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A B S T R A C T

Energy-efficient train timetabling (EETT) is essential to achieve the full potential of energy-
efficient train control, which can reduce operating costs and contribute to a reduction in CO2
emissions. This article proposes a bi-objective matheuristic to address the EETT problem for
a railway network. To our knowledge, this article is the first to suggest using historical data
from train operation to model the actual energy consumption, reflecting the different driving
behaviours. The matheuristic employs a genetic algorithm (GA) based on NSGA-II. The GA uses
a warm-start method to generate the initial population based on a mixed-integer program. A
greedy first-come-first-served fail-fast repair heuristic is used to ensure feasibility throughout
the evolution of the population. The objectives taken into account are energy consumption
and passenger travel time. The matheuristic was applied to a real-world case from a large
North European train operating company. The considered network consists of 107 stations and
junctions, and 18 periodic timetables for 9 train lines. Our results show that for an entire
network, a reduction up to 3.3% in energy consumption and 4.64% in passenger travel time
can be achieved. The results are computed in less than a minute, making the approach suitable
for integration with a decision support tool.

. Introduction

Railway transportation becomes an increasingly important mode of transportation to meet future travel demands. Especially the
nergy efficiency of railway transportation compared to air and other ways of land travel becomes vital in the global attempt to
educe emissions of CO2 and other greenhouse gasses to curb climate change. For this reason, the EU declared 2021 to be the year
f rail (Keersmaecker and Meder, 2020) to promote sustainable travel and to work towards the goals of making Europe the first
limate-neutral continent by 2050 and cutting 55% of the CO2 emissions before 2030 (European Commission, 2019). Additionally, a
eduction in energy consumption is desirable by train operating companies (TOC) to reduce costs. TOCs have taken many initiatives
o cut CO2 emissions, but optimising the operation of the trains is one way to achieve immediate energy-efficiency improvements.
ne crucial element to utilise the full energy-saving potential is to look into energy-optimisation of the timetable planning process

o reduce energy consumption.
The train timetabling problem (TTP) is generally known to be an NP-hard problem (Higgins et al., 1997; Caprara et al., 2002;

arrisi and Cervelló-Pastor, 2019). For that reason, in practice, timetable planners only make minor changes to ensure a feasible
imetable fulfilling contractual agreements and business key performance indicators (KPIs). Timetable planners seldom have insight
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into the energy efficiency of the produced timetables. Therefore, research is needed to assist timetable planners in finding feasible
energy efficient timetables.

Common for most previous work on TTP is that their proposed methods do not take the drivers’ actual train control into account,
ence not reflecting real-world conditions. Fortunately, many TOCs today use driver advisory systems (DAS) that are capable of
ollecting data such as position, speed, and arrival/departure times. This valuable data can be used to learn the actual driving
ehaviour to better model the actual energy consumption. To this end, we have collaborated with Cubris (Cubris - A. Thales
ompany, 2021) that delivers a DAS called GreenSpeed to European TOCs. As a part of improving the provided service to their
ustomers, more than 140,000 regional train runs were available to the authors of this article to learn the relations between actual
unning times and energy consumption. The usage of this kind of historical data for energy-optimising a network of timetables
ill be a new contribution to this field of research. To our knowledge, only Madsen et al. (2019) use this kind of data to estimate
nergy consumption in EETT and obtain promising results by saving 33.07% energy for a single section and 6.23% for a timetable.
owever, the problem considered in their paper is only for a single timetable with a single objective.

In addition to that, this article will contribute to research by proposing a matheuristic to optimise the energy consumption of a
arge railway network using operational data. The proposed matheuristic is a hybrid between a mixed-integer program and a genetic
lgorithm (GA), where the initial population for the GA is generated by the mixed-integer program. This article will consider the
ulti-objective network-optimised EETT (MONO-EETT) problem. To the best of our knowledge, no attempts have been made yet at
sing historical data from the train operation of an entire railway network in relation to EETT for multiple objectives.

The approach presented in this article builds on top of the work of Madsen et al. (2019) showing how historical data could be
sed for learning the relationship between actual run times and energy consumption, referred to as the energy functions or trade-off
urves. These energy functions can be used for energy-optimising the timetable. This article extends that approach by using the
earnt energy functions to optimise an entire railway network with multiple lines using a matheuristic. The proposed matheuristic
ses a GA based on NSGA-II (Deb et al., 2002) and a warm-start method to generate the initial population using a commercial
IP solver. We call this a MIP-initialiser. The two objectives considered are energy consumption and passenger travel time. The
A uses a crossover that is a hybrid between the average and single-point crossovers. Each individual is mutated according to a
aussian distribution after the crossover and then repaired to ensure no constraints are violated. The repair heuristic is greedy,

irst-come-first-serve (FCFS), and fail-fast to keep the repair time at a minimum.
The proposed approach was evaluated on a real-world case study with historical data from a large North European TOC. The

ase study contains 18 timetables on a network with 107 stations and junctions. The matheuristic showed promising results with
nergy savings up to 3.3% and 4.64% reduction in passenger travel time without sacrificing each other. If significant trade-offs
etween the two objectives are allowed, the TOC can save up to 4.83% energy and 8.98% passenger travel time. In the worst case,
he matheuristic spent less than a minute finding the set of Pareto-optimal solutions. The short computation time makes the solution
pproach suitable to be used in decision support to guide the timetable planners in making better-informed decisions.

