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Abstract

We axiomatize the main properties of the classical Erdös-Kac Theorem in order to
apply it to a general context. We provide applications in the cases of number fields,
function fields, and geometrically irreducible varieties over a finite field.
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1 Introduction.

For m ∈ N, define ω(m) to be the number of distinct prime divisors of m. The Turán
Theorem is about the second moment of ω(m). For x ∈ Q, Turán proved that [12]∑

m≤x

(
ω(m)− log log x

)2 � x log log x.

A direct consequence of this theorem is that

#
{
m ≤ x,

∣∣∣ω(m)− log logm√
log logm

∣∣∣ > gx

}
= o(x),

for any sequence {gx} satisfying gx → ∞ as x → ∞. In particular, it implies a result of
Hardy and Ramanujan [5] that the normal order of ω(m) is log logm. The idea behind
Turán’s proof was essentially probabilistic. In 1940, further development of probabilistic
ideas led Erdös and Kac [2] to prove a remarkable refinement of the Turán Theorem. They
discovered that there exists a Gaussian normal distribution for the quantity

ω(m)− log logm√
log logm

.

More precisely, for γ ∈ R, Erdös-Kac proved that

lim
x→∞

1

[x]
#
{
m : m ≤ x, ω(m)− log logm√

log logm
≤ γ

}
= G(γ) :=

1√
2π

∫ γ

−∞
e

−t2

2 dt,
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where [x] is the largest integer ≤ x.

In their original paper, Erdös and Kac used a technically involved sieve method to
obtain this result. In 1955, Halberstam [4] gave a more probabilistically natural approach
to this theorem by using the method of ‘all moments’. In 1969, by applying the concept of
independent random variables, Billingsley [1] provided an elementary proof of the Erdös-
Kac Theorem. Thanks to his efforts, we can give a generalization of this Theorem.

Let P be a set of elements with a map

N : P → N\{1}, p 7→ N(p).

Let M be a free abelian monoid generated by elements of P . For each m ∈M , we write

m =
∑
p∈P

np(m)p,

with np(m) ∈ N ∪ {0} and np(m) = 0 for all but finitely many p. We extend the map N
on M as follows:

N : M −→ N

m =
∑
p∈P

np(m)p 7−→ N(m) :=
∏
p∈P

N(p)np(m),

i.e., N is a monoid homomorphism from (M,+) to (N, ·). Let X be a countable subset of
Q that contains the image Im(N(M)) with an extra condition: if x1, x2 ∈ X, the fraction
x1/x2 belongs to X, too. Without loss of generality, we assume X = Q or X =

{
qz, z ∈ Z

}
for some q ∈ N (see Remark at the end of this section for a more detailed discussion about
X).

Given P , M , and X as above, for each (sufficiently large) x ∈ X, we assume that the
following two conditions hold: let m ∈M and p ∈ P , we have

(A)
∑

N(m)≤x

1 = κx+ O(xθ), for some κ > 0 and 0 ≤ θ < 1.

(B)
∑

N(p)≤x

1 = O
( x

log x

)
.

For each m ∈M , we define

ω(m) =
∑
p∈P

np(m)≥1

1.

It it the number of elements of P that generate m, counted without multiplicity. Given
P , M , and X satisfying (A) and (B), the author [9] proved that for x ∈ X, we have∑

N(m)≤x

(
ω(m)− log log x

)2
= κx log log x+ Cx+ O

(x log log x

log x

)
.
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Here κ is the same constant as in (A) and C is another constant. This result is a gener-
alization of the Turán Theorem. It implies that

#
{
m ∈M,N(m) ≤ x,

∣∣∣ω(m)− log logN(m)√
log logN(m)

∣∣∣ > gx

}
= o(x),

for any sequence {gx} satisfying gx → ∞ as x → ∞. In particular, we obtain that the
normal order of ω(m) is log logN(m). This result suggests a possible existence of a normal
distribution for the quantity

ω(m)− log logN(m)√
log logN(m)

.

This is indeed the case.

Theorem 1 Given P , M , and X as before, assume they satisfy (A) and (B). For m ∈M ,
we have

lim
x→∞

1

#
{
m : N(m) ≤ x

} #
{
m : N(m) ≤ x, ω(m)− log logN(m)√

log logN(m)
≤ γ

}
= G(γ).

In [9], the author provided the following applications where the general setting can be
applied.

