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Abstract

The balance control system ensures that humans can perform tasks in a variety of
postures despite bipedal stance being inherently unstable. It manages this instability by
producing motor outputs that are appropriate to sensory input given the objective of
maintaining balance. An inability to maintain this balance may result in a fall which can
have both short and long-term physical, psychological, and social effects. The ability to
maintain balance is a strong predictor of fall-risk and mobility limitations. Falling has
been associated with specific populations such as older adults and those with neurological
and neuromuscular pathologies. However, it is possible that some younger individuals
may have poor balance control which places them at a greater fall-risk in the face of age-
and pathology-related influences. The potential importance of revealing person-specific
differences in balance control in healthy, young adults has led to the focus of this thesis.
This thesis was designed to determine whether a healthy, young adult’s balance control
system, as measured by their balance performance, is specific to the individual and could be
distinguished from any other individual. The thesis explores the use of different methods of
measuring of body movement (kinetic or kinematic), and the analytical techniques which,
when collectively applied, may more sensitively reveal these individual differences.

General methodology consisted of sixty-one healthy, young adults (ages 18-35), free of
any neurological or neuromuscular disorders, performing a series of static standing balance
trials. Four task conditions, Base of Support (standard and narrow) and Vision (open
and closed), were performed five times, each for thirty seconds. Balance performance was
measured kinetically using two floor-mounted force plates, and kinematically using three
inertial measurement units placed on the head, sternum, and lumbar region of the back.
The resulting data became the substrate for the analyses used in the three studies.

Study 1 quantified the consistency of an individual’s balance performance across task
conditions relative to the other individuals. Centre-of-pressure data collected from force
plates was analyzed using established linear and non-linear analytical methods within the
time- and frequency-domains and then input into a linear mixed-effects model. Subject-
specific factors, such as anthropometrics and vision quality, were controlled to reduce the
number of confounding variables. Correlational analysis of the random-effect, Participant,
revealed moderate to strong correlations of individual balance performances across task
conditions with the strength of these correlations dependent on the analytical technique
used. Study 1 confirmed that (1) task-related differences in balance performance could
be detected by a variety of analytical techniques, and that (2) the correlations found in
relative balance performance across task conditions suggest that an individuals’ balance
control system may be specific to the individual.
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Study 2 expanded on Study 1 by representing body movement kinematically using body-
worn inertial measurement units. Similar analytical approaches were used and moderate to
excellent correlations in relative balance performance across task conditions were observed.
The use of kinematic data in this study also revealed kinematic strategies that could only
be obtained by modelling a person as a multi-link, rigid body and not as a single-link,
inverted pendulum; an assumption commonly made when using kinetic data. Like Study 1,
this work demonstrated that relative balance performance within persons were comparable
across tasks of varying difficulty and, as such, indirectly supports the idea that balance
control that may be specific to the individual.

Study 3 focused on analytical approaches that could more directly reveal the unique
features of balance control within individuals. This study employed a machine-learning,
classification algorithm in an attempt to identify individuals by their balance performance
using kinetic or kinematic measures. Once provided with the prototypical balance perfor-
mances of a discrete number of individuals, the algorithm was able to correctly attribute
the balance performance of a mystery person to one of those individuals with an accuracy
greater that what could be achieved by random chance. Representing body movement with
kinetic, time-series data yielded the highest accuracies (Accuracy (nway = 5) = 92.08%; Ac-
curacy (nway = 20) = 74.69%). However, it is believed that if kinematic data was recorded
with more fidelity, then even greater accuracies could be possible. Study 3 demonstrated
that (1) balance performance data contains features specific to the individual which may
quantitatively indicate individuality in the balance control system, and (2) that the ability
to reveal this individuality is dependent on how the balance performance is represented.

This thesis provided two main contributions, (1) support for the idea that balance
control during quiet standing, as revealed through balance performance, contains features
that are specific to the individual, and (2) an, outline, albeit preliminary, of the task
conditions, methods of measurement, and analytical techniques best suited to reveal this
individuality.
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Chapter 1

General Introduction

1.1 The balance control system and falling.

The ability to maintain upright balance is a fundamental action that is necessary through-

out one’s life. This ability to remain upright, commonly referred to as stance, is made

only more difficult in humans due to their bipedal nature. As compared to quadrupeds,

standing requires bipeds to maintain two-thirds of their body mass over a relatively small

area (Winter, 1995). Further, humans must maintain their balance while accomplishing a

variety of tasks. It is the role of the balance control system to ensure that one remains

both statically and dynamically stable during these tasks (Horak and Macpherson, 1996).

As such, the contribution of the balance control system to one’s overall health can not be

understated. As such, it is imperative that quality of a one’s balance control be accurately

and precisely assessed.

The importance of balance control is highlighted when it fails to function as desired.

If an individual is unable to maintain their balance, then a fall is likely to occur. Older

adults, as compared with younger adults, are one such group who are at higher risk of

falling due to impaired balance control (Nevitt et al., 1989; Tinetti et al., 1988; Tinetti,

2003). In 2014, more than a third of all older adults had at least one fall that resulted

in some physical injury (Casey et al., 2017). Further, it was estimated that these falls

1



cost the American healthcare system $28.9 billion USD in 2015 alone (Florence et al.,

2018). Falling amongst older adults creates physical, mental, and economic burdens to

the individual, their immediate family and friends, and the community at large (Scheffer

et al., 2008; Vellas et al., 1997). Nonetheless, the effects of falling are not limited to older

adults. People who have experienced neurological injury or disease, such as a concussion

or Parkinson’s Disease, also have an elevated risk of falling and imbalance. The common

thread being the underlying changes to the neurological and musculoskeletal control of

balance.

Balance control is dependent on sensory, motor, and cognitive systems which work

together to maintain one’s balance. If any of these systems are compromised, then the

likelihood of falling is increased. For example, ageing can negatively affect each of the

sensory, motor, and cognitive systems leading to increased rates of falling in older adults

(Doherty, 2003; Dorfman and Bosley, 1979; Power et al., 2014; Shaffer and Harrison, 2007).

Besides ageing, other neurological and musculoskeletal impairments can also impact bal-

ance control. Unfortunately, despite the importance of balance control to daily function

as well as being a marker of physiological change related to aging, disease or injury, the

approaches to assess balance control are not standardized. For example, tools used outside

of a laboratory environment rely on observational methods that lack sufficient sensitivity

to detect change.

As a result, the overarching objective of this doctoral research is to explore the indi-

viduality in the balance control system by comparing the techniques used to assess control

across task conditions. Specifically, this thesis will contrast task conditions of varying chal-

lenge, methods of measurement using either kinematic and/or kinetic data, and analytical

techniques to reveal differences in balance control across healthy individuals. The focus

of this thesis is to develop methods sensitive enough to distinguish balance control perfor-

mances among healthy adults that may eventually be applied to the general populace to

reveal individuals with disordered control who are at risk of imbalance, immobility, and

falls.

2



1.2 Balance Assessments and Quantitative Posturog-

raphy

There have been a wide range of balance control assessments including both clinical and

laboratory approaches. Some clinic-based assessments have relied upon visual observa-

tions made by clinicians while laboratory-based assessments have commonly used spe-

cialized equipment to quantify the kinetics and kinematics during specific tasks. Exam-

ples of assessments based on timing and/or observations include the Tinetti Balance and

Gait Test (Tinetti, 1986), the Berg Balance Scale (Berg and Norman, 1996; Berg et al.,

1992a,b), the Timed Up and Go Test (Mathias et al., 1986), and the Single Leg Stance Test

(Duncan et al., 1990). These balance assessments have served clinical purposes well, but

they do possess some shortcomings. These protocols often require the patient to perform

movements that involve balance transfers, gait, or postural changes. These prescribed

movements require more than simply the control of balance, and as such, the findings of

these assessments are difficult to interpret with respect to balance control. Further, these

human-based, subjective assessments have limited measurement sensitivity due to their

simple timing methodology and crude observational assessments (Mansfield et al., 2021;

Visser et al., 2008).

Quantitative posturography has been used for over 150 years to objectively measure

one’s posture and thereby their ability to control their balance. Early recordings by von

Vierordt (1860), as cited by Forbes et al. (2018), used feathers and chalk while Fearing

(1924) used more complex measurement devices like the Miles ataxiameter (Miles, 1922).

These early approaches required an individual to stand as still as possible while their

natural body sway was measured via these methodologies. This measurement of body

sway during a quiet standing trial is known as static posturography. The methods to

measure one’s movement have been improved by utilizing kinetic (e.g.: force plates) and

more advanced kinematic approaches (e.g.: motion capture, inertial measurement units).

The use of static posturography has long been used as an index of the control of upright

stability. For example, Maki et al. (1990) was able to identify older adults who were more

likely to fall than other older adults through the analysis of static posturography.

3



In the 1970s, researchers began to expose their participants to transient moments of

instability (Nashner, 1971; Nashner and Wolfson, 1974). These assessments, collectively

called dynamic posturography, expanded the set of task conditions with an emphasis on

conditions experienced in every-day life. These assessments required larger, more complex

platforms to be developed in order to perturb the participants in a controlled environment.

These perturbations and, more specifically, how the individual responds to them, allow

for an understanding of how individuals anticipate and respond to discrete moments of

imposed instability.

In recent years, there has been a push for new equipment to overcome the financial cost,

the expertise, and the space required for these collections systems. Inertial measurement

units, whether used in isolation or as part of a more complex system (eg. APDM (Mancini

and Horak, 2016)), as well as Nintendo Wii boards ((Clark et al., 2010, 2014)) have shown

a promising ability to assess balance control. The evolution of quantitative posturography

has been crucial in the improved measurement of the balance control system. Nonethe-

less, the types of movements that an individual performs while being assessed are just as

important to the understanding of balance control.

Quantitative posturography can be employed under a variety of conditions. According

to Shumway-Cook and Woollacott (2017), balance control can be categorized based on

these conditions into three groups: steady-state, proactive (anticipatory), and reactive.

Steady-state balance control, which is often called ‘static balance control’, is used when

the balance task does not require the base of support to change. Proactive and reactive

balance control are more dynamic in that a movement is produced either in anticipation or

in response to a perturbation. These conditions underscore the fact that postural control

is different from movement control and thus require tailored methods to assess it.

1.3 Thesis Overview

As such, the focus of this doctoral research is to explore the individuality in the

balance control system by advancing the methods used to assess balance per-

formance, specifically related to steady-state control using quantitative, static
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posturography. More specifically, this work evaluates the effects of task condition, mea-

surement modality, and analytical methods that assess balance control. Studies 1 and

2 focus on more conventional, uni-dimensional analytical methods and how they reflect

whole body stability control when applied to kinetic (force plates) and kinematic (iner-

tial measurement units) data. Within these two studies, the various analytical methods

will be compared while, at the same time, balance performance on task conditions will be

compared to differentiate the balance control among healthy individuals. This approach

adopted the idea that relative performance across tasks of varying challenge would be simi-

lar for individuals if balance control was unique to an individual. A more direct approach to

evaluate individual differences in balance control was conducted in study 3 by employing a

multi-dimensional approach using neural networks, trained on either force plate or inertial

measurement data, to identify individuals based on their balance performance. Overall,

this work was an attempt to reveal if there were unique differences, in otherwise health

young adults, in the control of standing balance.

1.3.1 Study Objectives

To fully address the global objective of this thesis, each study will have specific objectives.

Study 1

• Primary

1. To investigate whether an individual’s balance performance, as recorded kinet-

ically using force plates, summarized using various analytical methods, and

made relative to others in the cohort, remains consistent regardless of the degree

of difficulty of the task.

• Secondary

1. Determine whether the correlations in relative balance performance across task

conditions, if any were found, are dependent on the choice of summary measures

used to describe COP.
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Study 2

• Primary

1. To investigate whether an individual’s balance performance, as recorded kine-

matically using IMUs, summarized using various analytical methods, and

made relative to others in the cohort, remains consistent regardless of the de-

gree of difficulty of the task.

• Secondary

1. How well can kinematics, as measured using IMUs, detect changes in balance

performance as caused by altering the difficulty of the task condition?

2. Does the body move as a single link during static balance trials?

Study 3

• Primary

1. To determine whether individuals can be correctly identified from within a

group, with an accuracy greater than random chance, by their balance per-

formances alone.

• Secondary

1. To determine which combination of task condition, measurement modality (e.g.:

kinetics using force plates, or kinematics using IMUs), or measurement format

(e.g.: summary measures or time-series data) would achieve the greatest accu-

racy.
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1.4 Potential significance

Falling amongst older adults creates physical, mental, and economic burdens to the indi-

vidual, their immediate family and friends, and the community at large (Scheffer et al.,

2008; Vellas et al., 1997). Lowering one’s fall risk may be accomplished by improving neu-

romuscular control of balance within the individual and/or, altering the environment to

reduce risk of instability. Another complementary approach would be to predict those who

are likely to have difficulty with balance control earlier in their lives, before it becomes a

problem, and to then implement a targeted intervention aimed at improving their ability to

maintain balance thus reducing their likelihood of falling later in life (Gerards et al., 2017;

Paquette et al., 2015; Salsabili et al., 2011). This idea of individual differences assessed

in younger adulthood serving as a potential predictor of future age-related risk has been

supported for changes in cognitive function and dementia (Snowdon et al., 1996). It is

possible that neural control capacity/ability at a younger age predicting future outcomes

may also translate to sensorimotor control.
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Chapter 2

Literature Review

2.1 Epidemiology of falling

Falling is a consequence of failing to recover balance in the face on a moment of instability.

Falling is strongly determined by the collective capacity of the nervous and muscular sys-

tems to detect and successfully react to those instabilities. While everyone has the potential

to fall, the two most affected age groups are children and older adults (Casey et al., 2017;

Florence et al., 2018; Jessula et al., 2019; Nevitt et al., 1989; Tinetti et al., 1988; Tinetti,

2003). In Canada, falls represent 35.8% of all injuries and are the leading mechanism of

injury for children (< 19 years) (Jessula et al., 2019). Children often fall because their

neuromuscular control systems are still maturing (Steindl et al., 2006; Shumway-Cook and

Woollacott, 1985; Cuisinier et al., 2011). Older adults (65 y/o) are more prone to falling to

than any other age group (Nevitt et al., 1989; Tinetti et al., 1988; Tinetti, 2003). In 2014,

more than a third of all older adults fell at least once resulting in a variety of physical

injuries (Casey et al., 2017). In terms of non-fatal falls, the total healthcare cost was more

than $49.5B USD. More worryingly, approximately 60 out of every 100 000 older adults will

die due to a fall (Florence et al., 2018). In addition to the physical consequences of falling,

older adults can experience mental trauma as well. While not exclusive to those who have

already fallen (Jørstad et al., 2005; Suzuki et al., 2002), the fear of falling was reported in

seventy percent of older adults who did fall. This fear coincided with increased balance,
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gait, and cognitive disorders (Vellas et al., 1997). Older adults also experience losses in

self-efficacy, and self-confidence and activity avoidance (Scheffer et al., 2008). Combined,

these physical and mental changes can create a vicious cycle that affect an older adult’s

level of independent living (Schmid and Rittman, 2009) and quality of life (Salkeld et al.,

2000). Unlike children who fall because their nervous and muscular control systems are

still developing, older adults fall because theirs is in decline resulting in a reduced capacity

to detect instability and to generate the forces needed to recover (Bergen et al., 2016).

The high incidence of falling amongst older adults and the large personal and societal

costs associated with them has motivated research into assessments of fall-risk, methods

of fall-prevention, and reducing the effects of falls if, and when, they do occur.

Reducing fall risk may be accomplished by either improving the person’s balance con-

trol or reducing the environmental risk factors. Exercise interventions targeting older

adults have been effective at reducing the number of falls (Sherrington et al., 2017) and

fall-related injuries Franco et al. (2014). Balance exercises were found to be one of the

most cost-effective forms of fall prevention (Davis et al., 2010). Pérez-Ros et al. (2016)

created a one-year proprioceptive exercise program for community-dwelling older adults.

It was found that the program resulted an increase in self-perceived quality of life with a

reduction in the incidence of falls. A balanced diet (Fjeldstad et al., 2008) and increased

physical activity Nelson et al. (2007); Schepens et al. (2012); Sherrington et al. (2017) can

reduce an individual’s level of obesity in an effort to improve their response to a perturba-

tion. Hazards within the environment can be either be removed, minimized or modified to

reduce the possibly of inciting a fall (Sattin, 1997; Sattin et al., 1998). Nonetheless, these

mechanisms do not eliminate the risk of falling or their consequences (Gustavsson et al.,

2018). In the short-term, compliant flooring has been shown to reduce the forces exerted

on the body immediately following a fall (Lachance et al., 2016, 2017).In the long-term,

rehabilitation following a fall is recommended to both minimize the negative effects caused

by the prior fall, as well as to reduce the likelihood of a recurrent fall. Geriatric adults

(75-90 y/o) who exercised exhibited positive physical effects in strength and balance which

lowered their fall risk (Hauer et al., 2001). However, adherence to these exercise programs

has been mixed (Hauer et al., 2001; Hill et al., 2011). A possible complementary solution

would be to target those individuals who are at a greater risk of falling with balance train-
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ing interventions. These at-risk individuals could start these interventions earlier in one’s

life with the hope of reducing the trajectory of increased fall risk as one ages. Crucial

to this approach would be to develop methods to accurately identify persons who may at

higher future risk of falls. This predictive ability may be linked to measures of one’s bal-

ance performance since balance control is strongly associated with fall risk in older adults

(Maki et al., 1994, 1987; Piirtola and Era, 2006). Consequently, it may be beneficial to

improve the methods by which balance performance is analyzed to improve the assessment

of an individual’s balance control system.

2.2 The biomechanics of standing balance control

The entirety of an individual’s mass can be modelled as a singular point known as the

Whole Body Center of Mass (WB-COM, shortened hereafter to COM ). The COM is

generally located midway between the feet, anterior to the ankles, and at the height of the

sacral vertebrae during upright, bipedal stance (Cotton, 1931; Forbes et al., 2018; Smith,

1957). This COM can be subjected to a variety of forces and torques but, while on earth,

it is always subjected to gravity. A normal force is required to prevent the COM from

collapsing to the center of the earth. During quiet stance, this normal force is equal to

the weight of the individuals but opposite in direction thus allowing static equilibrium to

be achieved. Ground Reaction Forces (GRFs) are a collection of forces distributed across

the entire contact area between the foot and ground. These GRFs can be represented as

a vector sum, called the Centre of Pressure (COP), which represents the location of the

applied force (Figure 2.1a). There exists a maximum area where the COP can be applied

during quiet, stable stance. This area, known as the base of support (BOS ), is outlined

by the lateral borders of the feet, the toes anteriorly, and the heels posteriorly (Figure

2.1b). If the COM is projected outside of the BOS, then a fall is likely to occur. As the

forces have already been balanced in the vertical axis, then this fall is likely a result of

unbalanced torques (Hof et al., 2005; Winter, 2009).

A widely accepted model of static balance control is that of the single-link, inverted

pendulum (Gage et al., 2004; Jian et al., 1993; Morasso et al., 1999; Winter et al., 1998,
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(a) Ground reaction forces (GRFs) (b) Bases of support (BOS)

Figure 2.1: Graphical representations of ground reaction forces (GRFs) and bases of support
(BOS). (a) Ground reaction forces: Static equilibrium in the vertical occurs when the forces created by
gravity acting on the body’s mass are then countered by forces that distributed throughout the foot (Top).
These distributed forces can be represented as a single force vector called the center of pressure (COP)
(Bottom). (b) Base of support: The area within which a person can apply a ground reaction force during
a quiet standing trial is bordered by the anterior, posterior, and lateral aspects of the feet.
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1997). The inverted pendulum model can be applied to movement in both the anterior-

posterior direction (e.g.: sagittal plane) and the medial-lateral direction (e.g.: frontal

plane). In the anterior-posterior direction, the ankle acts as a fulcrum about which the

COM rotates while ‘assuming a rigid structure above the ankles’ (Gage et al., 2004). Winter

et al. (1998) provides details of the derivation of the mathematical model. To summarize,

given that W is the weight of the individual minus the weight of their feet and R is the

reaction forces at the ankles, the forces in the vertical direction are balanced during quiet

stance with W equalling R. In the specific case that W projects through the ankle, W

does not produce a torque as the moment arm, x, has zero length (MW = 0Nm). In this

scenario, the forces and moments in the sagittal plane are statically balanced. In reality, the

body is constantly being subjected to a variety of external and internal forces which make

maintaining this static equilibrium improbable. The body is a multi-segmented structure

upon which continuously gravity acts, while internal physiological functions, such as the

beating of one’s heart, breathing (Carpenter et al., 2010; Soames and Atha, 1981), as

well as the perfusion of blood through the body (Amelard et al., 2020) all provide internal

forces that can modestly influence the COM. The result being that static equilibrium is not

achievable and is modelled in a single-link, inverted pendulum model with the projection

of W not passing through the ankle . This creates a moment arm, x, that is formed by the

perpendicular distance between the line of action of W and the ankle. This force, W , and

moment arm, x, create a torque (MW = W ×x). To balance MW , a new torque, Ma, must

be generated using the muscles that span the ankle joint. As such, the only way to modulate

the movement of the COM is to adjust where COP (px) is applied in relation to the ankle

joint. If the COM lies outside of the BOS, then Ma cannot balance MW as px cannot exceed

the BOS. If this occurs, then the likelihood of an individual falling is increased making

it imperative that an individual be able to properly coordinate and control their body

movements. In the medial-lateral direction (e.g.: frontal plane), the inverted pendulum

can still be employed albeit with some modifications. Specifically, the legs are represented

as ‘dual links’ originating from the pelvis and form a quadrilateral at the hip and ankle

joints(Winter et al., 1998). Whereas the corrective torque was generated about the ankles

in the anterior-posterior direction, the corrective torque is a summation of the torques

generated bilaterally at the hips and ankles in the medial-lateral direction. This latter
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case reveals that the use of the single-link, inverted pendulum model may have limitations.

Horak and Nashner (1986) demonstrated that, in the anterior-posterior direction, the body

articulates about the hip following certain perturbations. These findings suggest the need

for a double-link, inverted pendulum model to describe upright stance more readily. Study

2 will explore how well the single-link, inverted model describes quiet standing.

Figure 2.2: Free body diagram of human body as modeled using a single-link, inverted
pendulum during quiet standing. Adapted from Winter et al. (1998)

2.3 Neuromuscular control of balance

A balance control system requires three systems to achieve stability: the sensory system,

the motor output system, and the integration center. The sensory system is a collection

of sensory-specific tissues, organs and pathways that continually update both the state of

the surrounding environment and the position and motion of the body segments within
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it. The motor output system is responsible for the production of the forces and torques

generated to maintain segment and whole-body stability. The central nervous system is

responsible for transforming sensory information and combining it with central state inputs

to produce muscle forces appropriate to maintain stability. The central nervous system

accomplishes this through a distributed neural network involving many spinal, brain stem

and supraspinal regions (Shumway-Cook and Woollacott, 2017).

The sensory inputs contributing to balance control is comprised of three modalities

of receptors, the visual, the vestibular, and the somatosensory. The receptors for both

the visual and vestibular systems are located within the head while the receptors of the

somatosensory system are distributed throughout the body. The visual system possesses

photoreceptors, called rods and cones, that span the retina and subsequent processed in a

variety of cortical and subcortical structures (Tresilian, 2012). This processing provides the

person with information regarding their environment, the position and movement of their

head within this environment, as well as a reference for verticality (Dakin and Rosenberg,

2018). However, it is difficult for the visual system alone to determine whether the person

is moving within an environment (egocentric motion) or the environment moving around

the person (exocentric motion) (Bronstein, 2016; Shumway-Cook and Woollacott, 2017).

The other sensory systems help address this problem. The vestibular system is comprised

of two sensors: the otoliths and the semicircular canals. Otoliths detect linear acceleration

in all directions which means it can sense the gravity, making it suitable to sense postural

verticality (Dakin and Rosenberg, 2018; Lowenstein and Saunders, 1975). Semicircular

canals detect angular velocity allowing it to detect transient movements of head (Forbes

et al., 2018; Lowenstein and Compton, 1978). The somatosensory system is more varied

in terms of its sensors. Muscle spindles are located within the muscle tissue and encode

for both the length of the muscle as well as its rate of change (Day et al., 2017; Peters

et al., 2017). Golgi tendon organs are mechanoreceptors located at the myotendinous

junction that encode for muscle force (Anderson, 1974; Stephens et al., 1975). Four types

of cutaneous receptors are located in glabrous skin and are classified based on how quickly

they adapt to sustained skin pressure (SA: slow-adapting; FA: fast-adapting) and the size

of their receptor field (I: small; II: large). These four receptors, Merkel cells (SAI), Ruffini

endings (SAII), Meissner corpuscles (FAI), and Pacinian corpuscles (FAII), provide crucial
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information related to standing balance control (Iggo, 1977; Roudaut et al., 2012). The

slow-adapting receptors detect the pressure underneath one’s feet while the fast-adapting

receptors can detect any transient movements (Kennedy and Inglis, 2002; Mildren et al.,

2016).

These sensory systems usually work together to provide a ‘synergistic and congruent’

representation of the standing balance condition (Bronstein, 2016). However, the relative

contribution of each sensory modality to the overall balance control system can be changed

depending on the situational context system (Assländer and Peterka, 2014; Nashner et al.,

1982; Peterka, 2002). For example, in standard stance width, somatosensory information

is relied upon more heavily than visual and vestibular inputs as the latencies to produce a

muscular response are much shorter (Crevecoeur et al., 2016). However, in a narrow stance

condition there is an increased reliance on visual and vestibular information to maintain

balance as they provide a reference to gravity and verticality (Goodworth and Peterka,

2010; Goodworth et al., 2014).

The afferent signals provided by the aforementioned sensory systems synapse at a vari-

ety of areas within the central nervous system. The distal receptors of the somatosensory

systems first synapse at the level of the spinal cord but their contribution to reactive bal-

ance control is trivial as muscle activation is limited to tonic activation of extensor muscles

for weight support in the absence of supraspinal input (Deliagina et al., 2012). Supraspinal

input, or drive, from the brainstem allows for muscle tone to be more regulated in postural

control in addition to receiving sensory input from the vestibular system (Drew et al.,

2004; Shumway-Cook and Woollacott, 2017). The basal ganglia regulate postural control

by allowing the individual to change their movement strategies in response to a changing

environment (Park et al., 2015). The cerebellum works in conjunction with the brainstem

to refine muscular activity in response to changing task conditions (Shumway-Cook and

Woollacott, 2017). The cortex receives visual input and integrates all sensory input and

motor output for a desired goal regardless of the environment (Jacobs and Horak, 2007).
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2.3.1 The balance control system of older adults

There are age-related changes in the sensory, motor and the integration systems that begin

to impact the ability to maintain balance resulting in reduced mobility and an increased

risk of falling (Ickenstein et al., 2012; Laughton et al., 2003; Maki et al., 1990; Seidler

et al., 2010). Age-related changes in the sensory system have been observed across the

somatosensory, vestibular, and visual systems. Both the absolute number and the rel-

ative concentration of mechanoreceptors decrease with age Shaffer and Harrison (2007).

Brantberg et al. (2007) and Li et al. (2015) have demonstrated that otolith function is

altered with age despite vestibular function being difficult to assess (Zalewski, 2015). A

large-scale study called, the Salisbury Eye Evaluation project, demonstrated that visual

acuity, contrast sensitivity, and visual field size decreased linearly with age (Rubin et al.,

1997; Saftari and Kwon, 2018). Further, the conduction velocity of both the peripheral

sensory and motor nerves is also reduced while the conduction velocity of the spinal nerves

remains relatively constant until approximately sixty years of age (Dorfman and Bosley,

1979). Taken together, there can be a reduction in the sensitivity of the sensory inputs as

well as delays in their transmission compared to younger adults that can potentially impact

sensory-evoked reactions to instability. The motor system can also deteriorate with age re-

sulting in reduced strength and power. Sarcopenia is defined the ‘gradual, nonpathological

process of aging characterized by a decline in skeletal muscle mass’ (Doherty, 2003; Power

et al., 2014). This age-related reduction in muscle mass coincides with a decrease in the

maximum specific force that can be generated by the muscle (Berger and Doherty, 2010;

Doherty, 2003). Exercise can slow down the effects of sarcopenia but cannot ablate them

(Drey et al., 2016; Power et al., 2016). Changes to the central nervous system due to age

can include a reduction in number of cells and synapses, as represented by reduced grey

and white matter volume, and as well as biochemical changes including reduced cholinergic

and serotonergic activity (Gottfries, 1990), along with reduced dopaminergic transmissions

(Kaasinen and Rinne, 2002). Two hypotheses have been posed for compensating for these

age-related changes: de-differentiation and compensation (Seidler et al., 2010). While

de-differentiation is the non-selective recruitment of brain regions, compensation is the in-

crease of brain activity ‘localized to regions that were recruited by both [young and old] age

groups or additional recruited by older adults (Heuninckx et al., 2008; Logan et al., 2002;
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Seidler et al., 2010). Altogether, the age-related decline of the sensory, motor and integra-

tion centers culminate in a reduction in static balance control characterized by increased

postural sway (Era and Heikkinen, 1985; Lord et al., 1994; Maki et al., 1990).

A person may also experience a variety of external and internal factors that may impact

balance control. Pathological changes such as those associated with Parkinson’s disease

(PD) (Park et al., 2015; Billingsley et al., 2018), multiple sclerosis (MS) (Zuvich et al.,

2009), or amyotrophic lateral sclerosis (ALS, also know as motorneuron disease or Lou

Gherig’s disease) (Taylor et al., 2016) result in altered control and increased instability. A

sedentary lifestyle can also intensify the effects of sarcopenia and the consumption of excess

calories are risk factors for obesity and type II diabetes mellitus (T2DM) (Panagiotopoulos,

2000; Romieu et al., 1988). T2DM can have numerous negative consequences including

diabetic neuropathy (Allen et al., 2016; Onodera et al., 2011). All of these factors further

diminish the ability of the balance control system to maintain upright stance in older adults

(Corporaal et al., 2013; Park et al., 2015; Schell et al., 2019). The aforementioned age-

related and pathology-related changes in the sensorimotor control system result in changes

in the ability to maintain balance, manifested as increased instability, altered balance

reactions and increased fall risk.

2.4 Balance perturbations

A perturbation creates a scenario where an individual must alter their posture in order

to maintain balance (Rogers and Mille, 2018). Such perturbations can arise from sensory

stimulus (e.g.: optic flow stimuli (Lestienne et al., 1977; Raffi et al., 2022)) or mechani-

cal associated with internal (muscle contraction or unexpected movements/errors (Eklund,

1972; Scinicariello et al., 2001)) or external sources. The use of external mechanical pertur-

bations has been a common experimental approach to challenge and evaluate the balance

control systems. Mergner (2010) identified four ‘disturbing’ torques produced by external

stimuli that, within the inverted pendulum model, must be compensated by ankle to main-

tain balance (Figure 2.3). The first is a gravitational torque (Tg) and is analogous to

MW discussed earlier. The second is an inertial torque (Tin) caused by a translational
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Figure 2.3: The four disturbing torques applied to a human body during quiet stance. This
free body diagram shows the torques (Tg, Tin, Text, Tp) that act on a human body, here modeled as a
single-link, inverted inverted pendulum, that aim to destabilize it during quiet standing. Adapted from
Mergner (2010)

acceleration of a support surface resulting in the BOS moving but the COM initially re-

maining stationary. This can be caused by the unexpected movement of a support surface

such as on a moving train. In this situation, the COM does not move at the same rate as

the BOS due to the inertia associated with the COM. The third is an external torque

(Text) created by external forces, such as being pushed, which may cause the COM to move

outside one’s BOS. The fourth and final is a passive ankle torque (Tp) created by the

rotation of the support surface which ‘tends to take the body into the direction of the tilt’

(Mergner, 2010). To be clear, not all movements of the COM or of the BOS result in a fall.

Only those perturbations with sufficient displacement and velocity to cause the COM to

fall outside of the BOS could lead to fall (Hof et al., 2005). However, perturbations of even

small amplitudes will evoke balance reactions to minimize COM excursions and maintain

stability.
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2.5 Responses to balance perturbations

During upright stance, there are many ways an individual can maintain their balance in

response to a perturbation. Shumway-Cook and Woollacott (2017) summarize the re-

sponse to perturbation during upright stance under three terms: muscle tone, postural

tone, and movement strategies. Muscles tone is dependent on the viscoelastic properties

of the muscle itself. These properties produce forces dependent on how much they are

stretched (displacement) and the rate of that stretch (Sakanaka et al., 2016; Loram et al.,

2007). These forces are classified as being passive forces as they require no neural input.

However, neural input can impact muscle tone through the spinal stretch reflexes pathway.

While these reflexes contract a stretched muscle, Gurfinkel et al. (1974) found that their

contribution to control of upright stance might be small. Postural tone occurs when certain

muscles receive posture-dependent tonic neural input to generate forces that oppose the

force of gravity. This postural tone is observed as low levels of constant electrical activity

in muscles such the soleus and tibialis anterior during quiet stance. Despite these muscle

activations, the body still moves during quiet standing and may requires additional neural

input to ensure balance is maintained.

