentially the Bengen 4% strategy with fixed 4% withdrawals
and constant allocation of 30% in stocks, which was found to be the best-
performing constant allocation. The constant benchmark strategy for the
2-factor basket is described in subsection 5.5.1. . . . . . . . . . . . . . . . . 69

5.5.2 Optimal control computed for "2 Factor" asset basket with factor assets
individually constrained. κ = 1.0. . . . . . . . . . . . . . . . . . . . . . . 71

5.5.3 Percentile plots for the NN Strategy with "2 Factor" asset basket (Size,
Value, and basic assets) and limit_type = indiv. κ = 1.0. . . . . . . . . . . 72

xi



5.5.4 EW-ES frontiers of controls generated by NN model for the basic asset bas-
ket and the 2-factor asset basket with limit_type = indiv.. Computational
results for DS2, defined in Table 5.4.2. NN methodology defined in Section
5.2. Investment scenario presented in Table 5.3.2. Points showing the per-
formance of associated constant strategy benchmarks are also included. The
constant strategy with "Basic 2 Asset" portfolio is essentially the Bengen 4%
strategy with fixed 4% withdrawals and constant allocation of 30% in stocks,
which was found to be the best performing constant allocation. The con-
stant benchmark strategy for the 2-factor basket is described in subsection
5.5.1. Note that pareto optimality is not guaranteed for points calculated
using the test data set, which is why there may be subtle irregularities in
the EW-ES frontiers plotted in Subfigure (b). . . . . . . . . . . . . . . . . 75

xii



List of Tables

3.5.1 Hyper-parameters used in training the NN framework for numerical experi-
ments presented in this work. . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Estimated annualized parameters for double exponential jump diffusion model.
Value-weighted CRSP index, 10-year US treasury index deflated by the CPI.
Sample period 1926:1 to 2019:12. . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.2 Optimal expected blocksize b̂ = 1/v when the blocksize follows a geometric
distribution Pr(b = k) = (1− v)k−1v. The algorithm in Patton et al. (2009)
is used to determine b̂. Historical data range 1926:1-2019:12. . . . . . . . 38

4.2.1 Problem setup and input data. Monetary units: thousands of dollars. . . 39

4.2.2 HJB equation convergence test, real stock index: deflated real capitalization
weighted CRSP, real bond index: deflated ten year treasuries. Scenario in
Table 4.2.1. Parameters in Table 4.1.1. The Monte Carlo method used
2.56× 106 simulations. κ = 1.0, α = .05. Grid refers to the grid used in the
Algorithm in Section 3.2: nx × nb, where nx is the number of nodes in the
log s direction, and nb is the number of nodes in the log b direction. Units:
thousands of dollars (real). (M + 1) is the total number of withdrawals. M
is the number of rebalancing dates. qmin = 35.0. qmax = 60. Algorithm in
Section 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

xiii



4.2.3 Synthetic market results for HJB framework optimal strategies. Gives the
detailed results used to construct HJB efficient frontier in Figure 4.2.3. As-
sumes the scenario given in Table 4.2.1. Stock index: real capitalization
weighted CRSP stocks; bond index: ten year treasuries. Parameters from
Table 4.1.1. Units: thousands of dollars. Statistics based on 2.56 × 106

Monte Carlo simulation runs. Control is computed using the Algorithm in
Section 3.2, (2048 × 2048 grid) stored, and then used in the Monte Carlo
simulations. qmin = 35.0, qmax = 60. (M + 1) is the number of withdrawals.
M is the number of rebalancing dates. ϵ = 10−6. . . . . . . . . . . . . . . 44

4.2.4 Synthetic market results for NN framework optimal strategies. Gives the
detailed results used to construct NN efficient frontier in Figure 4.2.3. As-
sumes the scenario given in Table 4.2.1. Stock index: real capitalization
weighted CRSP stocks; bond index: ten year treasuries. Parameters from
Table 4.1.1. Units: thousands of dollars. Training performance statistics
based on 2.56× 105 Monte Carlo simulation runs. Control is computed us-
ing the algorithm in Section 3.4. qmin = 35.0, qmax = 60. (M + 1) is the
number of withdrawals. M is the number of rebalancing dates. ϵ = 10−6. . 45

4.2.5 Objective function value comparison for the HJB equation and NN frame-
work model results on range of κ values. Objective function values for both
frameworks computed according to PCEEt0(κ) (higher is better). Assuming
the scenario given in Table 4.2.1. Stock index: real capitalization weighted
CRSP stocks; bond index: ten year treasuries. Parameters from Table 4.1.1.
HJB solution statistics based on 2.56 × 106 Monte Carlo simulation runs.
HJB control is computed using the Algorithm in Section 3.2, (2048 × 2048
grid) stored, and then used in the Monte Carlo simulations. NN Training
performance statistics based on 2.56 × 105 Monte Carlo simulation runs.
Control is computed using the NN framework in Section 3.4. qmin = 35.0,
qmax = 60. (M + 1) is the number of withdrawals. M is the number of
rebalancing dates. ϵ = 10−6. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3.1 Asset baskets considered in the analysis. The "✓" indicates inclusion in the
asset basket. Each factor portfolio considered will include one of the factor
asset baskets listed here, as well as all 3 basic assets. . . . . . . . . . . . . 63

5.3.2 Dynamic factor investing problem setup and input data. Monetary units:
thousands of dollars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xiv



5.4.1 Sources and definitions of data used for candidate assets used in this analysis.
All time series are inflation-adjusted by using U.S. CPI data from CRSP. . 65

5.4.2 Data set combinations used for training and testing in computational ex-
periments. Size of all data sets is Nd = 2.56 ∗ 106. . . . . . . . . . . . . . . 65

5.4.3 Correlation matrix of monthly real returns, 1963:07-2022:12. Data is de-
scribed in Table 5.4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5.1 Computational results for DS1, defined in Table 5.4.2. NN methodology
defined in Section 5.2. Investment scenario in Table 5.3.2. Constant bench-
mark strategies described in 5.5.1. κ = 1.0. . . . . . . . . . . . . . . . . . . 70

5.5.2 Computational results for DS2, defined in Table 5.4.2. NN methodology de-
fined in Section 5.2. Investment scenario presented in Table 5.3.2. Constant
benchmark strategies described in 5.5.1. κ = 1.0. . . . . . . . . . . . . . . 74

xv



Chapter 1

Introduction

Access to traditional defined benefit (DB) pension plans continues to disappear for em-
ployees. In 2022, only 15% of private sector workers in the United States had access to
a defined benefit plan, while 66% had access to a defined contribution (DC) plan (U.S.
Bureau of Labor Statistics, 2022). In other countries, DB plans have become a thing of
the past.

Defined contribution plans leave the burden of creating an investment and withdrawal
strategy to the individual investor, which Nobel Laureate William Sharpe referred to as
“the nastiest, hardest problem in finance” (Ritholz, 2017). Indeed, a review of the literature
on decumulation strategies (Bernhardt and Donnelly, 2018; MacDonald et al., 2013) shows
that balancing all of retirees’ concerns with a single strategy is exceedingly difficult. As
DC plans’ ubiquity has increased, so has economic uncertainty: all measures of business
uncertainty surveyed by the Federal Reserve remain significantly elevated compared to the
years preceding the Covid-19 pandemic (Federal Reserve Bank of Atlanta, 2023). Any tools
investors have to mitigate risk in DC plans are of great interest. This thesis responds to this
need by 1) developing a data-driven neural network framework that closely approximates
the numerical solution to the optimal decumulation problem for DC plans and 2) extending
the framework to incorporate the increasingly popular paradigm of factor investing, which
has been used by asset managers to diversify portfolios away from the broad market.

Our starting point is to build on the approach in Forsyth (2022). This work seeks
to address retirees’ goal of finding an optimal balance between maximizing withdrawals
and minimizing the risk of depletion while guaranteeing a minimum withdrawal. The
problem is formulated as one in optimal stochastic control and determines a decumulation
and allocation strategy for a standard 30-year investment horizon. Numerical solutions
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are obtained using dynamic programming, which results in a Hamilton-Jacobi-Bellman
(HJB) Partial Differential Equation (PDE). The HJB PDE framework developed in Forsyth
(2022) maximizes expected withdrawals and minimizes the risk of running out of savings,
measured by the left tail in the terminal wealth distribution. Since maximizing withdrawals
and minimizing risk are conflicting measures, we use a scalarization technique to compute
Pareto optimal points. A constant lower bound is imposed on the withdrawal, providing a
guaranteed income. An upper bound on withdrawal is also imposed, which can be viewed
as the target withdrawal. The constraints of no shorting and no leverage are imposed on
the investment allocation.

The solution to this constrained stochastic optimal control problem yields a dynamic
stochastic strategy, naturally aligning with retirees’ concerns and objectives. Note that
cash flows are not mortality weighted, consistent with Bengen (1994). This can be justified
on the basis of planning to live, not planning to die as discussed in Pfau (2018).

Our dynamic strategy can be contrasted to traditional strategies such as the Bengen
Rule (4% Rule), which recommends withdrawing a constant 4% of initial capital each year
(adjusted for inflation) and investing equal amounts into stocks and bonds (Bengen, 1994).
Initially proposed in 1994, Scott et al. (2009) found the 4% Rule to still be a popular
strategy 14 years later, and the near-universal recommendation of the top brokerage and
retirement planning groups. Recently there has been acknowledgment in the asset man-
agement industry that the 4% Rule is sub-optimal, but wealth managers still recommend
variations of the same constant withdrawal principle (Williams and Kawashima, 2023).
The strategy proposed by Forsyth (2022) is shown to be far more efficient than the Bengen
4% Rule. Of course, the PDE solution in Forsyth (2022) is restricted to low dimensions (i.e.
a small number of stochastic factors). In order to remedy some of the deficiencies of PDE
methods (such as in Forsyth (2022)), we propose a neural network (NN) based framework
without using dynamic programming. The NN framework we develop here builds upon
the work of Li and Forsyth (2019) by creating a formulation that simultaneously solves a
control for the withdrawal in addition to the allocation.

In contrast to the PDE solution approach, our proposed NN approach has the following
advantages:

(i) It is data-driven and does not depend on a parametric model. This makes the frame-
work versatile in selecting training data, and less susceptible to model misspecifica-
tion.

(ii) The control is learned directly, thereby exploiting the low dimensionality of the con-
trol (Van Staden et al., 2023). This technique thus avoids dynamic programming and
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the associated error propagation. The NN approach can also be applied to higher
dimensional problems, such as those with a large number of assets.

(iii) If the control is a continuous function of time, the control approximated by the NN
framework will reflect this property. If the control is discontinuous 1, the NN seems
to produce a smooth, but quite accurate, approximation.2

Since the NN only generates an approximate solution to the complex stochastic opti-
mal control problem, it is essential to assess its accuracy and robustness. Rarely is the
quality of an NN solution assessed rigorously, since an accurate solution to the optimal
control problem is often not available. In Chapter 4, we compare the NN solution to the
decumulation problem against the ground-truth results from the provably convergent HJB
PDE method.

While other neural network and deep learning methods for optimal stochastic control
problems have been proposed before, they differ significantly from our approach in their
architecture, taking a stacked neural network approach as in Buehler et al. (2019); Chen and
Wan (2021); Han and E (2016); Tsang and Wong (2020) or a hybrid dynamic programming
and reinforcement learning approach (Huré et al., 2021). On the other hand, our framework
uses the same two neural networks at all rebalancing times in the investment scenario. Since
our NNs take time as an input, the solution will be continuous in time if the control is
continuous. Note that the idea of using time as an input to the NN was also suggested
in Laurière et al. (2021). According to the taxonomy of sequential decision problems
proposed in Powell (2021), our approach would most closely be described as Policy Function
Approximation (PFA).

With the exception of Laurière et al. (2021), previous works do not provide a bench-
mark for numerical methods, as we do in this work. Our results show that our proposed
NN method is able to approximate the numerical results in Forsyth (2022) with high ac-
curacy. Especially notable, and somewhat unexpected, is that the bang-bang control3 for
the withdrawal is closely reproduced by the NN method.

As machine learning and artificial intelligence based methods continue to proliferate
in finance and investment management, it is crucial to demonstrate that these methods
are reliable and explainable (Boukherouaa et al., 2021). We believe that our proposed
framework and test results make a step forward in demonstrating deep learning’s potential
for stochastic control problems in finance.

1Bang-bang controls, frequently encountered in optimal control, are discontinuous as a function of time.
2For a possible explanation of this, see Ismailov (2023).
3In optimal stochastic control, a bang-bang control is a discontinuous function of the state.
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After establishing the reliability of the NN framework, we extend it to an investigation
of the utility of factor investing for the decumulation problem. Factor investing refers to
the investment approach that aims to expose a portfolio to quantifiable firm characteristics
("factors"), such as market capitalization or book-to-market ratio. This is done to "tilt"
the portfolio away from the broad market in hopes of mitigating risk or finding excess
returns. As the factor investing paradigm has quickly become more popular in the asset
management industry, we utilize the opportunity to employ the novel NN framework de-
veloped in this thesis to investigate its potential efficacy in improving withdrawal efficiency
and risk management in the decumulation problem.

To summarize, the main contributions of this thesis are as follows:

• Proposing an NN framework with suitable activation functions for decumulation and
allocation controls, which yields an approximate solution to the constrained stochas-
tic optimal decumulation problem in Forsyth (2022) by solving a standard uncon-
strained optimization problem;

• Demonstrating that the NN solution achieves very high accuracy in terms of the
efficient frontier and the decumulation control when compared to the solution from
the provably convergent HJB PDE method. The NN framework is also shown to
generate strategies with robust performance on out-of-sample and out-of-distribution
data, even when trained on alternate data sets;

• Illustrating that, with a suitably small regularization parameter, the NN allocation
strategy can differ significantly from the PDE allocation strategy in the region of high
wealth and near the terminal time, while the relevant performance statistics remain
unaffected. This is due to the fact that the problem is ill-posed in these regions of
the state space unless we add a small regularization term;

• Extending the novel NN framework to the dynamic factor investing problem. We
find promising results for the potential of NN strategies that incorporate factor-
based assets in providing improved performance compared to portfolios with only
basic assets or constant allocation strategies.

1.1 Thesis Outline

Chapter 2 briefly reviews the theoretical background of optimal control, neural network
approximation, and factor theory; Chapter 3 develops the basic asset decumulation problem
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formulation and NN framework; Chapter 4 discusses model results and establishes the
accuracy of the NN method compared to the HJB method; finally, Chapter 5 extends the
framework to include dynamic factor investing.
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Chapter 2

Background

2.1 Optimal Control Theory

Given a system, optimal control is the process of finding the control policy that maximizes
a specific performance criterion. We provide a brief overview of the general problem for-
mulation for optimal control in this section. For a more rigorous treatment, refer to books
such as Sethi (2019) or Kirk (2016).

A state variable X(t) can be chosen to represent the system at any time t ∈ [0,T ],
where T > 0 is the specified time horizon for the system we are considering. For example,
in the investment problems dealt with in this work, X(t) will include amounts invested in
a portfolio’s assets at time t.

In a meaningful optimal control problem, there will be aspects of the system that we can
and cannot influence. The parts of the system that we can control are the control variables,
which we will collectively refer to as P = {p(t), t ∈ [0,T ]}, where p(t) is the control for a
specific time t. In our case, we will be able to formulate control variables that dictate how
to reallocate money in a portfolio, but we will always be subject to the processes that evolve
X(t) that we cannot control, such as the movement of asset prices. In optimal control, our
goal is to select such a control policy P , subject to any set of constraints Z, that interacts
with the system over the time horizon to maximize a predetermined objective function,
J . In general, the objective function will have a component that is only dependent on the
terminal state of the system as well as a component that is path-dependent. When the
system is deterministic, this general objective can be stated as such (Sethi, 2019):
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J =

∫ T

0

F (X(t), p(t), t)dt+ S(X(T ), T ), (2.1.1)

where F is a function of x, t, and p(t), In order to optimize the objective, optimal con-
trol problems deal with determining the equation that characterizes the system state’s
evolution:

dx

dt
(t) = f(X(t), p(t), t), X(0) = x0 (2.1.2)

Solving optimal control problems can be viewed as an extension to calculus since we are
interested in what value of P will influence X(t) so that J is maximized. In summary,
problems of this nature can be expressed in the form:


max
P∈Z

[
J =

∫ T

0
F (X(t),P , t)dt+ S(X(T ), T )

]
subject to
dx
dt
(t) = f(x(t), p(t), t), x(0) = x0.