Example 1 In the case of rational numbers, let P be the set of primes of N with the
identity map N . Take M = N and X = Q. Condition (A) is true since

#
{
m ∈ N, m ≤ x

}
= [x] = x+ O(1).

Also, Condition (B) is the classical Chebyshev Theorem [11] (p36-37). Hence, by Theorem
1, we recover the classical Erdös-Kac Theorem.

Example 2 Given a number field K, let OK be its ring of integer. Let P be the set of
prime ideals of OK with the standard norm map N , i.e., p 7→ |OK/p|. Let M be the set
of ideals and X = Q. Condition (A) is a result of Weber [13]. Also, Condition (B) follows
from the classical Chebyshev Theorem and the fact that there are only finitely many prime
ideals lying above a rational prime. Thus we have

Corollary 1 Let K/Q be a number field and OK be its ring of integers. For an ideal m of
OK , let ω(m) denote the number of distinct prime ideals dividing m. For x ∈ Q, we have

lim
x∈∞

1

#
{
m : |OK/m| ≤ x

} #
{
m : |OK/m| ≤ x,

ω(m)− log log(|OK/m|)√
log log(|OK/m|)

≤ γ
}

= G(γ).

Example 3 Let Fq[t] be the ring of polynomials of one variable over a finite field Fq.
Take P to be the set of monic irreducible polynomials with p 7→ qdeg p, where deg p is the
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degree of the polynomial p. Let M be the set of monic polynomials and X = {qz, z ∈ Z}.
Conditions (A) and (B) can be easily derived from the fact that for a fixed d ∈ N,

#
{
m ∈M,degm = d

}
= qd.

Hence, we have a generalization of the Erdös-Kac Theorem in the case of function fields.
Related results about this case can also be found in [14].

Example 4 Let V/Fq be a geometrically irreducible variety of dimension r over a finite
field Fq. Let P be the set of closed points with p 7→ (qr)deg p, where deg p is the length
of the corresponding orbit [10] (p259). Take M to be the set of effective 0-cycles and
X = {(qr)z, z ∈ Z}. Conditions (A) and (B) can be verified by the estimate of Lang-Weil
[8] about the number of points of V . Hence, we have

Corollary 2 Let V/Fq be a geometrically irreducible variety of dimension r over a finite
field Fq. Let P be the set of closed points and M be the set of effective 0-cycles. Let

X = {(qr)z, z ∈ Z}. For m ∈M , write m =
∑
p∈P

np(m)p. The degree of m is defined by

degm =
∑
p∈P

np(m)deg p,

where deg p is the length of the corresponding orbit of p. Let ω(m) denote the number of
distinct closed points on m. We have

lim
n∈∞

1

#
{
m : degm ≤ n

} #
{
m : degm ≤ n, ω(m)− log(degm)√

log(degm)
≤ γ

}
= G(γ).

This application can be viewed as the first geometric analogue of the Erdös-Kac The-
orem.

Remark The conditions that we impose on the set X give only two choices for it: either
X is dense in R+

0 =
{
r ∈ R, r > 0

}
or X =

{
qz, z ∈ Z

}
for some q > 1. For the purpose

of our applications, we take either X = Q or X =
{
qz, z ∈ Z

}
for q ∈ N. I would like to

thank W. Kuo for providing the following theorem.

Theorem 2 (W. Kuo) Let X be a subset of R+
0 that satisfies the following two conditions:

- ImN(M) ⊂ X, and

- If x1, x2 ∈ X, the quotient x1/x2 ∈ X.

Then X is either

- dense in R+
0 or
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- there is a q > 1, such that X =
{
qz|z ∈ Z

}
.

In the first case, we say X is archimedean; the second one is called non-archimedean.

Proof: Let p1 ∈ P such that

N(p1) = min
{
N(p), p ∈ P

}
.

We consider the following two cases.

1. There is a p ∈ P such that
logN(p)

logN(p1)
= γ /∈ Q.

2. For all p ∈ P ,

logN(p)

logN(p1)
=
mp

np
∈ Q, mp, np ∈ N, (mp, np) = 1.

For the first case, we claim that X is dense in R+
0 ; its proof is following. By the conditions

of X, we know that for m,n ∈ N,
N(p)m

N(p1)n
∈ X.

