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Abstract

We axiomatize the main properties of the classical Turán Theorem in order to
apply it to a general context. We provide applications in the cases of number fields,
function fields, and geometrically irreducible varieties over a finite field.
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1 Introduction.

Let m ∈ N and define ω(m) to be the number of distinct prime divisors of m. Hardy and
Ramanujan [3] proved in 1917 that the normal order of ω(m) is log logm. In other words,
given any ε > 0, we have

#{m ≤ x, |ω(m)− log logm| > ε log logm} = o(x).

The method they used was rather complicated and seemed difficult to generalize. In 1934,
Turán [12] gave a greatly simplified proof of the Hardy-Ramanujan result by showing that∑

m≤x
(ω(m)− log log x)2 � x log log x.

His proof was essentially probabilistic and concealed in it an elementary sieve method [4].
Because of its simplicity and importance, this result is now known as the Turán Theorem.
At the end of [12], Turán also stated that∑

m≤x
(ω(m)− log log x)2 = x log log x+ o(x log log x)

can be obtained and the proof of it is at [1]. Recently, Saidak [11] improved the Turán
Theorem by proving the asymptotic formula∑

m≤x
(ω(m)− log log x)2 = x log log x+ Cx+ O

(x log log x

log x

)
,
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where C is an explicit constant. Indeed, the setting of the Turán Theorem can be gener-
alized. The purpose of this paper is to axiomatize the main properties in order to apply
the results in a more general context. We will see applications in Section 4 in the cases of
number fields, function fields, and geometrically irreducible varieties over a finite field.

We now formulate the general setting of the Turán’s Theorem. Let P be a set of
elements with a map

N : P → N\{1}, p 7→ N(p).

Let M be a free abelian monoid generated by elements of P . For each m ∈M , we write

m =
∑
p∈P

np(m)p,

with np(m) ∈ N ∪ {0} and np(m) 6= 0 for only finitely many p. We extend the map N on
M as follows:

N : M −→ N

m =
∑
p∈P

np(m)p 7−→ N(m) :=
∏
p∈P

N(p)np(m),

i.e., N is a monoid homomorphism from (M,+) to (N, ·). Let X be a subset of N that
contains the image Im(N(M)). We choose either X = N or X = {qrn, n ∈ N ∪ {0}} for
some fixed q, r ∈ N \ {1}.

Given P , M , and X as above, for each (sufficiently large) x ∈ X, we assume that the
following two conditions hold: let m ∈M and p ∈ P , we have

(A) (Cardinality of elements)
∑

N(m)≤x

1 = κx+ O(xθ), for some κ > 0 and 0 ≤ θ < 1.

(B) (Cardinality of primes)
∑

N(p)≤x

1 = O
( x

log x

)
.

For each m ∈M , we define

ω(m) =
∑
p∈P

np(m)≥1

1,

the number of elements of P that generate m, counted without multiplicity. Then we have
a generalization of the Turán Theorem.

Theorem 1 Given P , M , and X satisfying (A) and (B), for x ∈ X, we have∑
N(m)≤x

(ω(m)− log log x)2 = κx log log x+ Cx+ O
(x log log x

log x

)
.

Here κ is the same constant as in (A) and C is a constant that depends only on P .
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As an immediate corollary of Theorem 1, we obtain a generalization of the Hardy-
Ramanujan Theorem on the normal order of ω(m).

Corollary 1 Let P , M , and X satisfy (A) and (B). For ε > 0 and x ∈ X, we have

#
{
m ∈M,N(m) ≤ x, |ω(m)− log logN(m)| > ε log logN(m)

}
= o(x).

2 Technical lemmas.

To prove Theorem 1, we need the following lemmas.

Lemma 1 Given P , M , and X satisfying (A) and (B), we have

(1)
∑

N(p)≤x

1

N(p)α
� x1−α

log x
if 0 ≤ α < 1,

(2)
∑

N(m)≤x

1

N(m)α
� 1 if α > 1.

In particular, (2) implies that ∑
N(p)≤x

1

N(p)α
� 1 if α > 1.

Proof: These results follow from the technique of partial summation [8](p17-18).

The next lemma is a generalization of Mertens’ theorem [7].

Lemma 2 Given P , M , and X satisfying (A) and (B), we have∑
N(p)≤x

1

N(p)
= log log x+A+ O

( 1

log x

)
for some constant A that depends only on P .