Movement strategies employ phasic neural input to innervate specific muscles to pro-

duce forces that ensure balance is maintained in response to either a continuous gravita-

tional torque to any one of number of discrete perturbations. These movement strategies

can be divided into being either anticipatory or reactive in nature. In some situations,

an individual may expect a perturbation while in others they may not. Proactive balance

control occurs when a perturbation is expected and an individual, using feedforward con-

trol, employs anticipatory postural adjustments to minimize the movement of the COM

within the BOS ‘prior to a forthcoming body perturbation’ (Aruin, 2016). On the other

hand, reactive balance control employs compensatory postural adjustments following a

perturbation by using sensory feedback to refine the postural correction (Aruin, 2016).

Anticipatory postural adjustments were first described by Belen’kĭı et al. (1967) in an ex-

periment where participants were asked to raise their arms. However, it was noticed that

before the participants raised their arms the participants would first innervate the muscles

in their legs. The rationale being that the movement of the arms would cause a displace-
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ment of the COM and that the anticipatory innervation of the leg muscles would minimize

any destabilizing effects. Anticipatory postural adjustments also occur during gait initi-

ation (Jian et al., 1993), and rhythmic movements like walking (Winter, 1991). Balance

control becomes more difficult when the perturbation is unexpected as only compensatory

postural adjustments can be employed.

Reactive balance control employs two different classes of compensatory postural ad-

justments, a fixed-support strategy or a change-in-support strategy (Figure 2.4) (Maki

and McIlroy, 2006). Both strategies are characterized by their ability to respond to a per-

turbation more quickly than volitional movement (Maki and McIlroy, 2006). Fixed-support

strategies are defined by their ability to control the COM within an unchanged BOS (Ho-

rak and Nashner, 1986). Fixed-support strategies have been sub-divided into either ankle

or hip strategies. Individuals typically employ an ankle strategy to maintain balance but

if the task conditions are too challenging (e.g., large perturbation (Alexandrov et al., 2005;

Park et al., 2004), the support surface is too small (Horak and Nashner, 1986; Nashner,

1976), or the presence of pathology (Horak et al., 1990; Woollacott and Shumway-Cook,

1990) then individuals may increase involvement of hip and trunk motion (hip strategy)

to help control balance. It should be noted that the BOS that is normally outlined by

the feet could also include any supports that a person may grasp with their hands or lean

upon. Change-in-support strategies, however, require a change in BOS usually through a

stepping or reaching response (Maki and McIlroy, 1997). Robinovitch et al. (2013) looked

at the causes of falling among older adults within a long-term care facility. They deter-

mined that 41% of all falls were due to internal perturbations caused during the transfer

or the shift of body weight. Another 35% of falls were caused by external perturbations in

the form of trips/stumbles, a hit/bump or a slip. As such, reactive balance control using

compensatory postural adjustments are crucial to resist unexpected perturbations.

2.6 Balance Assessments

Assessing balance control can be helpful in tracking changes in ‘whether or not a balance

problem exists’, determining ‘the underlying cause of the balance problem’ (Mancini and
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Figure 2.4: Summary of reactive balance control strategies used to maintain balance fol-
lowing a perturbation. Fixed-support reactions (A & B) maintain the COM within the BOS with a
changing the shape of the BOS. In the AP, (A) ankle-strategy is primarily employed but (B) hip-strategy
can be incorporated as necessary. In the ML, the hip-strategy is the primary method of generating the
torques required to maintain the COM with the BOS. Change-in-support strategies are characterized by
an enlarging of the BOS by either (C) taking a step or (D) reaching for a stable surface. Adapted from
Maki and McIlroy (2006)

Horak, 2010), and allowing the clinician to predict a patient’s fall risk which enables them

to suggest appropriate therapeutic interventions. Not all balance assessments accomplish

these goals so Mancini and Horak (2010) established criteria that could be used to eval-

uate the balance assessment itself. They determined that an effective balance assessment

would be quantitative and would use normative values to facilitate the comparison be-

tween groups. A balance assessment should be (1) reflective of functional capabilities and

quality of postural control, (2) sensitive and selective for postural control abnormalities,

(3) reliable and valid, and (4) practical (Mancini and Horak, 2010).

A variety of balance assessments have been created over the years and they can be

sorted into three main categories - functional, systems-based, and quantitative (Mancini

and Horak, 2010). The goal of functional balance assessments is to determine whether

a balance problem exists by having people perform tasks that can be carried out within a

clinical environment. Examples include the Tinetti Balance and Gait Test (Tinetti, 1986),

Berg Balance Scale (Berg et al., 1992a,b; Berg and Norman, 1996), Timed Up and Go

Test (Mathias et al., 1986), and the Single Leg Stance Test (Duncan et al., 1990). The

outcomes are performed by time and/or having the clinician score of task performance.
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The benefit of these functional balance assessments is that they can be performed easily

by both clinicians and patients within a clinical environment without expensive equipment.

The sensitivity, specificity and inter-rater reliability can vary from moderate to excellent

between these tests. Due to these reasons, functional balance assessments are among the

most used by physiotherapists (Sibley et al., 2013b,a). Unfortunately, these functional

tests have certain limitations. For example, a ceiling effect can occur because clinicians

subjectively assess their patients on an ordinal scale, and these functional tests may not

be able to identify the specific aspects of the balance control system that are negatively

affected (Blum and Korner-Bitensky, 2008; Yelnik and Bonan, 2008).

Systems-based balance assessments attempt to uncover the specific components

of the control of balance that may be compromised. One example of a systems-based

assessment is the Balance Evaluation Systems Test (BESTest) (Horak et al., 2009). In

the BESTest, an individual undergoes a 30-minute examination consisting of 36 measures.

Scoring of the 36 items helps indicate which of six balance control sub-systems are poten-

tially impaired. This knowledge then allows for targeted interventions aimed to ameliorate

the underlying issues. As with functional assessments, systems-based assessments have

their drawbacks. In addition to being subjective, the original 30-minute BESTest was

deemed to take too long to be conducted in a clinical setting. The impracticality of this

assessment led to a more condensed, 10-minute version being developed (mini-BESTest)

(Franchignoni et al., 2010). Overall, the functional and systems-based assessments allow

clinicians to evaluate their patients balance control without cumbersome equipment in a

matter of minutes. They allow for rapport to be developed between the clinicians and the

patient which can foster a positive therapeutic environment (Sibley et al., 2013b,a). Unfor-

tunately, the presence of ceiling effects and the subjectivity of the assessments underscore

the necessity of quantitative balance control assessments.

Quantitative assessments require specialized equipment and testing paradigms to

address the shortcomings of measures based on clinician observation. The purpose of the

specialized equipment is to measure a person’s movement accurately and precisely. Exam-

ples include force plates, which can be embedded into the floor, or inertial measurement

units (IMUs), which are placed directly on the patient. In the past, the use of these tools

had been restricted to research environments (Pak et al., 2015). However, when used prop-
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erly, analyses obtained from these equipment can allow clinicians to quantify balance with

increased sensitivity, objectively critique patients without a ceiling effect, while still hav-

ing patients be engaged with their own assessments (Mansfield et al., 2015a,b; Pak et al.,

2015).

2.6.1 Dynamic and static assessments of reactive balance control

Quantitative assessments of balance can be considered as either static or dynamic. Static

commonly refers to balance behaviour that is characterized by little movement and no ex-

ternal stimulus. As stated by Mancini and Horak (2010), dynamic assessments involve ‘the

use of external balance perturbations or changing surface and/or visual conditions’ that

increase the challenge to stability control. For example, dynamic balance assessments can

involve the use of pseudo-random, external stimulus that challenges their ability to main-

tain balance (Bloem et al., 2003; Mancini and Horak, 2010). This external stimulus can

come in the form of a movable platform (Horak and Nashner, 1986; Maki et al., 1990, 1994;

McIlroy and Maki, 1994; Nashner et al., 1982) or a lean-and-release apparatus (Harburn

et al., 1995; Inness et al., 2015). These methods allow for control over the destabilizing

stimuli, specifically its timing, magnitude, direction, and duration. Unfortunately, dynamic

balance assessments also have their limitations. In 2015, Inness et al. (2015) investigated

the patient-specific determinants that influenced the use of the lean-and-release balance

assessment within a stroke population. They determined that while the lean-and-release

assessment provided important quantitative information related to balance control, their

use was limited to individuals who performed well on the Berg Balance Scale and who

had less lower-limb impairment. Meaning that the lean-and-release assessment requires a

certain level of balance control to tolerate the challenges of the task. Moreover, these tools

can be cumbersome, expensive and require extensive training for operation and analysis

(Mansfield et al., 2021; Visser et al., 2008). In contrast, static balance assessments address

some of these limitations.

Static balance assessments require the participant to simply stand as still as possible

for an extended period of time, typically range from 20 to 60 s Scoppa et al. (2013), but

can be longer when the research problem requires it (Duarte and Sternad, 2008; Springer
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et al., 2007). As such, these tests can be done quickly and without much required space.

Piirtola and Era (2006) conducted a systematic review of the relationship between specific

static balance measures and the ability to predict future falls. One of the studies reviewed

was conducted by Maki et al. (1994) who found that their static balance assessment had

an overall predictive accuracy of future falls of 67%, a sensitivity of 80%, and a specificity

of 43%. Subsequent studies by Brauer et al. (2000) revealed sensitivity and specificity of

29% and 88% respectively, while Bigelow and Berme (2011) had values of 75.0% and 93.7%

respectively. Together, these studies highlight the value of static sway measures as an index

of balance control and as a predictive tool for future falls. One factor that is likely to be

important in determining the value of such outcomes revealing balance control challenges

and fall risk, is how the data is analyzed/summarized. During static standing time vary-

ing measures of kinematics and/or kinetics are summarized to provide specific outcome

measures, such as root-mean-square (RMS). Such data can be subsequently reduced into

measures within the time-domain (e.g.: distance and area) (Hufschmidt et al., 1980; Pri-

eto et al., 1996), frequency-domain (Schinkel-Ivy et al., 2016; Singer and Mochizuki, 2015;

Taguchi, 1978), and in terms of variability, such with Lyapunov exponents, fractality, and

entropy (Collins and De Luca, 1993; Delignières et al., 2003; Gilfriche et al., 2018). Im-

portant to ongoing work, and to this thesis, is the determination of whether the method

of characterizing these time varying data is important to assessing balance control.

2.7 Machine Learning to identify individuals by their

balance performance

The overarching purpose of this thesis is ‘to reveal the individuality in the balance

control system by advancing the methods used to assess balance performance’.

Study 1 and Study 2 aim to do this indirectly by determining the correlation between

an individual’s balance performances across balance task conditions of varying challenge.

Study 3 tries to do this directly by identifying individuals by their balance performances

alone. Inspiration comes from the world of machine learning, specifically from speaker

recognition and few-shot learning. In the case of speaker recognition, individuals can be

24



identified based on their vocal characteristics. Few-shot classification allows objects, or

people, to be identified when very little data is provided. A general understanding of

artificial neural networks, how they are used in speaker recognition and few-shot learning,

to solve the problems associated with identifying people by their balance performances is

first necessary.

2.7.1 Introduction to artificial neural networks

Biological inspiration for artificial neural networks

Artificial neural networks (ANNs) were first created to be ‘computational models of bio-

logical learning’ in an effort to understand how the brain learns (Goodfellow et al., 2016;

Hebb, 1949; McCulloch and Pitts, 1943; Rosenblatt, 1958). What is colloquially termed,

the brain, is a biological system that is more aptly called the central nervous system. The

functional unit of the central nervous system is the neuron which receives input from other

neurons, located up-stream, at a location called the dendrite. These incoming signals can

modulate the membrane potential within the neuron and, if this voltage reaches a specific

threshold, then the neuron will ‘fire’ an action potential serving as a new signal in accor-

dance with the ‘all-or-nothing principle’ (Lucas, 1909). This new signal propagates along

the neuron’s axon causing the release of specific neurotransmitters at its synaptic termi-

nals. These neurotransmitters then affect the membrane potential within the dendritic

region of the post-synaptic or down-stream neurons (Tresilian, 2012). Herculano-Houzel

(2009) estimated that approximately 86 billion neurons exist in a human brain with 16

billion of those being located in the cerebrum. The ability of the neuron to both process

and transmit information established it as the early motivation for machine learning and

more specifically deep learning.

Overview of artificial neural networks

The neuron and its many connections provide the framework upon which artificial neural

networks, and machine learning in general, are based. In ANNs, the node is modelled on
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the neuron with numerous connections to nodes located both up-stream and down-stream.

In a basic ANN, these nodes are arranged in a minimum of three layers. The first and last

layers are considered to be the input and output layers, respectively, while the middle layer

is called the hidden layer. An ANN with more than one hidden layer is called a deep neural

network. Each node in the hidden layer will receive signals originating from the nodes of the

previous layer. These inputs are multiplied by a series of parameter weights which are then

summed together with a bias term (LeCun et al., 1998). A non-linear activation function,

such as the Rectified Linear Unit (ReLU), is then applied to the summed value resulting in

the specific output of that node (Nair and Hinton, 2010). A key feature of a neural network

is the non-linear activation function as it allows the network to learn relationships within

data that would not otherwise by revealed by linear analyses (Agostinelli et al., 2014; Cho

and Saul, 2010; Hornik et al., 1989). This output then becomes the input for the nodes in

subsequent layers. This process, called forward propagation, is continued for all the hidden

layers until a hypothesis is created in the output layer. This hypothesis, which is the result

of forward propagation, is the prediction of the ANN that is based on the input values and

is conditional on the current set of parameters (i.e.: weights and biases). Refinement of

these parameters occurs through an iterative process that allows the ANN to provide more

accurate hypotheses(Goodfellow et al., 2016).

Refining the parameters of the neural network is crucial in developing an accurate

model. In supervised machine learning, this refinement occurs when the hypothesis of

the neural network is compared to a known value. A loss function is used to quantify

the difference between the prediction (hypothesis) and the actual (true) value during a

single trial. Summation of these loss functions across a training set is called the cost

function. The scalar value of the cost function indicates how well the model ‘fits’ the

training data. For example, if the hypothesis of the ANN varies greatly from the true

value, then the cost function will produce a large value and is indicative of the error

within the ANN. Specifically, this error would indicate that the current model parameters

need to be improved to produce accurate hypotheses in the future. An example of a cost

function that is used extensively in linear regression is mean-squared error. Optimizing

the cost function would result in model parameters that would produce the lowest error.

Methods that optimize a cost function include maximizing the likelihood estimation, or
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minimizing the Kullback-Leibler divergence (Goodfellow et al., 2016). The mechanism by

which the cost function is optimized, and the model weights eventually updated, is through

the chain rule of calculus. The chain rule takes the partial derivatives of the cost function

with respect to the parameter weights. Gradient descent then multiplies these partial

derivatives by a learning rate to update the model parameters. This process is continued

for all the parameters that synapse onto the output layer all the way back to the input

layer. This process is called back-propagation (Rumelhart et al., 1986). Forward and back-

propagation are repeated until the cost function across numerous iterations converges. It

is at this point that the model has been trained on the provided input dataset.

The goal of machine learning is to develop a model that can ‘perform well on new,

previously unseen inputs’ (Goodfellow et al., 2016). This is accomplished by dividing the

available data into two datasets: a training set and a testing set. Using the training

dataset, ideal model parameters can be obtained once a low training-error is achieved.

This newly trained ANN is then evaluated on previously unseen data (the test dataset) to

determine model generalizability. In the case where the model fits well to the training data

(low training-error) but generalizes poorly to the test data (high test-error), the model is

deemed to have been over-fit to the training data. On the other hand, if the model is unable

to achieve low training-error then it considered to under-fit the data. It is not sufficient for

an ANN to produce low error when trained on previously seen data only to then produce

large errors when presented with new data. This discrepancy in error would highlight the

lack of generalizability of the ANN. As such, an ideal machine learning algorithm must

balance low training-error with a low test-error. To ensure that an appropriate balance is

achieved, the process of regularization is conducted. Regularization is ‘any modification

[made] to a learning algorithm that is intended to reduce its generalization [test] error

but not its training error’ (Goodfellow et al., 2016). Examples of regularization methods

include weight decay, early stopping, and dropout (Srivastava et al., 2014).

Speaker Recognition models

Neural networks have been used for a variety of purposes including image synthesis (Gatys

et al., 2016), regression, and classification (Goodfellow et al., 2016). Social media com-
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panies like Facebook, YouTube, and Netflix use classification-based neural networks to

provide a user with a list of recommendations that are informed by a user’s search or view-

ing history to facilitate their continued use of said social media company’s app (Covington

et al., 2016; He et al., 2014; de Sá et al., 2021). Another application of a classification-

based neural network is in speech recognition. As stated succinctly by Abdel-Hamid et al.

(2014), automatic speech recognition is ‘the transcription of human speech into spoken

words’. Briefly, an automatic speech recognition algorithm will process the soundwaves

within a vocal recording in order to identify the words spoken. The classification occurs

as words are chosen from a corpus (e.g.: TIMIT (Garofolo et al., 1993)) based on the

time and frequency characteristics of the sound-waves, the connotation of the word, and

its relation to words in proximity to it (Graves et al., 2013). Another application of a

classification-based neural network is in speaker recognition. Continuing with the context

of human speech, if multiple people speak the same words, then the purpose of the speaker

recognition algorithm is to attribute the creation of the vocal recording to one of a given

number of speakers (Anand et al., 2019; Lukic et al., 2016; Nagraniy et al., 2017; Ravanelli

and Bengio, 2018a). In speaker recognition, various algorithms have been used to iden-

tify individuals by their speech patterns, including Hidden Markov models (Bengio, 1999),

Gaussian Mixture models (Reynolds et al., 2000), and neural networks (Anand et al., 2019;

Graves et al., 2013; Ravanelli and Bengio, 2018a,b). Of these, neural networks provide the

greatest accuracies, but they do so by refining their parameters on datasets consisting of

hundreds, if not, thousands of examples for each speaker.

Few-shot classification

The human body does not require hundreds, or thousands of examples to learn. As men-

tioned by Vinyals et al. (2016), ‘a child can generalize the concept of “giraffe” from a

single picture in a book – yet our best deep learning systems need hundreds or thousands

of examples’. To address this ability, few-shot classification, a sub-domain of machine

learning, was developed to address this need for large amounts of training data (Fe-Fei

et al., 2003; Fei-Fei et al., 2006; Yip and Sussman, 1997). Few-shot classification allows

for new objects to be learned from very limited data as humans naturally do (Koch, 2015;

Koch et al., 2015; Lake et al., 2011).
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Figure 2.5: Representation of the classes generated using the prototypical loss function dur-
ing few-shot classification. The prototypical loss function allows for higher-dimensional representations
of a particular class of inputs to be learned using limited training data. The mean of these representations
is the prototype, or prototypical representation, of that class. For example, if X of unknown class is
input to the neural network, its multi-dimensional representation is then calculated, and whichever of the
established prototypes it is closest to becomes the class of X; which in this example is c2. Adapted from
Snell et al. (2017)

Many few-shot classification algorithms exist including, the Siamese neural network

(SNN) (Bromley et al., 1993; Koch, 2015; Koch et al., 2015), the Meta-Transfer Learning

(MTL) model (Sun et al., 2018), and the Model-Agnostic Meta-Learning (MAML) model

(Finn et al., 2017). The latter has even been used to identify individuals for the purposes

of Human Activity Recognition (Wijekoon and Wiratunga, 2020). First employed by Snell

et al. (2017), Prototypical Networks (ProtoNets), use inputs to produce a multi-dimensional

representation of the input’s class. This representation is the ‘prototypical’ encoding of each

class (Figure 2.5). An extension of this is the Gaussian Prototypical Networks that quantify

a ‘confidence region’ surrounding the prototype using a Gaussian co-variance matrix (Fort,

2017). The ProtoNets offer an ease of implementation in addition to an intuitive rationale

regarding the prototypical encoding thus making it an enticing architecture to represent

the static balance control of healthy, young adults.

29



2.7.2 Constraints associated with identifying individuals by their

balance performance

The purpose of Study 3 is to directly identify individuals by their balance performances.

Unfortunately, there are no published studies that have accomplished this from which we

can base Study 3 on. As such, it is necessary to state the constraints associated with

achieving these goals. They include, (i) multi-class classification, (ii) the ability to handle

limited datasets, (iii) cope with the unavailability of a definitive representation (i.e.: a

gold standard) of an individual’s balance performance, and (iv) be agnostic to the method

by which the balance performance is measured.

(i) Multi-class classification

Classification algorithms specify which of a discrete number of categories to which an

input belongs. Classification is closely related to regression, however, the latter outputs

a real number instead of an integer. Numerous studies have employed a sigmoid function

to perform logistic classification. The use of a sigmoid function facilitates the division

of input data into one of two output categories. In terms of balance performance data,

logistic classification has been used to stratify older adults into one of two groups: fallers,

and non-fallers (Bigelow and Berme, 2011; Brauer et al., 2000; Maki et al., 1990). However,

more than two output categories are necessary to identify a single individual from a group

of individuals. Multi-class classification algorithms exist, like k-Nearest Neighbours (Fix

and Hodges, 1951; Cover and Hart, 1967), Decision Trees (Messenger and Mandell, 1972;

Breiman et al., 1984) and their extension, Random Forests (Ho, 1995), but they require

large data sets to optimize the parameters of the model without becoming overly specific

to training data and less generalizable to unknown data (i.e.: overfitting) (Bramer, 2013).

(ii) Limited availability of balance performance data

Obtaining balance performance data for an individual can be challenging. Regardless of

how the balance performance is recorded and subsequently represented, there exists a
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minimum amount of time that is required to collect a static balance trial that can be

impacted by the effort and abilities of the individual. According to the Internal Society

of Posture and Gait Research (ISPGR), typical static balance trials range from 30 s to

60 s. Multiple trials are necessary to encapsulate an individual’s balance control due

to the variability inherent in balance control. Multiple task conditions are necessary to

test various aspects of the balance control system while many people need to be sampled

in order to faithfully represent the target population. The combination of these factors

requires that the number of trials that need to be quite large. However, collecting hundreds,

let alone thousands, of static balance trials is not feasible within a clinical environment.

Excessive experimentation could induce fatigue or lead to ethical violations; both of which

could ensure that future participant recruitment is stifled. For context, the BESTest is a

30-minute examination consisting of 36 measures which helps indicate which of six balance

control sub-systems are potentially impaired (Horak et al., 2009). However, it was deemed

too time-consuming to be conducted in a clinical setting thus motivating the creation of

the 10-minute mini-BESTest (Franchignoni et al., 2010). Instead of collecting numerous

trials per individual, another possible avenue would be to collect an albeit limited number

of trials but from many people. Snell et al. (2017) pursued this avenue in the field of image

recognition where numerous characters exist (i.e.: 101-102 characters in each of 101-102

alphabets). Moreover, the number of these characters can be further increased by rotating

or translating the original characters to artificially inflate the number of examples (Snell

et al., 2017). Unfortunately, artificially creating new static balance trials would defeat the

purpose of collecting human balance trials with the expressed purpose of understanding the

underlying balance control system. Taken together, it means that the number of balance

trials conducted in a particular task condition that are labelled to a specific individual is

severely limited. As such, any artificial neural network that is created has to be designed

to deal with smaller datasets.

(iii) Lack of definitive representation of an individual’s balance performance

The classical method of identification is to compare an item of interest to a known standard.

For example, techniques that have been used to identify an individual include fingerprint-

ing, DNA analysis, and facial recognition. All these techniques require an exemplar for
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comparison. If the similarities between the sample of interest and the exemplar reach a

certain threshold, then the sample is deemed to be the same as the known standard. In

many cases, the known standard is a deterministic value in that there is no variability in its

value. However, in the case of facial recognition, a person’s facial structure can vary slightly

due to factors such as body mass, age, or water retention. This introduces uncertainty into

the known standard. In this thesis, it is the aim that individuals are be identified by

their balance performances alone. While balance performances can be measured in variety

of ways (i.e., kinetically vs. kinematically, time-series data vs. summary measures), re-

peated measurements display the existence of variability in these balance performances. In

addition, the measures of balance performance can be impacted by the duration of the col-

lection. Static balance trials lasting under a minute have revealed an oscillatory sway that

can be quantified using established linear, time-domain measures (e.g.: range, or RMS) of

the center of pressure (Prieto et al., 1996). Zatsiorsky and Duarte (1999) showed that an

individual’s stabilogram possesses distinct frequency bandwidths with low and high fre-

quencies representative of rambling and trembling respectively. Prolonged periods of quiet

standing showed moments of fidgeting, shifting of one’s balance from one leg to another,

and even longer periods of drifting (Duarte and Zatsiorsky, 1999). These studies might

suggest that a deterministic solution to an individual’s balance performance may not exist.

However, the application of the nonlinear measure, the largest Lyapunov Exponent, to

static balance performance data produces values greater than zero - an indicator that sys-

tem producing the signal is chaotic. Wurdeman (2018) defined a system as being chaotic

if it was deterministic, aperiodic, sensitive to initial conditions, and bounded. As such, it

stands to reason that determining the underlying structure of the balance control system,

which governs balance performance, may be possible but may require non-linear methods

to do so.

(iv) Agnostic to Measurement Modality of balance performance

Balance performance can be measured in the variety of ways, and they can be collectively

termed as, Measurement Modalities. In this study alone, balance performance is measured

kinetically using force plates and kinematically using inertial measurement units (IMUs).

The forces and movements produced by the individuals are analog in nature. The force

32



plates and IMUs transduce these analog inputs to digital outputs which are then saved for

subsequent analysis. The algorithm that is ultimately chosen to identify an individual by

their balance performance alone must be able to do so regardless of the input format.

2.7.3 Understanding the effect of the Measurement Format of

the balance performance data that is input to the ANN

An individual’s balance performance can be recorded kinetically using force plates or kine-

matically using inertial measurement units. Depending on the sampling frequency of the

recording modality, the collected data will be a time-varying signal containing either hun-

dreds or thousands of datapoints. However, this time-series data is complicated and sum-

mary measures can be used to facilitate understanding and communication. However,

information contained in the time-series signal can be lost in the process of reducing it

into a single, summary measure. That is why numerous summary measures are used, as

they each explain the data in different, yet complementary ways. Regardless of whether the

balance performance recorded kinetically or kinematically its representation as either time-

series data, or summary measures is called, Measurement Format. As such, the choice of

measurement modality will dictate the architecture of the artificial neural network required

to identify individuals.

If a summary measure is the input value, then the architecture of the ANN will be

a multi-layered perceptron. The multi-layered perceptron is a basic neural network ar-

chitecture and is reflective of the simple input. On the other hand, representing balance

performance as a time-varying signal, analogous to the vocal waveform, would require the

architecture of the neural network to be a convolutional neural network (ConvNets).

ConvNets are ‘designed to process data that come in the form of multiple arrays’ (LeCun

et al., 2015). They draw inspiration from physiological experiments on vision (Hubel and

Wiesel, 1962) with early, but seminal, forerunners to ConvNets included the Neocognitron

(Fukushima, 1980) and the time-delay neural networks (Waibel et al., 1989). The usage

of ConvNets increased when LeCun et al. (1989) used backpropagation to fully automate

visual learning in the application of recognizing handwritten zip codes. In 1998, the same
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Figure 2.6: The process of ’Speaker Recognition’ by which audio is input to a convolutional
network to identify the identities of the speaker via a prototypical loss function. Adapted from
Anand et al. (2019)

group created one of the most influential forms of ConvNets, called LeNet-5 (LeCun et al.,

1998). In 2012, AlexNet harnessed the processing power of GPUs to acheive state-of-the-

art image classification accuracy on the ImageNet dataset that contained k=1000 classes

(Krizhevsky et al., 2012). The primary feature of a ConvNet is the kernel. For example,

ConvNets can identify specific objects within a 2-dimensional (2D) image using a 2D kernel.

This kernel produces a value that ‘represents’ a specific region of the image over which the

kernel was placed. This kernel then ‘slides’ over the remaining regions of the image to

produce similar values. This process is like the convolution operation that is commonly

seen in digital signal processing. Multiple kernels can be stacked together to create a filter.

After a series of convolutional and pooling layers, the network is flattened to become a

fully-connected dense layer from which a hypothesis can be made. The parameters of the

kernels and the fully-connected layers are updated via back-propagation. One of the main

benefits of a ConvNets is that the number of parameters to be learned is quite small when

compared to a neural network composed solely of fully-connected layers (Goodfellow et al.,

2016). Another benefit is that the learned kernel can identify specific objects within an

image even if the location of that object changes from image to image or if the number

of objects changes. Because of these benefits, ConvNets have been used extensively in

speaker recognition and in face verification (Figure 2.6).
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2.7.4 Selection of the algorithm

Choosing an algorithm that satisfies the aforementioned requirements is difficult as many

possible solutions exist. For example, multi-class classification methods, such as k-means

clustering, can determine the centroid of a particular cluster. This centroid would represent

the balance performance of a single individual. However, the number of clusters must be

stated a priori. As such, if a new person were to be analyzed then the model would have

to be recompiled to accommodate the additional person. This may not be a problem if

adding a single person to an existing pool of 102 people, however compilation time may

be prohibitive if one has to continually reanalyze a pool of 106 people. Decision trees,

and their extension, Random Forests, have been used to categorize people into fall-risk

categories (Sun et al., 2019). Once again, the number of classes must be determined

a priori. Further, random forests, and decision trees in particular, are susceptible to

overfitting (Bramer, 2013). A review of literature suggests that employing an artificial

neural network that utilizes a Prototypical Loss function could identify individuals by

their balance performance alone and satisfy the above requirements. Its success will be

determined in Study 3.

2.8 Research objectives

As mentioned previously, the overall objective of this dissertation is to explore the indi-

viduality in the balance control system by advancing the methods used to assess balance

performance, specifically related to steady-state control using quantitative, static postur-

ography. The dissertation will employ the following three studies to accomplish this goal.

Study 1: The primary objective is to investigate whether an individual’s balance per-

formance, as recorded kinetically using force plates, summarized using various analytical

methods, and made relative to others in the cohort, remains consistent regardless of the

degree of difficulty of the task. A secondary objective is to determine whether the cor-

relations in relative balance performance across task conditions, if any were found, are

dependent on the choice of summary measures used to describe COP.
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Study 2: To investigate whether an individual’s balance performance, as recorded

kinematically using force plates, summarized using various analytical methods, and made

relative to others in the cohort, remains consistent regardless of the degree of difficulty of

the task. Two secondary objectives are to determine how well can kinematics, as measured

using IMUs, detect changes in balance performance as caused by altering the difficulty of

the task condition, and does the body move as a single-link,inverted pendulum during

static balance trials?

Study 3: The primary objective is to determine whether individuals can be correctly

identified from within a group by their balance performances alone. A secondary objective

is to determine which combination of task condition, measurement modality (e.g.: kinetics

using force plates, or kinematics using IMUs), or measurement format (summary measures

or time-series data) would achieve the greatest accuracy.

2.9 Summary

Falls have drastic physical, psychological, social, and financial costs. Identification of older

adults who are at an increased risk of falling could improve their quality of life and reduce

many of these associated costs. Ideally, at-risk individuals would be identified from a young

adult population. This would provide at-risk individuals with the time needed to allow any

preventative intervention to be successful. The current thesis if focussed on advancing ap-

proaches to determining the uniqueness of control among a healthy, seemingly homogenous,

young adult population. In fact, the current literature is unclear as to whether, without a

priori stratification, the balance control systems of individuals are demonstrably distinct

from one another. It is hypothesized, however, that the capacity for balance control does

differ among young adults. As such, the three studies within this thesis are designed to

determine whether an individual’s balance control system, as measured by their balance

performance, is unique to them, and them alone.
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Chapter 3

Study 1:

Measuring static balance control

with force plates

3.1 Introduction

Control of upright balance is an essential ability in humans to successfully execute activities

of daily living and to minimize the risk of falling. As an example of the challenges posed

by impaired balance control older adults (> 65 y/o) are more prone to falling than any

other age group (Nevitt et al., 1989; Tinetti et al., 1988; Tinetti, 2003). The significance of

poor balance control, and the falls linked with it, is highlighted by substantial amount of

injuries and deaths (Casey et al., 2017), health care costs (Florence et al., 2018), and the

accompanying fear/anxiety of falling (Scheffer et al., 2008; Vellas et al., 1997) that affects

an older adult’s level of independent living (Schmid and Rittman, 2009) and quality of life

(Salkeld et al., 2000). Also, balance control is critical to successful movement execution

and performance in all age groups and is often ascribed to being a factor in predicting

skilled performance (Frick and Möhring, 2015). Considering the fundamental importance

of upright balance control with respect to activities of daily life, skilled performance, as well

as to the risk of falling and injury in those with impaired balance control, there remains
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a continued need to advance the understanding of the assessment and control of standing

balance.