(2.1.3)

2.2 Stochastic Optimal Control

Many optimal control problems consider systems that are deterministic, where the equation
governing the evolution of the system can be known with certainty. In the problems
considered in this work, this will not be the case. We will consider systems whose evolution
is influenced by stochastic processes and we will therefore need to describe and analyze
the system with stochastic mathematics. In the following, we briefly review the general
problem formulation for stochastic optimal control and the intuition behind the resulting
Hamilton-Jacobi-Bellman (HJB) equation that can be used in a dynamic programming
(DP) framework to solve such optimization problems. We will assume continuous time
and standard Brownian motion to model stochasticity, however, in the later chapters of
this thesis, we will deal with the discrete time case, which is described in Bertsekas and
Shreve (1996) and consider problems that include stochastic processes with discrete jumps,
which are described in Fleming and Rishel (1975) and Davis and Farid (1999).
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In stochastic optimal control, we seek a control that optimizes an objective constructed
as the expectation of the chosen performance criterion (Bertsekas and Shreve, 1996):

J = E

[ ∫ T

0

F (X(t), p(t), t)dt+ S(X(T ), T )

]
(2.2.1)

Since the state equation is now governed by random processes, we write it as:

dX(t) = f(X(t), p(t), t)dt+G(X(t), p(t), t)dZ(t), X(0) = x0, (2.2.2)

where Z(t) represents a standard Wiener process. Therefore, f represents the deterministic
drift of the state equation, while G represents the (stochastic) diffusion. For the purposes of
describing the background of this thesis, we assume that both of these function components
and objective components F and S are continuously differentiable. To solve the problem
defined by (2.2.1) and (2.2.2), we first define the value function (sometimes also referred
to as the "cost-to-go" function), V (x,t), to be the expected value of the objective when the
optimal policy is followed from time t to T . By defining it recursively, we express V (x,t)
at any time t:

V (x,t) = max
p(t)

E
[
F (X(t), p(t), t)dt+ V (x(t) + dX(t), t+ dt)

]
(2.2.3)

We can approximate V using its Taylor expansion:

V (x+ dX, t+ dt) = V (x,t) + Vtdt+ VxdX +
1

2
Vxx(dX)2 + Vtt(dt)

2

+
1

2
VxtdXtdt+ ... (2.2.4)

The dX terms in (2.2.4) can be written in terms of f and G by starting from (2.2.2):

(dX)2 = f 2(dt)2 +G2(dZ)2 + 2fGdZdt,

dXdt = f(dt)2 +GdZdt. (2.2.5)

The following expressions come from the theory of stochastic calculus, and allow us to
differentiate geometric Brownian motion; see for example Karatzas and Shreve (1991).
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(dZ)2 = dt, dZdt = 0, dt2 = 0. (2.2.6)

Substituting (2.2.6) and (2.2.5) into (2.2.4) and using the fact that E[dZ] = 0 yields:

V (x+ dX, t+ dt) = V (x,t) + Vtdt+ Vxfdt+
1

2
VxxG

2dt, (2.2.7)

which allows us to substitute the recursive term in (2.2.8). After canceling the V (x, t)
terms and dividing by dt, we get:

0 = max
p(t)

E
[
F + Vt + Vxf +

1

2
VxxG

2
]
, (2.2.8)

which is the HJB equation for the value function V (x,t) with terminal condition V (x,T ) =
S(x,T ).

In computational practice, the HJB equation is solved backward in time, starting from
the terminal condition and solving for the optimal p(t) at each time step t until the be-
ginning of the period is reached. This process is dynamic programming; breaking up the
larger problem into many smaller problems until the entire problem can be solved. Forsyth
(2022) uses an HJB method to develop a numerical algorithm for the decumulation prob-
lem, formulated as a problem in stochastic optimal control.

There has been significant research on replacing the value function with a sufficiently
accurate approximation at each time step. In the next section, we will briefly introduce
neural network approximation theory and its applications in optimal control.

2.3 Neural Networks and Function Approximation

Beginning in the 1980s, there has been significant research into how to reduce the compu-
tational complexity of stochastic optimal control problems by using sufficiently accurate
approximations of the value function. Bertsekas and Tsitsiklis (1996) first dubbed the use
of neural networks for this class of problems as ‘neuro-dynamic programming’ and Sutton
(1988) established this as the beginning of modern computational reinforcement learning
(RL). In this section, we briefly introduce the theory of neural network (NN) approxima-
tion and its application to optimal control. For a more complete discussion on NNs and
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deep learning refer to books such as Goodfellow et al. (2016). The NN frameworks devel-
oped in this thesis and Li and Forsyth (2019) (upon which this thesis builds), differ from
‘neuro-dynamic programming’ and RL approaches by using NN approximation in a fun-
damentally different way, approximating the control directly instead of the value function
and eliminating the need for anything resembling dynamic programming.

2.3.1 Basic NN Formulation

Neural networks (NNs) are machine learning models that consist of layers of interconnected
’nodes.’ Each node receives values from all incoming connections, processes the values, and
then sends its result to all of its outgoing connections. ’Learning’ occurs by adjusting the
weights that are applied to each connection, as well as the biases that are added as part of
each node’s input processing. There are many learning algorithms that can be employed
for this. A basic NN’s architecture must be adapted to the problem at hand; including
changing the number of interconnected layers, the number of nodes in each layer, activation
functions used to process nodes’ input values, and so on.

Consider a NN with L hidden layers, which is fully connected and feed-forward. The
layers are indexed by ℓ ∈ {0, . . . ,L + 1}, with ℓ = 0 being the input layer and ℓ = L + 1
being the output layer. Let ηℓ ∈ N be the number of nodes in layer ℓ. The number of
nodes in the input layer, η0, is the same as the number of elements in the feature vector,
ϕ ∈ R0. Each node in the input layer takes a value from the feature vector.

The connections going into each layer except the input layer have a matrix of weights
associated with them, x[ℓ] ∈ Rηℓ−1×ηℓ . Each non-input layer also has a vector of biases,
b[ℓ] ∈ ηℓ and activation function, σ[ℓ] : Rηℓ ↪→ Rηℓ , which is applied to the sum of the layer’s
weighted inputs, z[ℓ]. The output of the ℓ-th layer and is thus:

aℓ = σ[ℓ]

(
z[ℓ]
)
, where z

[ℓ]
i =

(ηℓ−1∑
k=1

x
[ℓ]
kia

[ℓ−1]
k

)
+ b

[ℓ]
i , l ∈ {1, . . . ,L+ 1}. (2.3.1)

The choice of σ[ℓ] is most commonly a logistic sigmoid function or the softmax function,
although in this thesis we will also use novel customized versions of these functions to
adapt the NN to the requirements of our problem. We will leave the discussion of how this
general NN formulation is adapted to our control problem in later chapters.
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2.3.2 Universal Approximation Theorems

A remarkable quality of the simple NN formulation discussed above is that neural networks
based on this can be shown to be universal approximators. The earliest of such Universal
Approximation theorems are Cybenko (1989) and Hornik et al. (1989), which show that
NNs of arbitrary width and a single hidden layer can represent approximations of any
continuous function to arbitrary accuracy, given appropriate weight and bias parameters.
It should be noted that these theorems do not guarantee that a learning algorithm will
always be able to learn the correct weights and biases.

It will also become relevant over the course of this thesis that research into the ability
of NNs to accurately represent or learn discontinuous functions is an area of active research
(Della Santa and Pieraccini, 2023; Ismailov, 2023). In this work, we find that our proposed
NN framework is able to learn a discontinuous "bang-bang" control policy, which is a
discontinuous function of feature inputs.

2.4 Factor Theory

The primary aim of factor theory is to create models of quantifiable characteristics that
explain asset returns. The oldest and most foundational model of stock returns is the
Capital Asset Pricing Model (CAPM), proposed by Sharpe (1964), where the market itself
is the only systematic factor driving returns and the residual is explained by the specific
asset itself:

ri = rf + βi(rM − rf ) + εi (2.4.1)

where:
ri = return of asset i
rf = risk-free rate
βi = beta for asset i
rM = market factor return
εi = return specific to asset i, modeled as N(0,σ2

i ), where specific risk of asset i is σi.

In CAPM, there is one assumed factor: the market itself, which is modeled indepen-
dently from the specific asset return, εi. The ’beta’ that gives how sensitive asset i is to
the market factor is given by:
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βi =
ρi,Mσi

σM

. (2.4.2)

where:
ρi,M = the correlation between asset i and the market
σi = volatility of asset i
σM = volatility of market.

In CAPM risk analysis, the beta of each asset in a portfolio is calculated to determine
the beta of the entire portfolio. When a portfolio is sufficiently diversified, the specific risk
of assets is effectively eliminated and only the systematic risk remains, which consists of
the portfolio beta and market beta. Taking the expectation, specific risk can be zeroed
out since E[εi] = 0. The CAPM model can then be rewritten to provide an expectation of
excess returns:

E[ri − rf ] = βi(E[rM ]− rf ). (2.4.3)

In (2.4.3), the systematic return of asset i is modeled only in terms of the market factor.
While useful and foundational in asset pricing, strong evidence of pricing anomalies was
discovered that contradicted this model. The Fama-French 3 Factor Equity Model intro-
duced firm size and book-to-market ratio as factors in an asset pricing model, which was
widely regarded as an improvement over CAPM. The work of Nobel Prize winner Eugene
Fama and Kenneth French (Fama and French, 1993) was also a seminal paper in the field
of factor research and spawned work on many subsequent models of asset returns including
a vast array of proposed factors. These expanded factor models have the form of

E[ri − rf ] = βi,1E
[
E[r1]− rf

]
+ βi,2E

[
E[r2]− rf

]
+ . . . (2.4.4)

where:
rk = the return of factor k
βi,k = the beta of asset i with respect to factor k.

Factor research seeks to identify factors that drive asset performance and explain the
cross-section of returns by using models of the form (2.4.4), or variations of it, for empirical
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experiments using historical asset returns. A huge amount of this kind of research has been
done, resulting in what some call the "zoo" of factors (Feng et al., 2020). Factor researchers
face a daunting task: the process of identifying candidate factors and testing is complex
and much of the existing research is biased towards positive results, often muddying the
waters. The Fama-French 3-Factor Model has been updated by newer models with new
factors that have been widely accepted, however, such as the 4-Factor Model proposed by
Carhart (1997), which introduced the Momentum factor. We leave the definition of specific
factors relevant to this thesis to Chapter 5.

Given the complexity of factor research and its rise in popularity coinciding with finan-
cial applications of machine learning becoming more accepted, there have naturally been
many researchers utilizing machine learning models in this work. For example, Feng et al.
(2022) provides a deep learning framework to generate factors based on an economic-guided
objective function formulated to minimize pricing errors. The book (Coqueret and Guida,
2023) provides an overview of the methods used in machine learning to identify factors.
The application of machine learning in this thesis differs significantly from this kind of
research. This thesis instead relies on widely accepted and established factors as proxies
for factor-based ETF assets that a retiree may choose to invest in as a means to mitigate
market risk (diversifying away from market beta) and seek returns exceeding the market.
The NN-based approach we propose uses these factor assets as part of an NN-generated
strategy to optimally decumulate and allocate a portfolio.
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Chapter 3

Portfolio Decumulation

In this chapter, we begin by describing the mathematical formulation of optimal portfolio
decumulation as a problem in optimal stochastic control. We then describe two distinct
optimization frameworks to solve the same problem: 1) A dynamic programming approach
based upon the Hamilton-Jacobi-Bellman equation and 2) a novel data-driven neural net-
work approach. The results for these two methods are then analyzed and compared in the
following chapter.

3.1 Problem Formulation

3.1.1 Overview

The investment scenario described in Forsyth (2022) concerns an investor with a portfolio
wealth of a specified size, upon retirement. The investment horizon is fixed with a finite
number of equally spaced rebalancing times (usually annually). At each rebalancing time,
the investor first chooses how much to withdraw from the portfolio and then how to allocate
the remaining wealth. The investor must withdraw an amount within a specified range.
The wealth in this portfolio can be allocated to any mix of two given assets, with no
shorting or leverage. The assets the investor can access are a broad stock index fund and
a constant maturity bond index fund.

In the time that elapses between re-balancing times, the portfolio wealth will change
according to the dynamics of the underlying assets. If the wealth of the portfolio goes
below zero, the portfolio is liquidated, trading ceases, debt accumulates at the borrowing

14



rate, and withdrawals are restricted to the minimum amount. At the end of the time
horizon, a final withdrawal is made and the portfolio is liquidated, yielding the terminal
wealth.

We assume here that the investor has other assets, such as real estate, which are non-
fungible with investment assets. These other assets can be regarded as a hedge of last
resort, which can be used to fund any accumulated debt (Pfeiffer et al., 2013). This is not
a novel assumption and is in line with the mental bucketing idea proposed by Shefrin and
Thaler (1988). The use of this assumption within literature targeting similar problems is
also common (see Forsyth et al. (2022)). Of course, the objective of the optimal control is
to make running out of savings an unlikely event.

The investor’s goal then is to maximize the weighted sum of total withdrawals and the
mean of the worst 5% of the outcomes (in terms of terminal wealth). We term this tail
risk measure as Expected Shortfall (ES) at the 5% level. In this section, this optimization
problem will be described with the mathematical details common to both the HJB and
NN methods.

3.1.2 Stochastic Process Model

Let St and Bt represent the real (i.e. inflation-adjusted) amounts invested in the stock
index and a constant maturity bond index, respectively. These assets are modeled with
correlated jump diffusion models, in line with MacMinn et al. (2014). These parametric
stochastic differential equations (SDEs) allow us to model non-normal asset returns. The
SDEs are used in solving the HJB PDE, and generating training data with Monte Carlo
simulations in the proposed NN framework. For the remainder of this thesis, we refer to
simulated data using these models as synthetic data.

When a jump occurs, St = ξsSt− , where ξs is a random number representing the jump
multiplier and St− = S(t− ϵ), ϵ → 0+ (St− is the instant of time before t). We assume that
log(ξs) follows a double exponential distribution (Kou, 2002; Kou and Wang, 2004). The
jump is either upward or downward, with probabilities us and 1 − us respectively. The
density function for y = log(ξs) is

f s(y) = usηs1e
−ηs1y1y≥0 + (1− us)ηs2e

ηs2y1y<0 . (3.1.1)
We also define

γs
ξ = E[ξs − 1] =

usηs1
ηs1 − 1

+
(1− us)ηs2
ηs2 + 1

− 1 . (3.1.2)
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The starting point for building the jump diffusion model is a standard geometric Brownian
motion, with drift rate µs and volatility σs. A third term is added to represent the effect
of jumps, and a compensator is added to the drift term to preserve the expected drift rate.
For stocks, this gives the following stochastic differential equation (SDE) that describes
how St (inflation adjusted) evolves in the absence of a control:

dSt

St−
=

(
µs − λs

ξγ
s
ξ

)
dt+ σs dZs + d

(
πs
t∑

i=1

(ξsi − 1)

)
, (3.1.3)

where dZs is the increment of a Wiener process, πs
t is a Poisson process with positive

intensity parameter λs
ξ, and ξsi ∀i are i.i.d. positive random variables having distribution

(3.1.1). Moreover, ξsi , πs
t , and Zs are assumed to all be mutually independent.

As is common in the practitioner literature, we directly model the returns of a constant
maturity (inflation adjusted) bond index by a jump diffusion process (Lin et al., 2015;
MacMinn et al., 2014). Let the amount in the constant maturity bond index be Bt− =
B(t− ϵ), ϵ → 0+. In the absence of a control, Bt evolves as

dBt

Bt−
=

(
µb − λb

ξγ
b
ξ + µb

c1{Bt−<0}
)
dt+ σb dZb + d

 πb
t∑

i=1

(ξbi − 1)

 , (3.1.4)

where the terms in Equation (3.1.4) are defined analogously to Equation (3.1.3). In par-
ticular, πb

t is a Poisson process with positive intensity parameter λb
ξ, γb

ξ = E[ξb − 1], and
y = log(ξb) has the same distribution as in equation (3.1.1) (denoted by f b(y)) with distinct
parameters, ub, ηb1, and ηb2. Note that ξbi , πb

t , and Zb are assumed to all be mutually inde-
pendent, as in the stock SDE. The term µb

c1{Bt−<0} represents the extra cost of borrowing
(a spread).

The correlation between the two assets’ diffusion processes is ρsb, giving us dZs · dZb =
ρsbdt. The jump processes are assumed to be independent. For further details on the
justification of this market model, refer to Forsyth (2022).

We define the investor’s total wealth at time t as

Total wealth ≡ Wt = St +Bt. (3.1.5)

Barring insolvency, shorting stock and using leverage (i.e., borrowing) are not permit-
ted, a realistic constraint in the context of DC retirement plans. Furthermore, if the wealth

16



ever goes below zero, the portfolio is liquidated, trading ceases, and debt accumulates at
the borrowing rate. We emphasize that we are assuming that the retiree has other assets
(i.e., residential real estate) which can be used to fund any accumulated debt. In practice,
this could be done using a reverse mortgage (Pfeiffer et al., 2013).

3.1.3 Notational Conventions

We define the finite set of discrete withdrawal/rebalancing times T ,

T = {tn = n∆t|n = 0, . . . ,M}, ∆t = T/M . (3.1.6)

The beginning of the investment period is t0 = 0. We assume each rebalancing time is
evenly spaced, meaning tn − tn−1 = ∆t = T/M is constant. To avoid subscript clutter in
the following, we will occasionally use the notation St ≡ S(t), Bt ≡ B(t) and Wt ≡ W (t).
At each rebalancing time, tn ∈ T , the investor first withdraws an amount of cash qn from
the portfolio and then rebalances the portfolio. At time T , there is one final withdrawal,
qT , and then the portfolio is liquidated. We assume no taxes, which is reasonable since
retirement accounts are typically tax-advantaged. In addition, since trading is infrequent,
we assume transaction costs to be negligible (Dang and Forsyth, 2014). Given an arbitrary
time-dependent function, f(t), we will use the shorthand

f(t+n ) ≡ lim
ϵ→0+

f(tn + ϵ) , f(t−n ) ≡ lim
ϵ→0+

f(tn − ϵ) . (3.1.7)

The multidimensional controlled underlying process is denoted by X (t) = (S (t) , B (t)),
t ∈ [0,T ]. For the realized state of the system, x = (s, b).

At the beginning of each rebalancing time tn, the investor withdraws the amount qn(·),
determined by the control at time tn; that is, qn(·) = qn(X(t−n )) = q(X(t−n ), tn). This
control is used to evolve the investment portfolio from W−

t to W+
t .

