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A B S T R A C T

Despite the opportunities created by digital reading, documents remain
mostly static and mimic paper. Any improvement in the shape or form of doc-
uments has to come from authors who contend with current digital formats,
workflows, and software and who impose a presentation to readers. Instead,
I propose the concept of polymorphic documents which are documents that can
change in form to offer better representations of the information they contain.
I believe that multiple representations of the same information can help read-
ers, and that any document can be made polymorphic, with no intervention
from the original author. This thesis presents four projects investigating what
information can be obtained from existing documents, how this information
can be better represented, and how these representations can be generated
using only the source document. To do so, I draw upon theories showing the
benefit of presenting information using multiple representations; the design
of interactive systems to support morphing representations; and user studies
to evaluate system usability and the benefits of the new representations on
reader comprehension.
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1I N T R O D U C T I O N

Documents have been central to archiving and disseminating knowledge.
In the digital era, reading these documents happens primarily on screen
instead of paper [204, 234, 380], but digital documents have inherited paper
limitations. We rarely print documents [233, 380], yet we use file formats
designed for print with fixed layouts, styles, and limited support for dynamic
and interactive content. We promote open science and ask for trustworthy
and reproducible research [111, 264, 266], yet we bury data in documents
difficult to parse and read, even by machines. We externalize our thoughts
with many kinds of annotations [3, 279, 308], yet we use software limited to
capabilities of pen and paper. We learn best with multiple representations of
the same information, such as text complemented by figures [46, 244, 253],
yet we limit ourselves to the presentation imposed by document authors.

Many ideas have been explored to make digital documents more accessible,
engaging, and understandable [163], but it almost always places the burden
on authors. Authors have been asked to write clearly; publish in novel digital
formats [60, 85, 281]; use complex software or programming languages to
design interactive documents [336, 368, 392]; share their data and all material
alongside their publications [111, 264, 266]; craft effective information visual-
izations [43, 254, 292] combined into an convincing data-driven story [321,
345, 367]; produce accessible figures and documents [53, 107, 307]; and stay
informed of best practises in terms of content presentation [57, 88, 120]. Few This dissertation

document illustrates
the difficulties
imposed by existing
workflows: it does not
include interactive
content mainly
because it had to be
submitted as a PDF.

authors can claim to have all these qualities, and even less can put them into
practice because they often clash with existing publishing workflows and
expectations. But even if authors could do it all, only new digital documents
would be improved whereas the billions of documents already published and
disseminated would remain as is.

To address these issues, I introduce the idea of polymorphic documents. From
the Greek, polymorphic refers to having multiple forms. In biology, species
that are polymorphic give rise to different forms, all originating from the same
genotype. In programming language theory, a polymorphic function adapts
to arguments of different types, all from a single definition. Similarly, I argue
that a polymorphic document is a document whose content can be turned
into different representations, based only on the content and structure of the
original document. Polymorphic documents are freed from the constraints
of paper, or digital formats that seek to reproduce paper documents. As a
result, readers can explore different representations of the information within
documents to gain, extract, and disseminate knowledge.

Polymorphic documents give the opportunity to offer representations that
leverage well-known cognitive theories and principles. Specifically, I propose
representations that are interactive to promote engagement and autonomy
(media richness theory and self-determination theory) and that can be person-

1



introduction

Abstract Concrete

Visual

Textual

diagram chart illustration

symbol number natural language

Figure 1.1: Design space of complementary representations. Representations should
vary in their media types (vertical) and level of abstraction (horizontal).
Dashed boxes are examples of representations commonly found in static
digital documents.

alized to tailor the information to readers’ knowledge (cognitive load theory
and personalized learning). But representations that depict the same informa-
tion are also most powerful when offering different perspective. Specifically,
two different representations are most useful when leveraging different media
types such as image and text (multimedia principle and dual-coding theory),
different density of information (cognitive load theory), and different levels
of abstraction (ladder of abstraction). When placed on a 2D continuum, this
is what I refer to as the “design space of complementary representations”
(fig. 1.1). Throughout this thesis, I will place each project within this design
space to highlight how the novel representations complement existing ones.All of the proposed

tools are publicly
available. Thus,

despite the static
appearance of this

thesis, all figures can
be made interactive

with Chameleon; all
result sections turned

into interactive
visualizations with

Charagraph; all data
recovered from the

charts using
ChartDetective; and

all statistics
converted into

interactive estimation
reports with

Statslator.

In essence, my research aims to give readers the tools to turn existing digital
documents into polymorphic ones. Instead of burdening authors, I believe
readers know what they need in documents and can use the tools proposed
in this thesis to transform the information in the way they want. Specifically, I
propose tools that rely on invariant components of documents such as pixels,
text, and features from standardized file formats such as PDF. As a result,
these tools are compatible with popular digital formats and preserve the
intrinsic qualities of formats, such as being self-contained and ready-to-print.
My second objective is to understand how polymorphic documents benefit
readers and how readers use them.

1.1 research objectives and overview

Simply put, the high-level research objective of this dissertation is to improve
the reading experience of existing digital documents. My thesis is that:

Existing documents can be transformed and enhanced with interac-
tive, visual, and textual representations that help readers understand
information.
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1.1 research objectives and overview

Chapter 6: Chameleon 
(e) How to support interactive 
content in all documents, file 
formats, and file viewers? 

> Overlays interactive figures 
from a database atop static 
figures using computer vision

Chapter 5: ChartDetective 
(d) How to help readers 
recover data only present in 
static charts? 

> Extract accurate data from 
vector charts and create 
interactive figures

Chapter 4: Statslator 
(c) How to help readers 
unfamiliar with the statistics 
and numbers in-text? 

> Calculate alternative 
statistics and plots from the 
data reported in-text

Chapter 3: Charagraph

(a) Do readers benefit from 
complementary interactive 
visual representations? 

> Participants are more 
correct when interactive 
visuals complement text.

(b) How to help readers 
interpret and manipulate 
numbers presented in-text? 

> Annotate documents with 
interactive visualizations of 
the raw numbers in-text

Augment 
text

Augment 
visuals

Fundamental Tools & Applications

Figure 1.2: Chapters with main research questions (italic), main results, and research path connecting each chapter.
Highlighted text and arrows show the dependencies and motivation that lead to the next research question.

To reach this goal, we investigate a set of primary research questions. Note
these questions are related and the output of a project often drove the research
questions and design decisions of other projects (Figure 1.2). Below are the I use ‘we’ when

referring to the
projects of this thesis
to reflect that this
work is the result of
collaborative efforts
with my supervisors.

main research questions investigated.

(a) Do readers benefit from complementary interactive visual representations?

(b) How to help readers interpret and manipulate numbers presented in-text?

(c) How to help readers unfamiliar with the statistics and numbers reported in-text?

(d) How to help readers recover data only present in static charts?

(e) How to support interactive content in all documents, file formats, and file viewers?

3
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Below, we summarize the steps we took to address these research questions.

1. To answer (a), we conduct a user study in which participants answer
comprehension questions after reading a text with and without interactive
visualizations. Our results highlight that readers benefit from having
interactive visualizations alongside text.

2. To answer (b), we design a tool to morph data-rich paragraphs into inter-
active visualizations and annotations. These representations leverage the
perceptual system to convey numbers and use interactivity to help users
explore and manipulate that data. We also conduct a user study to validate
that readers can create and customize these interactive visualizations.

3. Results from (a) and (b) apply for numbers that readers are familiar with.
To answer (c), we derive a set of equations to convert statistical values
into more familiar ones and develop a tool to offer alternative textual and
graphical presentations. We validate the equations through simulations
using common reporting practices.

4. Results from (a), (b), and (c) depend on the presence of data in-text. To
answer (d), we develop a tool to extract data from vector charts. We conduct
two studies to verify the usability of the tool with complex charts and the
quality of the extracted data.

5. To answer (e), we develop a system that relies on pixels on-screen to detect
static figures and overlays interactive content retrieved from an open
database. We run simulations to validate the computer vision algorithm.
And we conduct a user study to evaluate participants’ capability and
willingness to use the tool.

1.2 contributions

System contributions
are often

misunderstood. I
generally subscribe to
James Fogarty’s view

on the matter [108]

Four projects explore different aspects of polymorphic documents. Each
project introduces a novel system complemented by validations such as
simulations and user studies. For each, key results and novels insights are
outlined and form our contribution.

1.2.1 Annotation of Data-Rich Paragraphs With Charts

We introduce the concept of Charagraphs, which are dynamically gener-
ated interactive charts and annotations for in-situ visualization, comparison,
and manipulation of numeric data included within paragraphs of text. We
contribute a characterization of Charagraphs along three dimensions: the
information leveraged, the level of integration, and the interaction contexts.

We contribute a PDF viewer with mechanisms to annotate existing docu-
ments with Charagraphs and propose algorithms to perform data extraction.

A user study found participants were more correct with Charagraphs than
with text alone when answering comprehension questions about text excerpts.
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1.2 contributions

1.2.2 Translation of Statistics Reporting Styles

We propose to interactively translate statistical reports in existing documents,
from one style such as NHST, to another such as estimation. We report an
analysis of CHI papers to demonstrate conversion feasibility and common
statistical reporting practices.

A set of conversion equations are derived to perform conversions between
p-values, confidence intervals, and various effect sizes. Three Monte-Carlo
simulations showed that these conversions stayed accurate even under com-
mon reporting practices.

We develop Statslator, a tool to convert between statistical presentations
in existing papers. We also contribute methods to extract statistical informa-
tion using a large language model, error mitigation features, and statistical
checking to detect reporting errors in existing scientific documents.

1.2.3 Data Extraction from Complex Vector Charts

We propose to leverage the benefits of the vector format to extract data under-
lying charts often embedded in documents and shared online. We highlight
several advantages of vector graphics over raster images by reviewing the
literature and specification of the file formats.

We develop ChartDetective, a tool to extract underlying data from vector
charts. The tool contributes novel interactions to extract data by relying on
direct manipulation and drag-and-drop; visual filtering mechanisms; realtime
reconstruction of interactive charts; and overlay to verify results.

A user study found participants to be accurate when using the tool even
when extracting data from complex charts obtained from scientific documents.
A technical validation found the data obtained using our tool to be of higher
quality than the data that could be obtained when working with raster images.

1.2.4 Bringing Interactivity to Static Digital Documents

We propose to use the pixels as invariant features to overlay interactive content
atop existing documents, even after their dissemination, and independently
of the file format or document viewer used. We review and evaluate the
accuracy of various computer vision algorithms that were previously only
used to match natural images. Our simulation reports which algorithms
worked best for figures commonly found in documents.

We develop Chameleon to augment existing documents with a registration
mechanism to add interactive content to an open database that can be shared
with others; and an overlaying mechanism with novel detection features of
open documents, analysis of pixels currently displayed, and overlaying of
HTML views kept in-sync with the document while being browsed.

A first-use user study validated our design choices and the usefulness of
the tool compared to existing approaches.
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1.3 dissertation outline

The remainder of this thesis is organized as follows (see also fig. 1.2).
In chapter 2, we review the literature on current practices and tools used

while reading documents. We also review cognitive psychology theories that
underpin the design of the representations presented throughout this thesis.

In chapter 3, we introduce the concept of charts to annotate data-rich para-
graphs, a system to create these annotations, and a user study assessing
usability and utility.

In chapter 4, we describe a system to translate between statistical reporting
styles that we validate with an analysis of scientific documents to assess
feasibility, and simulations to confirm accuracy.

In chapter 5, we describe a system to extract data from vector charts and
two studies to assess usability and accuracy of the system.

In chapter 6, we describe a system to overlay interactive content on top of
digital documents, simulations to validate the accuracy of the system, and a
first-use study to verify usability.

In chapter 7, we draw conclusions, summarize limitations, and discuss future
opportunities.
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2R E L AT E D W O R K

Positing that the reading experience can be improved implies that the current
reading experience is suboptimal. I believe it to be true because many of the
representations used in documents do not leverage our knowledge of cogni-
tive science and how humans read, understand, and learn. There are many
reasons for this, most faded away thanks to recent technological progress.

In this section, I review the literature that motivated and informed this
thesis. How reading shifted from print to digital devices (section 2.1); that
these digital devices can support better representations (section 2.2); that
these better representations are currently missing in documents because of
file formats and workflows posing challenges (section 2.3); and finally, that
these challenges can be addressed through techniques to augment existing
documents (section 2.4). Specific related work is reviewed in subsequent
chapter.

2.1 how readers consume documents

2.1.1 From Paper to Screen

“The shift from print
to the computer does
not mean the end of
literacy itself, but the
literacy of print, for
electronic technology
offers us a new kind
of book and new ways
to write and read.” –
Jay David Bolter
(1991)

While recent studies report that the majority of reading happens on-screen [204],
in the early days of computers, many experts were convinced that the switch
from paper to screen was unlikely to happen [64]. For example, in 2002,
Sellen and Harper published the “The Myth of the Paperless Office” in which
they argue that offices will remain dependent on paper [346]. At the time,
empirical evidence showed that paper was faster to read [84, 135, 206, 268],
resulted in higher proofreading accuracy [65, 411], and lower fatigue [75,
407]. Others were more optimistic and claimed that a transition to digital was
inevitable [29, 271] and that most of the negative effects of screens on reading
will be eliminated with improvements of technology [269].

Today, paper is still present, although the choice between reading on screen
or on paper is a matter of preference and context [190] and habits have
changed in favour of reading digitally. In 2005, while the majority of stu- “The question is not

can we do everything
on screens, but when
will we, how will we,
and how can we make
it great?” – Ted
Nelson (1987)

dents reported an increase in the time devoted to reading electronically, they
were still about 89% who preferred printed media versus 3% for electronic
media [233]. These results were consistent with a survey in 2006 where stu-
dents reported frequently reading online 34% of the time [234]. However, this
shifted in a 2012 survey where scholars reported that more than half of their
reading was on a screen. In fact, only 28% of articles were downloaded to
be printed on paper [380]. It is unclear why this transition happened, but
possible explanations include easier access to digital resources [214, 234, 381];
a substantial increase of reading done by people making print untenable [233,
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380, 382]; and the improvement of technologies to make reading at least as
efficient as on paper [297, 308, 379].

2.1.2 Active Reading Strategies

People adopt different reading strategies depending on their goals [384]. One
strategy of particular interest to my work is the idea of “active reading”.

Active reading was first identified with printed documents as “the combina-
tion of reading with critical thinking and learning, and involves not just reading
per se, but also underlining, highlighting, and commenting.” [3, 308]. Initial ef-
forts to bolster digital active reading focused on bringing the capabilities of
pen and paper to screen-based environments [167, 233, 279, 297, 358] and
proceeded to extend them through powerful annotation [326, 342], naviga-
tion [379], diagramming [370], and note-taking features [160]. Most readers
engage in active reading to externalize their thoughts [370], reduce cognitive
load [341], improve their understanding [322], emphasize key concepts [3],
help memorization [265], aid in later retrieval [342] and share their marks
with others [378].“An active reader

doesn’t passively
sponge up

information, but uses
the author’s

argument as a
springboard for

critical thought and
deep understanding.”
– Bret Victor (2011)

Since then, the definition of active reading has evolved. Bret Victor intro-
duced Explorable Explanations to “encourage truly active reading” and turn text
into “an environment to think in” instead of “information to be consumed” [36]. Vic-
tor’s definition of active reading focuses on interactive documents to explore,
build intuition, make discoveries, and reinforce or challenge knowledge. This
idea has been applied to contexts such as transparent statistical reports [91]
and visual exploration [125] (see Hohman et al. [163] for a review).

Both definitions express similar objectives and are used interchangeably in
the literature, but differ in the role of the reader. In Victor’s definition, readers
engage with interactive elements. In the original definition, readers createThroughout this

thesis, I refer to
active reading as a

combination of
annotating and

interacting with
documents, as is the

usage in HCI.

their own marks, an act that may be as important, if not more [192, 263, 343],
than the marks left on the document [3, 325, 370, 413].

These active reading ideas inspired the design of polymorphic documents
presented here. In particular, annotating documents using Charagraphs and
Statslator prompts the reader to think critically and learn, following the
original definition of active reading. But Victor’s definition is also supported:
the created annotations are interactive for readers to explore, make discoveries,
and reinforce their knowledge about the information.

2.2 benefits of polymorphic content

While I briefly
discuss several

theories, they are
generally supported

by substantial
empirical evidence

and widely accepted
within the scientific

community.

Since reading with digital devices enables new representations, the question
becomes which ones might be most beneficial. Below, I discuss the different
ways these representations can vary and benefit readers. For each, I review
relevant theories and describe how they are leveraged by the representations
proposed in this thesis.
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2.2 benefits of polymorphic content

2.2.1 Benefits of Interactivity

I define interactivity as the ability for readers to actively engage with a
representation and manipulate it in some capacity. Making a representation
interactive may benefit readers in two ways.

Making a representation interactive can enrich it. And a richer media may help
communication accuracy, speed, and readers’ satisfaction. This idea has been
introduced by Daft and Robert in their media richness theory [77]. The theory
states that messages of varying complexity require media of varying level of
richness. For example, a complex novel message (referred to as “nonroutine”
by Daft and Robert) like the ones found in scientific documents will require a
richer medium that can convey more information and facilitate rapid feedback
to avoid misunderstandings. Interactive representations embedding additional
information are, by definition, a richer medium because “The more learning
that can be pumped through a medium, the richer the medium.” [222].

Interactive representations can promote engagement. Interactivity gives read-
ers choices and lets them act autonomously. This touches upon the self-
determination theory that identifies autonomy as a key component of intrinsic
motivation as opposed to extrinsic motivation driven by external goals or
rewards [332]. Intrinsic motivation is generally preferable as it may lead to a
state of complete focus, immersion, and enjoyment of the task [66].

In practice, many of these ideas are reflected in the notion of active reading
proposed by Victor (section 2.1.2) and engagement has been a strong motiva-
tion to include explorable explanations in documents [163]. But interactivity
is also frequently used to offer additional information and let readers go on
tangent stories [251, 293].

The polymorphic representations presented in this thesis all include some
form of interactivity: Charagraphs are visualizations with interactions to
support data exploration tasks and allow readers to create their own data-
driven story differing from the canonical one; Statslator generates explorable
explanations of statistics; ChartDetective reconstructs interactive versions of
static charts; and Chameleon replaces static figures by interactive ones.

2.2.2 Benefits of Adaptation

I define adaptation as the ability for a representation to change depending
on the reader’s knowledge, such as using terms, values, and visuals that are
familiar to the reader.

Representations tailored to the reader may reduce extraneous load. It allows the
reader to focus on the complexity of the information itself (intrinsic load)
rather than the complexity induced by its presentation (extraneous load). This
distinction is described by the cognitive load theory which also explains how
extraneous load impedes learning and why it should be reduced as much as
possible [48]. This idea powers concepts such as personalized learning that
provide students with a learning experience tailored to their strengths, needs,
and interests [40].
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In practice, adaptation is sometimes used by news articles to provide relat-
able information such as checking the temperature difference in the reader’s
hometown [305] and checking if the readers’ job will be automatized [404].
It has also been used to provide readers with familiar analogies when a
document mentions physical measurements such as distances [171, 197]

In this thesis, Charagraphs use adaptation to let readers customize the
appearance of charts. Similarly, Statslator converts statistical values and
provides readers with informationally equivalent options to choose from.

2.2.3 Benefits of Varying the Type of Media

Two representations can present the same information (informational equiva-
lence) yet differ in how easy that information is to extract (if no computational
equivalence) [357]. This is typically the case for representations that differ in
the type of media. For example, even though both representations convey the
same information, it is much easier to identify a trend using a line chart rather
than a table. Below, I outline two main benefits of presenting information
both verbally and using imagery.

Text and images may reduce extraneous cognitive load and help comprehension.
Specifically, the dual-coding theory suggests that people mentally represent
information verbally and visually through two interconnected but distinct
systems [289]. Thus, presenting both text and images allows activating both
systems and drawing connections between them to enhance understanding.

Text and images may improve recall. The dual-coding theory explains that
both text and image may facilitate memorization because the information is
then encoded twice, with both the verbal and visual system [289]. Specifically,
experiments testing the “multimedia principle” observed that information is
better learned when conveyed through text and related images [253].“Words and pictures

belong together.
Viewers need the help

that words can
provide.” – Edward

Tufte (1986)

One case of polymorphic content that has been particularly well docu-
mented concerns numerical values. Experts have been debating for a century
about the best representation of numeric information: inline with sentence
text, in a table, or in some form of graphical visualization [63, 402]. It has long
been suggested that these representations are not equivalent and should be
chosen carefully [14, 101, 120, 176, 180, 213, 235, 242]. Data visualizations are
often the best choice because they offload cognitive work to the perceptual
system [213, 267]. But an even better choice is to not choose and embed
multiple representations, given that space, time, and expertise permit such a
report [57, 120, 176, 187].

In this thesis, the proposed representations enhance existing content by
offering a different type of media: Charagraph turns text into data visualiza-
tions; Statslator turns written statistics into plots; and ChartDetective turns
charts into numbers.
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2.2.4 Benefits of Varying the Level of Abstraction

Another way a representation may vary is in its use of abstract and concrete
information. Samuel I. Hayakawa proposed to use a metaphorical ladder to
discuss these different abstraction levels [152]. At the bottom of the ladder
are concrete details and specific examples that typically include sensory
information. As we move up the ladder, the information becomes more
abstract, losing sensory information but becoming more general and applying
to a broader range of examples. This was initially discussed for words but
is trivially extended to images. For example, a photograph is more concrete
than a diagram. Offering multiple level of abstractions has two main benefits.

Abstract and concrete information may help memorization. The dual-coding
theory suggests it as another way the mind dually encodes information [289]:
abstract information will use the verbal system, whereas concrete information
may be easier to represent using mental imagery and be encoded using the
visual system. Experimentally, the theory has been supported through several
studies that found people can remember concrete words better than abstract
ones [290, 291].

Abstract and concrete information may improve understanding. Specifically,
the action of moving up and down the ladder of abstraction with multiple
representations may benefit readers. Specific and concrete information is
typically easier to understand. Thus, making it more abstract may help
clarify the underlying concept. Inversely, an abstract idea may be easier to
understand using concrete examples. A possible explanation is the reduced
intrinsic load that concrete representations incur compared to abstract ones
that might use complex terms.

Many systems have leveraged this idea of ladder of abstraction. For ex-
ample, Victor proposed to analyze a system with emergent behaviours by
starting with the concrete example of a car simulation and then moving up the
ladder by abstracting parameters of the simulation such as time [391]. Others “I believe that a person

should not have to
imagine the
interpretation of
abstract symbols.
Instead, dynamic
graphs, diagrams,
visual models, and
visual effects should
provide visceral
representations.” –
Bret Victor (2011)

have considered moving down the ladder of abstraction to help with abstract
and notoriously difficult concepts such as mathematical notations [286, 351].
In “Kill Math”, Victor argues for an alternative to symbolic math that is more
concrete and intuitive [394]. Victor presents four demonstrations using visual
representation such as plots, concrete objects instead of symbolic variables,
and interactive widgets. Similarly, ARMath is an application to help children
learn and discover mathematical concepts using everyday objects [186]. But
Noyon [334] might be the system that most embraced the idea pushed forward
by Victor. Noyon is a system to represent mathematical expressions through
sketches and allows users to go up and down the ladder of abstraction from
symbolic (math notation) to iconic (sketches).

The representations proposed in this thesis allow readers to move between
levels of abstraction: Charagraph allows moving up the ladder by abstracting
text into a chart and Statslator allows moving down the ladder by converting
statistics into concrete values that readers are more likely to understand.

11



related work

2.3 changing workflows , file formats , and software

Despite the many ways representations can be made more powerful, several
issues prevent their adoption. Many have discussed these issues and the
opportunities created by better formats, from the field of Astronomy [131] to
Biology [15, 298], including news articles [133, 323], and of course, Computer
Science [139]. We categorize the main issues according to their root cause and
discuss the solutions that different communities have proposed.“PDF is skeuomorphic,

intended to carry the
character of an old

entity into a new one.
It is designed to

produce an exact
replica of a printed
document. Great if

you want printed
documents, terrible if
you don’t.” – Rupert

Goodwins (2022)

Digital Formats Designed For Print: Digital formats were traditionally de-
signed to emulate paper. In fact, PDF, the most popular digital document
format, was created to replace FAX machines, and its purpose remains to print
identically across computers and printers [401]. Because these formats focus
on rendering identically across machines while remaining lightweight, they
tend to have limited features and to preserve little structure and meta-data,
making them hard to use for anything other than rendering and printing. This
is in contradiction with the desire of many communities to link data and code
with the document [131]; offer audio, video, and interactive content [139]; and
make documents “digestible” by machines [298].

Limited Software Support: Even when file formats support more dynamic and
interactive content, the software prevent their presentation. Again, the PDF is
a perfect illustration. In 2008, Adobe added support for Flash content within
PDF as part of ISO 32000-1:2008 and immediately released a version of Adobe
Acrobat Reader with the capabilities to read such content. While the process
to include Flash content was laborious for authors [139], the bigger issue
is that despite PDF being a universal format, only Adobe Acrobat Reader
supported the feature. Thus, tablets and in-browser PDF readers could not
read Flash content. Worse, Flash was discontinued in 2020 and the new ISO
32000-2:2020 removed the feature. The few documents integrating Flash (e.g.,
[121, 189]) are now permanently static, even with Adobe Acrobat Reader.

Incompatible Workflows: Perhaps the most pernicious issue is not techni-“There continues to be
a market for

PDF-based document
workflow systems
that demand PDF

inputs and produce
PDF outputs, no

matter how much the
humans at either end

grind their teeth in
frustration” – Rupert

Goodwins (2022)

cal but behavioural. Historically, publishers printed all manuscripts to be
available in physical libraries. The publishing workflow was designed to
create this paper final product and in turn participated in the success of PDF
over other formats such as HTML [139]. Today, virtually all publishers have
stopped printing proceedings, yet they still use the same workflows. Some
publishers still require figures to be greyscale or to be included separately
(e.g., Brill [37]), and a PDF version of the paper is often the only accepted
format. As a result, people and publishers tailored their pipelines, editing
technologies, authoring software, and document viewers to these workflows
and are unlikely to change them.

2.3.1 Tentative Solutions to Support Augmented Documents

Most solutions to have documents freed from the limitations of paper rely
on the adoption of a new file format. Consider HTML documents, a solution
seldom adopted by the Computer Science community [60, 85]. One reason
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that PDF persists as a format for document distribution is that it supports
the flexible dissemination of documents by combining content and visual
formatting in a compact format. HTML rarely achieves this simplicity of
presentation: new devices and browsers frequently render aspects of a docu-
ment idiosyncratically, which can make reading an uncomfortable experience.
However, even if we advocate moving to a new format, this means that
our extensive archive of existing documents must either be translated and
re-imagined with interactive content, or must be maintained in the original
non-interactive format.

The other solution is to create new kinds of documents viewers [17]. For
example, Utopia Documents [15] is a novel PDF viewer integrating visual-
ization and data-analysis tools. By inspecting the content and structure of
PDF files, this viewer is able to integrate dynamic objects and annotations
in documents, such as visualizing the 3D structure of protein sequences. Of
note, the Biochemical Journal started using Utopia Document in 2009 [298].
However, the website hosting the document viewer is unavailable today. This
solution is also limited to specific file formats and forces readers to change
their habits, adopt a novel document reader, and potentially lose features.

These issues have been central in the design of the solution proposed in this
thesis. For example, Chameleon can incorporate dynamic content within the
confines of existing static documents and without any modification of existing
document or viewing applications. And the other systems we propose are all
readily available and all working with PDF documents.

2.4 empowering readers by augmenting existing documents

Data-rich documents are notoriously challenging to write [51] and visualiza-
tions are difficult to create [57, 120, 187]. Systems have been proposed to help
authors write better documents [51] and create better data visualizations [68,
169, 238, 353, 362, 410]. However, the created documents remain static which
limits the exploration possibilities for readers [36], and forces a split of atten-
tion between text and figures [16]. Other systems have targeted the design
of interactive documents by offering ways to author them [60] and help craft
data-driven stories [217, 251, 374], but these require a substantial amount of
work for authors and are often incompatible with PDF-based workflows such
as academic publishing.

An alternate approach adopted by the systems proposed in this thesis is to
augment existing documents using semi-automatic systems. Previous systems
have been used to direct the reader’s attention to specific sentences [52,
109, 403, 414], provide definitions of unknown terms and symbols [153],
integrate relevant information and commentary from follow-up work [315],
and generate summaries [369]. Some systems help readers interpret and
manipulate the results by enhancing the visualizations already present in the
document. For example, redesigning charts to be more useful [340], adding
overlays [201], and introducing interactive features [237]. Or the text can be
leveraged to automatically annotate existing charts [170, 209] and interactive
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links that connect text and charts [300]. However, all of these approaches
assume the author originally included visualizations in the document.

Another idea explored by Elastic Documents is to generate new chart visu-
alizations from tables in a preprocessing data extraction step performed on
the entire document [17]. Data in tables are extracted and used to generate
different static chart visualizations. Readers can filter and browse the gener-
ated charts or select a sentence in the document and let the system show the
most relevant charts. The relevance is calculated by matching the keywords
from the sentence and the table headers.

The projects presented in this thesis all strive to unburden authors by giv-
ing readers the tools to change the representation of the knowledge within
documents. In particular, Charagraph and Statslator are similar to Elastic
Documents in that they are new visualizations complementing existing doc-
uments. However, these are annotations dynamically generated by readers
and for information contained within text or math equations. This makes
these annotations highly customized by the reader for their needs and tightly
coupled with the text or equation through bidirectional interactive features.
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3I N T E R A C T I V E G E N E R AT I O N O F C H A RT S F O R R E A LT I M E
A N N O TAT I O N O F D ATA - R I C H PA R A G R A P H S

Abstract Concrete

Visual

Textual

Charagraph

Paragraph

In our design space
fig. 1.1, Charagraph
transforms concrete
textual paragraphs
into visual charts and
annotations

In this chapter, we propose to leverage the benefits of varying the levels of
abstraction (ladder of abstraction) and the types of media to help readers
interpret numbers in-text (multimedia principle).

3.1 motivation

Documents and scientific reports are often filled with numerical values. These
regularly interrupt the flow of sentences with quantities like means, medians,
confidence intervals, and p-values. While these are important to support
claims, they can make it hard to compare and interpret patterns in numeric
data due to the linear structure of sentences.

In fact, the use of sentences to present numbers has long been criticized [101,
198, 402]. Edward Tufte [63] notes that: “The conventional sentence is a poor way
to show more than two numbers because it prevents comparisons within the data”.

While experts almost always recommend visualizations such as charts to
present numeric data [7, 63, 122, 191, 402], they may not always be included or
useful. Authors may omit a visualization because it takes time to create [187],
occupies space in the document [7, 142, 176, 191], requires substantial effort
and skill [57, 120, 187], or seems unnecessary to present a few numbers [93,
122, 191]. Worse, even when authors include visualizations, readers might
ignore them if they are poorly designed or not aligned with the reader’s
goal [267], overblown [385], or not accessible [194, 412]. And readers might
struggle to connect text and figures because the layout of the document often
separates them [16, 63].

One response to issues when data is included in text has been to provide in-
teractive connections between text and existing visualizations in the document.
Because archival documents are not easily modified once disseminated [247],
most proposed solutions use some form of automatic linking [170, 207, 209,
257, 300] or an authoring system to create dynamic interactive documents
from the beginning [203, 215–217, 374]. However, these approaches remain
dependent on the author’s willingness to embed figures. Another strategy
proposed by Elastic Documents [17] is to preprocess a document to generate
new visualizations from the tables and then include ways to filter them while
reading. But this requires inferring what readers need a priori and assumes
that the data is presented in structured tables. What if, as is often the case,
the data exists only in sentences?