We shall show that any positive number can be approximated by elements of the form
N(p)m/N(p1)

n. It suffices to show that log(N(p)m/N(p1)
n) is dense in R. We have

log

(
N(p)m

N(p1)n

)
= logN(p) ·

(
m− n · logN(p)

logN(p1)

)
= logN(p) · (m− nγ).

Since γ is irrational, the set
{

(m−nγ) |m,n ∈ Z
}

is dense in R. Therefore, X is dense in
R+
0 . Now, consider the second case. If we assume first that

lim
p∈P

N(p)→∞

np =∞.

Then the set {
N(p1)

z/np | z ∈ Z, p ∈ P
}

is dense in R+
0 since the set of its log{

z/np | z ∈ Z, p ∈ P
}
,

is dense in R. Therefore, in this case, X is also dense in R+
0 . On the other hand, if we

have
lim
p∈P

N(p)→∞

np = M <∞,
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Then X contains the set {
N(p1)

z/M | z ∈ Z
}
.

If there is any other element of X not containing in the above set, repeat the same
argument. We get either X is dense in R+

0 or X is supported on a power of a positive
number.

Moreover, since X is either archimedean or non-archimedean, in either case, Condition
(A) indeed imply (B). The case X = Q is a result of Landau [7] and the case X =

{
qz, z ∈

Z
}

is proved by Knopfmacher [6] (p76). Since the proof of (A) implies (B) is involved,
in the following discussion, we will continue to assume both Conditions (A) and (B) with
the understanding that (B) is indeed redundant.

2 Review of probability theory.

In this section, we review some probability theory.

Given a random variable X with a probability measure P . For t ∈ R, the function F
defined by F (t) = P

{
X ≤ t

}
is the distribution function of X. The expectation of X is

defined by

E
{
X
}

=

∫ ∞
−∞

t dF (t).

The variance of X measures the difference between X and E
{
X
}

. It is defined by

Var
{
X
}

= E
{(
X − E

{
X
})2}

= E
{
X2
}
−
(
E
{
X
})2

.

Let X and Y be two random variables with the same probability measure P . We have

E
{
X + Y

}
= E

{
X
}

+ E
{
Y
}
.

If X and Y are independent, i.e., for all x ∈ R, y ∈ R,

P
{
X ≤ x, Y ≤ y

}
= P

{
X ≤ x

}
· P
{
Y ≤ y

}
,

we have
E
{
X · Y

}
= E

{
X
}
· E
{
Y
}

and
Var
{
X + Y

}
= Var

{
X
}

+ Var
{
Y
}
.

Definition Given a sequence of random variables {Xn} and α ∈ R, we say {Xn} converges
in probability to α if for any ε > 0,

lim
x→∞

P
{
|Xn − α| > ε

}
= 0.

We denote it by
Xn

p−−−−→ α.
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Now, we are in a position to state some facts from probability theory that are needed
to prove Theorem 1; most of their proofs can be found in [1] and [3].

Fact 1 Given a sequence of random variables {Xn}, if

lim
n→∞

E
{
|Xn|

}
= 0,

we have
Xn

p−−−−→ 0.

Proof: Fix an ε > 0. Since lim
n→∞

E
{
|Xn|

}
= 0, for any ε1 > 0, there exists N = N(ε1) ∈ N

such that for all n > N , we have

ε · P
{
|Xn| > ε

}
≤
∫ ∞
−∞
|t| dFn(t) < ε1.

It implies that
P
{
|Xn| > ε

}
< ε1/ε.

By choosing ε1 small enough, the fact follows.

Fact 2 ([1] p134-135, [3] p247) Let {Xn}, {Yn}, and {Un} be sequences of random vari-
ables with the same probability measure P. Let U be a distribution function. Suppose

Xn
p−−−−→ 1 and Yn

p−−−−→ 0.

For all γ ∈ R, we have
lim
x→∞

P
{
Un ≤ γ

}
= U(γ)

if and only if
lim
x→∞

P
{

(XnUn + Yn) ≤ γ
}

= U(γ).

We use G(γ) to denote the Gaussian normal distribution, i.e.,

G(γ) :=
1√
2π

∫ γ

−∞
e

−t2

2 dt.

For r ∈ N, the r-th moment of G is defined by

µr :=

∫ ∞
−∞

trdG(t).