The remaining part of the article is structured as follows. In Section 2, the relevant and recent work will be presented. In
ection 3 we will formulate the problem considered by this article, and Section 4 will in detail describe the proposed algorithm.
he experiments and results will be discussed in Section 5, and finally, conclusions will be drawn, and future work will be presented

n Section 6.

. Related work

The train timetabling problem (TTP) has attracted an extensive amount of contributions to various formulations of the problem.
ost contributions have been reviewed in several comprehensive surveys which also defines the efficient modelling of the

roblem (Assad, 1980, 1981; Haghani, 1987; Cordeau et al., 1998; Huisman et al., 2005; Caprara et al., 2007; Lusby et al., 2011;
acchiani and Toth, 2012; Harrod, 2012; Caimi et al., 2017; Lusby et al., 2018). In the literature, the formulations distinguish
etween periodic and aperiodic timetables, also referred to as cyclic and non-cyclic timetables. Among these two formulations,
he problem described is based on either Integer Programming (IP) or Mixed-Integer Programming (MIP). In recent literature, the
ecision variables of time have been made continuous (i.e. the arrival and departure times) while keeping the ordering of the trains
iscrete (Caprara et al., 2007). For this reason, MIP has been extensively applied. In the literature regarding periodic timetables, most
apers represent the problem based on the Periodic Event Scheduling Problem (PESP) by Serafini and Ukovich (1989) formulated
s an IP. In PESP, an event represents the arrival at or the departure from a given station. The event is scheduled for one cycle in
uch a way that the cycle can be repeated. However, the PESP formulation by Serafini and Ukovich (1989) assumes that the trip
imes of the trains between consecutive stations are known and fixed a priori. Kroon and Peeters (2003) therefore extended PESP
ith variable trip times to overcome this.

TTP is generally known to be an NP-hard problem (Higgins et al., 1997; Caprara et al., 2002; Garrisi and Cervelló-Pastor, 2019).
his makes traditional exact methods to solve IPs and MIPs computationally too time-consuming when the size and the complexity
f the problem gets big. In these cases, approximate solutions found by heuristic approaches are preferred. Table 1 summarises
he relevant contributions for the problem defined in this article which will be outlined throughout this literature review. The
apers have been selected based on being multi-objective or considering a large network instance, in order to highlight the common
pproaches used.

For many years the common objective for TTP has been to either minimise the passenger travel time, minimise the total
ccumulated delay, or minimise the number of conflicts (Assad, 1980, 1981; Haghani, 1987; Cordeau et al., 1998; Huisman et al.,
2

005; Caprara et al., 2007; Lusby et al., 2011; Cacchiani and Toth, 2012; Harrod, 2012; Caimi et al., 2017; Lusby et al., 2018). In
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Table 1
Related work summary table.

Reference Formulation #Objectives Infrastructure Approach

IP MIP Single Multi Line Network

Yang et al. (2019) × × × GA (NSGA-II).
Xu et al. (2016) × × × GA.
Semet and Schoenauer (2005) × × × Matheuristic (GA-MIP).
Wang et al. (2019) × × × GA-PSO.
Tormos et al. (2008) × × × GA.
Higgins et al. (1997) × × × LS, TS, GA, GA-LS, GA-TS.
Nachtigall and Voget (1997) × × × Fuzzy GA.
Madsen et al. (2019) × × × MIP.
This article × × × Matheuristic (GA-MIP).

recent years there has been a shift towards minimising the total energy consumption due to the benefits of a significant reduction in
CO2 emissions and energy consumption. However, the research on EETT which redistributes slack time to maximise the potential of
nergy-efficient train control (EETC) is still limited (Scheepmaker et al., 2020). The existing contributions to EETT and EETC have
een reviewed by Yang et al. (2016) and Scheepmaker et al. (2017). Scheepmaker et al. (2017) describes the relationship between
lack and energy as when the slack increases then less energy is needed. This is due to the train being able to run at a lower cruising
peed or starting earlier with coasting. If not considering regenerative braking, then the trade-off between running time and energy
onsumption represents the multi-objective function, also referred to as the trade-off curve. Common for the papers mentioned in
cheepmaker et al. (2017), EETT is solved as a two-step approach, where the first step is estimating the trade-off curve which is then
sed in the second step to optimise the timetables. Generally, the trade-off curve is estimated per trip based on simulations where
n EETC problem is solved iteratively for each running time instance. Some papers also included uncertainties of the performance
f the train driving and the delays by adding fuzzy variables to the simulations.

Within EETT, there exist different branches of research. One branch takes regenerative braking into account to synchronise
egenerative braking trains arriving at a station with departing accelerating trains in order to minimise loss of regenerated
nergy (Scheepmaker et al., 2017). One of the latest contributions in this area is by Yang et al. (2015). They propose a genetic
lgorithm (GA) to maximise the utilisation of regenerative energy capable of decreasing energy consumption by 6.97%. The
ormulation considered in this article does not take regenerative braking into account due to the type of trains used in this article
oes not have regenerative brakes.