Proof: Consider
∑

N(m)≤x

logN(m). Applying (A) and partial summation, we have

∑
N(m)≤x

logN(m) = κx log x+ O(x).
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On the other hand, for p ∈ P , we can write∑
N(m)≤x

logN(m) =
∑

N(p)s≤x
s≥1

( ∑
N(m′)≤ x

N(p)s

1

)
logN(p) (here m′ = m− sp)

= κx
∑

N(p)s≤x
s≥1

logN(p)

N(p)s
+ O

( ∑
N(p)s≤x
s≥1

xθ logN(p)

N(p)sθ

)
.

By Lemma 1, we have ∑
N(p)s≤x
s≥1

logN(p)

N(p)sθ
� x1−θ

and ∑
N(p)s≤x
s≥2

logN(p)

N(p)s
� 1.

It follows that ∑
N(p)≤x

logN(p)

N(p)
= log x+ O(1).

Let X = N and z ∈ N. Define

S(z) :=
∑

N(p)≤z

logN(p)

N(p)
= log z + τ(z), where τ(z) = O(1).

We have∑
N(p)≤x

1

N(p)
=
S(x)

log x
+

∫ x

2

log t+ τ(t)

(log t)2t
dt

= 1 +

∫ x

2

1

t log t
dt+

∫ ∞
2

τ(t)

t(log t)2
dt−

∫ ∞
x

τ(t)

t(log t)2
dt+ O

( 1

log x

)
= log log x+

(
1− log log 2 +

∫ ∞
2

τ(t)

t(log t)2
dt

)
+ O

( 1

log x

)
.

If X = {qrn, n ∈ N ∪ {0}}, define

S′(z) :=
∑

N(p)≤qrz

logN(p)

N(p)
= z log(qr) + τ(z), where τ(z) = O(1).

For x = qrx
′
, we have∑

N(p)≤x=qrx′

1

N(p)
=

S′(x′)

log qrx′
+

∫ x′

1

t log qr + τ(t)

t2 log qr
dt

= log log x+

(
1− log log qr +

∫ ∞
1

τ(t)

t2 log qr
dt

)
+ O

( 1

log x

)
.

This completes the proof of Lemma 2
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Lemma 3 Given P , M , and X satisfying (A) and (B),
(1) If X = N, we have∑

N(p)≤x
2

1

N(p)
log log

x

N(p)
= (log log x)2 +A log log x+B + O

(
log log x

log x

)
.

(2) If X = {qrn, n ∈ N ∪ {0}}, we have∑
N(p)≤ x

qr

1

N(p)
log log

x

N(p)
= (log log x)2 +A log log x+B + O

(
log log x

log x

)
.

Here A is the same constant as in Lemma 2 and B is some other constant. Both depend
only on P .

Proof: (1) Let X = N. By Lemma 2 and partial summation, we have

O
( 1

log x

)
∑

N(p)≤x
2

1

N(p)
log log

x

N(p)
= (log log 2) log log x+A log log 2 + O

( 1

log x

)

+

∫ x
2

2

log log t+A+ O
(

1
log t

)
log x− log t

dt

t
.

By elementary integrations, we see that

dt

log t(log x− log t)t
� log log x

log x

and ∫ x
2

2

1

log x− log t

dt

t
= log log x− log log 2 + O

( 1

log x

)
.

By change of variables, we write∫ x
2

2

log log t

log x− log t

dt

t
=

∫ log x
2

log 2

log
(

log x(1− u
log x)

)
u

du

= (log log x)2 − log log 2 · log log x+ O
( log log x

log x

)
+

∫ 1− log 2
log x

log 2
log x

log(1− s)
s

ds.

Since log(1− s)� s and
∫ 1
0

log(1−s)
s ds = π2

6 for 0 < s < 1, we have∫ x
2

2

log log t

log x− log t

dt

t
= (log log x)2 − log log 2 · log log x− π2

6
+ O

( log log x

log x

)
.
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Combining all the above results, we obtain∑
N(p)≤x

2

1

N(p)
log log

x

N(p)
= (log log x)2 +A log log x− π2

6
+ O

( log log x

log x

)
.

(2) For X = {qrn, n ∈ N ∪ {0}}, replace z in the above proof by qrz. Using similar
arguments as before, we obtain∑

N(p)≤ x

ql

1

N(p)
log log

x

N(p)
= (log log x)2 +A log log x+

(
(log log qr)2 − π2

6

)

+ O
( log log x

log x

)
.