Notice that for an odd integer r, we have∫ ∞
∞
|t|r dG(t) =

2√
2π

∫ ∞
0

tr · e−t2/2dt

=
2√
2π

∫ ∞
o

(2u)(r−1)/2 · e−udu

=
2√
2π
· 2(r−1)/2 ·

(r − 1

2

)
!.
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The last equality holds since
∫∞
0 tne−tdt = n!. Thus we have

lim
r→∞

sup
1

r

(∫ ∞
∞
|t|r dG(t)

)1/r
= 0.

It follows from [3] (p487) that G is uniquely determined by these moments. Thus we have

Fact 3 ([3] p262-263) Given a sequences of distribution functions {Fn}, if for all r ∈ N,

lim
n→∞

∫ ∞
−∞

trdFn(t) = µr,

then for all γ ∈ R, we have
lim
x→∞

Fn(γ) = G(γ).

This next fact is an analogue of the Lebesgue Dominated Theorem.

Fact 4 ([3] p244-245) Let r ∈ N. Given a sequence of distribution functions {Fn}, if

lim
x→∞

Fn(γ) = G(γ), for all γ ∈ R

and

sup
n

{∫ ∞
−∞
|t|r+δdFn(t)

}
<∞, for some δ = δ(r) > 0,

we have

lim
n→∞

∫ ∞
−∞

trdFn(t) = µr.

The next fact is a special case of the Central Limit Theorem.

Fact 5 ([3] p256-258) Let X1, X2, · · · , Xi, · · · be a sequence of independent random vari-
ables and Im(Xi) is the image of Xi. Suppose

(1) sup
i

{
Im(Xi)

}
<∞.

(2) E
{
Xi

}
= 0 and Var

{
Xi

}
<∞ for all i.

For n ∈ N, let Gn be the ‘normalization’ of X1, X2, · · · , Xn, i.e.,

Gn :=
( n∑
i=1

Xi

)/( n∑
i=1

Var
{
Xi

}) 1
2
.

If

∞∑
i=1

Var
{
Xi

}
diverges, we have

lim
n→∞

P
{
Gn ≤ γ

}
= G(γ).
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3 Technical lemmas.

Given P,M, and X as defined before, assume they satisfy (A) and (B). We need the
following two lemmas from [9].

Lemma 1 (Lemma 1(1) [9])

∑
N(p)≤x

1

N(p)α
� x1−α

log x
if 0 ≤ α < 1.

Lemma 2 (Lemma 2 [9])∑
N(p)≤x

1

N(p)
= log log x+A+ O

( 1

log x

)
,

where A is a constant.

For x ∈ X, define
M(x) =

{
m ∈M,N(m) ≤ x

}
.

Let
Px
{
m : m satisfies some conditions

}
denote the quantity

1

|M(x)|
#
{
m ∈M(x), m satisfies some conditions

}
.

Notice that Px is a probability measure on M . Let f be a function from M to R. The
expectation of f with respect to Px is denoted by

Ex

{
m : f(m)

}
:=

1

|M(x)|
∑

m∈M(x)

f(m).

The following lemmas are essential for the proof of Theorem 1. The first one gives an
equivalent statement of Theorem 1.

Lemma 3

lim
x→∞

Px

{
m :

ω(m)− log logN(m)√
log logN(m)

≤ γ
}

= G(γ)

if and only if

lim
x→∞

Px

{
m :

ω(m)− log log x√
log log x

≤ γ
}

= G(γ).
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Proof: Since

ω(m)− log log x√
log log x

=
ω(m)− log logN(m)√

log logN(m)

√
log logN(m)√

log log x

+
log logN(m)− log log x√

log log x
,

by Fact 2, to prove this lemma, it suffices to show that for any ε > 0, we have

lim
x→∞

Px

{
m :

∣∣∣√log logN(m)√
log log x

− 1
∣∣∣ > ε

}
= 0

and

lim
x→∞

Px

{
m :

∣∣∣ log logN(m)− log log x√
log log x

∣∣∣ > ε
}

= 0.

Consider m ∈M with x1/2 < N(m) ≤ x. If we have√
log logN(m)√

log log x
< 1− ε,

it follows that

(log log x− log 2)1/2 < (log logN(m))1/2 < (1− ε)(log log x)1/2.

Taking square on both sides, we get

1

(1− ε)2
(log log x− log 2) < log log x.

It follows that

log log x <
log 2

ε(2− ε)
.