A different branch with a similar formulation to the one considered in this article is studying the optimal distribution of slack time
or trains over multiple stops in a single timetable. Sicre et al. (2010) use Pareto optimisation to redistribute slack time among the
ections in a journey achieving a decrease of 33.63% in energy consumption compared to the energy consumption of the maximum
peed profile. Cucala et al. (2012) propose a fuzzy linear programming model taking the behavioural response of the driver into
ccount. The approach achieved a decrease of 6.7% in energy consumption compared to the timetable in service. However, both Sicre
t al. (2010) and Cucala et al. (2012) model the energy consumption using simulated data not reflecting the actual driving behaviour
nd real-world conditions. Another branch of research takes instead EETC into account when finding the optimal distribution of
lack time. Su et al. (2013, 2014) propose an analytical algorithm to obtain energy-efficient timetables by calculating an energy-
fficient speed profile for the whole journey based on the Pontryagin maximum principle. The proposed algorithm reduces the
nergy consumption by 10.3% on average for a single interstation and 14.5% for the entire journey. Though naturally, EETC does
ot either reflect the actual train control of the drivers and real-world conditions.

Common for the aforementioned papers is that they only take the single objective of minimising energy consumption into
ccount. A popular choice when dealing with multi-objective optimisation problems is evolutionary algorithms such as GAs. To our
nowledge, the first to suggest a GA approach for TTP was Nachtigall and Voget (1997). The paper formulates a bi-objective problem
f minimising the waiting time and costs in integrated fixed interval timetables. The formulation is based on PESP, formulated as a
IP, and is solved by a fuzzy GA incorporating a greedy starting method and a local improvement algorithm. Arenas et al. (2015)

ropose a GA with near-optimal results achieved within short computation times. In this formulation, a macroscopic representation
akes both infrastructure and rolling stock elements into account to optimise the train journey scheduling based on the global profit
enerated. Garrisi and Cervelló-Pastor (2019) explored the possibilities of applying parallel genetic metaheuristics with real-time
oncurrency to train scheduling. The paper proposes a GA to find an approximate solution to a multi-objective problem. To improve
heir results, they use heuristic techniques to generate an initial population. The approach produces feasible solutions in seconds.
he paper compares the performance of their proposal against the results of Arenas et al. in Arenas et al. (2015) which shows that
or a large number of trains, their solution obtains the optimal train scheduling faster. Wang et al. (2019) propose a hybrid method
etween a GA and particle swarm optimisation (PSO) for the timetable rescheduling problem. The objectives are to minimise the
otal delays of all involved trains and the number of trains delayed. The paper formulates a macroscopic model, where stations are
egarded as nodes with a given capacity, which is the number of siding tracks. The solution was tested on the Beijing-Shanghai
igh-speed railway corridor. Their results show that the proposed method found the best solution within 1.5 min.

Xu et al. (2016) formulate a multi-objective optimisation problem of minimising passenger travel time and energy consumption
sing a GA. However, the multi-objective model is transformed into a single-objective model before it is given to the GA. They
3

re able to decrease the energy consumption by at most 9.96% and the passenger travel time by 7.51% compared to the current
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timetable. Yang et al. (2019) use NSGA-II to optimise timetables in the Beijing Metro with respect to three objectives: cost, passenger
waiting time, and robustness. They achieve a reduction in energy consumption by 42.1%, a reduction in passenger waiting time by
15.8%, and increased robustness by 24.81%. Yin et al. (2017) propose a Lagrangian relaxation-based heuristic to reduce passenger
waiting time and energy consumption of the Beijing Metro. Using real-world passenger demand data, the computational results
showed that the heuristic was able to achieve satisfactory solutions in a short computational time compared to using a CPLEX
solver. Huang et al. (2017) propose a Tabu Search algorithm to minimise the multi-objective optimisation problem of passenger
total travel time and energy consumption. Numerical experiments were conducted on the Yizhuang Line in Beijing. Gao et al.
(2018) formulate a bi-objective linear program, which considers energy consumption and passenger travel time. They showed that
the energy consumption was reduced by 9.4% and passenger travel time was reduced by 5.4% for the Beijing Metro Line 6. Tang
et al. (2021) propose an adaptive GA (A-GA) to reduce passenger travel time that is taking train capacity, overtaking, and other
operational constraints into account. The problem was formulated as a mixed-integer nonlinear program (MINLP). Their results show
that the A-GA was able to obtain near-optimal solutions with significantly less computation time than solving the MINLP using a
commercial solver.

Semet and Schoenauer (2005) present a matheuristic combining a permutation-based evolutionary algorithm with the commer-
ial MIP solver, CPLEX. The evolutionary algorithm uses a semi-greedy heuristic to gradually reconstruct the schedule by inserting
rains one after another following the permutation. CPLEX is employed after the evolutionary algorithm to refine the solution. Their
esults show that their approach obtains better and faster results for a large real-world case, however less efficient on average.