Balance relies on neuromechanical control to detect, plan, and generate control sig-

nals to maintain segment and whole-body stability (Horak, 2006; Horak and Macpherson,

1996). This neuromechanical control is a distributed system dependent on sensory, mo-

tor, and cognitive systems that work together to maintain one’s balance through both

proactive and reactive control (Shumway-Cook and Woollacott, 2017). Reactive control,

which are responses to recover sensed instability, is the cornerstone of effective balance

control and demands high temporal and spatial precision (Maki and McIlroy, 2007). As

a result, the ability to assess reactive control should be an important concern. The ap-

proaches to assess reactive control have ranged from those relying on externally applied

mechanical perturbations, such as translating platforms (Dietz et al., 1993; Horak and

Nashner, 1986; Weerdesteyn et al., 2012; Yang et al., 2012), lean-and-release apparatus

(Inness et al., 2015), and to the of use sensory perturbations such as moving rooms (Po-

lastri et al., 2019). However, these tools can be challenging to implement, expensive, and

may require extensive training for operation and analysis (Mansfield et al., 2021; Visser

et al., 2008). Moreover, while a destabilizing stimulus can be varied, subjects can learn

to improve their control following repeated exposure (McIlroy and Maki, 1994; Welch and

Ting, 2014). Alternatively, reactive control has been inferred during standing tasks by

measuring characteristics of naturally occurring postural sway. Spontaneous sway of the

whole body can be represented as the movement of the center of mass (COM). The ground

reaction forces created by the individual to control the COM movement, with respect to

the base of support, are commonly measured using force plates and are summarized as the

center of pressure (COP) (Winter, 1995). Various analyses summarize COP data to reflect

the postural stability using linear (Hufschmidt et al., 1980; Prieto et al., 1996) and non-

linear measures (Delignières et al., 2011) within the time-domain and frequency-domain.

Linear analyses include measures of COP displacement, velocity, and variance, and have

been used to predict fall risk within an older adult population (Maki et al., 1994). Gener-

ally, individuals with a lower amplitude of sway are associated with better balance control

and arguably improved reactive control (Maki et al., 1990). To more fully address the

time-dependent nature of reactive balance control non-linear analyses try to assess the
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regularity, complexity, and chaotic nature of COP data. These analyses have been used to

distinguish people by their balance control based on their lived experience ((Isableu et al.,

2017; Janura et al., 2019) and the degree of difficulty of the task challenge (Roerdink et al.,

2011; Stins et al., 2009). It should be noted that depending on the task challenge there

can be variable contributions from proactive and voluntary control that will impact the

interpretation of postural sway measures. For example, when stability control challenges

are removed unexpectedly, there is evidence of significant contribution of exploratory or

voluntary activity within the centre of pressure excursion when the degree of instability is

very low (Murnaghan et al., 2011). Importantly, as task demands increase during station-

ary standing there is an increased reliance on reactive control that is expressed by increases

in the postural sway (COM and COP) (Prieto et al., 1996).

The measurement of naturally occurring sway, and any associated reactions, is often

coupled with standing tasks of varying difficulty to provoke greater instability. These

tasks typically include reducing the base of support (Chang et al., 2013; Oliveira et al.,

2018), or visual input (Dietz et al., 1993; Springer et al., 2007). For example, removing

visual inputs (e.g. closing eyes) results in an increase in COP sway (Paulus et al., 1984).

The ratio between amplitude of sway with eyes closed versus eyes open is referred to as

the Romberg quotient (RQ) (van Parys and Njiokiktjien, 1976) and is an indicator of

both fall risk in older adults (Howcroft et al., 2017) and disease severity in pathological

populations (Kalron, 2017). Kotecha et al. (2016) demonstrated that adults with profound

visual loss had a mean RQ of 1.0 [SD = 0.2] while healthy controls had a mean RQ of

1.7 [SD = 0.4]. On the other hand, Morioka et al. (2000) revealed that reductions in the

base of support in healthy, young adults increased the RQ concomitantly, underlying the

importance of vision as somatosensory input decreases. Variation in base of support is

also a critical determinant of COP sway. The typical base of support, referred in this

study as Standard stance, is a shoulder-width stance or a similar standardized position

as proposed by McIlroy and Maki (1994). The area enclosed by the base of support can

be reduced by placing the medial aspects of each foot together (Narrow or Romberg), by

touching the toes of one foot to the heel of the other (Tandem or Sharpened Romberg), or

by standing on a single leg. Reducing the base of support has also been shown to increase

measures of postural sway (Kirby et al., 1987; Wang and Newell, 2014). COP sway during
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Standard and Narrow stances can identify fallers from non-fallers in older and pathological

populations (Fujio and Takeuchi, 2021; Maki et al., 1990; Sun et al., 2019). However, more

challenging stance positions may be too challenging for some individuals. Springer et al.

(2007) determined that while healthy adults (ages: 18-39 years) were able to stand on one

leg for an average of 43.3 seconds with their eyes open, this dropped to 9.4 seconds when

their eyes were closed. Importantly, there was a high degree of between-subject variability

with a standard error of 5.1 and 9.4 seconds for one leg stance with eyes open and closed

respectively. These one-legged stance durations continue to decrease as age increases and

so for an older adult population, whose balance control is more compromised, many are not

be able to complete the balance trials as intended (Chang et al., 2013; Hile et al., 2012).

The within-group variability increases even further in the older adult cohort (Springer

et al., 2007). Taken together, the manipulation of sensory and/or the base of support

provide a controlled approach to challenge balance control and increase the demands on

reactive control. As a result, the choice of task condition may be used to optimize the

ability to detect changes in underlying control but may confound interpretations when not

accounting for base of support properly. The focus of the current study is to determine if

changes in task challenge, specifically changes to the base of support and/or vision, will

provoke specific challenges to better discriminate a person’s ability to control balance.

In addition to the exogenous determinants previously mentioned, balance control can

also be influenced by endogenous factors that affect the overarching neuromechanical con-

trol such as age and/or disease. For example, changes in balance performance, which

are indicative of changes in their underlying balance control systems, have been shown in

individuals stratified by pathology including Parkinson’s disease (Ickenstein et al., 2012;

Termoz et al., 2008), multiple sclerosis (Ramdharry et al., 2006), and spinocerebellar ataxia

type 6 (Bunn et al., 2015). Further, differences in balance performance between young and

older adults are considered reflective of age-related deterioration of the balance control

system (Donath et al., 2016; Elgohary, 2017). The large range of values within these

older adults also reveals significant variation in balance control across people within this

group. In fact, older adults have routinely been partitioned into healthy and pathological

sub-groups to both control for age and to examine the factor of interest (Frzovic et al.,

2000). In contrast, the healthy, young adult population is commonly considered a homoge-
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nous cohort and is often used as the control to which other groups are compared. Yet,

as noted earlier, there can exist significant variation within this cohort across such spe-

cific task conditions. Howcroft et al. (2017) developed a set of cut-off values to determine

fall-risk amongst older adults. They used the Romberg Quotient (RQ) which compares

the balance performances when one’s eyes were open to when they were closed and is a

measure of one’s reliance on visual input to maintain balance (van Parys and Njiokik-

tjien, 1976). Howcroft et al. (2017) determined that an RQ = 1.48, as calculated from

the root-mean-square (RMS) of the COP values in the anterior-posterior direction, could

distinguish older adults as ‘prospective non-fallers’ or ‘prospective single fallers’. Menegoni

et al. (2011)assessed the balance of healthy, young adults using the same measure of pos-

tural sway and determined that young adults had an RQ of 1.05 ± 0.23 (mean ± standard

deviation). Combined, these two studies suggest that as many as 3% of the healthy, young

adult population would be identified as ‘prospective single fallers’ based on criteria from

older adults. As such, there may exist important physiological reasons for such difference

in balance control within young healthy adults. For example, differences in balance per-

formance have also been identified in healthy, young adults when stratified a priori by

physical activity. In these studies, higher levels of physical activity were associated with

better balance performance (Hammami et al., 2014; Ricotti, 2011; Thompson et al., 2017).

This leads to the possibility that meaningful between-subject differences in balance control

may exist among healthy, young adults that are quantifiable using COP sway measures

during standing balance.

These meaningful differences may indicate that the balance performance of an indi-

vidual could be distinguished from other individuals within the same population, even a

population that is young and otherwise healthy. These differences in balance performance

between individuals would imply that the underlying balance control system also differs

between individuals. The idea that meaningful and measurable differences in balance

control could exist among healthy, young adults raises the possibility that advancing un-

derstanding of the determinants of balance control in younger adults could lead to possible

novel prognostic indicators of future age-related balance problems linked to balance control

ability when one is younger. As such, this study attempted to answer the question: Do

healthy, young adults vary in their ability to control upright balance, or, do the differences
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simply reflect ‘noise’ within a homogenous cohort? Specifically, the primary purpose was

to investigate whether an individual’s balance performance, as recorded kinetically using

force plates, summarized using various analytical methods, and made relative to others in

the cohort, remains consistent regardless of the degree of difficulty of the task. In other

words, if a person performed poorly on one task challenge relative to other members of that

cohort, then would they perform similarly to their peers on a more difficult task challenge.

To do this, an individual’s balance performance will be assessed under task conditions of

varying degrees of challenge. The null hypothesis is that an individual’s balance perfor-

mance, relative to the population, will vary across task conditions; thus, implying that

differences in balance performance are just natural variance within a homogenous cohort.

However, it is currently hypothesized that an individual’s relative balance performance will

be correlated across tasks of varying task difficulty (Vision: eyes open or close, Base of

support: standard or narrow). The basis for this hypothesis is the idea that balance control

system of healthy, young adults is unique to each individual and that task-induced changes

in balance control would be dependent on a person’s general ability to control stability.

It is possible, however, that the detection of task-related and person-specific differences

may depend on the specific measure of balance performance used. As a result, a secondary

objective of this study was to determine whether the correlations in relative balance perfor-

mance across task conditions, if any were found, were dependent on the choice of summary

measures used to describe COP. This study will evaluate COP data using linear measures

and non-linear measures. There is evidence that non-linear measures may characterize

time-series data better than linear measures, so it is therefore hypothesized that stronger

correlations will be observed with non-linear measures.
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3.2 Materials and Methodology

3.2.1 Subjects

Participants were recruited from a university population. Individuals were excluded from

the study if they: 1) were younger than 18 years of age or older than 35 years of age, 2)

had any history of significant upper and/or lower limb injuries, 3) reported any significant

balance control problems, 4) had any history of neurological impairments (previous brain

injury, epilepsy, multiple sclerosis, etc.), or 5) were taking anti-anxiety, anti-depressants

or anti-psychotic drugs (whether prescribed or not). Sixty-one healthy individuals partic-

ipated in this study. Anthropometrics (height, weight, foot size, etc.) and vision quality

(Snellen Eye Test and Mars Contrast Sensitivity Test) were assessed prior to completion

of the static balance trials (Table 3.1). The experimental procedures were performed in

accordance with the declaration of Helsinki and approved by the Research Ethics Board

of the University of Waterloo.
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Table 3.1: Summary of demographic, anthropometric, and vision quality information of
study participants.

Demographics

Gender Males: 35; Females: 37

Anthropometrics Mean ± Std. Dev. [Min. - Max.]

Age 21.83 ± 3.5 years [18 - 34 years]
Height 169.74 ± 9.90 cm [152 - 199 cm]
Weight 70.86 ± 13.87 kg [45.8 - 103 kg]
Body Mass Index (BMI) 24.21 ± 3.32 kg·m−2 [18.83 - 32.51 kg·m−2]
Left Foot Length 25.0 ± 2.0 cm [21.0 - 30.7 cm]
Right Foot Length 25.1 ± 2.0 cm [20.5 - 31.0 cm]

Vision Quality Mean ± Std. Dev. [Min. - Max.]

Snellen Eye Test
- Left eye occluded 22.7 ± 10.1 [13 - 70]
- Right eye occluded 24.2 ± 10.3 [13 - 70]
Mars Contrast Sensitivity Test (Binocular)

1.74 ± 0.05 [1.56 - 1.80]

Miscellaneous

Dominant Foot Left 3; Right 69
Front foot in tandem stance Left 30; Right 42
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3.2.2 Experimental design

Participants were asked to stand with their hands by their sides and with each foot placed

on one of two force plates. Two experimental factors were manipulated: 1) Base of Support

(BOS) and 2) Vision (VIS) (Figure 3.1). BOS was manipulated by having the participants

stand in one of two foot-placements: either heels 17 cm apart at an angle of 14◦ (standard)

(McIlroy and Maki, 1997), or where the medial borders of the feet touch (narrow). VIS

was changed in one of two ways, with the eyes either being open (EO) or closed (EC).

The experiment was block randomized with the order of the four conditions was randomly

assigned within a block of trials. Five blocks were completed for a total of twenty trials for

each participant across the four conditions with each trial being 35 seconds in duration.

Figure 3.1: The quiet standing task conditions of Study 1. The task conditions are binary
combinations of two experimental factors, Base of Support (BOS ) and Vision (VIS ). Each experimental
factor has two levels, BOS : Standard Width and Narrow Width; VIS : Eyes Open and Eyes Closed. The
result is four task conditions under which a participant must quietly stand: Standard Width, Eyes Open
(SEO); Standard Width, Eyes Closed (SEC); Narrow Width, Eyes Open (NEO); and Narrow Width, Eyes
Closed (NEC).
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3.2.3 Data acquisition

The center of pressure of each foot was calculated using the forces and moments collected

from each of two force plates (AMTI, Watertown, MA, USA). For each trial, force plate

data was amplified (gain: 1000), analog low-pass filtered using two-pole low-pass 1000-Hz

filter (built in AMTI MSA-6 MiniAmp amplifier), sampled at a rate of 200 Hz for 35 seconds

using a customized LabVIEW software (National Instruments Corporation, Austin, TX,

USA), and stored for subsequent analysis. No additional filtering was performed.

3.2.4 Data analysis

Although individuals were required to maintain a standardized stance, efforts were made

to ensure that the COP data was normalized to facilitate comparisons between trials,

task conditions, and participants. Equations 3.1 and 3.2 converted the raw COP data of

each trial (xraw, yraw) into the centered COP data (xcentered, ycentered) for each of the N

time-points (N = sampling frequency × sampling duration).

xraw =

∑N−1
i=0 xraw

i

N − 1
(3.1)

xcentered
i = xraw

i − xraw (3.2)

All subsequent analyses will utilize this centered data with the x- and y-coordinates at

timepoint, i, represented simply as (xi, yi).

Linear, time-domain

The linear, time-domain analyses of RMS (Eq. 3.3), Range (Eq. 3.4), Maximum Velocity

(Eq. 3.5), Mean Velocity (Eq. 3.6), Skewness (Eq. 3.7), and Kurtosis (Eq. 3.8) will be

calculated as outlined in Prieto et al. (1996).
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1. COP RMS

RMS =

√∑N−1
i=0 (xi − x)2

N − 2
(3.3)

It should be noted that since the data has been centered, then the mean COP position

will be equal to zero (x = 0). As such, the resulting RMS value will also be equal to

the standard deviation.

2. COP Range

Range = max(xi) − min(xi) (3.4)

3. COP Maximum Velocity

ẋi = (xi+1 − xi) × fsampling; i ∈ [0, N − 2]))

MaximumV elocity = max(ẋi) (3.5)

4. COP Mean Velocity

PathLength =
N−1∑
i=0

xi

MeanV elocity =
PathLength

N
(3.6)

=
PathLength

fsampling × CollectionPeriod

5. Skewness

SkewnessUncorrected =

∑N−1
i=0 ( xi

RMS
)3

N

SkewnessCorrected = SkewnessUncorrected ×
N

N − 2
(3.7)
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6. Kurtosis

KurtosisUncorrected =

∑N−1
i=0 ( xi

RMS
)4

N

KurtosisCorrected = KurtosisUncorrected − 3 (3.8)

Nonlinear, time-domain

The non-linear measures, Sample Entropy (SampEn) and largest Lyapunov (LyE), each

require the specification of additional parameters before they can be calculated (Stergiou,

2018).

1. Sample Entropy

SampEn requires the template size (m) and the tolerance (r) for acceptable matches

be defined a priori (Richman and Moorman, 2000). For the current study, m = 2

and r = 0.2× Standard Deviation were chosen based on previous studies using force

plate data collected during static balance trials (Ahmadi et al., 2018; Lee and Sun,

2018b).

2. Lyanpunov Exponent

The largest Lyapunov Exponent (LyE) was calculated the method developed by

Rosenstein et al. (1993). This method first requires that the state-space be recon-

structed which involves determining the appropriate time lag (τ) and embedding

dimension (EmD). Further, Raffalt et al. (2019) determined the LyE within the

context of gait biomechanics and suggested that the aforementioned parameters be

calculated for each trial. The optimal time lag (τ ∗) was chosen to be the τ associ-

ated with the first minimum Average Mutual Information (AMI) value (Fraser and

Swinney, 1986; Fraser, 1989; Raffalt et al., 2019). The optimal embedding dimension

(EmD∗) was determined using the False Nearest Neighbour (FNN) algorithm, with

τ ∗ and a threshold value (rtol) of 10 as the required parameters (Alexandrov et al.,

2005; Cao, 1997). It should be noted that since the COP data represents movement

in two dimensions, analysis was performed in both the anterior-posterior (AP), and

medial-lateral (ML) axes where appropriate.
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3. Fractal Analysis

Fractal analyses aim to ‘identify pattens within the fluctuations of the data that are

repeated over time’ (McGrath, 2016). They have been used to identify and quantify

pathology in biological events, including heart rate (Peng C-K et al., 1993; Peng

et al., 1995) and gait (Hausdorff et al., 1997a,b, 2001). While many algorithms exist,

Detrended Fluctuation Analysis (DFA) has been validated for use in the analysis of

static balance performance (Amoud et al., 2007; Delignières et al., 2003, 2011; Duarte

and Zatsiorsky, 2001; Gilfriche et al., 2018; Norris et al., 2005; Schniepp et al., 2013;

von Tscharner et al., 2016). Delignières et al. (2011) demonstrated that the proper

use of DFA first requires calculating the first derivative of the COP data, COPVelocity,

which is then input to the algorithm. DFA calculates the difference between raw data

and a trendline within a box size consisting of n consecutive values. According to

Arsac and Deschodt-Arsac (2018), this box size (n) can range from 10 to N/4, where

N is the total number of data points within the collected stance trial. Gilfriche

et al. (2018) was able to convert this box size to a frequency value. By doing so,

they were able to analyse the stance trial with respect to visual and vestibular input

(αV isual&V estibular) and somatosensory input (αSomatosensory) in a method they called,

Frequency-specific Fluctuation Analysis (FsFA).

Frequency-domain

The frequencies measures of Total Power, Mean Power Frequency, Median (50%) Power

Frequency, and 95% Power Frequency will be calculated as outlined in Prieto et al. (1996),

and subsequently used in static balance analysis (Fukusaki et al., 2016; Sun et al., 2019).

3.2.5 Statistical Analysis

Linear mixed-effects models were used to evaluate the correlation between each individual’s

relative balance performance across task conditions. BOS, VIS, Trial, and participant-

specific measures of anthropometry (Height, Foot Length - left and right) and vision quality
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(Snellen Eye Test - left and right eyes, Mars contrast sensitivity test - binocular) were

classified as fixed factors. Model 1 included just BOS, VIS, and Trial as fixed-effects. To

account for the possible confounding influence of participant-specific anthropometry and

vision, Model 2 expanded on Model 1 by including all the anthropometric measures as fixed-

effects. Model 3 included only the anthropometric measures that were significantly related

to an individual’s balance performance, namely height and vision quality. Participant was

always modelled as a random factor as it was assumed that study participants were a

randomly sampled from a larger population of healthy, young adults. For simplicity, only

Model 3 is presented in the results. Using the Shapiro-Wilk test, it was determined that

the residuals were not normally distributed (Shapiro and Wilk, 1965). This was corrected

using a log-transformation of the dependent variable. Comparison between task conditions

was accomplished using estimated marginal means.

Intraclass correlations were calculated using the random effects variable, Participant,

based on a mean-rating (k = 5), consistency, two-way mixed-effects model where the

‘raters’ (task conditions in this study) were fixed (Koo and Li, 2016). Koo and Li (2016)

provided a reference by which the reliability of the intraclass correlation. 95% Confidence

Intervals greater than 0.9 indicated excellent reliability, values between 0.75-0.9 expressed

good reliability, values between 0.5-0.75 were moderate, while values less than 0.5 indi-

cated poor reliability. The linear mixed-effects models were created within the statistical

program, R, via R-Studio (R Core Team, 2020) using the lmer function from the lme4

package (Bates et al., 2014) while correlations were calculated using the icc function from

the irr package (Gamer et al., 2019).

3.3 Results

3.3.1 Task-conditions affect measures of balance control

Linear measures within the time-domain

Postural sway was assessed in terms of variability (COP RMS ), range (COP Range), path

length (COP Velocity, path length normalized to time), Skewness, and Kurtosis in both
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the AP and ML directions. Please refer to Table 3.2 for the effects of task conditions

stratified by axis and summary measure.

Specific Summary Measures

With respect to the factor, AXIS, the summary measures COP RMS (F(1,60.09) =

593.25, p < .001), COP Range (F(1,60.20) = 523.17, p < .001), and COP Mean Velocity

(F(1,60.00) = 161.32, p < .001) were all lower in the ML direction, as compared to the

AP direction, while the COP Max. Velocity (F (1,60.11) = 86.14, p < .001) and Kurtosis

(F(1,116.39) = 8.31, p < .005) were larger. There were no differences in Skewness when

comparing between levels of AXIS (F(1,81.79) = 0.38, ns).

In terms of BOS, COP RMS (F(1,60.00) = 580.05, p < .001), COP Range (F(1,60.03) =

577.32, p < .001), COP Mean Velocity (F(1,60.00) = 431.01, p < .001), and COP Max.

Velocity (F(1,60.21) = 385.93, p < .001) increased in the narrow stance condition while

Skewness (F(1,73.43) = 12.94, p < .001) and Kurtosis (F(1,79.62) = 23.20, p < .001) both

decreased. An interaction between BOS and AXIS was also observed whereby COP RMS

(F(1,60.18) = 588.71, p < .001), COP Range (F(1,60.46) = 660.53, p < .001), COP Mean

Velocity (F(1,60.00) = 421.88, p < .001), and COP Max. Velocity (F(1,84.56) = 377.41, p =

.001) further increased in the ML direction.

For the factor, VIS, the summary measures COP RMS (F(1,60.21) = 59.99, p < .001),

COP Range (F(1,60.79) = 107.41, p < .001), COP Mean Velocity (F(1,60.00) = 241.27, p <

.001), and COP Max. Velocity (F(1,60.09) = 98.97, p < .001) increased in the eyes closed task

condition. There was no effect on Skewness (F(1,186.00) = 1.17, ns) and Kurtosis (F(1,59.52) =

0.31, ns). An interaction between VIS and AXIS was also observed using COP RMS

(F(1,114.27) = 4.45, p = .037), COP Range (F(1,107.89) = 7.73, p = .003), COP Mean Velocity

(F(1,60.01) = 68.50, p < .001), and COP Max. Velocity (F(1,132.45) = 10.96, p = .001).

A significant interaction between BOS and VIS was observed for COP RMS (F(1,60.69) =

7.24, p = .009), COP Range (F(1,60.12) = 94.5, p = .003), COP Mean Velocity (F(1,60.01) =

45.03, p < .001), and COP Max. Velocity (F(1,60.12) = 15.04, p < .001) where an additive

effect during the narrow stance, eyes closed task condition. An interaction between BOS,

VIS, and AXIS was also observed whereby COP Range (F(1,116.48) = 4.51, p = .036), and

COP Mean Velocity (F(1,59.97) = 21.04, p < .001) further increased in the ML direction.
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There was no interaction effect on COP RMS (F(1,95.17) = 3.86, ns) and COP Max. Velocity

(F(1,93.83) = 3.02, ns).
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Non-linear measures within the time-domain

Postural sway was assessed using the non-linear summary measures, largest Lyapunov

Exponents, Sample Entropy, and Detrended Fluctuation Analysis in both AP and ML

directions. Please refer to Table 3.3 for the effects of task condition stratified by axis

and summary measure. Proper calculation of the largest Lyapunov Exponent and Sample

Entropy protocols requires the reconstruction of the state-space related to the centre of

pressure data. This was accomplished by determining the time lag (τ) and embedding

dimension (EmD) for each trial (Figure 3.2). In terms of time lag, a main effect of BOS

was observed in both AP (F(1,60) = 5.44, p = 0.023) and ML (F(1,60) = 344.67, p < .001)

directions while VIS only affected time lag (F(1,60) = 10.40, p < 0.01) in the ML direction.

In these scenarios, BOS and VIS reduced time lag when stance was narrowed and vision

occluded. With respect to the embedding dimension, a main effect of BOS was observed

in the ML direction (F(1,60) = 66.223, p < 0.001) while a main effect of VIS was observed

in the AP (F(1,60) = 6.341, p = 0.014). Specifically, the embedding dimension was reduced

during narrow stance while the embedding dimension increased when the eyes were closed.

These findings necessitated the use of trial-specific time lags and embedding dimensions as

opposed to using a mean value in accordance with Raffalt et al. (2019, 2020).

Specific Summary Measures

On average, the largest Lyapunov Exponent (LyE ) was positive for all task-conditions

and, except for six specific trials, was positive for all the trials completed. However, there

were no significant effects of BOS (F(1, 33.88) = 1.70, ns), VIS (F(1, 179.56) = 0.04, ns),

or AXIS (F(1, 25.95) = 1.19, ns).

Sample Entropy (SampEn), however, was significantly affected by BOS (F(1,28.27) =

103.24, p < .001), VIS (F(1,47.63) = 24.53, p < .001), and AXIS (F(1,27.90) = 59.21, p <

.001). Specifically, SampEn increased during the narrow stand width condition, increased

during the eyes closed task condition, but decreased in the ML direction. There were also

interactions of BOS and VIS (F(1,50.02) = 9.22, p < .004), BOS and AXIS (F(1,26.75) =

107.73, p < .001), but not of VIS and AXIS (F(1,43.32) = 3.47, ns).

A combination of ‘Detrended Fluctuation Analysis’ and ‘Frequency-specific Frequency

Analysis’ was used to examine the effects of BOS, VIS, and AXIS on the self-similarity
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within the balance performances specific to either the somatosensory system, or the visual

and vestibular systems. Specifically, the α-values related to the somatosensory system,

αSomatosensory, were significantly different in both BOS (F(1,60.00) = 416.36, p < .001), VIS

(F(1,60.01) = 255.19, p < .001), and AXIS (F(1,60.00) = 243.46, p < .001). The narrow

task condition increased αSomatosensory by 6.17% and 42.17% in the AP and ML direc-

tions respectively. The eyes closed task condition was characterized with an increase in

αSomatosensory of 12.22% and 8.63% in the AP and ML directions respectively. A signifi-

cant interaction between BOS and VIS (F(1,59.99) = 16.88, p < .001) was manifested by

an increase in αSomatosensory during the NEC condition compared to the other task con-

ditions. The α-values related to the visual and vestibular systems, αV isual&V estibular, were

different in both BOS (F(1,59.92) = 60.44, p < .001) and AXIS (F(1,59.98) = 79.52, p < .001)

but not VIS (F(1,60.03) = 0.04, ns). There was no interaction between BOS and VIS

(F(1,60.04) = 1.95, ns). In the AP direction, αV isual&V estibular significantly decreased by

9.75% during the narrow stance condition. In the ML direction, αV isual&V estibular increased

by 75.69% when the base of support was narrowed.
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Figure 3.2: Identification of (a) the Time Lag (τ) using Average Mutual Information, and
(b) the Embedding Dimension using the False Nearest Neighbour algorithm. Both metrics are
calculated in the anterior-posterior (AP) and medio-lateral (ML) direction as required for both state-space
reconstruction and as parameters in certain non-linear analyses. Values are calculated from root-mean-
square (RMS) center of pressure data recorded using force plates in each of the four task conditions: 1)
Standard Width Eyes Open ( ), 2) Standard Width Eyes Closed ( ), 3) Narrow Width Eyes Open
( ), and 4) Narrow Stance Eyes Closed ( ). Bars indicate standard error.
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Frequency-domain measures

Postural sway was assessed in the frequency-domain using the summary measures, Total

Power, Mean Frequency, 50% Power Frequency, and 95% Power Frequency in both the AP

and ML directions. Please refer to Table 3.4 for the effects of task conditions stratified by

axis and summary measure.

Specific Summary Measures

With respect to, AXIS, Total Power (F(1,60.09) = 589.73, p < .001) decreased in the

ML direction while Mean Frequency (F(1,60.00) = 102.89, p < .001), 50% Power Frequency

(F(1,60.10) = 47.86, p < .001) and 95% Power Frequency (F(1,60.00) = 64.26, p < .001) all

increased in the ML direction.

In terms of BOS, the summary measures Total Power (F(1,60.01) = 569.22, p < .001),

Mean Frequency (F(1,60.02) = 34.89, p < .001) and 95% Power Frequency (F(1,60.00) =

4.44, p = .039) increased in the narrow stance condition while there was no effect on

50% Power Frequency (F(1,61.28) = 3.39, ns). An interaction between BOS and AXIS was

also observed whereby the decreases in Total Power (F(1,60.22) = 576.63, p < .001), and

the increases in Mean Frequency (F(1,60.30) = 70.40, p < .001) and 95% Power Frequency

(F(1,60.00) = 35.17, p < .001) associated with the ML direction were less pronounced in

narrow width stance.

For the factor, VIS, Total Power (F(1,60.23) = 56.43, p < .001), Mean Frequency (F(1,60.05) =

83.66, p < .001), 50% Power Frequency (F(1,60.06) = 80.00, p < .001), and 95% Power Fre-

quency (F(1,60.00) = 63.67, p < .001) all increased in the eyes closed task condition. An

interaction between VIS and AXIS was also observed whereby the decreases in Total Power

(F(1,111.60) = 4.36, p = .039) associated with the ML direction were more pronounced in

narrow width stance. Whereas the increases in Mean Frequency (F(1,68.01) = 6.72, p = .012)

and 95% Power Frequency (F(1,60.00) = 17.65, p < .001) associated with the ML direction

were more pronounced during standard width stance. There was no interaction with 50%

Power Frequency (F(1,64.51) = 0.02, ns).

An significant interaction between BOS and VIS was observed for Total Power (F(1,60.80) =

6.92, p = .011), Mean Frequency (F(1,60.15) = 18.84, p < .001), 50% Power Frequencyy
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(F(1,97.75) = 10.48, p = .002), and 95% Power Frequency (F(1,60.00) = 9.01, p = .004) where

an increase in each summary measure was observed in the NEC task condition. No inter-

action between BOS, VIS, and AXIS was observed for Total Power (F(1,93.40) = 3.60, ns),

Mean Frequency (F(1,63.45) = 0.01, ns), 50% Power Frequency (F(1,66.66) = 0.14, ns), and

95% Power Frequency (F(1,59.98) = .28, ns)
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3.3.2 Individual balance performances, relative to the

population, are correlated across task conditions

A linear mixed-effects model was created to determine whether individuals perform con-

sistently, relative to the population, across task conditions. An example of this is provided

using the analytical measure, COP RMS, in the ML axis (Figure 3.3). Correlations calcu-

lated using all the analytical techniques are summarised in Table 3.5.

Linear measures within the time-domain

Moderate to excellent correlations were found for individual balance performances across

all experimental conditions for all linear measures within the time-domain (Table 3.6).

Excluding Skewness and Kurtosis, correlations were stronger in the AP direction than in

the ML direction (F(1,6) = 134.09, p < .001). In the AP direction, the strongest correlations

were observed using COP RMS (r(60,183) = .919, p < .001), followed by COP Max. Velocity

(r(60,183) = .877, p < .001), COP Mean Velocity (r(60,183) = .868, p < .001), COP Range,

(r(60,183) = .756, p < .001), and Skewness (r(60,183) = .771, p < .001). In the ML direction,

COP Max. Velocity (r(60,183) = .730, p < .001) produced the strongest correlations, followed

by COP Range (r(60,183) = .669, p < .001), COP Mean Velocity (r(60,183) = .607, p < .001),

and COP RMS (r(60,183) = .540, p < .001).

Non-linear measures within the time-domain

Individual balance performances across task conditions exhibited poor to good correlations

when analyzed using non-linear measures (Table 3.7). Correlations were stronger in the

AP direction than in the ML direction (F(1,6)=8.16, p < .029). In the AP axis, αSomatosensory

(r(60,183) = .888, p < .001) produced the strongest correlations followed by Sample En-

tropy (r(60,183) = .791, p < .001), αV isualV estibular (r(60,183) = .754, p < .001), and then LyE

(r(60,183) = .634, p < .001). In the ML direction, αSomatosensory (r(60,183) = .611, p < .001)

produced the strongest correlations followed by LyE (r(60,183) = .411, p = .004). The

measures, αV isualV estibular (r(60,183) = .239, ns) and Sample Entropy (r(60,183) = .235, ns)

produced non-significant correlations.
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Frequency-domain measures

Frequency-domain analyses were able to reveal poor to good correlations in the relative

balance performances of individuals across task conditions (Table 3.8). The strength of

these correlations were not significantly different between axis (F(1,6) = 5.43, ns). In the

AP direction, 95% Power Frequency (r(60,183) = .755, p < .001) produced the strongest cor-

relations followed by Total Power (r(60,183) = .709, p < .001), Mean Frequency (r(60,183) =

.641, p < .001), and then 50% Power (r(60,183) = .309, p = .033). In the ML direction,

only Total Power (r(60,183) = .555, p < .001) produced significant correlations. 95% Power

Frequency (r(60,183) = .257, ns), Mean Frequency (r(60,183) = .183, ns), and 50% Power

Frequency (r(60,183) = .034, ns) all produced non-significant correlations.
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(a) Z-standardized using the mean and variance of each task condition.
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(b) Z-standardized using the mean and variance of each task condition, an then normalized to the mean of each
participant.