Lemma 4 Given P , M , and X satisfying (A) and (B),
(1) If X = N, we have ∑

N(p)≤x
2

1

N(p) log x
N(p)

� log x

log log x
.

(2) If X = {qrn, n ∈ N ∪ {0}}, we have∑
N(p)≤ x

qr

1

N(p) log x
N(p)

� log x

log log x
.

Proof: (1) Divide [1, x2 ] as Ij = [ej , ej+1]. We have

∑
N(p)≤x

2

1

N(p) log x
N(p)

≤
log x

2∑
j=0

1

log x
ej+1

∑
ej<N(p)≤ej+1

1

N(p)

=

log x
2∑

j=0

1

(log x− (j + 1))

(
log

j + 1

j
+ O

(1

j

))
.

The last inequality follows from Lemma 2. Since log
(
1 + 1

x

)
� 1

x for |x| < 1, we have

∑
N(p)≤x

2

1

N(p) log x
N(p)

�
log x

2∑
j=1

1

(log x− j)
1

j

=
1

log x

( log x
2∑

j=1

(1

j
+

1

log x− j

))
� log log x

log x
.

(2) The proof is exactly the same as above except replacing all x
2 by x

qr .
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3 Proof of Theorem 1.

Now, we are ready to prove Theorem 1. Our goal is to get an asymptotic formula for∑
N(m)≤x

(ω(m)− log log x)2

=
∑

N(m)≤x

ω2(m)− 2 log log x
∑

N(m)≤x

ω(m) + (log log x)2
∑

N(m)≤x

1.

By (A), the third term is

κx(log log x)2 + O(xθ(log log x)2).

By Lemmas 1 and 2, the sum of the second term is equal to∑
N(m)≤x

ω(m) =
∑

N(p)≤x

∑
N(m)≤x
np(m)≥1

1

= κx
∑

N(p)≤x

1

N(p)
+ O

(
xθ

∑
N(p)≤x

1

N(p)θ

)
= κx log log x+Aκx+ O

( x

log x

)
.

Now, we consider∑
N(m)≤x

ω2(m) =
∑

N(p)N(q)≤x
p 6=q

∑
N(m)≤x

np(m),nq(m)≥1

1 +
∑

N(p)≤x

∑
N(m)≤x
np(m)≥1

1

=
∑

N(p)N(q)≤x

∑
N(m′)≤ x

N(p)N(q)

1−
∑

N(p)≤x1/2

∑
N(m′′)≤ x

N(p)2

1

+ κx log log x+Aκx+ O
( x

log x

)
.

Here m′ = m− p− q and m′′ = m− 2p.

The first sum of the last equation is∑
N(p)N(q)≤x

∑
N(m′)≤ x

N(p)N(q)

1 = κx
∑

N(p)N(q)≤x

1

N(p)N(q)
+ O

(
xθ

∑
N(p)N(q)≤x

1

N(p)θN(q)θ

)
.
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If X = N, Lemmas 2, 3, and 4 implies that∑
N(p)N(q)≤x

1

N(p)N(q)
=

∑
N(p)≤x

2

1

N(p)

( ∑
N(q)≤ x

N(p)

1

N(q)

)

=
∑

N(p)≤x
2

1

N(p)

(
log log

x

N(p)
+A+ O

( 1

log x
N(p)

))

=
∑

N(p)≤x
2

1

N(p)
log log

x

N(p)
+A

(
log log

x

2
+A+O

( 1

log x

))

+ O

( ∑
N(p)≤x

2

1

N(p)

1

log x
N(p)

)

= (log log x)2 + 2A log log x+A2 +B + O

(
log log x

log x

)
.

Moreover, by Lemmas 1 and 2, we have∑
N(p)N(q)≤x

1

N(p)θN(q)θ
=

∑
N(p)≤x

2

1

N(p)θ

( ∑
N(q)≤ x

N(p)

1

N(q)θ

)

�
∑

N(p)≤x
2

1

N(p)θ

(
x

N(p)

)1−θ
log x

� x1−θ

log x

∑
N(p)≤x

2

1

N(p)

� x1−θ log log x

log x
.