Other relevant papers are, for instance, Higgins et al. (1997) who study the single-line train scheduling problem with a single
bjective and compare six different heuristics: a local search heuristic with an improved neighbourhood structure, GA, tabu search,
nd two memetic algorithms. The two memetic algorithms are based on local search and tabu search respectively. Their results show
hat both memetic algorithms perform better than the others but with an increased computation time up to seven times that of the
A. The GA and the two memetic algorithms give solutions within 5% of the optimal for 90% of the problems tested. It finds the
ptimal solution for nearly 50% of these. Tormos et al. (2008) propose a GA for solving the TTP formulated as a job-shop scheduling
roblem for multiple objectives. The paper represents a solution as an activity list of pairs consisting of a train and a track section
f its journey which represents a job. The paper tested its approach on real instances obtained from the Spanish Manager of Railway
nfrastructure (ADIF) which yielded satisfactory results within seconds.

Madsen et al. (2019) propose a five-step approach to TTP using historical data from train operation to predict the energy
onsumption of trains as a function of section run time using clustering and regression. The learnt relations are used in a
athematical program and displayed in a decision support tool. To our knowledge, they are the first to propose using operational
ata from rolling stock to estimate energy consumption in EETT. Their results are promising by saving 33.07% energy for a single
ection and 6.23% for a whole timetable. However, the problem considered in their paper is only for a single timetable with a single
bjective.

Through the literature review, it has become apparent that further research on EETT with multiple objectives is still necessary.
or the papers that do multi-objective optimisation, it is relevant to look further into matheuristic approaches in order to achieve
etter Pareto optimal solutions. Furthermore, only a few papers consider more than a single timetable for a large railway network.
ast, to the best of our knowledge, we are the first to use extensive historical data from the train operation of an entire railway
etwork to model actual trade-off curves between energy consumption and running time in TTP. With this approach, the actual
peed profiles of the train drivers are modelled, as an alternative to using optimal speed profiles from EETC when simulating the
rade-off curves.

. Problem formulation

This section will introduce the train timetabling problem (TTP) domain and describe the version of TTP considered in this
rticle. Furthermore, the corresponding mathematical formulation and their underlying assumptions of the railway network will be
resented.

.1. Network infrastructure model

A railway network consists of a set of stations that are connected by tracks. A track connecting two stations is called a section. The
etwork can be viewed from different levels of detail, which is usually characterised as microscopic or macroscopic networks. The
ifference is visualised in Fig. 1. Microscopic networks carry the greatest detail about the infrastructure and usually contain details
bout how tracks are connected by switches and where signals are placed on sections. On the other hand, macroscopic networks only
escribe how stations are interconnected by sections and with what capacity. A macroscopic network can be represented as a graph
ith nodes representing stations and junctions and edges representing sections. Junctions can, in many cases, be regarded as ‘‘virtual

tations’’ without platforms and do not allow stopping. While microscopic networks are used to generate high-quality simulations,
hat level of detail is often not needed or available during long-term planning which is the focus of this article. Therefore, similar
o most other research in TTP (Arenas et al., 2015; Tormos et al., 2008; Wang et al., 2019; Semet and Schoenauer, 2005; Yang
t al., 2019; Xu et al., 2016; Madsen et al., 2019), this article will continue with a macroscopic network model, however, with a
ew modifications.

In order to know the accessible capacity at each station, this article introduces the concept of platform groups to the network
4

odel. A platform group is a set of platforms at a station with similar properties. Platform groups are distinguished by reachable
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Fig. 1. Differences in microscopic, macroscopic, and our infrastructure models. The capacities are given for one direction due to the symmetry assumption.

stations for downstream stops in the schedule, and if the platform group allows for stopping. Each platform group has a capacity
indicating how many trains can pass through or dwell (if allowed) at the same time. This concept becomes handy in two cases: (1)
Some destinations may not be accessible from all tracks or platforms at a station or junction. Therefore, different destinations may
need stopping at different platform groups at a station resulting in different capacities. (2) Many stations have several tracks, but only
some tracks have platforms. Thus, trains can pass through at the station while another train dwells, which yields a higher capacity
for trains passing through. These cases are shown in Fig. 2 and can be seen in a network context in Fig. 1. In our model, there is no
difference between stations and junctions. Rather, junctions are a special case of stations that also has platform groups, but the train
cannot stop at any of the platform groups. As stops will not be moved, inserted, or removed in the optimised timetable, this missing
distinction causes no problems. Based on the macroscopic formulation, this article makes a number of simplifying assumptions:

• A track can only have unidirectional traffic. Though, a section can have multiple tracks. This assumption does not support
single-track sections.

• Sections and stations are symmetric in the sense that if two parallel tracks are going in one direction, the same number of tracks
is going in the opposite direction. Analogously, stations have the same number of platforms for trains going in both directions.
Turnaround platforms, which are platforms where a train can only enter and exit from one direction, are an exception.