Figure 3.3: Relative balance performances across task conditions for each participant as
measured by COP RMS, ML. Individual balance performances, (a) z-standardized to sample mean
and variance, and (b) z-standardized to sample mean and variance but then normalized to each participant’s
mean across four task conditions: 1) Standard Width, Eyes Open ( ); 2) Standard Width, Eyes Closed ( );
3) Narrow Width, Eyes Open ( ); and 4) Narrow Stance, Eyes Closed ( ). Participants on the left-hand
side show high consistency in balance performance, relative to sample population, across task conditions.
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Table 3.5: Correlation of relative balance performances using all summary measures and
stratified by force plate axis.

Analyses Axis
Intraclass 95% Confidence Interval F -test with True Value 0

Correlation Lower Bound Upper Bound Value df1 df2 Sig

CoP Range (mm) Anterior-Posterior 0.943 0.916 0.964 17.697 60 183 < 0.001
CoP RMS (mm) Anterior-Posterior 0.935 0.903 0.958 15.353 60 183 < 0.001
Total Power Anterior-Posterior 0.935 0.903 0.958 15.294 60 183 < 0.001
CoP Mean Velocity (mm/s) Anterior-Posterior 0.893 0.842 0.931 9.353 60 183 < 0.001
αSomatosensory Anterior-Posterior 0.889 0.836 0.929 9.037 60 183 < 0.001
αV ision & V estibular Anterior-Posterior 0.883 0.827 0.924 8.545 60 183 < 0.001
CoP Max Velocity (mm/s) Anterior-Posterior 0.874 0.814 0.919 7.954 60 183 < 0.001
CoP Skewness (mm3) Anterior-Posterior 0.849 0.777 0.903 6.644 60 183 < 0.001
Sample Entropy Anterior-Posterior 0.756 0.483 0.905 4.105 15 48 < 0.001
Lyapunov Exponent (bits/s) Medial-Lateral 0.743 0.454 0.899 3.884 15 48 < 0.001
Lyapunov Exponent (bits/s) Anterior-Posterior 0.733 0.433 0.895 3.743 15 48 < 0.001
95% Power Frequency (Hz) Anterior-Posterior 0.733 0.604 0.828 3.743 60 183 < 0.001
CoP Max Velocity (mm/s) Medial-Lateral 0.694 0.546 0.802 3.267 60 183 < 0.001
CoP Range (mm) Medial-Lateral 0.679 0.525 0.793 3.118 60 183 < 0.001
Total Power Medial-Lateral 0.652 0.484 0.775 2.870 60 183 < 0.001
CoP RMS (mm) Medial-Lateral 0.646 0.476 0.772 2.827 60 183 < 0.001
CoP Mean Velocity (mm/s) Medial-Lateral 0.637 0.463 0.766 2.758 60 183 < 0.001
Mean Frequency (Hz) Anterior-Posterior 0.608 0.419 0.747 2.552 60 183 < 0.001
αSomatosensory Medial-Lateral 0.586 0.387 0.733 2.417 60 183 < 0.001
Sample Entropy Medial-Lateral 0.511 −0.038 0.808 2.044 15 48 0.031
50% Power Frequency (Hz) Anterior-Posterior 0.408 0.123 0.618 1.691 60 183 0.004
αV ision & V estibular Medial-Lateral 0.326 0.002 0.565 1.485 60 183 0.024
CoP Kurtosis (mm4) Medial-Lateral 0.277 −0.072 0.533 1.383 60 183 ns
95% Power Frequency (Hz) Medial-Lateral 0.242 −0.123 0.511 1.319 60 183 ns
Mean Frequency (Hz) Medial-Lateral 0.108 −0.321 0.424 1.122 60 183 ns
50% Power Frequency (Hz) Medial-Lateral 0.009 −0.468 0.360 1.010 60 183 ns
CoP Skewness (mm3) Medial-Lateral −1.741 −3.062 −0.770 0.365 60 183 ns
CoP Kurtosis (mm4) Anterior-Posterior −6.377 −9.933 −3.763 0.136 60 183 ns
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Table 3.6: Correlation of relative balance performances using linear measures within the
time-domain and stratified by force plate axis.

Analyses
Intraclass 95% Confidence Interval F Test with True Value 0

Correlation Lower Bound Upper Bound Value df1 df2 Sig

Anterior-Posterior

CoP Range (mm) 0.943 0.916 0.964 17.697 60 183 < 0.001
CoP RMS (mm) 0.935 0.903 0.958 15.353 60 183 < 0.001
CoP Mean Velocity (mm/s) 0.893 0.842 0.931 9.353 60 183 < 0.001
CoP Max Velocity (mm/s) 0.874 0.814 0.919 7.954 60 183 < 0.001
CoP Skewness (mm3) 0.849 0.777 0.903 6.644 60 183 < 0.001
CoP Kurtosis (mm4) −6.377 −9.933 −3.763 0.136 60 183 ns

Medial-Lateral

CoP Range (mm) 0.679 0.525 0.793 3.118 60 183 < 0.001
CoP RMS (mm) 0.646 0.476 0.772 2.827 60 183 < 0.001
CoP Mean Velocity (mm/s) 0.637 0.463 0.766 2.758 60 183 < 0.001
CoP Max Velocity (mm/s) 0.694 0.546 0.802 3.267 60 183 < 0.001
CoP Skewness (mm3) −1.741 −3.062 −0.770 0.365 60 183 ns
CoP Kurtosis (mm4) 0.277 −0.072 0.533 1.383 60 183 ns
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Table 3.7: Correlation of relative balance performances using non-linear measures within
the time-domain and stratified by force plate axis

Analyses
Intraclass 95% Confidence Interval F Test with True Value 0

Correlation Lower Bound Upper Bound Value df1 df2 Sig

Anterior-Posterior

Sample Entropy 0.756 0.483 0.905 4.105 15 48 < 0.001
Lyapunov Exponent (bits/s) 0.733 0.433 0.895 3.743 15 48 < 0.001
αSomatosensory 0.889 0.836 0.929 9.037 60 183 < 0.001
αV ision & V estibular 0.883 0.827 0.924 8.545 60 183 < 0.001

Medial-Lateral

Sample Entropy 0.511 −0.038 0.808 2.044 15 48 0.031
Lyapunov Exponent (bits/s) 0.743 0.454 0.899 3.884 15 48 < 0.001
αSomatosensory 0.586 0.387 0.733 2.417 60 183 < 0.001
αV ision & V estibular 0.326 0.002 0.565 1.485 60 183 0.024
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Table 3.8: Correlation of relative balance performances using frequency-domain measures
and stratified by force plate axis

Analyses
Intraclass 95% Confidence Interval F Test with True Value 0

Correlation Lower Bound Upper Bound Value df1 df2 Sig

Anterior-Posterior

Total Power 0.935 0.903 0.958 15.294 60 183 < 0.001
Mean Frequency (Hz) 0.608 0.419 0.747 2.552 60 183 < 0.001
50% Power Frequency (Hz) 0.408 0.123 0.618 1.691 60 183 0.004
95% Power Frequency (Hz) 0.733 0.604 0.828 3.743 60 183 < 0.001

Medial-Lateral

Total Power 0.652 0.484 0.775 2.870 60 183 < 0.001
Mean Frequency (Hz) 0.108 −0.321 0.424 1.122 60 183 ns
50% Power Frequency (Hz) 0.009 −0.468 0.360 1.010 60 183 ns
95% Power Frequency (Hz) 0.242 −0.123 0.511 1.319 60 183 ns
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3.4 Discussion

The purpose of this study was to determine whether healthy, young adults vary in their

ability to control upright balance, and whether this variability between subjects could be

revealed by within-subject consistency of balance performances across task conditions of

varying challenge. To do so, this study first confirmed that the two experimental fac-

tors, base of support width and the availability of vision, were sufficient to challenge the

balance control system to produce significantly different balance performances in those

task conditions. This finding is important as these task-related changes in balance perfor-

mance imply that an individual’s relative balance performance can no longer be assumed

to be correlated across task conditions. With individual balance performances no longer

assumed to be correlated across task conditions, the current study was then able to objec-

tively demonstrate that they in fact were. Moderate to excellent correlations in individual

balance performances across task conditions suggest the presence of significant between-

person differences in balance control among healthy, young adults. Generally, stronger

correlations were found in the AP axis using linear measures of variability and velocity as

well as measures that focus on the contribution of the somatosensory system.

The ability to reveal task-related differences in balance performance was dependent on

the summary measures used to analyse the COP time-series data. While many analytical

techniques were able to reveal these differences, important insights can be gleaned from

those analyses that did not. Skewness, Kurtosis, and the largest Lyapunov exponent

were generally not influenced by changes in the task conditions. Skewness and Kurtosis

characterize aspects of a distribution and, in this study, merely show that COP is centrally

located within BOS and the majority of the movement is located in a confined space,

respectively. Kurtosis was only significantly affected when BOS was reduced, which further

concentrates the area of COP movement - an unsurprising result. The largest Lyapunov

exponent provides a binary measure of whether chaos is present within a time-series signal

(Wurdeman, 2018). The absence of task differences in these values may be related to the

fact that such measures don’t provide relevant information regarding balance performance

at an individual-level. However, frequency-domain analyses and non-linear analyses within

the time-domain provide additional insights on the effect of task condition on balance
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performance.

Frequency-domain analyses have long been used to assess balance performance and

the relative contributions of sensory input to balance control. The bandwidth of body

movement within the sagittal plane during static balance trials, as measured using force

plates, ranges from 0 Hz to 20 Hz (Nashner, 1976). Somatosensory sensors, like golgi tendon

organs, muscle spindles, etc., create ‘short-loops’ and are represented as high frequency

content (> 2 Hz) within this bandwidth. The ‘long-loops’ of the visual and vestibular

systems contribute to the lower frequency range (< 0.5-1 Hz) (de Wit, 1972; Diener et al.,

1982; Nashner et al., 1989). The findings of the current study are in line with these

established findings. Mean and 50% Power (Median) Frequencies increased visual input was

removed in the eyes closed condition and where further increased in the NEC task condition.

These results may indicate an increased reliance on somatosensory inputs in the absence of

visual input. On the other hand, when the base of support was narrowed, Mean and 95%

Power Frequencies decreased in the ML direction which may reflect increased contributions

from the visual and vestibular systems. Notably, 95% Power Frequency was not affected

by the narrowing of one’s stance in the AP direction. This lack of significant change in

the anterior-posterior direction could be explained by the base of support’s length in the

anterior-posterior direction also remaining constant despite the narrowing of the stance

width. This finding is partially corroborated using linear, time-domain summary measures

including COP RMS and COP Range. Despite the narrow stance condition significantly

increasing these values in the AP direction, the presence of a significant interaction between

AXIS and BOS leads to COP RMS and COP Range being further increased in the ML

direction. Together, these results suggest that when the width of the base of support is

changed, then analyses of balance performance conducted in the ML direction may be

more informative that those in the AP direction. This inability of the AP direction to

discriminate between changes in the width of the base of support may explain the higher

correlations found in the AP direction.

This study revealed that when the narrow and standard task conditions were collapsed,

balance performances were more strongly correlated in the AP direction rather than in

the ML direction. However, when the task conditions were collapsed with respect to

vision, there was no difference between the AP and ML directions in the strength of the
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correlations across task conditions. A possible explanation as to why balance performances

are more strongly correlated across task conditions in the AP may be related to the distance

between the borders of the base of support. As a reminder, the base of support’s length

in the AP direction is measured from the heels to the toes. In the ML direction, the base

of support’s width is the distance between the lateral borders of the feet. Changing the

task conditions from a standard to a narrow stance width reduces the distance in the ML

direction, however, no such reduction is observed in the AP direction. Furthermore, the

AP distance is specific to the foot size of each individual and will vary between individuals.

On the other hand, the ML distance is strictly controlled between individuals (standard

width: heels 17 cm apart at an angle of 14◦ (McIlroy and Maki, 1997); narrow width:

the medial borders of the feet touch). The lack of change between task conditions in the

base of support’s AP length would reduce within-subject variability. At the same time,

between-subject variability would increase due to the AP distance being specific to the

individual. On the hand, controlling the width of the base of support in the standard

and narrow width task conditions would reduce the between-subject variability. As such,

the correlation between an individual’s balance performances across task conditions, when

these balance performances have been made relative to the balance performances of the

other participants within each particular task condition, would be stronger in the AP

direction than in the ML direction.

Elucidating balance control characteristics requires the use of novel task conditions.

Despite a main effect of VIS, this study observed that balance performances in the SEC

and SEO task conditions were not statistically different when measured in the ML direction

using linear time-domain and frequency-domain measures, a finding shared by Goodworth

et al. (2014). These findings, in conjunction with a significant interaction between BOS

and VIS, suggest that the task condition, NEC, provides the most substantial challenge

to maintaining balance. Taken together, these results show that the task condition under

which they must maintain balance must be of sufficient level of challenge to discriminate

between individuals by their balance performance.

An individual’s balance control system is the product of genetics and lived experiences.

As noted in this study, a person’s height and vision quality can influence their balance

performance. Individuals with similar anthropometric measures could produce similar
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balance performances as they would be subjected to similar forces and still be required

to maintain their center of mass within a similarly sized base of support. However, all

the aspects responsible for maintaining balance will be specific to the individual. Passive

muscle tone, tonic postural tone, phasic activation of the musculature based on sensory

input coordinated by supraspinal neurological areas – are develop differently based on lived

experience. Balance performance, the manifestation of the balance control system, can be

improved upon through dance (Bläsing et al., 2012; Janura et al., 2019; Stins et al., 2009),

increased physical activity (Donath et al., 2013; Ricotti, 2011; Thompson et al., 2017),

or targeted balance training (Inness et al., 2015; Mansfield et al., 2015b). Continued

exposure to physical activity can stimulate neurophysiological changes including reduced

co-contraction of antagonist muscles allowing for speedier postural adjustments (Gatts

and Woollacott, 2006), the adoption of new postural control strategies (Nagy et al., 2007),

changes in cortical structure cortex correlating with increased balance performance (Rogge

et al., 2017, 2018), and increased short-interval intracortical inhibition also leading to

balance improvements (Dunsky, 2019; Mouthon and Taube, 2019). Variation in any of

the aforementioned factors may provide an opportunity for balance performance to vary

between individuals. The use of task conditions of sufficient challenge would be required

to discern the between-subject differences in the balance control system.

One of the potential applications of the current work, to identify unique features of

the balance control system while one is younger in order to build a potential reserve to

protect or to delay against CNS control problems later life. In 1989, Katzman et al.

(1989) discovered that ten women possessed advanced neurodegeneration associated with

Alzheimer’s disease post-mortem but who did not present clinical symptoms while alive.

It was suggested that because these women possessed larger-than-average brain volumes,

and thus more neurons, that they were able to protect against Alzheimer’s disease-related

symptoms (Katzman et al., 1989). In response to this finding, a neurological reserve was

‘proposed to account for the disjunction between the degree of brain damage and its clinical

outcome’(Stern, 2002). Later, this concept was called, ‘Brain Reserve’ and was refined to

operationalize ‘the amount of damage that can be sustained before reaching a threshold

for clinical expression’ (Satz, 1993; Stern, 2002). Moreover, the ‘Cognitive Reserve’ the-

ory states that some individuals possess the ability to ‘process tasks in a more efficient
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manner’ (Stern, 2002). Together, these theories suggest that subject-specific differences in

physiology may cause augmented brain function which could provide possible protection

from acute and chronic pathology. If this theory of subject-specific augmentations in brain

function is extended to the balance control system, it is possible that certain people may

be protected from falls later in life. Conversely, these theories also suggest that some indi-

viduals may be more susceptible to falling. The findings of this current study indicate that

subject-specific differences in balance control system exist in healthy, young adults. An

example being that at least two participants in this study, deemed to be ‘healthy, young

adults’, would have been classified as ‘prospective single-fallers’ using the Howcroft et al.

(2017) criterion previously presented in this article’s introduction; a classification intended

to be applied to older adults. This shows that even amongst a population of healthy,

young adults, a population characterized by low variability in balance performances, there

are significant between-subject differences in balance performance to encourage continued

investigation. Future studies should characterize these differences to identify individuals

with increase fall-risk in order that balance training.

There are several limitations with the current study that may affect the applicability of

the findings. Some of these limitations relate to certain assumptions that were made before

collection, specifically as to how the balance performances are represented quantitatively,

an individual’s level of cognitive function, namely the amount of attention that they apply

to each task condition, and the physiological state of a participant at the time of testing, as

well as whether the healthy, young adult participants sampled in this study are represen-

tative of those in the larger, external population. Moreover, the choices related to how a

participant’s body movement was measured, how the collected data was summarized, and

whether the initial choice of task conditions were sufficient challenging to elicit changes in

balance performance will be further scrutinized.

Correlational analysis was used in this study to compare an individual’s balance perfor-

mance to other participants across multiple task conditions. However, this study found that

balance performances were significantly different between task conditions. As such, the ab-

solute balance performances of a participant could not be compared to other participants

across the four task conditions using correlational analysis. A metric of relative balance

performance was thus employed that normalized the absolute balance performances of an
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individual in a specific task condition to the mean and standard deviation of the absolute

balance performances of the population in the same task condition. This study assumed

that the effect of the task challenges would be constant across individuals, such that closing

eyes and narrowing BOS would introduce a comparable challenge across people. However,

Stins et al. (2009), as well as other researchers, have shown that individuals with experi-

ence in controlling their balance (i.e.: dancers) are more ‘automatic’ in controlling their

balance than individuals without this experience (Isableu et al., 2017; Janura et al., 2019;

Stins et al., 2009). As such, it is possible that the ‘absolute’ balance performances of these

individuals may not vary between task conditions as much as other individuals. This study

confirmed that balance performances were significantly different between task conditions.

This would mean that a lack of change between task conditions in an individual’s absolute

balance performance would imply the presence of a change in relative balance performance.

As it was the relative balance performances that were input to the correlational analysis,

these changes in the relative balance performances would lower the r-values observed. Fu-

ture studies would best be served to incorporate any measure of experience maintaining

one’s balance, such as an individual’s history of physical activity.

In addition to the aforementioned between-subject differences in balance performance

based on balance exposure, there exists intra-subject differences in balance performance

that were not specifically accounted for in this study. For example, the attention that a

participant applies to the performance of a static balance trial has previously been shown

to affect balance performance variably between individuals, while to a lesser extent, so

too can an individual’s level of muscular fatigue and anxiety. Attention is a cognitive

function defined as a person’s ‘ability to focus on a specific stimulus without being dis-

tracted’ (Shumway-Cook and Woollacott, 2017). Attention has been modelled as a limited

resource (Kahneman, 1973) that must manage the various internal and external stimuli

that vie for it (Wulf et al., 1998). While static balance control has been thought to be

an ‘automatic’ response, numerous studies have shown high-order involvement from corti-

cal and sub-cortical structures to ensure balance is maintained (Maki and McIlroy, 2007;

Varghese et al., 2015). In many cases, these studies involve a dual-task paradigm that pro-

vides a participant with a motor (e.g., static balance trial) and a cognitive task (e.g., serial

counting). The participants perform each of these tasks separately and their performances
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are compared to when they perform the tasks simultaneously (Wickens, 1991). Reduced

balance performance (i.e., increased postural sway) or reduced cognitive performance (i.e.,

inability to count backwards, etc.) indicates a competition for the attentional resources

of the individual in a phenomenon called, attentional interference (Siu et al., 2008; Hi-

raga et al., 2009). However, the interaction between attention and balance control may be

manipulated by such things as fatigue and one’s prior experience with maintaining their

balance. Salihu et al. (2023) compared the static balance control and cognitive performance

(counting backwards by sevens) of young adults both before and after a mentally fatiguing

protocol (Stroop Test). They found no difference in the balance or cognitive performance

of the young adults following this fatiguing protocol. This would indicate that a long col-

lection period may not be sufficient to negatively affect an individual’s ability to maintain

their balance. However, they did indicate that the results may change if the participants

faced more challenging task conditions. For example, Stins et al. (2009) showed that, in

the eyes closed condition, the dancers displayed a higher Sample Entropy value in the dual-

task condition than non-dancers. This would indicate that the dancers were able to focus

more on the cognitive task because they could maintain their balance more automatically.

Nevertheless, this effect was not observed in the group of non-dancers. Stins et al. (2009)

opined that the dual-task condition was ‘so challenging that controls [non-dancers] paid

less attention to listening to and memorizing the words, and instead prioritized postural

control over cognitive performance’. And so, while balance performance may not be af-

fected by cognitive fatigue during the performance of less challenging static balance task

conditions, if the task challenge is of sufficient difficulty, then it may be possible for intra-

individual variation in balance performance to increase. Unfortunately, this current study

did not directly quantify the cognitive contribution to static balance performance across

all task conditions. It would behoove future studies to either quantify attention across the

various static balance tasks or to control for it.

Affecting intra-individual variability to a lesser extent are muscular fatigue and anxi-

ety. Jo et al. (2022) showed that the after a fatiguing protocol, the COP position moved

posteriorly and did not recover even 15 minutes post-intervention. Elsewhere, a number

of studies have shown that the individuals exposed to a postural threat, such increasing

their height above ground, alters how they control their balance (Adkin and Carpenter,
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2018; Cleworth et al., 2012; Cleworth and Carpenter, 2016; Zaback et al., 2015). While

height was not a specific stressor in the current study, these studies underscore the need

to ascertain an individual’s level of stress during a collection in order to correlate task

condition and its ability to produce anxiety with the individual’s balance performance.

Future studies should quantify an individual’s level of muscular fatigue and their fear or

anxiety so they could then be used as inputs to a model that could control for any possible

effects.

Another potential limitation of this study is whether the healthy, young adult pop-

ulation used for analyses differs from those used in other studies. A valid compari-

son between any study requires use of the same dependent variable. Using the lin-

ear measure, COP RMS, ML, the sampled populations of the current study (Mean =

1.56mm,SD = 0.89mm,n = 61) and the seminal work conducted by Prieto et al. (1996)

(Mean = 1.85mm,SD = 0.91mm,n = 20) are not different (t(77) = 1.243, ns). The non-

linear measures used in the current study, αSomatosensory and αV isual&V estibular, are analo-

gous to the DFAshort−term slope and DFAlong−term slope values in Delignières et al. (2011).

Comparison of these values indicates alignment in terms of both central tendency and vari-

ance. It should be noted that comparison of the aforementioned statistical measures can

not confirm that the study samples came from the same population as it would be impos-

sible to sample the exact same population in different countries, years apart. However,

the similarity between the balance performances of the current study’s population and to

those populations previously published suggest that the populations themselves are similar

enough for comparison.

The findings in this study are limited by the modality by which body movement data

was acquired and by the subsequent level of data reduction; both of which can affect the

fidelity of the original signal and how we eventually model static balance control. In this

study, the movement of the body during the quiet standing trials was measured at the

feet by force plates. This kinetic information, represented as COP, informs an inverted

pendulum model that assumes that the human body articulates solely about the ankles

(Winter et al., 1998). However, it has been demonstrated that during a quiet standing

trial the body can also articulate about the hip thus questioning the validity of such

an assumption (Creath et al., 2005; Fino et al., 2020). Moreover, reducing a time-varying
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signal into a uni-dimensional value has historically been used as it simplifies comparison and

analysis. A multi-dimensional analysis, although more difficult to interpret, would allow

for an individual’s movement to be more richly represented. It is suggested that future

studies measure more body segments and/or retain more of the information contained with

the time-series data. By employing either, or both, of these suggestions, it is the hope that

increased fidelity of the recorded body movement would elucidate the complexity within the

balance control system thus increasing the probability of characterizing individual balance

performance.

Ultimately, the choice of analytical measure, axis of movement, and task condition all

affect how balance performance is assessed when using kinetic data collected from force

plates. Measures like Skewness, Kurtosis and the largest Lyapunov Exponent may have

value in certain contexts, but they don’t necessarily reflect an individual’s contribution

to the balance performance in the same way that other analyses that can parse out the

sensory contributions to balance control do. Also, individual balance performance in the

AP direction may be less informative than the ML direction when the stance width is

altered. Finally, the standard stance width may not provide a sufficient challenge to the

balance control system whereas the NEC task condition might be. Taken together, it is

suggested that analyzing individual balance performance from the NEC task condition in

the ML direction using the COP Range, COP RMS, Total Power analytical techniques

provide the best opportunity to assess individual balance control using force plate data

and summary measures.

In conclusion, this study found that, depending on the analytical measure used and

the axis of measurement, individual balance performances across task conditions can be

strongly correlated. This correlation provides objective proof that the balance control

system, which governs balance performance, may be unique to each individual. More-

over, it suggests that that identification of individuals based on their balance performance

may be possible in the future given the correct choice of summary measure. This would

allow individuals with an increased fall-risk to be identified and afforded the opportu-

nity for balance training. Future studies should investigate whether increased fidelity of

the balance performance signal, via measurement of body movement at multiple sites as

well as multi-dimensional analyses, can facilitate this development. In summary, the idea
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that meaningful and measurable differences in balance control exist among young healthy

adults raises possibility of advancing understanding of the determinants of balance control

in younger adults and possible novel prognostic indicators of future age-related balance

problems linked to balance control ability when one is younger.
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Chapter 4

Study 2:

Measuring static balance control

with inertial measurement units

4.1 Introduction

Maintaining balance is crucial in many aspects of daily living. It allows people to per-

form complex tasks in a variety of orientations or even while on the move (Horak and

Macpherson, 1996). The balance control system is comprised of three sub-systems: sen-

sory inputs, motor outputs, and the various regions of the central nervous system that

integrate sensory inputs and central commands to control muscular reactions (Mergner,

2010). Unfortunately, these three systems can degrade with age (Berger and Doherty,

2010; Dorfman and Bosley, 1979; Gottfries, 1990; Kaasinen and Rinne, 2002; Power et al.,

2016; Shaffer and Harrison, 2007) resulting in an increased fall-risk among older adults

and those with various pathologies (Hausdorff et al., 1997a; Lord et al., 1994; Nevitt et al.,

1989; Stolze et al., 2004). These falls can create long-lasting negative physical, psycho-

logical, and societal ramifications (Casey et al., 2017; Florence et al., 2018; Salkeld et al.,

2000; Scheffer et al., 2008; Schmid and Rittman, 2009; Vellas et al., 1997). Mitigating these

effects could be accomplished through the early identification of individuals who are at an
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increased fall-risk. Early identification would allow at-risk individuals to receive balance-

training which could lower their fall-risk (Inness et al., 2015; Mansfield et al., 2015b) while

also providing healthcare professionals with an opportunity to slow the progression of any

pathologies affecting balance control. As such, balance assessments that can be conducted

in a clinical environment but are able to detect between-subject differences in balance

performance within the healthy, young adult population are essential.

Current balance assessments can discriminate between grossly disparate populations.

For instance, pathological populations can be distinguished from non-pathological popu-

lations based on their balance performance (Freitas et al., 2005a; Termoz et al., 2008).

While population-based balance assessments are important, the characterization of in-

dividual balance control systems would allow for more nuanced treatments within the

population. Until recently, it was assumed that the balance performance of the healthy,

young adult population was homogenous; meaning that the balance performance of the

individuals within this population could only be distinguished if they were stratified a pri-

ori, for example, by their level of physical activity Donath et al. (2013); Ricotti (2011);

Thompson et al. (2017). However, Study 1 of this thesis revealed that individual balance

performances, when normalized to the sample population, were correlated across task con-

ditions. This finding suggests that person-specific contributions to balance control may

exist and, more importantly, can be detected even amongst a seemingly homogeneous pop-

ulation as healthy, young adults. It should be noted that the strength of these correlations

was dependent on both the analytical methods used to characterize the balance perfor-

mance, and, the axis in which the movement was measured. It is also important to note

that these observations were based on kinetic data recorded by force plates embedded in

the ground.

Force plates are considered kinetic methods of measurement and have long been used

to indirectly measure the movement of one’s body during static balance trials Nashner

(1971); Winter (2009). Specifically, forces applied to the ground are measured by force

plates which can be represented as a single centre of pressure (COP) vector. Winter

et al. (1998) observed that when body movement was modelled as single-link, inverted

pendulum that a strong correlation was observed between the individual’s COP and their

center of mass (COM) with COP lagging COM by 4 ms. This finding helped validate
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the single-link, inverted pendulum model and justify its continued use in the analysis of

balance control during quiet standing conditions (Gage et al., 2004; Geursen et al., 1976;

MacKinnon and Winter, 1993; Smith, 1957; Winter et al., 1996, 1998). However, dynamic

balance assessments have shown that, while individuals typically employ an ankle strategy

to maintain balance, if the task conditions are too challenging (e.g., large perturbation

(Alexandrov et al., 2005; Park et al., 2004)), the support surface is too small (Horak and

Nashner, 1986; Nashner, 1976), or the presence of pathology (Horak et al., 1990; Woollacott

and Shumway-Cook, 1990), then individuals may increase involvement of hip and trunk

motion (hip strategy) to help control balance. As summarized byCreath et al. (2005),

‘[t]he implicit assumption is that quiet stance can be approximated by a single-segment

inverted pendulum and the hip strategy is invoked when the postural system is perturbed’.

However, there is increasing evidence using kinematic methods of measurement that show

the body acting a multi-link segment during static balance assessments (Creath et al.,

2005; Fino et al., 2020).

Unlike kinetic measures, ‘kinematic variables are involved in the description of the

movement, [and are] independent of forces that cause that movement’ (Winter, 2009).

They include linear and angular measures of positional data, and its time-derivatives, for a

subject and their segments. Kinematic measurement devices include marker-based, motion

capture systems which provide excellent kinematic accuracy and precision but can be ex-

pensive and cumbersome to operate (Mansfield et al., 2021; Pak et al., 2015; Visser et al.,

2008). Tri-axial accelerometers, gyroscopes, and magnetometers can be housed in inertial

measurement units (IMUs) and are smaller, less expensive, and allow for movements that

occupy a much larger space (Horak et al., 2015; Lee et al., 2012; Zampogna et al., 2020).

Recently, these IMUs have been used to assess balance control in lieu of traditional kinetic

measurement devices like force plates (Mancini et al., 2011, 2012; Palmerini et al., 2011).

For example, IMUs placed on the lumbar region of the back have been used to approxi-

mate the movement of the subject’s whole-body COM Ghislieri et al. (2019). IMUs have

been successful in distinguishing between pathologies in a variety of balance assessments.

Mancini et al. (2011) was able to distinguish individuals with idiopathic Parkinson’s Dis-

ease from age-, height-, and weight-matched control subjects using an IMU placed on the

Lumbar region of the lower back ‘at least as well as a force plates’. These findings suggest

80



that IMUs may replicate the findings from traditional kinetic methods thus making them

attractive for use in clinical environments. Even more interesting is that kinematic methods

of measurement may provide additional insight into balance control, like changes in move-

ment strategy, which allow for exploration of kinematic strategies and the appropriateness

of the inverted pendulum model.

The use of kinematic measures to describe body movement during quiet stance, while

not novel, isn’t widespread. Creath et al. (2005) used rods and potentiometers to measure

displacement at the hip and shoulder joints, while more recently, Fino et al. (2020) placed

inertial sensors on the head, sternum and lumbar to record kinematic measures at these

sites. These studies concluded that when the level of difficulty of the static balance trial

was increased, either standing on foam or closing one’s eyes, then the lower-body and

upper-body segments would move anti-phase. The transition between an in-phase, ankle

strategy to an anti-phase, hip-strategy exists on a continuum (Creath et al., 2005; Runge

et al., 1999; Shumway-Cook and Woollacott, 2017). It is thought that each individual will

be respond to the challenge presented by a quiet, standing task condition differently and

this will influence where this transition occurs. Such information is not easy to extract

from kinetic data from force plates since the only measure the interaction between the

person and the ground. Kinematic recording devices, which can be placed at numerous

sites on the body, are able to capture the complexity of a subject’s movement during

balance trials with more fidelity that kinetic methods. This increased fidelity may better

reveal the possible person-specific contributions to balance control that kinetic measures,

like those from force plates, may be unable to provide. It is the hope that by revealing

these possible person-specific contributions to balance control via kinematic measures that

possible novel prognostic indicators of future age-related balance problems linked to balance

control ability may be discovered.