W (t+n ) = W (t−n )− qn , tn ∈ T . (3.1.8)

Formally, both withdrawal and allocation controls depend on the state of the portfolio
before withdrawal, X(t−n ), but it will be computationally convenient to consider the allo-
cation control as a function of the state after withdrawal since the portfolio allocation is

17



rebalanced after the withdrawal has occurred. Hence, the allocation control at time tn is
pn(·) = pn(X(t+n )) = p(X(t+n ), tn).

pn(X(t+n )) = p(X(t+n ), tn) =
S(t+n )

S(t+n ) +B(t+n )
. (3.1.9)

As formulated, the controls depend on wealth only (see Forsyth (2022) for a proof, assuming
no transaction costs). Therefore, we make another notational adjustment for the sake of
simplicity and consider qn(·) to be a function of wealth before withdrawal, W−

n , and pn(·)
to be a function of wealth after withdrawal, W+

n .
We assume instantaneous rebalancing, which means there are no changes in asset prices

in the interval (t−n ,t+n ). A control at time tn is therefore described by a pair (qn(·), pn(·)) ∈
Z(W−

n ,W+
n , tn), where Z(W−

n ,W+
n , tn) represents the set of admissible control values for tn.

The constraints on the allocation control are no shorting, no leverage (assuming solvency).
There are minimum and maximum values for the withdrawal. When wealth goes below
zero due to withdrawals (W+

n < 0), trading ceases with debt accumulating at the borrowing
rate, and withdrawals are restricted to the minimum. Stock assets are liquidated at the
end of the investment period. We can mathematically state these constraints by imposing
suitable bounds on the value of the controls as follows:

Zq(W
−
n ,tn) =


[qmin, qmax] ; tn ∈ T ; W−

n > qmax

[qmin,W
−
n ] ; tn ∈ T ; qmin < W−

n < qmax

{qmin} ; tn ∈ T ; W−
n < qmin

, (3.1.10)

Zp(W
+
n ,tn) =


[0,1] W+

n > 0 ; tn ∈ T ; tn ̸= tM

{0} W+
n ≤ 0 ; tn ∈ T ; tn ̸= tM

{0} tn = tM

, (3.1.11)

Z(W−
n ,W+

n ,tn) = Zq(W
−
n ,tn)×Zp(W

+
n ,tn) . (3.1.12)

At each rebalancing time, we seek the optimal control for all possible combinations of
(S(t), B(t)) having the same total wealth (Forsyth, 2022). Hence, the controls for both
withdrawal and allocation are formally a function of wealth and time before withdrawal
(W−

n ,tn), but for implementation purposes it will be helpful to write the allocation as a
function of wealth and time after withdrawal (W+

n ,tn). The set of admissible controls A
can be written as

A =

{
(qn, pn)0≤i≤M : (qn, pn) ∈ Z(W−

n ,W+
n ,tn)

}
(3.1.13)
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An admissible control P , with range in A, can be written as

P = {(qn(·), pn(·)) : n = 0, . . . ,M} . (3.1.14)

It will sometimes be necessary to refer to the tail of the control sequence at [tn, tn+1, . . . , tM ],
which we define as

Pn = {(qn(·), pn(·)) . . . , (pM(·), qM(·))} . (3.1.15)

The essence of the problem, for both the HJB and NN methods outlined in this chapter,
will be to find an optimal control P∗.

3.1.4 Risk: Expected Shortfall

Assume that g(WT ) is the probability density of terminal wealth WT at t = T . Then
suppose ∫ W ∗

α

−∞
g(WT ) dWT = α , (3.1.16)

i.e., Pr [WT < W ∗
α] = α, and W ∗

α is the Value at risk (VAR) at the level α. We then define
the Expected Shortfall (ES) as the mean of the worst α fraction of the terminal wealth.
Mathematically,

ESα =

∫W ∗
α

−∞ WT g(WT ) dWT

α
. (3.1.17)

As formulated, a higher ES is more desirable than a smaller ES (Equation (3.1.17) is
formulated in terms of final wealth not losses). To approximate ES, we use the alternate
formulation as suggested by Rockafellar and Uryasev (2000),

ESα = sup
W ∗

E

[
W ∗ +

1

α
min(WT −W ∗, 0)

]
. (3.1.18)

Under a control P , and initial state X0, this becomes:

ESα(X
−
0 , t

−
0 ) = sup

W ∗
E

X−
0 ,t−0

P

[
W ∗ +

1

α
min(WT −W ∗, 0)

]
. (3.1.19)

19



The candidate values of W ∗ can be taken from the set of possible values of WT . It is
important to note here that we define ESα(X

−
0 ,t

−
0 ) which is the value of ESα as seen at

t−0 . Hence, W ∗ is fixed throughout the investment horizon. In fact, we are considering
the induced time consistent strategy, as opposed to the time inconsistent version of an
expected shortfall policy (Forsyth, 2020; Strub et al., 2019). This issue is addressed in
more detail in Section 3.1.7.

3.1.5 Reward: Expected Total Withdrawals

We use expected total withdrawals as a measure of reward. Mathematically, we define
expected withdrawals (EW) as

EW(X−
0 , t

−
0 ) = E

X−
0 ,t−0

P

[ M∑
n=0

qn

]
. (3.1.20)

Remark 3.1.1 (No discounting, no mortality weighting). Note that we do not discount
the future cash flows in Equation (3.1.20). We remind the reader that all quantities are
assumed real (i.e. inflation-adjusted), so that we are effectively assuming a real discount
rate of zero, which is a conservative assumption. This is also consistent with the approach
used in the classical work of Bengen (1994). In addition, we do not mortality weight the
cash flows, which is also consistent with Bengen (1994). See Pfau (2018) for a discussion
of this approach (i.e. plan to live, not plan to die).

3.1.6 Defining a Common Objective Function

In this section, we describe the common objective function used by both the HJB method
and the NN method.

Expected Withdrawals (EW) and Expected Shortfall (ES) are conflicting measures.
We use a scalarization method to determine Pareto optimal points for this multi-objective
problem. For a given κ, we seek the optimal control P0 such that the following is maximized,

EW(X−
0 , t

−
0 ) + κESα(X

−
0 , t

−
0 ) . (3.1.21)

We define (3.1.21) as the pre-commitment EW-ES problem (PCEEt0(κ)) and write the
problem formally as
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(PCEEt0 (κ)) :

J
(
s,b, t−0

)
= sup

P0∈A
sup
W ∗

{
E

X−
0 ,t−0

P0

[
M∑
n=0

qn + κ

(
W ∗ +

1

α
min(WT −W ∗, 0)

) stabilization︷ ︸︸ ︷
+ϵWT∣∣∣∣X(t−0 ) = (s,b)

]}

subject to



(St, Bt) follow processes (3.1.3) and (3.1.4); t /∈ T
W+

n = S−
n +B−

n − qn ; X+
n = (S+

n , B
+
n )

S+
n = pn(·)W+

n ; B+
n = (1− pn(·))W+

n

(qn(·), pn(·)) ∈ Z(W−
n ,W+

n ,tn)

i = 0, . . . ,M ; tn ∈ T

.(3.1.22)

The ϵWT stabilization term serves to avoid ill-posedness in the problem when Wt ≫ W ∗,
t → T , and has little effect on optimal (ES, EW) or other summary statistics when |ϵ| ≪ 1.
Further details about this stabilization term and its effects on both the HJB and NN
framework will be discussed in Section 4.2. The objective function in (3.1.22) serves as
the basis for the value function in the HJB framework and the loss function for the NN
method.

Remark 3.1.2 (Induced time consistent policy). Note that a strategy based on (PCEEt0 (κ))
is formally a pre-commitment strategy (i.e., not time consistent). However, we will assume
that the retiree actually follows the induced time consistent strategy (Forsyth, 2020; 2022;
Strub et al., 2019). This control is identical to the pre-commitment control at time zero. See
Subsection 3.1.7 for more discussion of this subtle point. In the following, we will refer to
the strategy determined by (3.1.22) as the EW-ES optimal control, with the understanding
that this refers to the induced time consistent control at any time tn > t0.

3.1.7 Induced Time Consistent Policy

In this section, we review the concept of time consistency and relate its relevance to the
PCEEt0(κ) problem, (3.1.22).

Consider the optimal control P∗
0 for problem (3.1.22),

P∗
0 (X(t−i ), ti) ; i = 0, . . . ,M . (3.1.23)
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Equation (3.1.23) can be interpreted as the optimal control for any time ti ≥ t0, as a
function of the state variables X(t), as computed at t0.

Now consider if we were to solve the problem (3.1.22) starting at a later time tk, k > 0.
This optimal control starting at tk is denoted by:

P∗
k(X(t−i ), ti) ; i = k, . . . ,M} . (3.1.24)

In general, the solution of (3.1.22) computed at tk is not equivalent to the solution computed
t0:

P∗
k(X(t−i ), ti) ̸= P∗

0 (X(t−i ), ti) ; i ≥ k > 0. (3.1.25)

This non-equivalence makes problem (3.1.22) time inconsistent, implying that the investor
will have the incentive to deviate from the control computed at time t0 at later times.
This type of control is considered a pre-commitment control since the investor would need
to commit to following the strategy at all times following t0. Some authors describe pre-
commitment controls as non-implementable because of the incentive to deviate.

In our case, however, the pre-commitment control from (3.1.22) can be shown to be
identical to the time consistent control for an alternative version of the objective function.
By holding W ∗ fixed at the optimal value (at time zero), we can define the time consistent
equivalent problem (TCEQ). Noting that the inner supremum in (3.1.22) is a continuous
function of W ∗, we define the optimal value of W ∗ as

W∗(s,b) = argmax
W ∗

{
sup
P0∈A

{
E

X−
0 ,t−0

P0

[
M∑
i=0

qi + κ

(
W ∗ +

1

α
min(WT −W ∗, 0)

)∣∣∣∣X(t−0 ) = (s,b)

]}
.

(3.1.26)

With a given initial wealth of W−
0 , this gives the following result from Forsyth (2020):

Proposition 3.1.1 (Pre-commitment strategy equivalence to a time consistent policy for
an alternative objective function). The pre-commitment EW-ES strategy found by solving
J
(
s,b, t−0

)
from (3.1.22), with fixed W ∗ = W∗ from Equation 3.1.26, is identical to the

time consistent strategy for the equivalent problem TCEQ (which has fixed W∗(0,W−
0 )),

with the following value function:
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(TCEQtn (κ/α)) :

J̃
(
s,b, t−n

)
= sup

Pn∈A

{
EX−

n ,t−n
Pn

[
M∑
i=n

qi +
κ

α
min(WT −W∗(0,W−

0 ),0)

∣∣∣∣X(t−n ) = (s,b)

]}
.

(3.1.27)

Proof. This follows similar steps as in Forsyth (2020), proof of Proposition (6.2).

With fixed W ∗, TCEQtn (κ/α) is based on a target-based shortfall as its measure of
risk, which is trivially time consistent. W ∗ has the convenient interpretation of a disaster
level of final wealth, as specified at time zero. Since the optimal controls for PCEEt0(κ)
and TCEQtn (κ/α) are identical, we regard TCEQtn (κ/α) as the EW-ES induced time
consistent strategy (Strub et al., 2019), which is implementable since the investor will have
no incentive to deviate from a strategy computed at t0 at later times.

For further discussion concerning the relationship between pre-commitment, time con-
sistent, and induced time consistent strategies, we refer the reader to Bjork and Murgoci
(2010; 2014); Forsyth (2020); Strub et al. (2019); Vigna (2014; 2017).

3.2 HJB Dynamic Programming Optimization Frame-
work

The HJB framework uses dynamic programming, creating sub-problems from each time
step in the problem and moving backward in time. For the convenience of the reader, we
will summarize the algorithm in Forsyth (2022) here.

3.2.1 Deriving Auxiliary Function from PCEEt0 (κ)

The HJB framework begins with defining auxiliary functions based on the objective func-
tion (3.1.22) and the underlying stochastic processes. An equivalent problem is then for-
mulated, which will then be solved to find the optimal value function.

We begin by interchanging the supP0
and supW ∗ operators. This will serve as the

starting point of the HJB solution.

23



J
(
s,b, t−0

)
= sup

W ∗
sup
P0∈A

{
E

X−
0 ,t−0

P0

[
M∑
n=0

qn + κ

(
W ∗ +

1

α
min(WT −W ∗, 0)

)

+ϵWT

∣∣∣∣X(t−0 ) = (s,b)

]}
. (3.2.1)

The auxiliary function which needs to be computed in the dynamic programming frame-
work at each time tn will have an associated strategy for any tn > 0 that is equivalent with
the solution of PCEEt0 (κ) for a fixed W ∗. For a full discussion of pre-commitment and
time-consistent ES strategies, we refer to the reader to Forsyth (2020), which also includes
a proof with similar steps of how the following auxiliary function is derived from (3.2.1).
Including W ∗ in the state space gives us the expanded state space X̂ = (s,b,W ∗). The
auxiliary function V (s, b,W ∗, t) ∈ Ω = [0,∞)× (−∞,+∞)× (−∞,+∞)× [0,∞) is defined
as,

V (s, b,W ∗, t−n ) = sup
Pn∈An

{
EX̂−

n ,t−n
Pn

[
M∑
n=0

qn + κ

(
W ∗ +

1

α
min((WT −W ∗),0)

)

+ϵWT

∣∣∣∣X̂(t−n ) = (s,b,W ∗)

]}
.

subject to



(St, Bt) follow processes (3.1.3) and (3.1.4); t /∈ T
W+

n = S−
n +B−

n − qn ; X̂+
n = (S+

n , B
+
n ,W

∗)

S+
n = pn(·)W+

n ; B+
n = (1− pn(·))W+

n

(qn(·), pn(·)) ∈ Z(W−
n ,W+

n ,tn)

i = n, . . . ,M ; tn ∈ T

.(3.2.2)

3.2.2 Applying Dynamic Programming at Rebalancing Times

The principle of dynamic programming is applied at each tn ∈ T on (3.2.2). As usual, the
optimal control needs to be computed in reverse time order. We split the supPn

operator
into supq∈Zq

supp∈Zp(w−−q,t).
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V (s,b,W ∗, t−n ) = sup
q∈Zq

sup
p∈Zp(w−−q,t)

{
q +

[
V ((w− − q)p, (w− − q)(1− p),W ∗, t+n )

]}
= sup

q∈Zq

{
q +

[
sup

p∈Zp(w−−q,t)

V ((w− − q)p, (w− − q)(1− p),W ∗, t+n )

]}
w− = s+ b . (3.2.3)

Let V denote the upper semi-continuous envelope of V , which will have already been
computed as the algorithm progresses backward through time. The optimal allocation
control pn(w,W ∗) at time tn is determined from

pn(w,W
∗) =

{
argmax
p′∈[0,1]

V (wp′, w(1− p′),W ∗, t+n ), w > 0 ; tn ̸= tM

0, w ≤ 0 or tn = tM
. (3.2.4)

The control q is then determined from

qn(w,W
∗) = argmax

q′∈Zq

{
q′ +V ((w − q′)pn(w − q′,W ∗), (w − q′)(1− pn(w − q′,W ∗)),W ∗, t+n )

}
.

(3.2.5)

Using these controls for tn, the solution is then advanced backwards across time from t+n
to t−n by

V (s, b,W ∗,t−n ) = qn(w
−,W ∗) +V (w+pn(w

+,W ∗), w+( 1− pn(w
+,W ∗) ),W ∗, t+n )

w− = s+ b ; w+ = s+ b− qn(w
−,W ∗) .

(3.2.6)

At t = T , we have the terminal condition

V (s, b,W ∗,T+) = κ

(
W ∗ +

min((s+ b−W ∗), 0)

α

)
. (3.2.7)
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3.2.3 Conditional Expectations between Rebalancing Times

For t ∈ (tn−1,tn), there are no cash flows, discounting (all quantities are inflation-adjusted),
or controls applied. Hence the tower property gives, for 0 < h < (tn − tn−1),

V (s,b,W ∗, t) = E

[
V (S(t+ h), B(t+ h),W ∗, t+ h)

∣∣S(t) = s, B(t) = b

]
; t ∈ (tn−1, tn − h) .

(3.2.8)

To find this conditional expectation based on parametric models of the stock and bond
processes, Itô’s Lemma for jump processes (Tankov and Cont, 2009) is first applied in
Equation (3.2.8), using Equations (3.1.3) and (3.1.4). This gives

Vt +
(σs)2s2

2
Vss + (µs − λs

ξγ
s
ξ)sVs + λs

ξ

∫ +∞

−∞
V (eys, b, t)f s(y) dy +

(σb)2b2

2
Vbb

+ (µb + µb
c1{b<0} − λb

ξγ
b
ξ)bVb + λb

ξ

∫ +∞

−∞
V (s, eyb, t)f b(y) dy − (λs

ξ + λb
ξ)V + ρsbσ

sσbsbVsb = 0 ,

s ≥ 0 . (3.2.9)

where the density functions f s(y), f b(y) are as given in equation (3.1.1).

In computational practice, this resulting PIDE is solved using Fourier methods dis-
cussed in Forsyth and Labahn (2019).

3.2.4 Equivalence with PCEEt0 (κ)

Proceeding backward in time, the auxiliary function V (s,b,W ∗,t−0 ) is determined at time
zero. Problem PCEEt0 (κ) is then solved using a final optimization step

J(s,b,t−0 ) = sup
W ′

V (s,b,W ′,t−0 ) . (3.2.10)

Notice that V (s,b,W ′,t−0 ) denotes the auxiliary function for the beginning of the investment
period, and represents the last step (going backward) in solving the dynamic programming
formulation. To obtain this, we begin with Equation (3.2.7) and recursively work backwards
in time; then we obtain Equation (3.1.22) by interchanging supW ′ supP in the final step.

This formulation (3.2.2-3.2.8) is equivalent to problem PCEEt0(κ).
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3.3 Computational Details: Hamilton-Jacobi-Bellman
(HJB) PDE Framework

For a detailed description of the numerical algorithm used to solve the HJB equation
framework described in Section 3.2, we refer the reader to Forsyth (2022). We summarize
the method here.