• The network forms an undirected acyclic graph, in essence a linear network with no loops. An example of a linear network is
provided in Fig. 3. The notation will be introduced later.

These assumptions reduce the number of applications for which the solution approach can provide feasible solutions. However,
scenarios not supported by the assumptions can still be modelled as closely as possible to reality and let the timetable planner make
the final adjustments to make the timetable feasible. In these cases, even near-feasible timetables are also helpful to the timetable
planner.

3.2. The train timetabling problem

The version of TTP treated in this article considers timetables which schedule a given train on a train line in a railway network.
The train line specifies the origin and destination station along a predetermined fixed route. The timetable specifies the arrival and
departure times for each visited station on the route. The time it takes to run a section is called the section run time, which has
minimum and maximum time constraints. Similarly, the amount of time a train is stopped at a station, called dwell time, also has
minimum and maximum time constraints. The difference between the section run time and the minimum run time is called the
slack time which can be adjusted in order to optimise the timetable for energy consumption or other objectives. A timetable is valid
for exactly one journey, i.e. exactly one departure from the start station unless it is periodic where the exact timetable is repeated
with a given cycle time.
5
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Fig. 2. Two cases where platform groups leads to more fine-grained control over station capacity.

Fig. 3. Visual representation of network notation.

Passenger trains in Europe are cyclic for the convenience of the passengers (Caprara et al., 2007; Harrod, 2012), giving rise to the
periodic TTP (PTTP). In practice, trains enter and leave service at different times of the day with different cycle times and number
of repetitions. It requires a significant amount of computational effort to ensure that all train services’ cycles are conflict-free in a
railway network where many train lines intersect. Therefore, this article approach PTTP by modelling the busiest hour of the day,
effectively eliminating the periodic complexity and leaving us with a standard TTP. The timetable planner can then easily repeat
the generated timetables as needed and take trains out in the hours not needed without introducing new conflicts.

The timetable planning process is complex and time-consuming and is largely dominated by manual work by the timetable
planner. Planning a timetable usually involves multiple reiterable steps, some of them are (Arenas et al., 2015; Lusby et al., 2011):

1. Line planning: Determine routes and frequency of service according to agreements and contracts.
2. Timetable planning: Plan actual timetables according to infrastructure constraints, often based on an existing set of

timetables.
3. Crew and rolling stock planning: Select specific locomotives and wagon units to run the timetable and schedule crew to

operate them.
4. Real-time planning: Recover timetables and minimise delays after disruption of operation.

During one of the steps, the timetable planner may find out that the plan is infeasible and need to reiterate one or more of the
previous steps to add or remove trains or stops to make the plan feasible. For this reason, more significant changes are typically
avoided because of the high combinatorial complexity caused by the numerous infrastructure constraints and KPIs to consider.

The timetable planner possesses important domain knowledge that reaches beyond these constraints. Some knowledge has been
passed down through many generations of planners and is difficult to model without significantly increasing the complexity of the
problem being solved. Therefore, the proposed solution in this article is not meant to replace the timetable planner but rather to
6
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Fig. 4. Optimal speed profiles and cumulative energy consumption.

ssist them in making well-informed decisions, for example, through a decision support tool. Our focus is the timetable planning
tep, considering that the solution should fit into their daily work. Therefore, our version of the TTP will allow for locking individual
rrival/departure times. There are two reasons for this: (1) it allows the timetable planner to use their domain knowledge to lock
imes through the decision support tool they know are inappropriate to optimise, for example, at busy central stations, and (2) it
llows us to insert timetables into the optimisation without optimising them. In practice, the timetable planners will only optimise a
ubset of timetables to avoid significant changes. The timetables not in the subset will be included as constraints in the optimisation.

The version of TTP considered in this article is assumed to already have a set of existing timetables for different train lines on a
egional railway network. Thus, each timetable also has a fixed route through the network. The algorithm proposed in this article
ill then output a new set of timetables by only adjusting the section run times and station dwell times. Changing the route of the

rain journey, station platform assignment, and addition/removal of stops is beyond the scope of this article.

.3. Energy consumption estimation

According to literature (Su et al., 2013; Scheepmaker and Goverde, 2015) the potential of energy-efficient train control can be
niquely determined by the amount of running time in the timetable, which in the end determine the amount of energy saved.
q. (1) describes the kinetic energy associated with the state of motion of an object assuming a constant force:

𝐸𝐾 = 1
2
𝑚𝑣2 = 𝑚𝛥𝑠2

2𝛥𝑡2
, (1)

here 𝑚 is the mass, 𝑣 is the velocity, 𝛥𝑠 is the displacement and 𝛥𝑡 is change in time. This translates into the work done by the
rain through the work-kinetic energy theorem, which states that the work done equals the change in kinetic energy. From Eq. (1)
t becomes apparent that given a fixed displacement, then the work decreases quadratically by higher running times, since the
ecessary speed to reach the next stopping point in time gets lower.