We introduce the concept of Charagraphs, which are dynamically generated
interactive charts and annotations for in-situ visualization, comparison, and
manipulation of numeric data included within paragraphs of text. We explore
the design of Charagraphs and contribute a system that allows readers to
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Figure 3.1: (a) Charagraphs are in-situ visualizations of numeric data included within text that are dynamically generated
(b) by delimiting a selection and (c) selecting a data group. Charagraphs support common data exploration
tasks through interactive features such as (d) identifying and (e) comparing values.

quickly generate them from existing documents. Instead of expecting au-
thors to embed well-designed visualizations, our system empowers readers
to quickly craft their own visualizations, customized to their needs, from
the data presented in texts. Although our system can also extract data from
document tables, we focus on the problem of extracting data from sentences.
The created Charagraphs use data visualizations to offload cognitive work
to the perceptual system [213, 267] alongside interactive features to compare
and manipulate the data. This can help when data is presented only in-text,
or when the existing static visualizations are ineffective and readers would
prefer a different representation. In a user study, participants created their
own Charagraphs to annotate documents and answer questions. All partici-
pants found the system easy to use and were able to create the visualization
they had in mind. Furthermore, all participants preferred to have Chara-
graphs available; had lower mental demand, effort, and frustration; and were
more correct in completing comprehension, comparison, and interpretation
tasks when they had access to Charagraphs (98.61%) compared to text alone
(92.59%).

3.2 background and related work

We first examine what numeric data can be expected in text and then review
the different ways of presenting data and their advantages and drawbacks
depending on the context. We end by discussing previous work turning text
into visualizations.

3.2.1 What Values Are Reported In-Text?

Most documents report numerical values in text to support claims because “a
stronger quantitative result is more informative than a weaker, qualitative result that
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subsumes it” [104]. For example, statistical results are often reported alongside
means or mean differences [103, 104]. Practises vary across domains and
publishers.

The American Psychological Association (APA) style instructs authors
to “emphasize particular data in the text when they aid in the interpretation of the
findings” and when reporting inferential statistics, the data in text “should allow
readers to confirm the basic reported analyses (e.g., cell means, standard deviations,
sample sizes, correlations)” [14]. In fact, the APA style normalizes this process
by presenting a list of statistical abbreviations and symbols to be used in text
(e.g., “M” for “mean”, “Mdn” for “median”).

Within the HCI community, recommendations for transparent statistics
call for quantitative results to provide effect sizes (including the direction
of the difference, the unit, and the type of estimate and uncertainty) [142]
and interval estimates [88]. These values are easier to interpret and compare
graphically [88, 104, 235], but textual reports are commonly chosen as an
alternative because “space may not always permit a graphical report” [142].

As a result, scientific documents often report numerical data in a semi-
structured way using specific symbols and patterns.

3.2.2 How to Best Present Numerical Values?

There are three ways to include numerical values in documents: inline with
sentence text, in a table, and in some form of graphical visualization [63, 402].
It has long been suggested that these representations are not equivalent and
should be chosen carefully [14, 101, 120, 176, 180, 213, 235, 242]. We review
two relevant situations.

When there are few values: While visualization experts generally agree that
“under no circumstance should text be used by itself to convey important statistical
data if more than a very few facts are to be presented” [101] (also [63, 402]), they
are divided on which representation to use when faced with small datasets.
Some state that graphical visualizations with little content indicate a lack of
purpose [93], take up a lot of space [7, 176, 191], add to readers’ cognitive
load [14, 122], and are costly to create [187]. Yet, experimental evidence
suggests a general advantage for visualizations such as bar charts, even when
presenting only two values [89, 195, 359]. Charts are a good

empirically tested
example of the

“benefits of varying of
the type of media”.

When presenting the same information: Two different representations of the
same information are often beneficial [213, 344, 357]. For example, Ottley
et al. found that visualizations make it easy to identify critical information,
but the precise numerical value was easier to extract from text [287]. Early
on, Tufte advocated for the combination of words, numbers, and graphics
and deplored the segregation between figures and their associated text in
scientific manuscripts [63]. Experimentally, the multimedia principle shows
that people learn better when an image complements text [253] and strong
evidence suggests that illustrated texts improve reading comprehension and
recall [92, 124]. The general recommendation is that authors should use text
reinforced by graphics [101].
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3.2.3 Issues With In-Text Data and Rationale for Reader-Generated Interactive
Charts

Data is usually reported in text, and at best presented visually in static charts,
which remains far from ideal for readers.Here, we focus on the

issues related to
including static

charts. But, as
previously mentioned,

there are additional
issues when

including interactive
content such as

Charagraphs.

First, textual data is difficult to interpret. Numeric values make it hard to
perform analytic tasks such as identifying trends [259] and are presented
linearly in sentences broken at arbitrary points depending on document
layout [385]. Despite the advantages of data visualizations, a document might
present data only in text or tables. In contrast, visualizations help understand
the information [259, 360], discover facts and insights about the data [198, 267,
274] and perform general interpretive operations such as locating, deriving,
interpolating, and comparing values [47, 69, 101, 259]. As such, allowing
readers to generate visualizations would be beneficial.

Second, data is segregated in documents and it is often tedious for readers
to combine and visualize the results reported in different documents or
different parts of the same document [278], because documents segregate the
information and the data, even when related [385]. If readers can generate
charts from the text, then they could do it by combining two distinct parts of
a document.

Third, textual report of results might be misinterpreted. Instead of using dichoto-
mous statistical testing such as thresholds on p-values, it has been suggested
that reporting interval estimates such as confidence intervals could reduce
misinterpretations and improve understanding of results [88, 142]. Yet, these
estimates are often best conveyed graphically [156, 235]. For example, readers
will have difficulties deciding if two confidence intervals reported in text
overlap, and by how much (e.g., how different is 95% CI [-0.08, 0.5] from 95%
CI [0.1, 0.4]?).

We posit that the above mentioned issues could be alleviated by supporting
the dynamic generation of interactive charts and annotations generated by the
reader, in order to offer in-situ visualization, comparison, and manipulation
of numeric data included within paragraphs of text. In the remainder of this
document, we refer to such interactive charts generated by the reader as
Charagraphs.

3.2.4 Generating Visualizations from Text

Several tools propose methods to transform high-level textual descriptions
into data visualizations [117, 239, 270, 347] and infographics [67, 310] (see
Shen et al. [349] for a survey). However, these approaches differ from Chara-
graphs in that they are essentially visualization authoring tools with natural
language as the input modality. Thus, they require a curated dataset pro-
vided by the author and use short queries specifically crafted to generate a
visualization from the dataset by referencing metadata like column headers
(e.g., “How much do various cars weigh?” or “draw a line chart of daily sales
forecasts” [363]).
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Closer to our approach are methods to augment documents with visualiza-
tions. Essentially the content of the document forms a query to generate a
visualization using an associated dataset. For example, Kim et al. help readers
relate to distances and areas mentioned in text by re-expressing them on a
map and using familiar landmarks [197]. Hullman et al. generalized this idea
to help readers understand physical measurements such as weights, lengths,
and volumes with different strategies to re-express them in a relatable way
such as comparing them with familiar objects [171]. An optimization method
and a large dataset of familiar objects is used to generate re-expressions
using both text and images. Similarly, Contextifier [170] and NewsViews [118]
generate contextual visualizations when reading news articles. Both systems
pre-process the document text and search for relevant data in existing external
databases. NewsViews generates interactive annotated maps using commonly
available data like unemployment and education statistics. Contextifier gen-
erates stock charts annotated with news article content using commonly
available stock data.

In contrast, Charagraphs are generated by readers using only data contained
within the text of a document. Using an external database is not necessary,
and may not even be possible since text data within scientific documents may
not be easily accessed or even available in common databases. In addition,
Charagraphs support many forms of chart visualizations, and are designed
to be interactively customized with strong linkages with the text data.

3.3 characterization of charagraph

A Charagraph is a visualization that augments in-text data: this visualization
comprises text annotations overlaying the document and a chart. Both the
text annotations and the chart are interactive and in-sync: modifications and
interactions done on one representation are reflected on the other.

We characterize a Charagraph along three dimensions: 1) what in-text
information can be leveraged; 2) how to present the textual and graphical
representation; and 3) what interactions can be performed with both represen-
tations.

3.3.1 Information Leveraged

Designing an effective visualization often requires understanding the data,
its provenance, and its meaning [267]. Fortunately, paragraphs are semanti-
cally rich. Beyond numbers, the structure and formatting of sentences, the
words, the style, and the suffix or prefix used with numbers provide valuable
information about the data. We consider the different information that can
be extracted from the text and their impact on the graphical representation
encodings (marks) [26], embellishment (visual channels) [20], and meta-data
(titles, labels, and legend).

• Data corresponds to the values reported in text that are of interest to the
reader (Figure 3.2a). These are often numerical, but could be categorical
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such as country names. Without additional information, meaning can be
inferred. For example, numbers adding up to a 100 are likely proportions.

• Statistical terms explain how the data was obtained. For example, how
the data was aggregated or what transformation was applied to it. These
terms generally precede values (e.g., M=12, SD=1.2 or 95% CI [1, 2]), and
can inform the choice of encodings. For example, error bars for standard
deviation (Figure 3.2b).

• Units give general information on what the data is. They generally follow
the values (e.g., 25%, 33 years, 8°C) and might inform the choice of encod-
ings. For example, a percent suggests a pie chart whereas a timeline may be
best for years. Units can also suggest embellishment, such as representing
temperature data as bars styled as thermometer (Figure 3.2c).

• Labels describe the context of the data in the document (Figure 3.2d). Their
placement relative to the data depends on the sentence structure (e.g., the
first day of May [...] was 15°C). It can serve as meta-data to label data
points, legends, and axes and also change embellishment. For example,
colouring a series blue if nearby text refers to an ocean.

• Semantics correspond to why the data was included in the document (e.g., it
dropped from [data] to [data]). Semantic-aware Charagraphs might change
the encodings depending on the reason; a line chart better represents
a sentence describing a trend, whereas a bar chart better represents a
comparison (Figure 3.2d).

3.3.2 Level of Integration

The presentation of the textual and graphical forms offers one dimension
to control the narration. Mandl and Levin note that “the medium processed in
the first place can elicit an attitude, which determines the processing of the other
medium” [244]. The prominence of each representation can be manipulated
to orient readers toward a more controlled (text-driven or author-driven) or
exploratory (visualization-driven or reader-driven) narrative [345]. Figure 3.3
lists the different levels of integration of the graphical and textual information,
going from only text to only charts.

• Chart in Text puts the emphasis on the textual representation and fol-
lows the narration of the document. A Charagraph can achieve this by
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between the first 
day (M=15°C, 
SD=3°C) and the 
last day (M=10°C, 
SD=2.5°C).
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Figure 3.2: Information that can be leveraged from the text with examples of the design of the Charagraph.
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The temperature at 
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d a y ( M = 1 5 ° C , 
SD=3°C) and the 
last day (M=10°C, 
SD=2.5°C).

The temperature at 
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(b) Separate (c) Text in Chart(a) Chart in TextText Chart

Figure 3.3: Level of integration of the chart and text representations. Dashed outline indicates levels specific to Chara-
graphs.

using word-scale visualizations [126, 128, 385] (also called micro visualiza-
tions [294] or word-sized graphics [24, 385]) that are known to help readers
retain information while reading [127] and also support interaction [129,
130, 215] (Figure 3.3a).

• Separate lets readers decide which representation best suits their needs. A
Charagraph achieves this by having both representations equally visible,
shown side-by-side in their own separate views (Figure 3.3b).

• Text in Chart commonly referred to as an “annotated chart” puts the
emphasis on the graphical representation. Readers are less guided than
with a strict sentence order (Figure 3.3c). Annotations are a common
device to support data-driven story-telling [321]. Similarly, a Charagraph
achieves this by presenting the chart visualization with textual annotations
to emphasize a few elements (see Ren et al. [318] for a review of annotation
types).

3.3.3 Interaction Contexts

A Charagraph acts as a static visualization when not being interacted with.
Otherwise, it has two interaction contexts based on the position of the pointer:
in-text and in-chart. Previous work on reading behaviours with interactive
documents [61, 125, 420] suggests that readers use in-text interactions to follow
the document narrative and in-chart interactions to explore and engage with
the data. To connect the representations, feedback is synchronized between
text and visualizations.

• In-Text interaction is most likely during close-reading, when sentences
are read carefully one after the other. As such, the interaction should be
limited to connecting text to a visualization to support the narrative rather
than distract from it. For example, the pointer position can serve as proxy
for reading position so only values included in the current sentence under
the pointer are highlighted with values before or after the pointer position
de-emphasized or hidden. Figure 3.4a illustrates the minimal feedback in
text as a result of the synchronization with the chart.
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• In-Chart interaction indicates that readers are going beyond the document
narrative. As such, the interaction should apply to all the data from the
Charagraph, and can support common data exploration tasks such as
comparing, filtering, sorting, and summarizing [10] (Figure 3.4b).

3.4 charagraph document viewer

We built a system to generate Charagraphs inside a document viewer. We
focus on giving readers tools to create and customize Charagraphs instead
of fully automating their creation. We argue that, akin to active reading, the
creation process is part of sensemaking. By enabling readers to select and
decide on the best visualization, they actively participate in understanding the
text and the data. From our characterization, we focus on the “Separate” level
of integration as it offers the maximum bandwidth of information for both
representation and let readers decide on the representation to use. Similarly,
the system only leverages information in “Data”, “Statistical-terms” and
“Units” and gives the tools to customize the Charagraph further. A live version
of our system is accessible online: http://ns.inria.fr/loki/charagraph

3.4.1 Select In-Text Data

A reader who wants to visualize part of data included in text first needs
to delimit where it is located in the document and then specify the data of
interest through a “data-group menu”.

3.4.1.1 Delimit a Selection

There are two mechanisms to let readers delimit a selection before prompting
the data-group menu.

• Traditional Text Selection use standard text segmentation methods such as
dragging to have a selection snapping to letters and triple-clicking to select
a whole sentence.

Identify Compare SortFilter Summarize

(a) In-Text

(b) In-Chart Mean
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Figure 3.4: Interaction contexts for different data exploration tasks.

22

http://ns.inria.fr/loki/charagraph


3.4 charagraph document viewer

(a) Delimit selection

From students’ feedback in the 7-point Likert post-task ques-
tionnaire, we found that students did not feel nervous (M=2.25, 
SD=0.14), anxious (M=2.26, SD=0.15), uncomfortable (M=2.1, 
SD=0.13), or being distracted by the student end of Glancee (M=2.3, 
SD=0.14). And being monitored only made them somewhat engaged 
(M=4.21, SD=0.21). Overall, students were willing to use such a tool 
in the future (M=5.36, SD=0.15). 
   During the study, we found that no student participants turned on 
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tionnaire, we found that students did not feel nervous (M=2.25, 
SD=0.14), anxious (M=2.26, SD=0.15), uncomfortable (M=2.1, 
SD=0.13), or being distracted by the student end of Glancee (M=2.3, 
SD=0.14). And being monitored only made them somewhat engaged 
(M=4.21, SD=0.21). Overall, students were willing to use such a tool 
in the future (M=5.36, SD=0.15). 
   During the study, we found that no student participants turned on 
the camera (several students turned on the camera and then

Day Mean (°C) SD
Sunday 22.1 4.2
Monday 23.9 3.9
Tuesday 21 4
Wednesday 22.5 2.3

Figure 3.5: Selecting data to visualize: (a) delimiting using traditional text select or marquee selection; (b) selecting one of
the data groups suggested by the system.

• Rectangular Marquee Selection allows readers to select all text contained
within a rectangle formed by the selection. This tries to address the lim-
itations of traditional text selection caused by small motor errors [22],
snapping mechanisms [49], and unrelated elements that are selected in
documents that do not preserve sentence-structures such as PDF. For ex-
ample, selecting the column of a table in a PDF often selects other columns
or entire rows because the selection is designed for sentences.

To distinguish between selection methods, a marquee selection must be
started outside the text. In both cases, readers only need to select a text
portion containing the data of interest to guide the system and reduce the
number of data-group suggestions.

3.4.1.2 Choose a Data-Group

A data-group is a group of values deemed semantically similar by the system.
Because data included in text can take various forms and may be intertwined
with other information, readers can refine their selections using system-
generated suggestions of data-groups.

When a portion of text containing data is selected, a data-group menu is
displayed below the selected portion (Figure 3.5b). The groups are sorted
based on the number of values they contain. The first group always contains
all the values in the selected portion, whereas the other groups are formed
based on the text preceding and following the values. This allows to form
groups based on the “statistical-terms” and “units” as per our characterization
(Section 3.3) and potentially also works when the sentence use a similar struc-
ture to introduce numbers. For example, text reporting mean and standard
deviation in APA-style will have at least two data groups for values preceded
by “M=” and “SD=” (Figure 3.5). Similarly, text reporting the evolution of a
statistic over time will often use prepositions such as “from” and “to” that
would distinguish them.

Options in the menu are named after their preceding and following text,
and the position of the value is represented by a square. Readers can preview
the selection by hovering over each option. When the cursor is placed above
an option, the corresponding numeric values in the text are highlighted
(Figure 3.5b). Clicking an option immediately creates a Charagraph from the
selected values.
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(a) Horizontal bar chart (b) Vertical bar chart (c) Line chart (d) Pie chart

Figure 3.6: Changing visualizations. All transitions are animated to keep track of changes.

3.4.1.3 Edit the Selection

After a Charagraph is created, readers can add or remove values to further
refine the selection. A right-click on one of the underlined values in the text
opens a context menu with the option to remove the value. Right-clicking a
data point in the chart opens the same context menu. A right-click on a value
not currently included opens a context menu with the option to add the value
to the current Charagraph.

3.4.2 Customize the Visualization

By default, newly created Charagraphs appear in the margin, show values
with vertical bars, and have numbered tick and legend labels. Readers can
change those defaults to customize the visualization. Similarly, all Chara-
graphs can be resized and moved using direct dragging manipulations.

3.4.2.1 Change Visualization
Allowing readers to

customize the
visualization relates

to the benefits of
adaptation and may

help reduce
extraneous load.

Readers can choose visualizations more suited to their task [333] or the
data [313]. The system supports popular chart types [21] and related visual-
izations that can be generated from data typically found in-text: horizontal
and vertical bar charts for aggregated quantities, such as means, and for
comparison between data series; line charts to visualize the evolution of a
measurement; and pie charts to show proportions (shown to have a slight
advantage over bar charts for more complex data [360]). Readers may change
the visualization using buttons above the Charagraph (Figure 3.6). To help
readers track the data and understand the new visualization, the change is
animated. The current representation “morphs” into the new one, follow-
ing animated transition recommendations [155]. For example, each bar in a
bar chart progressively morphs into each marker counterpart in a line chart
(transition Figure 3.6b-c).
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3.4.2.2 Rename Elements

By default, the axis ticks and legends are labelled using a whole number index
based on their order of appearance in the text. The index numbers and any
other text element in the Charagraph can be renamed by direct manipulation.
Double clicking any text element enables readers to change the text associated
with that element such as tick labels or legends.

3.4.3 Combine Information

Readers can combine data from different parts of a document by merging
Charagraphs through a drag-and-drop interaction (Figure 3.7). Those com-
pound Charagraphs support multiple series to compare different results and
identify trends, and using other series as error bars to visualize the variability
and uncertainty of the data.

3.4.3.1 Add Series

Readers can create a Charagraph with two or more series by creating a
Charagraph for each series separately and then merging them through a drag
and drop interaction. To reveal this feature to users, drop zones overlay all
other Charagraphs whenever a Charagraph is dragged (Figure 3.7a). If the
Charagraph is dropped over the “Add Series” zone of another Charagraph, it
is modified to include the new series and the dragged Charagraph is removed.
If the Charagraph is a bar chart, it becomes a grouped bar chart (Figure 3.7b).

3.4.3.2 Add Error Bars

Adding error bars follows the same interaction as adding series, except the
Charagraph with the error bar values needs to be dropped in the zone called
“Add Error Bars” (Figure 3.7a). The dragged Charagraph is turned into error
bars that overlay the Charagraph (Figure 3.7c).

(a) Drag and drop of Charagraphs (b) Add series (c) Add error bars

Figure 3.7: Combining information in two Charagraphs: (a) dragging a Charagraph onto a drop zone in another
Charagraph combines data in different ways; (b) adding a new series; or (c) adding error bars.
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On Monday, the 
temperature was 20.4°C. 
On Tuesday it dropped 
to 15.2°C. Then, it kept 

changing: 10.7°C on 
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(a) Identify (b) Filter (c) Compare & Summarize (d) Sort

Figure 3.8: Text and chart interactions: (a) hovering above numbers in text or chart elements identifies connections; (b)
moving the cursor on the Y axis controls a threshold to filter numbers; (c) clicking two values compare them
and clicking more than 2 values calculates the mean; (d) right-clicking opens a contextual menu to sort.

3.4.4 Interact with Charagraphs

We use interactivity
to make the

representation
“richer” by allowing

the extraction of more
information and with

immediate feedback.

Charagraphs support interactivity to perform data exploration tasks [417],
facilitate the connection between text and chart [209, 300, 420], and boost
engagement [163]. The goal is to enable the most common visual data ex-
ploration tasks where simple visual inspection is not enough. Following
Amar et al.’s taxonomy of analytic tasks, this includes filtering to find data
cases matching certain conditions, computing derived values such as means
or counts, and sorting to rank data cases [10]. Annotations in the text are
synchronized with the corresponding chart and both text and chart represen-
tations are interactive, following recommendations from our characterization
(Section 3.3).

3.4.4.1 Identify

Readers can hover over a value in the text or a data point in the chart to
see the value highlighted in the text and the chart. The entire document is
dimmed except for the sentence containing the value to highlight the context
in which the value was reported (Figure 3.8a). This highlighting interaction
helps connect the values across the text and chart [216]. For example, even
with unlabelled charts, the reader can determine the highest value by locating
the highest bar in the chart, then pointing at it to locate it in text and find the
corresponding label (Figure 3.8a).

3.4.4.2 Filter

Finding values above or below a threshold is done in the chart by moving
the cursor over the Y-axis (X-axis for horizontal bars). A horizontal line is
shown at the location of the cursor indicating how many values are above or
below. Values above the threshold are highlighted in both the text and the
chart (Figure 3.8b).

3.4.4.3 Compare and Summarize

Values in the text and in the chart can be clicked to remain selected. Derived
values are calculated from the selection: if two values are selected, their
difference is shown in the chart (Figure 3.8c left); if three or more values are
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selected, the mean is calculated with a bar displayed at the corresponding
position (Figure 3.8c right).

3.4.4.4 Sort

Values follow the order of appearance in the text by default, but can be sorted
by ascending and descending order by right-clicking the chart and select-
ing the corresponding option in a context menu (Figure 3.8d). The sorting
operation is animated to help readers understand and locate elements [155].

3.4.5 Implementation

We implemented the system using TypeScript and React [317] for the inter-
face, PrimeReact [309] for the library of graphical components, and Apache
ECharts [11, 226] for the visualizations. Everything is implemented inside Feel free to try the

tool on this thesis
document. All results
sections can be
turned into
Charagraphs.

the PDF.js [288] PDF viewer, the default PDF reader used by Mozilla Firefox.
Our system works with all PDF documents and can be used as a general
PDF viewer. The full source code is hosted online: http://ns.inria.fr/loki/
charagraph.

In this section, we provide details for the two main components required to
create a Charagraph: the selection of text and the generation and extraction
of data from text.

3.4.5.1 Structural Text Selection with PDFs

Because the PDF format is focused on visual display and small file size, the
format stores text at a character-level layout with no formal representation of
sentences and paragraphs1. PDF viewers traditionally reconstruct sentences
based on the order of characters and their position on the page: two characters
may be merged based on arbitrary distance thresholds. In PDF.js, the recon-
structed sentences are invisibly overlayed on the PDF using a collection of
<span> tags. The web browser then handles text selection using the invisible
text layer. This approach has two main drawbacks: (1) Sentence reconstruction
is imperfect and words may be improperly merged while others may be
merged when they should not; and (2) the web browser maps user input
to a list of span tags with no structural knowledge of the PDF. This causes
unexpected and spurious selections.

Text selection was re-implemented inside the system to be consistent and
support marquee selection. The algorithm relies on a geometric and semantic
representation of the document: The geometric representation is obtained by
modifying PDF.js to return the precise location and size of the text on the page.
The semantic representation is generated from the text reconstructed by PDF.js.
The representations are aligned so that a shape maps to a precise index in the
text, and vice versa. This allows the marquee selection to function because
individual characters are precisely located and selected only if included

1 PDF can technically be more structured using tags, often for accessibility purposes (see ISO
32000-1:2008§14.8). However, very few PDFs contain those tags in practise.
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within a rectangle. The traditional text selection is based on the semantic
representation and reproduces typical behaviour.

Algorithm 1: Generation of data-group suggestions based on prefixes
Input: A text portion t and the maximum length m of the prefixes
Output: A list of data-group suggestions
numbers← substrings within t matching
/[-+.]?[0-9]+[.]?[0-9]*([eE][-+]?[0-9]+)?/

groups← [group formed from numbers]
foreach n ∈ numbers do

for l ← 0 to m do
pg← { }
p← substring of length l preceding d
if p does not match /\s*[,\.\(:\s]\s*/ then

foreach c ∈ numbers do
if c is prefixed by p then pg.add(c)

if pg /∈ groups then groups.add(pg)

return groups sorted by size

3.4.5.2 Data-Group Suggestion

The suggestion algorithm works by identifying numbers in text with a regular
expression and then grouping these values based on their suffix and prefix.
Because the algorithm forms all possible groups, the list is pruned. Groups
that are identical in the values that they select are merged. And groups with
prefix and suffix that are empty spaces or punctuation marks are excluded.
The resulting list is sorted from largest to smallest group and used as sug-
gestions. The pseudocode of the algorithm to form groups based on prefixes
is provided in Algorithm 1 (the algorithm for suffixes is identical except it
matches the text following the numbers). In the system, we set the maximum
length of prefixes and suffixes to 20.

3.5 user study

It is generally accepted that charts are better at communicating trends [259],
proportions [360], uncertainty, and effect sizes [88, 104, 142] all while making
it easier to interpolate [47], predict [259], and perform general interpretive op-
erations such as locating, deriving, or comparing values [69, 101]. In contrast,
text is preferred for compact representations and to extract exact numerical
values.

However, these findings were obtained with charts carefully designed. It
is unclear whether these findings apply to interactive charts generated from
and read alongside data-rich texts in the wild. And it is unclear whether the
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benefits of showing the same information in two different forms outweigh
the cognitive costs.

We conducted a two-part user study: part one evaluates the usability of
the system and its interaction model (Can people use our system to create
Charagraphs?); part two evaluates the utility of Charagraphs (Do people benefit
from having Charagraphs compared to only text?). Both parts isolate the aspect
being evaluated. For the sake of clarity, the two parts are presented in different
sections, although participants did both in the same session.

3.5.1 Participants

We recruited 12 participants (23 to 36 age range, mean = 28.9, 7 identified
as female, 5 as male) from a local university. All participants were graduate
students or researchers from the fields of Computer Science or Medical
Science. On a 5-point scale, they all reported frequently reading documents
that include in-text numbers such as scientific or news articles (Mdn=5,
SD=0.8) and that they were familiar with common descriptive statistics such
as standard deviations and p-values (Mdn=4, SD=0.6). In appreciation for
their time, participants received a compensation of $15 CAD.

3.5.2 Apparatus

Participants took part in the study remotely from their personal computer.
The experiment was hosted online and participants shared their screen with
the experimenter. The interaction of the participants with the website (e.g.,
clicks, movements, time, answers to questions), a screen capture, and the
microphone were recorded.

3.6 study part 1 : usability

Participants were asked to create Charagraphs to help answer four questions
about data presented in a text excerpt. Since we are examining usability
of the Charagraph system, the questions serve as goals to motivate the
use Charagraphs. The four questions represented two common tasks (two
questions per task) based on taxonomies of tasks related to information
visualizations [10, 35]. These questions can be solved easily and quickly, but
require an understanding of the visualization. Each question is multiple-
choice with up to eight choices. For example, a ‘Filter’ task was expressed in
a question like “How many are above/below [number]?” and a ‘Find Extremum’
task expressed like “What is the maximum/minimum” or “What is the [number]th
largest/smallest?”.

3.6.1 Procedure

Introduction and Tutorial (10 mins) – After completing a demographic question-
naire, participants were informed that they would “use a system to visualize
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the data presented in-text”. Participants went through a fragmented tutorial in
which they reviewed a video-tutorial and then immediately practised what
they just saw, but on a different text. There were 4 steps to the tutorial: 1)
selecting and extracting numbers from the text to create a Charagraph; 2)
adding error bars; 3) adding series; and 4) interacting with the Charagraph.
The text used in the video was created for the study and presented the life
expectancy for different continents in 2000 (in a paragraph) and in 2015 (in
a table). Participants practised on a similar fictitious paragraph and table
presenting the evolution of the temperature at two different periods. The
experimenter could intervene if needed.

Usability Task (15 mins) – Participants were presented a text excerpt and asked
to “Create a visualization to help you answer questions about [some data presented
in the text]”. The experimenter did not intervene and participants were free to
create any Charagraph. The questions were presented after the participants
created at least one Charagraph and pressed “Next”. Both the paragraph and
the created Charagraphs remained visible during question-answering. This
phase was repeated for the three different text excerpts, always in the same
order. At the end, participants completed a System Usability Scale (SUS) [38]
and rated statements on a 5-point scale.

3.6.2 Text Excerpts

We extracted three text excerpts from different sources. All excerpts did not
have an associated visualization in their original document and are therefore
concrete use cases for Charagraphs. The excerpts were given to participants
unchanged and also included other irrelevant data to the task. It is the
participants’ responsibility to extract only the information of interest to create
a Charagraph.

• The Survey excerpt is a paragraph extracted from a report published by
the United Nations Educational, Scientific and Cultural Organization (UN-
ESCO) about the most dominant languages in films produced in 2009 [2]. It
is comprised of 97 words and reports 13 different numbers, of which only
5 (the number of films for different languages) are of interest to complete
the task.

• The Scientific excerpt is a paragraph extracted from a paper published
at the ACM CHI 2022 conference [220] reporting the response to a Likert
questionnaire. Both means and standard deviations are reported in APA
style. The paragraph is 74 words long and contains 12 numbers, of which
10 are of interest (5 means and their corresponding standard deviations).

• The Weekly Reports excerpt was formed by merging two consecutive
weekly reports about the number of cases of COVID published by the
World Health Organization [284, 285]. The excerpt consists of 218 words
and 31 numbers. Only six numbers are relevant to the task (the number of
cases for three countries in the first week, and their corresponding number
of cases in the following week).
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Higher is better

Lower is better

(a) System Usability Scale (SUS)
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(c) Time to create a Charagraph
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I thought the system was easy to use
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I found the various function in this system were 
well integrated

I felt very confident using the system

I think that I would like to use this system 
frequently

I needed to learn a lot of things before I could get 
going with this system

I found the system unnecessarily complex

I thought there was too much inconsistency in this 
system

I think I would need the support of a technical 
person to use this system

I found the system very cumbersome to use

I felt limited by the system
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I was able to filter which data would the 
visualization contain

I found the visualization quick to create

I was able to create the visualization that I had in 
mind

Figure 3.9: Result summary of the usability part of the study. Mean and standard deviation of participants’ answers to
the SUS and the statements on a 5-point scale. Average time to create a Charagraph.

The three excerpts were chosen to cover potential use cases for Charagraphs:
show a distribution and compare different values (Survey), visualize means
and uncertainty or variability (Scientific), and visualize the evolution or
trend (Weekly Reports).

3.6.3 Results

All participants were able to use our system to create Charagraphs. Addition-
ally, they correctly answered all the stimuli questions about the text excerpts.
Figure 3.9 summarizes the results.