First, we solve the auxiliary problem (3.2.2), with fixed values of W ∗, κ and α. The
state space in s > 0 and b > 0 is discretized using evenly spaced nodes in log space to create
a grid to represent cases. A separate grid is created in a similar fashion to represent cases
where wealth is negative. The Fourier methods discussed in Forsyth and Labahn (2019) are
used to solve the PIDE representing market dynamics between rebalancing times. Both
controls for withdrawal and allocation are discretized using equally spaced grids. The
optimization problem (3.2.4) is solved first for the allocation control by exhaustive search,
storing the optimal for each discretized wealth node. The withdrawal control in (3.2.5)
can then be solved in a similar fashion, using the previously stored allocation control to
evaluate the right-hand side of (3.2.5). Linear interpolation is used where necessary. The
stored controls are used to advance the solution in (3.2.7).

Since the numerical method just described assumes a constant W ∗, an outer opti-
mization step to find the optimal W ∗ (candidate Value-at-Risk) is necessary. Given an
approximate solution to (3.2.2) at t = 0, the full solution to PCEEt0(κ) (3.1.22) is deter-
mined using Equation (3.2.10). A coarse grid is used at first for an exhaustive search. This
is then used as the starting point for a one-dimensional optimization algorithm on finer
grids.

3.4 Neural Network Formulation

As an alternative to the HJB framework, we develop a neural network framework to solve
the stochastic optimal control problem (3.1.22), which has the following characteristics:

(i) The NN framework is data driven and does not require a parametric model of asset
returns. This avoids explicitly postulating parametric stochastic processes and the
estimation of associated parameters. In addition, this allows us to add auxiliary
market signals/variables (although we do not exploit this idea in this work).
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(ii) The NN framework avoids the computation of high-dimensional conditional expec-
tations by solving for the control at all times directly from a single standard un-
constrained optimization, instead of using dynamic programming (see Van Staden
et al. (2023) for a discussion of this). Since the control is low-dimensional, the frame-
work can exploit this to avoid the curse of dimensionality by solving for the control
directly, instead of via value iteration such as in the HJB dynamic programming
method (Van Staden et al., 2023). Such an approach also avoids backward error
propagation through rebalancing times.

(iii) If the optimal control is a continuous function of time and state, the control approx-
imated by the NN will reflect this property. If the optimal control is discontinuous,
the NN approximation produces a smooth approximation. While not required by
the original problem formulation in (3.1.22), this continuity property likely leads to
practical benefits for an investment policy.

(iv) The NN method is further scalable in the sense that it could be easily adapted to
problems with longer horizons or higher rebalancing frequency without significantly
increasing the computational complexity of the problem. This is in contrast to ex-
isting approaches using a stacked neural network approach (Tsang and Wong, 2020).

We now formally describe the proposed NN framework and demonstrate aforementioned
properties. We approximate the control in P directly by using feed-forward, fully-connected
neural networks. Given parameters θp and θq, i.e. NN weights and biases, p̂(W (tn), tn,θp)
and q̂(W (tn), tn,θq) approximate the controls pn and qn respectively,

q̂(W−
n , t−n ,θq) ≃ qn(W

−
n ) ; n = 0, . . . ,M

p̂(W+
n , t+n ,θp) ≃ pn(W

+
n ) ; n = 0, . . . ,M − 1

P̂ = {(q̂(·), p̂(·))} ≃ P

The functions p̂ and q̂ take time as one of the inputs, and therefore we can use just two NN
functions to approximate control P across time instead of defining a NN at each rebalancing
time. In this section, we discuss how we solve problem (3.1.22) using this approximation
and then provide a description of the NN architecture that is used. We discuss the precise
formulation used by the NN, including activation functions that encode the stochastic
constraints.
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3.4.1 Neural Network Optimization for PCEEt0 (κ)

We begin by describing the NN optimization problem based on the stochastic optimal
control problem (3.1.22). We first recall that, in the formulation in Section 3.2, controls
qn and pn are functions of wealth only. Our goal is to choose NN weights θp and θq

by solving (3.1.22), with q̂(W−
n ,t−n ,θq) and p̂(W+

n ,t+n ,θp) approximating feasible controls
(qn, pn) ∈ Z(W−

n ,W+
n ,tn) for tn ∈ T . For an arbitrary set of controls P̂ and wealth level

W ∗, we define the NN performance criteria VNN as

VNN(P̂ ,W ∗, s,b, t−0 ) = E
X−

0 ,t−0
P̂0

[
M∑
n=0

q̂n + κ

(
W ∗ +

1

α
min(WT −W ∗, 0)

)

+ϵWT

∣∣∣∣X(t−0 ) = (s,b)

]
.

subject to



(St, Bt) follow processes (3.1.3) and (3.1.4); t /∈ T
W+

n = S−
n +B−

n − qn ; X+
n = (S+

n , B
+
n )

S+
n = p̂n(·)W+

n ; B+
n = (1− p̂n(·))W+

n

(q̂n(·), p̂n(·)) ∈ Z(W−
n ,W+

n ,tn)

i = 0, . . . ,M ; tn ∈ T

.(3.4.1)

The optimal value function JNN (at t−0 ) is then given below,

JNN(s, b, t
−
0 ) = sup

W ∗
sup
P̂∈A

VNN(P̂ ,W ∗, s,b, t−0 ) . (3.4.2)

Next we describe the structure of the neural networks and feasibility encoding.

3.4.2 Neural Network Framework

Consider two fully-connected feed-forward NNs, with p̂ and q̂ determined by parameter
vectors θp ∈ Rνp and θq ∈ Rνq (representing NN weights and biases), respectively. The two
NNs can differ in the choice of activation functions and in the number of hidden layers and
nodes per layer. Each NN takes input of the same form (W (tn),tn), but the withdrawal
NN q̂ takes the state variable observed before withdrawal, (W (t−n ), tn), and the allocation
NN p̂ takes the state variable observed after withdrawal, (W (t+n ), tn).

29



In order for the NN to generate a feasible control as specified in (3.4.5), we use a modified
sigmoid activation function to scale the output from the withdrawal NN q̂ according to the
PCEEt0(κ) problem’s constraints on the withdrawal amount qn, as given in Equation
(3.1.10). This ultimately allows us to perform unconstrained optimization on the NN
training parameters.

Specifically, assuming x ∈ [0,1], the function f(x) := a+(b−a)x scales the output to be
in the range [a,b]. We restrict withdrawal to q̂ in [qmin, qmax]. We note that this withdrawal
range qmax − qmin depends on wealth W−, see from (3.1.10). Define the range of permitted
withdrawal as follows,

range =


qmax − qmin ; if W−

n > qmax

W− − qmin ; if qmin < W−
n < qmax

0 ; if W−
n < qmin

.

More concisely, we have the following mathematical expression:

range = max
(
(min(qmax,W

−)− qmin), 0
)
.

Let z ∈ R be the NN output before the final output layer of q̂. Note that z depends on
input features, state and time, before being transformed by the activation function. We
then have the following expression for the final withdrawal,

q̂(W−, t,θq) = qmin + range ·
(

1

1 + e−z

)
= qmin +max

(
(min(qmax,W

−)− qmin), 0
)( 1

1 + e−z

)
.

Note that the sigmoid function 1
1+e−z is a mapping from R → [0,1].

Similarly, we use a softmax activation function on the NN output of the p̂, in order to
impose no-shorting and no-leverage constraints:

Softmax
(
(z1, . . . ,zK)

)
=

 exp(z1)...
exp(zK)

 · 1∑K
j=1 exp(zj)

, (3.4.3)

where the elements of z are indexed by j ∈ {1, . . . ,K} and each represent one of the K
nodes in the output layer.

30



With these output activation functions, it can be easily verified that (q̂n(·), p̂n(·)) ∈
Z (W−

n ,W+
n , tn) always. Using defined NN, this transforms problem (3.4.2) of finding an

optimal P̂ to solving the optimization problem below:

ĴNN(s, b, t
−
0 ) = sup

W ∗∈R
sup

θq∈Rνq

sup
θp∈Rνp

V̂NN(θq,θp,W
∗, s,b, t−0 )

= sup
(W ∗,θq ,θp)∈Rνq+νp+1

V̂NN(θq,θp,W
∗, s,b, t−0 ) (3.4.4)

It is worth noting here that, while the original control P is constrained in (3.1.13), the
formulation (3.4.4) is an unconstrained optimization over θq, θp, and W ∗. Hence we can
solve it directly using a standard gradient descent technique. In the numerical experiments
detailed in Sections 4.2 and 4.3, we use Adam stochastic gradient descent (Kingma and
Ba, 2014) to determine the optimal points θ∗

q, θ∗
p, and W ∗.

The output of NN q̂ yields the amount to withdraw, while the output of NN p̂ produces
asset allocation weights.

Figure 3.4.1 presents the proposed NN. We emphasize the following key aspects of this
NN structure.

(i) Time is an input to both NNs in the framework. Therefore, the parameter vectors
θq and θp are constant and do not vary with time.

(ii) At each rebalancing time, the wealth observation before withdrawal is used to con-
struct the feature vector for q̂. The resulting withdrawal is then used to calculate
wealth after withdrawal, which is an input feature for p̂.

(iii) Standard sigmoid activation functions are used at each hidden layer output.

(iv) The activation function for the withdrawal output is different from activation func-
tion for allocation. Control q̂ uses a modified sigmoid function, which is chosen to
transform its output according to (3.1.10). Control p̂ uses a softmax activation which
ensures that its output gives only positive weights for each portfolio asset that sum
to one, as specified in (3.1.11). By constraining the NN output this way through
proposed activation functions, we can use unconstrained optimization to train the
NN.
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Figure 3.4.1: Illustration of the NN framework as per Section 3.4.2. Additional technical
details can be found in 3.5.

3.4.3 NN Estimate of the Optimal Control

Now we describe the training optimization problem for the proposed data driven NN frame-
work, which is agnostic to the underlying data generation process. We assume that a set
of asset return trajectories are available, which are used to approximate the expectation in
(3.4.1) for any given control. For NN training, we approximate the expectation in (3.4.1)
based on a finite number of samples as follows:

V̂NN(θq,θp,W
∗, s,b, t−0 ) =

1
N

N∑
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[
M∑
n=0
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n = 0, . . . ,M ; tn ∈ T

,

(3.4.5)

where the superscript j represents the jth path of joint asset returns and N is the total
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number of sampled paths. For subsequent benchmark comparison, we generate price paths
using processes (3.1.3) and (3.1.4). We are, however, agnostic as to the method used to
generate these paths. We assume that random sample paths are independent. However,
correlation between returns of different assets can be modelled. In addition, correlation
between returns of different time periods can also be represented, e.g., block bootstrap
resampling is designed to capture autocorrelation in the time series data.

The optimal parameters obtained by training the neural network are used to generate
the control functions q̂∗(·) := q̂(·;θ∗

q) and p̂∗(·) := p̂(·;θ∗
p), respectively. With these func-

tions, we can evaluate the performance of the generated control on testing data sets that
are out-of-sample or out-of-distribution. We present the detailed results of such tests in
Section 4.3.

3.5 Computational Details: NN Framework

3.5.1 NN Optimization

The NN framework, as described in Section 3.4 and illustrated in Figure 3.4.1, was im-
plemented using the PyTorch library (Paszke et al., 2019). The withdrawal network q̂,
and allocation network p̂ were both implemented with 2 hidden layers of 10 nodes each,
with biases. Stochastic Gradient Descent (Ruder, 2016) was used in conjunction with the
Adaptive Momentum optimization algorithm to train the NN framework (Kingma and Ba,
2014). The NN parameters and auxiliary training parameter W ∗ were trained with differ-
ent initial learning rates. The same decay parameters and learning rate schedule were used.
Weight decay (ℓ2 penalty) was also employed to make training more stable. The training
loop utilizes the auto-differentiation capabilities of the PyTorch library. Hyper-parameters
used for NN training in this work’s experiments are given in Table 3.5.1.

3.5.2 Transfer learning between different κ points

For high values of κ, the objective function is weighted more towards optimizing ES (lower
risk). In these cases, optimal controls are more difficult to compute. This is because that
the ES measure used (CVAR) is only affected by the sample paths below the 5th percentile
of terminal wealth, which are quite sparse. To overcome these training difficulties, we
employ transfer learning (Tan et al., 2018) to improve training for the more difficult points
on the efficient frontier. We begin training the model for the lowest κ from a random
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initialization (‘cold-start’), and then initialize the models for each increasing κ with the
model for the previous κ. Through numerical experiments, we found this method made
training far more stable and less likely to terminate in local minima for higher values of κ.

3.5.3 Running minimum tracking

The training loop tracks the minimum loss function value as training progresses and selects
the model that had given the optimal loss function value based on the entire training dataset
by the end of the specified number of training epochs.

NN framework hyper-parameter Value

Hidden layers per network 2
number of nodes per hidden layer 10
Nodes have biases True
number of iterations (#itn) 50,000
SGD mini-batch size 1,000
N , number of training paths 2.56× 106

Optimizer Adaptive Momentum
Initial Adam learning rate for (θq,θp) 0.5
Initial Adam learning rate for W ∗ 0.4
Adam learning rate decay schedule [0.70× #itn, 0.97× #itn], γ = 0.20
Adam β1 0.9
Adam β2 0.998
Adam weight decay (L2 Penalty) 0.0001
Transfer Learning between κ points True
Take running minimum as result True

Table 3.5.1: Hyper-parameters used in training the NN framework for numerical experi-
ments presented in this work.

3.5.4 Standardization

To improve learning for the neural network, we normalize the input wealth using means
and standard deviations of wealth samples from a reference strategy. We use the constant
withdrawal and allocation strategy defined in Forsyth (2022) as the reference strategy
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with N = 2.56 × 105 simulated paths. Let W b
t denote the wealth vector at time t based

on simulations. Then W̄ b
t and σ(W b

t ) denote the associated average wealth and standard
deviation. Then we normalize the feature input to the neural network in the following way:

W̃t =
Wt − W̄ b

t

σ(W b
t )

For the purpose of training the neural network, the values W̄ b
t and σ(W b

t ) are just constants,
and we can use any reasonable values. This input feature normalization is done for both
withdrawal and allocation NNs.

In Section 4.3, we show out-of-sample and out-of-distribution tests that W̄ b
t and σ(W b

t )
do not need to be related to the testing data as long as these are reasonable values. In
Section 3.4, when referring to W as part of the input to the NN functions q̂ and p̂, we use
the standardized W̃ for computation.
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Chapter 4

Computational Results: HJB and NN
Frameworks

4.1 Data

For the computational study in this chapter, we use data from the Center for Research in
Security Prices (CRSP) on a monthly basis over the 1926:1-2019:12 period.1 The specific
indices used are the CRSP 10-year U.S. Treasury index for the bond asset2 and the CRSP
value-weighted total return index for the stock asset3. All of these various indexes are in
nominal terms, so we adjust them for inflation by using the U.S. CPI index, also supplied by
CRSP. We use real indexes since investors funding retirement spending should be focused
on real (not nominal) wealth goals.

We use above market data in two different ways in subsequent investigations:

(i) Stochastic model calibration: Any data set referred to in this work as synthetic data
is generated by parametric stochastic models (SDEs) (as described in Section 3.1.2),
whose parameters are calibrated to the aforementioned CRSP data by using the

1More specifically, results presented here were calculated based on data from Historical Indexes, ©2020
Center for Research in Security Prices (CRSP), The University of Chicago Booth School of Business. Whar-
ton Research Data Services was used in preparing this article. This service and the data available thereon
constitute valuable intellectual property and trade secrets of WRDS and/or its third-party suppliers.

2The 10-year Treasury index was calculated using monthly returns from CRSP dating back to 1941.
The data for 1926-1941 were interpolated from annual returns in Homer and Sylla (2005).

3The stock index includes all distributions for all domestic stocks trading on major U.S. exchanges.
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threshold technique (Cont and Mancini, 2011; Dang and Forsyth, 2016; Mancini,
2009). The data is inflation-adjusted so that all parameters reflect real returns.
Table 4.1.1 shows the calibrated model parameters for processes (3.1.3) and (3.1.4),
from Forsyth (2022) using historical CRSP data. The correlation ρsb is computed by
removing any returns which occur at times corresponding to jumps in either series.
See Dang and Forsyth (2016) for details of the technique for detecting jumps.

Calibrated Model Parameters

CRSP µs σs λs us ηs1 ηs2 ρsb

0.0877 0.1459 0.3191 0.2333 4.3608 5.504 0.04554

10-year Treasury µb σb λb ub ηb1 ηb2 ρsb

0.0239 0.0538 0.3830 0.6111 16.19 17.27 0.04554

Table 4.1.1: Estimated annualized parameters for double exponential jump diffusion model.
Value-weighted CRSP index, 10-year US treasury index deflated by the CPI. Sample period
1926:1 to 2019:12.

(ii) Bootstrap resampling: Any data set referred to in this work as historical data is
generated by using the stationary block bootstrap method (Dichtl et al., 2016; Patton
et al., 2009; Politis and Romano, 1994; Politis and White, 2004) to resample the
historical CRSP data set. This method involves repeatedly drawing random sample
block of random block size, with replacement, from the original data set, where the
block size follows a geometric distribution with a given expected block size. To
preserve correlation between asset returns, we use a paired sampling approach to
simultaneously draw returns from both time series. This, in effect, shuffles the original
data and can be repeated to obtain however many resampled paths one desires.
Since the order of returns in the sequence is unchanged within the sampled block,
this method accounts for some possible serial correlation in market data. Detailed
pseudo-code for this method of block bootstrap resampling is given in Forsyth and
Vetzal (2019).