The primary goal of this study is to determine whether IMUs can reveal whether bal-

ance performance is specific to the individual. Balance performance is the output of the

balance control system given that the input would be the task conditions under which the

individual would need to maintain balance. It is reasonable to suggest that if the task

conditions change, then the resulting absolute balance performances, will change concomi-

tantly. To compare balance performances across task conditions, each individual’s absolute
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balance performance can be converted to a relative balance performance. A relative bal-

ance performance is obtained by standardizing the absolute balance performance to the

mean and variance of the population’s performances for a given task condition. This paper

makes the assumption that, regardless of what task condition is used as input, the balance

control system responding to this input will still belong to the individual and thus be

constant across task conditions. As such, it is hypothesized that if the balance control sys-

tem is indeed specific to the individual, then an individual’s relative balance performances

across task conditions should be correlated. Therefore, the main objective of this study

is to investigate whether IMUs can detect person-specific differences in balance control by

correlating the relative balance performances of individuals are across task conditions. It

should be noted that in the pursuit of this primary goal, two secondary questions arise.

First, can IMUs can detect the changes in balance performance caused by altering the

difficulty of the task condition? Second, is the kinematic strategy measured during static

standing reflect single link inverted pendulum? As mentioned previously, the human body

has multiple segments and, although body movement during static balance trials has been

historically modelled as a single segment, there exists evidence that may invalidate that

assumption. This study will try to answer this question by placing IMUs on various body

segments and determining whether or not they move in-phase with each other and if kine-

matic strategy varies across task difficulty. The advantage of a focus on kinematic, rather

than only force plate data, is the potential that kinematic strategy may provide additional

information to better reveal person specific features of standing balance control.

The primary goal of this study is to determine whether IMUs can reveal whether balance

performance is specific to the individual. To do this, this study will simplify an individual’s

balance control system by viewing it as a black box. In this simplification, the input to this

black box would be the task conditions under which the individual would need to maintain

balance while the output would be the individual’s balance performance. It is reasonable

to suggest that if the inputs (i.e., task conditions) to the black box (i.e., balance control

system) change, then the resulting outputs (i.e., the absolute balance performances) will

change as well. To compare balance performances across task conditions, each individual’s

absolute balance performance can be converted to a relative balance performance. A rel-

ative balance performance is obtained by standardizing the absolute balance performance
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to the mean and variance of the population’s performances for a given task condition.

This paper makes the assumption that, regardless of what task condition is used as input,

the balance control system responding to this input will still belong to the individual and

thus be constant across task conditions. As such, it is hypothesized that if the balance

control system is indeed specific to the individual, then an individual’s relative balance

performances across task conditions should be correlated. Therefore, the main objective of

this study is to investigate whether IMUs can detect person-specific differences in balance

control by correlating the relative balance performances of individuals across task condi-

tions. It should be noted that in the pursuit of this primary goal, two secondary questions

arise. First, can IMUs can detect the changes in balance performance caused by altering

the difficulty of the task condition? Second, does the kinematic strategy measured dur-

ing static standing reflect a single-link inverted pendulum? As mentioned previously, the

human body has multiple segments and, although body movement during static balance

trials has been historically modelled as a single segment, there exists evidence that may

invalidate that assumption. This study will try to answer this question by placing IMUs

on various body segments and determining whether or not they move in-phase with each

other and if kinematic strategy varies across task difficulty. The advantage of a focus on

kinematic, rather than only force plate data, is the potential that kinematic strategy may

provide additional information to better reveal person specific features of standing balance

control.

4.2 Materials and Methods

4.2.1 Subjects

Participants were recruited from a university population. Individuals were excluded from

the study if they: 1) were younger than 18 years of age or older than 35 years of age, 2)

had any history of significant upper and/or lower limb injuries, 3) reported any significant

balance control problems, 4) had any history of neurological impairments (previous brain

injury, epilepsy, multiple sclerosis, etc.), or 5) were taking anti-anxiety, anti-depressants or

anti-psychotic drugs (whether prescribed or not). Forty-eight healthy individuals partic-
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ipated in this study. Anthropometrics (height, weight, foot size, etc.) and vision quality

(Snellen Eye Test and Mars Contrast Sensitivity Test) were assessed prior to completion

of the static balance trials (Table 4.1). The experimental procedures were performed in

accordance with the declaration of Helsinki and approved by the Research Ethics Board

of the University of Waterloo.

Table 4.1: Summary of demographic, anthropometric, and vision quality information of
study participants.

Demographics

Gender Males: 35; Females: 37

Anthropometrics Mean ± Std. Dev. [Min. - Max.]

Age 21.83 ± 3.5 years [18 - 34 years]
Height 169.74 ± 9.90 cm [152 - 199 cm]
Weight 70.86 ± 13.87 kg [45.8 - 103 kg]
Body Mass Index (BMI) 24.21 ± 3.32 kg·m−2 [18.83 - 32.51 kg·m−2]
Left Foot Length 25.0 ± 2.0 cm [21.0 - 30.7 cm]
Right Foot Length 25.1 ± 2.0 cm [20.5 - 31.0 cm]

Vision Quality Mean ± Std. Dev. [Min. - Max.]

Snellen Eye Test
- Left eye occluded 22.7 ± 10.1 [13 - 70]
- Right eye occluded 24.2 ± 10.3 [13 - 70]
Mars Contrast Sensitivity Test (Binocular)

1.74 ± 0.05 [1.56 - 1.80]

Miscellaneous

Dominant Foot Left 3; Right 69
Front foot in tandem stance Left 30; Right 42
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4.2.2 Experimental design

Participants were asked to stand with their hands by their sides and with each foot placed

on one of two force plates. Two experimental factors were manipulated: 1) Base of Support

(BOS) and 2) Vision (VIS) (4.1). BOS was manipulated by having the participants stand

in one of two foot-placements: either heels 17 cm apart at an angle of 14◦ (standard)

(McIlroy and Maki, 1997), or where the medial borders of the feet touch (narrow). VIS

was changed in one of two ways, with the eyes either being open (EO) or closed (EC).

The experiment was block randomized with the order of the four conditions was randomly

assigned within a block of trials. Five blocks were completed for a total of twenty trials for

each participant across the four conditions with each trial being 30 seconds in duration.

Figure 4.1: The quiet standing task conditions of Study 2. The task conditions are binary
combinations of two experimental factors, Base of Support (BOS ) and Vision (VIS ). Each experimental
factor has two levels, BOS : Standard Width and Narrow Width; VIS : Eyes Open and Eyes Closed. The
result is four task conditions under which a participant must quietly stand: Standard Width, Eyes Open
(SEO); Standard Width, Eyes Closed (SEC); Narrow Width, Eyes Open (NEO); and Narrow Width, Eyes
Closed (NEC).
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4.2.3 Data acquisition

The body movement of the study participants was quantified using three inertial measure-

ment units (IMUs), specifically the Shimmer3 Bridge Amplifier+ IMUs (Shimmer Sensing

Inc., Dublin, Ireland). Each IMU contained a tri-axial accelerometer, gyroscope and a

magnetometer which can measure nine degrees of freedom (9-DOF). However, as the influ-

ence of ferrous material in a laboratory setting can affect the validity of the magnetometer

(de Vries et al., 2009), the IMU used in this study measured 6-DOF using the accelerome-

ters and gyroscopes. Each IMU collected data at a rate of 102.4 Hz, as per manufacturer-

specific regulations, for 35 seconds. For each trial, data from each IMU was saved locally

onto an SD card and later uploaded via Shimmer’s proprietary software, ConsensysPro, to

a secure hard drive to ensure privacy of the participant’s information. It should be noted

that although the IMUs used in this study are capable of collecting both accelerometer

and gyroscope data, gyroscope data was not collected for all participants. As such, only

accelerometer data was analyzed in this study. No additional filtering was performed.

Each IMU was placed on the body at specific locations: the head (Head), the sternum

(Sternum), and the lumbar region of the lower back (Lumbar) (Figure 4.2). According

to Ghislieri et al. (2019), these locations are used in 2.1%, 14.9% and 68.1% of the 47

articles included in their systematic review respectively with the high usage of the later

IMU position being that it is used as a proxy of the COM. Any relationships between the

seven possible combinations of the three IMU locations were explored through subsequent

analyses. Experimenters utilized anatomical landmarks to ensure reproducibility of IMU

placement across participants. For example, before placing the IMU on the on the Lumbar,

both the left and right posterior superior iliac spines were palpated. An imaginary line was

drawn between these points and an IMU was placed at the middle of this line. The general

orientation of each IMU at each location remained consistent between subjects and trials.

Any corrections required to standardize the orientation of the IMUs across individuals were

accomplished mathematically.
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(a) IMU placement on the anterior (Left) and posterior (Right) surfaces of the body.

(b) Lumbar (c) Sternum (d) Head

Figure 4.2: Location of IMUs on the participant’s body. IMUs were place on the (b) Lumbar,
(c) Sternum, and (d) Head. A review by Ghislieri et al. (2019) found that these sites were used in 2.1%,
14.9%, and 68.1% of balance studies, respectively. Placing an IMU on the Lumbar is used as a proxy for
the COM.
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4.2.4 Data and statistical Analysis

Pre-processing to ensure axis alignment across IMUs

Although every effort was made to standardize the placement of the three IMUs on the

participants, human error is unavoidable which could result in the local coordinate systems

of each IMU being misaligned between participants. This error was controlled by pre-

processing the raw IMU data. First, the raw linear acceleration data from each IMU was

oriented with respect to gravity according to Moe-Nilssen (1998). While the Moe-Nilssen

(1998) algorithm can align the vertical axis of the IMU with respect to the gravitational

vector and thus allow it to be standardized between subjects, the anterior-posterior and

medial-lateral axes may still be misaligned between subjects. Cain et al. (2016a,b) were

used an inspiration to standardize these latter axes. Briefly, it was first assumed that

the primary axis of movement during a static balance trial was the anterior-posterior axis

(Prieto et al., 1996). Under this assumption, Principal Component Analysis was applied

to the raw COP to determine the primary and secondary eigenvectors, known as the first

and second principal components, which then correspond to the properly aligned anterior-

posterior and medial-lateral axes respectively.

Data reduction via summary measures previously used in static balance trials

The pre-processed linear acceleration values (a) from each of the three IMUs (i.e., Head,

Sternum, Lower Back), in each of the three axes (i.e., anterior-posterior, vertical, medial-

lateral), for each trial was reduced in accordance with the following protocols. For clarity,

the number of time-points within each trial (N) is the product of the sampling frequency

and the sampling duration.

Linear, time-domain

1. Range of Linear Acceleration

Range = max(ai) − min(ai) (4.1)
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2. RMS of Linear Acceleration

RMS =

√∑N−1
i=0 (ai − a)2

N − 2
(4.2)

3. Peak of Linear Acceleration

Peak = max(|ai|) (4.3)

Nonlinear, time-domain

1. Fractal Analysis

Fractal analyses aim to ‘identify pattens within the fluctuations of the data that are

repeated over time’ (McGrath, 2016). They have been used to identify and quantify

pathology in biological events, including heart rate (Peng C-K et al., 1993; Peng

et al., 1995) and gait (Hausdorff et al., 1997a,b, 2001). While many algorithms exist,

Detrended Fluctuation Analysis (DFA) has been validated for use in the analysis of

static balance performance (Amoud et al., 2007; Delignières et al., 2003, 2011; Duarte

and Zatsiorsky, 2001; Gilfriche et al., 2018; Norris et al., 2005; Schniepp et al., 2013;

von Tscharner et al., 2016). DFA calculates the difference between raw data and a

trendline within a box size consisting of n consecutive values. According to Arsac

and Deschodt-Arsac (2018), this box size (n) can range from 10 to N/4, where N is

the total number of data points within the collected stance trial. Numerous studies

exist where DFA has been applied to kinetic data collected from force plates, but

this method has also been applied with success to kinematic data collected from

accelerometers (Wiesinger et al., 2022).

2. Sample Entropy

Sample Entropy (SampEn) requires that the template size (m) and the tolerance

for acceptable matches (r) be defined a priori (Richman and Moorman, 2000). For

the current study, m = 2 and r = 0.2× Standard Deviation were chosen based on

previous studies using force plate data collected during static balance trials (Ahmadi

et al., 2018; Lee and Sun, 2018b; Wiesinger et al., 2022).

89



Frequency-domain

Total power, mean power frequency, 50% (median) power frequency, and 95% power fre-

quency were calculated as previously specified (Mancini et al., 2011, 2012; Palmerini et al.,

2011).

Primary Objective: Correlation of relative of relative balance performances

across task conditions

Linear mixed-effects models were used to evaluate the degree of correlation between each

individual’s relative balance performance across task conditions. BOS, VIS, Trial, IMU Lo-

cation and participant-specific measures of anthropometry (Height, Foot Length - left and

right) and vision quality (Snellen Eye Test - left and right eyes, Mars contrast sensitivity

test - binocular) were classified as fixed factors. Model 1 included just BOS, VIS, and Trial

as fixed-effects. To account for the possible confounding influence of participant-specific

anthropometry and vision, Model 2 expanded Model 1 by including all the anthropomet-

ric measures as fixed-effects. Model 3 included only the anthropometric measures that

were significantly related to an individual’s balance performance, namely height and vision

quality. Participant was modelled as a random factor as it was assumed that study partic-

ipants were a randomly sampled from a larger population of healthy, young adults. Using

the Shapiro-Wilk test, it was determined that the residuals were not normally distributed

(Shapiro and Wilk, 1965). This was corrected using a log-transformation of the dependent

variable. Homogeneity of variances was then assessed using the Levene’s Test. Despite

differences in variances being observed, the findings are still valid (Blanca et al., 2018).

Intraclass correlations were calculated using the random effects variable, Participant,

based on a mean-rating (k = 5), consistency, two-way mixed-effects model where the

‘raters’ (task conditions in this study) were fixed (Koo and Li, 2016). Koo and Li (2016)

provided a reference by which the reliability of the intraclass correlation. 95% Confidence

Intervals greater than 0.9 indicated excellent reliability, values between 0.75-0.9 expressed

good reliability, values between 0.5-0.75 were moderate, while values less than 0.5 indi-

cated poor reliability. The linear mixed-effects models were created within the statistical
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program, R, via R-Studio (R Core Team, 2020) using the lmer function from the lme4

package (Bates et al., 2014) while correlations were calculated using the icc function from

the irr package (Gamer et al., 2019).

Secondary Objective 1: Effect of task condition on balance performance

The linear mixed-effect model was again used to address the effects of task condition.

The fixed-effects, BOS and VIS, were tested for significance (α = 0.05). Comparison

between task conditions was accomplished using estimated marginal means. To enable

comparison across IMU locations, the coefficient of variation (CoVa) was calculated. CoVa

normalizes standard deviation to the mean thus facilitating comparisons across groups and

has been used to compare variability across ages (Brach et al., 2008; Gabell and Nayak,

1984; Hausdorff et al., 1997a), and task conditions (Huntley et al., 2017).

Secondary Objective 2: Characterizing body movement during static balance

trials

Sway ratios, magnitude-squared coherence, and cross-spectral phase were calculated to

determine whether the participants acted as either a single-link or a multi-link rigid body

(Fino et al., 2020). Sway ratios were determined using the root-mean-square (RMS) of

the linear accelerations for each axis of the head, sternum, and lumbar IMUs. These

RMS values were normalized to pendulum length to facilitate a comparison across IMU

locations. The pendulum length, or the approximate height of each IMU, was determined

using the total height of the participant and the anthropometric ratios: hHead = 0.96,

hSternum = 0.76, hLumbar = 0.59 (de Leva, 1996). Sway ratios were then calculated by

dividing the normalized RMS values from the more proximal IMU location by the more

distal location (Fino et al., 2020). As such, sway ratios > 1.0 indicated that the proximal

segment had greater angular accelerations than the distal segment. Magnitude-squared

coherence and cross-spectral phase were calculated using the angular accelerations of the

upper body (αUB = αHead–αLumbar) and the lower body (αLB = αLumbar). Magnitude-

squared coherence and cross-spectral phase were calculated using the functions ‘coherence’
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and ‘csd’ from within the SciPy package, respectively, using a 10s Hamming window with

50% overlap (Virtanen et al., 2020).

Effects of BOS and VIS on magnitude-squared coherence and cross-spectral phase were

determined with 1D statistical parametric mapping (SPM) software (spm1d version 0.4.8,

https://spm1d.org/#), specifically using the two-way repeated measures ANOVA with a

significance value of 0.05 (Pataky, 2010, 2012). All statistical analysis was performed in

Python 3.7.9.

4.3 Results

4.3.1 Primary Objective: Correlation of relative of relative bal-

ance performances across task conditions

Correlations of an individual’s relative balance performances across task conditions were

calculated for the three axes, the seven combinations of IMU Locations, within each of

the nine IMU-specific summary measures. A main effect of AXIS was found (F(2,160) =

20.33, p < .001) with the balance performances in the Vertical direction (r = 0.771±0.112)

being significantly more correlated than in the AP (r = 0.647 ± 0.252) or the ML (r =

0.557 ± 0.215) directions (Figures 4.3 & 4.4). Measuring body movement using an IMU

located the Head significantly increased (F(1,160) = 18.89, p < .001) the correlations of

relative balance performance by r = 0.121. The correlation of relative balance perfor-

mances was not affected by measuring body movement using IMUs located at the Sternum

(F(1,160) = 0.00, ns) or at Lumbar region (F(1,160) = 0.15, ns). There were no significant in-

teractions between any of the three IMUs. In terms of Analyses, there were no statistically

significant effect of Analysis (F(8,160) = 1.01, ns) on the correlation values. While not sta-

tistically significant, the non-linear measure, α, produced the highest average correlation

value (r = 0.715), followed closely by Mean Frequency (r = 0.702), and then Peak Linear

Acceleration (r = 0.659), RMS Linear Acceleration (r = 0.658), and F95 (r = 0.657).
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Figure 4.3: Correlation of relative balance control across task conditions as organized by the
factors, Axis of IMU measurement, and IMU location. Correlations were significantly increased
when movements were measured in the Vertical axis.
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Figure 4.4: Correlation of relative balance control across task conditions as organized by
the factors, Axis of IMU measurement, and Summary Measure. Correlations were significantly
increased when movements were measured in the Vertical axis.
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4.3.2 Secondary Objective 1: Effect of task condition on balance

performance

Linear measures within the time-domain

The linear accelerations provided at each IMU location were analysed using linear measures

within the time-domain to determine effects of task condition, axis, and the choice of

analytical measures on balance performance. These results are summarized in Table 4.2.

As measured by the Head IMU, balance performance was significantly affected by BOS

(F(1,46.64) = 5.80, p = .020) but not VIS (F(1,46.64) = 0.17, ns). There was, however, an

interaction effect between BOS and VIS (F(1,46.78) = 4.24, p = .045). It was observed

through the use of estimated marginal means that, despite no main effect of VIS, balance

measures during NEC task condition were significantly larger than the SEC. The choice

of axis (F(2,46.85) = 700.31, p < .001) and the choice of analytical measure (F(2,163.37) =

10744.35, p < .001) did not influence the ability to detect task-related differences in balance

performances.

As measured by the Sternum IMU, balance performance was significantly affected by

BOS (F(1,46.98) = 27.40, p < .001) but not VIS (F(1,46.86) = 0.52, ns). There was, however,

an interaction effect between BOS and VIS (F(1,46.94) = 4.79, p = .034). It was observed

through the use of estimated marginal means that balance performances within the SEC

task condition were significantly lower than the SEO task condition despite no main effect

of VIS. The choice of axis (F(2,46.96) = 97.88, p < .001) and analytical measure (F(2,154.73) =

13780.21, p < .001) did not influence the ability to detect task-related differences in balance

performances.

As measured by the Lumbar IMU, balance performance was affected by BOS (F(1,46.54) =

57.29, p < .001) but not VIS (F(1,46.41) = 2.35, ns). Also, there was no interaction effect

between BOS and VIS (F(1,46.54) = 3.65, ns). It was observed through the use of estimated

marginal means that balance performances within the NEC task condition were signifi-

cantly larger than the SEC task condition. The choice of axis (F(2,46.36) = 74.72, p < .001)

and analytical measure did (F(2,183.33) = 10373.00, p < .001) did not influence the ability

to detect task-related differences in balance performances.
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CoVa analysis indicated a main effect of IMU Location (F(2,53.02) = 11.73, p < .001)

with body movement being significantly more variable at the Head than at the Sternum

or Lumbar sites (Figure 4.5). Further, CoVa was significantly affected by BOS (F(1,52.00) =

6.91, p = .011) and VIS (F(1,52.94) = 14.87, p < .001) with a interaction between the two

(F(1,51.80) = 7.04, p = .011). Specifically, CoVa was elevated up to 16.45% in the SEO task

condition as compared with the other three task conditions.
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Figure 4.5: Coefficient of Variation (CoVa) of balance performance across task conditions
with respect to IMU Location calculated using linear, time-domain summary measures. Body
movement was significantly more variable at the Head as opposed to the Sternum and Lumbar locations.
Further, CoVa is elevated in SEO as compared with the other three task conditions.
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Nonlinear measures within the time-domain

The linear accelerations provided at each IMU location were analysed using nonlinear

measures within the time-domain to determine effects of task condition, axis, and the

choice of analytical measures on balance performance. Please refer to Table 4.3 for a

breakdown of these effects.

As measured by the Head IMU, balance performance was significantly affected by BOS

(F(1,81.31) = 4.95, p = .029) but not VIS (F(1,92.68) = 0.55, ns). There was no interac-

tion effect between BOS and VIS (F(1,80.17) = 0.01, ns). The choice of axis (F(2,94.41) =

19.12, p < 0.001) did not influence the ability to detect task-related differences in balance

performances but the choice of analytical measure did (F(1,21.20) = 7559.93, p < 0.001).

As measured by the Sternum IMU, balance performance was not significantly affected

by BOS (F(1,62.44) = 0.10, ns) but was affected by VIS (F(1,57.60) = 14.55, p < 0.001). There

was no interaction effect between BOS and VIS (F(1,71.39) = 0.01, ns). The choice of axis

(F(2,91.94) = 19.12, p < 0.001) did not influence the ability to detect task-related differences

in balance performances but the choice of analytical measure did (F(1,21.20) = 7559.93, p <

0.001).

As measured by the Lumbar IMU, balance performance was significantly affected by VIS

(F(1,63.48) = 6.38, p = .014) but not BOS (F(1,70.85) = 3.83, ns). There was no interaction

effect between BOS and VIS (F(1,72.52) = 1.00, ns). The choice of axis (F(2,94.46) = 17.28, p <

.001) and analytical measure (F(1,35.36) = 10986.03, p < .001) did not influence the ability

to detect task-related differences in balance performances.

CoVa analysis indicated a main effect of IMU Location (F(2,62.63) = 17.32, p < .001)

with body movement being significantly more variable at the Head than at the Sternum or

Lumbar sites (Figures 4.6 & 4.7). This ability of IMU Location to distinguish task-related

differences can be observed when balance performance is measured using α-value (Figure

4.6) and Sample Entropy (Figure 4.7). Further, CoVa was significantly affected by BOS

(F(1,57.55) = 5.88, p = .019) and VIS (F(1,58.96) = 13.76, p < .001) with a interaction between

the two (F(1,56.63) = 5.63, p = .021) with CoVa being elevated the most in the SEO task

condition.
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Figure 4.6: Coefficient of Variation (CoVa) of balance performance across task conditions
with respect to IMU Location calculated using the nonlinear, time-domain summary mea-
sure, α. Body movement was significantly more variable at the Head as opposed to the Sternum and
Lumbar locations. Further, CoVa is elevated in SEO as compared with the other three task conditions.
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Figure 4.7: Coefficient of Variation (CoVa) of balance performance across task conditions
with respect to IMU Location calculated using the nonlinear, time-domain summary mea-
sure, Sample Entropy. Body movement was significantly more variable at the Head as opposed to the
Sternum and Lumbar locations. Further, CoVa is elevated in SEO as compared with the other three task
conditions.
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Frequency-domain measures

The linear accelerations provided at each IMU location were analysed using frequency-

domain measures to determine effects of task condition, axis, and the choice of analytical

measures on balance performance. Please refer to Table 4.4 for a breakdown of these

effects.

As measured by the Head IMU, balance performance was significantly affected by BOS

(F(1,121.60) = 8.40, p = .004) but not VIS (F(1,133.43) = 0.04, ns). There was, however,

an interaction effect between BOS and VIS (F(1,98.04) = 9.84, p = .002). It was observed

with estimated marginal means that balance performances within the NEC task condition

were significantly larger than the SEC task condition despite no main effect of VIS. The

choice of axis (F(2,182.43) = 2.16, ns) did not but the choice of analytical measure did

(F(3,15.51) = 1830.48, p < .001) did influence the ability to detect task-related differences in

balance performances with Total Power providing significantly larger balance performance

values.

As measured by the Sternum IMU, balance performance was significantly affected by

BOS (F(1,88.24) = 5.55, p = .021) but not VIS (F(1,53.67) = 2.63, ns). There was, however, an

interaction effect between BOS and VIS (F(1,58.47) = 11.45, p = .001). It was observed with

estimated marginal means that balance performances within the NEC task condition were

significantly larger than the SEC task condition despite no main effect of VIS. The choice

of axis (F(2,149.83) = 12.03, p < .001) and analytical measure (F(3,25.52) = 2232.64, p < .001)

did not influence the ability to detect task-related differences in balance performances.

As measured by the Lumbar IMU, balance performance was significantly affected by

both BOS (F(1,82.27) = 4.09, p = .046) and VIS (F(1,54.33) = 5.07, p = .028). There was

also an interaction effect between BOS and VIS (F(1,70.25) = 15.36, p < .001) where the

NEC task condition produced balance performances that were significantly larger than

the other task conditions. The choice of axis (F(2,178.48) = 3.59, p = .030) and analytical

measure (F(3,26.78) = 2797.68, p < .001) did not influence the ability to detect task-related

differences in balance performances.

CoVa analysis indicated a main effect of IMU Location (F(2,53.79) = 29.98, p < .001)

with body movement being significantly more variable at the Head than at the Sternum
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or Lumbar sites (Figure 4.8). Further, CoVa was significantly affected by BOS (F(1,53.37) =

8.30, p = .006) and VIS (F(1,53.10) = 14.81, p < .001) but with no significant interaction

between the two (F(1,53.03) = 0.68, ns). Specifically, CoVa was elevated up to 7.86% in the

SEO task condition as compared with the other three task conditions.

104



T
a
b
le

4
.4
:
E
ff
e
c
t
o
f
ta

sk
c
o
n
d
it
io
n
o
n
b
a
la
n
c
e
p
e
rf
o
rm

a
n
c
e
a
s
a
n
a
ly
z
e
d
u
si
n
g
fr
e
q
u
e
n
c
y
-d

o
m
a
in

m
e
a
su

re
s
a
n
d

st
ra

ti
fi
e
d

b
y
IM

U
a
x
is
.

A
n
a
ly

s
e
s

I
M

U
L
o
c
a
ti
o
n

S
t
a
n
d
a
r
d

W
id

t
h

N
a
r
r
o
w

W
id

t
h

S
ig

n
ifi

c
a
n
c
e

E
y
e
s

O
p
e
n

E
y
e
s

C
lo

s
e
d

E
y
e
s

O
p
e
n

E
y
e
s

C
lo

s
e
d

B
a
se

o
f
S
u
p
p
o
rt

V
is
io
n

In
te

ra
c
ti
o
n

A
n
te

ri
o
r-
P
o
st
e
ri
o
r
(A

P
)

F
5
0

(M
e
d
ia
n
)

H
e
a
d

0
.1
0
4

±
0
.1
0
6

0
.1
1
3

±
0
.0
8
1

0
.1
0
7

±
0
.0
8
8

0
.1
2
6

±
0
.1
0
3

n
s

.0
3
3

n
s

S
te

rn
u
m

0
.1
5
3

±
0
.1
3
5

0
.1
7
0

±
0
.1
0
0

0
.1
5
0

±
0
.1
1
2

0
.1
7
9

±
0
.0
9
9

n
s

.0
0
8

n
s

L
u
m
b
a
r

0
.1
6
3

±
0
.2
1
7

0
.1
7
7

±
0
.1
7
1

0
.1
4
3

±
0
.1
7
2

0
.1
6
5

±
0
.1
2
6

n
s

n
s

n
s

F
9
5

H
e
a
d

1
.1
5
0

±
0
.5
1
1

1
.1
9
1

±
0
.4
5
7

1
.2
1
3

±
0
.5
1
2

1
.2
7
9

±
0
.4
7
3

.0
2
9

n
s

n
s

S
te

rn
u
m

0
.9
0
7

±
0
.4
1
6

0
.9
0
1

±
0
.3
7
7

0
.9
0
4

±
0
.3
8
6

0
.9
2
9

±
0
.3
1
3

n
s

n
s

n
s

L
u
m
b
a
r

0
.8
2
1

±
0
.5
6
6

0
.8
8
7

±
0
.6
1
5

0
.8
5
0

±
0
.6
2
4

0
.8
9
0

±
0
.4
8
2

n
s

.0
1
9

n
s

M
e
a
n

F
re

q
u
e
n
c
y

H
e
a
d

0
.2
9
5

±
0
.1
4
8

0
.3
1
3

±
0
.1
2
6

0
.3
1
0

±
0
.1
4
4

0
.3
3
7

±
0
.1
4
4

.0
4

.0
1
9

n
s

S
te

rn
u
m

0
.2
8
3

±
0
.1
3
4

0
.2
8
7

±
0
.1
0
4

0
.2
7
8

±
0
.1
1
5

0
.2
9
7

±
0
.0
9
6

n
s

n
s

n
s

L
u
m
b
a
r

0
.2
8
6

±
0
.2
2
9

0
.2
9
9

±
0
.2
1
5

0
.2
7
8

±
0
.2
1
7

0
.2
8
9

±
0
.1
5
4

n
s

n
s

n
s

V
e
rt
ic
a
l

F
5
0

(M
e
d
ia
n
)

H
e
a
d

1
.1
9
3

±
0
.7
4
9

0
.8
2
0

±
0
.7
2
3

1
.0
7
9

±
0
.7
2
5

0
.9
1
0

±
0
.7
5
0

n
s

<
.0
0
1

.0
3
4

S
te

rn
u
m

0
.9
2
0

±
0
.4
1
5

0
.8
1
3

±
0
.4
2
8

0
.7
8
2

±
0
.4
4
2

0
.8
6
7

±
0
.4
5
3

n
s

n
s

<
.0
0
1

L
u
m
b
a
r

1
.2
0
9

±
0
.5
1
5

0
.9
7
1

±
0
.6
0
4

0
.9
7
9

±
0
.6
0
9

1
.0
4
3

±
0
.5
4
3

.0
3
6

.0
2
4

<
.0
0
1

F
9
5

H
e
a
d

3
.0
5
5

±
0
.8
7
4

2
.7
6
3

±
0
.9
3
1

2
.9
3
4

±
0
.8
7
7

2
.7
5
2

±
0
.9
0
0

n
s

.0
0
1

n
s

S
te

rn
u
m

2
.5
4
0

±
0
.6
9
9

2
.4
9
5

±
0
.7
3
7

2
.4
7
2

±
0
.7
7
3

2
.5
6
3

±
0
.7
7
2

n
s

n
s

.0
0
3

L
u
m
b
a
r

2
.8
7
3

±
0
.7
6
0

2
.6
4
4

±
0
.9
0
9

2
.6
7
3

±
0
.9
0
3

2
.7
2
0

±
0
.8
6
3

.0
1
3

.0
1
6

.0
0
6

M
e
a
n

F
re

q
u
e
n
c
y

H
e
a
d

1
.3
5
2

±
0
.6
1
4

1
.0
7
7

±
0
.5
9
6

1
.2
4
4

±
0
.5
8
6

1
.1
1
3

±
0
.6
0
1

n
s

<
.0
0
1

.0
3
1

S
te

rn
u
m

1
.0
8
6

±
0
.3
6
8

1
.0
1
4

±
0
.3
7
4

0
.9
7
7

±
0
.3
8
8

1
.0
4
7

±
0
.4
0
0

.0
4
7

n
s

<
.0
0
1

L
u
m
b
a
r

1
.3
3
0

±
0
.4
4
4

1
.1
3
6

±
0
.5
2
4

1
.1
5
0

±
0
.5
2
9

1
.1
9
3

±
0
.4
8
1

.0
2
1

.0
1
1

.0
0
2

M
e
d
ia
l-
L
a
te

ra
l
(M

L
)

F
5
0

(M
e
d
ia
n
)

H
e
a
d

0
.1
8
1

±
0
.2
2
8

0
.1
6
3

±
0
.1
7
4

0
.1
6
5

±
0
.1
6
8

0
.1
9
2

±
0
.1
7
9

n
s

n
s

.0
4
2

S
te

rn
u
m

0
.2
0
5

±
0
.2
0
3

0
.1
9
0

±
0
.1
2
9

0
.1
6
1

±
0
.1
2
5

0
.1
8
8

±
0
.1
0
7

.0
2
4

n
s

.0
2
8

L
u
m
b
a
r

0
.2
5
2

±
0
.2
5
2

0
.2
2
2

±
0
.1
8
4

0
.1
4
7

±
0
.0
9
7

0
.1
9
6

±
0
.0
9
8

<
.0
0
1

n
s

.0
0
2

F
9
5

H
e
a
d

1
.4
6
8

±
0
.5
5
4

1
.4
2
7

±
0
.5
4
7

1
.4
6
6

±
0
.5
6
9

1
.5
3
0

±
0
.5
3
1

n
s

n
s

n
s

S
te

rn
u
m

1
.3
8
6

±
0
.4
0
9

1
.3
1
2

±
0
.3
6
2

1
.2
3
6

±
0
.3
6
9

1
.2
2
8

±
0
.3
0
3

<
.0
0
1

n
s

n
s

L
u
m
b
a
r

1
.7
2
5

±
0
.4
8
6

1
.6
2
8

±
0
.4
9
8

1
.2
5
1

±
0
.3
6
5

1
.2
7
7

±
0
.3
1
4

<
.0
0
1

n
s

.0
0
8

M
e
a
n

F
re

q
u
e
n
c
y

H
e
a
d

0
.4
1
1

±
0
.2
2
3

0
.3
9
2

±
0
.1
9
2

0
.4
0
3

±
0
.2
0
6

0
.4
3
4

±
0
.2
0
5

n
s

n
s

.0
3
1

S
te

rn
u
m

0
.4
0
8

±
0
.1
9
7

0
.3
8
1

±
0
.1
4
2

0
.3
4
2

±
0
.1
2
8

0
.3
5
7

±
0
.1
1
4

<
.0
0
1

n
s

.0
2
7

L
u
m
b
a
r

0
.5
0
0

±
0
.2
4
0

0
.4
6
2

±
0
.2
0
6

0
.3
3
1

±
0
.1
1
9

0
.3
6
8

±
0
.1
1
1

<
.0
0
1

n
s

<
.0
0
1

105



Head Sternum Lumbar
0

0.1

0.2

0.3

0.4

0.5

0.6

*

IMU Location

C
o
effi

ci
en

t
of

V
ar

ia
ti

on
(C

oV
a)

SEO SEC NEO NEC

Figure 4.8: Coefficient of Variation (CoVa) of balance performance across task conditions
with respect to IMU Location calculated using frequency-domain summary measures. Body
movement was significantly more variable at the Head as opposed to the Sternum and Lumbar locations.
Further, CoVa is elevated in SEO as compared with the other three task conditions.
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4.3.3 Secondary Objective 2: Characterizing body movement

during static balance trials

Sway ratios (αRMS(ProximalIMU) : αRMS(DistalIMU)) were greater than 1.0 for all combina-

tions of IMU Locations and Axes except for the Head:Sternum ratios in the SEO (0.951)

and NEO (0.963) task conditions in the Vertical direction (Table 4.5). Sway ratios specific

to the AP direction indicated that angular accelerations were 1.878 times (NEC) to 2.966

times (SEO) greater at the Head IMU than the Lumbar IMU.

