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Abstract—Face Emotion Recognition (FER) is a fundamental hu-
man capability essential in social interactions and comprehension
of others’ mental states. Eye tracking emerges as an insightful tool
to probe FER, shedding light on underlying cognitive processes. In
this research, we adopted an instructionless paradigm, gathering
eye movement data from 21 participants to probe two distinct
FER processes: free viewing and grounded FER.

During free viewing, participants observed faces without specific
guidelines, revealing spontaneous attention allocation patterns.
Grounded FER tasks, in contrast, had participants engage
in emotion perception tasks driven by emotion-related words,
enabling us to assess their performance and the influence of
the grounding context. Importantly, we identified a predictive
relationship between the success rate in grounded FER tasks
and eye movement behavior during free viewing. Initial gaze
patterns offered crucial cues for subsequent emotion perception
processes. Moreover, we constructed machine learning models
that accurately predicted gaze distribution based solely on the
visual content of the stimulus in the FER task.

To boost scalability and comparability, we utilized features
extracted from pre-trained deep-learning models for face recog-
nition to model attention distribution during free viewing. This
strategy facilitates the analysis of large-scale datasets and enables
comparisons of emotion perception across various populations
and settings. Our study enhances understanding of the complex
relationship between eye movements and emotion perception,
pushing the frontiers of FER research. The implications encompass
psychology, human-computer interaction, and affective comput-
ing, with potential applications in developing precise emotion
recognition systems.

Index Terms—Gaze, Emotion Perception, Face Emotion Recog-
nition, Eye Tracking, Machine learning, Non-verbal Communica-
tion

I. INTRODUCTION

Face Emotion Recognition (FER) plays a crucial role in
human social interactions and non-verbal communication,
as it involves interpreting emotions from facial expressions
[1], [2]. Various methodologies, including brain imaging and
physiological signals, have been employed to delve into this
complex process [3]–[8].

Eye tracking, a non-invasive technology, offers profound
insights into visual attention and emotional processing [9].
While less prevalent than brain imaging, it’s often combined
with other techniques to collect comprehensive data. Eye
tracking imposes less burden on participants while providing
abundant information.

Previous studies have exploited eye movements to understand
emotion perception (EP) in adults [10], [11]. FER tasks

have been instrumental in highlighting atypical EP linked to
conditions like autism, ADHD, schizophrenia, and certain types
of dementia [12]–[18].

Eye-tracking tasks used for diagnostic purposes can require
high cognitive functioning. For instance, the antisaccade task
is used to identify diseases like dementia and Alzheimer’s
[19]–[23].

Fig. 1. The network structure designed for predicting fixations in Task 2

Tasks emulating real-life situations, known as naturalistic
tasks, are gaining popularity due to their relaxed environment.
These tasks prove beneficial for lightweight EP assessments
and for identifying conditions like Alzheimer’s [10], [19], [24].

The applications of eye-tracking research extend to clinical
diagnosis and human-robot interaction (HRI) domains. Under-
standing gaze behavior in FER tasks can significantly augment
the design of socially intelligent robots [25].

Our study builds upon the work of Russell et al. [18],
exploring two FER processes and predicting FER success
based on gaze features during face viewing. This contributes
to the efficiency of EP assessments.

Fig. 2. The FER task unfolds in three steps: overlaying areas of interest,
presenting faces with emotions, and randomizing locations to study gaze
patterns.

II. INSTRUCTIONLESS FER TASK AND MODIFICATIONS

This section details the instructionless FER task developed by
Russell et al. [18], along with our modifications to understand
the FER process better.



Fig. 3. The heatmaps display FER trial with no instructions. Different emotions
have distinct fixation distributions.

TABLE I
PARTICIPANT CHARACTERISTICS AND THE R(READING) M(INDS IN THE)

E(YES) T(EST) SCORE.

AGE RMET SCORE DRIFT ERROR

COUNT 20 15 20
RANGE 23–44 17–32 0.01–1.21
MEAN 29.3 29.4 0.41
SD 5.3 3.6 0.28

A. Instructionless FER Task

Russell et al.’s instructionless FER task was designed to
detect early-stage frontotemporal dementia. The task comprised
three steps: showing four faces displaying distinct emotions for
10 seconds; presenting an emotion word for 2 seconds, then
displaying both for 5 seconds. In this experiment, the positions
of the faces remained constant, simulating a retrieval-like task.
This setup facilitated the analysis of the free-viewing and
retrieval phases while recognizing working memory differences
as a potential confounding factor.

B. Modifications to the Instructionless FER Task

To gain a deeper understanding of the FER process and
counteract the possible confounding effect of working memory,
we revised Russell et al.’s task. In our version, the positions of
the faces were randomized in Step 3. This modification required
participants to recognize emotions rather than recall positions.
In turn, this change separated the influence of memory from the
task and allowed us to differentiate between the free-viewing
(Step 1) and grounded FER (Step 3) phases.