We note that block resampling is commonly used by practitioners and academics
(see for example Anarkulova et al. (2022); Cogneau and Zakamouline (2013); Dichtl
et al. (2016); Scott and Cavaglia (2017); Simonian and Martirosyan (2022)). It will
be used to carry out robustness check in Section 4.3. Note that for any reasonable
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number of samples, the probability of repeating a resampled path is negligible (Ni
et al., 2022b).

One important parameter for the block resampling method is the expected block
size. Forsyth (2022) determines that a reasonable expected block size for paired
resampling is about 0.25 years. The algorithm presented in Patton et al. (2009) is
used to determine the optimal expected block size for the bond and stock returns
separately; see Table 4.1.2.

Optimal expected block size for bootstrap resampling historical data

Data series Optimal expected
block size b̂ (months)

Real 10-year Treasury index 4.2
Real CRSP value-weighted index 3.1

Table 4.1.2: Optimal expected blocksize b̂ = 1/v when the blocksize follows a geometric
distribution Pr(b = k) = (1 − v)k−1v. The algorithm in Patton et al. (2009) is used to
determine b̂. Historical data range 1926:1-2019:12.

To train the neural networks, we require that the number of sampled paths, N , be
sufficiently large to fully represent the underlying market dynamics. Subsequently, we
first generate training data through Monte Carlo simulations of the parametric models
described in (3.1.3) and (3.1.4). We emphasize however that in the proposed data driven
NN framework, we only require return trajectories of the underlying assets. In later sec-
tions, we present results from NN trained on data from nonparametricaly generated, e.g.,
resampled historical data. We also demonstrate NN framework’s robustness on test data.

4.2 Computational Results

We now present and compare performance of the optimal control from the HJB PDE and
NN method respectively on synthetic data, with investment specifications given in Table
4.2.1. Each strategy’s performance is measured w.r.t. to the objective function in (3.1.22),
which is a weighted reward (EW) and risk (ES) measure. To trace out an efficient frontier
in the (EW,ES) plane, we vary κ (the curve represents the (EW,ES) performance on a set
of optimal Pareto points).
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We first present strategies computed from the HJB framework described in Section 3.
We verify that the numerical solutions are sufficiently accurate, so that this solution can be
regarded as ground truth. We then present strategies computed using the NN framework
of Section 3.4, and demonstrate their accuracy by comparing them to the ground truth
computed from the HJB equation. We carry out further analysis by selecting an interesting
point on the (EW,ES) efficient frontier, in particular κ = 1.0, to study in greater detail.
The point κ = 1.0 is at the knee of the efficient frontier, which makes it desirable in terms of
risk-reward tradeoff (picking the exact κ will be a matter of investor preference, however).
This notion of the knee point is loosely based on the concept of a compromise solution of
multi-objective optimization problems, which selects the point on the efficient frontier with
the minimum distance to an unattainable ideal point (Marler and Arora, 2004). For this
knee point of κ = 1.0, we analyze the controls and wealth outcomes under both frameworks.
We also discuss some key differences between the HJB and NN frameworks’ results and
their implications.

Investment horizon T (years) 30
Equity market index CRSP Cap-weighted index (real)
Bond index 10-year Treasury (US) (real)
Initial portfolio value W0 1000
Cash withdrawal times t = 0,1, . . . , 30
Withdrawal range [35, 60]
Equity fraction range [0,1]
Borrowing spread µb

c 0.0
Rebalancing interval (years) 1
Market parameters See Figure 4.1.1
ε (stabilization term) 10−6

Table 4.2.1: Problem setup and input data. Monetary units: thousands of dollars.

4.2.1 Strategies Computed from HJB Equation

We carry out a convergence test for the HJB framework by tracing the efficient frontier
(i.e. varying the scalarization parameter κ) for solutions of varying refinement levels (i.e.
number of grid points in the (s,b) directions). Figure 4.2.1 shows these efficient frontiers.
As the efficient frontiers from various grid sizes all practically overlap each other, this
demonstrates convergence of solutions computed from solving HJB equations.
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Table 4.2.2 shows a detailed convergence test for a single point on the (EW, ES) frontier,
using the PIDE method. The controls are computed using the HJB PDE, and stored. The
stored controls are then used in Monte Carlo simulations, which are used to verify the PDE
solution, and also generate various statistics of interest.

Algorithm in Section 3.2 Monte Carlo

Grid ES (5%) E[
∑

i qi]/(M + 1) Value Function W ∗ ES (5%) E[
∑

i qi]/(M + 1)

512× 512 -51.302 52.056 1.562430e+3 50.10 -45.936 52.07
1024× 1024 -46.239 52.049 1.567299e+3 52.47 -45.102 52.05
2048× 2048 -42.594 51.976 1.568671e+3 58.00 -42.623 51.97
4096× 4096 -40.879 51.932 1.569025e+3 61.08 -41.250 51.93

Table 4.2.2: HJB equation convergence test, real stock index: deflated real capitalization
weighted CRSP, real bond index: deflated ten year treasuries. Scenario in Table 4.2.1.
Parameters in Table 4.1.1. The Monte Carlo method used 2.56 × 106 simulations. κ =
1.0, α = .05. Grid refers to the grid used in the Algorithm in Section 3.2: nx × nb, where
nx is the number of nodes in the log s direction, and nb is the number of nodes in the log b
direction. Units: thousands of dollars (real). (M + 1) is the total number of withdrawals.
M is the number of rebalancing dates. qmin = 35.0. qmax = 60. Algorithm in Section 3.2.

The convergence is roughly first-order. This convergence test justifies the use of the
HJB framework results as a ground-truth.

Remark 4.2.1 (Effect of Stabilization Term ϵWT ). Recall the stabilization term, ϵWT ,
introduced in (3.1.22). We now provide motivation for its inclusion, and observe its effect
on the control P̂. When Wt ≫ W ∗ and t → T , the control will only weakly affect the
objective function. This is because, in this situation, Pr[WT < W ∗] ≃ 0 and thus the
allocation control will have little effect on the ES term in the objective (recall that W ∗

is held constant for the induced time consistent strategy, see section 3.1.7). In addition,
the withdrawal is capped at qmax for very high values of Wt, so the withdrawal control
does not depend on Wt in this case either. The stabilization term can be used to alleviate
ill-posedness of the problem in this region.

In Figure 4.2.2, we present the heat map of the allocation control computed from the
HJB framework. Subplot (a) presents allocation control heat map for a small positive
stabilization parameter ϵ = 10−6, while Subplot (b) presents allocation control heat map
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Figure 4.2.1: EW-ES frontier, computed from problem (3.1.22). Note: Scenario in Table
4.2.1. Comparison of HJB solution performance with varying grid sizes. HJB solution
performance computed on 2.56×106 observations of synthetic data. Parameters for synthetic
data based on cap-weighted real CRSP, real 10 year treasuries (see Table 4.1.1). qmin =
35, qmax = 60. ϵ = 10−6. Units: thousands of dollars.

with ϵ = −10−6. In the ill-posed region (the top right region of the heat maps), the presence
of ϵWT , with ϵ = 10−6, forces the control to invest 100% in stocks to generate high terminal
wealth. Conversely, changing the stabilization parameter to be negative (ϵ = −10−6) forces
the control to invest completely in bonds.

We observe that the control behaves differently only at high level of wealth as t → T in
both cases. The 5th and the 50th percentiles of control on the synthetic data set behave
similarly in both the positive and negative ϵ cases. The 95th percentile curve tends towards
higher wealth during later phases of the investment period when the ϵ is positive (Figure
4.2.2(a)), whereas the curve tends downward when ϵ is negative (Figure 4.2.2(b)). When
the magnitude of ϵ is sufficiently small, its inclusion of ϵWT in the objective function does
not change summary statistics (to four decimal places when |ϵ| = 10−6). While the choice
of negative or positive ϵ with small magnitude can to different allocation control scenarios
at hight wealth level near the end of time horizon, the choice makes little difference from
the perspective of the problem PCEEt0(κ). If the investor reaches very high wealth near
T , the choice between 100% stocks and 100% bonds does not matter as the investor always
ends with WT ≫ W ∗. Our experiments show that the control q is unaffected when the
magnitude of ϵ is small and continues to call for maximum withdrawals at high levels of
wealth as t → T , just as described in Remark 4.2.1.

Comparing the optimal withdrawal strategy determined by solving stochastic optimal
control problem (3.4.5) with a fixed withdrawal strategy (both strategies with dynamic
asset allocation), Forsyth (2022) finds that the stochastic optimal strategy (3.4.5) is much
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more efficient in withdrawing cash over the investment horizon. Accepting a very small
amount of additional risk, the retiree can dramatically increase total withdrawals. For a
more detailed discussion of the optimal control, we refer the reader to Forsyth (2022).

(a) Fraction in stocks, HJB Control,
ϵ = 10−6

(b) Fraction in stocks, HJB Control,
ϵ = −10−6

Figure 4.2.2: Effect of ϵ: fraction in stocks computed from the problem (3.1.22). Note:
investment setup is as in Table 4.2.1. HJB solution performance computed on 2.56 × 106

observations of synthetic data. Parameters for synthetic data based on cap-weighted real
CRSP, real 10 year treasuries (see Table 4.1.1). qmin = 35, qmax = 60, κ = 1.0. W ∗ = 58.0
for PIDE results. (a) ϵ = 10−6. (b) ϵ = −10−6. Units: thousands of dollars.

4.2.2 Accuracy of Strategy Computed from NN framework

We compute the NN control following the framework discussed in Section 3.4. We compare
the efficient frontiers obtained from the HJB equation solution, and the NN solution. From
Figure 4.2.3, the NN control efficient frontier is almost indistinguishable from the HJB
control efficient frontier. Detailed summary statistics for each computed point on the
frontier can be found in Table 4.2.4, and a comparison of objective function values, for
the NN and HJB control at each frontier point are discussed in subsection 4.2.5. For most
points on the frontier, the difference in objective function values, from NN and HJB, is less
than 0.1%. This demonstrates that the accuracy of the NN framework approximation of
the ground-truth solution is more than adequate, considering that the difference between
the NN solution and the PDE solution is about the same as the estimated PDE error (see
Table 4.2.2).
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Figure 4.2.3: Comparison of EW-ES frontier for the Neural Network (NN) and Hamilton-
Jacobi-Bellman (HJB) Partial Differential Equation (PDE) methods, computed from the
problem (3.1.22). Note: investment setup in Table 4.2.1. HJB solution performance com-
puted on 2.56× 106 observations of synthetic data. Parameters for synthetic data based on
cap-weighted real CRSP, real 10 year treasuries (see Table 4.1.1). Control computed from
the NN model, trained on 2.56× 106 observations of synthetic data. qmin = 35, qmax = 60.
ϵ = 10−6. Units: thousands of dollars. Labels on nodes indicate κ parameter.

4.2.3 Detailed efficient frontier comparisons

Table 4.2.3 shows the detailed efficient frontier, computed using the HJB equation method,
using the 2048× 2048 grid. Table 4.2.4 shows the efficient frontier computed from the NN
framework. This should be compared to Table 4.2.3. Table 4.2.5 compares the objective
function values, at various points on the efficient frontier, for the HJB and NN frameworks.

4.2.4 NN-approximated control

We now further analyze the control P̂ produced by the NN framework for κ = 1. Comparing
Figure 4.2.4(b) with Figure 4.2.4(d), we observe that the withdrawal control q̂ produced by
the NN is practically identical to that produced by the HJB framework. However, there are
differences in the allocation control heat maps. The NN heat map for allocation control p
(Figure 4.2.4(a)) appears most similar to that of the HJB allocation heat map for negative
ϵ (Figure 4.2.2(b)), but it is clear that the NN allocation heat map differs significantly from
the HJB heat map for positive ϵ (Figure 4.2.2(a)) at high level of wealth as t → T . The
NN allocation control behaves differently from the HJB controls in this region, choosing a
mix of stocks and bonds instead of choosing a 100% allocation in a single asset. Noting
this difference is only at higher level of wealth near T , we see that the 5th percentile and
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Detailed Efficient Frontier: HJB Framework

κ ES (5%) E[
∑

i qi]/(M + 1) Median[WT ]

0.05 -596.00 57.14 124.36
0.2 -334.29 56.17 92.99
0.5 -148.99 54.25 111.20
1.0 -42.62 51.97 227.84
1.5 -8.05 50.63 298.20
3.0 17.42 48.95 380.36
5.0 24.09 48.12 414.60
50.0 30.60 45.70 519.03
∞ 31.00 35.00 1003.47

Table 4.2.3: Synthetic market results for HJB framework optimal strategies. Gives the de-
tailed results used to construct HJB efficient frontier in Figure 4.2.3. Assumes the scenario
given in Table 4.2.1. Stock index: real capitalization weighted CRSP stocks; bond index:
ten year treasuries. Parameters from Table 4.1.1. Units: thousands of dollars. Statistics
based on 2.56× 106 Monte Carlo simulation runs. Control is computed using the Algorithm
in Section 3.2, (2048 × 2048 grid) stored, and then used in the Monte Carlo simulations.
qmin = 35.0, qmax = 60. (M + 1) is the number of withdrawals. M is the number of rebal-
ancing dates. ϵ = 10−6.

the median wealth curves are indistinguishable. The NN control’s 95th percentile curve,
however, is different and indeed the curve is in between the 95th percentile curves from
the negative and positive versions of the HJB-generated control.

Drawing from this, we attribute the NN framework’s inability to fully replicate the HJB
control to the ill-posedness of the optimal control problem in the (top-right) region of high
wealth level near T . The small value of ϵ means that the stabilization term contributes
a very small fraction of the objective function value and thus has a very small gradient,
relative to the first two terms in the objective function. Since we use stochastic gradient
descent for optimization, we see a very small impact of ϵ. Moreover, the data for high levels
of wealth as t → T is very sparse and so the effect of the small gradient is further reduced.
As a result, the NN appears to smoothly extrapolate in this region and therefore avoids
investment into a single asset. Recall that in Section 4.2.1, we stated that the choice in the
signs of ϵ, with small ϵ, in the stabilization term is somewhat arbitrary and does not affect
summary statistics. Therefore, we see that the controls produced by the two methods only
differ irrelevant aspects, at least based on the EW and ES reward-risk consideration.
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Detailed Efficient Frontier: NN Framework
κ ES (5%) E[

∑
i qi]/(M + 1) Median[WT ]

0.05 -599.81 57.15 106.23
0.2 -333.01 56.14 78.59
0.5 -160.14 54.40 105.05
1 -43.02 51.95 227.79

1.5 -8.57 50.62 302.17
3 16.01 48.99 374.43
5 23.20 48.13 425.13
50 29.88 45.72 493.41
∞ 29.90 35.00 947.60

Table 4.2.4: Synthetic market results for NN framework optimal strategies. Gives the
detailed results used to construct NN efficient frontier in Figure 4.2.3. Assumes the scenario
given in Table 4.2.1. Stock index: real capitalization weighted CRSP stocks; bond index:
ten year treasuries. Parameters from Table 4.1.1. Units: thousands of dollars. Training
performance statistics based on 2.56×105 Monte Carlo simulation runs. Control is computed
using the algorithm in Section 3.4. qmin = 35.0, qmax = 60. (M + 1) is the number of
withdrawals. M is the number of rebalancing dates. ϵ = 10−6.

It is interesting to observe that the proposed neural network framework is able to
produce the bang-bang withdrawal control computed in Forsyth (2022), especially since we
are using the continuous function q̂ as an approximation.4 A bang-bang control switches
abruptly as shown here: the optimal strategy is to withdraw the minimum if the wealth
is below a threshold, or else withdraw the maximum. As expected, the control threshold
decreases as we move forward in time. We can see that the NN and HJB withdrawal
controls behave very similarly at the 95th, 50th, and 5th percentiles of wealth (Figures
4.2.5(c) and 4.2.5(f)). Essentially, the optimal strategy withdraws at either qmax or qmin,
with a very small transition zone. This is in line with our expectations. By withdrawing
less and investing more initially, the individual decreases the chance of running out of
savings.

We also note that the NN allocation control presents a small spread between the 5th
and 95th percentile of the fraction in stocks (Figure 4.2.5(a)). In fact, the maximum stock
allocation for the 95th percentile never exceeds 40%, indicating that this is a stable low-risk
strategy, which as we shall see, outperforms the Bengen (1994) strategy.

4Note that Forsyth (2022) shows that that in the continuous withdrawal limit, the the withdrawal
control is bang-bang.
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Objective Function Value Comparison: HJB Framework vs. NN Framework

κ HJB equation NN % difference
0.05 1741.54 1741.71 0.01%
0.2 1674.41 1673.81 -0.04%
0.5 1607.26 1606.44 -0.05%
1 1568.45 1567.34 -0.07%

1.5 1557.46 1556.22 -0.08%
3 1569.71 1566.86 -0.18%
5 1612.16 1607.86 -0.27%
50 2946.70 2911.10 -1.21%

Table 4.2.5: Objective function value comparison for the HJB equation and NN framework
model results on range of κ values. Objective function values for both frameworks computed
according to PCEEt0(κ) (higher is better). Assuming the scenario given in Table 4.2.1.
Stock index: real capitalization weighted CRSP stocks; bond index: ten year treasuries.
Parameters from Table 4.1.1. HJB solution statistics based on 2.56 × 106 Monte Carlo
simulation runs. HJB control is computed using the Algorithm in Section 3.2, (2048× 2048
grid) stored, and then used in the Monte Carlo simulations. NN Training performance
statistics based on 2.56 × 105 Monte Carlo simulation runs. Control is computed using
the NN framework in Section 3.4. qmin = 35.0, qmax = 60. (M + 1) is the number of
withdrawals. M is the number of rebalancing dates. ϵ = 10−6.