The frequency-domain measures of magnitude-squared coherence (MSC – Figure 4.9a)

and cross spectral phase (CSP – Figure 4.9b) were also used to compare the kinematics of

the upper and lower body In the AP direction, the general trend is that MSC is greater

than 0.6 by 0.2 Hz, then drops to less than 0.4 by 1.3 Hz, and then steadily rises to 0.79

by 10 Hz. There are no significant effects of BOS or VIS (SPM{F}∗(1,53) < 13.77, ns).

In the Vertical direction, MSC values are greater than 0.6 by 0.2 Hz, before dropping to

less than 0.5 between 2.4-5.6 Hz, and then steadily rising above 0.6 by 8.6 Hz. There

is a significant effect of BOS (SPM{F}∗(1,53) = 13.78, p < .05) at a narrow frequency

band centering on 6.1 Hz with the MSC being greater in the Narrow stance condition

as compared to the Standard stance. There are no other significant differences due to

BOS or VIS task conditions (p > 0.05). In the ML direction, a significant difference

(SPM{F}∗(1,53) = 13.78, p < .05) in MSC due to BOS occurs between 0-1.1 Hz inclusive.

In the Standard stance condition, MSC starts at 0.42 and before rising to 0.50 between

1.7-2.3 Hz before a brief dip followed by a steady increase to over 0.8 by 7.5 Hz. In the

Narrow stance condition, MSC starts at 0.57 but steadily drops until it is indistinguishable

from the Standard stance condition. There is another, albeit brief, increase in MSC within

the Narrow stance condition between approximately 8.1-8.4 Hz and again between 9.6-10

Hz inclusive. There are no other significant effects of BOS or VIS, or any interactions

between them, at any other frequency (SPM{F}∗(1,53) = 13.78, ns).

Cross-spectral phase averaged 178.22◦ and 156.83◦ in the AP and Vertical directions,

respectively. There were no significant differences between the BOS and VIS task condi-

tions in the AP (SPM{F}∗(1,53) = 9.79, ns) and the Vertical directions (SPM{F}∗(1,53) =

9.45, ns) (Figure 4.9b). In the ML direction, cross-spectral phase was significantly higher
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(SPM{F}∗(1,53) = 10.13, p < .05) in the Narrow Stance condition (165.43◦) as compared

with the Standard stance condition (130.89◦) between 0-0.3 Hz. There were no other

significant differences due to BOS or VIS (SPM{F}∗(1,53) = 10.13, ns).
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Figure 4.9: The upper and lower body segments move anti-phase during quiet stance. Com-
parison of the upper and lower body segments across task conditions in the frequency domain using (a)
Magnitude-Squared Coherence and (b) Cross-spectral Phase. The four task conditions being: 1) Standard
Width Eyes Open ( ), 2) Standard Width Eyes Closed ( ), 3) Narrow Width Eyes Open ( ), and
4) Narrow Stance Eyes Closed ( ). Statistical significance for each main effect, Base of Support ( )
and Vision ( ), as well as their Interaction ( ) was provided by SPM F-values.
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4.4 Discussion

The primary objective of this work was to determine if the information from body-worn

IMUs could be used to measure subject-specific differences in standing balance control.

Investigation of this primary objective also required addressing two secondary objectives;

could IMUs detect task-related differences in balance performances, and, does body move-

ment during static balance trials reflect either an ankle or a hip kinematic strategy which

changes depending on task condition. The findings of this study support the hypothe-

sis that balance performance, as measured using kinematic data from IMUs, is specific

to the individual. Briefly, static balance performances were summarized using a variety

of linear and non-linear measures within the time- and frequency-domains. All balance

performances within a task condition were normalized so that each person’s static balance

performance was represented as being relative to the sample population. Creating rela-

tive balance performances within each task condition facilitated the comparison of balance

performances between task conditions. Linear mixed-effect models and correlational anal-

ysis showed that an individual’s relative balance performance was correlated across task

conditions. The strength of these correlations was dependent on the analytical measures

chosen to summarize the balance performances, the axis in which the body movement was

recorded, and, the location on the person’s body from where their movement was measured.

Overall, this study confirms that the findings of Study 1 that the ability to maintain one’s

balance is specific to the individual, and, is the first to do so using kinematic information.

The analytical method used to reduce time-series data to single value is a crucial choice.

The only analytical measure that produced significant correlation was F50 (Median) but

actually produced weaker correlations than the other measures. However, it is interesting

to note that the strongest correlation was produced using the non-linear measure, α. This

analysis, which measures statistical self-similarity, has been shown to identify pathologies

in a variety of human movements including static balance (Collins and De Luca, 1993;

Delignières et al., 2011; Diniz et al., 2011; Duarte and Sternad, 2008; Duarte and Zatsiorsky,

2001), gait (Buzzi et al., 2003; Cavanaugh et al., 2007, 2010; Hausdorff et al., 1997a),

finger tapping (Coey et al., 2015; Delignières et al., 2008), and heart beats (Goldberger

et al., 2002; Peng C-K et al., 1993; Peng et al., 1995). To our knowledge, this is the
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first time where α-value has been used to successfully to demonstrate subject-specific self-

similarity. The success of the α-value and Sample Entropy highlight the fact that important

information is contained within time-series data that may not be revealed using traditional

linear measures. The continued use of non-linear summary measures, like α and Sample

Entropy, should be encouraged to detect differences in balance performance caused by task

conditions, as well as, the correlation of individual balance performance across them.

The choice of axis in which body movement is measured also influenced the strength

of the correlations of relative balance performance across task conditions. The strongest

correlations were observed in the Vertical axis which may seem curious as participants were

not instructed to alter their height. The analysis of balance control performances using

accelerations in the vertical directions is not common. While analyzing postural control in

healthy adults using chest-mounted triaxial accelerometers, Reynard et al. (2019) did not

analyze the acceleration in the vertical axis, even though they collected the signal, because

they asserted that ‘postural sway occurs in the transverse plane’. While the relationship

between vertical acceleration and balance control may not be intuitive, some studies have

shown that accelerations in the vertical axis may be of value. Garćıa-Liñeira et al. (2020)

explored the reliability of accelerometers in assesssing the balance control of children.

Each child performed three repetitions of four tasks while their kinematics were measured

using a triaxial accelerometer placed at the height of their 4th lumbar vertebra. It was

found the repeated balance performances within each task were most strongly correlated

in the vertical axis (r = 0.82) as compared with the sagittal axis (r = 0.77) and the

perpendicular axis (r = 0.74). Trigonometry may provide an explanation as to why the

vertical axis provided the strongest correlations despite the participant’s primary movement

being limited to the AP or ML directions. Given a two-dimensional cartesian coordinate

system, if one were to rotate a line, l, by an angle, θ, then displacements would occur in

two axes: ∆x = l · cos(θ) and ∆y = l · sin(θ). If the rotation is small, then ∆y will also

be small with respect to ∆x, but it would nonetheless still have a non-zero magnitude.

Therefore, in the context of a quiet standing balance trial, if the height of the participant

was substituted into l and the angle of rotation about the ankle substituted into θ, then the

rotation would produce a displacement in the Vertical axis, albeit a small displacement.

Moreover, since rotations about the ankle can occur in both the AP and ML axes, any
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displacement in the Vertical axis would thus be a composite of the movement within both

of those axes. It should be noted that errors, albeit small, can be associated with the

vertical axes if the initial alignment is performed poorly. Kavanagh et al. (2004) suggested

that an axis alignment error of as much as 2◦ or 0.1% (cos(2◦) = 0.999) may be expected

during gait. This study tried to minimize this effect by performing the alignment on each

static balance trial to avoid any transient changes to IMU orientation between collections.

Nonetheless, it would be wise for future studies to prove empirically whether the Vertical

axis is actually a composite measure of both the AP and ML axes. In the meantime,

the possibility that one axis may encapsulate information from two axes could explain the

strength of the correlation in the Vertical axis.

The choice of where to place an IMU on the participant’s body is key to accurately

characterizing their movement during a quiet standing balance trial. Typically, IMUs have

been placed on the lumbar region of the back as a proxy for measuring the participant’s

center of mass (Ghislieri et al., 2019). This rationale is justified within the framework

of the single-link, inverted pendulum model as it correlates COM movement with COP

(Gage et al., 2004; Winter et al., 1996, 1997). However, the current study showed that the

strongest correlation of an individual’s relative balance performance across task conditions

occurred when the IMU was placed on the head. One could expect that the largest range of

movement would occur at the head as it is farthest from the ankles. As such, distance from

the axis of rotation could be a confounding variable. CoVa, which normalizes the variance

of body movement to its mean at each IMU location, was used to address this issue. CoVa

values indicated that movement at the Head was still more variable than at either the

Sternum or Lumbar sites, regardless of task condition. This finding is in contrast to earlier

studies that have demonstrated that head stabilization is imperative for obtaining accurate

visual and vestibular input (Grossman et al., 1988; Horak and Macpherson, 1996; Nashner

et al., 1988; Pozzo et al., 1990). Pozzo et al. (1995), and later Fino et al. (2020), have

suggested that the task conditions employed in other static balance control studies, which

are similar to those employed in the current study, are not challenging enough to warrant

actively stabilized head movement. It is hypothesized that by reducing the constraint on

head movement that the entire body would move with more freedom in order to maintain

balance. This increased freedom would allow each individual more opportunities to choose
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their own way of maintaining balance which, therefore, may explain the strong correlation

of person-specific balance performances across task conditions. The increased freedom of

movement throughout the entire body suggests that measuring multiple segments may

worthwhile.

This study has shown that using multiple IMUs can be beneficial in characterizing a

person’s balance performance. An excellent level of correlation is defined as having an

r-value greater than 0.9. Of the eleven measures that produced excellent correlations

seven of those were obtained by measuring body movement with multiple IMUs. While

a single IMU allows for measurement of body movement at sites all over the body, the

use of multiple IMUs allows for multiple sites to be measured simultaneously. Multiple

IMUs facilitate the direct measurement at multiple sites allowing for certain assumptions,

namely that the body acts as a single rigid-link during quiet standing trials, to be tested.

The first of two secondary objectives within this study was determine whether the body

moves as a single link during static balance trials. The human body is a multi-segment

system whereby a perturbation at any one segment will create inter-segmental forces that

will move all adjoining segments (Hoy and Zernicke, 1986). The inverted pendulum model

assumes that, in the sagittal plane, these multiples segments move as a single rigid link

(Gage et al., 2004; Geursen et al., 1976; MacKinnon and Winter, 1993; Smith, 1957; Winter

et al., 1998, 1996). This current study recorded body movement at various sites simulta-

neously using multiple IMUs allowing researchers to test the assumption of whether body

movement during a static balance trial is best modelled as a single rigid-link segment. It

was confirmed, using sway ratios and coherence measures outlined by Fino et al. (2020),

that a participant’s body segments do not move as a single rigid link during quiet standing

task conditions. This study found sway ratios greater than 1.0 which indicate that the

angular accelerations found at the lumbar region were amplified at the head. Further,

cross-spectral phase values close to 180◦ indicated that the upper and lower body move

anti-phase with respect to each other. It should be noted at that our conclusions may di-

verge from those of Fino et al. (2020). In their paper, Fino et al. (2020) stated that ‘sway

ratios equal to one indicate single-link sway about the ankle, sway ratios less than one

indicate anti-phase multi-link sway where the superior segment is stabilized relative to the

inferior segment, and sway ratios greater than one indicate in-phase multi-link sway where
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the superior segment sway is amplified relative to the inferior segment’. While we agree

that sway ratios indicate the level of amplification/attenuation of the angular acceleration

at the head compared to the lumbar, we don’t agree that sway ratio determines the phase

relation between the superior and inferior segments. This is because the sway ratio is

derived by first reducing the time-series angular acceleration data into a single RMS value

for each of the superior and inferior locations and then normalizing the superior location

with respect to the inferior location. This process removes any temporal information de-

scribing how the superior location moves in relation to the inferior location. Consequently,

in the case that the sway ratio is less than 1.0, then the relative movement of the superior

segment will always be anti-phase to the lower segment regardless of whether the absolute

movement of the superior location moves in-phase or anti-phase with the inferior location.

The problem arises when the sway ratio is greater than 1. If the absolute movement of

the superior location is in-phase with the inferior location, then relative movement will be

in-phase. However, if the absolute movement of the superior location is anti-phase to the

inferior location, then it is possible that the relative movement will be anti-phase, thus

violating the definition provided by Fino et al. (2020). Application of this new rationale

in the context of the current study simply suggests that the angular acceleration of the su-

perior location was amplified as compared to those at the inferior. However, CSP suggests

that movement between the upper and lower body segments to be anti-phase in all axes

and under all task conditions, indicative of hip strategy either in the sagittal or frontal

plane (Goodworth and Peterka, 2010; Maki and McIlroy, 2006; Winter et al., 1996; Zhang

et al., 2007). Taken together, this study has shown that body movement during static

balance task conditions, once assumed to act as a single-link, is more accurately modelled

as multi-link segment. Further, any future assessments of phase relationship should be

calculated by a coherence equation that uses time-series data from both head and lumbar

IMU data.

The final secondary objective of this study was to confirm that IMUs could detect

changes in static balance performance caused by altering the Base of Support and Vi-

sion task conditions. Previous studies, albeit using force plates, proved that by narrowing

one’s stance width and/or closing one’s eyes is sufficient to significantly change balance

performance (Dietz et al., 1993; Howcroft et al., 2017; Kalron, 2017; Kotecha et al., 2016;
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Paulus et al., 1984; Springer et al., 2007). Other studies have shown that IMUs can also

detect balance performance changes when vision was altered (Matheron et al., 2016; Saun-

ders et al., 2015). However, this current study is rare in that it also explores whether

IMUs can detect the effect of stance width, as well as any possible interaction between the

two task conditions. It was determined that IMUs were able to detect these task-related

changes in balance performance but that this detection was dependent on the analytical

modality used. Non-linear and frequency-domain analyses were able to detect changes in

balance performance more often than linear time-domain measures. This reduced ability

for linear time-domain analyses to detect these task-related changes may have been to

the heteroscedasticity in balance performances between task conditions. However, Blanca

et al. (2018) demonstrated that as long as each group is equal in size, that the number of

samples within each group is large, and that the variance ratio is small given then number

of groups, then the results of an ANOVA would be robust to the violation of homoscedas-

ticity. The statistical design of this experiment satisfied each of these requirements and

therefore the finding of task-related differences in balance performance remains valid. In

summary, the task conditions used in this study were able to differentially challenge balance

performance, and these task-related differences in balance performance could be detected

by IMUs, however, non-linear and frequency-domain measures did better at identifying

task differences than linear time-domain measures.

An additional avenue of interest relates variability of balance performance within a task

condition to the degree of difficulty of that task. In the current study, it was observed that

CoVa was highest in the SEO task condition but decreased as either as stance width nar-

rowed or as vision was reduced. As CoVa reflects inter-trial variability (Gabell and Nayak,

1984; Huntley et al., 2017), the high CoVa values in the SEO task condition may suggest

that a person can maintain their balance in a variety of ways. This may be explained by

the fact that the human body is a multi-segment system comprised of numerous joints,

each of which is spanned by several active and passive tissues (Bernstein, 1967). The re-

sulting degrees of freedom provide the balance control system with an infinite number of

solutions to maintain a particular posture (Bernstein, 1967; Latash et al., 2002; Todorov

and Jordan, 2002). The specific subspace from which the balance control system chooses

an appropriate solution may optimize for factors like energy consumption (Houdijk et al.,
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2009), the completion of a secondary task (e.g.: reaching) (Welch and Ting, 2014), or

balance maintenance following a perturbation (Rasman et al., 2018), etc. As such, when

the difficulty of the task condition is low, the balance control system can choose from a

multitude of solutions that will still accomplish the goal of quietly standing. This range

of choice may be reflected in the relatively high CoVa values produced in a task of lower

challenge, which in this study was the SEO task condition.

The findings of this study are subject to a few limitations. These include assumptions

made during study design regarding the normalization of the dependent variables, the

control of cognitive factors such as attention, the physiological state of the individual at

the time of collection, and the external validity of the sampled population to the young,

adult population. Also, the choices related to the measurement of the participant’s body

movements, the subsequent analysis of that data, as well as the suitability of the task

conditions under which the participant had to maintain their balance in hope of identifying

individuals by their balance performance will be discussed.

Correlation analysis was used, as in Study 1, to investigate a possible relationship in

an individual’s balance performance across a variety of task conditions. As in Study 1,

each of the task conditions were able to significantly affect balance performances, with

body movement being measured kinematically in this current study with IMUs. To fa-

cilitate the comparison of balance performances of an individual across task conditions,

the absolute balance performance was converted to a relative balance performance. An

individual’s relative balance performance was calculated using the mean and variance of

the absolute balance performances within each task condition. The assumption was made

that effect of the task condition would affect each individual in a similar manner. However,

Stins et al. (2009) have shown that when participants were stratified by their exposure to

maintaining their balance (dancers vs. non-dancers), the dancers were found to maintain

their static balance more ‘automatically’ than non-dancers. This findings have since been

supported elsewhere (Isableu et al., 2017; Janura et al., 2019). These studies suggest that

the assumption of each task condition having the same effect on all the participants may

be violated. As such, the normalization of the absolute balance performance to a relative

balance performance by using the task condition’s measures of central tendency may need

to be refined. It is suggested that a thorough inventory of a participant’s exposure to
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maintaining balance control, whether through activities like dance, sports, or boating, be

included and incorporated into a metric of relative balance performance.

Unlike the between-subject differences, intra-individual variability was not definitely

addressed in this study. Cognitive processes, particularly attention, and physiological

states may change during a collection. Despite the act of maintaining one’s balance being

thought of as an automatic response, studies have display cortical and sub-cortical influ-

ences on balance control (Maki and McIlroy, 2007; Varghese et al., 2015). Attention is

a cognitive function defined as a person’s ‘ability to focus on a specific stimulus without

being distracted’ (Shumway-Cook and Woollacott, 2017). Kahneman (1973) has modelled

it as being a limited resource for which various stimuli compete (Wulf et al., 1998). Dual-

tasking studies have been used to examine the effect of attention on static balance control.

Used a dual-task paradigm, Salihu et al. (2023) determined that mental fatigue did not

affect an individual’s ability to attend to a task or their ability to maintain balance. How-

ever, they did admit that a limitation of their study was that the static balance task may

not have been challenging enough. Stins et al. (2009) found that in an eyes-closed static

balance task condition, non-dancers were unable to maintain their balance as ‘automati-

cally’ as compared to the dancers. This implies that when faced with a challenging task,

individual’s who lack exposure to maintaining their balance will find it necessary to attend

to the static balance task more so than those who have exposure. Together, these findings

suggest that quantifying the contribution of cognitive processes to balance performance,

such as attention, in a variety of task challenges may be necessary to understand its effects

and, if necessary, to control for them.

Other factors that could affect intra-individual variability, albeit not to the same extent

as attention, are muscular fatigue and anxiety. Jo et al. (2022) found that changes in

balance performance persisted at least 15 minutes after experiencing a fatiguing protocol.

Anxiety can be induced in participants by creating a postural threat, such as raising an

individual above ground level, which can manifest in a change in their balance performance

(Adkin and Carpenter, 2018; Cleworth et al., 2012; Cleworth and Carpenter, 2016; Zaback

et al., 2015). While muscular fatigue and anxiety were not specifically varied in the current

study, it would be good practice to quantify them in order to take the potential influence

on an individual’s ability to maintain balance into consideration.
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The findings of this study may be limited by the fact that the time-series data is

reduced to a single, summary measure. As compared to force plates, IMUs improve body

measurement during a static balance trial by independently measuring different segments

of a multi-link system, but, this increase in biofidelity may be squandered through data

reduction techniques. For example, a thirty second trial sampled at 100 Hz would provide

3000 data points in each axis for every IMU used. The information provided by these data

points, and more importantly, the sequence of these data points, is lost following the use

of data reduction algorithms. However, this and other studies (Stergiou, 2018) have shown

that the time-dependent nature of balance control contains critical information that may

be lost using data reduction. As such, future studies should strive to retain the time-series

data in an effort to retain the fidelity of the collected body movement. Moreover, Stergiou

(2018) has also suggested that the use of non-linear analyses can help reveal aspects of a

time-series dataset that traditional linear techniques may not. It is recommended that a

neural network may be of future value. A key feature of a neural network is the non-linear

activation function which allows the network to learn relationships within data that would

not otherwise by revealed by linear analyses (Agostinelli et al., 2014; Cho and Saul, 2010;

Hornik et al., 1989). Moreover, a neural network can adapt to a given input so that it

can accept either a single summary measure or a robust time-series dataset. A particular

avenue worth exploring would be the use of convolutional or recurrent neural networks to

characterize the balance performance of each trial (Bhattacharya et al., 2017; Ravanelli

and Bengio, 2018a,b; Sercu et al., 2015). While correlational analysis has suggested the

existence of person-specific contributions to balance performance within a young, healthy

population, it is possible that neural networks could take this a step further by potentially

identifying specific individuals based on their balance performances alone.

In conclusion, the primary objective of this study was to determine if subject-specific

differences in standing balance control could be revealed using information from body-worn

IMUs. It was found that the relative balance performances of individuals, as measured with

IMUs, were correlated across task conditions confirming a similar finding found in Study

1. The strength of these correlations was dependent on numerous factors; specifically, the

strongest correlations were associated with movements at the head and with movement in

the vertical direction. It was also confirmed that the body acts as a mutli-link segment and
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employs the kinematic hip strategy during static balance trials. Further, it was confirmed

that IMUs could detect task-related differences in balance performance. Taken together,

these findings strongly suggest that multiple IMUs are needed to accurately measure the

complexities contained within the movement of the human body during a static balance

trial. Accurate representation of movement would allow the subject-specific characteristics

of balance control to be revealed. Future experiments should focus on increasing the fidelity

of body movement measurements by measuring more body segments. By increasing task

challenge through dynamic movements that still maintain a constant base of support (e.g.:

raising/lowering one’s arms, or squatting), the balance control system will be subjected to

with a wider range of inputs that it must respond to, thereby teasing out person-specific

differences in balance control. Finally, by including non-linear analyses of time-series data

to better characterize balance performances and thus an individual’s balance control sys-

tem. It is suggested that a future study should confirm whether specific individuals could

be identified by the balance performance alone.
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Chapter 5

Study 3:

Using neural networks to identify

specific individuals by their balance

performances alone.

5.1 Introduction

Maintaining balance is critical to the successful completion of tasks and the avoidance

of harmful falls. Falling has severe physical (Casey et al., 2017; Florence et al., 2018),

mental (Jørstad et al., 2005; Scheffer et al., 2008; Suzuki et al., 2002; Vellas et al., 1997),

and social consequences (Salkeld et al., 2000; Schmid and Rittman, 2009), so, minimizing

fall-risk is an importance area of research. One particular area is to identify individuals

would be more likely to fall in the future. This individual, as well as their loved ones,

would now have time to assuage their fall-risk through balance training (Hauer et al.,

2001; Inness et al., 2015), the use of support apparatuses (Bateni and Maki, 2005; Werner

et al., 2020), and adaptations to their environment (Sattin, 1997; Sattin et al., 1998).

Previous studies have been able to separate individuals within a given population into

two groups: fallers and non-fallers (Bigelow and Berme, 2011; Brauer et al., 2000; Maki
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et al., 1994). Unfortunately, these identifications have occurred within populations where

interventions to mitigate fall-risk are less likely to be successful (Hill et al., 2011). The

ideal scenario would be to identify individuals as early as possible to provide those who are

at an increased fall-risk the time for the interventions to work. Unfortunately, it is unclear

whether the ability to maintain balance is specific to the individual and, if so, whether that

specificity persists over a lifetime. Earlier studies have shown that, regardless of the task

condition’s level of difficulty, an individual’s performance during a static balance trial will

be consistent relative to the other participants (Study 1). This implies that the balance

control system, while adaptable to the task condition, may be specific to the individual.

This implication requires verification. The purpose of this current study is to determine

whether a specific individual can be identified from by their balance performance alone.

Maintaining one’s balance, and thereby resisting gravity’s desire to induce falling, is the

domain of the balance control system. It is comprised of three subsystems: sensory input,

motor output, and the integrative centers (Shumway-Cook and Woollacott, 2017). Each

of these systems require time to mature (Cuisinier et al., 2011; Shumway-Cook and Wool-

lacott, 1985; Steindl et al., 2006), as well as practical experience to be optimized (Donath

et al., 2013; Fong et al., 2012; Wälchli et al., 2018). This results in young, healthy adults,

those between the ages of 18-35 years, usually possessing the optimal balance control sys-

tem. These systems will naturally degrade with age (Doherty, 2003; Dorfman and Bosley,

1979; Gottfries, 1990; Kaasinen and Rinne, 2002; Shaffer and Harrison, 2007) but this de-

cline can be exacerbated by various pathologies including, but not limited to, Parkinson’s

disease (Billingsley et al., 2018; Park et al., 2015) and multiple sclerosis (Corporaal et al.,

2013; Zuvich et al., 2009). As a result, the balance performances of older adults are more

varied than younger adults. This reduced variability amongst younger adults may make

identification of specific individuals more difficult to accomplish. As such, utilizing the ap-

propriate methodology to characterize balance performance is crucial in the identification

of the individuals by their balance performance.

Experimental protocols have long been used to challenge an individual’s ability to main-

tain balance with the purpose of assessing their balance control system. Certain protocols

address specific aspects of balance control with two major subcategories being those that

assess static or dynamic balance (Shumway-Cook and Woollacott, 2017). Dynamic balance
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assessments require the participant to move, either as a self-initiated movement (Berg et al.,

1992a,b; Duncan et al., 1990; Horak et al., 2009; Tinetti, 1986) or in response to an exter-

nal perturbation (Dietz et al., 1993; Horak and Nashner, 1986; Yang et al., 2012). These

assessments can provide valuable information related to the balance control system, such

as the choice between an anticipatory or a reactive response. However, dynamic move-

ments require both balance and movement control (Diedrichsen et al., 2010; Shadmehr,

2017a,b). As such, the findings provided by the aforementioned dynamic assessments may

be confounded by the contributions from these two distinct systems. Moreover, the cost

to conduct such dynamic balance assessments is large in terms of both of finance and of

expertise (Mansfield et al., 2021; Visser et al., 2008). On the other hand, static balance

assessments do not have these limitations. Participants are simply required to maintain a

constant posture during the collection period thereby minimizing the contribution of the

movement control system and allowing for an isolated assessment of the balance control

system (Shumway-Cook and Woollacott, 2017). Static balance trials provide a cost ef-

fective and repeatable methodology that yields sufficient information relating directly to

the balance control system. They have successfully been used to distinguish fallers from

non-fallers (Bigelow and Berme, 2011; Brauer et al., 2000; Maki et al., 1994; Piirtola and

Era, 2006) and, have recently demonstrated that balance performances across task condi-

tions are correlated by participant (Study 1 & Study 2). This latter finding suggests that

the balance control system may be specific to the individual. However, the correlational

analysis used in those studies are insufficient to identify individuals by their balance perfor-

mance alone. While static balance trials are more than capable of challenging the balance

control system, in order to identify individuals by their balance performances alone, the

data provided by these trials must be analyzed in a more advanced way.

Two key points must be addressed to more fully elucidate the information contained

within a static balance trial. The first relates to how an individual’s balance performance

is measured, which in this study is called, Measurement Modality. Specifically, force plates

and, more recently, inertial measurement units (IMUs) have been used to quantify the

kinetic and kinematic data of the body’s movement during a static balance trial. Force

plates measure an individual’s kinetic interaction with the ground and have been used for

numerous years in balance research, including being able to successfully classify individuals
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as those who are more likely to fall from those who won’t. The use of force plates is

predicated on assumptions associated with the inverted pendulum model. In this model,

the ankle acts as a fulcrum about which the COM rotates while ‘assuming a rigid structure

above the ankles’ (Gage et al., 2004). Other studies have suggested that the body may move

as a multi-link segment even during quiet stance (Creath et al., 2005; Fino et al., 2020).

IMUs have been successfully used to measure the kinematics of multiple segments of a body

during quiet stance. The second key point relates to how the information provided by these

measuring devices is subsequently represented, which in this study is called, Measurement

Format. Specifically, these measurement devices record data at a particular frequency for

a specified period of time. The resulting time-series data is a highly fidelic representation

of the body’s movement during that collection period. However, the amount of data

is so large that it makes comparisons between trials, task conditions, and participants

difficult. As such, a number of analytical methods have been developed that reduce the

time-series data into a summary measure. These summary measures don’t describe the

body movement as accurately as the time-series data, but, they have been validated to

provide succinct yet clinically interpretable characterizations of the balance control system

(Prieto et al., 1996). Previous studies have shown that the choice of summary measure

is important in how correlated an individual’s relative balance performances across task

conditions is revealed (Study 1 & Study 2). Moderate to excellent correlations were found

using established linear measures within the time- or frequency-domains. Interestingly,

strong correlations were also observed using less common non-linear measures. This may

suggest that the use of neural networks, which are non-linear systems, may reveal structure

and relationships within the data that linear analyses may not be capable of doing. The

choice of measurement modality (e.g.: kinetics using force plates, or kinematics using

IMUs), and, measurement format (e.g.: summary measures or time-series data) could be

used as inputs to this neural network. The architecture of such a neural network would

need to be tailored to these inputs so that it could identify individuals by their balance

performance.

As stated earlier, the purpose of this study is to directly identify individuals by their

balance performances. Unfortunately, there are no published studies that have accom-

plished this from which we can base the current study on. As such, it is necessary to
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state the constraints associated with achieving these goals. They include, 1) multi-class

classification, 2) the ability to handle limited datasets, 3) cope with the unavailability of

a definitive representation (i.e.: a gold standard) of an individual’s balance performance,

and 4) be agnostic to the method by which the balance performance is measured.

Classification algorithms specify which of a discrete number of categories to which

an input belongs. Logistic classification has been used to stratify older adults into one

of two groups: fallers, and non-fallers (Bigelow and Berme, 2011; Brauer et al., 2000;

Maki et al., 1990). However, more than two output categories are necessary to identify a

single individual from a group of individuals. Multi-class classification algorithms exist,

like k-Nearest Neighbours (Fix and Hodges, 1951; Cover and Hart, 1967), Decision Trees

(Messenger and Mandell, 1972; Breiman et al., 1984) and their extension, Random Forests

(Ho, 1995), but they require large data sets to optimize the parameters of the model.

Unfortunately, obtaining balance performance data for an individual can be challenging.