By examining the gaze behavior and performance differences
between these phases, we aimed to extract more quantitative
data on FER cognitive processes. Our modifications simulate
real-world FER scenarios, aiding our exploration of the
relationship between eye movements, emotion perception, and
attention allocation during FER tasks.

III. DATA COLLECTION

a) Participants: We collected data from twenty-one
volunteers, of whom one was excluded due to incomplete data.
The 20 remaining participants, five female, had educational
backgrounds ranging from high school to Ph.D., most holding
MSc degrees. Detailed demographics are presented in Table I.
Participants provided informed consent in accordance with the
protocol approved by our institution’s Legal Department.

b) Apparatus and Stimuli : We used the Eyelink 1000
Plus eye-tracker to record eye movements during the FER tasks
in a darkened room. The eye tracker was calibrated prior to
the experiment and recalibrated as necessary to maintain data

TABLE II
DWELL TIME % PER STEP WRT. MAIN AREAS OF INTEREST (TARGET FACE,
NON-TARGET FACE, AND WORD) AND D(WELL) T(IME) C(HANGE) ACROSS

EMOTIONS.

STEP 1 STEP 2 STEP 3 DTC

TARGET WORD TARGET WORD
NO YES NO YES

ANGRY 23.8 7.3 10.9 68.6 15.8 42.2 11.9 27.8
DISGUST 23.5 7.7 11.1 69.8 14.9 45.3 11.4 31.7
FEAR 25.3 7.5 8.6 69.0 17.8 34.9 10.8 16.0
HAPPY 21.4 6.7 11.0 68.2 14.4 43.8 12.1 34.2
SAD 23.0 6.2 11.4 65.8 14.8 38.5 11.3 25.1
SURPRISE 23.9 7.3 8.4 68.9 16.8 40.9 11.5 26.1

AVG. 23.5 7.1 10.2 68.4 15.7 40.9 11.5 26.8

accuracy. We utilized the NimStim face emotion dataset [26]
for 60 trials, ensuring balance in the facial images displaying
different emotions and the associated emotion words. The trials
were balanced for face diversity, similarity, and dissimilarity
to the target emotion. Figure 2 depicts the positioning of the
emotion and target faces.

c) Areas of Interest: We defined interest areas for each
trial to include all four faces and the corresponding word. We
also identified sub-areas within each face, specifically the eye,
nose, and mouth regions, as shown in Figure 2.

d) Experiment Protocol: Participants completed six trials
for task familiarization, followed by two rounds of 27 trials,
with a short break in between. After the experiments, partici-
pants optionally completed the Reading the Mind in the Eyes
test1, the results of which are shown in Table I.

e) Preprocessing and Cleaning: Data from one eye were
analyzed for consistency and reliability. The first six trials
were excluded to eliminate the effect of initial familiarization.
Fixation events were assigned to the nearest area of interest to
facilitate data interpretation.

IV. STATISTICAL ANALYSIS

Following the recommendations of Skaramagkas et al.’s
review [9], we adopted the dwell time percentage, or dwell
time %, as our primary measure of visual attention. This metric
represents the total focus duration on a specific area of interest
(AOI) as a fraction of the total time spent on a given step.
Additionally, we used the change in dwell time for target faces
to measure emotion perception (EP) performance, a strategy
proposed by Russell et al. [18].

dwell time change = dwell time % step 3−dwell time % step 1

Table II supports the theory that participants, when operating
without specific instructions, naturally pay more attention to
the target face after the presentation of the emotion word (as
indicated by a positive dwell time change score for the target).
Performance ratios for a range of emotions align well with
findings from previous FER studies, such as those conducted
by Tottenham et al. [26], Russell et al. [18], and Polet et al.
[27].

1https://s3.amazonaws.com/he-assets-prod/interactives/233\ reading\
the\ mind\ through\ eyes/Launch.html



Table II also provides insight into the distribution of dwell
time % across different emotions and for both target and non-
target faces. In Step 1, we observed varied fixation distributions
for different emotions. Fearful (M = 25.3, SD = 11.9) and
surprised faces (M = 23.9, SD = 12) garnered more attention,
while happy faces drew less focus (M = 21.4, SD = 11.9).
Independent t-tests revealed significant differences associ-
ated with surprise (t(1438) = 6.63, p < 0.0001) and fear
(t(1458) = 4.06, p < 0.0001). our null hypothesis (H0) stated
that there is no significant difference in dwell time % between
different emotions.

In Step 2, participants naturally sought to match the emotion
word to the corresponding face. The emotion word and the
position of the target face attracted the most attention, indicative
of a memory effect. Specifically, the position of the target face
received more focus, particularly for emotions like sadness,
fear, and surprise, as depicted in Figure 3.

In Step 3, we noticed a new FER process where target faces
(M = 40.9, SD = 20.2) received significantly more attention
than non-target faces (M = 15.7, SD = 11.8) (t(4318) =
64.2, p < 0.0001). Non-target faces showing fear and surprise
still attracted more attention than other non-target faces. Our
results align well with previous studies that found participants
tend to fixate longer on emotional faces, especially fearful and
surprised ones, during daily communication.