4.3 NN Model Robustness

A common pitfall of neural networks is over-fitting to the training data. Neural networks
that are over-fitted do not have the ability to generalize to previously unseen data. Since
future asset return paths cannot be predicted, it is important to ascertain that the com-
puted strategy is not overfitted to the training data and can perform well on unseen return
paths. In this section, we demonstrate the robustness of the NN model’s generated controls.

We conduct three types of robustness tests: (i) out-of-sample testing, (ii) out-of-
distribution testing, and (iii) control sensitivity to training distribution.

4.3.1 Out-of-sample testing

Out-of-sample tests involve testing model performance on an unseen data set sampled from
the same distribution. In our case, this means training the NN on one set of SDE paths
sampled from the parametric model, and testing on another set of paths generated using
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NN Control Results

(a) Fraction in stocks, NN Control (b) Withdrawals, NN Control

HJB Control Results

(c) Fraction in stocks, HJB Control (d) Withdrawals, HJB Control

Figure 4.2.4: Heat map of controls: fraction in stocks and withdrawals, computed from the
problem (3.1.22). Note: problem setup described in Table 4.2.1. HJB solution performance
computed on 2.56× 106 observations of synthetic data. Parameters for synthetic data based
on cap-weighted real CRSP, real 10 year treasuries (see Table 4.1.1). NN model trained
on 2.56 × 106 observations of synthetic data. qmin = 35, qmax = 60, κ = 1.0. W ∗ =
59.1 for NN results. W ∗ = 58.0 for the HJB results. ϵ = 10−6. Normalized withdrawal
(q − qmin)/(qmax − qmin). Units: thousands of dollars.

a different random seed. We present the efficient frontier generated by computed controls
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on this new data set in Figure 4.3.1, which shows almost unchanged performance on the
out-of-sample test set.

4.3.2 Out-of-distribution testing

Out-of-distribution testing involves evaluating the performance of computed control on
an entirely new data set sampled from a different distribution. Specifically test data is
not generated from the parametric model used to produce training data, but is instead
bootstrap resampled from historical market returns via the method described in Section
4.1. We vary the expected block sizes to generate multiple testing data sets of 2.56× 105

paths.

In Figure 4.3.2, we see that for each block size tested, the efficient frontiers are fairly
close, indicating that the controls are relatively robust. Note that the efficient frontiers for
test performance in the historical market with expected block size of 1 and 3 months plot
slightly above the synthetic market frontier. We conjecture that this may be due to more
pessimistic tail events in the synthetic market.

The out-of-sample and out-of-distribution tests verify that the neural network is not
over-fitting to the training data, and is generating an effective strategy, at least based on
our block resampling data.

4.3.3 Control sensitivity to training distribution

To further test the NN framework’s adaptability to other training data sets, we train the
NN framework on historical data (with expected block sizes of both 3 months and 12
months) and then test the resulting control on synthetic data. In Figure 4.3.3, we compare
the training performance and the test performance. The EW-ES frontiers for the test
results on the synthetic data are very close to the results on the bootstrap market data
(training data set). This shows the NN framework’s adaptability to use alternative data
sets to learn, with the added advantage of not being reliant on a parametric model, which
is prone to miscalibration. Figure 4.3.3 also shows that, in all cases, in the synthetic
or historical market, the EW-ES control significantly outperforms the Bengen 4% Rule 5

(Bengen, 1994).
5The results for the Bengen strategy on the historical test data were computed with fixed 4% with-

drawals and constant allocation of 30% in stocks for expected block size of 3 months, and 35% in stocks
for expected block size of 12 months. These were found to be the best performing constant allocations
when paired with constant 4% withdrawals, in terms of ES efficiency.
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Figure 4.3.3: Training on historical data. EW-ES frontiers of controls generated by NN
model trained on 2.56 × 105 observations of historical data with expected block sizes of
a) 3 months and b) 12 months, each tested on 2.56 × 105 observations of synthetic data.
Parameters based on real CRSP index and real 10-year U.S. Treasuries (see Table 4.1.1).
Historical data in range 1926:1-2019:12. Units: thousands of dollars. qmin = 35; qmax = 60.
The Bengen (1994) results are based on bootstrap resampling of the historical data. Labels on
nodes indicate κ parameter values. Simulated testing data refers to Monte Carlo simulations
using the SDEs (3.1.3) and (3.1.4).
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Figure 4.2.5: Scenario in Table 4.2.1. NN and HJB controls computed from the problem
(3.1.22). Parameters based on the real CRSP index, and real 10-year treasuries (see Table
4.1.1). NN model trained on 2.56 × 105 observations of synthetic data. HJB framework
results from 2.56 × 106 observations of synthetic data. qmin = 35, qmax = 60, κ = 1.0.
W ∗ = 59.1 for NN results. W ∗ = 58.0 for HJB results. Units: thousands of dollars.
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Figure 4.3.1: Out-of-sample test. EW-ES frontiers, computed from the problem (3.1.22).
Note: Scenario in Table 4.2.1. Comparison of NN training performance results vs. out-of-
sample test. Both training and testing data are 2.56 × 105 observations of synthetic data,
generated with a different random seed. Parameters for synthetic data based on cap-weighted
real CRSP, real 10 year treasuries (see Table 4.1.1). qmin = 35, qmax = 60. ϵ = 10−6. Units:
thousands of dollars. Labels on nodes indicate κ parameter values.
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Figure 4.3.2: Out-of-distribution test. EW-ES frontiers of controls generated by NN model
trained on 2.56 × 105 observations of synthetic data, tested on 2.56 × 105 observations
of historical data with varying expected block sizes. Computed from the problem (3.1.22).
Note: Setup as in Table 4.2.1. Parameters based on real CRSP index and real 10-year U.S.
Treasuries (see Table 4.1.1). Historical data in range 1926:1-2019:12. Units: thousands of
dollars. qmin = 35; qmax = 60. Simulated training data refers to Monte Carlo simulations
using the SDEs (3.1.3) and (3.1.4).
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Chapter 5

Dynamic Factor Investing

The NN framework developed in Section 3.4 avoids dynamic programming and value iter-
ation, exploiting the low-dimensionality of the problem’s control by solving for it directly.
This allows us to extend the framework to a number of assets higher than 2 without signif-
icantly increasing the computational complexity. In this chapter, we detail this extended
framework and use it to incorporate factor-based assets in the decumulation problem. In
our computational experiments at the end of this chapter, we find promising evidence for
the usefulness of factor investing for significantly improving risk management and with-
drawal efficiency in the decumulation problem.

Factor investing has been one of the fastest growing areas in asset management for
over a decade, with U.S.-listed equity factor ETFs having gone from less than $50 billion
assets under management in 2009 to almost $500 billion in 2019 (Ang, 2019). In recent
years, factor investing has also emerged as a commonly adopted response to an increasingly
uncertain market environment. The 2022 Invesco Global Factor Investing Study surveyed
a group of asset managers with a collective $25.4 trillion assets under management. 67%
of survey respondents said that factor investing had helped them manage market volatility
in the past 12 months, and 41% said they had increased their factor asset allocations in
that time (compared with 1% who decreased it) (Haghbin and Masse, 2022).

In this investigation, we aim to utilize factors that are widely accepted to have ex-
planatory power over the cross-section of asset returns to determine if the inclusion of
factor-based assets in our NN framework can improve investment performance in our decu-
mulation problem. Another way to see this investigation’s contribution is that it employs
the NN framework to learn the historical distribution of factor assets and provide an opti-
mal factor-weighting strategy accordingly. It also exploits the problem’s long-term invest-
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ment horizon to overcome the cyclicality of factor performance and provides the investor
with more options in seeking a more favorable risk-reward trade-off in creating a portfolio
decumulation strategy. This approach to factor investing could be seen as an alternative to
strategies that employ factor timing. While there is some evidence for the predictability of
factor performance (Haddad et al., 2020), much of the literature agrees that factor timing
remains difficult and ill-advised in practice (Bender et al., 2018; Dichtl et al., 2019).

This investigation builds upon the work of Van Staden et al. (2022), which adapts
the NN methodology proposed in Li and Forsyth (2019) to the dynamic factor investing
problem, without decumulation. This chapter makes the following additional contributions:

(i) The novel NN approach for portfolio decumulation developed in Chapter 3 of this
thesis is extended to include factor assets, and for a longer investment horizon than
in Van Staden et al. (2022). A primary goal of this investigation is to determine
how to optimally include factor assets to provide retirees with increased withdrawal
efficiency and improved risk management.

(ii) This investigation also includes the implementation of additional constraints on the
factor asset allocations in order to (1) better match practice, since asset managers
would rarely advise a client to invest 100% of their portfolio into a factor asset; and (2)
induce the NN to choose a more diversified strategy. As Van Staden et al. (2022) and
this work find, allowing the NN to allocate 100% into a single asset leads it to choose
only a few assets even if many are available. This investigation aims to determine
if these additional constraints and the resulting increased asset diversification yield
more robust out-of-distribution test results.

5.1 Formulation

In this section, we describe the updated formulation for the dynamic factor investing
problem with decumulation (DFDC) to allow for the inclusion of additional candidate
assets. We also introduce new optional constraints for the asset allocation control. Much
of the original problem formulation described in Section 3.1 remains the same and we cover
the differences here. Instead of only a stock index and a bond index, we now generalize
to the case where the investor has access to a pre-determined set of Na ∈ N investable
assets which they may include in their portfolio. These assets can be distinguished into
two categories: (1) "basic" assets, which include the same 10-Year Treasury and broad U.S.
stock market index from the two-asset problem, as well as the U.S. 30-Day Treasury Bill
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as a "risk-free" asset; and (2) "factor" assets, which are portfolios constructed by sorting
all stocks by a chosen factor characteristic and selecting all stocks within a set percentile
(e.g., the stocks within the 30th smallest percentile of market capitalization for the "Size"
factor).

5.1.1 Notation

In general, let Ai(t) specify the amount invested in asset i ∈ 1, . . . , Na at time t ∈ [0,T ].
At the beginning of the investment period, W (t−0 ) = w0 and thereafter the total portfolio
wealth is given by

W (t) =
Na∑
i=1

Ai, t ∈ [0,T ] . (5.1.1)

We denote this multi-asset state space by X̃(t) = A(t), t ∈ [0,T ], where A(t) is the vector
of amounts invested in each asset Ai, i ∈ {0, . . . ,Na}. In general the state space X̃(t) can
include additional variables that describe market conditions. As before, in computational
practice, we only use total wealth, calculated from A(t), and time as state variables for the
control. In this case, we refer to the realized state as x = a.

The allocation control for an asset i ∈ 1, . . . , Na at time tn is modeled as the proportion
of total portfolio wealth to be invested in that asset and is denoted by pi(X̃

+
n , tn):

pi(X̃
+
n , tn) =

Ai(t
+
n )

W (t+n )
, i ∈ {1, . . . , Na}, tn ∈ T (5.1.2)

We can represent the allocation control for all assets at tn with the vector p(tn) = p(X̃+
n , tn):

p(X̃+
n , tn) = [p1(tn), . . . , pNa(tn)], tn ∈ T (5.1.3)

The withdrawal control at time tn, q(tn) = q(X̃(t−n ), tn), is modeled and constrained the
same way as in the previous formulation. We will also continue the convention of consid-
ering both the withdrawal and allocation control as functions of wealth before and after
withdrawal:
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q(tn) = q(X̃(t−n ), tn) = q(W (t−n ), tn)

p(tn) = p(X̃(t+n ), tn) = p(W (t+n ), tn) (5.1.4)

We continue to assume instantaneous rebalancing, meaning there are no changes in asset
prices in the interval (t−n , t+n ). For the decumulation problem with more than 3 assets, a
control at time tn is described by a pair (q(tn), p(tn)) ∈ Z̃(W−

n ,W+
n , tn) , where Z̃ represents

the set of admissible controls. The constraints of no shorting and no leverage are imposed on
the allocation control. In the case of insolvency, trading will cease and debt will accumulate
at the borrowing rate (approximated by the 10-Year U.S. Treasury rate). These constraints
are true for all portfolios and are the same as in the previous formulation. However, some
portfolio constructions in this factor investing investigation will impose new constraints on
the maximum allocation proportions for factor-based assets. The portfolios considered in
this section will either:

(i) have no additional limits on asset allocations besides no leverage and no shorting
(limit_type = none),

(ii) individually limit each factor-based asset to a maximum proportion of total wealth
(limit_type = indiv.); or,

(iii) limit the maximum proportion that can be allocated to the factor-based assets as a
group (limit_type = group).

Let Nf be the number of candidate assets that are factor-based assets, a subset of A.
It follows that Nf < Na. The factor-based assets will be indexed by i ∈ {1, . . . ,Nf}. Then
we define the subset of representing the non-factor assets (basic assets) to be indexed by
i ∈ {Nf + 1, . . . ,Na}.

All portfolios’ candidate basic assets will include 10-Year U.S. Treasury Notes (B10)
and for notational simplicity we will always have it represented by index i = Na. We can
therefore represent the allocation control in the case of insolvency as the vector (0, . . . ,0,1),
indicating that debt is to accumulate at the rate determined by the B10 asset. As in the
previous problem formulation, we assume that the investor can obtain a reverse mortgage
on real estate in order to cover their investment shortfall. We use B10 to approximate
the U.S. fixed mortgage rate since the mortgage rate has historically closely tracked the
10-Year Treasury yield, although the spread has been at least 2% in recent years (Edelberg
and Steinmetz-Silber, 2023).

55



At the end of the investment horizon, t = T , the portfolio is liquidated and all wealth
is allocated to the 30-Day Treasury Bill (T30) as a cash equivalent. The T30 asset will be
indexed as i = Na − 1. We can therefore represent the allocation control at t = T as the
vector (0, . . . ,1,0), indicating that 100% of wealth is to be allocated to the T30 asset.

The admissible control for the dynamic factor investing problem with decumulation can
be represented mathematically as the following:

Z̃p(W
+
n , tn) =



(y1, . . . ,yNa) ∈ RNa :
∑Na

i=1 yi = 1, yi ≥ 0 ∀i ∈ {1, . . . ,Na};
W+

n > 0; tn ∈ T ; tn ̸= tM

yi ≤ maxindiv ∀i ∈ {1, . . . ,Nf} if limit_type = indiv.∑Nf

i=1 yi ≤ maxgroup if limit_type = group

(0, . . . ,0,1) ∈ RNa ; W+
n ≤ 0; tn ∈ T ; tn ̸= tM

(0, . . . ,0,1,0) ∈ RNa ; tn = T

(5.1.5)

Where maxgroup < 1 and maxindiv = 1/Nf ·maxgroup. Therefore, the maximum proportion
allocated to all factor assets will be maxgroup.

The admissible withdrawal set, Zq(W
−
n , tn), is unchanged from the previous formulation

in (3.1.10).

Z̃(W−
n ,W+

n , tn) = Zq(W
−
n , tn)× Z̃p(W

+
n , tn) (5.1.6)

At each rebalancing time, we seek the feasible optimal control for all possible combinations
of Ai(t) : i ∈ {1, . . . ,Na}, that result in the same total wealth. As before, we will refer
to the allocation control as a function of wealth and time after withdrawal, (W+

n , tn). The
admissible control set for the dynamic factor investing problem Ã can be written as

Ã =

{
(q(tn), p(tn))0≤n≤M : (q(tn)), p(tn)) ∈ Z̃(W−

n ,W+
n ,tn)

}
. (5.1.7)

An admissible control for the dynamic factor investing problem P̃ ∈ Ã, can be written as

P̃ = {(q(tn), p(tn)) : n = 0, . . . ,M} . (5.1.8)

56



5.1.2 Asset and Wealth Dynamics

Given a control P , each rebalancing time consists of the following events:

• The investor observes the amounts in each portfolio asset. These amounts, Ai(t
−
n ),

are calculated from the amounts after rebalancing in the previous rebalancing step,
Ai(t

+
n−1), together with the observed return Ri(tn) from the interval [t+n−1, t

−
n ]:

Ai(t
−
n ) = Ai(t

+
n−1) · [1 +Ri(tn−1)], i = 1, . . . ,Na (5.1.9)

• The investor determines an amount, qn to withdraw according to the control q(·).
The control is a function of the current wealth, which is obtained according to (5.1.1).

W (t+n ) = W (t−n )− qn (5.1.10)

• The investor determines the new amounts invested in each asset i ∈ {1, . . . ,Na} based
on W (t+n ) and according to the control p.

Ai(t
+
n ) = W (t+n ) · pi(tn), i = 1, . . . , Na. (5.1.11)

A formulation including transaction costs is outside the scope of this work. Note that
in Dang and Forsyth (2014), it is shown that the transaction costs typical of liquid ETFs
have an insignificant effect on the results.

5.2 Neural Network Model for Factor Investing with
Decumulation

We now develop the neural network model to solve the formulation described in Section
5.1. This NN model builds upon the one proposed in Section 3.4 to simultaneously solve
for the allocation and withdrawal controls. In this section, we review the NN methodology
and detail how it is extended to include multiple assets and optional additional constraint
functions.
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As before in Section 3.4, we consider two fully-connected, feed-forward neural networks.
We approximate the control in P̃ directly by using feed-forward, fully-connected neural
networks. Given parameters θp and θq, i.e. NN weights and biases, p̂(W (tn), tn,θp) and
q̂(W (tn), tn,θq) approximate the controls pn and qn respectively,

q̂(W−
n , t−n ,θq) ≃ q(W−

n , tn) ; n = 0, . . . ,M

p̂(W+
n , t+n ,θp) ≃ p(W+

n , tn) ; n = 0, . . . ,M − 1

P̂ = {(q̂(·), p̂(·))} ≃ P̃

As before, time and wealth are the only inputs to the NNs. We will now proceed to detail
how the structure of the NN p̂ is adapted to the factor investing problem, including the
optional new constraint functions. The structure of the NN q̂ is unchanged.