3.6.3.1 Time

The time it took participants to read the text and create Charagraphs ranged
from 36s to 3min 13s (M=1min 36s, SD=38s). Participants were the fastest with
Scientific (M=1min 14s, SD=27s), followed by Survey (M=1min 32s, SD=26s)
and Weekly Reports (M=2min 2s, SD=42s).

3.6.3.2 Questionnaire

The average SUS usability score was 81
2 (Mdn=81.2, SD=5.2) and the partic-

ipants felt that they could use the system quickly and successfully: on a
5-point scale (1-strongly disagree, 5-strongly agree), they rated that they were
able to create the visualization that they had in mind (Mdn=5, SD=0.4, ),
they did not feel limited by the system (Mdn=1, SD=0.6, ), they were able
to filter which data to extract and visualize (Mdn=5, SD=0, ), and they
found the visualization quick to create (Mdn=5, SD=0.3, ).

2 A SUS score above 80 is considered ‘Good’ [18]
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3.6.3.3 How Charagraphs Were Created

Participants took 55s on average to read the text before initiating the creation
of their first Charagraph. Regular text selection was used 72% of the time, and
all participants relied on the automatic suggestions rather than selecting the
values manually. Participants were also mostly right the first time: they deleted
only 9% of the Charagraphs they created. In terms of type of visualization
selected, most participants stuck to the default bar chart, adding error bars
for Survey (11/12) and another series for Weekly Reports (11/12). Only one
participant used a line chart for Weekly Reports, and another participant
used a pie chart for Survey although they switched to a bar chart after seeing
the questions.

3.7 study part 2 : utility

In this second part of the study, we focused on the utility of Charagraph.
Because, we are interested by the quality of the answers given by participants,
we use a broader range of tasks and questions that are more challenging to
answer than in the usability task. We eliminate the usability component to
keep the study focused on utility. All results are compared against a baseline
text-only condition. Note that this part immediately followed the usability
part.

3.7.1 Text Excerpts

We extracted three types of excerpts covering typical use cases for Chara-
graphs. For each type, we extracted two excerpts from different sources
resulting in six excerpts in total.

• Proportion excerpts were obtained from two sources: 1) a news website
reporting on the proportion of White Americans eligible voters per state
during the 2020 presidential election [136]; and 2) the U.S. Bureau of Labor
Statistics reporting on the unemployment rate among the major worker
groups [208]. Both excerpts report seven different percentages.Charagraph is the

only project to have
been evaluated on
news articles and

reports published by
specialized agencies.
More generally, the

focus of this thesis is
scientific documents.

• Uncertain paragraphs were obtained from two papers published at
CHI [240, 375]. They report the results for 6 and 7 items to a questionnaire
using strict APA and APA-like styles resulting in 12 and 14 numbers for
both mean and standard deviation.

• Evolution paragraphs were obtained from two articles published by the
UNESCO. One reported the evolution of the adult literacy rate between
1990 and 2016 for 5 regions, resulting in 10 numbers [364]. The other
reported on the evolution of the production of films between 2005 and 2009

for five countries, resulting in 10 numbers [2].

The excerpts were given to participants unaltered (retaining style, wording,
and spacing).
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3.7.2 Conditions

This part of the study had two conditions:

• Baseline: the text excerpts are loaded in a traditional PDF reader with
typical features such as text selection, zooming, and keyword search (CTRL-
F).

• Charagraph: the condition is identical to Baseline except the PDF reader
allows the creation of Charagraphs (using the system described in Sec-
tion 3.4). Because this part of the study does not evaluate the usability
of our system, and in order to guarantee that the Charagraphs would be
useful to answer questions, the Charagraphs were designed prior to the
study and participants were instructed to replicate them. We still chose
to make participants create the Charagraph instead of just automatically
generating it; we argue that the act of creating the Charagraph is part of
the understanding. Additionally, we make participants use Charagraphs
without labels. Our motivation is twofold: first, we believe that labels are
optional because the information can be obtained through the interactiv-
ity and participants explicitly selected the data to plot, thus they already
know what it represents. Second, with labels, most of the questions can
be answered solely using the chart. While this is one of the motivations
for Charagraphs, several studies have already shown the superiority of
graphical representations over text [7, 63, 122, 191, 402]. By removing labels,
we ensure that participants will go back-and-forth between graphical and
textual representation, which is a more challenging and realistic scenario.

3.7.3 Test Questions

For each text excerpt, we designed six questions that could be answered only
by reading the text. The questions were chosen to represent the most common
data analysis activities [10, 35, 313]:

• Retrieve: “What is the value for [item]?”

• Filter: “How many [items] are above/below [threshold]?”

• Derive: “What is the difference between [item] and [item]?”

• Extremum: “What is the [i]th largest/smallest?”

• Specific questions depending on the type of excerpts.

– Similarity questions for Proportion excerpts: “What are the two most
similar/dissimilar [items]?”

– Variability questions for Uncertain excerpts: “What is the [item] with
the largest/smallest variability?”.

– Trend questions for Evolution excerpts: “What [item] had the largest/s-
mallest increase in [value] between [year] and [year]?”.
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All questions were pilot-tested before running the experiment to make sure
they were clear and understandable. For each question, the participants were
shown all possible answers or a list of eight possible answers (for Derive and
Filter) in a random order.

3.7.4 Procedure

Utility Task (25 mins) – Participants were presented with a text excerpt and,
after pressing “Next”, had to answer six questions about some of the data
presented in-text. The questions were shown below the PDF reader and
participants were given no time limit to read and answer the questions.
Participants went through both conditions and all six excerpts, although in
different orders. After each condition, participants completed a raw NASA-
TLX and rated statements on a 5-point scale (1-strongly disagree, 5-strongly
agree).

• In the Baseline condition, when the text was first presented (and before
answering questions) participants were prompted to “Read the paragraph
and press ‘Next”’. The text remained visible during the question-answering.

• In the Charagraph condition, participants had to follow instructions to
create a specific Charagraph: The instructions were only shown when the
text was first presented (before answering questions) and the experimenter
made sure that the participant created the expected Charagraph. To help
participants understand what the visualization represented, the instructions
were preceded by a brief explanation such as “Visualize the number of films
produced in 2009”. The Charagraph, along with the text, remained visible
during the question-answering and participants were free to interact with
the Charagraph or not.

Semi-Structured Interview (10 mins) – At the end of the session, the experi-
menter conducted a semi-structured interview. Participants were given the
opportunity to comment on any aspect of the study or the system. The exper-
imenter also initiated discussions about the participants’ preferred condition,
the aspects of the system they found most useful, their strategies, if they
would use such a system, in what context, and on what kinds of documents.

3.7.5 Ordering

Text excerpts and their associated questions were presented with an order
following a balanced Latin square. We ensured that 1) each participant saw
each text excerpt exactly once; 2) each condition had exactly one text excerpt
of each type; and 3) a text excerpt appeared exactly once at every possible
position every six participants. As such, half of the participants saw the
same text excerpt in the Baseline condition, while the other half saw it in the
Charagraph condition. Additionally, we balanced the order of the conditions:
half of the participants started with the Baseline condition while the other
half started with the Charagraph condition.
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Figure 3.10: Results to (a) the raw NASA-TLX; (b) the average time to answer; (c) the average percent of incorrect answers;
and (d) the 5-point scale statements. Error bars represented standard deviation. Statistical significance
represented by a ‘*’

3.7.6 Results

We calculate p-values using Student’s t-test when the values are normally
distributed (time) and a Wilcoxon Signed-Rank test otherwise (correctness,
workload, and 5-point scales) using the stats module from scipy [396].

3.7.6.1 Correctness

Wilcoxon Signed-Rank found a significant effect of the condition on correct-
ness (p=.003, z=-2.98). Participants were more correct at answering questions
with Charagraph (M=98.61, SD=11.7) than Baseline (M=92.59, SD=26.19). In
fact, aside from three participants who correctly answered all questions re-
gardless of the condition, the other nine participants had consistently higher
accuracy with Charagraph than Baseline.

3.7.6.2 Time

The t-test did not find a significant effect of the condition on time (p=.15,
t=1.46). Participants spent a similar amount of time to answer questions with
Charagraph (M=1min 38s, SD=55s) than Baseline (M=1min 28s, SD=1min 13s).

3.7.6.3 Workload (NASA-TLX)

Wilcoxon Signed-Rank found a significant effect of condition on mental
demand (p<.003, z=-2.95), frustration (p=.007, z=-2.67), effort (p=.002, z=-3.09) and
performance (p=.03, z=-2.14). No significant effect for temporal (p=.17, z=-1.38)
and physical demand (p=.07, z=-1.84). Compared to Baseline, Charagraph

had lower mental demand (M=7 vs. M=16.2), frustration (M=3.7 vs. M=10.8),
effort (M=6.7 vs. M=15.5), and higher performance (M=18.5 vs. M=16.5).
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3.7.6.4 Questionnaire

All 12 participants preferred Charagraph over Baseline. They found the
answers easier to find with Charagraph (Mdn=5, SD=0.5, ) compared
to Baseline (Mdn=2, SD=0.9, ) and the difference was significant (p=.003,
z=-2.97). Importantly, participants did not find Charagraphs to be distracting
(Mdn=1, SD=0.3, ) and instead all agreed that it helped them answer the
questions (Mdn=5, SD=0.4, ).

3.7.6.5 Interactions Used

On average, participants hovered over the chart while answering 83% of the
questions, and over the text in 44% of the questions. Counting the number
of interactions in each context, clicking a value in the chart was the top
interaction when answering Extremum (78%), Similarity (59%), Variability

(65%), and Trend (75%) questions. In contrast, clicking values in-text was
preferred for Derive questions (64%). The filter interaction was the top
interaction only for Filter questions (100%). Retrieve questions were most
often answered without interacting with the text (3%) nor chart (11%).

3.8 discussion

We discuss the results by first answering our two research questions and
then open the discussion to other themes that stem from observations and
participants’ comments.

People can use our system to create Charagraphs. All participants were able to cre-
ate Charagraphs and use their main features to answer questions. Participants
even customized the Charagraphs to their preferences: some participants kept
visualizations separate because they disliked error bars, changed their style,
and renamed ticks and legends.

People benefit from having Charagraphs compared to only text. Participants an-
swered the questions more correctly with Charagraphs (98.61%) compared
to text only (92.59%) and used and found useful all the main features of
Charagraphs. All of them preferred Charagraphs and would like to use the
system again. This was also reflected in the questionnaires. Participants had
lower mental demand, effort, and frustration with Charagraph than when
using text alone. Although harder to measure, participants’ reactions suggest
that Charagraphs benefit other areas. For example, despite having already
read the text, P6 commented “Wow! It’s them that produce the most [films]? It’s
mind-blowing” right after creating a Charagraph. This suggests the potential
of Charagraphs to discover facts that would have been missed if only the text
had been read.
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3.8.1 Observations and Participants’ Comments

Charagraphs might change reading behaviours. Two participants mentioned that
knowing that they could create Charagraphs changed how they read the text:
P9 “When I know I can create a visualization [...] it’s kind of like I already have an
imagined figure in my mind when I read a paragraph” and P4 “It was me thinking
about oh, this information would be useful for my graph [...] so I did this kind of
filtering while I was reading, so I was thinking a lot more about what I was reading”.
Researchers have suggested that the benefit of active reading might not be in
the marks left on paper but on the process of creating those marks [3, 192,
325, 370, 413]. These comments suggest a similar effect with Charagraphs.

Labels are not necessary but would have made answering questions easier and faster.
When designing the utility part of the study, we decided against having
participants add labels to Charagraphs. The idea was to simulate a perhaps
more realistic scenario in which a user would not have to bother adding
labels because they are not absolutely necessary. We also thought that the
alternative (with labels) was too powerful considering that the questions
become answerable just from the Charagraph, without looking at the text.
Participants commented that not having labels was not an issue because of
the interactive highlight linking text and chart. P3 “The [missing] labels... I
don’t think it bothered me. Because the highlighting will just link the data with the
text. Because the data is very close to the text”. However, some participants also
commented that they would have preferred having labels: P6 “If I had labelled
the legends and ticks, I’d have been even faster”; P8 “[labels] would have been easier
than referring to the text”; P9 “if I can directly find the answer in the visualization
that would be better”.

Charagraphs might help even when data is already visualized. Readers may have
preferences that might not be met by canonical visualizations [219, 267]. Even
in our controlled scenarios during the usability task, participants expressed
different preferences: 2 participants preferred having two separate visualiza-
tions for means and standard deviation instead of a combined representation
with error bars. P9 explained “for me the bar chart is easier to read than error
bars [because error bars] do not start at 0”. If not preferences, a participant also
mentioned that existing visualizations might be overblown, P12 “Even if they
[documents] do have graphs, they don’t have the specific information that you are
looking for... so if you want, like, focus on a specific thing like the mean for example”.
Similarly, an existing static visualization might be deceptive because it has
truncated axes, or because the aspect ratio exaggerates a trend [254, 292]. Or
the visualization has accessibility issues because of its colour scheme and
style [194, 412]. In these cases, as long as the data is presented in text, a
Charagraph can recreate the static visualization, but with the possibility of
tweaking its scale and style. The resulting “reader-created” visualizations
can be used to compare or replace the static canonical visualizations already
present in the document.

37



charagraph

3.8.2 Limitations

Some in-text data might be difficult or impossible to extract. The suggestion al-This limitation has
been partially solved

by using ChatGPT
like in Statslator,

presented in the next
chapter.

gorithm forms groups based on the text before and after numbers. This
requires numbers to share prefixes (e.g., M=, SD=) or suffixes (e.g., %, ms, cm)
or sentences to follow similar structures with identical prepositions before
numbers. When this assumption fails, users have to resort to adding missing
values manually. Additionally, data other than numbers and certain sentence
constructions are currently unsupported. For example, a sentence might refer
to a quantity mentioned previously, such as “half of the participants”. Lastly,
combining two Charagraphs or adding error bars relies on the order of the
data points. As such, this requires the data to be presented in text in the same
order or to manually re-organize the data in the Charagraphs so that they
match.

The instructions in the utility study might have made participants less engaged
with the text. In the utility part of the study, we gave participants instructions
to follow to create a Charagraph. This was done to remove the usability
component (which had already been tested in the previous part). Several
participants mentioned that this made them less engaged with the text: P4

“I definitely noticed, with the instruction I was not reading the text [...] I think I
actually preferred the sort of exploratory mode [usability part] where I could just
make the graphs I wanted without the instructions” and P5 “I didn’t like having the
instructions [...] I think, in the last condition [baseline with only text] and in the
condition without instructions [usability part] I read the text more”.

Participants were well-versed in data literacy. All the participants in our study
were graduate students and researchers trained in reading scientific docu-
ments and interpreting numeric values. Thus, participants could understand
the content with text only. Given findings that charts help casual readers
understand numeric data [89, 306], it is plausible that people who are less
versed in reading scientific documents might benefit from Charagraphs as
long as they are familiar with data visualizations.

3.8.3 Future Work

Exploring the design space of Charagraphs. In our characterization (Section 3.3),
we mentioned two other level of integration that are currently not supported
by our system: chart in text using word-scale visualizations [126, 385] and
text in chart using annotated charts [318]. Our study focused on separate
representations that let readers choose the one that is most appropriate.
It would be interesting to observe the impact of the two other modes on
reader’s behaviours. Similarly, we believe there is an opportunity to extract the
information contained within the text using NLP to guide the generation of
Charagraphs and give better defaults. From our characterization (Section 3.3),
statistical-terms and units could be extracted to design embellished charts
that are more memorable [20, 32]; labels could be recovered to annotate charts
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and add names to legends, ticks and axes; and the semantic could decide the
visualization.

Support for advanced Natural Language Processing (NLP). Adding NLP has the
potential of making the creation of Charagraphs easier and quicker. First,
the suggestion algorithm could rely on named entity recognition (NER) to
filter numbers that are not data points such as references to sections, dates
and figures. Semantically related groups of numbers could be formed by
analyzing the sentence structure and content which might result in better
suggestions. Second, the extraction of data points could be made more robust
by understanding common natural language structures. For example, to
understand “half of the participants”, a system would need to keep track
of the mentioned values (here, the number of participants), understand
the described arithmetic (half of), and calculate the final number. Third,
NLP could extract meta-information about the data, such as p-values to
automatically decorate the visualization with the paired significance level.
Last, NLP could automatize the extraction of labels by parsing the relation
between the number and the label. Such a system could draw from approaches
to parse textual analogies [100, 212]. However, these remain challenging
even with modern techniques (see the difficulties faced by approaches to
automatically connect text and chart [209, 300]).

Support for other visualizations and tasks. In addition to the common bar, line,
and pie charts already supported, the system could be extended to include
scatter plots, choropleth maps, box plots, and radar charts, which are rela-
tively common [21]. The challenge is whether required data can be mined or
calculated from the text. For example, a scatter plot is designed to show raw
data points, but text typically reports on aggregated values representing raw
data (e.g., means and standard deviations). A scatter plot also requires data in
two-dimensions (e.g. x and y), which may not be reported in-text. Regarding
other tasks, a Charagraph often represents a subset of data, or a combination
of some data of interest. This suggests other tasks for a reader, such as to
characterize the distribution of the selected data, find correlations, clusters,
or anomalies. These tasks could be made easier by automatically identifying
data facts and remarkable features [377] of the generated Charagraphs, and
offer suggestions or annotations [209, 362].

Evaluating the impact of Charagraphs on information retention and engagement.
Other benefits of graphical representations over text might transfer to Chara-
graphs. For example, previous work has shown better recall of information [33,
161] and greater reader engagement [253] when using data visualization com-
pared to text alone. A user study that specifically evaluates these aspects
could further inform us on the benefits of Charagraphs.

Charagraphs with printed text and physical documents. The system currently
works with digital documents but could be extended to the physical world.
Using a smartphone, readers could take a photo of a document containing
number in the text. The system would process this photo using Optical Char-
acter Recognition (OCR), offer similar selection features to extract the values,
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and generate a Charagraph on the smartphone. Future work could investi-
gate the design and implementation of such a system or a more advanced
version that would overlay Charagraphs on the physical document, similar to
DuallyNoted that uses augmented reality on a smartphone to annotate paper
documents [311].

3.9 conclusion

Documents seldom include visualizations despite the advantages of graphics
compared to textual representations. To help readers when visualizations are
missing or poorly designed, we introduced Charagraphs, dynamically gener-
ated interactive charts and annotations for in-situ visualization, comparison,
and manipulation of data included within text. We also presented a document
viewer to create Charagraphs in existing PDF documents. In a user study,
participants could quickly create their own imagined visualizations from data
in text and were more correct when answering questions using Charagraphs
compared to only reading text. Charagraphs provide an immediate solution
for readers wanting to visualize and manipulate numeric data in existing
documents, and explore the concept of reader-generated visualizations.
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Visual

Textual
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In our design space
fig. 1.1, Statslator
transforms abstract
statistical reports into
familiar numbers,
textual, visual and
interactive reports.

In the previous chapter, Charagraphs were found to help readers understand
and manipulate the numbers in paragraphs of text by producing visualizations
(benefits of varying the type of media). However, this assumed readers were
familiar with the numbers in-text. In this chapter, we investigate ways to adapt
the content of a document to help readers understand unfamiliar numbers
and statistics (benefits of adaptation to reduce extraneous load).

4.1 motivation

When studying a population, a common approach is to collect data from
a random sample of that population (e.g., participants) and use inferential
statistics to generalize the findings. A detailed report of this analysis in
scientific documents enables readers to evaluate the strength of the findings.
However, the presentation of these reports as imposed by authors might be
hard to understand [71, 205], incomplete [373], even misleading [25, 132, 218].

Within the HCI community and other empirical fields, statistical reports
commonly include p-values obtained from null hypothesis significance testing
(NHST). However, p-values and their associated reporting language might
mislead even trained scientists [218, 255], and reporting p-values alone is
insufficient to draw meaningful and nuanced conclusions, capture uncertainty
of results, and answer quantitative questions about the effect [71, 88, 132,
211]. For these reasons, some recommend reporting additional information
such as effect sizes and interval estimates [14, 373], while others advocate for
avoiding p-values and NHST altogether [45, 70]. This debate is particularly
visible in HCI where all positions cohabit. P-values are prevalent in publica-
tions [27, 397] and more robust NHST approaches are being developed [99,
408]. Yet, workshops and articles are also promoting estimation [45, 88, 142]
and bayesian approaches [188, 299].

While much of the ongoing debate is about what to report, it also extends
to how inferential statistics should be reported. For example, what symbols
to use [14], what words to communicate findings [28, 88], and what numeric
precision to use [30]. How authors report statistics continuously evolves as
the field matures: for example, the practise of reporting p-values using in-
equalities has noticeably decreased since 2010 [27]. New reporting styles like
graphical presentations of effect sizes can effectively convey the informa-
tion [45, 142, 156], but such figures are seldom found in documents because
they can be difficult to create [57, 187] and take additional space [7, 142]. Even
graphical representations can be misunderstood, for example, error bars may
depict standard deviations, standard errors, and confidence intervals [72]. At

41



statslator

(a) NHST Statistical Report (b) Converted Report (c) Graphical Report

Figure 4.1: Statslator takes existing statistical reports (a) using NHST or estimation; (b) calculates all possible statistical
values using accurate conversion equations; (c) shows the report using graphical and interactive figures
configurable by readers.

best, the meaning of error bars is clear and a reader can recover a quantity
of interest by “eyeballing it” [71]. At worst, a reader can form the wrong
conclusion about the depicted results [205].

It is virtually impossible to please all readers with one style of report for
inferential analysis. For this reason, some recommend including multiple
reporting styles [14] which can be extended to “multiverse analysis” [145, 365]
and even made interactive to give readers control over the presentation [91].
However, they are difficult to create [143, 232, 335] and often incompatible
with publishing workflows that impose page limits and digital formats with
little or no support for interactivity [247]. Even in the unlikely case that all
authors adopt reporting styles akin to interactive multiverse analyses, it is
unclear how previously published documents could be supported, especially
when their raw data is unavailable.

We argue for reader-centred statistics: readers should have the final word
on statistical inference presentation because what matters is correct inter-
pretation, be it through estimation or NHST1, textual or graphical content,
or static or interactive documents. Moreover, this should be possible with
old and new documents without substantial efforts. Our key insight is that
most scientific articles report enough information about at least one type
of inferential statistical analysis which can be translated into a different re-
porting style. For example, a confidence interval (CI) can be calculated givenWhile the primary

motivation is to tailor
the statistical report

to the reader (benefits
of adaptation), the

representations also
benefit from being

interactive and
varying the type of

media.

a p-value and means. The difficulty lies in three aspects: (1) obtaining the
statistical information—we analyzed statistical reports at CHI and propose
a semi-automatic pipeline to extract common statistical reports; (2) convert-
ing the information into a target statistic—we demonstrate how to do these
conversions and thoroughly evaluate their accuracy given common reporting
practices; and (3) presenting the converted information back to readers in
their preferred style—we design a document reader that allows readers to
customize textual, graphical, and interactive statistical reports. We implement
our solutions to these aspects into Statslator, a tool for readers to retro-actively
encode best practises in terms of statistical reporting with no author involve-
ment. This effectively supports documents that were already disseminated

1 Some argue p-values cannot be properly interpreted even when their pitfalls are under-
stood [45]. We believe readers should still decide if they wish to use p-values.
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and bypasses limitations due to outdated publishing practises that discourage
the use of figures because of page limits and prevent interactive documents
due to reliance on the PDF format or inflexible publishing workflows.

4.2 background and related work

We first review the challenges associated with different ways of reporting
statistics and then detail recommendations made by the community to tackle
these challenges. We then detail how previous systems allowed readers to
personalize documents without involving authors.

4.2.1 Challenges with Statistical Reporting

Prevalent practices in scientific documents can make statistical reports hard
to understand.

First, there is much confusion about the meaning of statistical values. For example,
the potential for misinterpretating p-values [71, 132]: a p-value might lead a
reader to believe the result is more certain than it is (dichotomous thinking);
that it conveys effect size (ambiguous use of “significant”); and that there is
no difference when p>.05 or that p is the probability that the null hypothesis
is true (inverse probability fallacy). But misinterpretations are not limited
to p-values. Any statistical report not fully understood by readers might be
misinterpreted, including standard errors, confidence intervals [25], and effect
sizes [196]. Thus, it is important to give readers access to statistics they are
familiar with, or default to ones that are easily understood.

Second, there are many equivalent ways to report the same statistical values, all
requiring a different interpretation. Consider two groups M1 = 5, SD = 1 and
M2 = 7, SD2 = 3. Now consider the multitude of valid ways to convey the
effect size (calculated value in parenthesis): the mean difference (2), Cohen’s
d (.89), Glass’ δ (.67), the rank-biserial correlation (.41), odds ratio (5.1), η2

(.17), Cohen’s f (.45), and the common language effect size (.74). Worse, there
is a lack of consensus on how to calculate some specific effect sizes such as
Cohen’s d and all variations are found in documents, with no indication of
what formula was used (like we just did) [210]. Similarly, a confidence interval
can be reported at various confidence level, and for different estimates [71].
These inconsistencies defeat most of the purpose of standardized effect sizes
to convey an effect size that is comparable across studies.

Third, there are many ways to report and represent statistical values. In textual
reports, values are often introduced with letters and Greek symbols [14].
Besides being confusing, these symbols are inconsistent across documents
and sometimes collide. For example, d can refer to any of the four ways of
calculating Cohen’s d [210]. Similarly, r is the symbol for both the rank-biseral
correlation and the Pearson correlation coefficient (which are equivalent only
in specific situations). The reported values themselves can be rounded with
arbitrary precision, or they can be given as inequalities, often the case for
p-values [27, 30].
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Similar inconsistencies are in graphical reports of statistics. There is a wide
diversity of chart types, and much has been written about how charts can
deceive or confuse an inattentive reader [43, 292]. Additionally, standard
graphical marks may not have consistent meanings. For example, the visual
style of an “error bar” is easily recognizable, but whether they represent
standard error, standard deviation or a confidence interval may be misinter-
preted or unknown [25, 72, 162, 205]. Even the simple bars or points could be
representing separate means or mean differences [70]. With adequate detail in
a caption, these kinds of issues can be mitigated and some recommend graph-
ical reports instead of text [88, 120, 142, 156]. But, authors are reluctant to
include many graphs since they can be difficult and time consuming to create
and take up additional space [7, 57, 187], which is unwanted for publications
that limit page size or for peer review guidelines that equate contribution
size to paper length.

Statistical reports are already difficult to read and understand for readers,
and the diversity and inconsistency in how statistics are reported only makes
it more challenging. Our approach enables a customizable presentation of
statistical results controlled by readers, with embedded context, consistent
calculations, and connections across reporting styles.

4.2.2 Recommendations to Report Statistics

The primary response to challenges with statistical reporting is to encourage
authors to present results using a consistent, detailed, and clear style. For
example, the American Psychological Association (APA) states that “com-
plete reporting of all tested hypotheses and estimates of appropriate effect sizes and
confidence intervals are the minimum expectations for all APA journals” [14]. To
make these reports consistent, APA also recommends specific phrasings and
symbols. Within the HCI community, similar recommendations have been
proposed [88, 142], and tools have been created to assist authors in the pro-
cess [181, 399]. But these guidelines have yet to become standard practice [123]:
as of 2018, about 15% of CHI papers included confidence interval whereas
50% reported p-values [27].

In parallel, these recommendations keep evolving. For example, the APA
started recommending the use of CIs in its fifth edition following a push from
the community [146, 199]. Alternative presentations of statistics have been
proposed and are often supported by experimental evidence. For example,
figures showing effect size and confidence intervals can help readers [88, 142,
156]. Hypothetical outcome plots [172] (HOPs) rely on animations and help
convey uncertainty [185]. Multiverse analysis reports [145, 365] that might be
explorable [91], can highlight how fragile or strong the results are. Analogies
and some more natural effect sizes such as the common language effect size
are often better understood [196].

While recommendations exist, the bottleneck seems to be in their implemen-
tation, either because of slow adoption, difficulty of creation, or publishing
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format limitations. And of course, even if all these issues were to be solved,
the problem would remain for existing documents.

4.2.3 Personalized Reading Experience

When authors’ adoption of new guidelines is slow or unlikely to happen,
a possible solution is to offer tools for readers. Several systems have been
proposed that take as input a document and augment it in various ways.

For example, reported measurements such as distances might be difficult to
interpret if readers cannot relate to them. Thus, systems have been proposed to
automatically generate analogies and relatable explanations and visualizations
of the measurements reported in a document [171, 197]. Similarly, there is a
wealth of research on how to generate visualizations to accompany documents,
either to give more contexts while reading by leveraging external databases of
relevant information [118, 170], to generate visualization in-context for data
that is already in the document but scattered in textual tables [17], or simply
to give readers a way to annotate documents using charts so that they can
make sense of numbers in-text [246].

These approaches have the advantage of being immediately applicable
and to all documents, including those already disseminated. In this work,
we adapt this approach to the context of statistical reports, and adjust the
generated presentations to fit the numerous recommendations made by the
community.

4.3 what is reported at chi?

We analyzed the proceedings of ACM CHI conferences to better understand
what inferential statistics are reported and how they are presented. The goal
is to gauge the feasibility of generating different statistical representations
from the data reported in text. We examine CHI papers because HCI is a
multidisciplinary field and CHI is very large and diverse. Statistical practises
likely vary among CHI authors depending on their field, background, and
exposure to inferential statistics.

Our analysis focuses on text, not values included within figures or tables,
and our approach does not consider complex sentence structures. There-
fore, our results should be viewed as lower bounds rather than absolute
proportions.

4.3.1 Corpus of Papers and Analysis

We collected 9,611 PDFs from 1982 to 2022
2. For each paper, text was ex-

tracted using a Python port3 of MuPDF4 and a set of case-insensitive regular
expressions as identified statistical reports:

2 Note CHI was not held in 1984

3 https://github.com/pymupdf/PyMuPDF
4 https://mupdf.com/
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Figure 4.2: Upset plot showing the number of papers that report different sets of CIs,
means, standard deviations, and p-values. Lines connecting dots across
rows indicate what values are in the intersecting set.

• One way to identify reported values is to look for numbers preceded by
the relationship symbol ‘=’, ‘<’, ‘>’, ‘≤’, ‘≥’, ‘<<’, or ‘>>’. When found,
the number and preceding word or symbol were extracted.

• Another way to identify values reported in text without a relationship
symbol is to look for names of common descriptive and inferential statistics
such as ‘mean’, ‘median’, ‘standard deviation’ and variations such as ‘M’,
‘Mdn’, and ‘µ’. We only extracted those followed by the verb ‘be’ in any
form such as ‘is’, ‘was’, and ‘were’, and then followed by a number.

• To count the mention of confidence intervals, we looked for the terms ‘%CI’,
‘% CI’, and ‘confidence intervals’.

• To detect statistical tests, we checked for the name of a specific test among a
list of 15 popular ones, including ‘t-test’, ‘ANOVA’ and possible variations
such as ‘ANCOVA’ and ‘MANOVA’.

The results were harmonized by reviewing the top candidates and grouping
the ones referring to identical values. For example, ‘mean’, ‘average’, ‘M’, and
‘µ’ were all grouped as ‘mean’. Statistical tests known under different names
were also grouped, such as ‘Wilcoxon Rank Sum Test’ and ‘Mann-Whitney U
Test’.

4.3.2 Results

As a sanity check, we compared our results to Besançon and Dragicevic [27]
who also used regular expressions to examine CHI proceedings although
their analysis was limited to p-values and CIs from 2010 and 2018. We found
5.9% to 14.2% of CI for 2010-2018, they report “from 6% to 15%”. We found
48.4% of p-values, they report “around 50%”.
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4.3.2.1 Reported Values

6,266 papers (65%) mentioned at least one value. Of these papers, p-values
(66%) were most common, followed by standard deviations (39%), means
(35%) , F-values (28%), t-scores (19%), and confidence intervals (13%). Stan-
dard errors were found in only 2% of papers. Standardized effect sizes were
also seldom found, such as Pearson’s correlation coefficient (11%) and Cohen’s
d (5%).