V. MODELING

To mitigate bias from the initial learning phase of the task,
we disregarded data from the first six trials. Consequently, our
analysis used data from 20 participants from the remaining
54 trials. We obtained 54 sets of input and output data
by averaging fixation events across all participants. Due to
the dataset’s limited size, we applied a leave-one-out cross-
validation strategy at the trial level and reported the mean
squared error (MSE) rates as our primary evaluation metric
A. Task 1

Task 1 endeavored to predict the dwell time for each
face, both target and non-target, in Step 3, based on the
averaged fixation events across participants. Given that Step 1
is more naturalistic compared to Step 3, accurate predictions
of the fixation distribution in Step 3 and subsequent emotion
perception performance based solely on Step 1 fixation events
could facilitate a more authentic, instruction-free task. This
development might stimulate modeling emotion perception
during everyday interpersonal communication.

For prediction, we employed a set of features including
spatial aspects like the percentage of dwell time and the number
of fixations per face, along with temporal aspects like the
duration of the first and last fixation and the start time. We
also incorporated one-hot encoded features for emotions and
whether the face is the target, resulting in a total of 15 features
per face. These features, when concatenated for the four faces,
were fed as input to a 3-layer Multilayer Perceptron (MLP)
with 32-16-4 nodes to predict the dwell time percentage for
each corresponding face. After 500 epochs and a learning rate
of 0.001, the model achieved convergence. Separate models

TABLE III
AVERAGE MSE RESULTS FOR PREDICTING THE DWELL TIME OF TASKS 1

AND 2

TASK 1
FEATURES ALL TARGET

BASELINE 0.0164 0.0060
SPATIAL 0.0134 0.0066
TEMPORAL 0.0053 0.0030
SPATIOTEMPORAL 0.0046 0.0024

TASK 2
FEATURES STEP 1 STEP 3

BASELINE 0.0152 0.0164
FACE EMBEDINGS 0.0065 0.0077

were trained on spatial, temporal, and spatiotemporal features.
Though the dwell time for the target face is of primary interest,
we also sought to understand the dwell time for non-target
faces. To accommodate this, we assigned a higher weight to
the prediction of the target face in the loss function.
B. Task 2

Task 2 aimed to predict the fixation dwell time for each face
in Steps 1 and 3, relying exclusively on their visual features.
This methodology enabled us to generate an average fixation
distribution for healthy individuals in a new trial and assess the
trial’s difficulty by calculating the fixation dwell change score.
To this end, we utilized a pre-trained VGG-Face model [28]
to extract face features. The embedding array, of size 2622,
was obtained from the network’s final feature layer, trained for
face recognition. After concatenation, these arrays were input
to a 3-layer MLP with 100-16-4 nodes to predict the dwell
time, as depicted in Figure 1. With a learning rate of 0.001, the
model achieved convergence after 1000 epochs. The network
was trained separately for Steps 1 and 3, with the target face
embeddings positioned first to distinguish between target and
non-target faces in Step 3.

VI. BASELINE MODEL

Our baseline model presumes that the target face garners
the most attention. Hence, we designated the longest continual
viewing time to the target face, equally dividing the remaining
time among the other faces. This strategy produced optimal
results, with a dwell time of 0.50 for the target face and 0.1666
for non-target faces in Step 3 of Task 1 and Step 2 of Task
2. In Step 1 of Task 2, where there is no specified target face,
we allocated an equal dwell time to all four faces.

VII. RESULTS

Table III presents the modeling results for both tasks,
demonstrating accurate prediction of dwell times with low MSE
rates. In Task 1, the best performance is achieved by utilizing
both spatial and temporal feature sets, with the temporal
features proving to be more effective than the spatial ones.
This result highlights the potential of temporal gaze event
distribution for modeling complex emotion perception tasks,
even with eye information collected during natural, unrestricted
emotion perception. Task 2 involves predicting fixation times



and modeling the identification of relevant emotion tasks in
Step 3, which is, as expected, more challenging than free
emotion perception in Step 1.

VIII. DISCUSSION AND CONCLUSION

We adapted Russell et al.’s (2021) [23] instructionless FER
task for a deeper understanding of the FER process. The
modifications allowed for extensive statistical analysis and
revealed key differences in processing various emotions.

Our results suggest that gaze events, particularly temporal
features, can predict FER performance by merely observing
faces. We also predicted the fixation duration of FER tasks
based on face visual features, aiding the assessment of trial
difficulty. Uniquely, we predicted emotion perception accuracy
from free face viewing, marking a step towards lightweight
emotion recognition assessments not reliant on language skills.

Moreover, we introduced a standardized tool for FER
datasets, enhancing result comparability. Overall, our work
offers insights for FER research and could influence the devel-
opment of more naturalistic emotion recognition assessments.

In conclusion, our work advances FER by exploring new
paradigms and models. Predicting FER performance from
free-viewing eye movements offers a path for efficient and
ecologically valid emotion perception assessments. We hope
our work will spur further research and foster improved tools
and methodologies for studying human emotion perception.
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