5.2.1 Objective Function

In order to be able to effectively compare the results of the dynamic factor strategies
developed in this chapter to the results of the two-asset problem, we will continue to use
the mean-CVaR objective function. However, since the market model and constraints have
changed, we state the new formulation of the objective here.

Our goal is to choose NN weights θp and θq by solving (3.1.22), with q̂(W−
n ,t−n ,θq) and

p̂(W+
n ,t+n ,θp) approximating feasible controls (q(·, tn), p(·, tn)) ∈ Z̃(W−

n ,W+
n ,tn) for tn ∈ T .

For an arbitrary set of controls P̂ and wealth level W ∗, we define the NN performance
criteria for the DFDC problem ṼNN as

ṼNN(θq,θp,W
∗, a, t−0 ) =

1
N

N∑
j=1

[
M∑
n=0

q̂((Wn)
j, tn;θq) + κ

(
W ∗ +

1

α
min((WT )

j −W ∗, 0)

)
+ ϵ(WT )

j

∣∣∣∣ X−
0 = a

]

subject to



(A(tn))
j calculated using the jth sample of returns, according to (5.1.9); t /∈ T

(W+
n )j = (

∑Na

i=1Ai)
j − q̂

(
(W−

tn)
j,tn,θq

)
; (X+

n )
j = (A(t+n ))

j

(A(tn)
+)j = p̂ ((W+

n )j, tn,θp) (W+
n )j

(q̂(·), p̂(·)) ∈ Z̃ ((W−
n )j, (W+

n )j, tn)

n = 0, . . . ,M ; tn ∈ T

,

(5.2.1)
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5.2.2 Activation Functions for Asset Allocation Constraints

In this section, we describe the custom activation functions that encode the constraints Z̃
defined in (5.1.5).

The output layer of the multi-asset allocation NN is defined to have η nodes. η = Na

unless limit_group = True, in which case η = Na + 1. The value of the i-th output
node representing the NN approximation of the optimal control for asset i ∈ {1, . . . ,Na},
pi(·). When included in the NN structure, (Na + 1)-th node is used to determine the total
factor proportion in the case of limit_type = group. The output vector of the NN can be
expressed as

p̂(·) = σ[limit_type](z), (5.2.2)

where z ∈ RNa is the vector of values from each node of the output layer before the
application of the activation function, σ(·).

In the two-asset problem the activation function σ(·) was simply the softmax function.
In the following, we detail the new activation functions depending on the asset constraint
imposed for the three possible choices of asset constraints. Each activation function will
be a concatenation of the outputs of the logistic sigmoid and softmax functions applied to
different nodes of the output layer. We define these component functions here and then
enumerate the new allocation constraint functions considered in this investigation.

Sigmoid(zi) =
1

1 + exp(−zi)
, j ∈ {1, . . . ,Na + 1} (5.2.3)

Softmax
(
(z1, . . . ,zK)

)
=

 exp(z1)...
exp(zK)

 · 1∑K
j=1 exp(zj)

(5.2.4)

(i) limit_type = none, where all nodes are inputs to one instance of the softmax acti-
vation function (typical softmax);

σ[none](z) = Softmax
(
(z1, . . . ,zNa)

)
(5.2.5)
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The vector output of the softmax function is guaranteed to be non-negative and sum
to one, ensuring that the output of the NN satisfies the constraint (5.1.5).

(ii) limit_type = indiv., in which the activation is a concatenation of a softmax function
and logistic sigmoid functions. Nodes representing the control for basic assets i ∈
{Nf+1, . . . ,Na} are the inputs to one instance of the softmax function while a sigmoid
function is applied to each factor asset node i ∈ {1, . . . ,Nf}. The outputs of each of
these components are concatenated to form the output of the RNa-valued function.

σ[indiv.](z) =


Sigmoid(z1) ·maxindiv = a1

...
Sigmoid(zNf

) ·maxindiv = aNf

Softmax
(
(zNf+1, . . . ,zNa)

)
· (1−

∑Nf

i=1 ai)

 , (5.2.6)

where maxindiv indicates the predetermined maximum proportion to be allocated
to each factor asset i ∈ {1, . . . ,Nf}. Components ai, . . . , aNf

are calculated first so
that the softmax outputs can be scaled appropriately. The sum of all components of
(5.2.6) are be guaranteed to be 1:

Na∑
i=1

[
σ[indiv.](z)

]
i
=

Nf∑
i=1

[
Sigmoid(zi)

]
·maxindiv +

Na∑
i=Nf+1

[
Softmax

(
(zNf+1, . . . ,zNa)

)]
i
· (1−

Nf∑
i=1

[
Sigmoid(zi)

]
·maxindiv) =

Nf∑
i=1

[
Sigmoid(zi)

]
·maxindiv + 1−

Nf∑
i=1

[
Sigmoid(zi)

]
·maxindiv = 1

(5.2.7)

(iii) limit_type = group, in which the activation is a concatenation of 2 softmax func-
tions, one applied to nodes representing factor asset controls and one applied to
nodes representing basic asset controls. The total proportion allocated to the group
of factor assets is determined by node Na + 1, with sigmoid activation applied.
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σ[group](z) =

 Softmax
(
(z1, . . . ,zNf

)
)
· Sigmoid(zNa+1) ·maxgroup

Softmax
(
(zNf+1, . . . ,zNa)

)
·
(
1− Sigmoid(zNa+1) ·maxgroup

)

(5.2.8)

The components of this function’s output are guaranteed to sum to one:

Na∑
i=1

[
σ[group](z)

]
i
=

Nf∑
i=1

[
Softmax

(
(z1, . . . ,zNf

)
)]

i
· Sigmoid(zNa+1) ·maxgroup +

Na∑
i=Nf+1

[
Softmax

(
(zNf+1, . . . ,zNa)

)]
i
·
(
1− Sigmoid(zNa+1) ·maxgroup

)
=

Sigmoid(zNa+1) ·maxgroup +
(
1− Sigmoid(zNa+1) ·maxgroup

)
= 1

5.2.3 Neural Network Structure

One of the key features of the NN framework developed in Section 3.4 is its scalability as
problem complexity increases. In order to adapt to the multi-asset problem as described
above, we make only the following adjustments to the NN architecture:

(i) Increase the number of nodes in the output layer to Na, or Na + 1 in the case of
limit_type = group.

(ii) Change the activation function of the allocation network output layer to (5.2.6) if
limit_type = indiv., or to (5.2.8). if limit_type = group. If limit_type = none,
the activation is the original softmax function as in the previous formulation.

(iii) Increase the number of nodes in each hidden layer to Na + 8.

As will be shown in Section 5.5, these remarkably modest adjustments to the NN
structure will allow it to effectively compute decumulation and allocation strategies for a
greatly expanded problem space. The updated NN structure is illustrated in Figure 5.2.1.
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Figure 5.2.1: Illustration of the NN framework as per Section 5.2. Additional technical
details can be found in 3.4.2.

5.3 Investment Scenario and Factor Selection

The investment scenario for the following computational experiments will be similar to
that of Chapters 3 and 4, except that the investor will have access to several more assets
and will include additional asset constraints. These assets will always be modeled using
historical data, not synthetic data. All return data are inflation-adjusted. We describe
these assets here.

The basic assets consist of (i) the 30-day U.S. Treasury Bill ("T30"), which can be con-
sidered the "risk-free" asset 1, (ii) a 10-Year U.S. Treasury Bond, and (iii) a capitalization-
weighted stock index, which aligns closely to the definition of a "Market Portfolio" in factor
models.

The selection of which factor-based assets to use as candidate assets is a critical deci-
sion for the investor. However, as discussed in Chapter 2, there is little consensus in the
literature on which combination of factors has the most power to explain the cross-section
of expected returns across assets (Harvey et al., 2015). To avoid this controversial issue,
we will only consider those factors with the widest acceptance in both the academic lit-
erature and in practice by the asset management industry. These recognized factors that
we consider are (i) Size, (ii) Value, (iii) Momentum, and (iv) Low Volatility ("Vol"). The
recognition of these factors can be seen in their prevalence in the asset management indus-
try: the five largest ETF issuers in the U.S. (BlackRock, Vanguard, State Street, Invesco,

1since the T-bill returns are inflation-adjusted, this asset is not truly risk-free in real terms.
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and Charles Schwab) all offer ETF products based upon each of these factors. They are
popular in the literature as well. The Size and Value factors are perhaps the most famous
and classical factors, being the 2 factors complementing the Market factor in the seminal
3-Factor Model proposed by Fama and French (1993). The newer additions, Momentum
and Low Volatility, have also gained mainstream acceptance, such as in Asness et al. (2013)
and Dutt and Humphery-Jenner (2013). The specific definition of each of these factors is
given alongside accompanying data definitions in Table 5.4.1.

We have already cited the proliferation of factor-based ETFs as evidence for our selected
factors’ widespread recognition. The popularity and accessibility of these ETFs further
motivate our selection of these factors since we seek to develop dynamic factor investing
strategies that are investable. Academic research typically focuses on factors formulated as
a combination of a "long leg" and a "short leg", such as the Size factor which consists of a
long position in small stocks and a short position in large stocks. This serves the academic
purpose of better capturing the effect of stock size on the cross-section of returns while
maintaining zero exposure to the market factor but is not meant to be an investable asset
for most investors. Fortunately, there is considerable evidence that investing in just the
long leg of a factor is enough to provide an investor with meaningful exposure to that factor
(Blitz et al., 2020; Israel and Moskowitz, 2013). We therefore assume that the investor will
choose only recognized factor ETFs as candidate assets, and base our experiments on this
assumption.

Basket Label Basic Assets Factor Assets Na

B10 Mkt T30 Size Value Mom Vol
2 Basic ✓ ✓ 2
3 Basic ✓ ✓ ✓ 3
2 Factor ✓ ✓ ✓ ✓ ✓ 5
3 Factor ✓ ✓ ✓ ✓ ✓ ✓ 6
4 Factor ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7

Table 5.3.1: Asset baskets considered in the analysis. The "✓" indicates inclusion in the
asset basket. Each factor portfolio considered will include one of the factor asset baskets
listed here, as well as all 3 basic assets.

5.4 Data

For basic assets, we continue to use CRSP data as in Section 4. Note that we will use
different data ranges to match the availability of factor data.
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Investment horizon T (years) 30
Market Assets Described in Tables 4.1 and 5.3.1
Initial portfolio value W0 1000
Cash withdrawal times t = 0,1, . . . , 30
Withdrawal range [35, 60]
Asset allocation constraints Defined in (5.1.5)
maxgroup 50%
maxindiv. maxgroup/Nf

Borrowing spread µb
c 0.0

Rebalancing interval (years) 1

Table 5.3.2: Dynamic factor investing problem setup and input data. Monetary units:
thousands of dollars.

A factor-based asset is essentially a portfolio of stocks selected to gain exposure to a
desired characteristic. The Kenneth French Data Library 2 (KFDL) provides historical data
for an extensive range of portfolios constructed in this way. The data is openly accessible,
transparent in its construction, and more extensive than data for any proprietary ETF.
Therefore, we proceed with our experiments confident that the KFDL data provides a
good proxy for investable factor-based assets. All factor asset returns used in the following
experiments were adjusted for inflation using the CPI index from CRSP. Van Staden et al.
(2022) finds that returns of popular factor ETF products have a high correlation with our
chosen proxy data, generally exceeding 0.90. The data sets for each factor are defined in
Table 5.4.1.

In order to generate training and testing data sets, we will use the same bootstrap
resampling methodology described in 4.1 applied to this new data set. For the following
experiments, we will generate 2 different pairs of training and testing data sets based on
the CRSP and KFDL data. These data sets are defined in Table 5.4.2. In DS1, we use the
same date range of data and construct an out-of-sample test data set by resampling with
a different expected block size. See Ni et al. (2022a) for a proof of how the bootstrapping
methodology effectively guarantees that the probability of an identical path in the training
and testing data sets is vanishingly small. In DS2, we split the available data by date
to create an out-of-distribution test set. Note that the Low Volatility factor, "Vol", only
has data availability beginning July 1963, while the others have availability beginning in

2Kenneth R. French’s Data Library can be accessed at: http://mba.tuck.dartmouth.edu/pages/
faculty/ken.frenchinput/data_library.html.
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Asset Source and Description
Basic: T30 CRSP: U.S. 30-Day Treasury Bill, monthly real returns. Available 1927:01-2022:12.
Basic: B10 CRSP: U.S. 10-Year Treasury Note, monthly real returns. Available 1927:01-2022:12.
Basic: Mkt CRSP: Capitalization-weighted domestic stock index, monthly real returns. Available

1927:01-2022:12.
Factor: Size KFDL: “Portfolios formed on Size”: Monthly real returns of capitalization weighted

index containing U.S. stocks with market equity in lowest 30th percentile. Available
1927:07-2022:12.

Factor: Value KFDL: “Portfolios formed on Book-to-Market”: Monthly real returns of capitalization-
weighted index containing U.S. stocks with book-to-market equity in highest 30th
percentile. Available 1927:07-2022:12.

Factor: Mom KFDL: “Portfolios formed on Prior Returns”: Monthly real returns of equal-weighted
average of two capitalization-weighted indices of U.S. stocks returns which consist of
firms below or above the median market capitalization. Each subindex includes only
those firms that have returns from the prior 2-12 month period in the highest 30th
percentile. Available 1927:07-2022:12.

Factor: Vol KFDL: “Portfolios formed on Variance”: Monthly real returns of capitalization-
weighted index containing U.S. stocks with daily return variance during preceding
60 days below 20th percentile. Available 1963:07-2022:12.

Table 5.4.1: Sources and definitions of data used for candidate assets used in this analysis.
All time series are inflation-adjusted by using U.S. CPI data from CRSP.

July 1927. In order to construct a large enough training data set for DS2, we omit the "4
Factor" asset basket from experiments with the DS2 data set.

Training Testing

DS1 Date range: 1963:07-2022:12,
Exp. block size = 6 Months

Date range: 1963:07-2022:12,
Exp. block size = 18 Months

DS2 Date range: 1927:07-1991:12,
Exp. block size = 6 Months

Date range: 1992:01-2022:12,
Exp. block size = 6 Months

Table 5.4.2: Data set combinations used for training and testing in computational exper-
iments. Size of all data sets is Nd = 2.56 ∗ 106.

Figures 5.4.1, 5.4.3, and 5.4.2 provide summary statistics for the chosen candidate
assets’ returns and their historical performance.
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Figure 5.4.1: Expected value and stan-
dard deviation of monthly returns of each
candidate asset, 1963:07-2022:12. Data
is described in Table 5.4.1.

Corr. T30 B10 Mkt Size Value Vol Mom
T30 1.00
B10 0.35 1.00
Mkt 0.06 0.09 1.00
Size 0.01 0.01 0.87 1.00
Value 0.01 0.03 0.91 0.91 1.00
Vol 0.08 0.20 0.53 0.36 0.42 1.00
Mom 0.05 0.07 0.94 0.90 0.87 0.48 1.00

Table 5.4.3: Correlation matrix of monthly real
returns, 1963:07-2022:12. Data is described in Ta-
ble 5.4.1.
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Figure 5.4.2: Cumulative real return indexes of all candidate assets, 1963:07-2022:12.
Data is described in Table 5.4.1.
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5.5 Computational Results

In this section, we discuss the computational results of applying the extended NN method-
ology presented in Section 5.2 on the dynamic factor investing problem as formulated in
Section 5.1. The investment scenario is described in Table 5.3.2. The NN framework
extended for this factor investing problem yielded the following results and appeared to
converge when using the same hyperparameters as described in Table 3.5.1, a notable re-
sult since the NN structure and problem space have both become larger. Note that we
only compare the investment performance of each NN strategy type with one risk-reward
weighting of κ = 1.0. We will trace the efficient frontier for the "2 Factor" (Size and Value)
asset basket with limit_type = indiv. for comparison with the basic asset NN strategy.
Also, note that the results for the "2 Basic" NN strategy may appear to be slightly different
from the results in Chapter 4; this is due to the different date ranges of data used in the
following experiments.

5.5.1 Constant Benchmarks

Each asset basket in Table 5.3.1 is also used to create a constant proportion strategy to
serve as a benchmark for comparison with each of the NN strategies applied to these asset
baskets.

At each rebalancing time tn, the constant strategy is executed as follows:

(i) Withdraw 40 wealth.

(ii) Allocate 50% of wealth to asset B10. Allocate 1
2(Nf+1)

of wealth to each factor asset
and "Mkt" asset. The portfolio is essentially 50% B10 and 50% an equal distribution
across equity-based assets.

5.5.2 Results: DS1

We first discuss the results for data set DS1, where both training and testing data sets are
based on the data from July 1963 to December 2022, with different expected block sizes.

Table 5.5.1 shows the training and testing performance of each NN strategy and the
associated benchmarks. We observe that every NN strategy with a "Factor" asset basket
has better training performance compared to either "Basic" asset strategy. Indeed, upon

67



inspecting the resulting controls from each optimal NN strategy we find that all optimal
NN strategies for "Factor" asset baskets do include significant allocations in factor assets
in large regions of the time-wealth space. Beyond this commonality, there is significant
variation among the NN strategies in the details of the asset allocation.

For all NN strategies with limit_type = none or limit_type = group, the basic assets
"T30" and "B10" were invested in some regions of the time-wealth space, while the "Mkt"
asset never was. The Value factor always received investment in some regions, and the
Momentum factor received the most investment when available. In the "4 Factor" asset
basket, the Low Volatility factor notably did not receive any investment, while Value and
Momentum continued to have non-zero weights. When given the freedom to do so, the
NN strategy will determine that a fairly un-diversified strategy is optimal by forgoing any
investment in the "Mkt" asset or the Size and Low Volatility factors. This is consistent
with the findings of Van Staden et al. (2022).