Similarly, for m ∈M with x1/2 < N(m) ≤ x, if we have

log log x− log logN(m)√
log log x

> ε,

it implies that

log log x <
( log 2

ε

)2
.

Hence, there exists x(ε) ∈ R such that for all x ≥ x(ε), we have

Px

{
m :

∣∣∣√log logN(m)√
log log x

− 1
∣∣∣ > ε

}
≤ Px

{
m : N(m) ≤ x1/2

}
and

Px

{
m :

∣∣∣ log logN(m)− log log x√
log log x

∣∣∣ > ε
}
≤ Px

{
m : N(m) ≤ x1/2

}
.
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Applying Condition (A), we have

Px
{
m : N(m) ≤ x1/2

}
=

1

|M(x)|
· |M(x1/2)|

=
κx1/2 + O(xθ/2)

κx+ O(xθ)

−→ 0,

as x→∞. Hence, we obtain the equivalence of the statements in the lemma.

For x ∈ X, define
y = x1/ log log x.

For m ∈M , define

ωy(m) =
∑
p∈P

np(m)≥1
N(p)≤y

1.

It is a truncation function of ω(m). Notice that we have

y = o
(
xε
)

for any ε > 0.

By Lemma 2, we have ∑
y<N(p)≤x

1

N(p)
� log log log x = o

(
(log log x)1/2

)
.

We have another equivalent formulation of the Erdös-Kac Theorem in terms of ωy.

Lemma 4

lim
x→∞

Px

{
m :

ω(m)− log log x√
log log x

≤ γ
}

= G(γ)

if and only if

lim
x→∞

Px

{
m :

ωy(m)− log log x√
log log x

≤ γ
}

= G(γ).

Proof: Since

ωy(m)− log log x√
log log x

=
ω(m)− log log x√

log log x
+
ωy(m)− ω(m)√

log log x
,

by Facts 1 and 2, if we have

lim
x→∞

Ex

{
m :

∣∣∣ω(m)− ωy(m)√
log log x

∣∣∣} = 0,
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the lemma follows. Consider∑
N(m)≤x

∣∣ω(m)− ωy(m)
∣∣ =

∑
y<N(p)≤x

∑
N(m)≤x
np(m)≥1

1

=
∑

y<N(p)≤x

(
κx

N(p)
+ O

( xθ

N(p)θ

))
= o
(
κx(log log x)1/2

)
+ O

(
x
)
.

The last equality follows from the remark before Lemma 4 and Lemma 1. Hence, we have

Ex

{
m :

∣∣∣ω(m)− ωy(m)√
log log x

∣∣∣} =
o
(
x(log log x)1/2

)(
κx+ O(xθ)

)(
log log x

)1/2 −→ 0,

as x→∞. Thus Lemma 4 follows.

For p ∈ P , define the independent random variables Xp by

P{Xp = 1} =
1

N(p)

and

P{Xp = 0} = 1− 1

N(p)
.

Define a new random variable Sy by

Sy :=
∑
p∈P

N(p)≤y

Xp.

By Lemma 2 and the choice of y, we have

E
{
Sy
}

=
∑

N(p)≤y

1

N(p)
= log log x+ o

(
log log x

)1/2
,

Var
{
Sy
}

=
∑

N(p)≤y

1

N(p)

(
1− 1

N(p)

)
= log log x+ o

(
log log x

)1/2
.

We have another equivalent formulation of Theorem 1.

Lemma 5

lim
x→∞

Px

{
m :

ωy(m)− log log x√
log log x

≤ γ
}

= G(γ)

if and only if

lim
x→∞

Px

{
m :

ωy(m)− E{Sy}√
Var{Sy}

≤ γ
}

= G(γ).
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Proof: Write

ωy(m)− E{Sy}√
Var{Sy}

=
ωy(m)− log log x√

log log x

√
log log x√
Var{Sy}

+
log log x− E{Sy}√

Var{Sy}
.

Since
Var
{
Sy
}

= log log x+ o
(

log log x
)1/2

,

we have √
log log x√
Var{Sy}

p−−−−→ 1.

Also, since

E{Sy} = log log x+ o
(

log log x
)1/2

,

it follows that

lim
x→∞

Ex

{
m :

∣∣∣E{Sy} − log log x√
Var{Sy}

∣∣∣} = 0.