Regardless of how the balance performance is recorded and subsequently represented, there

exists a minimum amount of time, space, effort that is required to collect a static balance

trial. For example, multiple trials, task conditions, and participants necessitate the collec-

tion of hundreds or thousands of trials, each of which may last 30 s to 60s as suggested by

the Internal Society of Posture and Gait Research (ISPGR). However, collecting hundreds,

let alone thousands, of static balance trials is not feasible within a clinical environment.

Excessive experimentation could induce fatigue or lead to ethical violations; both of which

could ensure that future participant recruitment is stifled. For example, the BESTest is a

30-minute examination consisting of 36 measures (Horak et al., 2009) but it was deemed

too time-consuming to be conducted in a clinical setting thus motivating the creation of

the 10-minute mini-BESTest (Franchignoni et al., 2010). As such, any algorithm artificial

neural network that is created has to be designed to deal with smaller datasets.

A canonical method of identification is to compare the item of interest to a known stan-

dard. However, Prieto et al. (1996); Zatsiorsky and Duarte (1999); Duarte and Zatsiorsky

(1999), as well as others, have suggested that due to the variability displayed over repeated

trials that a deterministic solution to an individual’s balance performance may not exist.

On the other hand, the largest Lyapunov Exponent of static balance trials is a positive

value (Wiesinger et al., 2022; Kȩdziorek and B lażkiewicz, 2020), indicating that the sys-

125



tem producing the signal is chaotic. While a chaotic system may seem to be random, it is

actually defined as being deterministic (Wurdeman, 2018). Thus, it stands to reason that

establishing the underlying structure of the balance control system, which governs balance

performance, may require non-linear methods to do so.

Lastly, balance performance can be measured in the variety of ways, with this study

alone measuring balance performance kinetically using force plates and kinematically using

inertial measurement units (IMUs). Any method used to identify an individual by their

balance performance alone must be able to do so regardless of how the body’s movement

was measured.

The identification of individuals based solely on their balance performance is a novel

endeavour, but identification methods have been used in other contexts. For example, Hid-

den Markov models (Bengio, 1999), Gaussian Mixture Models (Reynolds et al., 2000), and

neural networks (Anand et al., 2019; Graves et al., 2013; Ravanelli and Bengio, 2018a,b)

have been used to identify individuals based on their speech patterns. While neural net-

works provide the greatest accuracies, they do so by training on datasets consisting of

hundreds, if not, thousands of examples for each speaker. Unfortunately, applying the

same neural network architectures to balance control data is not practical as obtaining

hundreds or thousands of static balance trials is not practical. A possible solution may

be few-shot classification, a sub-domain of machine learning, which was initially devel-

oped to address this need for large amounts of training data (Fe-Fei et al., 2003; Fei-Fei

et al., 2006; Yip and Sussman, 1997). Few-shot classification allows for new objects to be

learned from very limited data as humans naturally do Koch (2015); Lake et al. (2011). As

mentioned by Vinyals et al. (2016), ‘a child can generalize the concept of “giraffe” from a

single picture in a book – yet our best deep learning systems need hundreds or thousands

of examples’. A brief overview of employing neural networks in the context of classification

may be beneficial to better understand few-shot classification.

Few-shot classification is dependent on the input data being analyzed, and the classifi-

cation criteria (e.g.: person, symbol, or some other categorical class). For example, in the

current study, balance performance data is being classified by the individual whose balance

is being assessed. As such, the individual is the class and the number of classes (nclass) is

the number of people participating in the study. Within each class, a specific number of
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trials provide opportunities, or shots (nshot), to train the neural network to learn that new

class.

This training process is iterative and consists of three main steps. First, typical neural

networks will output a predicted value, or hypothesis, based on a given input and the

current state of the neural network – this is called a ‘forward pass’. This ‘predicted’ value

is then compared to a ‘true’ value using a loss function. Finally, the magnitude of this loss

function then informs how much the weights and biases of the neural network need to be

refined in a process called ‘back-propagation’. These steps are repeated until some metric

(e.g.: loss, accuracy) plateaus indicating that training of the network has been completed.

The newly trained network is evaluated using a previously unseen dataset. This dataset,

while similar in content to the initial dataset, has been held out to provide a measure of

how well the network generalizes on novel, external datasets. Together, these are called the

training and testing datasets respectively. A similar process is used in few-shot learning

albeit with some differences.

Two main features distinguish the training of a few-shot classification algorithm from

a traditional neural network. They are the concept of episodes, and, the loss function.

Vinyals et al. (2016) and Snell et al. (2017) provide a thorough guide to episode con-

struction. Briefly however, each episode contains both a support and query set that are

subsampled from the training set. The support set consists of a subset of the nclass classes,

nway, with nshot trials per nway class. The query set contains at least 1 trial for each class

chosen in the support set. Snell et al. (2017) stated that ‘the use of episodes makes the

training problem more faithful to the test environment and thereby improves generaliza-

tion’. Similar to a typical neural network, each episode undergoes a forward pass through

the network. This forward pass produces a higher-dimensional embedding for each of the

nshot trials in the support set. These embeddings are then averaged resulting in a represen-

tative embedding for each of the nclass classes, called a prototype. This newly developed

prototype is then compared with the trials contained in the query set. The greater the

distance between the prototypical representation and the query trials, then the greater the

refinement of the weights and biases that are backpropagated across the neural network.

This loss function, called Prototypical Loss, was developed by Snell et al. (2017) and was

used in conjunction with episodic learning to classify symbols with state-of-the-art levels
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of accuracy. It is the desire of this study to employ the hallmarks of few-shot learning,

episodic learning and the prototypical loss function, to address the limited amount of

balance performance data to identify individuals by their balance performance.

The primary purpose of this study was to determine whether individuals can be cor-

rectly identified by their balance performances alone. More specifically, could a neural

network produce a prototype specific to an individual’s balance performance such that,

when provided with a ‘mystery’ balance performance belonging to one of a discrete num-

ber of people, the mystery signal could be accurately attributed to the person who produced

the prototype. A long-term, potential use case of this research is to assess an individual’s

balance performance, and thus their neurological and muscular systems, within a clinical

environment. Given this clinical scenario, it is important to know what task condition a

patient should perform, whether to measure their balance performance kinetically using

force plates or kinematically using IMUs, and whether those measurements of balance per-

formance should be reduced into summary measures or remain as time-series data. The

best combination of these factors, and those that would be suggested for a clinical use,

would be selected on how accurately individuals could be identified by their balance per-

formance. Moreover, the current study collected a limited number of trials for each person

in manner that mimics the limited access that a clinician has to a patient. This neces-

sitated the use of few-shot classification, specifically the use of episodic learning and the

prototypical loss function. The longer-term goal of this work is to advance data collection

and analysis protocols to improve the potential diagnostic/clinical utility of balance control

assessments.
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5.2 Materials and Methods

5.2.1 Subjects

Participants were recruited from a university population. Individuals were excluded from

the study if they: 1) were younger than 18 years of age or older than 35 years of age, 2)

had any history of significant upper and/or lower limb injuries, 3) reported any significant

balance control problems, 4) had any history of neurological impairments (previous brain

injury, epilepsy, multiple sclerosis, etc.), or 5) were taking anti-anxiety, anti-depressants or

anti-psychotic drugs (whether prescribed or not). Seventy-two healthy individuals partic-

ipated in this study. Anthropometrics (height, weight, foot size, etc.) and vision quality

(Snellen Eye Test and Mars Contrast Sensitivity Test) were assessed prior to completion

of the static balance trials (Table 5.1). The experimental procedures were performed in

accordance with the declaration of Helsinki and approved by the Research Ethics Board

of the University of Waterloo.
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Table 5.1: Summary of demographic, anthropometric, and vision quality information of
study participants.

Demographics

Gender Males: 35; Females: 37

Anthropometrics Mean ± Std. Dev. [Min. - Max.]

Age 21.83 ± 3.5 years [18 - 34 years]
Height 169.74 ± 9.90 cm [152 - 199 cm]
Weight 70.86 ± 13.87 kg [45.8 - 103 kg]
Body Mass Index (BMI) 24.21 ± 3.32 kg·m−2 [18.83 - 32.51 kg·m−2]
Left Foot Length 25.0 ± 2.0 cm [21.0 - 30.7 cm]
Right Foot Length 25.1 ± 2.0 cm [20.5 - 31.0 cm]

Vision Quality Mean ± Std. Dev. [Min. - Max.]

Snellen Eye Test
- Left eye occluded 22.7 ± 10.1 [13 - 70]
- Right eye occluded 24.2 ± 10.3 [13 - 70]
Mars Contrast Sensitivity Test (Binocular)

1.74 ± 0.05 [1.56 - 1.80]

Miscellaneous

Dominant Foot Left 3; Right 69
Front foot in tandem stance Left 30; Right 42
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5.2.2 Experimental design

Participants were asked to stand with their hands by their sides and with each foot placed

on one of two force plates. Two experimental factors were manipulated: 1) Base of Support

(BOS) and 2) Vision (VIS) (Figure 5.1). BOS was manipulated by having the participants

stand in one of two foot-placements: either heels placed 17 cm apart at an angle of 14◦

(standard) (McIlroy and Maki, 1997), or where the medial borders of the feet touch (nar-

row). VIS was changed in one of two ways, with the eyes either being open (EO) or closed

(EC). The experiment was block randomized with the order of the four conditions was ran-

domly assigned within a block of trials. Five blocks were completed for a total of twenty

trials for each participant across the four conditions with each trial being 30 seconds in

duration.

Figure 5.1: The quiet standing task conditions of Study 3. The task conditions are binary
combinations of two experimental factors, Base of Support (BOS ) and Vision (VIS ). Each experimental
factor has two levels, BOS : Standard Width and Narrow Width; VIS : Eyes Open and Eyes Closed. The
result is four task conditions under which a participant must quietly stand: Standard Width, Eyes Open
(SEO); Standard Width, Eyes Closed (SEC); Narrow Width, Eyes Open (NEO); and Narrow Width, Eyes
Closed (NEC).

131



5.2.3 Data acquisition

Body movement during each static balance trial was measured simultaneously using force

plates and body worn, inertial measurement units (IMUs). To sync the force plate and

IMUs, both measurement devices were connected to a computer, allowing for the LabView

software (National Instruments Corporation, Austin, TX, USA) to emit a synchronizing

pulse consisting of a single 3 V, 200 ms square wave.

Force plates

The center of pressure of each foot was calculated using the forces and moments collected

from each of two force plates (AMTI, Watertown, MA, USA). For each trial, force plate

data was amplified (gain: 1000), analog low-pass filtered using two-pole low-pass 1000-Hz

filter (built in AMTI MSA-6 MiniAmp amplifier), sampled at a rate of 200 Hz using a

customized LabVIEW software, and stored for subsequent analysis. No additional filtering

was performed.

IMUs

The body movement of the study participants was quantified using three body worn IMUs,

specifically the Shimmer3 Bridge Amplifier+ IMUs (Shimmer Sensing Inc., Dublin, Ire-

land). Each IMU contained a tri-axial accelerometer, gyroscope and a magnetometer

which can measure nine degrees of freedom (9-DOF). The IMU used in this study mea-

sured 6-DOF using the accelerometers and gyroscopes only. Each IMU collected data at a

rate of 102.4 Hz, as per manufacturer-specific regulations, for 35 seconds. For each trial,

data from each IMU was saved locally onto an SD card and later uploaded via Shimmer’s

proprietary software, ConsensysPro, to a secure hard drive to ensure privacy of the par-

ticipant’s information. It should be noted that although the IMUs used in this study were

capable of collecting both accelerometer and gyroscope data, gyroscope data was not col-

lected for all participants. As such, only the only accelerometer data was analyzed in this

study. No additional filtering was performed.
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Each IMU was placed on the body at specific locations: the head (Head), the sternum

(Sternum), and the lumbar region of the lower back (Lumbar) (Figure 5.2). According

to Ghislieri et al. (2019), these locations are used in 2.1%, 14.9% and 68.1% of the 47

articles included in their systematic review respectively. For example, IMUs placed on the

lumbar region of the back have been used to approximate the movement of the subject’s

whole-body COM (Ghislieri et al., 2019). The IMUs located at the head and sternum

were used to examine the multi-link movement of the body during quiet stance. Any

relationships between the seven possible combinations of the three IMU locations were

explored through subsequent analyses. Experimenters utilized anatomical landmarks to

ensure reproducibility of IMU placement across participants. For example, before placing

the IMU on the waist, both the left and right posterior superior iliac spines were palpated.

An imaginary line was drawn between these points and an IMU was placed at the middle

of this line. The general orientation of each IMU at each location remained consistent

between subjects and trials. Any corrections required to standardize the orientation of the

IMUs across individuals were accomplished mathematically.

Although every effort was made to standardize the placement of the three IMUs on

the participants, human error is unavoidable which could result in the local coordinate

systems of each IMU being misaligned between participants. This error was controlled

by pre-processing the raw IMU data. First, the raw linear acceleration data from each

IMU was oriented with respect to gravity according to Moe-Nilssen (1998). While the

Moe-Nilssen (1998) algorithm can align the vertical axis of the IMU with respect to the

gravitational vector and thus allow it to be standardized between subjects, the anterior-

posterior and medial-lateral axes may still be misaligned between subjects. Cain et al.

(2016a,b) were used an inspiration to standardize these latter axes. Briefly, it was first

assumed that the primary axis of movement during a static balance trial was the anterior-

posterior axis (Prieto et al., 1996). Under this assumption, Principal Component Analysis

was applied to the raw COP to determine the primary and secondary eigenvectors, known

as the first and second principal components, which then correspond to the properly aligned

anterior-posterior and medial-lateral axes respectively.
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(a) IMU placement on the anterior (Left) and posterior (Right) surfaces of the body.

(b) Lumbar (c) Sternum (d) Head

Figure 5.2: Location of IMUs on the participant’s body. IMUs were place on the (b) Lumbar,
(c) Sternum, and (d) Head. A review by Ghislieri et al. (2019) found that these sites were used in 2.1%,
14.9%, and 68.1% of balance studies, respectively. Placing an IMU on the Lumbar is used as a proxy for
the COM.
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5.2.4 Data reduction into summary measures

The time-series data recorded from force plates and IMUs was reduced in accordance

with linear and non-linear analytical algorithms whose use has been previously established

(Study 1 and Study 2). Data reduction techniques provide a summary measure that is easily

interpretable by researchers, allowing them make comparisons between task conditions,

populations of people, or, in the case of this study, between individuals themselves.

5.2.5 Neural Network

A neural network was used to identify individuals by their balance performance alone.

There were two aspects of the neural network that were of particular importance in this

study: the input layer, and the architecture of the network.

Input Layer

The input to the neural network can be categorized as being from four distinct datasets.

These datasets are a combination of the two Measurement Modalities (i.e., kinetic data

recorded from force plates, or kinematic data recorded from IMUs) and from the two

Measurement Formats (i.e., a summary measure, or time-series data). For example, if the

static balance trial was recorded using force plates and the recorded data was then reduced

using summary measures, then the Measurement Modality would be ‘Force Plates’ and the

Measurement Format would be ‘Summary Measure’. As such, the different combinations

of Measurement Modality and Measurement Format can be compared to see which one

is more capable of identifying individuals by the balance performance. Further, within

each combination of Measurement Modality and Measurement Format, it is possible to

also determine the effect of the specific factors using a full-factorial design (Table 5.2).

For example, within the aforementioned ‘Force plate, Summary Measure’ dataset, there

are 168 smaller datasets consisting of the balance performances related each of the four

task conditions, three combinations of axes (AP alone, ML alone, and AP-ML combined),

and the fourteen summary measures. The breakdown of the four large datasets and the
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composition of their sub-datasets is given in Table 5.2. Each of these sub-datasets contains

every participant’s balance performance as analysed in accordance with the classification

of that sub-dataset.

The structure of the input layer was dependent on measurement format. For example,

if the balance trial was reduced to a Summary Measure, then the input layer would consist

of a single node representing a single balance performance from a single person. However,

if the raw Time-series data was used then then the number of nodes within the input layer

would be equal to the number of time steps in that particular trial. The choice of whether

to use Summary Measures or Time-series data as the input to the neural network dictated

the architecture of the network.

Architecture

The architecture of the neural network was dependent on the input format, if Sum-

mary Measures then a multi-layer perceptron (MLP), or, if Time-series data then a 1-

diminensional convolutional network (1D ConvNet). Specifically, the MLP consisted of

Table 5.2: Composition of sub-datasets for each combination of Measurement Modality and
Measurement Format.

Measurement Modality
Measurement Format

Summary Measures Time-series Data

Force Plate

BOS (2 levels) BOS (2 levels)
VIS (2 levels) VIS (2 levels)
AXIS (3 levels) AXIS (3 levels)
Summary Measure (14 levels)
Total: 168 sub-datasets Total: 12 sub-datasets

IMU

BOS (2 levels) BOS (2 levels)
VIS (2 levels) VIS (2 levels)
AXIS (7 levels) AXIS (7 levels)
IMU Location (7 levels) IMU Location (7 levels)
Summary Measure (9 levels)
Total: 1764 sub-datasets Total: 196 sub-datasets
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three, 64 node dense layers with Rectified Linear Units (ReLU) non-linear activation func-

tions (Nair and Hinton, 2010) and batch normalization occurring at each layer (Ioffe and

Szegedy, 2015). The 1D ConvNet used two 1D convolutional layers that employed 8 filters

(kernel size = 200, stride = 4). In addition to the ReLU activation function and batch

normalization, 1D Max Pooling (size = 2) was also used. Regardless of MLP or 1D Con-

vNet, the static balance trial was represented in a 128-dimensional space following forward

propagation.

Training

The training, validation, and test sets were segregated by measurement modality (e.g.:

force plates or IMUs), and measurement format (e.g.: summary measures or time-series

data).

For training, nWay classes (e.g.: 5 or 20) were randomly chosen from the training set,

from which, nShot trials (e.g.: 1, 2, or 3) were randomly selected for the support set. Two

trials were sequestered for the query set. A forward pass produced prototypes for each

of the nWay participants using the nShot trials in the support set. Prototypes were also

generated for each trial in the query set. The prototypical loss function calculated the log-

likelihood of a Euclidean distance metric between prototypes of the same class. The loss

was backpropagated using stochastic gradient descent with adaptive momentum (Adam:

β1 = 0.9, β2 = 0.999, learning rate= 10−5) in accordance with Kingma and Ba (2015);

Snell et al. (2017). Early stopping (patience = 15, ∆ = 1%) was used to avoid overfitting.

Testing

Testing was conducted using a held-out dataset. Once again, nWay participants (e.g.: 5

or 20) were randomly chosen from the test set, from which, nShot trials (e.g.: 1, 2, or 3)

were randomly selected for the support set. Two trials were sequestered for the query set.

Accuracy was calculated by which of the nWay participants that each trial in the query set

belongs to. Given a uniform distribution, the probability of selecting the correct class by
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random chance when nWay = 5 is 20%, and when nWay = 20 is 5%. Classification accuracy

was averaged over 1000 randomly generated episodes as per Snell et al. (2017).

5.2.6 Statistical analysis

Primary Objective: Can individuals be identified by their balance performance

alone?

For each level of nWay classes, a one sample t-tests was used to determine to whether each

of the four datasets produced classification accuracies greater than those associated with

random chance. Collapsing the four datasets into one allowed for a two-way ANOVA to

determine the effect of the factors, Measurement Modality and Measurement Format on

classification accuracy (α = 0.05)

Secondary Objective: What parameters provide the best classification accura-

cies?

A multi-factor ANOVA, specific to each of the four datasets, was conducted to evaluate

the effect of BOS, VIS, AXIS, and if applicable, IMU Location and nShot in an effort

to determine the parameters could be used to best identify individuals by their balance

performances.
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5.3 Results

5.3.1 Primary Objective: Can individuals be identified by their

balance performance alone?

The four datasets, as defined by their combination of Measurement Modality and Mea-

surement Format, were able to identify individuals by their balance performance with

accuracies greater than random chance (Figure 5.3). The greatest accuracies were found

using the combination of Force plate, Time-series data (Table 5.4) (nWay = 5: M =

69.62%, SD = 12.36%, [50.20%−92.08%]; nWay = 20: M = 39.43%, SD = 16.51%, [21.39%−
74.69%]) which were greater than random chance (nWay = 5: t(35) = 24.10, p < .001;

nWay = 20: t(35) = 12.51, p < .001). Classification accuracies obtained using Force plate,

Summary Measures data (Table 5.3) (n)Way = 5; M = 33.87%, SD = 9.99%, [13.27%−
64.43%]; nWay = 20; M = 13.63%, SD = 6.00%, [1.97% − 34.34%]) were also greater than

random chance (nWay = 5: t(167) = 18.01, p < .001; nWay = 20: t(167) = 18.64, p <

.001). Classification accuracies obtained using IMU, Summary Measures data (Ta-

ble 5.5)(nWay = 5: M = 44.14%, SD = 14.44%, [10.18% − 86.04%]; nWay = 20: M =

13.63%, SD = 6.00%, [1.97%− 34.34%]) were also greater than random chance (nWay = 5:

t(1763) = 70.19, p < .001; nWay = 20: t(1763) = 64.96, p < .001). Classification accura-

cies obtained using IMU, Time-series data (Table 5.6)(nWay = 5: M = 29.27%, SD =

5.23%, [18.90% − 52.12%]; nWay = 20: M = 10.24%, SD = 3.39%, [3.46% − 27.86%])

were also greater than random chance (nWay = 5: t(587) = 42.94, p < .001; nWay = 20:

t(587) = 37.42, p < .001).

The choices of Measurement Modality and Measurement Format by which data was

input to the neural network is important. There was a main effect of Measurement Modality

(F(1,5107) = 8.54, p = .003) where Force Plates increased identification accuracy by 1.56%. A

main effect of Measurement Format (F(1,5107) = 552.62, p < .001) where Summary Measure

data was associated with a 7.88% increase in identification accuracy. There was also a

significant interaction (F(1,5107) = 890.49, p < .001) whereby the Summary Measures of

Force Plate data performed 6.5% worse than IMUs, but when the Time-series data was

used then Force Plates performed 34.8% better than IMUs.
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Figure 5.3: Classification accuracies organized as combinations of the factors, Measure-
ment Modality & Measurement Format. The highest classification accuracies were obtained using
Time-series data collected from force plates. Nonetheless, all combinations of data were able to identify
individuals by their balance performance with accuracies greater than random chance.
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5.3.2 Secondary Objective: What parameters provide the best

accuracies?

Identification accuracies using the Force Plate, Time-series dataset revealed numerous

main effects and interactions. A main effect of BOS (F(1,35) = 147.88, p < .001) was

observed with accuracies increasing by 13.12% in the Standard width task condition. The

choice of AXIS (F(1,35) = 228.91, p < .001) was important as accuracies measured in both

the AP, ML axes were 22.98% and 25.74% greater than those provided by the AP and ML

axes alone. A main effect of nShot (F(1,35) = 6.02, p = .006) exists where using either 2

or 3 training examples to create an individual’s balance prototypes was 3.38% and 4.37%

was better than using just 1 training example. It should be noted that there was no

improvement when 3 examples were used instead of 2. Classification accuracies decreased

significantly (F(1,35) = 783.33, p < .001) by 30.19% when the number of classes increased

from 5 to 20. VIS did not significantly affect classification accuracies (F(1,35) = 0.115, ns).

Interactions were also observed. An interaction effect was observed between BOS and

VIS (F(1,35) = 14.33, p < .001) where identification accuracies increased by 3.72% in the

eyes closed condition during standard width but decreased by 4.45% during narrow stance.

An interaction between BOS and AXIS (F(1,35) = 15.02, p < .001) revealed that accuracies

produced in the standard stance width increased by 5.77%, 13.33%, and 20.25% over

Narrow stance depending on whether the movement was measured in the AP, ML, or

both AP and ML directions respectively. A significant interaction between VIS and AXIS

(F(1,35) = 4.75, p = .015) revealed that closing one’s eyes accuracy increased by 4.29% only

the ML axis.

The choice of IMU Location had a significant effect on classification accuracy when

using both Summary Measure (F(6,1763) = 79.58, p < .001) and Time-series data (F(6,781) =

11.90, p < .001). Specifically, using all three IMUs simultaneously provided significantly

increased accuracies over all other combinations of IMUs except for when two IMUs were

located at the Lumbar and Head (p = .809).
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5.4 Discussion

The primary purpose of this study was to determine whether individuals can be correctly

identified by their balance performances alone, with an accuracy greater than random

chance using data recorded by either a force plates or IMUs, reduced to a summary mea-

sure or maintained as time-series data, and then input into a few-shot classification neural

network. The study objectively demonstrated that, regardless of how the balance perfor-

mance data was recorded or was subsequently analyzed, the identification of individuals

is possible. The level of this accuracy was dependent on numerous factors including task

condition, the choice of device used to record body movement (Measurement Modality), as

well as whether or this data was subsequently reduced (Measurement Format). Together,

these findings demonstrate that, among healthy, young individuals, balance control can be

identified as being unique to the individual.

The current study is one of the first, if not the first, to conclusively show that individ-

uals can be identified by their balance performance alone. Other studies have stratified

individuals into a finite number of classes. In these studies, individuals have been cate-

gorized by age using random forest models (Fujio and Takeuchi, 2021), by binary fall-risk

(e.g., fallers vs. non-fallers) amongst older adults using logistic regression models (Bigelow

and Berme, 2011; Brauer et al., 2000; Maki et al., 1994), multiple classes of binary fall

risk (e.g., prospective all fallers vs. prospective non-fallers, prospective single fallers vs.

prospective non-fallers, etc.) using linear discriminant analysis (Howcroft et al., 2017),

and binary fall-risk between healthy controls and persons with Multiple Sclerosis using

random forests (Sun et al., 2019). These studies, while important, only classify individuals

into two classes that were determined a priori. The current approach is not dependent

on this stratification, which highlights the novelty and vital contributions that the current

study provides to the balance control literature. Nonetheless, the aforementioned studies

do provide a glimpse as to what features are important for classification using balance

performance data.

The classification accuracies obtained in this study were dependent on a variety of

parameters. For example, accuracy was dependent on the task conditions under which

the participant performed their static balance trials with the highest accuracies associated
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with the SEC task condition. Corroboration of this finding within the body of fall-risk

prediction literature is scant when body movement is measured using IMUs, but more

extensive using force plate data. Studies that manipulated the participant’s vision, either

through a blindfold (Maki et al., 1994), or by simply closing one’s eyes (Bigelow and Berme,

2011; Howcroft et al., 2017; Fujio and Takeuchi, 2021), had increased levels of predictive

accuracy. These findings show that the lack of visual input sufficiently challenges the

balance control system to reveal subject-specific balance control features. This absence

of visual input suggests that proprioception is more important than vision in trying to

reveal subject-specific differences. In this vein, Fujio and Takeuchi (2021) showed that

manipulating an individual’s proprioception, by having them stand on foam, increased

fall-risk prediction accuracy. They also showed that affecting one’s motor output, by

reducing their base of support, decreased the fall-risk prediction accuracy; a finding which

this study can also confirm. Together, these findings suggest that sensory inputs to the

balance control system are more crucial than motor output in trying to reveal subject-

specific balance features. Future studies should elucidate which sub-systems of the balance

control differentially improve the accuracy of by manipulating the task conditions of the

static balance trial.

Other key parameters for participant identification include the choices of how to mea-

sure body movement, as well as the format by which it is input to a neural network. The

rationale of using time-series data in lieu of summary measures is to more accurately de-

scribe the body movement of the participant during a quiet standing balance trial. The

neural network can then reveal relationships within the Time-series data that established

statistical analyses may not be designed to do (Agostinelli et al., 2014; Cho and Saul, 2010;

Hornik et al., 1989). This current study found that when body movement was recorded

using force plates, the greatest accuracies were obtained when the raw Time-series data

was input to the neural network instead of the Summary Measures. However, when body

movement was recorded using IMUs, then it was Summary Measures that provided the

best accuracies. This finding was unexpected as it was originally thought that the in-

creased availability of body movement data provided by the multiple IMUs would be more

beneficial to identifying individuals than force plates. This discrepancy may be explained

by two factors – the network architecture, and the sampling frequency of the IMUs. First,
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196 different neural networks had to be trained and evaluated to explore the effect of task

conditions (4 combinations), axis of measurement (7 combinations), and IMU Location

(7 combinations). As such, the architecture of neural network was simplified to facili-

tate computation on a home computer. This architecture, while sufficient to reveal the

contributions of the aforementioned factors, may underfit the dataset thus resulting in

lower predictive accuracies. The second factor may be related to the sampling rate. In

this current study, body movement was recorded kinetically using in-ground force plates

(fs = 200 Hz) and kinematically using body-worn IMUs (fs = 102.4 Hz). The frequency

content of body movement as measured kinetically using force plates has been extensively

researched with the frequency bandwidth typically been thought to range from 0 up to 20

Hz (Nashner, 1976). This knowledge has informed the choices of sampling frequencies used

in various studies which have revealed important insights related to the frequency content

of static balance control. For example, force plate studies by Nashner (1976) established

that the contribution of the visual and vestibular sensory inputs to static balance control

can be observed in the frequency range of 0-2 Hz while somatosensory input is contained

in the frequencies greater than 2 Hz. Knowing this, Golomer et al. (1994); Golomer and

Dupui (2000) then showed that when dancers closed their eyes, they had more activity

in the higher frequency range, frequencies associated with somatosensory input, than un-

trained dancers. The immediate finding of these studies is that to maintain static balance

in the absence of visual input the contribution of somatosensory input will increase to

compensate and that the strength of this compensation can differ between individuals.

In another example, Bigelow and Berme (2011) developed a fall-prediction algorithm and

obtained their best results when the frequency-dependent measure, what they called their

‘short-term α-scaling exponent’, was incorporated into their logistic regression model. The

current study confirmed their finding by using the summary measure, αSomatosensory, to ob-

tain some of the highest identification accuracies. Together, these examples highlight the

importance of choosing an appropriate sampling frequency to not only understand sensory

contributions to static balance control, but more germane to this study, to suggest that

balance control systems may be specific to the individual. However, the frequency content

of static balance performances as recorded using IMUs has not been universally established

like it has been with force plates. This lack of consensus has led to uncertainty regarding
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the appropriate choice of sampling frequency. In a review of forty-seven static balance

control studies, Ghislieri et al. (2019) determined that the sampling frequencies ranged

from 10 Hz to 1000 Hz. Further, Reynard et al. (2019) also stated that there is ‘no clear

consensus about the optimal filtering for postural sway assessment with accelerometers’.

In many studies, it is the kinematic differences between disparate groups (e.g. healthy

controls vs. idiopathic Parkinson’s Disease) that are of importance; and since these dif-

ferences are so pronounced, the choice of sampling frequency is not of particular concern.

However, in their study of static postural stability within a healthy and active population

of young adults, Heebner et al. (2015) recorded body movement using both force plates

and accelerometers at the same sampling frequency of 1000 Hz but found it necessary to

use a higher cut-off frequency in their low-pass filter for the IMU data (50 Hz) as compared

to the force plate data (20 Hz). Moreover, Hansen et al. (2022) employed the RehaWatch,

which uses a sampling rate of 512 Hz, to explore day-to-day variability in static balance

within an older adult population. Further, Marmelat et al. (2019) examined the effect of

sampling frequency on stride-to-stride variability. Although not strictly a static balance

task, they suggested using sampling frequencies greater than 120 Hz, even up to 240 Hz,

to fully characterize kinematic measures. The Nyquist sampling theorem defines the min-

imum sampling frequency to be at least two times greater than the highest frequency in

the signal. However, as noted by Hamill et al. (1997), the use of the Nyquist sampling

theorem would ensure that the reconstructed signal would ‘contain all of the frequency

characteristics of the original signal but may not present a correct time-series represen-

tation of the signal’. Therefore, to ensure fidelity to the original signal, oversampling is

recommended to avoid aliasing errors. It has also been suggested that ‘when asking ques-

tions about movement variability, filtering and smoothing are [to be] avoided as much as

possible’ (Myers, 2016). All these findings suggest that it is imperative to use a higher

sampling rate to ensure unaliased frequency content when using IMUs to collect kinematic

data. Moreover, the use of higher sampling frequencies would ensure that somatosensory

input, the most important sensory input to the identification of individuals based on static

balance performance and which operates at higher frequencies as compared to the visual

and vestibular systems, is properly represented in the recorded data. As such, both the

simplified network architecture coupled with the possibly low sampling rate of the IMUs
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may explain the reduced accuracy observed using time-series data provided by IMUs.

As an aside, the duration of the static balance collection has not been investigated in

this study. The participant’s body of movement was repeatedly recorded in collections

lasting thirty seconds. However, in other studies participants were asked to stand, albeit

not quietly, for prolong periods of up to 30 minutes. These studies provided added insight

into static balance control (Zatsiorsky and Duarte, 1999; Duarte and Zatsiorsky, 1999).

It stands to reason that collection periods greater than the thirty seconds used in this

current study may provide the highest accuracies. On the other hand, it is also conceiv-

able that shorter collection periods may provide sufficient data to distinguish the balance

performances of individuals with a lowered, but tolerable, level of accuracy. The effect of a

collection period’s duration to possibly detect individuality in static balance performance

should be investigated in future studies.