Figure 4.2 shows the number of times a CI, mean, standard deviation, or
p-value, or combination of these values, are reported in a paper. Of particular
interest are papers reporting both p-values and means; means and standard
deviations; and CI and means. For most of these 2,012 papers, we will show
translating to a different reporting style is possible (section 4.4). Although
papers reporting only p-values (1,612) cannot be translated, standardized
effect sizes can still be calculated to complete the report. For the rest, ad-
ditional values will be needed. Overall, a large proportion of CHI papers
have useful statistical reports, and recall that our conservative analysis likely
underestimate actual occurrences and it is possible that values like means can
be estimated from figures [182, 248]

4.3.2.2 Number of Decimals

Consistent with APA recommendations [14], standard deviations, means,
F-values, t-scores, and CIs were reported with a median of two decimals.
The exception was for p-values, which were reported with a median of three
decimals. However, 17% of these p-values were reported as inequalities with
values ‘0.05’ or ‘0.01’.

4.3.2.3 Statistical Tests

4,800 papers (50%) mentioned at least one statistical test. Among these papers,
t-tests were mentioned in most (61%), followed by ANOVA (49%), Wilcoxon
signed-rank test (10%), Mann-Whitney U test (9%), and Chi-squared test (9%).
Other tests, such as Friedman, were found in less than 5% of these papers.

4.4 converting statistical reports

Based on the information reported in papers, we present a set of equa-
tions to perform bidirectional conversions between NHST-based reports and
estimation-based reports. To our knowledge, these derivations were not or
superficially covered, especially in the context of practices common in HCI
studies. For example, some readers might have been taught the “conversion
rule” that 95% CI is about twice as large as the standard error; the “overlap
rule” that if two independent 95% CIs on the separate mean just touch, p
is about 0.01, and no overlap means p<0.01; and the “difference rule” that
if p>.05 then the 95% CI on the effect size will extend slightly past 0 [71].
What is sometimes omitted, however, is how these methods were derived,
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how precise conversions can be obtained, and when they do not work. For
example, the overlap rule for a CI fails when the study follows a within-
subject design [71], and the other two assume that the sample size is large.
Similarly, a widely cited article in the medical science community described
how to convert p-values into CIs [8], but it assumes more than 60 participants:
if applied to smaller studies typical in HCI [42], the converted estimations
would be overoptimistic leading to false conclusions.

For all conversions, we presume the size of the groups N1 and N2 and the
study design are known (i.e., within or between-subject) since this information
would be reported in any rigorous scientific report. By extension, the degrees
of freedom d f for a t-test can be calculated if not already reported. For within
designs d f = N − 1, otherwise d f = N1 + N2 − 2. Unless specified otherwise,
all equations are valid for all variations of t-test for both within and between
subject, groups of various sizes, and with equal or unequal variances.

4.4.1 Converting to Confidence Intervals

When comparing two groups, the CI of interest is the CI for the effect size,
where the effect size is usually the difference between the two group means.
This CI can replace a p-value as it conveys the estimate of effect size and the
uncertainty around it.

The CI is calculated as [∆M−MoE, ∆M + MoE] where ∆M = M2 −M1 is
the difference of the group means, or “unstandardized” effect size, and MoE
is the margin of error (corresponding to half the CI). Below, we show different
ways to calculate MoE needed to obtain the CI.

4.4.1.1 From means and t-score

Cumming [70] explains that the calculation of the MoE depends on the t
component Ct = tα(d f ), the variability component Cv, and the sample size
component Cs. Adopting this terminology, the calculation of a t-score can be
expressed as follows.

tscore =
M2 −M1

Cv × Cs
(4.1)

Note this formulation is an abstraction since the calculation of Cv and Cs
depends on the choice of t-test and the study design. But by referring to these
three components, our equations are compatible with all standard t-tests. As
such, the equation above can be rearranged to recover Cv × Cs given M1 and
M2 and a t-score. The remaining Ct term is calculated using the t-distribution
for a given degree of freedom (noted t(d f )). As a result, given a t-score
tscore, the means of both groups M1 and M2, the MoE at confidence level α
is calculated as follows

MoEα = tα(d f )× M2 −M1

tscore
(4.2)

A simplification that is often made is to use the normal distribution instead
of the t-distribution; with a large sample size of at least 30, the t-distribution
will approximate a normal distribution, so knowing d f can be relaxed. For
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example, for a large d f and a 95% confidence level, t.95 ≈ z.95 = 1.96 which
simplifies to the equation presented by Altman and Bland [8]. However, in
many HCI studies, the sample size is small, frequently around 12 partici-
pants [42]. In these cases, this assumption leads to narrower “overoptimistic”
CIs and should be avoided.

4.4.1.2 From means and p-value

The p-value of a t-test is measured by the area under the curve of the t-
distribution corresponding to the t-score. It refers to the probability of obtain-
ing the t-score or a more extreme one when assuming the null hypothesis is
true. Thus, to recover the t-score from a two-tailed p-value, we can use the
inverse cumulative distribution function to recover the t-score that gives an
area under the curve matching the p-value. As such, only the p-value and a
degree of freedom are needed.

Once the t-score is recovered, Equation 4.2 is used to calculate the CI. One
caveat of this approach is that p-values might be reported using inequalities,
although this practise is declining [27]. In these cases, the CI will be larger
and more likely to cause type 2 errors. Thus, it is often preferable to use the
t-score when reported (section 4.4.1.1).

4.4.1.3 From independent means and standard deviations

Depending on whether the study design is within or between subject, the
group means (and t-test) will be dependent or independent. Given the means
and standard deviations of two between subject groups, an independent
t-test can be calculated to obtain a t-score. Equation 4.2 can then be used to
obtain the CI. Note that the same does not apply to a dependent t-test for
a within subject condition because the required standard deviation of the
paired differences cannot be estimated from means and standard deviations
alone. In this case, one of the solutions above should be used.

4.4.1.4 From a CI at a different confidence level

Given a confidence interval at confidence level α0, we can adapt equation 4.2
to calculate the CI at α1:

MoEα1 =
MoEα0

tα0(d f )
× tα1(d f ) (4.3)

4.4.1.5 From CIs on separate means

Given two CIs on means of two independent groups, the CI of the difference
can be recovered by first calculating the mean and standard deviation of each
group, and then using the method from section 4.4.1.3. Assuming the t or
normal distribution were used, the CI is symmetrical such that its centre is
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the mean of the sample. For the standard deviation sd, it can be recovered by
rearranging the equation that calculates the MoE (half of the CI),

sd =
MoEα

tα(N − 1)
×
√

N (4.4)

In case another method such as bootstrapping was used to calculate the CI,
the recovered sd will be approximate, although it is reasonable to calculate
the CI on the difference of means (section 4.5.5).

Note also that, for two dependent groups, the separate CIs are not enough
and the t-score or p-value will be needed to recover the standard deviation of
the paired differences.

4.4.2 Converting to p-values

Given a CI on the mean difference of two groups, and the means of both
groups M1 and M2, equation 4.2 can be rearranged to recover the t-score,

tscore =
tα(d f )
MoEα

× (M2 −M1) (4.5)

Then, the t-score is converted into a two-tailed p-value using the the cumula-
tive distribution function of the t-distribution.

Note that this assumes the t distribution was used to calculate the CI. The
validity of this conversion with bootstrapped CIs is evaluated in section 4.5.5.

4.4.3 Converting to Standardized Effect Sizes

Whereas section 4.4.1 used the mean difference as an “unstandardized” effect
size, standardized effect sizes such as Cohen’s d might be of interest to
readers when comparing results that are on different scales and from different
experiments [70]. Many effect sizes have been proposed, but most can be
converted from one to another. Thus, below we show how to obtain Cohen’s
d, and how to convert it to a different effect size. These equations can be
trivially extended to the case where only CIs are available by first converting
the CI to a p-value (section 4.4.2).

4.4.3.1 From standard deviations

Cohen’s d is calculated by dividing the mean difference by a ‘standardizer’
which differs depending on the study design. For a between-subject study,
the recommended standardizer is the pooled standard deviation [71, 210].
Given the standard deviations of two groups SD1 and SD2,

dbetween =
M2 −M1√

(N1−1)SD2
1+(N2−1)SD2

2
d f

(4.6)

For a within subject design, the standardizer is usually a pooled average of
the standard deviations [71],

dwithin =
M2 −M1√

SD2
1+SD2

2
2

(4.7)
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4.4.3.2 From a t-score (or p-value)

Cohen’s d can be obtained from just a t-score (and, by extension, a p-value).
We report the equations obtained from Daniël Lakens [210]:

dbetween = tscore

√
1

N1
+

1
N2

(4.8)

dwithin =
tscore√

N
(4.9)

4.4.3.3 Converting between effect sizes

The conversions between effect sizes have been well covered by previous work,
especially in the context of meta-analyses. From Cohen’s d, it is possible to
calculate the point-biserial correlation and Hedges’ g [62]; odds ratios [31];
and the “common language effect size”, also referred to as the “probability of
superiority” [94].

4.4.4 Other Considerations

4.4.4.1 Multiple comparisons and corrected p-values

If p-values are corrected, then a converted CI will also be adjusted which may
not reflect the expected confidence level. Corrected p-values often appear in
reports using exploratory contrasts to account for multiple comparisons (e.g.,
post-hoc analysis after an ANOVA). Methods for estimation-based statistics
traditionally avoid this issue by planning the analysis a priori to only focus
on a few comparisons (typically no more than the degrees of freedom) [71], or
to adjust CIs using different corrections [95]. When the original “uncorrected”
CI is desired, it can be obtained either by not relying on the p-value (e.g.,
using the t-score or standard deviation), or by “unadjusting” the p-value,
assuming the original correction method is known.

The goal is to recover the uncorrected p-value p given the corrected p-value
p∗. For a Bonferroni correction [262], p = p∗/n where n is the number of
pairwise comparisons done. For a Šidák correction [355], p = 1− (1− p∗)1/n.
For a Holm-Bonferroni correction [164], p = p∗/(n− i) where i is the position
of the p-value in the list of sorted p-values of all pairwise comparisons. In
some cases, the recovered uncorrected p-values might be inexact: first, a
correction for multiplicity typically increases p-values and might make them
exceed 1 in which case the p-value is often rounded to 1 and some precision
is lost. Second, for Holm-Bonferroni, the rank cannot be recovered when the
correction changed the ordering of the p-values. These issues are investigated
in detail in section 4.5.4.

4.4.4.2 t-test Variations

The equations above apply to common variations of t-tests including those
for unequal variances, and unequal sample sizes. For example, for Yuen and
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Welch’s t-test, the degrees of freedom will be different, but the equation to
convert the p-value to CI will remain the same, given the correct d f is used.
Additionally, in some situations, different tests are equivalent to t-tests. For
example, the result of an ANOVA on a condition with two-levels will be
identical to a t-test, and the t-score is the square root of the F-score [158, 159].

4.4.4.3 Non-parametric statistics

Tests such as Wilcoxon signed rank and Mann-Whitney are typically reported
when data does not follow the assumptions of a t-test. The equations above
cannot be used with these tests and it is unclear how CIs could be recovered
without the underlying data to find its distribution, and without the test
giving an indication of what that distribution might be.

4.4.4.4 Conversions With Incorrect Reports

One might also wonder what the conversion would do in cases where a
t-test was applied on data that clearly breaks t-test assumptions. First, it is
important to recognize that a t-test might still be a reasonable choice: for
example, the central limit theorem states that, in many cases, the mean of the
data will be normally distributed given a large enough sample size, and thus,
a t-test can be used. This might explain why t-tests are so prevalent in CHI
papers (61% of papers that mentioned a statistical test). But more importantly,
the equations are meant to convert the results, not to fix them. Little can
be done if a statistical report uses the wrong test and obtains potentially
erroneous results.

4.4.4.5 Chaining Equations

Most equations can be rearranged to calculate the measurements they involve.
For the sake of brevity, we only presented each equation once. However,
we provide an open source JavaScript library with more than 50 equations
and possible rearrangements5. Given a set of measurements, the library will
iteratively calculate all possible values. For a given value of interest, the
library can also describe the possible ways to calculate it, and what values
would be needed. It can also identify possible inconsistencies when there are
multiple ways of calculating a value, but they yield different results (using a
relative error threshold, currently 0.1).

4.5 conversion accuracy

While the equations in section 4.4 are exact, written reports often round
numbers, may use small samples, and calculate values using methods that
could impact the conversion accuracy. Consistent with validation approaches
used in the statistics literature [99, 421], we conduct Monte-Carlo simulations
of common statistical reports. Our three experiments use the conversion

5 https://ns.inria.fr/loki/statslator/
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equations above to test the accuracy of: (1) converting reports of t-tests to CI;
(2) converting reports of post-hoc pairwise comparisons with corrections to CI;
and (3) converting reports of confidence intervals calculated via t-distribution
and bootstrap methods to p-values.

The simulations are in python using numpy [149] and pingouin [388] for
statistical tests and distributions. The bootstrapped confidence intervals are
calculated using arch [352]. The code is available for replication6.

4.5.1 Data Generation

As is standard with statistical simulations [99, 421], the datasets used in our
fictional reports are automatically generated to test a wide range of study
designs. All three experiments use generated designs that are prevalent in
HCI with the following shared conditions:

• design: Either between-subject or within-subject. While we use designs
common in HCI, do
not see this as an
endorsement for
using small sample
sizes or a specific
study design.

• size: The size of each group, either 8, 12, 24, or 40, following the range of
sample sizes commonly found in HCI studies [42].

• decimals: The number of decimals used to round all values (mean, stan-
dard deviation, t-score, and bounds of CI). For p-values, the rounding is
done using the number of significant digits to more closely match what
would be reported in a paper. For example, with 1 decimal, a p=0.048 is
rounded to 0.05.

Although some experiments might add conditions, they are all performed on
at least 4 sizes × 2 designs × 10,000 repetitions. We use 10,000 repetitions as
it has been shown to provide precise approximations with designs typical of
HCI studies [320]. The same datasets are re-used when varying decimals.
We note cases where experiments add other conditions as appropriate.

4.5.1.1 Generation Process

The groups in a dataset are generated by randomly sampling group size

values from a standard normal distribution N (µ, 2) where µ is set to 0 for
50% of groups (to simulate groups having equal means). Otherwise, µ is
drawn randomly from N (0, 1). For within-subject data, a random intercept
is added per subject. The random intercept is unique to the subject and
randomly drawn from N (0, σ2) where σ2 is randomly chosen to be either
0.1, 0.5 or 0.9, following the values proposed by Elkin et al. [99] to represent a
“reasonable ratio between within-subject variance and between-subject variance”.

4.5.2 Metrics

We report standard metrics used in statistics literature to validate CIs (cover-
age probability [356]) and p-values (type 1 error rate and power [99]). Recall

6 https://ns.inria.fr/loki/statslator/
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that our goal is to validate the equations presented in section 4.4. Thus, we
consider a conversion as “correct” if it recovers a p-value or CI that yields
a similar score with these metrics than the corresponding p-value or CI
calculated from the raw data. Below, we clarify the meaning of each metric.

4.5.2.1 Coverage of CI

The coverage corresponds to the proportion of calculated CIs that contain
the true population mean. For a confidence level of 95%, this proportion
should be as close as possible to 95%. This means that over a large number
of repetitions, we expect 95% of the 95% CIs to contain the true population
mean.

4.5.2.2 Type I error rate

Given a significance level α, the type 1 error rate is the proportion of false
positives where a true null hypothesis is rejected (p < α). We use a significance
level of 0.05 that is common in HCI, so this proportion should be as close as
possible to 5%. Over a large number of repetitions, we expect 5% of p-values
to be below 0.05 (even though they are type 1 errors).

4.5.2.3 Power

Statistical power is the proportion of true positives where a false null hypoth-
esis is correctly rejected (p < α). The closer the power is to 100%, the more
statistically powerful the test. In practice, power can be much lower, especially
when the sample size is small.

4.5.3 Experiment 1: t-test reports to CIs

This first experiment simulates conversions to obtain 95% CIs from reports
comparing two groups with a t-test. In total, 240,000 reports are simulated (4
sizes × 2 designs × decimals × 10,000 repetitions). For each report, the 95%
CI is calculated using either t-score and means (section 4.4.1.1); p-value and
means (section 4.4.1.2); or means and standard deviations (section 4.4.1.3).
As baseline, we report the coverage of the 95% CI calculated using the t-
distribution of the sample raw data.

4.5.3.1 Results

On average, three decimals is enough, two decimals give reasonable estimates,
but one decimal yields narrower and overoptimistic CIs that do not capture
95% coverage. Table 4.1 shows coverage of CIs depending on conversion
method, the study design, and the numeric precision of the values used.
Perhaps because rounding errors propagated, “means + stds” produced the
least accurate results with a coverage of 93.8% at two decimals and 90.4% at
one decimal.
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Table 4.1: Mean coverage (and standard deviations) of the 95% CIs calculated from
different conversion equations and for different designs, and decimals.
The closest the values are to the one obtained from raw data, the better.

Values Used design

decimals

1 2 3

t-score + means within .918 (.27) .947 (.22) .950 (.22)

p-value + means within .927 (.26) .948 (.22) .950 (.22)

raw data within .950 (.22) .950 (.22) .950 (.22)

t-score + means between .917 (.28) .947 (.22) .950 (.22)

p-value + means between .927 (.26) .948 (.22) .950 (.22)

means + stds between .904 (.29) .938 (.24) .942 (.23)

raw data between .950 (.22) .950 (.22) .950 (.22)

4.5.4 Experiment 2: Corrected p-values to CIs

This experiment simulates reports of multiple pairwise t-test comparisons
as would be done post-hoc after an omnibus test, such as ANOVA. It differs
from experiment 1 in that one report may contain 3, 6, or 10 comparisons

(corresponding to an independent variable with either 3, 4, or 5 levels) and
the p-values are adjusted to counteract the multiple comparisons problem.
The goal is to evaluate the impact of these corrections on the calculated CI,
and test the approximations to “unadjust” them. In total, 2,160,000 reports
are simulated (3 comparisons × 3 corrections × 4 sizes × 2 designs × 3

decimals × 10,000 repetitions). The correction applied to the p-values is
either Bonferroni [262], Holm-Bonferroni [164] (that we refer to as Holm to
avoid confusion), or Šidák [355]. As baseline comparison, we report coverage
for 95% CI calculated using the t-distribution of the sample raw data.

4.5.4.1 Results

On average, corrected p-values tend to increase the confidence level of the
CI to match a 99% CI. For reasons mentioned in section 4.4.4.1, reversing a
correction is approximate and works best for Šidák. For Holm, the reversed
correction results in recovering lower CIs (down to 92% confidence) and
recovering the CI from the t-score should be preferred. Table 4.2 reports the
breakdown of coverage for the different corrections and uncorrected p-values.

4.5.5 Experiment 3: CIs to p-values

This experiment simulates reports that include 95% CI and for which we
would like to recover p-values. In total, 720,000 reports are simulated (3 CI
Method × 4 size × 2 design × 3 decimals × 10,000 repetitions). The CI
Method to calculate the 95% CI is either the t-distribution (referred to as t-CI),
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Table 4.2: Mean coverage (and standard deviations) of the 95% CIs calculated from
p-values adjusted using a different correction. For uncorrected values,
the closest the values to the the one obtained from raw data, the better.

correction

decimals

1 2 3

Bonferroni .968 (.18) .988 (.11) .990 (.10)

Šidák .968 (.18) .988 (.11) .990 (.10)

Holm .964 (.19) .984 (.12) .986 (.12)

Bonferroni uncorrected .938 (.24) .957 (.20) .959 (.20)

Šidák uncorrected .931 (.25) .951 (.22) .952 (.21)

Holm uncorrected .916 (.28) .925 (.26) .925 (.26)

raw data .950 (.22) .950 (.22) .950 (.22)

Table 4.3: Mean type 1 error rate (and standard deviations) of the p-values calculated
from the 95% CI obtained using different CI Methods and varying deci-
mals precision. The closest the values to the the one obtained from raw
data, the better. Coverage of the 95% CI provided for reference.

ci-method Coverage
decimals

1 2 3

t-CI .948 (.22) .047 (.21) .051 (.22) .051 (.22)

percentile-CI .935 (.25) .078 (.27) .083 (.28) .083 (.28)

studentized-CI .944 (.23) .049 (.22) .055 (.23) .055 (.23)

bCA-CI .935 (.25) .075 (.26) .08 (.27) .081 (.27)

raw data - .051 (.22) .051 (.22) .051 (.22)

or popular bootstrapping methods such as percentile CI [96] (percentile-CI),
the studentized CI [82] (studentized-CI), or the bias-corrected and accelerated
CI [97] (BCa-CI). Bootstrapping methods use 2,000 resamples. As baseline,
the results for the p-value obtained from appropriate Student’s t-tests are
reported.

4.5.5.1 Results

Overall, p-values recovered from BCa and percentile bootstrapped CIs tend to
inflate the type 1 error rate, but are statistically more powerful. This increased
number of type 1 errors might be explained by these methods generating
CIs with a coverage that does not match 95%. This finding is consistent
with previous work that found the percentile and BCa method to perform
poorly given small samples (N<50), whereas at this size the t-distrubtion
or the studentized bootstrap is usually best [98, 421]. For comparison, our
experiments use sample sizes between 8 and 40.
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Table 4.4: Mean power (and standard deviations) of the p-values calculated from
the 95% CI obtained using different CI Methods and varying decimals

precision. The closest the values to the the one obtained from raw data, the
better. Coverage of the 95% CI provided for reference.

ci-method Coverage
decimals

1 2 3

t-CI .948 (.22) .300 (.46) .307 (.46) .307 (.46)

percentile-CI .935 (.25) .353 (.48) .36 (.48) .361 (.48)

studentized-CI .944 (.23) .295 (.46) .306 (.46) .307 (.46)

bCA-CI .935 (.25) .349 (.48) .356 (.48) .357 (.48)

raw data - .307 (.46) .307 (.46) .307 (.46)

P-values recovered from CI calculated from a t-distribution and studentized
bootstrap tend to match the p-values that would have been obtained had a
t-test been run, even at low one-decimal numeric precision. Table 4.3 shows
the breakdown of type 1 error rate given the different CI methods and number
of decimals. Table 4.4 shows the same breakdown for statistical power. Note
that power may appear low, but this is consistent with what is expected, and
has been shown before for such small sample sizes [225].

4.6 statslator pdf viewer

We developed the Statslator PDF viewer for readers to interactively translate
between statistical reporting presentation styles in existing documents and
generate statistical complementary presentations like effect sizes and graph-
ical charts. The tool can help readers interpret statistical reports. The user
interface was designed to make the capabilities of the conversion equations

Measures per comparisons
Such as effect sizes and p-values

Measures per conditions
Such as means, standard deviations

Green indicates values from the document
Blue indicates calculated values

Graphical Report
Configurable by clicking the text in blue

Figure 4.3: Statslator user interface after selecting a paragraph with statistical information from WatchWriter [134]. The
panel on the right shows the statistical measures extracted and calculated, as well as a configurable graphical
report.
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in our library transparent to the reader, so they are aware of the provenance
of the data, what calculations are done, and the quality of conversions.

Readers use Statslator to open and view a PDF document, then select
content with statistical reporting they wish to translate into a new presentation
style or complementary presentation. The new presentations appear in a
sidebar, are highly configurable, and present related statistical values to
explore and validate, or values that are easier to interpret correctly such
as the common language effect size [196]. The reader can also choose from
different representations, such as animated hypothetical outcome plots [172]
and interactive plots, which, despite being powerful representations, are
unlikely to be found in existing documents because of publishing formats
and workflows. We describe the tool and its features in more detail using
three use case scenarios.

4.6.1 Changing the Style of Statistical Report

Sam got a new smartwatch and decides to review the literature to find the
best text entry method for this device. Sam first stumbles across “Watch-
Writer” [134], an article describing a keyboard for smartwatches. The article
reports a user study that compares two ways of operating the keyboard either
through taps or gestures. At first glance, it appears that the gesture version is
preferable. The article reports “A one-way between-subjects ANOVA did not show
that the overall effect of gesture compared to tap on WPM was significant (F(1, 36) =
1.59, p = 0.21). It did show that the effect on CER and KSPC was significant (F(1,
36) = 4.49, p = 0.04 and F(1, 36) = 248.60, p < 0.001).”7. However, Sam is not
very familiar with NHST, and the article does not report effect sizes making
it difficult to know if it is worth investing time to learn the gesture technique.
Thus, Sam selects the text mentioning the statistical results and the table that
reports the means for each condition.

Automatic Extraction & Verification

After the selection, the panel on the right is updated to display two tables
filled with statistical values from the selection or calculated, as well as a figure
of the comparison (figure 4.3). The background of the cells are coloured based
on the provenance of the information: green indicates that the value was
obtained from the text or entered manually; and blue indicates that the value
was converted. Sam decides to verify that the extracted data is correct by
hovering over each value to obtain detailed information. When hovering over
a value obtained from the text, a tooltip shows the sentence where the value
was extracted from and the corresponding value in the PDF is underlined.

7 The article mentions a one-way ANOVA with two levels which is strictly equivalent to a
t-test and thus is supported by our tool.
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When hovering over a value that was converted by our equations, a tooltip
shows details of the calculation. The most accurate conversions are prioritized.
For example, for the CI the t-score and means are used even though the
standard deviations, p-values are also available.

Switching between Dependent Variables

By default, the generated report shows the results for words per minute
(WPM). Sam clicks the blue underlined text in the caption of the first table in
the panel to change the dependent variable and show the KSPC. Sam realizes
that Cohen’s d for the comparison of KSPC is quite large (=5.5) compared to
the other dependent variables compared. Sam cannot recall the interpretation
of Cohen’s d, but the tool shows the common language effect size (=.99) that
Sam knows to interpret as “when gesture was compared to tap, in 99 of 100

pairs gesture had a lower KSPC than tap.”

Configuration of the Graphical Statistical Report

Similarly, the figure generated by the system is interactive and shows the 95%
confidence interval on the mean difference.

Sam knows about the overlapping rule for the 95% CIs of independent means
and decides to change the figure by clicking the blue underlined text in the
caption from “mean difference” to “means”.

However, after some tinkering, Sam is not sure anymore of the correct inter-
pretation of a 95% confidence interval. Instead, Sam switches the chart to an
animated hypothetical outcome plot [172] which, after a few seconds, helps
Sam gain intuition for the distribution of the data.

4.6.2 Comparing Two Reports

After further inspection, Sam realizes that WatchWriter relies on a statisti-
cal decoder which would makes it difficult to enter words that are out-of-
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vocabulary. Instead, Sam investigates two alternative techniques that support
OOV: SplitBoard [165] and Swipeboard [50]. While both articles present user
studies, the two techniques are not compared with each other. Worse, the
two studies use different protocols and different study durations, and Sam
decides that judgment solely based on the reported means might be mislead-
ing. However, both studies include a comparison to ZoomBoard [283], a third
text entry technique. To get a rough idea of how the two techniques compare,
Sam decides to look at the standardized effect sizes for the two techniques
compared to ZoomBoard. Sam had already opened the papers in Statslator,
so Sam begins by selecting the paragraphs containing the statistical results in
both papers.

Helping the System with Missing Values

When extracting data from SplitBoard, Sam notices that links for some values
are red indicating that they are not available.

Sam hovers over the missing values in the table to get an indication of what
information would be needed for that value to be calculated.

When hovering over Cohen’s d, the system indicates that the means and
standard deviation are needed to perform the conversion. However, the
SplitBoard paper does not report aggregated means with standard deviations.
Sam decides to retrieve these values from the line chart of the WPM using
an accurate chart data extraction tool [182, 248]. For SplitBoard, the t-score
was directly obtained enabling the calculation of Cohen’s d. Once the missing
values are added in the table, the other values are calculated and Sam can
review the effect sizes: Cohen’s d = 0.64 for SwipeBoard, and d = 7.27 for
SplitBoard.

4.6.3 Checking Correctness

While browsing recent preprints, Sam finds a brand new text entry method
that looks promising. As always, Sam starts by selecting the statistical report to
display the results in a different style. This time, the p-value and t-score have
a red background: the system detected an inconsistency after cross-checking
different ways values can be obtained.

It appears that the t-score does not match with the reported p-values. Sam
knows how these mistakes can easily occur when writing papers [229, 275]
and decides to send an email to the authors to warn them.
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4.6.4 Implementation

Statslator is implemented using TypeScript using React [317] with PrimeRe-
act [309] for the interface; PDF.js [288] for the PDF viewer; and ECharts [11]
to generate dynamic visualizations. Below, we detail the implementation of
the text extraction to recover statistical values.

4.6.4.1 Extracting Statistical Information

Upon selecting a text in a document, the text is extracted and sent to OpenAI’s
ChatGPT through the official API8. ChatGPT takes care of extracting the
statistical information contained in the selection, even if the text contains
tables and complex sentence structures. ChatGPT is a large language model
based on a transformer architecture [390] which are state-of-the-art in many
natural language processing tasks, especially when dealing with complex
sentence structures [316]. The task of extracting statistical information is no
exception: in our tests, ChatGPT outperformed all alternatives. ChatGPT
requires a hand-crafted prompt that explains the task, we engineered the
following prompt through repeated experiments:

<excerpt from the paper>
Answer with this JSON structure:
{"conditions": [/* reported numbers that refer to a condition following this JSON format:

[<number>, <type> /* example: mean, sd, upper CI */, <condition>]*/],
"comparisons": [/* reported numbers that refer to a t−test comparison following this JSON

format: [<number>, <type> /* example: p−value, t−score */, <condition1>, <
condition2>*/]]}

We use “ChatGPT3.5-turbo” which has an input limit of about 3,000 words,
forbidding long text selections9

For privacy reasons or because it is a paid service, we also support alter-
natives to ChatGPT. First, readers can always input the numbers manually.
Second, we also provide an extraction algorithm that relies on regular ex-
pressions. The algorithm searches for APA symbols such as “M=” to extract
statistical values (similar to section 4.3). We group values based on their order
of appearance. For example, the first mentioned mean and standard deviation
are grouped as a single condition. Similarly, the first p-value is associated
with the first comparison of the two conditions mentioned.

4.7 discussion

Our work highlights three aspects: (1) even though most papers report statis-
tics in a specific way, they usually contain enough information to convert
them into a different statistical reporting style; (2) most reporting practices
are compatible with accurate conversions; and (3) a PDF viewer that embeds
these conversions can enable readers to control the presentation of statistics

8 https://platform.openai.com/docs/api-reference
9 The limit has been increased with newer versions of ChatGPT and full papers could now be

parsed directly.
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in existing documents to better understand the results, compare documents,
and verify correctness. Before outlining the limitations and future work, it is
important to clarify what this work is not.

In no circumstances does this work replace the proper practice of statis-
tics by authors, nor reduce claims made by scientists promoting a specific
approach to statistics. The differences between an NHST and estimation
approach are more than just the presentation of the results. For example,
estimation-based thinking also implies a different way of formulating research
questions and drawing conclusions which can hardly be an afterthought [44].
And best practices involve planning studies and following open science
procedures [58, 71, 88]. Instead, our work helps readers desiring a different
presentation of statistical results, perhaps to draw their own conclusions. If
anything, our hope is that showing that conversions are possible will motivate
authors to choose the method most appropriate to them and their research
questions [211] without worrying about possible push-back. As expressed
by Andy Cockburn in response to an alt.chi article encouraging authors to
use estimation and avoid dichotomous reports: “Sometimes, however, the author
would prefer to NOT report dichotomous outcomes (for good reasons), but is com-
pelled to do so by their fear/knowledge that if not included, reviewers will expect it
and criticise its absence” [27].