By replacing x
2 by x

qr , we obtain the same results for X = {qrn, n ∈ N ∪ {0}}. Hence, we
have ∑

N(p)N(q)≤x

∑
N(m′)≤ x

N(p)N(q)

1 = (log log x)2 + 2A log log x+A2 +B + O
( log log x

log x

)
.

Now, consider ∑
N(p)≤x1/2

∑
N(m′′)≤ x

N(p)2

1 =
∑

N(p)≤x1/2

( κx

N(p)2
+ O

( xθ

N(p)2θ

))

= κx
∑
p∈P

1

N(p)2
− κx

∑
N(p)>x1/2

1

N(p)2

+

O
(
xθ x

1
2 (1−2θ)

log x

)
if 0 ≤ θ < 1/2,

O(xθ) if θ ≥ 1/2.
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By (B) and partial summation, we have∑
N(p)>x1/2

1

N(p)2
� 1√

x log x
.

Combining all the above results, we obtain∑
N(m)≤x

ω2(m) = κx(log log x)2 + (2A+ 1)κx log log x

+

(
A−

∑
p∈P

1

N(p)2
+A2 +B

)
κx+ O

(x log log x

log x

)
.

It follows that ∑
N(m)≤x

(ω(m)− log log x)2

= κx log log x+

(
A−

∑
p∈P

1

N(p)2
+A2 +B

)
κx+ O

(
x log log x

log x

)
,

which completes the proof of Theorem 1.

Remark We restrict X = N or X = {qrn, n ∈ N ∪ {0}} in our general setting to obtain
Theorem 1. If we allow X to be any subset of N, we can still get a weaker result∑

N(m)≤x

(ω(m)− log log x)2 = κx log log x+ O(x)

by using a similar method. If we replace condition (B) by a much weaker condition,

(B′)
∑

N(p)≤x

1

N(p)
= log log x+ O(1),

With condition (A), we obtain∑
N(m)≤x

(ω(m)− log log x)2 = κx log log x+ o(x log log x).

4 Applications of the general setting.

In this section, we provide some examples where the general setting applies. Thus ana-
logues of the Turán Theorem hold in these cases.

Example 1 In the case of rational number, let P be the set of primes of N and M = N.
Take N : M → N to be the identity map and choose X = N. Conditions (A) and (B)
are satisfied with κ = 1. Hence, Theorem 1 implies the classical Turán Theorem and we
recover the asymptotic formula of Saidak [11].
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Example 2 Let K/Q be a number field of degree [K : Q ] and OK its ring of integers.
Let P be the set of prime ideals of OK and M the set of ideals of OK . Take N :M → N
to be the standard norm map, i.e., m 7→ N(m) := |OK/m| and choose X = N. For m ∈M ,
it was proved by Weber that [13]

∑
N(m)≤x

1 = κx+ O
(
x
1− 1

[K:Q]
)

where κ =
2r1(2π)r2hR

ω
√
|dK |

,

with r1 = number of real embeddings of K,

2r2 = number of complex embeddings,

h = class number,

R = regulator,

ω = number of roots of unity,

dK = discriminant of K.

Notice that there are at most [K : Q ] many prime ideals p lying above pOK for a prime p.
Hence, the Chebyshev Theorem [8](p36-37) implies (B). Prachar [9] proved in 1952 that∑

N(m)≤x

(ω(m)− log log x)2 � x log log x.

Theorem 1 implies his result with a stronger estimate.

In the examples of function fields and varieties, to verify conditions (A) and (B), it
suffices to get the cardinalities of elements of P and M with fixed image in N. Using
elementary geometric sums and integration techniques, we have

Lemma 5 Let P,M,X be defined as before with X = {qrn, n ∈ N ∪ {0}}. Define

ad := #
{
m ∈M, N(m) = qrd

}
, d ∈ N ∪ {0}

and
bd := #

{
p ∈ P, N(p) = qrd

}
, d ∈ N.

(1) If for all d ∈ N ∪ {0},

ad = κ′qrd + O(q(r−θ
′)d), for some κ′ > 0 and θ′ > 0,

we have ∑
N(m)≤x

1 =
κ′qr

qr − 1
x+ O(xθ),

where θ = 1− θ′

r .
(2) If for all d ∈ N,

bd =
qrd

d
+ O

(
q(r−

1
2
)d
)
,
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we have ∑
N(p)≤x

1 = O
( x

log x

)
.