The remaining parameters, (i.e., analytical method; axis of measurement; and IMU

Location) all complement existing literature. This study found that, when using force

plates data, Mean Velocity provided the highest accuracies followed by αSomatosensory and

COP RMS. This finding is in agreement with previous studies (Brauer et al., 2000; Bigelow

and Berme, 2011; Howcroft et al., 2017; Sun et al., 2019; Fujio and Takeuchi, 2021). It

should be noted that Sun et al. (2019) found COP Path Length to be an important feature

in their model. We prefer to use Mean Velocity since the duration of the static balance

trial can vary between research studies which will cause the Path Length value to also

vary simply due to duration of the collection period. To control for this, the Path Length

should be normalized to time which is just the Mean Velocity measure.

Moreover, prior research has been consistent in that the ML axis provides the greatest

ability to identify populations of interest (Maki et al., 1994; Brauer et al., 2000; Bigelow and

Berme, 2011). It should be noted that in the studies where AP was preferred (Howcroft

et al., 2017; Sun et al., 2019), older adults were being assessed and they have a much

higher reliance on vision than younger adults (Saftari and Kwon, 2018; Haibach et al.,

2009; Simoneau et al., 1999; Sundermier et al., 1996; Yeh et al., 2014). The current study

showed that incorporating both axes into the classification algorithm is better than a single

axis alone. This finding, if generalised to IMUs, would suggest that incorporating all axes

(e.g., AP, Vertical, ML) would provide the greatest accuracies. Interestingly, the best

150



accuracies were obtained in the Vertical axis. As suggested in a previous study (Study 2),

the Vertical axis may be a composite measure of the movement occurring within both the

AP and ML axes. Despite the neural network being capable of receive either Summary

Measures or Time-series data from all three axes, the parsimony afforded by the Vertical

axis is of demonstrable benefit to the identification of the individuals.

A benefit of using IMUs is that they can measure various body segments simultane-

ously. The current study demonstrated that an IMU at the Lumbar region produced the

highest identification accuracies regardless of if any other IMUs were used. While IMUs are

typically placed in the Lumbar region to mimic the participant’s center of mass (Ghislieri

et al., 2019), this finding in contrast to an earlier study that showed relative balance perfor-

mance across task conditions was more strongly correlated by the individual when an IMU

was placed at the Head (Study 2). Pozzo et al. (1995) and Fino et al. (2020) found that

the task conditions used in their static balance control studies, which are similar to those

employed in the current study, were not challenging enough to warrant actively stabilized

head movement. Force plate studies have also suggested that the upper body is controlled

more by the visual and vestibular systems than the somatosensory system (Amblard et al.,

1985). Combined with the fact that somatosensory-specific Summary Measures provide

some of the best identification accuracies and that somatosensory inputs more strongly

affect lower-body movements, the fact that the movement of the Lumbar region better

identifies individuals by their balance performances should not be surprising.

The purpose of this study was to determine whether individuals could be identified

by the balance performances alone. The findings showed that it is possible to identify

individuals with accuracies greater than random chance. This finding strongly suggests

the balance control system is unique to the individual. The accuracy of the classification

systems is dependent on numerous parameters. The combination of parameters that po-

tentially produces the greatest identification accuracy requires the participant perform a

static balance trial in the Standard Width, Eyes Closed (SEC) task condition. Recording

this body movement with IMUs and inputting that raw Time-series data into the classi-

fication algorithm possesses the greatest potential for identification accuracy, despite that

potential not being realized in the current study. Specifically, body movement at the Lum-

bar region and within the Vertical axis provides the best identification accuracy. These

151



parameters suggest that the sensory system, particularly the somatosensory, is more influ-

ential to static balance control than the motor output system. Future studies should aim

to expand the participant population from healthy, young adults to include older adults

and/or pathological populations. This expansion will in turn necessitate refining the neural

network, further improving identification accuracy. While previous studies (Study 1 and

Study 2) have only intimated that a balance control system is specific to an individual,

this study has proved this by identifying individuals by their balance performance alone.
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Chapter 6

General Discussion

6.1 Summary of research findings

The objective of this dissertation was to explore the individuality in the balance control

system by advancing the methods used to assess balance performance, specifically related

to steady-state control using quantitative, static posturography. The elevated incidence of

falls within the older adult population has necessitated the search for solutions to decrease

fall-risk. A potential solution may be to identify individuals, while they are still young

adults, who may be at an elevated risk of falling later in life and provide them with

targeted balance training. This potential solution, however, is dependent on whether the

balance control system of a young individual can be discerned from another. As such, the

motivation of this thesis was to explore whether balance performances, as the manifestation

of the balance control system, were specific to the individual.

Healthy, young adults, free of any neurological or neuromuscular disorders, performing a

series of static standing balance trials. Four task conditions, Base of Support (standard and

narrow) and Vision (open and closed), were performed five times, each for thirty seconds.

Study 1 investigated whether an individual’s balance performance, as recorded kinetically

using force plates, summarized using various analytical methods, and made relative to

others in the cohort, would remain consistent regardless of the degree of difficulty of the
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task. Study 1 assumed that the human body acted as a single-link, inverted pendulum so

Study 2 was designed to model the individual’s movement as a multi-link, rigid body. Study

2 investigated whether an individual’s balance performance, as recorded kinematically

using inertial measurement units, summarized using various analytical methods, and made

relative to others in the cohort, remains consistent regardless of the degree of difficulty

of the task. Additionally, Study 2 also addressed whether the body moves as a single-

or double-link, rigid-body under quiet standing task conditions. The first two studies

examined the degree of correlation of an individual’s relative balance performances across

task conditions in an attempt to reveal the uniqueness of their balance control system. A

more direct approach to evaluate individual differences in balance control was conducted

in Study 3 by employing a multi-dimensional approach using neural networks, trained

on either force plate or inertial measurement data, to identify individuals based on their

balance performance. Study 3 investigated whether individuals could be correctly identified

from within a group by their balance performances alone.

The results of these studies show a moderate to excellent correlation of an individ-

ual’s relative balance performance across task conditions (Study 1 and Study 2); indirectly

suggesting that a person’s balance performance is unique that individual. Study 3 used

multiple neural network architectures to identify individuals by their balance performance

alone. It was also found that the level of accuracy was dependent on the choice of measure-

ment modality (e.g.: kinetics from force plates, or kinematics from IMUs) and measurement

format (e.g.: summary measures, or time-series data). Together these findings suggest that

an individual’s balance control system, as manifested through their balance performances,

are unique to them and that this uniqueness can be quantified.

6.2 Contributions to the existing literature

In addition to establishing that individuality within the balance control system is quan-

tifiable, this dissertation has contributed to the existing body of literature in a variety

of ways. Study 1 extended the established database of normative values of balance per-

formance using summary measures that non-linear, time-domain and frequency-domain

154



summary measures. The first two studies employed a linear mixed-effects model where the

factor, Participant, was a random effect while all others were held as fixed effects. By do-

ing so, the performance of each individual was normalized to the population for each task

condition of quiet standing. The degree of correlation of relative balance performance for

each individual across task conditions was used as a proxy of individuality in the balance

control system. To the author’s best knowledge, the use of correlational analysis to suggest

individuality within the balance control system is a novel contribution to the established

body of balance control literature.

The strength of correlations found in Study 1 and Study 2 and the identification ac-

curacies in Study 3 were dependent on the task conditions under which the static balance

trial was performed, the measurement modality by which body movement was recorded, as

well as the way this body movement was subsequently analyzed. This dissertation was able

to suggest which combination of factors would best reveal the differences in balance per-

formances between people. Clinicians and researchers may refer to this thesis and choose

the appropriate factors given their particular experimental setup.

A secondary objective of Study 2 was to examine whether the body acts a single-link,

inverted pendulum during quiet stance. Previous studies have established the movement

about the hip (hip strategy) exists but only in contexts where an external perturbation

is applied or if the base of support is sufficiently restricted to limit ankle strategy. As

such, the use of the single-link, inverted peneldulm has been suggested to be sufficient to

model body movement during a quiet standing trial. Creath et al. (2005) and Fino et al.

(2020) have separately disputed this suggestion. Using coherence analysis in conjunction

with 1D statistical parameter mapping (1D-SPM), it was found that the upper body move

anti-phase with the lower body at frequencies up to 10 Hz. While appealing for its relative

simplicity and ease of interpretation, the use of single-link, inverted pendulum model may

be limited in describing the movement of the body during quiet standing trials.

Previous studies, including those be Howcroft et al. (2017) and Sun et al. (2019), have

employed non-linear analyses to stratify people based on their balance performances. As

stated in the discussion of Study 3, these studies only classified individuals into a discrete

number of classes that were determined a priori. Study 3 employed a neural network to

identify individuals by their balance performance alone irrespective of the number people
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that needed to be identified. It is acknowledged that the neural network used in this study

could be retrained on a much larger and diverse dataset, as well as its hyperparameters

being refined to improve identification accuracy. However, the fact remains that individuals

could still be identified at an accuracy greater than the probability provided by a uniform

distribution by their balance performance alone.

6.3 Limitations and future research

The desire of this dissertation was to explore the individuality in balance control system.

Direct analysis of the neuromuscular system would require either invasive electrophysio-

logical methods, or imaging techniques that lack temporal or spatial resolution. In lieu of

such methods, one’s balance performance was analysed as a proxy of their balance control

system. Existing balance control literature provides examples of perturbations acting as a

stimulus to exhibit a response from the balance control system. The use of the quiet stand-

ing protocol to assess reactive balance control is an advantage of this current dissertation

as it minimizes any confounding effects from the movement control system. However, the

discrete number of task conditions under which the balance performance was measured is

limitation of the current dissertation as not all conditions challenge the balance control

system sufficiently. Further, the presence of the individuality inherently suggests that fu-

ture studies would do well to challenge each of the vestibular, visual, and somatosensory

systems to further tease out differences in an individual’s balance control system.

The direct analysis of the balance control system via analysis of the individual’s balance

performances is dependent on the fidelity of the measurement of the body’s movement

during the quiet standing trials. Study 1 measured body sway kinetically using force

plates. Subsequent analysis assumed body movement modelled as a single-link, inverted

pendulum. Study 2 confirmed the findings of Creath et al. (2005) and Fino et al. (2020)

that body movement during quiet stance is better modelled as a multi-link, rigid body.

However, it only increased the number of measured segments from one to three. As shown

in the Study 3, identification accuracy was highest when multiple kinematic summary

measures were used. This suggests that the use of multiple independent measures of body
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movement provides a more fidelic representation of the body. It is suggested the future

studies continue to increase this fidelity by increasing the number of segments that are

accurately measured. For example, motion capture technology can record the position of

each body segment during a variety of dynamic movements. Unlike the IMUs used in the

current thesis that measured three body segments, motion capture technology has been

used to measure the kinematics of as many as thirteen body segments. Increased fidelity

in the measurement of body segment kinematics would allow researchers to know where

and when an individual’s body segments are located. While the purpose of this thesis is to

identify individuality within balance performances, a more thorough understanding of the

manifestation of this individuality in balance control is also crucial. Increased kinematic

fidelity using motion capture technology would allow for individual’s whole-body COM

to be precisely determined as well as the COM of each of their segments. When used in

concert with force plates, a thorough understanding of movement control may be gleaned

by employing either forward or inverse dynamics solution dependent (their used being

dependent on the specific question asked). Together, researchers and clinicians would have

more precise information to help understand why certain control strategies (i.e.; ankle vs.

hip) would be employed to maintain balance.

The fidelity of the body movement recordings during a quiet standing trial was also

hampered by the reduction of the time-series data into a summary measure. Summary

measures facilitate the comparison of individuals, task conditions, etc. However, the cor-

rect choice of summary measure is crucial to how well the balance control is assessed. For

example, the degree of correlation of the relative balance performances within Study 1 and

Study 2 were dependent on the choice of summary measure. Study 3 also showed that

identification accuracy was dependent on the choice of summary measure used. However,

when kinetic data from force plates were input in the neural network, identification ac-

curacies were highest when the time-series data was used. This implies that information

crucial to distinguishing individuals is lost during the data reduction process. However,

when the kinematic time-series data from the IMUs were input to the neural network, the

identification accuracies did not increase suggesting that ground reaction force informa-

tion was more identifying than kinematic data from specific body segments. As stated

within the discussion of Study 3, it is possible that the sampling rate of the IMUs may
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be a limitation of the study. Ghislieri et al. (2019); Heebner et al. (2015); Hansen et al.

(2022); Marmelat et al. (2019) may, in combination, suggest that the detection of kinematic

changes using IMUs during static balance trials may require sampling frequencies greater

that the 102.4 Hz used in the current thesis. What that frequency should be is unclear but

the 120 Hz or 240 Hz suggested by Marmelat et al. (2019) may be a good starting point.

Moreover, while many studies have explored the contribution of the visual, vestibular, and

somatosensory system to balance control within the frequency-domain, these analyses have

been conducted on data collected kinetically at the feet using force plates. It is suggested

that future work explore the frequency-content of the kinematic data collected at various

body segments during a quiet stance trial. This information could inform subsequent stud-

ies as to an appropriate sampling frequency, as well as, to characterise the kinematics of

these distinct segments with the intent to hopefully reveal any person-specific differences

in balance control.

The rationale for focusing on healthy young adults was to reduce the contribution of

between-subject variability that may arise from impaired control that would occur among

older age groups or those with varying some degrees of pathology (Bunn et al., 2015; Do-

nath et al., 2016; Elgohary, 2017; Ickenstein et al., 2012; Ramdharry et al., 2006; Springer

et al., 2007; Termoz et al., 2008). This was to ensure that any differences between indi-

viduals in their balance performances could be associated with differences in the natural

development of their balance control system such as through exposure to balance train-

ing, physical activity, or cognitive training, but not due to the development of a pathology.

This lower inter-individual variability, healthy as compared to disordered differences, would

make it more difficult to identify individuality within the balance control system. The ben-

efit being that if individuality does exist in the balance control systems of a healthy, young

adult population, then it should exist in other populations. In Study 3, a prototypical

representation of an individual’s balance control system was generated using their balance

performances collected from a series of static balance trials. The highest identification

accuracies were obtained when the prototype was generated from multiple balance perfor-

mances. This study simplified the creation of an individual’s overall prototype by taking

the mean of the prototypes created from each trial. It should be noted that the individ-

ual’s prototype does not contain a measure of inter-trial variability. While perhaps not a
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meaningful simplification when using a healthy, young adult population, disregard of intra-

individual (inter-trial) variability may be more important when the techniques of Study 3

are applied to older adults or those with disordered balance. Multiple studies have shown

that older and/or pathological populations have increased intra-individual variability dur-

ing static balance trials D’Hondt et al. (2011); Hackney and Cinelli (2013); Jenni et al.

(2011); Netz et al. (2019). Together, this may affect the ability of the neural network of

Study 3 to generate a prototype that precisely represents the balance control system of a

someone outside the healthy, young adult population. A possible solution that currently

exists would be quantify the variance associated with a prototype derived from multiple

balance trials. Fort (2017) expounded on the original prototypical network by Snell et al.

(2017) by developing a Gaussian prototypical network that represents the variance through

a normal distribution. As such, it is suggested that future studies expand their research

population from healthy, young adult population to those of various ages and pathological

conditions using a prototypical network, something similar, that also incorporates a mea-

sure of variance. By generating prototypes of all these individual’s balance control system,

it may be possible to cluster individual’s by known factors (i.e., age, pathological status,

etc.) or by as yet unknown factors. This clustering technique may allow future researchers

to cluster individuals into groups (i.e., pathology) that were previously unknown to the

individual. This newfound information could allow for a confirming diagnosis that provides

access to a therapeutic treatment.

An early motivation of this thesis was to be able to develop a technique or procedure for

the early identification of individuals with balance control that may put them at increased

future fall-risk, as they age. The findings of this thesis suggest that individuality exists

within the balance control system. However, no studies have assessed the ‘quality’ of

an individual’s balance performance so it is not presently possible to associate those with

potentially poorer balance control with actual differences in control that may be associated

with difficulty in control of upright stability. Moreover, this thesis has not established a

relationship between balance performance and health status could be accomplished through

repeated measurements of the same individual over the course of decades. This long-term

study would allow the trajectory of an individual’s balance control system, as expressed

as their prototype, to be charted. This could allow researchers or clinicians to classify
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an individual’s balance control system as belong to a healthy, young adult cluster, or

belonging to a more pathological cluster. An extension of this thought would be the

possibility of tracking the transition from a healthy cluster to a pathological one. This

tracking could allow for the early identification of pathologies while still in their prodromal

stage. Unfortunately, this type of longitudinal study would be expensive and would not

bare fruit for numerous years. A more feasible, short-term study would be cross-sectional

in nature. In such a study, people of various ages and pathological statuses, or cognitive

ability. The data provided by the cross-sectional studies would allow balance performances

to be clustered by their quality and, possibly, by their underlying etiology. Unlike the

aforementioned longitudinal study, the trajectory of an individual’s balance performance,

and by proxy their balance control system, would not be calculated. Nonetheless, a clearer

relationship between balance performance and the health status of the individual would

be developed.

6.4 Implications

This dissertation’s finding that individual balance control is unique to the individual and

this uniqueness is quantifiable provides a foundation for future research into individualized

healthcare. Snowdon et al. (1996) established in his studies of Wisconsin nuns that an

older adult’s cognitive function and degree of dementia may be predicted by differences

demonstrated as young adults. Separately, Katzman et al. (1989) identified that individu-

als with certain physical characteristics, specifically a larger brain volume, were provided

with a ‘buffer’ protecting them from exhibiting symptoms of Alzheimer’s disease. Stern

(2002) later termed this buffer as a ‘cognitive reserve’. Together with the findings of the

current dissertation, there is mounting evidence to hypothesize that individuals with ‘bet-

ter’ balance control as young adults may be protected from elevated levels of fall-risk as

they age. It must be reiterated that this merely a hypothesis at the current moment in

time. It is suggested that longitudinal studies be conducted to assess how an individual’s

balance control system continues to evolve over the course of their life. Cross-sectional

studies could be conducted to determine whether individuals cluster by age, or by pathol-

ogy. By doing so, it may be possible to chart the balance control system’s capacity over the
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course of individual’s life. As such, it may be possible to predict at a young age whether an

individual’s balance control system will develop in one of a healthy, older adult or some-

thing pathological. These statements are a long way from being realized but they are all

dependent on the individuality of balance control being quantifiable, the foundation which

this dissertation provides.

This dissertation’s ability to quantify individuality within the balance control system

begs the question – what aspects of the balance control system actually differ between peo-

ple? Possible characteristics of an individual that may account for differences in balance

performances between healthy, young adults may involve differences in anthropometrics,

their ability to detect and process sensory input, the central nervous system’s integra-

tion of this information, and/or neuromuscular system. Differences could also be related

to unique person-specific differences in CNS state variables that can be associated with

balance control testing, and task performance more generally, such as allocation of atten-

tion (Lansman and Hunt, 1982; Mitko et al., 2019). For example, Alonso et al. (2012)

examined the relationship between various anthropometric measures and static postural

control. They found in the eyes open condition that an individual’s height explained 12%

of the sway in the ML direction. This increased to 18% in the eyes closed condition when

both their height and area of their base of support were used. As such, more than 80%

of an individual’s movement in the ML direction can be explained by non-anthropometric

factors. The density and sensitivity of the various sensory receptors can vary between

people resulting in those sensor’s ability to detect the position and movement also being

different between people. Further, Peterka (2002) determined that the relative weighting

of the sensory modalities that contribute to balance maintenance can change under certain

balance conditions. Their description of these relative weights revealed variation between

individuals, albeit small, thus providing a source of differentiation between individuals in

their ability to maintain balance. Another source of variation is derived from the neuro-

muscular system’s ability to integrate sensory input and then produce appropriate motor

responses. For example, individuals who have been exposed to physical activity have an

altered balance performance as compared to sedentary controls (Donath et al., 2013). Dif-

ferences in passive and active force generation capacity may also be linked to differences in

COP responses during standing. The relationship between ankle muscle strength and static
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balance control has been documented in older adults (Liu et al., 2021; Svoboda et al., 2019;

Walsh et al., 2022) though it is not clear if such differences would exist within health young

adults. Together, these factors and their many interactions suggest a possible explanation

as to why the balance performance of individuals would differ and be distinguishable.

Similar to the differences between people in respect to cognitive reserve (Katzman et al.,

1989; Stern, 2002, 2009), the source for these individual differences may arise from genetics

and/or from lifestyle/environmental factors. Genetics provide the initial conditions from

which an individual develops their balance control system but many of the aforementioned

factors can be modified by an individual’s interaction with their surrounding environment.

While anthropometrics and possibly sensory density may be predetermined by genetics (Bo-

durtha et al., 1990; Chatterjee et al., 1999; Dupae et al., 1982; Fernández-Rhodes et al.,

2022), experiencing various task conditions and exposure to physical activity can improve

one’s balance control in a variety of ways (Hammami et al., 2014; Inness et al., 2015; Mans-

field et al., 2018; Ricotti, 2011; Thompson et al., 2017). For example, increased physical

activity or balance training can increase the amount of force that a muscle can produce,

reduce co-contraction of antagonist muscles (Gatts and Woollacott, 2006), refine postural

control strategies (Nagy et al., 2007), as well as improve memory and spatial cognition

(Rogge et al., 2017). Most intriguing is the possibility that training reactive control (the

underlying CNS transformation of sensory inputs to balance responses) may improve the

CNS network and influence a ‘balance control reserve’. Impact of training/environmental

exposure on balance control has been revealed for balance control in younger adults (Dun-

can et al., 2016; Michalska et al., 2018). This may have implications to activities and

training that may be done in younger adults as a potential means of slowing the impact

of future age or disease-related decline in balance control. However, an essential next step

is to try and isolate the specific differences in control that may account for theses between

subject differences in balance control among healthy, young adults.

The ability to identify a particular individual from amongst a group of individuals has

applications far beyond the balance control system and decreasing fall-risk. This current

thesis explored individuality in the balance control system by manipulating static balance

trials. Having a participant perform dynamic movements would allow investigators to

also evaluate dynamic stability and movement control. This becomes important when
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examining individuality in such applications as professional sports. Each year, NFL teams

choose approximately 260 of the top collegiate football athletes to become professionals.

Each of the 32 football teams gets an opportunity to select eight of these players at the

annual NFL Draft. As such, it is imperative to choose players that will benefit the team

in the upcoming seasons. To aid in these decisions, the National Football League holds

an annual event for invited collegiate athletes in advance of draft day. This event, called

the NFL Combine, allows teams to evaluate these athletes on specific metrics by having

them perform standardized tests. For example, to assess overall strength an individual

performs as many 225 lb flat-bench, barbell presses as possible, with the total number of

repetitions then compared to the other players in the draft. Another test measures the

time taken to complete a 40-yard dash and is designed to assess the speed of a player.

However, the validity of such a test has been called into question as players rarely have to

run 40 yards in a game (Tatum, 2009). Other time-based measures, including acceleration

and highest instantaneous speed, may be more applicable to the game of football than a

simple time-to-completion measure. Moreover, the way an individual moves during the

dynamic movement task (i.e., their kinematics) may also be of importance to the teams.

The 3-Cone Drill and the 20-Yard Shuttle are two other events at the NFL combine

that are designed to test the speed, agility, and balance of the participant. These events

require the participants to complete a course as quickly as possible, but in doing so, they

also require the person to change direction multiple times. Currently, a time-to-completion

metric is used to evaluate players, but a more fulsome analysis of the dynamic movement

could provide information that is valid in the context of the football game. The ability to

change direction quickly requires precise control of one’s body as the velocity of its centre of

mass must be manipulated in order to both maintain balance as well as maximize athletic

performance. Instead of a simple time-to-completion value, the use of motion capture to

measure the various segments of the body. This would allow for a kinematic analysis of

the athlete’s dynamic balance control and to be precisely compared to other athletes.

This kinematic analysis could be applied to football players who either are currently

playing, or, who have played in the NFL. Analyzing the combine performances of these es-

tablished to quantify their kinematics, dynamic balance control, and other measures, may

allow for the prediction of what type of player the current prospects could eventually be-
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come. For example, there are several prototypes associated with the running back position.

Not all of these prototypes may be of interest to all of the NFL teams. For example, some

teams may be interested to draft a running back who is a speedster like Chris Johnson,

or who can change direction like Barry Sanders, or be bruiser like Jerome Bettis, or be an

all-around running back like Derrick Henry. Precise analysis of the dynamic movements of

these football players, in a manner similar to the measure of static balance performance

in Study 3, could allow for the unique features of an individual’s movement to be teased

out. By uncovering these unique features, it may be possible for teams to select players in

the draft who will produce at the professional level, and who won’t be costly to acquire.

As such, in addition to the potential benefits to public healthcare system, which has been

the primary case study of this thesis, the combination of representing dynamic movements

in multiple dimensions and being able to parse out individuals from amongst a seemingly

homogenous cohort may have benefits within professional sports as well.

6.5 Conclusions

The studies in this dissertation demonstrated that individuality exists within the balance

control system and that this individuality is quantifiable. The detection of this individual-

ity is dependent on numerous factors including the task conditions under which the static

balance trial was performed, the measurement modality by which body movement was

recorded, as well as the way this body movement was subsequently analyzed. The novel

use of correlational analysis to suggest individuality within the balance control system is

a significant finding upon which neural networks directly identified individuals by their

balance performance alone. This dissertation is foundational in its quantification of indi-

viduality in the balance control system from which it is hoped that research is continued

to improve idealized healthcare to all.
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Raffi, M., Trofè, A., Meoni, A., and Piras, A. (2022). The Speed of Optic Flow Stimuli

Influences Body Sway. International journal of environmental research and public health,

19(17).

Ramdharry, G. M., Marsden, J. F., Day, B. L., and Thompson, A. J. (2006). De-stabilizing

and training effects of foot orthoses in multiple sclerosis. Multiple sclerosis (Houndmills,

Basingstoke, England), 12(2):219–26.

Rasman, B. G., Forbes, P. A., Tisserand, R., and Blouin, J.-S. (2018). Sensorimotor

Manipulations of the Balance Control Loop-Beyond Imposed External Perturbations.

Frontiers in neurology, 9(OCT):899.

Ravanelli, M. and Bengio, Y. (2018a). Speaker Recognition from Raw Waveform with

SincNet. 2018 IEEE Spoken Language Technology Workshop, SLT 2018 - Proceedings,

pages 1021–1028.

Ravanelli, M. and Bengio, Y. (2018b). Speech and Speaker Recognition from Raw Wave-

form with SincNet. 2018 IEEE Spoken Language Technology Workshop, SLT 2018 -

Proceedings, (1):1021–1028.

199



Ravi, S. and Larochelle, H. (2019). Optimization as a model for few-shot learning. 5th

International Conference on Learning Representations, ICLR 2017 - Conference Track

Proceedings, pages 1–11.

Reynard, F., Christe, D., and Terrier, P. (2019). Postural control in healthy adults: De-

terminants of trunk sway assessed with a chest-worn accelerometer in 12 quiet standing

tasks. PloS one, 14(1):e0211051.

Reynolds, D. A., Quatieri, T. F., and Dunn, R. B. (2000). Speaker verification us-

ing adapted Gaussian mixture models. Digital Signal Processing: A Review Journal,

10(1):19–41.

Richman, J. S. and Moorman, J. R. (2000). Physiological time-series analysis using approx-

imate entropy and sample entropy. American journal of physiology. Heart and circulatory

physiology, 278(6):2039–49.

Ricotti, L. (2011). Static and dynamic balance in young athletes. Journal of Human Sport

and Exercise, 6(4):616–628.

Robinovitch, S. N., Feldman, F., Yang, Y., Schonnop, R., Leung, P. M., Sarraf, T., Sims-

Gould, J., and Loughin, M. (2013). Video capture of the circumstances of falls in elderly

people residing in long-term care: an observational study. Lancet (London, England),

381(9860):47–54.

Roerdink, M., Hlavackova, P., and Vuillerme, N. (2011). Center-of-pressure regularity as a

marker for attentional investment in postural control: a comparison between sitting and

standing postures. Human movement science, 30(2):203–12.

Rogers, M. W. and Mille, M.-L. (2018). Balance perturbations. Handbook of clinical

neurology, 159:85–105.
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Glossary

anticipatory postural adjustment (APA) Prior to a forthcoming body perturbation,

trunk and leg muscles are innervated to control the position of the center of mass

(COM) to minimize the possibility of losing balance.

auditory system A sensory input system that is located in the ear, the cochlea mechano-

electically encodes pressure waves into electrical signal to provide exproprioception

and exteroception.

automatic postural reaction (APR) see fixed-support strategy.

balance Colloquial term for postural equilibrium.

balance assessment Systematic evaluation of balance performance crucial to diagnosis

and therapeutic interventions.

balance control system Collection of three sub-systems (sensory input system, motor

output system, and cognitive processing system) that are responsible for ensuring

that balance is maintained regardless of task challenge.

balance performance A quantitative measurement of one’s ability to maintain their

balance during a task challenge.

base of support (BOS) The area of the body that is contact with a support surface.

center of gravity (COG) Vertical projection of the center of mass (COM).
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center of mass (COM) The point in space that represents the center of the total body

mass.

change-in-support strategy One of two reactive balance control strategies used dur-

ing standing characterized by maintaining balance by adjusting the base of support

(BOS) by taking a step or reaching/grasping a support structure.

cognitive processing system A sub-system of the balance control system that utilizes

various areas within the central nervous system to process information from the

sensory input system and the motor output system to accomplish a specific goal, for

example, to maintain balance.

compensatory postural adjustment (CPA) A reactive balance control response to an

unexpected perturbation which, in the context of standing balance, can be catego-

rized as being a fixed-support strategy or change-in-support strategy.

exproprioception A sensory reference frame that relates the body’s position and move-

ment within an environment.

exteroception A sensory reference frame that relates the location of objects within an

environment.

fixed-support strategy One of two reactive balance control strategies used during stand-

ing balance characterized by maintaining balance without changing the base of sup-

port (BOS) by innervating muscles stereotyped manner, for example, the ankle strat-

egy or hip strategy. Innervation of muscles occurs more quickly than volitional inner-

vation but slowly than through spinal reflexes. Also known as an automatic postural

reaction (APR).

functional balance assessments A balance assessment subtype that quantifies balance

performance during functional tasks, usually within a clinical environment, to mon-

itor an individual’s balance status and their response to an intervention(s).

motor output system A sub-system of the balance control system that innervates mus-

cles, coordinated at various levels of the central nervous system, to produce force, and
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subsequently joint torque, with the purpose of maintaining either static or dynamic

balance.

postural equilibrium Balancing of the forces and moments to maintain a desired pos-

tural orientation (static equilibrium) or to move in a controlled manner (dynamic

equilibrium).

postural orientation Position of body segments relative to each other and to the envi-

ronment.

postural stability Ability to control the center of mass (COM) with respect to the base

of support (BOS).

proactive balance control Minimization of the destabilizing effects created by predictable

perturbations and/or voluntary movements. Also called predictive balance control or

anticipatory balance control.

proprioception A sensory reference frame that relates the location, movement, and ac-

tion of parts of the body to itself.

quantitative balance assessment A balance assessment subtype that utilizes objective

quantification of balance performance using technology (e.g.: force plates, motion

capture) to provide increased temporal and spatial resolution and decreased bias

from subjective sources (e.g.: clinicians, environment).

reactive balance control Ability to respond effectively and prevent a fall in response to

a perturbation caused by an external source (e.g., hit or bump) or by a failure to

control balance during voluntary movement (i.e., an “internal perturbation”)

sensory input system A sub-system of the balance control system comprised of bio-

logical transducers that provide the central nervous system with information about

the body’s postural orientation (proprioception), the body’s position and movement

within an environment (exproprioception), and the location of objects within the

environment (exteroception). These transducers can be categorized as belonging to

the visual system, vestibular system, somatosensory system, and auditory system.
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somatosensory system A sensory input system that is a collection of peripheral recep-

tors (i.e.: muscle spindles, Golgi tendon organs, joint receptors, cutaneous receptors,

nociceptors) that provides proprioception to various levels of the central nervous sys-

tem including muscle length, rate of muscle length, force production, pressure, and

pain.

steady-state balance The maintenance of a one’s center of mass (COM) within a fixed

base of support (BOS). While commonly referred to as static balance, the use of

steady-state balance is more appropriate since the center of mass (COM) is continually

moving within the limits of the base of support (BOS).

systems-based balance assessment A balance assessment subtype that quantifies bal-

ance performance using specific balance tasks to reveal which aspects of the balance

control system, or their respective sub-systems, are affected. This would provide in-

formation as to the underlying balance control problem, with the hope that specific

interventions could be employed to improve balance performance.

vestibular system A sensory input system that is located in inner each ear, three semi-

circular canals detect angular acceleration in three orthogonal axes, an utricle detects

linear acceleration in the horizontal axis, while a saccule detects linear acceleration

in the vertical direction. Together, these receptors provide proprioception and ex-

proprioception regarding the position of the head in space as well as any transient

movements.

visual system A sensory input system that is made up of photoreceptive cells, located

in the eyes, that provides exteroception and exproprioception.
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