4.7.1 Limitations

4.7.1.1 The analyses might have missed some papers and study designs

With large-scale experiments, it is difficult to consider all cases. In section 4.3,
when quantifying the proportions of each report at CHI, some papers might
have fallen through the cracks, either because they use complex sentence
structures, or because the reports are done in figures and tables. Our analysis
was meant to motivate the feasibility of conversions and have reference
proportions to decide the most appropriate input values for the equations.

Similarly, there are an infinite number of parameters and study designs that
could be tested in the experiment section 4.5, but we chose to focus on those
most prevalent in HCI. This had the side-effect of steering our experiments
and equations towards the use of small samples which have been covered
relatively poorly in the past. However, as the sample size increases, many
of these considerations are no more relevant considering the central limit
theorem [105].

4.7.1.2 The conversions might fail in some situations

As a corollary of the infinite space of study designs, we cannot guarantee that
the conversion will be correct in all cases. Most statistical tests have underlying
assumptions that might in fact be violated by the data and yield unexpected
results. Generally, our conversion equations are based on the assumption that
the authors respected the assumptions of the methods they used. However,
it is not uncommon for scientists to use an inappropriate test [229, 408] or
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make mistakes [275, 276], especially considering the challenges associated
with statistics in HCI [188]. In these cases, the results will most likely be as
incorrect as their original presentation.

4.7.2 Future Work

4.7.2.1 Support for more papers through access to more data

The main hurdle in converting a statistical report is the lack of data. We fo-
cused on t-tests and papers reporting means and p-values or t-scores because
we found these to be the most common at CHI. Conversion between any
statistical report is theoretically possible given access to the raw data. Thus,
one extension of our work could be to leverage that data when available. For
example, the system could automatically pull data from a repository such
as https://osf.io/. However, “Open Data” has still a long way to go in
communities such as CHI where less than 1% of papers make data avail-
able [1, 248]. Other times, the data is in the document but buried inside data This idea of

recovering data from
charts is explored in
the next chapter.

visualizations. In these cases, tools to “reverse-engineer” data visualizations
(e.g. [182, 248]) could make the system work with a broader set of scientific
articles.

4.7.2.2 Support for other conversions

Future work could look into supporting more tests and conversions towards
a broader set of reporting styles. Tests such as Wilcoxon signed-rank and
Mann-Whitney U would be a natural extension given their prevalence. Of
course, the challenge is that the underlying distribution of the data is un-
known. Additionally, effect sizes could be further supported for different
tests, including η2 for ANOVAs. And a CI on these effect sizes could also
be calculated given limited data using approaches such as the noncentrality
parameter [73, 366].

In terms of statistical reports, we focused on NHST and estimation because
they are fuelling many debates within the scientific community [45, 88].
However, other approaches such as Bayesian statistics could be supported.
For example, a Bayesian t-test has been proposed and can be calculated
given a t-score and a prior [328]. The prior could be controlled by readers
to reflect their optimism and knowledge, similar to what Dragicevic et al.
proposed [91].

4.7.2.3 Statistical linting, meta-analyses, and statistical education

There are many use cases that could be derived from our system. First, our
focus was on readers, but the mechanisms leveraged to detect inconsistencies
could power a statistical linter for authors. Similar to statscheck [276] that
detects inconsistencies between the reported p-value and reported test statistic,
a statistical linter could leverage our system to cross-check the different ways
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of obtaining a value. This would allow the detection of serious problems such
as using a t-test that does not match the study design.

Similarly, many of our equations could be useful in meta-analyses, espe-
cially within fields like HCI that deal with small samples for which typical
meta-analyses practices are overoptimistic [8, 9]. Our system could help sci-
entists recover accurate data into a customizable and standardized statistical
measure.

Finally, we assumed readers have some experience and preferences re-
garding statistics, but our PDF viewer could also be used as an educational
tool. Transitioning between statistical representations is particularly useful to
develop an intuition [71, 74]. Akin to explorable multiverse analyses reports,
some options could be educational to give readers a better grasp of certain
concepts [91].

4.8 conclusion

While much of the debate around statistics has been focused on how authors
should practise and report them, little has been done to support readers
and the thousands of documents already published. Through theoretical and
empirical evidence, we showed that a majority of CHI papers report enough
information to be converted to different statistical reporting styles and that
the conversions remain mostly accurate under common reporting practices.
We also describe the design and implementation of a PDF viewer to turn
existing papers into the statistical reporting style readers prefer. Our hope
is to provide an immediate solution to reconciliate readers with statistical
reports, all while unburdening authors to let them focus on proper statistical
practices.
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5E A S Y A N D A C C U R AT E I N T E R A C T I V E D ATA
E X T R A C T I O N F R O M C O M P L E X V E C T O R C H A RT S

Abstract Concrete

Visual

Textual
Tables

Chart

In our design space
fig. 1.1,
ChartDetective
recovers a table of
numbers from charts
and reconstructs
interactive charts
with the data

The previous two chapters focused on helping readers with numbers and
statistics reported in-text. While textual reports are common, data is often
presented with charts causing the previously proposed approaches to fall
short. Thus, in this chapter, we investigate ways to help readers recover data
presented through charts, and ways to reuse this data to create interactive
charts.

5.1 motivation

Charts are often the preferred way of presenting data because they offload
cognitive work to the visual system [213, 267]. For readers, accessing the nu-
merical data of charts unlocks a broad range of applications: they can explore
the data to better understand it [36, 91], generate new visualizations [256, 319,
337], redesign existing charts [147, 303, 340], answer questions [184, 193, 296],
and generate textual summaries [55, 87, 280], as well as make existing visual-
izations accessible [53, 116], interactive [202, 362], and more informative [201,
209]. Further, researchers need this data to replicate analyses and compare
results. However, despite the push for Open Science, not all scientists publish
their data. This has been particularly true in the field of Human-Computer
Interaction (HCI); an analysis of 509 CHI papers published before 2018 found
that data was provided in less than 1% of cases [1]. Much of authors’ hesitation
comes from privacy concerns and little incentive or perceived benefits [398],
suggesting they are unlikely to change their practises. Even if providing data
became commonplace, the issue remains for previously published papers for
which the data has long been lost.

One solution to recover data is to analyze charts, a practice called “chart
reverse-engineering” [302]. By carefully locating series and inferring their posi-
tion in the axis coordinates, the underlying data can be estimated. Of course,
the more complex and dense the chart, the more tedious and error-prone
the process becomes. Consequently, tools such as ChartSense [182] and Web-
PlotDigitizer [324] offer semi-automatic features to make the process easier.
The core idea is to automate the recovery of the chart’s structure, identifying
every line, rectangle, and text in the image, and then inferring the element’s
role such as axis, series or legend.

However, most chart reverse-engineering approaches rely on what can be seen
using pixels, and all previous tools operate only on raster images. Yet, vector
graphics are commonly shared on the web [21] or in scientific publications [54,
55]. In fact, publishers often recommend, or even require the use of vector
graphics for their scalability without loss of resolution [174, 361]. As a result,
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Figure 5.1: ChartDetective is a system capable of recovering a chart underlying data by leveraging its vector representation.
Users select figures from PDF documents and then (A, B) drag-and-drop elements that they which to extract.
(C) The extracted data can be leveraged for downstream tasks such redesigning or interacting with the figure.

vector charts are ubiquitous, but their potential benefits are lost when existing
systems rasterize them [81, 182, 304, 387].

This focus on raster images is a missed opportunity to improve chart reverse-
engineering tools in terms of accuracy, usability and performance. With raster
graphics, image resolution limits the quality of the data. Even assuming
perfect accuracy from the recognition system, information is irreversibly lost,
either because pixels do not capture the full resolution of the original data or
because an element such as the legend hides part of the information. A pixel
in a raster chart may represent a fraction of a unit or millions of units, even if
the original data provided much finer resolution. The problem is aggravated
when the raster image has compression artifacts or when the chart is dense
with overlapping elements. In contrast, charts embedded as vector graphics
are ideal for reverse-engineering because they encode the complete image
structure and reference all components, even if hidden or overlapped, with
an exact position and size.

Leveraging the extra benefits provided by the vector format is challenging
because it requires understanding the specifics of the file format, knowledge
of how the chart was generated, and the ability to access and operate vector
graphics editors. In fact, little is known about how to recover the data from
vector charts, how accurate the extracted data is compared to using raster
images, and if the extra information encoded by the format can help the
reverse-engineering process. To the best of our knowledge, only Choudhury
et al. [54] describe an approach for separating curves from vector line charts.
All other approaches focus exclusively on raster images.

In this chapter, we introduce ChartDetective, a tool to extract underlying
data from charts by leveraging their vector specification (Figure 4.1). The
approach creates an interactive pipeline to extract data from a chart: a chart
in a vector format, such as SVG and PDF, is processed and presented in a user
interface where its underlying data is extracted using an integrated set of
interactive selection, filtering, and previsualization mechanisms. Leveraging
vector information has several advantages, enabling: novel features (e.g., filter-
ing mechanisms); support for a wide variety of charts such as bar, line, scatter,
and box plots; data recovery with greater accuracy and precision than other
approaches; and extraction of charts exhibiting challenging characteristics
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such as diverse styles, thousands of data points, multiple encodings, and
occluded elements.

Our work makes the following contributions: (1) Highlight of the advan-
tages of vector graphics over raster images from a theoretical perspective. (2)
Design and implementation of a tool to extract underlying data from vector
charts demonstrating how using a vector representation enables new features
and results in high-quality underlying data. (3) Experiment results showing
the system is usable when extracting charts with challenging properties from
real scientific publications. (4) A technical evaluation using a dataset of syn-
thetic and in-the-wild charts validating superior accuracy of extracted data
compared to existing approaches for raster images.

5.2 background and related work

Charts can be represented in two formats: raster images or vector graphics.
Below, we review how data can be recovered from both formats and what are
the theoretical advantages of vector graphics.

5.2.1 How Can Data be Recovered From Charts?

If not readily available, data can often be partially recovered from charts as
cleaned and aggregated data subsets. Consider how an author creates a chart:
first, a chart is generated using visualization tools such as matplotlib, ggplot,
excel, or tableau in order to turn tabular data into a visualization like a bar
chart that readers can quickly comprehend. The visualization is then exported
either as a rendered image in a raster file format (e.g., PNG, JPG, BMP) or
re-encoded into a vector file format (SVG, EPS, PDF), and shared by being
included in a document or a web page. Recovering the data visualized by a
chart is later accomplished by identifying each data point as a shape with a
location and size, and transforming those into the local coordinate system
defined by the chart axes. With vector charts, the position and size of each
shape are recovered from the definition of vector graphics. In contrast, for
raster images, the information has to be measured.

5.2.2 Advantages of Vector Graphics

There are several characteristics of vector graphics that make them advanta-
geous for extracting chart data.

5.2.2.1 Higher Theoretical Precision

Because of how raster and vector graphics encode information, the precision
of the data should be higher for vector graphics.

Raster images are composed of pixels. Given a raster image with one linear
axis representing n units displayed on p pixels, one pixel represents n/p
units. For example, a linear axis ranging from 0 to 1000 displayed over 100
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pixels means that each pixel represents 1000/100 = 10 units. Thus, a value of
0 is indistinguishable from a value of 9 because they are the same pixel. In
other words, achieving a high accuracy when recovering the position of an
element in a raster image requires a comparatively high resolution, inevitably
increasing the size of the image file.

Vector graphics define shapes in real number coordinates. Thus, precision is
limited by the number of decimals used to define coordinate positions and
rounding errors due to coordinate transformations. To accommodate 32-bit
processors, the PDF format uses the “single-precision floating-point format”
and limits floating point numbers to approximately five decimals (ISO 32000-
1:2008§C.2). The SVG file format encodes coordinates decimal numbers in
strings and does not limit the number of decimals1. As for transformations,
both PDF and SVG specifications recommend using double-precision floating-
point numbers (ISO 32000-1:2008§7.10.5.1) to reduce rounding errors when
rendering. However, document viewers perform these operations and could
use a higher precision format if needed. Thus, data values encoded in PDF
charts can be theoretically recovered with up to five decimals with no impact
on file size (the floating value will occupy 32 bits regardless of the number of
decimals). The precision of values extracted from SVG charts is theoretically
not bounded. Returning to our previous example, obtaining the same five-
decimal level of precision with a raster chart ranging from 0 to 1000 would
require 100 million pixels.

5.2.2.2 Recovery of Occluded Data

The vector graphic can include all geometry in a visualization, regardless
of what is viewable in a final rendering. In particular, by default occluded
shapes are included, even if completely hidden when rendered. This enables
the recovery of occluded data, a common issue with many charts [79, 182].
For example, a legend often hides part of a series, line series might overlap or
cross each other, or a dense scatterplot might have clusters of indistinguishable
points due to stacking.

5.2.2.3 Reduced Ambiguity

Classifying the role of elements in a chart is challenging in general [80, 182,
302] and raster image compression makes this even more difficult. For ex-
ample, artifacts like blurry edges and irregular fill colours make elements
hard to automatically separate. Additionally, rasterized text such as alphanu-
meric labels and annotations has to be located and recognized using OCR.
With vector graphics, shapes are clearly identified and text is often directly
accessible.

1 https://www.w3.org/TR/SVG/

68

https://www.w3.org/TR/SVG/


5.2 background and related work

5.2.2.4 Ubiquitous

Most charting tools offer to export in vector formats, and this format is com-
monly used to share charts. On the web, the SVG format is natively supported
and often preferred in a context in which pages are rendered on different
screens of different sizes. Specifically, charts are commonly shared online in
the SVG format [21]. Because of their scalability properties, vector graphics
also represent a substantial proportion of all charts included in documents.
For example, the popular PDF format allows the inclusion of different types
of content such as text, fonts, raster images, and, specifically vector graph-
ics [247]. In fact, major publishers such as IEEE [174] and Springer [361]
recommend the use of vector graphics, because “Creating and saving your
graphics in vector format will ensure that your graphics appear as clearly as possible
in your final published article”, and “Vector graphics (rather than rasterized images)
should be used for diagrams and schemas whenever possible”.

Quantifying the proportion of vector charts shared on different platforms
and medias is difficult. As an example relevant to the HCI community, we
counted2 that vector charts represented 38% of the 5,855 charts published in
the last six years (2015-2021) of proceedings at the Conference on Human
Factors in Computing System (CHI). In a similar analysis, Choudhury et
al. found up to 70% of vector charts across the top-50 computer science
conferences spanning all fields [54].

5.2.3 Involving Users to Improve Accuracy of Chart Data Extraction

A large body of work looked at fully-automatic pipelines for chart extraction,
see Davila et al. [79] for a recent survey. While a fully automatic approach
might be desirable, Davila et al. found that most approaches struggle when
faced with charts in-the-wild. They list common characteristics of charts from
PubMedCentral papers3 noting “despite being common, none of the works covered
here dealt explicitly with these and other chart complexities”. In fact, this motivated
a chart mining competition held annually since 2019 [78]. Yet, as of 2022, the
best approach (relying on large deep-learning models [241]) could recover
only 69% of the data from charts in-the-wild, and the accuracy of the recovered
data is not reported [80]. These poor performances may be attributed to the
great diversity of charts [182] and the difficulty to obtain large annotated
datasets, forcing automatic approaches to use artificial datasets and limit their
scope to specific chart-styles and encodings. As a result, these approaches
can fail when charts deviate even slightly from the training dataset [79].

When fully automatic approaches fall short, a common solution is to resort
to manual or semi-automatic approaches to chart extraction [330]. Manual
approaches to chart extraction such as Digitize [304] and Ycasd [137] rely on
human annotations: after a calibration step to define the axes, the user needs

2 We manually annotated which figures were charts after extracting all figures in the six years
of CHI papers. We calculated the proportion of those that did not contain a single raster
element.

3 https://www.ncbi.nlm.nih.gov/pmc/

69



chartdetective

to click on every data point in the chart. Semi-automatic approaches provide
tools relying on computer-vision to facilitate and speed up manual extraction.
For example, WebPlotDigitizer [324], Engauge Digitizer [119], and DataThief
III [387] include automatic selection tools based on masking and colour
filtering. The parameters of the underlying algorithms (e.g., curve fitting,
blob detector, line tracing) can be tweaked for better results. ChartSense [182]
goes one step further by automatically extracting marks from a chart and
requiring users to only specify critical features like the y-axis, and to check
and correct the automatic selection. By involving users, these tools support a
larger variety of charts.

In this work, we also use a semi-automatic approach to support a greater
diversity of charts. However, our algorithms leverage structural information
in vector graphics for more accurate extraction.

5.2.4 Leveraging Structured File Formats

Charts can be embedded using formats with more structure than raster images
(e.g., HTML, D3.js). Perhaps because of their ubiquity, most of the work on
chart data extraction revolves around rasterized charts. Indeed, any format
displayable on-screen can be trivially converted to a raster image. However,
for the task of chart extraction, the structure will need to be recovered through
an often imperfect vectorization step.

Instead, others have circumvented this vectorization step by using formats
which preserve structure and semantics. For example, D3 [34] and Vega-
Lite [338] directly embed chart data and specifications, making it possible to
redesign an existing visualization [147], create re-usable styles [148], search
visualizations based on structure and style [166], answer questions [193] and
generate visual explanations [193]. However, these approaches are limited to
charts embedded in these specialized formats and do not support the broader
spectrum of charts in formats such as PDF or SVG.

Although the semantic role of each shape is lost, the vector format consti-
tutes a middle ground as it provides precise information about chart geome-
tries and vector charts are widely used [21, 54]. Previous work leveraged the
vector formats to classify visualizations [21, 348], create visualizations [256],
retrieve visualizations based on their structure [227], and generate chart an-
imations [119]. While some of these work try to recover information about
visualizations including charts, they are not concerned with obtaining the
precise underlying data. Instead, they use simplifications, for example, by
assuming the data is already available [119] or by recovering only high-level
characteristics [21, 348], often sufficient to accomplish their goals. Closest to
our work, Choudhury et al. [54, 55] proposed a fully automatic pipeline that
extracts information from line graphs in a PDF to generate natural language
summary descriptions. However, as is common with automatic pipelines [79],
their solution relies on strict assumptions. For example, the approach assumes
each line series has a unique colour, axes lines are close to the image boundary,
tick marks intersect with axes lines, and legends are close to curve paths.
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Figure 5.2: The same chart can be formed with different vector shape arrangements: (a) One-To-One when shapes
match semantic elements; (b) One-To-Many when one shape maps to multiple semantic elements; and (c)
Many-To-One when many shapes map to a single semantic element.

In this work, we also focus on vector charts. However, we avoid making
strict assumptions about chart layout and design. Instead, we adopt a semi-
automatic approach to recover data from diverse charts using different styles
(line, bar, scatter, and box plots).

5.3 challenges and design goals

We first summarize the main challenges when extracting data from vector
graphics, then propose a set of system design goals. We use these to drive the
design of ChartDetective, a new system leveraging vector graphics specifica-
tions to extract data from charts.

5.3.1 Challenges of Vector Chart Extraction

When Jung et al. [182] designed ChartSense to extract data from rasterized
charts, they faced three main challenges: 1) chart styles are diverse; 2) visual
entities can overlap; and 3) there is no off-the-shelf solution for text-region-
detection. While reverse-engineering vector charts help with some of these
challenges (see Section 5.2.2), some remain and new ones arise.

C1: Chart Diversity – Charts vary in the way data is represented as graphical
shapes and style. To better understand this diversity, we manually reviewed
and annotated the 5,855 charts we extracted from the proceedings of CHI
from 2015 to 2021. The majority could be classified into 12 categories: bar
chart (43.3%); line chart (25%); scatter plot (9.6%); box plot (9.4%); stacked
bar (9.3%); heat map (0.9%); pie chart (0.8%); violin chart (0.7%); density plot
(0.6%); radar chart (0.4%); and stacked density plot (0.1%). Some combined
different encodings (2%), for example a bar chart combined with line series, or
a box plot using scatter points. While difficult to quantify, we observed many
variations in style, such as embellished charts [20], diverse colour palettes,
annotations, and overlays. Tools to extract data from charts require flexibility
to adapt to this diversity.
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C2: Inconsistent Vector Specifications – A raster image is the result of exactly
one configuration of pixels but vector graphics can be generated from a
theoretically infinite number of shape arrangements. We define shape as
a single geometric shape defined in a vector graphics language and chart
element as a semantic element in a chart (e.g., a series, an axis, a legend).
In our exploration, we found three relationships between shapes and chart
elements (Figure 5.2).

- One-To-One is when each shape maps to a unique chart element (e.g., a
line maps to a series).

- Many-To-One is when multiple shapes represent a single chart element.
For example, there were two common ways of representing dashed-lines:
applying a “dashed-line” style to a line or using several smaller lines,
one per “dash”. Even contiguous chart elements like a line series are not
necessarily encoded as one polyline. For example, matplotlib has a tendency
to split a single line series into smaller connected lines.

- One-To-Many is when a single shape represents multiple chart elements.
The vector format is flexible enough to allow the definition of disconnected
shapes (by using a moveto primitive when defining the path). This behaviour
is often exploited to draw all the bars from a bar chart using the same shape,
or drawing the legend and the series at the same time.

The challenge thus becomes how to divide or group shapes to get a one-to-one
mapping in order to match humans’ perception of a single shape and make
the extraction of data possible.

C3: Hidden Shapes – Vector graphics may contain shapes that are invisible
in the rendered image such as shapes occluded by other shapes. However,
some hidden shapes are meaningless and introduced by mistake using vector
editing tools such as Inkscape. For example, we found text and annotations
completely occluded by other shapes. They serve no purpose because they
are invisible when rendered, and most likely result from mistakes. We also
observed several examples of shapes hidden by modifying their colours
instead of being removed. For instance, a user might hide axes or grid lines
by setting the stroke and fill colour to match the background. However, these
shapes remain in the vector specification. Of course, these hidden shapes
should be ignored, but identifying them systematically is difficult because
they take various forms.

C4: Rendered Text – Text in vector graphics can be specified using text-specific
vector graphics command to position a string of characters using attribute
like font and size or by forming letters using geometric shapes. For the latter,
the text cannot be directly recovered as each letter is represented visually not
semantically. In that case, identifying text regions and extracting the text then
becomes as challenging as with raster images.
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5.3.2 Design Goals

Using those main challenges, we formulate a set of design goals to guide the
development of our system. They consider previous limitations regarding
the lack of flexibility and the poor performance when faced with charts
in-the-wild [78, 79], leverage the advantages of semi-automatic rather than
fully-automatic solutions [182, 330], and follow recommendations for mixed-
initiative systems [168, 273].

D1: Maximize Data Accuracy – For reliability and repeatability, high accuracy
means a low relative error between the extracted values and ground truth
values in the original data. Previous work seldom reports accuracy, yet accu-
racy was necessarily limited by the resolution of the raster images [79]. We
consider accuracy as the utmost priority and aim to leverage vector graphics
to obtain high-fidelity data.

D2: Support Diversity – Across various forms of charts (see Challenge 1), flexi-
bility is required to support different ways of encoding data (e.g., line, bar,
scatter, box) and variations in style (e.g., colour, size, shape, organization).
In practice, this means making few assumptions [79], and likely incorpo-
rating user interaction in the extraction process to disambiguate alternative
extraction outcomes.

D3: Minimize User Interaction – While a fully automatic approach would be
ideal, in practice, the user has to be involved—if only to check that the result is
correct. Previous work can be placed on a continuum from fully manual [137,
304] to semi-automatic [81, 173, 182, 245, 324, 387] to fully automatic [79]. Our
goal is to minimize user involvement by automating tedious and long tasks.

D4: Simplify Verification – Checking data extracted from a large, dense chart
could entail verifying thousands of data cells. Users should be able to quickly
check that the chart was accurately extracted, identify mistakes (if any), and
correct them.

5.4 chartdetective

Feel free to try the
tool on this thesis
document. All charts
are in the vector
format.

ChartDetective is a system to extract underlying data from vector charts by
leveraging the vector information. A live version of ChartDetective is ac-
cessible online: http://ns.inria.fr/loki/chartdetective. Below, we detail
ChartDetective’s interface and functionalities. The functionalities try to tackle
each challenge and design goal identified in 5.3. As such, direct references
are added in parenthesis whenever a functionality responds to a challenge or
design goal.

5.4.1 Interface

ChartDetective has two interfaces: one to upload a file or document and select
a chart to extract, and one to extract data from a chart. The data extraction
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Data Table Chart View

Reconstructed Chart

Figure 5.3: ChartDetective is composed of three views: the Chart View showing the chart being extracted; the Data Table
with the tables for X and Y axes and the extracted values; the interactive Reconstructed Chart.

interface (Figure 5.3) consists of three main views: 1) The Data Table display-
ing the data extracted from the charts so far; 2) The Chart View showing
the chart undergoing data extraction; and 3) the Reconstructed Chart which
recreates portion of the original chart using data extracted so far. The interface
deliberately presents the information in multiple views [400]; all views are
showing at all times, side-by-side, and the interface can be re-arranged by
dragging and resizing the three views to adapt to different screen resolutions.

5.4.2 Selection of Chart Elements

The selection of an element in the chart initiates the extraction process. Chart-
Detective proposes several ways to perform a selection even when the targets
are small or occluded (C2, C3).

Simple Selection – Using the Chart View, a user selects shapes
composing the chart by either clicking on them one-by-one or by
using a marquee selection through a mouse-dragging motion for
multiple selection and small hard-to-select objects. As is common

with vector software, users can also add and remove elements from their
selection by holding the shift key.

Shapes under the cursor or included in the marquee selection, are high-
lighted to preview the selection. A blue animated dashed outline highlights
shapes because it is salient for shapes of different sizes and colours. Once
selected, shapes are grouped, surrounded by a blue rectangle, and become
draggable.

Fine-grained Selection – While simple selections work well for basic
charts, selecting elements becomes tedious and slow as the number
of data points increases or their size decreases. In a worst-case
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scenario, selection may be impossible for overlapping elements
(C3). There are two mechanisms to help in these situations.

• Users can zoom-in using the mouse wheel and pan by dragging while
holding the space bar . This helps when small elements are hard to select
or distinguish when the full chart is viewed.

• There are also two view filtering mechanisms: a colour filter (Figure 5.4b)
and a shape filter (Figure 5.4c). When a chart is loaded, all unique colours
and shapes used by the chart are identified and displayed as filter buttons.
The user can toggle these colours and shapes to remove or add associated
shapes from the rendered chart. This helps particularly with dense charts.
For example, users can isolate a specific series in a scatter plot by filtering
per shape (e.g., only keeping circle-shaped markers or green-coloured
dots). Filters can be combined like a logical “AND” (e.g., to select only red
circle-shaped markers, see Figure 5.4d). Once only the elements of interest
are left, selection is easier and can be done with a quick marquee selection
(D3).

5.4.3 Extraction of Data

To extract data, ChartDetective relies on drag-and-drop interactions where
elements selected in the Chart View are dropped in the appropriate area of
the Data Table. Depending on the drop zone, different algorithms are used
to extract and analyze the shapes (D3).

0 1 2 3

Extract Axes – Extracting an axis is accomplished by selecting at
least two tick marks in the chart, then dropping them on the cor-
responding horizontal or vertical axis of the Data Table. Typically,
extracting both the X and Y axis requires two drag-and-drop in-

teractions. Extracting the axis title requires another drag-and-drop by first
selecting the title in the chart view, then dropping it on the title of the data
table.
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Figure 5.4: (a) Shapes in the can be filtered (b) by colour or (c) by shape. (d) Filters can also be combined.
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Extract Data Points – To add a new series shapes are dropped on
one of four zones indicated by a title, an icon, and a colour: line

, bar , box plot , scatter . Each drop zone corresponds
to a unique encoding of the data. ChartDetective supports four

types of data visualization used by the four most common chart types in
CHI publications: bar charts, line charts, box plots, and scatter plots (C1).
Supporting other visualizations is a matter of writing the corresponding
algorithm which takes a vector shape as input and outputs data points.

Once the data is extracted, a new row is added to the table using the colour
of the series to be easily identifiable (D4). The corresponding shapes in the
Chart View become translucent and unselectable to allow the selection of
shapes potentially hidden behind. These translucent shapes also act as a
visual guide to immediately see what remains to be selected.

Whenever possible, ChartDetective automatically mines the name of the
extracted series by searching for a legend in the figure. The algorithm works
in two steps: 1) find another shape with the same colour as the one extracted;
and 2) extract the text at the right of the shape and use it as the name of the
series. While this algorithm has obvious failure cases (e.g., black-and-white
charts), in practice this high-level assumption is more often correct. Errors
can be corrected by dropping the legend directly in the cell indicating the
series name.

Extract Error Bars – ChartDetective supports the extraction of error
values represented as bars or “whiskers”. In ChartDetective, error
bars are always linked to an existing series. As such, after extracting
a series and adding a new row to the Data Table, the user can

select error bars in the chart and drop them on a zone at the left of the
corresponding series row. The error bars are matched to series data points
based on order and the upper and lower bounds are calculated.

Modify Extracted Values – Extracted series and axes in the
Data Table can be modified or removed. The Data Table is ed-
itable like a spreadsheet: clicking a cell edits a value. Data points
can also be added to an existing series by first selecting the shapes

on the Chart View and then dropping them directly on the row of an existing
series. The added shapes and extracted data points are incorporated into the
series.

Similarly, the title of all tables and the name of all rows can be edited
manually (C4) or updated by dropping text selected from the Chart View.
The selected letters are merged to form words and sentences when dropped
into the Data Table. If no text glyphs are found in the selection, the text is
recovered using an Optical Character Recognizer (C4). This is done by first
rendering the selected shapes on a blank canvas before passing it to the
recognizer.
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5.4.4 Verify Results

Mistakes can happen when extracting the data from charts, for example: data
points can be missed, elements may be incorrectly interpreted as data, and
legends might be mismatching. In addition to providing a view of the data
table and an option to export it as a CSV file, ChartDetective provides passive
and active mechanisms to verify the success of the extraction (D1, D4).

Reconstructed Overlay – Users can actively check that the data cells
match their expectation by examining a data point overlay updated
when positioning the mouse cursor above cells in the Data Table.
Two different overlays are shown: 1) when hovering over axis

values, a vertical or horizontal bar shows the extent of the axis where ticks
were extracted; 2) when hovering over a data point from a series, a blue cross
is rendered at the corresponding position in the chart. This allows the user
to verify that a data point is correctly extracted and inspect the mapping
between series shown in the chart and series in the data table (D1, D4). For
example, to find and fix a potential mismatch in the legend.

(2.5, 6)

Reconstructed Interactive Chart – As data is extracted, a second
chart is progressively reconstructed in the Reconstructed Chart
view. To make verification easier, the reconstructed chart shares the
same visualization and style such as colours and marker shapes.

This allows the user to glance at the Reconstructed Chart and compare it
with the Chart View: a perfect extraction creates a perfect match between
the two views (D1, D4). The reconstructed chart is interactive; users can
get information on hover (e.g., exact values), hide series, and zoom in on
a particular area of the chart. Additionally, the chart can be exported to
an HTML file, allowing the generation of interactive charts directly after
extracting a static chart.

5.4.5 Getting Started and Interacting

ChartDetective supports traditional and advanced interaction mechanisms
in terms of signifiers, feedback, and feed-forward to support exploratory
behaviours and help users get started.