Referencing Figure 5.4.1, we can see that the Value and Momentum factors had the
highest expected monthly return of candidate assets over the DS1 time period. The out-
performance of these two factors is also consistent with the findings of Asness et al. (2013),
which was able to establish the consistent presence of return premia for the two factors in
several different markets. Asness et al. (2013) also finds that the two factors (academic
long-short versions) are negatively correlated, perhaps contributing to the optimality of a
strategy that combines allocations in the two factors. Figure 5.4.2 shows the index of cu-
mulative returns over the same period, again clearly showing the outperformance of Value
and Momentum over the entire period, albeit with more volatility than other assets.

We now focus on analyzing the control for a single NN dynamic factor investing strat-
egy. We have selected the "2 Factor" asset basket (Size, Value, and basic assets) with
limit_type = indiv as an illustrative example of the optimal NN strategies for dynamic
factor investing. Figure 5.5.1 compares the efficient frontiers of EW-ES performance for
our selected factor strategy and the original basic 2 asset strategy. The efficient frontiers
for the factor strategy are significantly to the right of the basic asset strategy’s efficient
frontiers, for both training and testing performance. This suggests that the NN framework
is able to utilize the factor assets to create an investment strategy with a more favorable
risk-reward trade-off compared with the basic assets alone. This result also holds in an
out-of-sample test. Also interesting to note is that the constant proportion benchmark
has very similar performance as the basic asset constant benchmark, indicating that the
dynamic strategy created by the NN is significant in making effective use of the factor
assets.

We proceed by interpreting the strategy given by the NN for the "2 Factor" asset
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Figure 5.5.1: EW-ES frontiers of controls generated by NN model for the basic asset
basket and the 2-factor asset basket (Size, Value, and basic assets) with limit_type = indiv.
Computational results for DS1, defined in Table 5.4.2. NN methodology defined in Section
5.2. Investment scenario presented in Table 5.3.2. Points showing the performance of
associated constant strategy benchmarks are also included. The constant strategy with "Basic
2 Asset" portfolio is essentially the Bengen 4% strategy with fixed 4% withdrawals and
constant allocation of 30% in stocks, which was found to be the best-performing constant
allocation. The constant benchmark strategy for the 2-factor basket is described in subsection
5.5.1.
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Results: DS1
NN Strategy Training Testing

Asset Basket limit_type ES (5%) Avg. qi Obj. Fun. ES (5%) Avg. qi Obj. Fun.
2 Basic none -148.3 52.2 1469.3 -142.3 52.1 1472.4
3 Basic none -106.4 50.9 1471.0 -100.4 50.8 1473.1
2 Factor none 307.5 51.9 1917.2 436.5 52.1 2051.7

group 126.2 53.0 1770.2 199.1 53.2 1849.4
indiv. 109.8 51.7 1713.4 163.5 51.9 1772.5

3 Factor none 608.8 53.0 2250.8 723.3 53.6 2384.4
group 368.8 52.4 1993.7 429.0 52.6 2059.7
indiv. 249.4 51.5 1845.8 294.6 51.8 1899.1

4 Factor none 609.4 52.9 2250.2 746.6 52.7 2393.0
group 364.7 52.4 1989.4 437.2 52.4 2062.7
indiv. 154.7 51.9 1763.6 185.2 51.6 1783.7

Constant Benchmark Training Testing
Asset Basket ES (5%) Avg. qi Obj. Fun. ES (5%) Avg. qi Obj. Fun.

2 Basic -375.9 40 864.1 -400.6 40 839.4
3 Basic -395.3 40 844.7 -424.4 40 815.6
2 Factor -354.9 40 885.1 -299.5 40 940.5
3 Factor -301.6 40 938.4 -280.3 40 959.7
4 Factor -300.4 40 939.6 -277.4 40 962.6

Table 5.5.1: Computational results for DS1, defined in Table 5.4.2. NN methodology
defined in Section 5.2. Investment scenario in Table 5.3.2. Constant benchmark strategies
described in 5.5.1. κ = 1.0.

basket with limit_type = indiv. We will also describe the key differences between this
control with the NN strategies with different asset baskets and asset constraints. Heat
maps representing the control for our example strategy are presented in Figure 5.5.2 and
percentile plots in Figure 5.5.3.

The limit_type = indiv allocation constraint had the expected result of inducing the
NN strategy to invest in every available asset in some region of the time-wealth space.
For an illustrative example of these multi-asset controls generated by the NN model, we
represent them as heat maps in Figure 5.5.2. As limit_type = indiv is the most restrictive
type of asset constraint tested in these experiments, it follows that the strategies with this
limit had lower training performance compared to those with the more lenient constraints.

The withdrawal control, shown in heat map 5.5.2(f) and percentile plot 5.5.3(c), is
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NN Optimal Control: "2 Factor," limit_type = indiv.

(a) T30 (b) B10 (c) Mkt

(d) Size (e) Value (f) Withdrawals

Figure 5.5.2: Optimal control computed for "2 Factor" asset basket with factor assets
individually constrained. κ = 1.0.

largely similar to that of the previous results in the 2 basic asset case(i.e., Figure 4.2.4(b)),
and the same is true for the other NN strategies with the "2 Factor" asset basket and
limit_type = indiv. The NN strategies with more lenient factor asset constraints showed
controls with a much larger region in which the minimum withdrawal is made. This is
likely due to the higher average wealth levels paired with riskier asset allocations in these
strategies. The general "bang-bang" nature of the withdrawal control with a downward-
sloping border is common to all tested NN strategies.

The wealth percentile paths, plotted for the "2 Factor" asset basket with limit_type =
indiv in 5.5.3(b), show somewhat different behavior than in the 2 basic asset case (Figure
4.2.5(b)). All paths show higher levels of wealth at the 5th, 50th, and 95th percentiles.
We attribute this to the higher expected returns that can be enjoyed by the investor when
investing in factor assets. Each path also turns downward more sharply than in the 2
basic asset case. We attribute this to the inclusion of the T30 asset, which is essentially
a cash equivalent. When the investor reaches near the end of the investment period with
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sufficient levels of wealth, the NN strategy moves allocation towards the safest asset, T30,
while continuing to withdraw wealth. At high enough levels of wealth, the risk of the
investor reaching a shortfall at t = T becomes negligible even when withdrawing the
maximum amount. This phenomenon can be observed in all NN strategies that include
the T30 asset.

The asset allocations are represented in heat maps 5.5.2 (a)-(e), as well as the median
allocation plot in 5.5.3(a). As expected, the factor assets reach the maximum allocation
allowed by the constraint function in large regions of the time-wealth space. The "Mkt"
asset is relegated to an asset of last resort when the NN attempts to recover the portfolio
at low levels of wealth. Similar to the control for the basic 2 asset strategy described
in Chapter 4, the total allocation in equity-based assets never exceeds 0.40. However,
in contrast to the percentile plots for the basic asset strategy in Figure 4.2.5(a), Figure
5.5.3(a) shows that the median factor-based strategy moves wealth into the risk-free assets
much earlier in the investment period. In summary, it can be said that the dynamic factor
strategies tend to invest significantly in the relatively risky factor assets for early phases
of the investment period to allow the portfolio to appreciate, and then lock in gains by
moving to the least risky assets.
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Figure 5.5.3: Percentile plots for the NN Strategy with "2 Factor" asset basket (Size,
Value, and basic assets) and limit_type = indiv. κ = 1.0.

Returning to the results displayed in Table 5.5.1, we see that the performance of the
NN strategies in DS1 appears to be very robust on the out-of-sample testing data set.
All factor NN strategies have significantly better expected shortfall results than the basic
asset strategies while maintaining average withdrawals that are on par. Both performance
measures are significantly higher for all NN strategies than for the constant benchmarks.
With a test data set that is from the same distribution, this is perhaps expected.

72



In summary, the results presented here show that the additional inclusion of factor assets
and T30 indeed provides the investor the opportunity to improve portfolio performance by
providing exposure to assets with higher expected returns, as well as new ways to manage
risk, such as allocating in T30 near the end of the investment horizon. At the κ = 1
risk-reward weighting, the factor-based NN strategies appear to provide similar average
withdrawals and significantly improved expected shortfall compared to the basic 2 asset
strategy presented in the previous chapter. This provides an attractive risk and reward
trade-off. In the next section, we investigate if this result holds for an out-of-distribution
test.

5.5.3 Results: DS2

In this section, we will focus on reviewing the results of the out-of-distribution test in DS2.
The DS2 data set uses the the date range of 1963:07-1991:12 to generate training data
and the date range of 1992:01-2022:12 for testing data. Recall that the "4 Factor" asset
basket is omitted from these experiments due to the lack of data availability for the the
Low Volatility factor.

As in the DS1 experiments, all factor-based NN strategies outperformed the basic asset
NN strategies in both training and testing performance. The NN controls trained on
DS2 are qualitatively very similar to those trained on DS1. The "3 Factor" (Momentum,
Size, Value, and basic assets) NN strategies show the highest overall performance. Upon
inspecting the controls, we can see that the "3 Factor" strategies all allocate heavily into
the Momentum factor. The Momentum factor has a higher expected return than any
other asset with standard deviation only slightly higher than that of the "Mkt" asset. The
cumulative returns of the Momentum factor can be seen to outpace the other assets in
Figure 5.4.2, and the strategy to heavily invest in Momentum is intuitive.

Regarding the relative performance of NN strategies with different factor asset con-
straints, neither type of asset constraint seemed to improve test performance for factor
strategies. Further experimentation would be needed in order to make any conclusions
on the efficacy of the addition factor asset constraints in improving the NN strategies’
robustness.

Once again, we select the "2 Factor," limit_type = indiv. strategy as an example to
focus on in analyzing the factor strategies’ performance relative to the basic asset strategies
in Figure 5.5.4. We observe that the factor strategy produces a EW-ES frontier to the right
of that produced by the basic asset strategy, even when tested on an out-of-distribution
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test data set drawn from a different data range. The constant factor strategy actually
underperformed the basic asset constant benchmarks in this case.

Results: DS2
NN Strategy Training Testing

Asset Basket limit_type ES (5%) Avg. qi Obj. Fun. ES (5%) Avg. qi Obj. Fun.
2 Basic none -203.3 51.7 1400.6 -117.2 54.1 1560.1
3 Basic -166.2 51.3 1424.3 -88.2 53.1 1546.4
2 Factor none -14.8 52.3 1607.3 129.6 52.6 1761.7

group -65.0 52.8 1572.1 41.6 53.2 1692.2
indiv. -60.5 52.2 1558.3 52.3 53.0 1695.1

3 Factor none 482.3 52.5 2111.0 683.3 51.1 2266.7
group 235.6 52.7 1869.0 400.4 51.1 1985.5
indiv. 108.7 51.9 1717.2 235.5 51.0 1817.0

Constant Benchmark Training Testing
Asset Basket ES (5%) Avg. qi Obj. Fun. ES (5%) Avg. qi Obj. Fun.

2 Basic -406.40 40 833.6 -242.5 40 997.5
3 Basic -424.81 40 815.2 -304.2 40 935.8
2 Factor -441.59 40 798.4 -195.5 40 1044.5
3 Factor -405.45 40 834.6 -160.5 40 1079.5

Table 5.5.2: Computational results for DS2, defined in Table 5.4.2. NN methodology
defined in Section 5.2. Investment scenario presented in Table 5.3.2. Constant benchmark
strategies described in 5.5.1. κ = 1.0.

In summary, the experimental results from DS2 show that the NN factor strategies
continue to provide improved investment performance when compared to the basic asset
NN strategies.
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Figure 5.5.4: EW-ES frontiers of controls generated by NN model for the basic asset basket
and the 2-factor asset basket with limit_type = indiv.. Computational results for DS2, de-
fined in Table 5.4.2. NN methodology defined in Section 5.2. Investment scenario presented
in Table 5.3.2. Points showing the performance of associated constant strategy benchmarks
are also included. The constant strategy with "Basic 2 Asset" portfolio is essentially the
Bengen 4% strategy with fixed 4% withdrawals and constant allocation of 30% in stocks,
which was found to be the best performing constant allocation. The constant benchmark
strategy for the 2-factor basket is described in subsection 5.5.1. Note that pareto optimality
is not guaranteed for points calculated using the test data set, which is why there may be
subtle irregularities in the EW-ES frontiers plotted in Subfigure (b).
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Chapter 6

Conclusion

6.1 Conclusion

In this thesis, we proposed a novel neural network (NN) architecture to efficiently and
accurately compute the optimal decumulation strategy for retirees with DC pension plans.
After developing the NN framework, we demonstrated its accuracy by comparing it to the
solution to the same problem, as computed by a provably convergent HJB PDE method.
We then extended the NN framework to find the optimal dynamic factor investing strategy
for the decumulation problem, whereby we find promising evidence of the usefulness of
factor investing for DC plan investors managing the decumulation problem.

The increasing prevalence of DC pension plans over traditional DB pension plans make
the decumulation problem ever more critical for DC plan investors. There is extensive
literature on devising strategies for this problem. In particular, we discuss a Hamilton-
Jacobi-Bellman (HJB) Partial Differential Equation (PDE) based approach that can be
shown to converge to an optimal solution for a dynamic withdrawal/allocation strategy.
This provides an attractive balance of risk management and withdrawal efficiency for re-
tirees. In this paper, we seek to build upon this approach by developing a new, more
versatile framework using NNs to solve the decumulation problem.

We conduct computational experiments to demonstrate the accuracy and robustness of
the proposed NN solution, utilizing the unique opportunity to compare NN solutions with
the HJB results as a ground truth. Of particular noteworthiness is that the continuous
function approximation from the NN framework is able to approximate a bang-bang control
with high accuracy. We extend our experiments to establish the robustness of our approach,
testing the NN control’s performance on both synthetic and historical data sets.
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We demonstrate that the proposed NN framework produced solution accurately approx-
imates the ground truth solution. We also note the following advantages of the proposed
NN framework:

(i) The NN method is data driven, and does not require postulating and calibrating a
parametric model for market processes.

(ii) The NN method directly estimates the low dimensional control by solving a single
unconstrained optimization problem, avoiding the problems associated with dynamic
programming methods, which require estimating high dimensional conditional expec-
tations (see Van Staden et al. (2023)).

(iii) The NN formulation maintains its simple structure (discussed in Section 3.4.2), im-
mediately extendable to problems with more frequent rebalancing and/or withdrawal
events. In fact, the problem presented in (3.1.22) requires each control NN to have
only two hidden layers for 30 rebalancing and withdrawal periods.

(iv) The approximated control maintains continuity in time and/or space, provided it
exists, or otherwise provides a smooth approximation. Continuity of the allocation
control p is an important practical consideration for any investment policy.

Due to the ill-posedness of the stochastic optimal control problem in the region of
high wealth near the end of the decumulation horizon, we observe that the NN allocation
can appear to be very different from the HJB PDE solution. We note, however, that both
strategies yield indistinguishable performance when assessed with the expected withdrawal
and ES reward-risk criteria. In other words, these differences hardly affect the objective
function value, a weighted reward and risk value. In the region of high wealth near the
end of time horizon, the retiree is free to choose whether to invest 100% in stocks or 100%
in bonds, since this has negligible effect on the objective function value (or reward-risk
consideration).1

In Chapter 5 of this thesis, we extended the proposed NN framework to include an
arbitrary number of additional candidate assets. This expanded problem space is not com-
putationally feasible with a HJB PDE method. We also defined new activation functions to
encode additional constraints on the allocations of these assets. The extended framework

1This can be termed the Warren Buffet effect. Buffet is the fifth richest human being in the world. He
is 92 years old. Buffet can choose any allocation strategy, and will never run out of cash.

77



was applied to the dynamic factor investing problem with decumulation in order to con-
cretely demonstrate the versatility of the NN approach, as well as investigate the usefulness
of factor investing for investors facing the decumulation problem.

We performed experiments on two different pairs of training/testing data sets. The
results of these experiments yielded promising results for all factor portfolios tested on
an out-of-sample data set. Factor portfolios also performed well on an out-of-distribution
test, yielding more efficient withdrawals and better risk management than the NN strategies
with only basic assets and the constant benchmark. Portfolios including the Momentum
factor showed especially improved performance, which we ascribe to the outsize returns of
the Momentum factor over the chosen data period.

While our factor investing results are promising, this cannot be taken as conclusive ev-
idence for dynamic factor investing’s reliability. Even though the long-term nature of our
problem may help overcome the cyclicality and regime-dependency of factor performance
(Bender et al., 2013), it has been shown that even portfolios constructed with multiple
factors of low correlation may not reduce macroeconomic risks (Amenc et al., 2019). Fur-
thermore, while our out-of-distribution robustness test yielded promising results, the pub-
lication effect, which refers to the phenomenon of factor premia decreasing or disappearing
after publication (Dimson et al., 2017), demands that any prudent investor be suspicious
of factor models learned from historical data. More research would be needed to ascertain
whether the long-term investment horizon of our problem truly allows our framework to
sufficiently overcome the cyclicality of factor assets’ performance to make dynamic factor
investing a recommendable strategy for retirees.

One aim of the factor investing investigation was to impose additional constraints on
factor asset allocations as a means to increase asset diversification. The resulting optimal
investing strategies were indeed more diversified, but no strong conclusions could be made
on whether these constraints made the strategies more robust. This could in part be due
to the arbitrary constraints chosen. More experimentation would be needed, perhaps also
with different factors, in order to determine how such an NN framework could be induced
to create a more diversified and robust investment strategy.

In summary, the investigation of dynamic factor investing using our proposed NN frame-
work effectively demonstrated the versatility of the novel NN approach developed in this
thesis to solve the optimal decumulation problem. We expect that the NN approach can be
adapted to other formulations of the retirement and investing problem and that it can han-
dle problems of even higher complexity. We leave the further extension of this methodology
to future work.
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