Example 3 Let Fq[t] be the ring of 1-variable polynomials over a finite field Fq. Take P
to be the set of monic irreducible polynomials in Fq[t] and M the set of monic polynomials.
We define the map N as follows:

N :M → N, m := m(t) 7→ qdegm(t),

where degm(t) is the degree of the polynomial m(t). Since Im(N(M)) only contains
non-negative powers of q, we take X = {qn, n ∈ N ∪ {0}}. In this case, we have [10] (p 6)

ad = qd

and

bd =
qd

d
+ O(q

d
2 ).

These satisfy the assumptions of Lemma 5 with r = 1. Hence, condition (A) and (B) are
verified and we have an analogue of the Turán Theorem in Fq[t].

Example 4 Let V/Fq be a geometrically irreducible variety of dimension r in a projective
space. Let P be the set of closed points of V/Fq, which is in bijection with the set of
orbits of V (Fq) under the action of Gal(Fq/Fq) [5](p259). For each p ∈ P , we define deg p
to be the length of the corresponding orbit. The monoid of effective 0-cycles M of V/Fq
is defined by

M =

{
m =

∑
p∈P

np(m)p, np(m) ∈ N ∪ {0} and np(m) 6= 0 for only finitely many p

}
.

For m ∈M , we define

deg m =
∑
p∈P

np(m) deg p.

The map N is defined by
N :M → N, m 7→ qrdegm.

We take X = {qrn, n ∈ N ∪ {0}}.

The zeta function of V/Fq is defined by

Z(T ) = exp

( ∞∑
n=1

|V (Fqn)|
n

Tn
)
.

Let ad and bd be defined as in Lemma 5. Using the fact that [5](p259)

|V (Fqn)| =
∑
d|n

dbd,

11



we have

Z(T ) =

∞∏
d=1

(1− T d)−bd =

∞∑
d=1

adT
d.

It was proved by Lang and Weil [6] in 1954 that

|V (Fqn)| = qrn + O
(
q(r−

1
2
)n
)
.

Applying the Möbius inversion formula, we get

dbd =
∑
n|d

µ
(d
n

)(
qrn + O

(
q(r−

1
2
)n
))

= qrd + O
(
dq(r−

1
2
)d
)

Hence, we have

bd =
qrd

d
+ O

(
q(r−

1
2
)d
)
.

The computation of ad is much more involved. Using the result of Lang-Weil, we have

Z(T ) = exp(− log(1− qrT )) exp

( ∞∑
n=1

O
(
q(r−

1
2
)n
)

n
Tn
)
.

From the theory of the l-adic cohomology of Grothendieck [2], we can write

Z(T ) =
( 1

1− qrT

)f1(T )f3(T ) · · · f2r−1(T )

f0(T )f2(T ) · · · f2r−2(T )
,

where fi(T ) are polynomials. Write

fi(T ) =

Bi∏
j=1

(1− ωi,jT ),

where Bi is the ith Betti number and ωi,j are eigenvalues of the ith cohomology group.
By taking logarithms on both expressions of Z(T ), we have∑

i,j

(−1)iωni,j = O
(
q(r−

1
2
)n
)
.

Since there are only finitely many ωi,j and the big O notation above is independent from
n, we have

|ωi,j | ≤ qr−
1
2 ,

for all i, j.

To consider the coefficients ad of Z(T ), we need the following lemmas.
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Lemma 6 Let Z(T ) be the zeta function of a geometrically irreducible variety V/Fq of
dimension r. We define

H(T ) = Z(T )(1− qrT ) =
f1(T )f3(T ) · · · f2r−1(T )

f0(T )f2(T ) · · · f2r−2(T )
=

∞∑
i=0

ciT
i.

Then, we have

ci � q(r−
1
2
)iis,

where s = B0 +B2 + · · ·+B2r−2 − 1.

Proof: If i is odd, we write

fi(T ) =

∞∑
j=0

ci,jT
j .

Since fi(T ) is a polynomial, it follows that

|ci,j | � 1.

If i is even, we write

1

fi(T )
=

1
Bi∏
j=1

(1− ωi,jT )

=

∞∑
j=0

ci,jT
j .

For a fixed i, the largest absolute value of ci,j appears when all ωi,j are the same. Notice
that the coefficient of T j of the rational function

1

(1− ωT )B
= (1 + ωT + ω2T 2 + · · ·+ ωjT j + · · · )B

is ≤ (j + 1)B−1|ω|j . Hence, by the above upper bound of |ωi,j |, we have

ci,j � jBi−1q(r−
1
2
)j .