Figs. 4(a) and 4(b) show four optimal speed profiles calculated by the proprietary solver from Cubris. From Fig. 4(b) the difference
etween the red and green speed profile is noticeable. The red speed profile is the maximum speed profile, where the cruising speed
ecomes the maximum speed of the train, which it maintains until it starts braking approximately 500–1000 m before the station.
he green speed profile on the other hand selects a lower optimal cruising speed and then switches to the coasting phase earlier than
he blue speed profile. Maximising coasting is the best strategy in order to save energy which also becomes apparent in Fig. 4(c).
ig. 4(c) shows the difference in cumulative energy over time between the speed profiles. As initially observed in Eq. (1), the
ifference in total energy consumption decreases approximately by a quadratic coefficient as observed in Eq. (1). Therefore, it is
easonable to approximate the energy consumption as a function of running time being a second-degree polynomial.

.4. Objectives

Essentially, a timetable should minimise costs and maximise profits for the TOC. These objectives, however, are often not directly
easurable in terms of the timetable. While energy consumption is easily converted into cost, passenger travel time (PTT) is not

asily converted into profit. PTT is the sum of all passengers’ time spent in the train system and is an indicator of the attractiveness
f the train service. A high PTT will result in fewer passengers choosing the service resulting in less profit. Hence, it is an important
PI for the TOC. PTT can be calculated by summing over each timetable the number of passengers travelling between each pair of
tations, at the time given in the timetable, multiplied by the time it takes them to travel that distance. The number of passengers
ravelling between the stations is given by a set of origin–destination matrices (ODM). One ODM is valid for exactly one timetable,
ut multiple ODMs from similar journeys can be aggregated for this article where only the busiest cycle is optimised. An ODM is
n 𝑁(𝑁 −1)∕2×3 matrix, where 𝑁 is the number of stations in the timetable. The columns represent the origin station, destination
tation, and the number of passengers travelling from the origin to the destination. Each row represents each opportunity a passenger
7

as to travel in the timetable. Therefore, the direction of travel in the ODM must follow the timetable. The calculation of PTT is
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Table 2
Notation used in the mathematical formulation.

Sets

 Set of all trains.
𝑖𝑘 Set of trains that go in the same direction as train 𝑖 on section 𝑘. Train 𝑖 is not included.
𝑖𝑘𝑙 Set of triples (𝑗, 𝑚, 𝑛) where train 𝑗 goes in the same direction as 𝑖 at the same station identified by sections 𝑚 and 𝑛, and 𝑘 and 𝑙

respectively. Train 𝑖 is not included.
 Set of triples (𝛼, 𝑖, 𝑘) that indicate if a specific time in the timetable is fixed for train 𝑖 on section 𝑘. 𝛼 indicate if it is a

arrival/departure time.
𝑖 Set of sections visited by train 𝑖.
𝑖 Set of tuples of chronologically ordered sections, (𝑘, 𝑙), both visited by the train 𝑖 between which train 𝑖 performs no stops.
𝑖 Set of tuples of chronologically ordered adjacent sections identifying a station, (𝑘, 𝑙), for train 𝑖.

Indices

𝑖, 𝑗 A train.
𝑘, 𝑙, 𝑚, 𝑛 A section.

Parameters

𝑟𝑚𝑖𝑛𝑖𝑘 (𝑟𝑚𝑎𝑥𝑖𝑘 ) Minimum (maximum) time for train 𝑖 to run on section 𝑘.
𝑤𝑚𝑖𝑛

𝑖𝑘𝑙 (𝑤𝑚𝑎𝑥
𝑖𝑘𝑙 ) Minimum (maximum) time for train 𝑖 to dwell at station between sections 𝑘 and 𝑙.

ℎ𝑚𝑖𝑛
𝑘 Minimum headway time on section 𝑘.

𝑇 𝑎
𝑖𝑘 (𝑇 𝑑

𝑖𝑘) Original arrival (departure) time of train 𝑖 on section 𝑘.
𝑝𝑖𝑘𝑙 Number of passengers travelling with train 𝑖 between departure station on section 𝑘 to arrival station on section 𝑙.
𝑐𝑘 Capacity of section 𝑘 in one direction.
𝑐𝑖𝑘𝑙 Capacity of station between sections 𝑘 and 𝑙 on the same platform group and direction as train 𝑖.
𝑀 An arbitrary very large positive number.
𝜖 An arbitrary very small positive real number.

Decision variables

𝑡𝑎𝑖𝑘 (𝑡𝑑𝑖𝑘) Arrival (departure) time of train 𝑖 on section 𝑘.
𝑞𝑎𝑖𝑘𝑗 (𝑞𝑑𝑖𝑘𝑗 ) 1 if train 𝑖 arrives (departs) before train 𝑗 arrives (departs) on section 𝑘 regardless of ℎ𝑚𝑖𝑛

𝑘 .
𝑥𝑠𝑖𝑘𝑙𝑗 1 if train 𝑖 departs less than ℎ𝑚𝑖𝑛

𝑙 before train 𝑗 arrives at station between sections 𝑘 and 𝑙.
𝑥𝑎𝑖𝑘𝑗 (𝑥𝑑𝑖𝑘𝑗 ) 1 if train 𝑖 arrives (departs) less than ℎ𝑚𝑖𝑛