5.4.5.1 Discoverability

ChartDetective follows common guidelines to promote discovery such as
limiting the number of commands available at any given time, making com-
mands distinguishable, and providing continuous feedback [249]. Because
interactions relying on drag-and-drop can be hard to discover [243], we took
special care to inform users when they could initiate a drag-and-drop in-
teraction and where they could drop their selection. New users unaware of
the drag-and-drop interface are likely to click one of the icons below the
Data Table. Doing so opens a ToolClip [140] showing a brief explanation and
animation of the drag-and-drop interaction to extract new series. Addition-
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ally, when a drag-and-drop interaction is initiated, possible drop zones are
highlighted based on the shapes being dragged (Figure 5.5). For example,
a drag selection of text elements causes an overlay over all zones accepting
text like the table title and series’ names (Figure 5.5B). Conversely, a drag
selection containing shapes will only highlight zones accepting shapes, and
hovering over a zone accepting only text turns the zone red and the pointer
becomes a “prohibition sign” (Figure 5.5C) to mark the zone as invalid.

setosa

setosa

setosaA

B

C

Figure 5.5: During drag-and-drop interactions, (A) drop zones compatible with the
selection are highlighted to indicate where elements can be dropped. (B)
The drop zone turns blue if hovered with a selection of the proper type,
and (C) red otherwise.

5.4.5.2 Safe Exploration

The interface is designed so that users understand the consequence of their
actions and that all actions can be undone. All commands provide detailed
feedback after being executed through notifications at the bottom of the
screen. For example, when the data extraction fails, a message is shown to
indicate what might be the reason (e.g., “too few shapes in the selection.”).
Additionally, there is a complete undo/redo mechanism to recover from any
action.

5.4.6 Implementation

ChartDetective is implemented in TypeScript using React4 for the interface,
Ploty.js5 to reconstruct an interactive version of the chart, Tesseract.js6 to
recover rendered text, and PDF.js7 to parse and render PDFs. While there
are multiple vector formats, internally, we use the PDF representation as it
is the most low-level and any vector format can be trivially converted to
PDF. As such, ChartDetective supports all PDF documents conforming to
the ISO-32000 (PDF) specification, and also natively support the SVG format
using svg2pdf8. All modern web browsers are supported. The full source
code is available online: http://ns.inria.fr/loki/chartdetective.

4 https://reactjs.org/
5 https://plotly.com/javascript/
6 https://tesseract.projectnaptha.com/
7 https://mozilla.github.io/pdf.js/
8 https://github.com/yWorks/svg2pdf.js/
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5.4.6.1 Access to Vector Specifications

We modified PDF.js to store and provide low-level vector graphics commands
after parsing the PDF. This includes retrieving the full list of shapes forming
each page of a PDF and determining their final location and size after process-
ing all transformations, group positioning, clipping, and buffered rendering.
This allows the selection of a sub-part of the PDF by only keeping shapes
completely within a defined area.

5.4.6.2 Pixel-Perfect Selection

Because shapes can take complex forms, we implemented selection using
a “hit-test buffer” for pixel-perfect selection with little computational cost.
This means charts are rendered twice: once to show a preview and once in
an off-screen buffer in which each shape is assigned a unique colour. Shape
selection is achieved by retrieving the colour of the pixel underneath the
pointer. The hit-test buffer is only redrawn when absolutely necessary such
as a change of zoom or when a shape filter changes.

5.4.6.3 Shape Filtering

The colour filter is relatively straightforward to implement: create a list of
colours to filter then hide shapes with any of those colours. The shape filter
requires computing a form descriptor: a vector of numbers describing a shape.
To create effective shape filters, the form descriptor must not be too specific
while also not too general that all shapes would match. We use a normalized
Freeman chain-code with 8 connectivity [112]; this descriptor is invariant
in translation, scale, and rotation, and is robust against slight variations of
aspect ratios.

5.4.6.4 Shape Alignment and Attributes

While ChartDetective makes no assumptions on the style of the charts, it relies
on attributes which are fundamental to the way information is visualized.
The pseudo-code is provided in Appendix A. All shape selections are first
sub-divided to recover a consistent specification (C2) before passed to the
extractors.

1. Alignment: The centroid of shapes such as axis ticks, line series, scatter
plot markers is used to recover their position. For example, it is assumed
that lines go over the centre of the data points. In a vertical bar chart, the
top of a bar is used to get the associated value.

2. Grid line: If a grid line is found close to the tick, its position is used instead,
because we found it to be slightly more accurate.

3. Box plot: It is assumed that box plots use the original and widely used
representation first introduced by Tukey [386]: The inner quartiles are
represented as a rectangle including any stroke outline when calculating
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Figure 5.6: Charts that participants had to extract during the usability study. Charts were extracted from the following
CHI proceedings (left-to-right, top-to-bottom): [231] [418] [221] [113] [41] [389] [59] [19] [107] [183] [252] [178]

values. The median is a line inside this rectangle, and any stroke outline is
ignored when calculating the value.

5.5 usability study

We conducted a user study to see if the current implementation of Chart-
Detective fulfills our design goals in terms of supporting diversity (D1) and
minimizing user interaction (D3). This study focuses on usability, answer-
ing the question: can participants use ChartDetective? A follow-up study
measures the quality of the extracted data when compared to other tools
(Section 5.6).

5.5.1 Participants

We recruited 13 participants (22 to 34 age range, mean = 27.8, 7 identified
as male and 6 identified as female)9. We screened participants for basic
knowledge of charts: all participants were familiar with bar charts, line
charts, box plots, scatter plots and error bars (self-assessed on a 5-point scale).
Remuneration was $15 CAD.

80



5.5 usability study

5.5.2 Dataset of Charts to Extract

We extracted 12 charts from the proceedings of CHI from 2015 to 2021. We
consider the four most popular chart types at CHI: line charts, bar charts,
scatter plots, and box plots. Further, we collected three charts per type,
according to complexity:

• Simple: Few series and few data points that all use the same encoding.

• Compound: Two or more encodings are combined to represent data points.
For example, a bar chart with lines, or a box plot with scatter points.

• Dense: Large number of series and data points, but all data points use the
same encoding.

Compound and Dense charts have been notoriously difficult to extract using
existing systems [79, 182] and thus pose a real challenge. Note that using our
categories above, previous work has exclusively been tested on Simple charts.
We chose charts randomly amongst those fitting these criteria to maximize
diversity while remaining ecologically valid (see selected charts in Figure 5.6).
All charts were used by participants unaltered from the original paper; as
a result, some are missing titles or legends, have overlapping or hidden
elements, and some have grouped or separated shapes.

5.5.3 Procedure and Design

Participants took part remotely. After watching a two-minute video tutorial
demonstrating the use of ChartDetective, participants were asked to extract
the underlying data of 12 charts as accurately as possible and to think-aloud
while doing so. The experimenter only intervened during the first four Simple

charts to answer questions and guide participants if necessary; participants
worked independently for the remaining eight Compound and Dense charts.
Participants advanced to the next chart by pressing a “Done” button or after
five minutes, whichever came first. After each Simple chart, the experimenter
asked participants to identify 1) what was difficult; 2) what was easy; 3)
what was tedious; 4) what was fast; and 5) what was slow. For each answer,
participants also rated its importance on a 5-point scale.

We recorded the participant’s screen and microphone, as well a log of
interactions with ChartDetective and the final extracted data. After the session,
participants completed a questionnaire including a System Usability Scale
(SUS) [179]. Finally, the experimenter conducted a semi-structured interview.

The order of the charts varied across participants: The four Simple charts
were always first, followed by the eight remaining charts. The the charts order
was counter-balanced within these two groups.

Overall, each participant extracted data from 4 (Chart Type) × 3 (Chart

Complexity) = 12.

9 Our study was reviewed and approved by our institutional research ethics board. Consent
was collected from all participants.
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Complexity
Bar Chart Line Chart Scatter Plot Box Plot Total

✓ x - + ✓ x - + ✓ x - + ✓ x - + ✓ x - +

Simple 100 0 0 1.3 100 0 0 0 100 0 0 1 100 0 0.4 0 100 0 0.1 0.6

Compound 100 0 0 1.5 100 0 0 0.1 89.6 1.5 12.3 9.2 99.8 0.1 0.2 0 97.4 0.4 3.1 2.7

Dense 100 0 0 0 100 0 0.7 0 100 0 0 0 98.6 0.4 1.8 3.9 99.7 0.1 0.6 1

Total 100 0 0 0.9 100 0 0.2 0 96.5 0.5 4.1 3.4 99.5 0.2 0.8 1.3 99 0.2 1.3 1.4

Table 5.1: Breakdown of the success rate when comparing the series extracted by participants to the series of the ground-
truth data. All values are percentages. Correct (✓), Incorrect (x), Missing (-), and Unwanted (+).

5.5.4 Results

5.5.4.1 Success Rate

To test the success rate in terms of usability, we compare participants’ data to
data extracted by one author before the experiment. The reasoning is twofold:
first, we want to isolate the usability aspect and are not concerned by the
fidelity of the data extracted by our tool at this stage, only by how well
can participants use ChartDetective; second, the success rate can be directly
interpreted as a measure of how close participants were to using the tool like
an expert user, represented by the author who extracted the data. As such a
series from the participant data is matched with a series from the author data
(using a best-fit approach). We then classify each data point (i.e., cell in the
data table) of each series in one of the following four categories.

• Correct (✓), for a data point that is expected (i.e., present in ground-truth
data) and that is strictly equal to the ground-truth value.

• Incorrect (x), for a data point that is expected but is not equal to the
ground-truth value.

• Missing (-), for a data point that is expected but was not extracted (i.e.,
present in ground-truth but not in the participants’).

• Unwanted (+), for a data point that was not expected (i.e., present in
participant data but not in ground-truth).

We measure success rate by calculating the rates of these four categories.
For the Correct and Incorrect rate, we divide the count by the minimum
between the number of data points in ground-truth and the number of data
points in the participant data. For the Missing rate, we divide the count by
the number of points in ground-truth. For the Unwanted rate, we divide the
count by the number of points in the participant data.

Overall Success Rate – Overall, participants extracted charts with high success:
99% (SD=5.9) of the extracted data were Correct, with only 0.2% (SD=1.5)
Incorrect data points (D1). Table 5.1 presents the breakdown of the results.

82



5.5 usability study

In fact, participants achieved perfect success rate in terms of Correct data
for all bar charts and line charts, and above 98% for all other charts. The
only exception being the Compound scatter plot with only 89.6% (SD=17.7)
of Correct data. Below, we further investigate the cause of some of these
results.

Confusion for Compound Scatter Plot – We found that the lower scores for
the Compound scatter plot were due to participants misunderstanding the
chart. In fact, the data points extracted by participants were Correct, but
not separated in series as it should have been. Both P1 and P5 interpreted
different series as one single series (e.g., grouping all yellow dots as one
single series, instead of distinguishing between crosses and circles). Because
we calculate success rate by matching one series to another, if a series is
missing, its data points count as Incorrect. Similarly, the extra data points
merged within the same series count as Unwanted data. If, instead, we look
for data points independent of series, the percentage of Correct data for the
Compound scatter plot reaches 99%.

Filtering Causing Unwanted Data – Participants sometimes selected the legend
as part of a series. For example, with the Simple scatter plot, all participants
made the selection of series easier using colour-filtering. However, doing so
isolates the data points making the legend appear as part of the series. As a
result, three participants selected circles from the legend, creating Unwanted

data.

Selection Difficulties with Box Plots – Box plots required a precise selection of the
whole element at once. However, when the boxes were close to other elements
(e.g., the axis in the Compound box plot), some participants inadvertently
included other elements as part of the box, creating an Incorrect data point.

5.5.4.2 Time

On average, participants extracted charts in 3min 6s (SD=1min 18s) (D3). Only
2 participants were not able to complete extractions within 5 minutes: P4

could not extract all error bars for the Dense bar chart and P10 did not
have time to select the last two blue lines in the Compound scatter plot. The
most dense charts were not necessarily the slowest to extract. For instance,
extracting the Dense scatter plot and its 2,000 data points took only 1min 58s
(SD=23s). But overall, Dense charts were the slowest (M=3min 17s, SD=1min
22s), followed by Simple charts (M=3min 12s, SD=1min 10s) and Compound

charts (M=2min 50s, SD=1min 19s). Still, all average times were well under 4

minutes, confirming that ChartDetective minimizes user interaction enough
to allow the extraction of charts in reasonable time (D3).

5.5.4.3 Error Bars and Series’ Names

Participants correctly extracted 98.4% (SD=11) of the error bars and 82.8%
(SD=34.1) of series names. These results were calculated on a subset of charts
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considering that not all charts had error bars or legends. It is unclear why
the series names score is lower; some participants did not extract the series
names for no apparent reasons, even though they were aware of the feature
as they all did it for Simple charts.

5.5.4.4 Usability

On average, the System Usability Score was 90 (Mdn=90, SD=4.2). For reference,
a System Usability score above 85 is considered excellent [18].

On a 5-point scale, participants rated all features of ChartDetective as useful
(4 or above): participants “strongly agree” on the usefulness of the colour
filter (Mdn=5, SD=0, ), the shape filter (Mdn=5, SD=0.7, ), the selection
system (Mdn=5, SD=0.3, ) and the reconstructed chart (Mdn=5, SD=0.7,

). Additionally, participants “agree” that the overlay was useful (Mdn=4,
SD=1.5, ).

Regarding participants self-assessed performance with ChartDetective, they
all agreed that they could extract and reconstruct charts accurately (Mdn=5,
SD=0.5, ) and that they were in control of what they wanted to extract
(Mdn=5, SD=0.6, ). Finally, they all agreed that they would like to use the
system again (Mdn=5, SD=0.4, ).

5.5.4.5 Strategies

While the tasks were identical across participants, they sometimes adopted
different strategies to extract the data.

Filter to Isolate, to Declutter, or to Guide? – All 13 participants used the
filters but we observed three distinct strategies: filtering to isolate only the
element to select (i.e., only one active filter); filtering to declutter the image by
removing the few elements that were preventing a selection; filtering to guide
the selection by going through each colour one-by-one (sometimes multiple
times) to be sure not to miss any series. Participants using the declutter strategy
had the advantage of preserving visual context. For example, it made it easier
to distinguish marks that are part of the legend and would have looked like
data had the isolate strategy been used.

Step Order – The order in which to perform the extraction was often a
trade-off between speed and cognitive load. Some participants extracted all
series (e.g., bars, lines) before moving on to error bars or legends, making
the selection process easier by repeating the same task and reusing the same
filters. Others preferred to extract the error bars and the legend right after
extracting the corresponding series, making it easier to match a series with
its meta-data. Participants would often decide on a strategy based on chart
complexity.

Selection Strategy – Participants either selected elements precisely, often
one-by-one, using the zoom-in function if necessary, or they made a first
rough selection then refining it by using SHIFT to add to or remove elements.
Some participants also relied on the ghost shape mechanism to speed up
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the selection of the last series: once a series is extracted, its shapes become
unselectable, meaning that when only one series is left, the shapes that are
selectable will necessarily belong to the last series.

5.5.4.6 Comments

Overall, participants were positive about ChartDetective and its functionality.
Below, we group participant comments from the interview and during the
study around a set of themes that were frequently mentioned. Due to the use
of semi-structured interviews, some of these themes were only mentionned
by a subset of participants.

Learnability – A few participants commented on learnability. All agreed that
the tool was quick to learn.

P6 – "I liked that the cognitive load was pretty low, like, it was super
fast to learn... I got markedly better after like 2, 3 tries. I really liked that
it had a lot of the traditional settings and feel to it."
P12 – "I’ve been using it for less than an hour and I already feel at ease"

Specifically, P7, P11, and P13 commented about the drag and drop interface
saying it made the interaction easy due to the visual feedback of what is
being dragged and where it can be dropped.

P7 – "That is actually quite useful that it shows you the... sort of
see-through thing you’re dragging."
P11 – "Drag’n’drop is truly useful. It’s super clean, like you can easily
select and then you immediately see where you can drop."
P13 – "I liked how it was was organized, how you could... like it was
easy to have that one navigation bar on the side and pull everything
over and see it appear on the [Reconstructed] chart below."

Most appreciated features – An overwhelming majority of participants com-
mented about the colour and shape filters, most cited them as one of their
favourite features.

P8 – "Filters are super useful. Really facilitate the task. Some [charts]
would even be impossible [to extract] without."
P12 – "The filters, I really thought it was a killer-feature. Your chart is
super crowded, you ask yourself: «Wow, how am I gonna do that, it’s
too difficult», I do two clicks, then it becomes super easy."

Other features were less often mentioned by participants as something they
liked: the reconstructed chart (P2, P11 P13), the ghost shapes (P3, P7, P8), the
overlay (P8), how the legend is sometimes automatically matched with series
(P2), and the coloured table (P12).

What was tedious, difficult or slow? – After each Simple chart, participants
were asked what they found tedious, difficult or slow and how much using a
5-point scale. The most frequently mentioned difficulty was the selection of
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elements (P5, P6, P7, P10, P12, P13), although they still rated it as relatively
easy on average (from very hard to very easy: Mdn=4, SD=.83, ). Specifically,
the selection of error bars were most often mentioned as moderately tedious
(from extremely to not at all: Mdn=4, SD=.71, ) and slow (from very fast to
very slow: Mdn=3, SD=.75, ).

P1 – "Selecting error bars. That was difficult, just because they were
overlapping."

P8 – "Selecting error bars [was slow] because you have to select them a
bit like... one-by-one to [...] distinguish them between series."

What was easy or fast? – Similarly, we asked participants what they found
easy and fast. The drag-and-drop interface was most commonly cited as
being easy (from very hard to very easy: Mdn=5, SD=0, ). The selection after
applying filters was most often mentioned as fast (from very fast to very slow:
Mdn=1, SD=.37, ).

P3 – "The drag and drop... that tool is easy to understand and use. And
it is easy to isolate the data you want to collect [using the filters]."

P2 – "Selecting the points, thanks to the filtering, it was really fast".

Accuracy perception – While participants were highly accurate overall, P7

mentioned that the artificiality of the task might have had an impact on the
quality of the data extracted.

P7 – "I’m not sure how accurately I actually covered... copied the charts,
I have to say. Because the image [Reconstructed chart] was relatively
small, and I did not spend a lot of time looking at data points if they
were correct or not. It was more like a «meh» roughly looks the same,
fine, cool. [...] Obviously because it is not data that I am invested in so I
don’t care if it is accurate or not."

5.6 data quality study

The goal of this study is to measure the quality of the data obtained from
vector charts and ChartDetective relative to what could be obtained using
rasterized images and existing tools (D1). Quality is defined as how similar
the extracted data is compared to the original data that was used to create
the chart.

5.6.1 Dataset

We create a new dataset of charts for which we know the exact underlying
data. To cover a wide diversity of chart styles and chart generators, we mix
generated charts with charts from CHI papers:
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• Generated Charts: We generated four different charts (1 bar chart, 1 line
chart, 1 scatterplot and 1 boxplot) with four different chart generators:
Microsoft Excel for Mac version 16.61, Python matplotlib version 3.5.1,
Javascript plotly version 4.10.0 and R ggplot2 version 3.3.6. All 16 generated
charts use a dataset on life expectancy and GDP per country obtained from
GapMinder10. Each chart visualization presented different information:
line charts show the evolution of the life expectancy over the years for
four regions of the world and with error bars; scatter plots show the life
expectancy depending on a country’s GDP; and box plots show the life
expectancy per region and for male and female). Generators used the
default style parameters.

• Extracted Charts: Using our dataset of papers with charts published at CHI
between 2015-2020, we used a script to find those with vector charts and
with data available on Open Science Framework11 (OSF). Only 23 papers
fulfilled this criteria (74 papers had an OSF link, but 44 of those did not
contain qualifying vector charts, and 7 had no data in their OSF repository).
Using reasonable effort, we cleaned and recreated the data used by charts
in 14 different papers and extracted between 1 and 3 different charts per
paper. The final study dataset counted 26 charts (13 bar charts, 6 scatter
plots, 5 line charts, and 2 box plots).

5.6.2 Baseline

Like ChartSense [182], we use WebPlotDigitizer as our baseline. Other tools
either do not provide their source code12 or a working implementation [182],
do not provide a full pipeline to obtain the data from charts [54, 55, 302], or are
limited in the styles and types of charts that they support [55]. Moreover, our
comparison here focuses on the best achievable results using vector graphics
compared to raster images. In that regard, the result obtained with raster
images should be comparable across tools. Thus, in the rest of this section we
use “rasterized charts” to refer to charts extracted using WebPlotDigitizer.

5.6.3 Procedure

One author with hours of experience with both ChartDetective and Web-
PlotDigitizer extracted all charts from our dataset as accurately as possible
using both tools. The author had no time limitation and ensured the data
was as accurate as possible. To use WebPlotDigitizer, extracted charts were
rasterized at 300 dot-per-inch (DPI) which is considered high-resolution and
recommended by IEEE [174]. Generated charts were obtained from chart
generators and directly outputted as PNGs for WebPlotDigitizer (300DPI),
and PDFs for ChartDetective.

10 https://www.gapminder.org/data/
11 https://osf.io/
12 On request, authors of ChartSense could not provide their source code due to proprietary

reasons.
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5.6.4 Results

Dataset n Vector Charts Raster Charts

Generated

excel 4 0.24% (0.19) 0.37% (0.21)

matplotlib 4 0% (0) 0.16% (0.08)

ggplot2 4 0% (0) 0.13% (0.12)

plotly 4 0% (0) 0.13% (0.09)

Extracted 26 0.13% (0.27) 0.68% (0.69)

Total 42 0.11% (0.23) 0.50% (0.60)

Table 5.2: Average relative error of the values obtained from vector or raster charts.
Standard deviation shown between parenthesis.

Like ChartSense [182], relative error measures how close the extracted data
is to ground-truth:

Relative Error = |
vgroundtruth − vextracted

vgroundtruth
|

We assume the chart represents the data precisely and accurately, so relative
error is solely attributed to the extraction tool. Note that the expert always
made sure no data points were missing. Thus, the ground truth data and
extracted data had the same number of points and in the same order. We
calculated the relative error of each pair of data points from the ground truth
and extracted data, and then aggregated them using the mean of all the
relative errors. This measure corresponds to how close the extracted data is
to the ground truth.

Overall, data extracted from vector charts using ChartDetective had a
significantly lower relative error than data extracted from rasterized charts
using WebPlotDigitizer (0.11% vs 0.5%, Student’s t-test p<.05). This is more than
4 times lower, corresponding to a factor of 78%. Table 5.2 breaks down the
relative error for tool and dataset.

Effect of Generator – The data obtained with ChartDetective from generated
vector charts was identical to the ground-truth with the exception of Excel
charts (relative error matplotlib: 0% SD=0, ggplot2: 0% SD=0, plotly: 0%
SD=0, excel: 0.24% SD=0.19). After further investigation, it appears that charts
generated with Excel are using some approximations and do not perfectly
represent data. While the problem exists with all types of charts such as line,
box plots and scatter, the issue becomes obvious by generating bar charts
with exact real values. Examining the SVG description of bar charts generated
by Excel, positions of bar tops is inconsistent even when data is a series of
real and regularly spaced values (e.g., 50, 60, 70). This is demonstrated by
zooming into a bar chart to see how bars do not line up consistently with
corresponding grid lines (Figure 5.7). We verified this behaviour with macOS
Excel (version 16.61) and Windows Excel (version 2205).
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Figure 5.7: Minimal example of a chart generated by Microsoft Excel and for which
the data is imprecisely depicted. Despite the bars representing exact
values (10 and 20), they do not consistently line up with corresponding
grid lines: the grid line is either below (blue bar) or above (orange bar).

5.7 discussion

Despite the importance of extracting high-fidelity data, approaches to chart
reverse-engineering predominantly focus on rasterized formats, limiting the
accuracy of the data obtained. We provide theoretical and empirical evidence
showing that extracting charts using their vector representation has advan-
tages that can lead to an improved quality of the extracted data. We also detail
the design and implementation of the ChartDetective system demonstrating
how vector information can be used to provide new features, and how it can
be processed to obtain underlying data. Through a usability study, partici-
pants found the system highly usable and were capable of extracting even
the most challenging charts. A second study demonstrated that extracting
a chart using its vector representation lead to higher accuracy of data than
when extracting the same chart in raster format and using existing tools.

Comparison to ChartSense

Jung et al. also use the relative error to compare their ChartSense system to
WebPlotDigitizer [182]: their system achieved 0.7% whereas WebPlotDigitizer
achieved 0.81%. For comparison, we found a relative error of 0.11% with
ChartDetective and of 0.5% with WebPlotDigitizer. Differences in our method-
ology likely explain different results for WebPlotDigitizer: Jung et al. obtained
their result from a user study with 16 participants whereas our results were
obtained by an expert user. Furthermore, our dataset was different: Jung
et al. used line and bar charts found on Google Images with at most two
series and nine marks per series. In contrast, we used a dataset of generated
charts and charts published at CHI, including charts with hundreds of marks.
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Regardless, both studies suggest that relative error below 0.5% may be out
of reach for raster chart data extraction using existing approaches and that
ChartDetective fulfills its goal of maximizing accuracy (D1).

Control of Anchor Points

ChartDetective differs from other manual and semi-automatic tools in that
users select whole shapes and let the system decide how to handle them to
extract the data (D3). In contrast, other systems often rely on users directly
specifying anchor points to define the exact point depicted by a marker, even
if this marker takes various forms and sizes. One advantage of our system
generated anchor points is reduced standard deviation (D1): the same shape
selection always results in the same value. In contrast, giving users control
over anchor points inevitably results in lower precision due to selection
errors or simply because users have to “guess” the centroid of shapes. This
can vary greatly depending on the style (e.g., thick lines or large markers)
and the forms of the shapes [141, 329]. We advocate for a shape-selection
approach because users can reliably select shapes (see Study 1) and that our
assumptions regarding anchor points were valid across a diverse set of charts
(see Study 2).

Open Science at CHI

Corroborating the findings of previous work [1, 398], and further motivating
the need for chart extraction methods, we experienced first-hand the difficulty
of obtaining data related to CHI papers. Of the 3,673 papers published at CHI
from 2015 to 2020, only 74 papers contained an OSF link (2%). Our automatic
mining approach likely missed data published using other methods like
custom webpages. But more importantly, even within these papers, we could
not always reproduce the charts. This was sometimes due to missing data (the
OSF link contained other material) or because only raw data was provided
without guidance to reproduce processed data used in charts. For example,
the cleaning procedure, aggregation method, and formulas applied were
missing. Additionally, there was often a mismatch between the data names in
the chart and labels in the raw data.

5.7.1 Limitations and Future Work

5.7.1.1 Support For Raster Charts

A large portion of charts remain embedded as raster graphics and cannot
leverage the benefits provided by ChartDetective. A tempting alternative
to using tools such as WebPlotDigitizer [324] could be to vectorize raster
charts so that they can be used with ChartDetective. New state-of-the-art
vectorization algorithms [228] might provide the best approximation for the
location of shapes representing chart elements and possibly help disentangle
overlapping shapes. However, many benefits provided by “original” vector
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charts would be lost and the quality of the input raster image will limit the
vectorization process. While a vectorization approach can extend our system
to rasterized charts, it seems unlikely to provide substantial benefits over
using raster-based extraction tools.

5.7.1.2 Optical Character Recognition of Rendered Text

When the user study was conducted, participants had an earlier version of
ChartDetective where rendered text could not be automatically retrieved,
and required participants to enter it manually. While we found rendered
text in vector charts to be relatively rare in practise, we added OCR support
in ChartDetective (C4). Preliminary tests suggest excellent performance: we
rendered all text in the charts used in the usability study, and the OCR
engine was able to recover 97.5% of all characters correctly. A more extensive
evaluation is needed to make definitive conclusions.

5.7.1.3 Diversity of Chart Styles

The many ways in which charts represent and encode data is one of the main
difficulties faced by reverse-engineering approaches [78–80, 182]. We choose
to evaluate our tool on real charts published at CHI that exhibited challenging
properties like high density, overlapping shapes and mixing encoding (C1,
D2). We encourage other work to do so as well, considering such charts are
abundant in practice. Of course, our dataset is not universally representative.
First, we only examine charts in the HCI research community, but others
communities might have different practices regarding charts. Second, the HCI
community is arguably more aware of good data visualization practices. This
is both a strength of our dataset because HCI charts may be more creative in
their use of marks and visual channels, but also a weakness because charts
may be clearer and exhibit fewer flaws [43].

Further, we cannot guarantee that our tool is general enough to handle all
charts. ChartDetective relies on fundamental attributes of charts and on the
structure of the vector representation. We verified these were reasonable and
applied to major chart generators, but charts could use different encoding
structures. Moreover, our system focused on the four most common data
visualizations (bar, line, scatter, and box plots), but more work is needed
to implement extractors for other types such as stacked bar, violin, and pie
charts.

5.7.1.4 Automatic Selections Through Suggestions

Considering the limitations of previous work, a goal of ChartDetective was to
preserve some user-control to allow the selection of specific data, the support
of complex and diverse charts (D2), and the verification of the results (D4).
While the time it took participants to extract charts was under 4 minutes,
this could be further shortened by automating some tasks (D3). For example,
participants often mention the selection of error bars as the most tedious. We
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believe this could be improved through suggestions generated by continuously
learning from user actions: after selecting the error bars for one series, the
system could learn to recognize the characteristic shapes composing error
bars and suggest repeating the action for other series. General selection
suggestions could also be learned from the community and be offered prior
to the user first selection, only based on the shapes identified in the chart. We
believe this active learning approach with suggestions is the best compromise
between incorporating automation while preserving high controllability [330]

5.7.2 Applications of ChartDetective

ChartDetective can power several downstream tasks that require access to
accurate data when only the charts are readily available. Specifically, readers
interested in re-analyzing the results presented in a chart can use ChartDe-
tective to extract underlying data and then use it as input to their analysis,
or to compare their results against. Other applications include the use of
ChartDetective as an intermediate step to re-design existing charts: a chart
found online or in a document might benefit from being redesigned if it is
poorly structured or deceptive [43, 246, 292], uses a representation ineffective
to support users’ task [267, 314], is overblown and shows too many data
points [385], or is not accessible because of its colour palette and style [194,
412]. For all these scenarios, the chart can be loaded in ChartDetective to let
users select only the data of interest. Users can then export the underlying
data to be visualized in an authoring tool, or, they can use the automatically
reconstructed interactive chart and tweak its specification such as chang-
ing its aspect ratio to avoid deceptive charts that exaggerate or undermine
slopes [292], its scale to remove truncated axes [43], its colour to make it print-
and colorblind-safe [194], and its encodings to make it align with the user’s
task [267, 314].

5.7.3 Takeaway for Chart Authors

Through this work, we hope to encourage authors to share their figures
as vector graphics. Besides facilitating data extraction, vector graphics have
numerous advantages: high quality at any resolution; more accessible; easily
modifiable; and typically smaller in size. All major chart generators have
an option to export charts as vector graphics which can then be directly
imported into documents such as LATEX, MS Word documents, or web pages.
We also recommend authors carefully choose chart generators because they
can differ in how well they represent data. For example, we found that MS
Excel generated less accurate charts than either matplotlib, ggplot2, or plotly.
Although these differences are invisible to the naked-eye (Figure 5.7) they are
a concern in the context of chart extraction.
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5.8 conclusion

We presented ChartDetective, a tool within the pipeline to extract data from
charts using their vector representation. Through theoretical and experimental
evidence, we showed the benefits of using vector graphics to extract data
compared to using raster images. We identified the challenges associated
with building such a system, demonstrated opportunities for novel features,
and evaluated its usability and quality of the extracted data. Recovering
complete and accurate data is the first step to tackle downstream tasks such
as redesigning existing charts or making them dynamic, interactive, and
accessible. Besides helping users recover this data, we hope our system serves
as a building block to leverage the wealth of information currently locked
inside static visualizations.
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6 B R I N G I N G I N T E R A C T I V I T Y T O S TAT I C D I G I TA L
D O C U M E N T S

Abstract Concrete

Visual

Textual

Static Dynamic

In our design space
fig. 1.1, Chameleon

allows the overlaying
of more abstract and
concrete interactive

visuals.