Notice that for α, β, and a ∈ R, suppose |dj | � jαqaj , |ek| � kβqak for all j, k ∈ N ∪ {0}.
Write ( ∞∑

j=0

djT
j

)( ∞∑
k=0

ekT
k

)
=
∞∑
s=0

csT
s.

Then we have
|cs| � qassα+β+1.

It follows that the coefficient ci of T i of H(T ) is bounded by

ci � q(r−
1
2
)iis,

where s = B0 +B2 + · · ·+B2r−2 − 1.
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Lemma 7 Let ci be the coefficient of T i of H(T ) defined in Lemma 6. For z ∈ N ∪ {0},
define

C(z) =
∑
i≤z

ci

q(r−
1
2
)i
.

For any ε > 0, we have
d∑
i=0

ci
qri

= κ′ + O

(
1

q(
1
2
−ε)d

)
,

where κ′ =

∞∑
z=0

C(z)

(
1

q
1
2
z
− 1

q
1
2
(z+1)

)
.

Proof: By Lemma 7, we have
ci

q(r−
1
2
)i
� is.

It implies that
C(z)� zs+1.

Using partial summation, we obtain

d∑
i=0

ci
qri

=
C(d)

q
1
2
d
−

d−1∑
z=0

C(z)

(
1

q
1
2
(z+1)

− 1

q
1
2
z

)

= κ′ + O

(
ds+1

q
1
2
d

+
∞∑
z=d

zs+1

(
1

q
1
2
z
− 1

q
1
2
(z+1)

))
.

For any ε > 0, choose z0 large enough such that zs+1 ≤ qεz for z ≥ z0. Then for d ≥ z0,
we have

ds+1

q
1
2
d

+
∞∑
z=d

zs+1

(
1

q
1
2
z
− 1

q
1
2
(z+1)

)
≤ 1

q(
1
2
−ε)d

+
∞∑
z=d

1

q(
1
2
−ε)z

� 1

q(
1
2
−ε)d

.

This completes the proof of this Lemma.

Now, we write

Z(T ) = H(T )
1

1− qrT
=

( ∞∑
i=0

ciTi

)( ∞∑
j=0

qrjT j
)

=
∞∑
d=0

adT
d.

Hence, we have

ad =

d∑
i=0

ciq
r(d−i)

By Lemma 7, we obtain the following theorem.

14



Theorem 2 Let V/Fq be a geometrically irreducible variety of dimension r. Let P be the
set of closed points and M the set of effective 0-cycles. We define the map N : M →
N,m 7→ qr degm. For any ε > 0, we have

(1) ad = #{m ∈M, degm = d } = κ′qrd + O
(
q(r−

1
2
+ε)d

)
,

where κ′ is the same constant as in Lemma 7. We also have

(2) bd = #{ p ∈ P, deg p = d } =
qrd

d
+ O

(
qd(r−

1
2
)
)
.

Theorem 2 and Lemma 5 imply that condition (A) and (B) are satisfied in this setting.
Thus we obtain an analogue of the Turán Theorem for a geometrically irreducible variety.

Remark 1 By Lemma 5 and Theorem 2, we have∑
N(m)≤x

1 =
κ′qr

qr − 1
x+ O

(
x1−

1
2r

+ε
)
.

We see from the above proof that the xε term can be replaced by log x. If we apply the
fact from the cohomology theory that

|ωi,j | ≤ q
i
2 ,

where ωi,j are the eigenvalues of the ith cohomology group, we can improve the above
estimation to ∑

N(m)≤x

1 =
κ′qr

qr − 1
x+ O

(
x1−

1
r log x

)
.

This is a similar result to the case of number fields where r = [K : Q] except the extra
log x factor. It will be nice if we can eliminate it.

Remark 2 In the case of smooth projective curve C/Fq, M is the set of effective divisors.
Using Weil’s result on the zeta function of C [5](Ch VIII), we have

ad = κ′qd + O(1).

Moreover, the constant κ can be written explicitely. We have

κ =
κ′q

q − 1
=

h

qg

( q

q − 1

)2
,

where h is the order of Pic0(C/Fq) and g is the genus of C. It will be an interesting
projective to study κ and express it explicitely in terms of geometric objects in a general
case.
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