𝑘 before train 𝑗 arrives (departs) on section 𝑘.
𝑦𝑠𝑖𝑘𝑙𝑗 1 if trains 𝑖 and 𝑗 are dwelling at the same platform group at the station between sections 𝑘 and 𝑙 within ℎ𝑚𝑖𝑛

𝑙 time of each other.
𝑦𝑎𝑖𝑘𝑗 (𝑦𝑑𝑖𝑘𝑗 ) 1 if train 𝑖 arrives (departs) within ℎ𝑚𝑖𝑛

𝑘 time of train 𝑗 arrives (departs) on section 𝑘.
𝑧𝑠𝑖𝑘𝑙 1 if train 𝑖 dwell at the station between sections 𝑘 and 𝑙 at the same time as more trains than the platform group capacity.
𝑧𝑎𝑖𝑘 (𝑧𝑑𝑖𝑘) 1 if the arrival (departure) of train 𝑖 overlaps with more trains than the section capacity.

defined in Eq. (2) and consists of the running time and dwell time of the train. A more sophisticated PTT objective would consider
entire passenger journeys, passenger train transfer times, and the change in passenger journeys and their choice of train services
when the timetables change. However, that is not included in this formulation. The used notation for the mathematical formulation
is presented in Table 2.

𝑃 (𝑡) =
∑

𝑖∈

(

∑

(𝑘,𝑙)∈𝑖

𝑝𝑖𝑘𝑙
(

𝑡𝑎𝑖𝑙 − 𝑡𝑑𝑖𝑘
)

+
∑

(𝑘,𝑙)∈𝑖

𝑝𝑖𝑘𝑙
(

𝑡𝑑𝑖𝑙 − 𝑡𝑎𝑖𝑘
)

)

. (2)

This article proposes a new data-driven approach to estimating energy consumption for timetable optimisation of an entire
etwork based on the work of Madsen et al. (2019). The used data consists of exact GPS positions, arrival/departure times, and
peeds. This data makes it easy to infer the actual speed profile of a train running a section from which the estimated energy
onsumption can be derived. As it is nearly impossible for a human driver always accurately to adhere to a timetable, the speed
rofile and the amount of time spent running the section may differ from the advised timetable and planned section run time. By
ollecting all the train runs that have run the same sections with the same timetable, a relation can be learnt between the actual
unning time between stop stations and the consumed energy. More details on this method are described in Section 4. This relation is
odelled as a non-increasing second-degree polynomial function and is referred to as the energy function. The sections between each
eighbouring stop station have a different energy function, and the sum of energy functions is the energy consumption objective.
his is shown in Eq. (3). Note, an energy function may span multiple sections, as the train may not stop at all stations it visits on

ts journey.

𝐸(𝑡) =
∑

𝑖∈

∑

(𝑘,𝑙)∈𝑖

𝑒𝑖𝑘𝑙
(

𝑡𝑎𝑖𝑙 − 𝑡𝑑𝑖𝑘
)

, (3)

here 𝑒𝑖𝑘𝑙(⋅) is the energy function for train 𝑖 departing on section 𝑘 and arriving on section 𝑙. The energy functions reveal which
ections require more energy to run, i.e. which sections have a steeper polynomial. It is possible to save energy by moving slack
ime from less to more energy-consuming sections. Ideally, all sections get the maximal amount of time to run to be energy efficient.
owever, the timetables have several constraints to conform to. In addition to that, we have a competing objective, PTT, where the

deal run time is the minimal run time. Many other objectives exist to measure the attractiveness of the service, including punctuality
8

nd timetable robustness. However, working with more than two objectives is often impractical.
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3.5. Mathematical formulation

Until now, the problem and its domain have been presented. This section will formalise these into a mathematical formulation
or the multi-objective network-optimised energy-efficient train timetabling (MONO-EETT) problem, which is the version of TTP this
rticle will consider. The mathematical model is based on continuous arrival and departure times and indicator variables introduced
ater. The model has an explicit representation of sections given by the indices 𝑘 and 𝑙 but has an implicit representation of stations.

Thus, stations are represented by two sections in the network between which the station lies. There may be more than one pair of
sections that identifies a station, but a pair of sections can only identify one station. This simple representation is possible because
trains are assumed not to take capacity at start and end stations and that trains can only visit the same section once. The model does
not guarantee the ordering of the trains which may cause overtakings to be added or removed during the optimisation. However,
the route of each train in the network is fixed. The MONO-EETT problem is given by Eqs. (4)–(26), though, the constraints are not
exhaustive compared to a real scenario and may not be directly applicable as the solution needs adjustment from the timetable
planner. For example, adjustments are needed to ensure transfer possibilities with other trains, to arrival and departure times to
ease communication to the passengers and to ensure trains do not collide on sections with bidirectional traffic.