The previous chapters proposed ways to augment documents with interac-
tive representations. However, their implementation required the use of a
custom PDF viewer. This approach is limited to a document format (PDF)
and prevents readers from using their preferred software. In this chapter, we
investigate how to support novel interactive representations such as the ones
previously proposed, but for all document formats and document viewers.

6.1 motivation

The meaning of the word document denotes a textual record [39], originally
considered to be a paper-based artifact. However, the word document is now
often used to refer to digital files alongside paper-based artifacts, and, while
both paper-based and digital documents are still textual records, by nature a
digital file can encapsulate multimedia information and interactive features
alongside text and static images.

Despite the opportunity for dynamic and interactive content, many docu-
ments available on the internet have been produced using various file formats
(e. g. docx, pdf, ppt). The applications used to generate these document types
provide only limited support for incorporating interactivity into disseminated
versions of the documents they produce.

There are, however, many potential benefits to interactivity. In his UIST
2014 closing keynote abstract, Victor [395] notes that

‘Human beings naturally have many powerful modes of thinking
and understanding. Most are incompatible with static media. In a culture
that has contorted itself around the limitations of marks on paper, these
modes are undeveloped, unrecognized, or scorned.’

This is a good
illustration of the

media richness theory
where a rich

animated figure
would convey the

information better
than a static one.

Even a task as simple as describing an interaction technique or interactive
scenario requires careful wording when presented in static form, often requir-
ing a comic strip figure describing the interaction in several steps, rather than
letting the reader experience it (see Figure 6.1). Similarly, reporting scientific
results often requires an author to make difficult decisions toward which data,
and in which form, to report in a paper or while giving a research talk, rather
than interacting with the data or allowing a reader to interact with alternative
visualizations or analyses of the data. Even writing a simple how-to document
to perform an everyday task can be complicated if all information is static.
Some companies have attempted to make limited interactivity available in
their formats. For example, PDF files can embed multimedia and interactive
content [121, 139], but integrating interactivity into a PDF file is far from
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Figure 6.1: (1) Static documents such as PDF (left) and presentations (right) can be augmented with Chameleon by (2)
locating corresponding interactive figures in the Chameleon database and (3) overlaying them on top of the
existing documents.

easy [139] and leverages Adobe Flash which is being discontinued [5]. Sim-
ilarly, PowerPoint users can embed videos in their presentations or design
staged animation that can be used as a mean to illustrate a dynamic situation.
However, features are usually limited to specific file formats and the result
can vary depending on the software version used to display the presentation.
Moreover, limited support is provided for interactive figures.

Since interactive figures cannot be embedded directly into the document, au-
thors tend to build dedicated external web pages linked in the document [277].
However, the extra work required from readers makes them less likely to
engage with the supplementary material. Moreover, having multiple views
significantly impacts cognitive overhead mainly due to the effort required for
comparison and context switching as well as display space requirements [400].
Similarly, interrupting the flow of a presentation in order to manipulate an
interactive figure using another application harms the immersive, engaging and
effectivness aspect of the story being presented [83].

One solution to enable interactive content in documents would be to replace
the associated document formats with a novel, more flexible, file format that
would more easily enable interactivity. For example, Dragicevic et al. [91] cre-
ated a web-based tool in order to demonstrate the exploration of multiverse
explanations of statistical analyses in research papers. However, existing file
formats remain firmly anchored in users’ habits and replacing them would
require significant changes, both in software and infrastructure. Furthermore,
ideally interactivity would not be limited to new documents. Archived docu-
ments could, in many cases, also benefit from interactivity, but the process of
fully transcoding and then adding interactive elements would be prohibitive
in most cases.

What would be more ideal would be to preserve the existing formats and
workflow, and, instead, to provide tools to augment digital versions of the files
such that both new and legacy documents can become reactive documents [395].
Expanding on this point, support for the creation, dissemination, and viewing
of reactive documents [395] should allow rich and flexible access to interactive
features, preserve existing document formatting for visual correspondence
with paper versions, leverage existing file formats, and allow users to continue
to use their current document viewing tools rather than forcing them to adopt
different software applications.
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In this chapter we introduce Chameleon (Figure 6.1), a tool that combines
computer vision feature matching algorithms with an open database format
to allow the incorporation and overlaying of dynamic content over any type of
document (e. g. PDF files, Microsoft Word and PowerPoint documents, eBooks,
etc.) without modifying existing applications or the source document. Using
Chameleon, these documents can be easily upgraded with user-generated
HTML5 interactive content. Chameleon thus allows the simplified provision
and viewing of an enhanced version of a research paper with embedded
interactive demonstrations and videos. It can also be used to perform live
demonstrations of interaction techniques while giving a presentation without
having to switch tools.

Chameleon accomplishes this via two interfaces: a background service
and an editing tool. The background service runs on the user’s system and
analyzes raw, pixel-based on-screen content to identify static content for
which interactive replacement content exists in its database. It then replaces
this static content with interactive content on the visual display, seamlessly
allowing a user to interact with the interactive version of the content. Scale and
placement is preserved within the existing document, allowing easy visual
correspondence between static-based versions of the document and on-line
interactive versions of the same document. Alongside a display system service,
Chameleon incorporates an editing tool to allow users to dynamically select
static content within a specific file, associate interactive content with that static
content, and verify the correct rendering of their interactive content. Since
Chameleon relies on computer vision to analyze display content, identify
static content with interactive enhancements, and seamlessly overlay that
content completely automatically and transparently to the user, it guarantees
its compatibility with any type of document (past, present or future) and
any application a user currently uses to view that document, because it relies
on what any document viewer ultimately does: displaying the document as
pixels on-screen.

Our work makes the following contributions: 1) It introduces the notion of
dynamic layering for augmenting static digital documents. 2) It presents the
design and implementation of Chameleon, a document augmentation tool
that implements this notion of dynamic layering on the macOS and Linux
operating systems. 3) It reports on the results of a study comparing feature
matching algorithms on non-natural images and for different scale levels.
4) It reports on the results of an experiment evaluating the performance
of Chameleon for augmenting a corpus of documents, in this case a set of
research papers and slideshows. 5) It details the results of a first-use study
evaluating our design choices and the usefulness of Chameleon.

6.2 background and related work

We first detail previous attempts to make static documents more dynamic
before reviewing vision-based techniques previously used in the contexts of
GUIs and documents.
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6.2.1 Making Static Documents Dynamic

In his work on Explorable Explanations [393], Victor highlights three ways that
reading environments can encourage greater inquiry via interactivity: reactive
documents, explorable examples, and contextual information. Each of these
allow readers to develop enhanced understanding either by manipulating
data to see how model outputs change, by interacting with content widgets
to experience behaviours, or by interacting with content to obtain additional
contextual information on concepts in the document.

While Victor’s analysis of current state-of-the-art indicates that much work
remains to be done in interactive documents, it is also true that many re-
searchers have tried to create interactive experiences around documents. In
terms of paper-based interaction with documents, the PADD system architec-
ture [144] and the related PapierCraft system [230] which leveraged Anoto’s
digital paper support the remixing of printed information in various ways. If,
instead, the documents are scanned into a computer, the ScanScribe system
looks specifically at rough documents, essentially hand drawn sketches, and
ways to structure and organize this material for post-hoc digital manipu-
lations [339]. Finally, if information is captured in both paper and digital
formats, systems such as ButterflyNet seek to combine myriad data sources
including hand-drawn text, images, and other digital information into a
cohesive single document [415]. However, the output of these systems re-
mains little more than static content that has been remixed in various ways to
produce a new, albeit static, document.

In the digital domain, recent research explored how to incorporate dynamic
media into documents. For example, the Webstrates system [200] leverages a
custom web server that provides shareable dynamic media to support flexible
document creation, essentially a form of transclusion [272]. Alongside Web-
strates, Wincuts [376] also allows users to carve out regions within windows,
reposition those subregions, and then continue to interact with information
in the subregion. However, the primary goal of Wincuts was to optimize
screen real estate during, for example, document creation, rather than to
replace static content with interactive content for explorable explanations. In
ways similar to Wincuts, tools like d.mix [151] or Clip, Connect, Clone [114]
mix information from multiple web pages to create mashups: web pages
juxtaposing elements from others [76]. In contrast, Chameleon transcludes
HTML content using dynamic layering onto figures of static documents.

Other options in the digital domain that can support Victor’s explorable
explanations include HTML documents, which can include interactive scripts,
or a new document format such as ePub, which can be redesigned to in-
corporate interactive artifacts [406]. Consider, first, HTML documents; one
reason that PDF persists as a format for document distribution is that PDF
supports the flexible dissemination of documents by combining both content
and visual formatting in a single, compact data format. The goal of present-
ing information in written form is the design of an artifact – a formatted
document – that supports the ergonomics of reading. HTML rarely achieves
this simplicity of presentation: new devices and browsers frequently render
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aspects of a document idiosyncratically, which can make reading an awkward
experience, and even mobile versus desktop versions of documents often
require bespoke aspects to ensure proper presentation in their respective
formats. However, even if we advocate moving to a new format (either HTML
or some novel new data format), in both cases this means that our extensive
archive of existing documents must either be transcribed and re-imagined
with interactive content, or must be maintained in original non-interactive
format.

Even writing a simple how-to document to perform an everyday task can
be complicated if all information is static. Some companies have attempted
to make limited interactivity available in their formats. For example, PDF
files can embed multimedia and interactive content [121, 139] through the
inclusion of SWF files. However, the interactivity supported by PDF files
still suffers from several limitations. First, integrating SWF into a PDF file is
far from easy [139]. Second, SWF files are typically produced using Adobe
Flash (even though they can also be produced in other ways using third-
party software), which is being discontinued [5], so Adobe, itself, encourages
designers to build interactive content using Web standards such as HTML
5 [4]. Third, this interactivity is barely supported by PDF viewers (basically,
only Adobe Acrobat Reader will run the SWF file). Finally, the SWF file has to
be embedded into the original document, which means that a static or legacy
document cannot be converted into an interactive one without producing a
new PDF file.

There has been significant efforts in circumventing PDF limitations by cre-
ating new kinds of documents viewers. For example, Utopia Documents [15]
is a novel PDF viewer integrating visualization and data-analysis tools. By
inspecting the content and structure of PDF files, Utopia Documents is able
to integrate dynamic objects and annotations in the documents. In the same
vein, Elastic Documents [17] generates visualizations from extracted tables in
PDF documents and then display the relevant ones depending on the reader’s
focus. However, these viewers do not allow the transclusion of interactive
content and are limited to the PDF file format.

We believe that the optimal approach to supporting the building blocks
of explorable explanations is to incorporate reactive documents, explorable
examples, and contextual information within the confines of existing static
documents. Essentially, the goal of Chameleon is to support the overlaying of
interactive features within the pre-existing presentation constraints of current
documents. We do this by selectively replacing static content with dynamic
content without manipulating the underlying document format and without
any modification of existing document viewing applications.

6.2.2 Using vision-based techniques with GUIs and documents

Our concept is based on the identification of figures by analysing pixels on
screen. This analysis needs to be robust against scale variations considering
documents can also be displayed at different zoom levels and on different
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screen resolutions. These requirements make techniques based on template
matching not suited for the task [416].

There exists a body of work in overlaying content on images within docu-
ments. For example, Kong et al. introduced Graphical Overlays[201], in which
information is extracted from chart bitmaps in order to overlay graphical
aids, such as gridlines on top of the charts. However, the user first has to
capture a bitmap version of a chart and then upload it to a website to get the
augmentation. In the same vein, Lu et al. [237] augment existing web-based vi-
sualizations by providing a suite of interactions such as filtering, comparison
and annotation to help users visualizing information differently. Chameleon
differs from the above systems in that it enables the support of any kind of
augmentation without being limited to specific figures or specific interactions.
In addition, the augmentation is co-localised with the document the user is
reading rather than being rendered in another window.

A series of systems exist that seek to analyze GUI elements dynamically in
an interface [86, 419]. First, the domain of these systems – identifying GUI ele-
ments for augmentation – differs from the domain of explorable explanations,
in which we wish to augment document elements. Further, the approach used
by these systems cannot be generalized to the domain of document annotation.
Specifically, for example, Dixon et al.’s Prefab system reverse engineers an
interface by analysing pixels on screen [86] using invariant features. The use
of invariant features is possible when analyzing GUI elements because these
are auto-generated during execution. However, invariant features cannot be
applied in the case of document images: when a document is resized, all pixels
of the figure are affected and there are no invariant features a priori. Another
interesting approach was proposed in Yeh et al’s Sikuli [416]. They applied
classical computer vision techniques to identify an individual GUI element
on the screen. The GUI element could then be used in search (e.g. to learn
how to use the GUI widget), or dropped into scripts (to automate interface
execution). To identify elements, Sikuli uses the SIFT [236] feature descriptor
to extract features from elliptical patches detected by the MSER detector [250].
They then associate each of these features with features extracted from the
screen. Finally, using a voting system and checking if a transformation can
be computed from the associated features, they precisely locate the image on
the screen. Using this method along with OCR and template matching, they
report a success rate of 70.5% when performing search on a UI element, and
they report less than 200 ms for identifying a single target GUI element on
the screen. Given their focus on GUI elements, it is unclear whether a similar
approach can work for arbitrary analysis of images in documents.

In the context of detecting plagiarism, methods have also been proposed to
detect if two images are similar. Meuschke et al. [258] combined Perceptual
Hashing with other algorithms to detect similar figures. However, since
figures need to be extracted from the document first, these methods cannot
be applied to localize figures. Similar to Sikuli [416], Iwanowski et al. [177]
used Feature Matching, but their evaluation was focused on a small corpus
of photographs and they acknowledge that more work is needed to confirm
that it generalizes to other kind of figures (charts, drawings, screenshots).
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Therefore, we evaluate SIFT [236] and MSER [250] alongside other image
detectors and descriptors during the design of Chameleon. Furthermore, we
explore how best to augment documents (versus GUI elements [86, 416, 419])
and present Chameleon as an end-to-end system to support both creating
and interacting with explorable explanations.

6.3 chameleon

The core idea of Chameleon is to augment pre-registered figures of digital doc-
uments by layering HTML5 resources over them (Figure 6.1). It uses feature
matching algorithms to identify the pre-registered figures, and overlays on
them an undecorated WebView that runs the corresponding HTML5 resource.
Chameleon has been developed in C++ using the Qt 5.12 framework and
OpenCV 4.0.1, together with platform dependent APIs. OpenCV provides
feature matching algorithms while Qt provides the WebKit engine to render
and interact with the HTML resources. Chameleon currently runs on ma-
cOS and Linux using respectively Cocoa and X11 APIs1 and could also be
implemented for Windows by replacing the platform dependent API calls.

Chameleon comprises two main parts: a registration tool to register a
figure from a document with its augmented version and an augmentation

tool to analyse opened documents and augment them if augment-able figures
are found.

6.3.1 The registration tool

The registration tool provides the interface to select a region of a document
that will be registered in the database. To accomplish this, the user first opens
a document that contains the target figure and navigates to its location. Using
the Register command in the Chameleon menu, she opens a screenshot of the
current viewport in a new window in which she highlights the region she
wants to augment (typically the portion where the target figure is displayed)
by dragging the mouse. The interface also provides a text field to enter the
URL of the augmented resource. After validation, the augmentation is stored
in a database. In order to compress the size of the database and for privacy
reasons, we do not store the actual image, but only the pre-computed regions
and descriptors of this image as provided by feature matching algorithms
(see following sections for details) along with the document file size, its MD5,
the dimensions of the selected region, and the url of the augmented resource.
One potential downside of this approach is that, if an augmented document
is modified, its MD5 changes. To address this, the registration tool also tracks
modifications to augmented documents using DTrace [405], and, when an
augmented document is modified, the user is prompted to either ignore or
register the new, edited version of the document.

1 Source code available at ns.inria.fr/loki/chameleon
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6.3.2 The augmentation tool

The augmentation tool runs in background and loops on the following six
steps:

1. The analysing opened files step monitors the opened documents and de-
termines those that contain figures that should be augmented (i. e.with
entries in the database). This step allows Chameleon to drastically reduce
the number of figures to search for from the database.

2. The capturing windows step takes screenshots of windows for files with at
least one entry in the database (that is, at least one figure that should be
augmented). The list of applications monitored can further be specified by
the user.

3. The locating figures step analyses these screenshots to localise figures that
should be augmented.

4. The augmenting figures step augments the located static figures using the
associated HTML5 resources.

5. The tracking figures step detects changes in the position and size of the
static figures to overlay the augmented versions; thus Chameleon does
not need to repeat the whole analysis process for a figure that is already
augmented.

6. The figure synchronization step redirects mouse and key events from identi-
cal augmented figures. This step can be very useful for presentation tools
(i.e. PowerPoint) to synchronize the presenter and slideshow views. In this
way the presenter can interact with the presenter view and the results are
directly reflected in the slideshow.

6.3.2.1 Step 1: analysing opened files

The augmentation tool monitors file access on the system using DTrace [405]
on Linux and macOS. It retrieves the size of each opened file and queries the
database to get the list of files with augmented figures of the same file sizes.
Finally it computes the MD5 for the remaining files to filter the remaining
documents. We avoid computing the MD5 for all opened files as it can be
relatively long for large files.

6.3.2.2 Step 2: capturing windows

The augmentation tool takes a screenshot of every window containing docu-
ments to be augmented, using the XGetImage [422] function on Linux, and
CGWindowListCreateImage [13] on macOS. These functions provide the
content of a window even if partially hidden, without decorations.

6.3.2.3 Step 3: locating figures

Chameleon uses feature matching algorithms to determine regions and de-
scriptors in the screenshots and detect potential figures to be augmented.
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This step takes the longest time in the augmentation process. We therefore
re-compute regions and descriptors only when the window is scrolled or
resized. The feature matching algorithm then tries to associate the regions
found with the ones stored in the database to detect the figures present and
determine their location and size.

6.3.2.4 Step 4: overlaying interactive figures

For each figure found, the augmentation tool opens an undecorated window
with transparent background. These windows cannot be focused, resized or
moved. Their size and position are dynamically updated to be the same as
the figures to augment. Each window contains a QWebEngineView [312]
used to load the remote HTML content located at the URL associated with
the figure to augment. Users can interact with augmented figures using the
mouse cursor. In addition, they can hide and show augmented figures by
using a button located at the top left corner useful to review the original.
Users can also get additional information about the augmented figure in a
drop down menu and switch between different augmented figures available
in the database (in the case where multiple augmented figures exist for an
individual figure in the source document). Augmented figures are pre-loaded
in background when opened files containing augmented figures are found in
step 1. The window is first fully invisible and made visible when a figure is
found in step 3. We use a 500ms delay and a 1000ms fade-in effect, tuned via
informal pilot testing, to inform the user that a figure is augmented and to let
her verify that the augmented figure matches the static one.

6.3.2.5 Step 5: tracking figures

Linux provides an API called AT-SPI (Assistive Technology Service Provider
Interface) [115] that can send a notification when a window is scrolled or
resized. macOS provides the same service through its Accessibility API [12].
Window translation is tracked by pooling their position when a mouse drag
event is detected. Each window displaying an augmented figure registers
callbacks to be notified when one of the properties of the window displaying
the document changes. These callbacks are called with a small latency making
it possible to re-position and re-size the augmented figures with hard-to-
notice visual artefacts. When a figure is cropped (typically during or after
scrolling), we apply a mask on the augmented window so that it is cropped
in the same way and does not extend outside the document window. This
step is not mandatory for using Chameleon, as overlaying interactive figures
over a static document can be achieved without it, but it results in a smoother
integration of the augmented figures.

6.3.2.6 Step 6: figure synchronization

When Chameleon detects multiple identical figures on the screen, the overlaid
augmented versions can be synchronized. The augmented figure with the
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Figure 6.2: Repeatability vs scales, and Mean Correct Matches vs thresholds of our dataset.

highest resolution is tagged as the main figure; others are considered copies
and resized to match their overlaid static figure resolutions. All the events
received by the copies, e.g. keyboard and mouse events, are redirected onto the
main figure. This step, enabled by default, can be disabled via Chameleon’s
menu.

6.3.3 Authoring augmented figures

Chameleon augments documents using HTML5 resources, easing sharing in a
community of users. Authoring interactive content is a matter of creating and
publishing on-line the HTML5 resources to be used for augmentation, with
the only requirement of an aspect ratio similar between the HTML5 resource
and the figure. Existing tools can be leveraged depending on the type of
interactive figures to be overlaid in a document. For example, a video can be
embedded by first uploading it on a video sharing website such as YouTube
and then using the embeddable URL with Chameleon. From an existing R Alternatively,

ChartDetective
presented in the
previous chapter
could help generate
interactive charts.

script, outputting an interactive chart in lieu of a static one can be done
without any change to the code using plotly for R [301]. Finally, when the
interactive figure is already available online, we provide a JavasScript function
capable of isolating a specific element of a webpage (i.e. hiding everything
except the element) resulting in a webpage, containing only the figure, that
can then be used in Chameleon.

In the following three sections, we present three user studies. The first
two user studies drive the design of Chameleon. The first examines the per-
formance of ten different feature matching approaches to determine which
works best for the specific use-case of Chameleon. Next, a second experiment
evaluates the two best performing algorithms to determine their ability to
precisely overlay augmentations onto pre-existing document figures by calcu-
lating the average overlap precision between a figure and its augmentation.
Finally, we explore the usability of Chameleon via a summative, first-use
study [415].
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6.4 feature matching algorithm comparison

Chameleon requires feature matching to accurately locate figures displayed on
screen. Many feature matching algorithms have been proposed, but it remains
unclear which ones are the most promising for scale-independent location of
figures in static documents. In this section, we compare the performance of
various feature matching algorithms against these needs.

Feature matching between two images A and B can be described as a 5-step
process:

1. For each image, a first algorithm called a Detector is applied to extract
a certain number of key regions (described by an x;y coordinate and a
diameter).

2. Then, a second algorithm called a Descriptor takes the regions identified
by a given detector and returns a descriptive vector of numbers describing
each of these regions.

3. Next, either via brute force or a dedicated algorithm, the system measures
a distance between the descriptive vector of each key region of image A and
B (using Hamming or Euclidean distances), and returns a list of matches
between both images (tuple, one for each image).

4. After that, only the matches with a distance below a specific threshold are
kept in order to eliminate most incorrect matches. This results in a list of
associated regions.

5. Finally, the system takes the list of associated regions, as well as the x;y
coordinates of these key regions to identify an appropriate homographic
transformation using the RANSAC algorithm [106].

6.4.1 Comparing feature matching algorithms

Feature matching algorithms are usually compared with a set of natural
images using the following metrics:

• Repeatability: Evaluates the performance of detectors (step 1 above) by mea-
suring the proportion of similar key regions extracted from two images
containing the same object [261].

• Precision and recall: Evaluates the performance of a detector-descriptor pair
(step 2 and 3 above) by measuring the number of key regions from a first
image that are correctly associated to key regions from a second image
[260].

However, already published comparisons of feature matching algorithms
suffer from several limitations making them unhelpful to find the most
adapted algorithm for Chameleon’s needs. First, algorithms are tested on
natural images and photos, while documents contain a wider variety of figures
(e.g. state diagrams, photos, bar charts, and other data visualizations). Second,
robustness to scale is seldom measured during evaluations of algorithms,
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whereas it is the main deformation that Chameleon faces since documents are
displayed at different scales. Third, precision and recall are less adapted to
compare detector-descriptor pairs when different detectors are tested: some
detectors yield no key regions for harder-to-detect objects. Thus, descriptors
associated with those detectors would be given an unfair advantage because
they would not be tested on figures with harder-to-detect features. To address
this issue, we use (instead of the precision and recall) a Mean Correct Matches
metric that computes the mean percentage of correctly associated regions per
image. This metric takes into account detectors yielding no key regions and
decreases the overall percentage of correct matches accordingly.

6.4.2 Dataset

We evaluate the different feature matching algorithms on two datasets. The
first is a scientific papers dataset introduced by Clark et al. [56], composed of 150

research articles from 3 different conferences (NIPS, ICML and AAAI) from
2008 to 2014. All figures in this document set were annotated manually. In
order to add diversity to the figures, we gathered a second presentation dataset.
100 presentations were randomly selected in 10 different categories from the
SpeakerDeck website [102]. We extracted from the first 20 pages of each
presentation all images whose height and width were larger than 50 pixels.
In total, the dataset comprises 1660 figures from 2741 pages. Each of these
figures was matched against the PDF page containing the figure, rasterized at
72 DPI. To evaluate the influence of scaling on the results of feature matching
algorithms, we applied a scale transformation to the rasterized PDF pages.
Tested scales were comprised of every 0.1 scaling step in [0.5, 1.5], and the
resizing was based on a bilinear interpolation, the technique observed in
Adobe Acrobat Reader DC version 2018 on macOS Sierra running OS X
version 10.12.6. Knowing the position and the size of the figure in the scene,
we compute as ground truth the homography relating a figure to its PDF
page.

6.4.3 Results

To reduce the pairs of algorithms tested, we first evaluate detectors, and then
match descriptors with the best detectors.

6.4.3.1 Detector evaluation

We choose to evaluate all the detectors implemented by default in OpenCV
4.0.1. Those detectors include the most commonly used (BRISK [224], FAST [327],
GFTT [354], Harris [150], MSER [110], SIFT [236], SURF [23]) as well as more
recent ones (ORB [331], SimpleBlob, STAR [6]).

Figure 6.2 shows the mean repeatability score over our two datasets, by
scale level, for each detector. Unsurprisingly, almost all detectors perform
best at a scale level of 1. The only exception is ORB which, while performing
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Figure 6.3: Evolution the true positive rate and false positive rate (dashed lines) depending on the feature-matching
algorithm threshold and scale at which a figure is displayed. The y axis uses a logit scale.

relatively poorly for all scale levels, performs better for smaller scale levels,
explained by the fact that the key regions produced by ORB are larger on
average than for the other detectors and that the repeatability metric relies on
the overlapping of regions. Therefore, when the scale of image B is reduced,
the overlapping ratio is likely to increase [261].

Overall, FAST, SURF and BRISK achieved the best results across all scale
levels. Their repeatability score is close to 100% (respectively 99.8%, 99%
and 95%) at a scale of 1.0, and, except for SURF, is above 50% for all other
scale levels. Other algorithms either performed very poorly or are not robust
to scale variation, which is a critical criteria for Chameleon. SIFT used by
Sikuli [416] performs well for a scale of 1.0 but its performance quickly drops
at other scale levels.

6.4.3.2 Descriptor evaluation

Descriptors need key regions to be extracted by a detector; therefore we
associate them with their corresponding detectors, as described by their
authors. FAST was also included in the evaluation even though it is only a
detector because of its high repeatability. In order to determine the descriptor
algorithm to use with FAST, we piloted its association with every descriptor
algorithm implemented in OpenCV 4.0.1, using a random subset of our image
data. These pilot tests suggested that the descriptor SURF worked best. Thus,
we compared BRISK-BRISK, FAST-SURF, ORB-ORB, SIFT-SIFT, STAR-BRIEF
and SURF-SURF, with their default parameters.

Figure 6.2-right shows the evolution of Mean Correct Matches for different
thresholds. We associated a unique number to each treshold tested in order
to show the results in the same chart. All algorithms were tested using 25

different thresholds, in the range [0-175] for BRISK-BRISK, [0-0.25] for FAST-
SURF, [0-100] for ORB-ORB, [0-425] for SIFT-SIFT, [0-75] for STAR-BRIEF and
[0-0.25] for SURF-SURF.

Overall, we observe that SURF-SURF and BRISK-BRISK outperform the
other algorithms, both of them reaching a Mean Correct Matches of more than
55% while the other algorithms do not exceed 40%. These results have several
implications. First, algorithms that, reportedly, outperform SURF or SIFT
perform more poorly on our dataset (e.g. ORB and STAR). Second, algorithms
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used in the literature for similar motivations (i.e. figures and GUI elements)
did not offer the best performance (typically SIFT, used in [416], which was
outperformed by both SURF and BRISK). Finally, these results help drive
design, including an exploration of options for implementation. For example,
because SURF is patented, one could decide to use BRISK to obtain similar
results.

6.5 feasibility evaluation of chameleon

The comparison of feature matching algorithms described in the previous sec-
tion suggests that BRISK-BRISK and SURF-SURF would be the best candidates
to perform online feature matching in the context of Chameleon. However,
this comparison does not reflect Chameleon’s performance for dynamically
augmenting digital documents. Therefore, we conducted an evaluation to
measure the number of figures correctly identified in a document by these
algorithms.

6.5.1 Method

We used the same dataset as in the previous experiment (totalling 1660

figures). While using a computer, documents can be displayed at different
scale levels; therefore, we tested for each page (presentation slide or PDF page)
the 12 following scale factors: 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 2.0,
4.0. For each image pair, image A being a figure and image B a scaled page, we
computed the correspondences by using either BRISK-BRISK or SURF-SURF
(referred as BRISK and SURF for simplicity in the next paragraphs). A figure
was considered found when the rectangle obtained from the correspondences
had positive width and height and its aspect ratio was similar to the figure
identified (i. e.abs(1− aspectRatioA/aspectRatioB) <= 0.1)). Based on this
identification, we classified every outcome of the algorithm into one of these
categories :

• True positive (TP): the figure is present and found
• True negative (TN): the figure is not present and not found
• False positive (FP): the figure is not present but found
• False negative (FN): the figure is present but not found

For TPs, we also computed the overlap ratio of the rectangle found with the
real rectangle of the figure in the page.

6.5.2 Results

Because feature-matching performance is likely to be impacted by the surface
area (surface) of the figure in pixels (height×width×scale), we report the results
by categorizing the figures in 5 groups depending of their surface: sur f ace ≥ 0,
sur f ace ≥ 2500, sur f ace ≥ 5000, sur f ace ≥ 7500, sur f ace ≥ 10000 pixels.
10000 pixels thus corresponds to an image of 100 × 100 pixels at scale 1.0.
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accuracy As seen previously, feature-matching algorithms match key-
regions from different images if the euclidian-distance between their respec-
tive descriptive vectors is below a certain threshold. Choosing a value for
this threshold is the first step towards using feature-matching algorithms to
identify figures displayed in documents. Figure 6.3 illustrates the proportion
of TP and FP (dashed lines) of BRISK and SURF depending on this distance
threshold and figure sizes. As we can see, the proportion of TP rapidly in-
creases for both algorithms to reach a cap value. This cap value seems to
be reached at a similar threshold value, regardless of the size of the figure,
suggesting that we can choose a single threshold for all figures. Therefore,
the threshold yielding a high TP rate of while keeping a low FP rate, was 112

and 0.22 respectively for BRISK and SURF.
The two rightmost graphs in Figure 6.3 respectively show the proportion of

true and false positives for BRISK and SURF using these thresholds, for each
scale factor and depending on the size of the figure. Overall, the proportion of
TP (respectively FP) was of 88.4% (1.5%) for BRISK and 94.4% (1.8%) for SURF
over the whole dataset. Unsurprisingly, we observe a peak of performance at
scale 1.0 for both algorithms, regardless of figure surface, which can easily be
explained by the fact that this is the optimal testing condition in which the
figure contained in image B (the page of the tested document) has the exact
same size as image A (the figure we are looking for). More interestingly, we
observe that the proportion of TP barely decreases for scales higher than 1.0
(98.6% TP for SURF and 94.1% for BRISK above scale 1.0), whereas it decreases
more significantly for scales lower than 1.0. This can be explained by the fact
that scaling down the size of the figure may make the task more difficult for
detector algorithms, resulting in different key regions extracted. In addition,
we observe that the lower the size of the figure, the more the proportion
of TP decreases for smaller scales. In addition to reaching a lower peak of
performance than SURF, we can see that BRISK is also more impacted by scale
factors decreasing by 4 points between scale 1.0 and scale 4.0, and 32 between
scale 1.0 and 0.5, whereas SURF decreases 2 and 18 points, respectively. Finally,
the average overlap rate for true positives is over 98% for both algorithms,
meaning that when the image is found, the position and size are usually
correct.