By Facts 1 and 2, the lemma follows.

Now, for p ∈ P , define a random variable δp : M → R by

δp(m) :=

{
1 if np(m) ≥ 1,

0 otherwise.

Hence, we can write

ωy(m) =
∑
p∈P

N(p)≤y

δp(m).

Notice that for a fixed p ∈ P and x ∈ X, by Condition (A), we have

Px
{
m : δp(m) = 1

}
=

1

|M(x)|
·
∣∣∣∣M( x

N(p)

)∣∣∣∣
=

1

κx+ O(xθ)

( κx

N(p)
+ O

( xθ

N(p)θ

))
=

1

N(p)
+ O

(
xθ−1

)
.

Since the expectations of random variables Xp and δp are close, the sum Sy is a good
approximation of ωy. Indeed, the r-th moments of their normalizations are equal as
x→∞.

Lemma 6 Let r ∈ N. We have

lim
x→∞

∣∣∣Ex{(ωy(m)− E{Sy}√
Var{Sy}

)r}
− E

{(Sy − E{Sy}√
Var{Sy}

)r}∣∣∣ = 0.
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Proof: For 0 ≤ k ≤ r, write

E
{
Sky
}

=
k∑

u=1

∑′ k!

k1! · · · ku!

∑′′
E
{
Xk1
p1 · · ·X

ku
pu

}
.

Here
∑′ extends over all u-tuples (k1, k2, · · · , ku) of positive integers such that k1 + k2 +

· · · + ku = k and
∑′′ extends over all u-tuples (p1, p2, · · · , pu) of elements P such that

N(pi) ≤ y for all i and pi 6= pj if i 6= j, regardless of their orders. Since each Xpi takes
values 0 or 1 and the Xpi ’s are independent, we have

E
{
Xp1 · · ·Xpu

}
=

1

N(p1) · · ·N(pu)
.

Similarly, we have

Ex
{
ωkn
}

=
k∑

u=1

∑′ k!

k1! · · · ku!

∑′′
Ex
{
δk1p1 · · · δ

ku
pu

}
,

with the same
∑′ and

∑′′ as above. By Condition(A), we have

Ex
{
δp1 · · · δpu

}
=

1

|M(x)|
·
∣∣∣∣M( x

N(p1) · · ·N(pu)

)∣∣∣∣
=

1

κx+ O(x)

( κx

N(p1) · · ·N(pu)
+ O

( xθ

N(p1)θ · · ·N(pu)θ

))
=

1

N(p1) · · ·N(pu)
+ O

(
xθ−1

)
.

Hence, we have ∣∣∣Ex{ωky}− E
{
Sky
}∣∣∣� xθ−1

( ∑
N(p)≤y

1
)k
≤ yk · xθ−1.

Write

E
{(
Sy − E

{
Sy
})r}

=
r∑

k=0

(
r

k

)
E
{
Sky
}
· E
{
Sy
}r−k

and

Ex
{(
ωy − E

{
Sy
})r}

=
r∑

k=0

(
r

k

)
Ex
{
ωky
}
· E
{
Sy
}r−k

.

Their difference is∣∣∣Ex{(ωy − E
{
Sy
}

)r
}
− E

{(
Sy − E

{
Sy
})r}∣∣∣� r∑

k=0

(
r

k

)
yk · xθ−1 · E

{
Sy
}r−k

= xθ−1
(
y + E

{
Sy
})r

.
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Notice that

E
{
Sy
}

=
∑

N(p)≤y

1

N(p)
≤

∑
N(m)≤y

1� y.

Since for any ε > 0.
y = o

(
xε
)
,

we have ∣∣∣Ex{(ωy − E
{
Sy
}

)r
}
− E

{(
Sy − E

{
Sy
})r}∣∣∣ −→ 0,

as x→∞. Thus the lemma holds.

The following lemma is about the r-th moment of Sy.

Lemma 7 For r ∈ N,

sup
x

∣∣∣E{(Sy − E
{
Sy
}√

Var{Sy}

)r}∣∣∣ <∞.
Proof: Define Yp = Xp − 1

N(p) . We have

E
{(
Sy − E

{
Sy
})r}

=
r∑

u=1

∑′ r!

r1! · · · ru!