We also measured the time taken by SURF and BRISK on average, for
each document, to 1) extract key regions of the image candidate to augment
using the detector, 2) compute their descriptive vectors, 3) match them with
the database and 4) compute the homographic transformation if a figure
that should be augmented was found. Without any optimisation (such as
multi-threading or GPU), assuming the document is displayed in 1080p, the
time to find a figure on a 3.2GHz Intel Core i5 is approximately (in ms):
tSURF = 300 + 80 ∗ x and tBRISK = 350 + 90 ∗ x with ‘x’ as the number of
augmented figures for a given document.

In the context of Chameleon, we use SURF over BRISK because it yields
a higher proportion of TP, while keeping the proportion of FP below an
acceptable threshold of 2%.
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6.6 first-use study

Our previous experiment demonstrates that Chameleon can accurately aug-
ment digital documents. In this section, we investigate whether (Q1) users
can use Chameleon; (Q2) they find it faster and more convenient to use than
existing solutions; and (Q3) they would use Chameleon in everyday life.

6.6.1 Procedure

For this study, we recruited 12 participants (23 to 42 age range, mean =
28, 6 identified as female and 6 identified as male), all graduate students
in computer science as they are the most likely to have used, or at least
know, alternative methods to augment digital documents. Participants were
first shown an interactive demonstration of the bubble cursor [138] and the
original paper presenting the technique. They were then asked “How would
you include this interactive figure in the document?”. Their answers were
manually transcribed. The interviewer then introduced them to Chameleon
and showed them how to use it through an example. Participants were then
asked to use Chameleon in the three following scenarios described below. For
each scenario, we measured the time to accomplish the task. Participants then
completed a questionnaire and answered open-ended questions. Finally, we
showed participants a document augmented using Chameleon and the same
document without Chameleon but with an external web page containing all
the interactive figures. Participants had to choose the one they preferred and
explain why.

Scenario 1: Interactive Demonstration in Paper. The bubble cursor [138]
is a pointing technique which reduces the distance to a target by increasing
the activation area of targets. While the original paper includes comic strips
of images to explain the technique, as Ben Schneiderman notes, “An interface
is worth a thousand pictures” Hence, we implemented an interactive version
of the bubble cursor using an HTML canvas and Javascript. We then asked
participants to augment Figure 6 of the original bubble cursor paper with the
interactive resource that we provided.

Scenario 2: Supporting Explorable Multiverse Analyses. Dragicevic et
al. [91] proposed Explorable Multiverse Analyses Reports (EMAR) as a way to
increase the transparency of research papers. However, they acknowledge that
the main obstacle to their adoption is the lack of tools to support their creation
and integration. Chameleon partially solves this problem by supporting
interactivity in both archived and new research papers. For this scenario, we
used the mini-paper Prior accessible online [90] and created by Dragicevic et al.
In this case, the interactive figure was already created and we wish to include
it into a PDF document. We extracted the figure by using Javascript and hiding
everything but the <div> containing the interactive figure. We also transcribed
the mini-paper to PDF. We then asked participants to create an interactive
document by overlaying the interactive figure in the PDF document.
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Scenario 3: Adding Interactivity to Presentations. For this final scenario,
we asked participants to augment a PowerPoint presentation with two slides:
one containing a static image and a link to a YouTube video and the other
a static image of a bar chart generated using plotly and R [301]. We gave
participants the export link provided by YouTube, and a link to the HTML
file as generated by plotly and R. We then asked participants to augment the
presentation by including the video and the interactive version of the chart
directly into the presentation.

6.6.2 Results

When asked how they would include interactive figures into a document, 6

participants answered that they would include a link to the interactive figure
in the document, 9 participants proposed transcribing the document to HTML,
1 participant proposed converting the figure to Flash and including it in the
PDF and, finally, another participant proposed creating a new document
viewer supporting interactive figures.

Participants completed the scenarios without difficulty in 58s (SD=18s) on
average for scenario 1, in 58s (SD=17s) for scenario 2 and 1m32s (SD=25s) for
scenario 3 (Q1).

Although they were not asked to perform a controlled (A vs B) study with
the approaches they described, all 12 participants agreed that they would
rather use Chameleon over their initial described approaches. However, 3

participants noted that Chameleon was not easier or faster than adding a link
to the interactive figure in the document but agreed it gave a better result ("I
think the URL is easier, faster... but the result is better... definitely better in... using
this tool"). Similarly, 5 participants believed that transcribing the document to
HTML might give a similar or possibly better result for the reader but that
Chameleon was easier and faster to use (Q2).

Using a 5-point Likert-type scale, participants also rated the integration of
interactive figures in documents using Chameleon when scrolling (Mdn=4.5,
SD=0.9), scaling (Mdn=4, SD=1.2), moving the window (Mdn=4, SD=1) and if
the augmentation was sized to the static figure (Mdn=5, SD=0.4). Finally, all
participants answered yes to the question "Would you be willing to put extra
effort in order to create interactive figures if you could include them in your
documents" (Q3).

While some participants noted that having figures in another view allows
scaling and viewing of the figure independent of the document, all partic-
ipants preferred having the interactive figures within the document. One
participant mentioned that "You do not necessarily know where the figures [on the
external view] are in the document... Instead [with Chameleon] you always have the
figure close to the text referring to it.".
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6.7 discussion

The final distribution of Chameleon includes both the registration tool to
create and the augmentation tool to interact with explorable explanations. As
noted in the section describing the augmentation tool within Chameleon, by
combining delay with fade-in, we allow users to perceive the original figure in
the document and see the change to an augmented version of the figure help-
ful to identify rare cases of mismatch, and inform users of an augmentation.
Alongside these effects, Chameleon supports various configuration options.
For example, some users may wish to have the original figures viewable by
default and to intentionally invoke augmentation when desired; for these
users, Chameleon can be configured such that augmentations have to be
activated explicitely for figures via the button mediator as no augmentation
is displayed initially. Similarly, if in augmented mode, figures can be turned
off via this same button, allowing users to switch between the original static
versions and the augmented versions flexibly during document reading. Users
also have the option to place augmented figures in floating windows (i.e.
resizable and movable) if they wish to manipulate them independently from
the document.

Chameleon relies on a feature matching algorithm carefully chosen through
a systematic analysis of the detector and descriptor algorithms of the literature.
Because these algorithms were never tested on figures commonly included
in documents and on varied scale factors, we performed this analysis and
evaluated both the accuracy and time of these algorithms on a real-world
data set. Results show the very good performance of SURF over a wide range
of scale levels. The lower percentage of TP below scale 1.0 is not critical
as users are less likely to expect the augmentation of a small-sized figure
given the limited interaction space it offers. SURF also allows for real time
augmentation with processing times around 600 ms.

6.7.1 Chameleon in Practice

Augmentation Longevity. Because augmentations are not embedded in the
documents, they suffer from the same issues as files hosted online. Augmen-
tations could be lost if their host disappears or they are otherwise removed.
This would result in a document without interactivity; the document would
only display the original static figures (as if Chameleon was not enabled).
It may be possible to mitigate this using peer-to-peer hypermedia protocols
such as IPFS [175]. An augmentation lives as long as one of the node in the
network has it stored.

Application Scalability. As additional users leverage Chameleon and as
augmented figures become more commonplace, scalability concerns regarding
the number of figures in a document, the number of figures on-screen, the
number of augmented documents that exist in the world, and the number
of simultaneous users may concern some readers. Chameleon deals with
these issues as follows. First, because the cost of each additional figure in a
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document is relatively small (a fact we note when evaluating Chameleon in
our second study), multi-figure documents are still handled in a reasonable
time by Chameleon: for example, with 5 augmented figures in a document,
it would take 700ms for them to appear the first time, (e.g. 10 = 1.1s; 20 =
1.9s). Similarly, multiple on-screen figures can be managed because, as we
note earlier during design, transformations do not have to be re-computed
once figures are found; Chameleon can simply track position changes on the
display. Finally, modern database systems can easily handle large numbers of
documents and users. Documents are filtered using their MD5, data storage is
limited to descriptive vectors not figures, and embedded resources are linked
client-side. As well, modern database systems have evolved to handle large
user loads.

Privacy. Chameleon works by taking screenshots of some windows. How-
ever, to preserve privacy, these screenshots are not publicly transmitted; in-
stead, they are analyzed locally, descriptive vectors are extracted locally, and
only these descriptive vectors are stored in the database and used to match
figures with their augmentations. Chameleon can also be used to provide
interactive content to more confidential documents via databases that support
user or group security. In essence, privacy issues are limited as Chameleon
only exchanges image feature vectors with a database, not entire images. This
is not to say that there are no privacy considerations. If a user is augmenting a
figure in a document, then the server delivering the augmentation will know
which document is being read on a user’s computer. However, any cloud
based document system suffers from similar problems: as an example from
the field of Human-Computer Interaction, we often leverage the ACM digital
library during our research, meaning that this digital library is aware of topics
being examined by researchers, and tools such as Overleaf have significantly
more information on documents we create. If a user wishes to avoid this
awareness, it is also possible to run Chameleon locally by downloading a
local copy of the database (whose size should remain minimal considering
the small amount of information recorded for each document). Finally, users
can disable Chameleon if necessary for certain documents/applications if
they would prefer complete privacy at the cost of losing augmentations to
figures in the documents/applications.

Chameleon at the Community Level. The philosophy behind Chameleon, along-
side augmenting documents for the user, is to support both canonic and
community augmentations of a document. By default, the creator of the static
document should be identified and have the ability to augment the document
with canonical augmentations. For new documents, these canonical augmenta-
tions can be introduced at the time of document creation, supporting reactive
behaviours, dynamic experimentation with parameters, interactive widgets
to demonstrate input techniques, open-data collected via experimentation,
and augmented information referencing follow-on research. Where possible,
archived versions of PDF documents can also be easily augmented post-hoc
by their creator, ensuring that even archived documents continue to evolve
over time. Alongside creators, other members of the community are also
able to augment a document with their own augmentations if they wish. We
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believe that users could benefit from noncanonical augmentations, in the form
of a community augmentation (similar to pull requests on GitHub which let
a user tell others about changes she has pushed to a repository, and discuss
and review the potential changes with collaborators). In the end, the creator
of the document should decide whether or not the community augmentation
will systematically augment the document. Even if the creator is not available
to create or promote to canonical augmentations, the community could still
discuss, vet, and promote augmentations that allow the large archive of PDF
documents to incorporate reactive features.

6.8 conclusion and future work

Inspired by Victor’s work on the concept of explorable explanations, we
present Chameleon, a system that leverages computer-vision based feature
matching and a database of active content to graft interactivity onto static
figures within a corpus of documents. This chapter describes an evaluation
of various feature matching algorithms to design the system. As well, we
present the two tools within Chameleon, a registration tool to allow a user
(e.g. the document creator) to graft the interactive figure onto the original
document, and an augmentation tool that allows a reader to interact with
the augmentation. Because Chameleon works on screen-based pixels, it can
augment both new documents and pre-existing documents, thus allowing
our pre-existing archive to benefit from interactivity in support of a better
interactive experience when consulting static documents. Based on a sys-
tematic evaluation of descriptors and detectors, we identified SURF as the
best algorithm given its overall high performance and robustness to scale
adjustments.

Our implementation was designed to work with desktop applications, but
Chameleon could also be integrated to mobile devices, assuming that the
mobile OS allows a service to run in the background, analyze displayed
content, and overlay HTML5 views on top of content. If the OS does not
allow background services, Chameleon could relatively easily be integrated
into open-source systems like Android. An implementation of Chameleon on
mobile is left as future work.

The already good accuracy and performance of Chameleon can be opti-
mized in several ways that we plan to explore as future work. One approach
could be to directly integrate Chameleon in a window manager, providing
direct access to the pixels of each window before being displayed. Augmented
figures could be directly drawn in the pixel buffer of the window, making the
augmentation flawless. The window manager being responsible for handling
window movement and resizing, we would know exactly when those actions
happen and apply them on the augmented figures. Finally, the registration
tool of Chameleon could provide an indicator showing the percentage of
similarity with figures already registered in the database for the document
in order to notify the users that an augmentation is likely to result in a false
positive.
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7 C O N C L U S I O N A N D F U T U R E D I R E C T I O N S

This thesis was driven by the goal of improving the reading experience of
existing digital documents. Specifically, my thesis was that

Existing documents can be transformed and enhanced with interac-
tive, visual, and textual representations that help readers understand
information.

To test this hypothesis, we proposed novel representations that draw upon
cognitive psychology theories and that can be generated from existing docu-
ments without involving authors. Below, I summarize the contributions of
this thesis, discuss implications, and outline future directions.

7.1 summary of contributions

This thesis contributes fundamental knowledge related to the design of
representations and their benefits, and the design of interactive systems and
their applications. Below, I categorize these contributions using the taxonomy
proposed by Wobbrock and Kientz [409]. Artifact contributions are further
divided using the classification proposed by Fogarty [108].

7.1.1 Artifact Contributions

This thesis presents four interactive systems that contribute by accomplishing
novel functionalities: Charagraph allows annotating documents with charts
and turning data-rich paragraphs of text into visualizations; Statslator lets
readers translate statistical reports to make them more familiar by offering
alternative values and visualizations; ChartDetective enables the recovery
of accurate data underlying static charts; Chameleon allows incorporating
interactive content within documents, including documents using static file
formats, or already disseminated.

These four systems also contribute in how they accomplish their goals:
Charagraph introduces an interactive extraction system to recover numbers in
text and several interactions to customize and merge generated visualizations;
Statslator outlines a text extraction pipeline with error mitigation features and
statistical checking functionalities; ChartDetective proposes filtering features
and chart extraction algorithms for vector graphics; and Chameleon adapts
feature matching algorithms to the task of detecting figures in documents.
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7.1.2 Empirical Research Contributions

The implementation and validation of the interactive artifacts lead to several
empirical contributions: A user study found that participants could annotate
documents with Charagraphs and benefited from having these visualizations;
an analysis of CHI papers detailed how statistics are typically reported in
scientific documents; three simulations found that p-values and confidence
intervals reported in papers could be converted with reasonable accuracy; a
user study found that participants could extract the data from complex charts
when using ChartDetective; an experiment found that the data obtained
using ChartDetective is highly accurate; a simulation found that feature
matching algorithms could be used to detect figures in documents reliably; a
first-use study highlighted the usability and the benefits of Chameleon over
alternatives.

7.2 augmenting documents by readers , publishers , or authors?

There are many ways a document can become polymorphic. The main lim-
itation being the information available to the actor performing the “aug-
mentation”. Following the linear life-cycle of documents, three actors can
be considered: first authors (fig. 7.1a), then publishers (fig. 7.1b), and finally
readers (fig. 7.1c). This thesis focused on augmenting documents during this
last reading phase but polymorphism could happen earlier. Below, I reflect
on these different phases and the implications of involving these different
actors to augment a document.

Code
Data

System
Document

(a) Author(s) (b) Publisher (c) Community & Readers

Open Source
Open Data

Open Access

√
∫

√
∫

√
∫ √

∫
√
∫

√
∫

√
∫ √

∫

√
∫

Figure 7.1: Life-cycle of a document with respect to the actors and resources available.
Solid lines indicate the resource is available. Dashed lines indicate the
resource is less likely to be available. As such, (c) readers are more likely
to have access to the document than the code or data. Inversely, (a) authors
have access to all code, system, and data.

Readers. Augmentations happening at the reading phase are most impactful
because they apply to all documents, even ones published decades ago. This
is also the most direct form of augmentation: whereas authors guess what
the audience needs to know, readers know what they need. However, unless
authors followed open science practices, data and code are unlikely to be
available. This means that polymorphic content has to be constructed from the
information already in the document. Such informationally equivalent repre-
sentations may still benefit readers, as we have shown throughout this thesis.
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Alternatively, additional information can be retrieved through other means
such as external databases (this is the idea proposed by NewsView [118] and
Contextifier [170]). In all cases, just-in-time augmentations made by readers
are most likely to be adopted if they require a low effort.

Authors. Perhaps because authors have access to all information such as
code, analytical decisions, data, and results, it is often expected that they
should be the ones creating interactive documents. Most previous work looked
at helping authors craft these kinds of documents. While this would be ideal
and allow polymorphic representation that are informationally augmented, in
this thesis I argue that the burden for authors makes it unlikely to be widely
adopted. Besides, authors have no guarantee that their work will actually
benefit readers as it is difficult to know in advance the utility of an interactive
figure, for example.

Publishers. An alternative that would remove burden from authors while
allowing the use of additional data is to involve publishers. Authors could
submit their document and data, and publishers would take care of generating
a document with polymorphic content. Some publishers have taken steps in
this direction: the ACM Publishing System (TAPS) requires authors to submit
their source files. Internally, the files are processed to generate multiple
outputs, including an HTML version of the document that is supposed to be
more accessible [383].

Community. Another option is to turn documents into collaborative envi-
ronments where anyone can contribute and add polymorphic content. This is
similar to a Wiki [223], except the initial document is already self-contained,
and the added polymorphic representation is only meant to augment this
initial information. Again, such an approach would run into issues similar to
the ones faced in the project of this thesis in that data might not be available.
But the advantage is that a community of users might be more willing to
spend the time to craft advanced representations. Chameleon is essentially
enabling this vision but for existing documents.

7.3 limitations

While our results provide evidence that the reading experience can be im-
proved for existing documents, there are several limitations that might require
further investigation.

It is unclear if all polymorphic representations are useful. The design of the rep-
resentations proposed in this thesis are based upon theories and experimental
findings from previous work. While we provide evidence that it would help
readers, only Charagraphs were tested in a controlled lab setting with an A
versus B protocol to see the effect on reading comprehension. For Statslator,
there is good evidence that providing familiar values will help, but we did
not validate this experimentally. Similarly, Chameleon was tested for usability,
but it is unclear that the added interactive figures help readers. This is a
common issue with interactive documents: much work considered including
dynamic content [163], yet testing the actual impact for readers is difficult.
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Instead, most studies (like the ones in this thesis) resort to proxies such as
time spent and number of clicks that might not give the full picture [61].

If useful, it remains unclear what aspects of the polymorphic representations are
most beneficial. Many of the representations proposed could be considered
complex systems in that they combine multiple smaller components and
improvements. Most of these components were carefully chosen through
iterative design processes, but are hard to evaluate independently. As Olsen
puts it “good systems deal in complexity and complexity confounds controlled
experimentation.” [282]. Thus, while some experiments show benefits of the
representations proposed, they provide limited evidence about the specific
aspects that make them useful and effective. Similarly, it might be that some
cognitive theories are more powerful than others, or better used in isolation.
We instead focused on leveraging them in combination.

If not useful, then polymorphic representations could be detrimental. For example,
interactive media may be distracting. Readers might invest time exploring a
representation even though it does not contribute to their understanding and
instead take away from time that could be better used reading the document.
This distraction factor is hard to measure and might depend on the reader
more than the representation itself. The media richness theory suggests that
messages that are complex require richer media to be understood. But it
also suggests that a rich media used for a simple “routine” message leads to
“data glut” and confusion because of the surplus meaning [222]. The issue is
that what qualifies as “routine message” depends on the readers’ knowledge.
This is part of the reason the representations in this thesis are generated
on-demand (e.g., after a selection) rather than automatically.

Our findings might not generalize beyond scientific documents and researchers.
Like with all user studies, the results need to be considered with respect
to participant demographics. In our case, participants were primarily grad-
uate students and researchers at a Canadian university. Additionally, we
focused on scientific documents, and except for Charagraphs that were also
tested on news articles and reports, our experiments used only scientific
documents. Thus, our results might not generalize to other documents or
different populations.

7.4 future directions

Our exploration of representations to complement existing documents can be
extended in several ways, either by proposing novel representations, adapting
the systems we proposed into authoring tools, and exploring polymorphic
representations in new contexts.

7.4.1 Exploring the Design Space of Polymorphic Content

Our design space of complementary representations (fig. 1.1) is generative
and can help think about novel polymorphic content. Specifically, the rep-
resentations in this thesis are biased towards visuals with ChartDetective
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being the only project looking at turning a visual representation into numbers.
The reason is that documents are already mostly text and visuals are often
superior to text for memorability [350]) and processing efficacy [69, 259, 360].
Thus, after placing the four projects outlined previously, there remain some
gaps that could lead to novel ideas (fig. 7.2).

Abstract Concrete

Visual

Textual

(b)

(a)

(c)

Figure 7.2: Future directions for exploring the design space of polymorphic content.
In grey are the directions that this thesis explored. In blue are future
directions I believe to be promising: (a) visuals into text; (b) making
algorithms more visual; and (c) making math more concrete.

Visuals into text. A natural extension would be to explore the conversion of
visuals into text (fig. 7.2a). This could be for the purpose of making figures
more accessible. In fact, previous work has looked at turning images and
charts into detailed descriptions compatible with screen readers [116]. Or, it
could be used to generate textual examples from visuals describing processes
such as diagrams. For example, a flow chart could be turned into multiple
concrete textual examples, one per possible path.

Making math more concrete. On the ladder of abstraction, mathematical
equations in scientific documents might be one of the most abstract form of
textual representation. One future direction could be to make it more concrete
(fig. 7.2c). There has been several efforts to make math more concrete by
augmenting the equations with annotations [154] or by representing equations
with sketches [334]. Alternatively, interactivity could enrich the equations, as
per the media richness theory, to execute the equation on example numbers
or generate plots and geometric figures [394]. The challenge is to make these
augmentations usable directly with the equations in existing documents.

Making algorithms more visual. Algorithms presented in scientific documents
are another kind of abstract textual representations. One way these could be
made more visual would be to convert them to flow charts or block-based
programming languages such as Blockly [295]. Even if on the same level
of abstraction, these visual representations might help memorization and
processing as per the dual-coding theory (fig. 7.2b). Or, the representation
could go down the ladder of abstraction. For example, there have been efforts
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using comics to teach programming concepts in a more concrete way [371].
Such representations can be semi-automatically generated [372] and could
augment the algorithms reported in scientific documents.

7.4.2 Helping Authors Craft Polymorphic Documents

As mentioned in section 7.2, authors could create polymorphic documents
from the beginning. The work in this thesis can also inform the authoring of
polymorphic documents.

Tools for readers can help authors. While the focus of this thesis was on
readers, it is interesting to note that many of the tools we proposed could also
help authors. For example, Charagraph could be used to quickly generate
interactive charts after having written the results section of a document.
Essentially, these canonical Charagraphs would be shared with the document
directly. Similarly, Statslator could help calculate alternative values and act as
a statistical linter to help authors identify typos and misreport of values. And
ChartDetective could help turn static data visualizations into interactive ones,
especially when the tools used to create the original visualization cannot
output interactive charts. Often, tools for readers indirectly help authors.

Writing with varying levels of abstraction. An explanation might be better
understood if presented through varying degrees of abstraction [152]. Yet,
current writing tools often focus on the grammar rather than the content.
Instead, a writing tool could identify explanations that are abstract and
suggest examples and metaphors to make them more concrete. Inversely, it
could identify concrete explanations and offer ways to generalize them.

Supporting the creation of interactive figures. Interactive figures are the corner-
stone of polymorphic documents as they offer the highest degrees of freedom
to support the different ways a representation might vary. Yet, they remain
difficult to create. For an author, it is often difficult to convert an idea into
an interactive figure, despite the many prototyping software that have been
proposed recently. Additionally, it is difficult to think in terms of interactive
figures for authors that have been used to seeing and designing static ones.
For example, it is unclear how interactive figures should be designed to be
most effective. In that regard, I believe some findings in this thesis could shed
some light on the design of interactive figures.

7.4.3 Polymorphism Beyond Documents

Polymorphism is a way to show the same information through different
perspectives. While we used polymorphism to help readers make sense of
the information, it could also apply to other contexts beyond documents.

Polymorphic presentations. A slideshow is essentially a document that is
accompanying a presenter. Many of the augmentation methods proposed in
this thesis could apply to slideshows. More interesting is the possibility for the
audience to generate their own representations from the slides. For example,
an attendee could take photos of slides during a presentation and turn charts
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into numbers, turn text into charts, or turn p-values into confidence intervals.
Many of the issues a reader might face are also faced by attendees.

Polymorphic authoring tools. Polymorphism could be related to “systems
that use two or more distinct views to support the investigation of a single
conceptual entity” [400]. As such, a polymorphic tool offers several views
to modify a single entity. For instance, Sketch-n-sketch [157] is an example
of system that offers two views to edit a single SVG drawing. Using the
polymorphism framing proposed in this thesis allows to design coherent
and useful views: the code view is a form of abstract textual representation,
whereas the output view is a form of visual concrete representation. Adding
interactivity to both views is a way to make it richer. Similar approaches
could be used to design and enhance tools to create charts or 3D elements by
providing views leveraging the four quadrants of our design space (fig. 1.1).

7.5 final word

Thinking about the future of documents does not mean forgetting about
documents of the past. And publishing a document does not have to be an
end. I propose polymorphic documents as a way to turn existing documents
into different forms and representations. Polymorphic documents try to solve
the limitations of current digital formats, originating back to when paper was
the only document medium. To do so, I investigate different representations
of the knowledge within documents through four projects: Charagraph looks
at ways to turn data-rich paragraphs into interactive visualizations; Statslator
proposes a solution to help interpret statistical reports by translating them
into more familiar values and plots; ChartDetective investigates the accurate
recovery of data from existing documents to make this data accessible to
others, including machines; and Chameleon wonders how to replace figures
in existing documents while staying compatible with existing workflows,
software, and file formats. All together, these projects explore how much
information can be recovered from existing documents, what better represen-
tations might convey this information, and how these representations can be
generated without involving the original authors.

Whereas approaches relying on document authors to produce better docu-
ments have difficulties being adopted, I believe that giving readers the tools
to turn existing documents into polymorphic ones has a greater potential to
transform our reading experience.
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AE X T R A C T I O N A L G O R I T H M S U S E D I N C H A RT D E T E C T I V E

All the extraction algorithms work by taking as input a user selection (i.e., a
list of shapes) and outputting an array of coordinates that should be added
to the extracted data. A shape is defined by a list of points (corners). To
give consistent specifications to extractors, all shapes are pre-processed to be
subdivided into smaller units everytime they use the “moveto” feature (C2),
see Algorithm 7. For clarity reasons, the pseudo-code focuses on one specific
orientation: vertical bars, box plots, and axes and horizontal lines.

a.1 extraction of box plots

Algorithm 2: Extraction of box plots
Input: A user selection of shapes shapes
Output: An array of 2D coordinates
points← []
groups← group shapes with equal horizontal positions
foreach group ∈ groups do

min← y of group[0]
max ← top of group[0]
q1← min
q3← max
medians← []
foreach shape ∈ group do

if shape is horizontal line then
add vertical centre of shape to medians

if shape is rectangle then
q1← y of shape
q3← top of shape

foreach median ∈ medians do
if median > q1 and median < q3 then

add (middle of group, median) to points

add (middle of group, min) to points
add (middle of group, max) to points
add (middle of group, q1) to points
add (middle of group, q3) to points

return points
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extraction algorithms used in chartdetective

a.2 extraction of bars

Algorithm 3: Extraction of bars
Input: A user selection of shapes shapes
Output: An array of 2D coordinates
points← []
foreach s ∈ shapes do

add (middle of s, top of s) to points
return points

a.3 extraction of scatter plots

Algorithm 4: Extraction of scatters
Input: A user selection of shapes shapes
Output: An array of 2D coordinates
points← []
foreach s ∈ shapes do

add centre of s to points
return points

a.4 extraction of axes

Algorithm 5: Extraction of axis
Input: A user selection of shapes shapes
Output: An array of 2D coordinates
points← []
foreach s ∈ shapes do

if s is text then
add (text of s, centre of s) to points

return points

a.5 extraction of lines

Algorithm 6: Extraction of lines
Input: A user selection of shapes shapes
Output: An array of 2D coordinates
points← []
foreach s ∈ shapes do

foreach pt ∈ s do
add pt to points

return points
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A.6 splitting compounded shapes

a.6 splitting compounded shapes

Algorithm 7: Split a compound shape
Input: A shape s
Output: An array of shapes
shapes← []
path← []
foreach ope ∈ path of s do

if ope is moveto then
add shape formed from path to shapes
path← []

add ope to path
return shapes
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G L O S S A RY

active reading act of annotating a document and interacting with its content..
8, 9, 22, 37

cognitive load theory a theory that suggests working memory has limited
capacity and that the cognitive load affects the learning process.. 2, 9

dual-coding theory a theory that suggests the human mind processes and
represents information using a verbal and visual system.. 2, 10, 11,
118

extraneous load refers to the added complexity due to the presentation of
the information rather than the information itself.. 9, 24, 41

extrinsic motivation motivation due to the task leading to some external
gain.. 9

intrinsic load refers to the inherent complexity of the information.. 9, 11

intrinsic motivation motivation due to the task being personally rewarding..
9

ladder of abstraction a metaphorical ladder to represent the different levels
of specificity (bottom of the ladder) or generality (top of the ladder)
when describing concepts.. 2, 11, 15, 118

media richness theory a theory to describe how different media vary in their
ability to convey information effectively.. 1, 9, 94, 117, 118

multimedia principle principle explaining that people learn better from text
and images combined than from text alone.. 2, 10, 15, 17

personalized learning efforts to tailor learning materials and education to
meet the needs of individual students.. 2, 9

self-determination theory a theory of human motivation that identifies
autonomy, competence, and relatedness as needs to become self-
determined.. 1, 9

168


	Examining Commitee Membership
	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgments
	Table of Contents
	 List of Figures
	List of Figures
	 List of Tables
	List of Tables
	 List of Algorithms
	List of Algorithms
	1 Introduction
	1.1 Research Objectives and Overview
	1.2 Contributions
	1.3 Dissertation Outline

	2 Related Work
	2.1 How Readers Consume Documents
	2.2 Benefits of Polymorphic Content
	2.3 Changing Workflows, File Formats, and Software
	2.4 Empowering Readers by Augmenting Existing Documents

	3 Annotating Data-Rich Paragraphs with Charts
	3.1 Motivation
	3.2 Background and Related Work
	3.3 Characterization of Charagraph
	3.4 Charagraph Document Viewer
	3.5 User Study
	3.6 Study Part 1: Usability
	3.7 Study Part 2: Utility
	3.8 Discussion
	3.9 Conclusion

	4 Translating Between Statistics Reporting Styles
	4.1 Motivation
	4.2 Background and Related Work
	4.3 What is Reported at CHI?
	4.4 Converting Statistical Reports 
	4.5 Conversion Accuracy
	4.6 Statslator PDF Viewer
	4.7 Discussion
	4.8 Conclusion

	5 Extracting Data from Vector Charts
	5.1 Motivation
	5.2 Background and Related Work
	5.3 Challenges and Design Goals
	5.4 ChartDetective
	5.5 Usability Study
	5.6 Data Quality Study
	5.7 Discussion
	5.8 Conclusion

	6 Bringing Interactivity to Static Digital Documents
	6.1 Motivation
	6.2 Background and Related Work
	6.3 Chameleon
	6.4 Feature Matching Algorithm Comparison
	6.5 Feasibility Evaluation of Chameleon
	6.6 First-use study
	6.7 Discussion
	6.8 Conclusion and Future Work

	7 Conclusion and Future Directions
	7.1 Summary of Contributions
	7.2 Augmenting Documents by Readers, Publishers, or Authors?
	7.3 Limitations
	7.4 Future Directions
	7.5 Final Word

	Bibliography
	Appendices
	A Extraction Algorithms used in ChartDetective
	A.1 Extraction of Box Plots
	A.2 Extraction of Bars
	A.3 Extraction of Scatter Plots
	A.4 Extraction of Axes
	A.5 Extraction of Lines
	A.6 Splitting Compounded Shapes

	Glossary