∑′′
E{Y r1

p1 · · ·Y
ru
pu },

where
∑′ and

∑′′ are defined as in Lemma 6 except replacing k by r. Since E
{
Yp
}

= 0,
without loss of generality, we can assume ri ≥ 2. Since |Yp| ≤ 1 and ri ≤ 2, we have∣∣E{Y ri

pi

}∣∣ ≤ E
{
Y 2
pi

}
.

Hence, we have

E
{(
Sy − E

{
Sy
})r} ≤ r∑

u=1

∑′ r!

r1! · · · ru!

∑′′
E
{
Y 2
p1 · · ·Y

2
pu

}
≤

r∑
u=1

∑′ r!

r1! · · · ru!

( ∑
N(p)≤y

E
{
Y 2
p

})u

≤
r∑

u=1

∑′ r!

r1! · · · ru!
Var
{
Sy
}u

≤
r∑

u=1

∑′ r!

r1! · · · ru!
Var
{
Sy
}r/2

.

The last inequality holds because 2u ≤ r. Hence, we obtain

E
{(Sy − E

{
Sy
}√

Var{Sy}

)r}
≤

r∑
u=1

∑′ r!

r1! · · · ru!
<∞.

Thus Lemma 7 follows.
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4 Proof of Theorem 1.

We are now equipped to embark on the proof of Theorem 1. Given P , M , and X as before,
assume they satisfy Conditions (A) and (B). For m ∈M , we shall show that the quantity

ω(m)− log logN(m)√
log logN(m)

distributes normally. By the equivalent statements of Lemmas 3, 4, and 5, to prove
Theorem 1, it suffices to show

lim
x→∞

Px

{
m :

ωy(m)− E{Sy}√
Var{Sy}

≤ γ
}

= G(γ).

The distribution function Fx respect to Px is defined by

Fx(γ) := Px

{
m :

ωy(m)− E{Sy}√
Var{Sy}

≤ γ
}
.

Notice that the r-th moment of Fx is equal to∫ ∞
−∞

trdFx(t)

=
∞∑

t=−∞

{
lim
u→∞

u∑
i=1

(t+ i/u)r
(
Fx(t+ i/u)− Fx(t+ (i− 1)/u)

)}

=

∞∑
t=−∞

{
lim
u→∞

u∑
i=1

(t+ i/u)rPx

{
m : (t+ (i− 1)/u) <

(ωy(m)− E{Sy}√
Var{Sy}

)
≤ (t+ i/u)

}}
=

1

#
{
m : N(m) ≤ x

} ∑
N(m)≤x

(ωy(m)− E{Sy}√
Var{Sy}

)r
= Ex

{(ωy(m)− E{Sy}√
Var{Sy}

)r}
.

Hence, to prove
lim
x→∞

Fx(γ) = G(γ),

by Fact 3, it suffices to show that for all r ∈ N,

lim
x→∞

Ex

{(ωy(m)− E{Sy}√
Var{Sy}

)r}
= µr.

By Lemma 6, we see that the last equality holds if

lim
x→∞

E
{(Sy − E

{
Sy
}√

Var{Sy}

)r}
= µr.
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Define a new random variable Gy = Gy(x) on M by

Gy :=
Sy − E{Sy}√

Var{Sy}
.

Applying Fact 5, the Central Limit Theorem implies that

lim
x→∞

Gy = G.

Also, Lemma 7 implies that for each r ∈ N, there exists δ = δ(r) > 0 such that

sup
x

∫ ∞
−∞
|t|r+δdGy(t) <∞.

By Fact 4, we have

lim
x→∞

E
{(Sy − E{Sy}√

Var{Sy}

)r}
= µr;

thus
lim
x→∞

Fx(γ) = G(γ)

follows. Hence, we obtain Theorem 1, i.e., a generalization of the Erdös-Kac Theorem
holds in this general setting.

Remark For m ∈M , we define

Ω(m) =
∑
p∈P

np(m)≥1

np(m),

the number of generators of m, counted with multiplicity. Applying the same method as
in the classical case, we can also obtain generalizations of the Turán Theorem and the
Erdös-Kac Theorem for Ω(m) in our general setting.

Conclusion The Erdös-Kac Theorem is a refinement of the Turán Theorem. When we
compare these two, we naturally think that the latter is ‘more difficult’ than the former.
However, when we put these two theorems in a general context, they both require only
Conditions (A) and (B). Thus we conclude that these two results are of ‘the same difficulty’.
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