In the below formulation, the authors chose to use the ∧ symbol as a shorthand syntax for the logical conjunction of two binary
decision variables. Eq. (4) gives the set objectives of the MONO-EETT problem. Constraint (26) forces 𝑞, 𝑥, 𝑦, and 𝑧 to be binary.
Constraint (5) ensures that fixed arrival and departure times in the timetable will not change from the original time in the timetable.
The minimum and maximum run time are enforced in Constraints (6) and (7). The absolute minimum run times are given by the
physical limitations of the train and the infrastructure and varies with the specific locomotive’s ability to brake and accelerate.
In this article, minimum and maximum run times are set to be the fastest and slowest section runs respectively in the available
historical data. This way we ensure to only optimise within the boundary of the data used for learning the energy functions. The
minimum time needed to dwell at a station is given by Constraint (8) and is based on the TOC’s experience with how much time
is needed to load and unload passengers. Rush hours and bigger stations usually require higher minimum dwell times. For stations
that the train will only pass through, the minimum dwell time will be 0. Constraint (9) gives the maximum dwell time and will by
efault be set to the maximal integer value, i.e. positive infinity. One exception is trains passing through where the maximum dwell
ime will be 0.

𝐦𝐢𝐧𝐢𝐦𝐢𝐬𝐞 [𝐸(𝑡), 𝑃 (𝑡)] (4)

𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨

𝑡𝛼𝑖𝑘 = 𝑇 𝛼
𝑖𝑘, ∀(𝛼, 𝑖, 𝑘) ∈  (5)

𝑡𝑎𝑖𝑘 − 𝑡𝑑𝑖𝑘 ≥ 𝑟𝑚𝑖𝑛𝑖𝑘 , ∀𝑖 ∈  , 𝑘 ∈ 𝑖 (6)

𝑡𝑎𝑖𝑘 − 𝑡𝑑𝑖𝑘 ≤ 𝑟𝑚𝑎𝑥𝑖𝑘 , ∀𝑖 ∈  , 𝑘 ∈ 𝑖 (7)

𝑡𝑑𝑖𝑙 − 𝑡𝑎𝑖𝑘 ≥ 𝑤𝑚𝑖𝑛
𝑖𝑘𝑙 , ∀𝑖 ∈  , (𝑘, 𝑙) ∈ 𝑖 (8)

𝑡𝑑𝑖𝑙 − 𝑡𝑎𝑖𝑘 ≤ 𝑤𝑚𝑎𝑥
𝑖𝑘𝑙 , ∀𝑖 ∈  , (𝑘, 𝑙) ∈ 𝑖 (9)

𝑡𝑑𝑖𝑙 + ℎ𝑚𝑖𝑛𝑙 − 𝑡𝑎𝑗𝑚 ≤ 𝑀𝑥𝑠𝑖𝑘𝑙𝑗 , ∀𝑖 ∈  , (𝑗, 𝑚, 𝑛) ∈ 𝑖𝑘𝑙 , (𝑘, 𝑙) ∈ 𝑖 (10)

𝑡𝑎𝑗𝑚 − (𝑡𝑑𝑖𝑙 + ℎ𝑚𝑖𝑛𝑙 + 𝜖) ≤ 𝑀
(

1 − 𝑥𝑠𝑖𝑘𝑙𝑗
)

, ∀𝑖 ∈  , (𝑗, 𝑚, 𝑛) ∈ 𝑖𝑘𝑙 , (𝑘, 𝑙) ∈ 𝑖 (11)

𝑦𝑠𝑖𝑘𝑙𝑗 = 𝑥𝑠𝑖𝑘𝑙𝑗 ∧ 𝑥𝑠𝑗𝑚𝑛𝑖, ∀𝑖 ∈  , (𝑗, 𝑚, 𝑛) ∈ 𝑖𝑘𝑙 , (𝑘, 𝑙) ∈ 𝑖 (12)

1 +
∑

(𝑗,𝑚,𝑛)∈𝑖𝑘𝑙

𝑦𝑠𝑖𝑘𝑙𝑗 − 𝑐𝑖𝑘𝑙 ≤ 𝑀𝑧𝑠𝑖𝑘𝑙 , ∀𝑖 ∈  , (𝑘, 𝑙) ∈ 𝑖 (13)

𝑐𝑖𝑘𝑙 −

(

1 +
∑

(𝑗,𝑚,𝑛)∈𝑖𝑘𝑙

𝑦𝑠𝑖𝑘𝑙𝑗 + 𝜖

)

≤ 𝑀
(

1 − 𝑧𝑠𝑖𝑘𝑙
)

, ∀𝑖 ∈  , (𝑘, 𝑙) ∈ 𝑖 (14)

2 ≤ 𝑧𝑠𝑖𝑘𝑙 + 𝑧𝑠𝑗𝑚𝑛 + 𝑦𝑠𝑖𝑘𝑙𝑗 , ∀𝑖 ∈  , (𝑗, 𝑚, 𝑛) ∈ 𝑖𝑘𝑙 , (𝑘, 𝑙) ∈ 𝑖 (15)

𝑡𝛼𝑗𝑘 + ℎ𝑚𝑖𝑛𝑘 − 𝑡𝛼𝑖𝑘 ≤ 𝑀𝑥𝛼𝑖𝑘𝑗 , ∀𝑖 ∈  , 𝑗 ∈ 𝑖𝑘, 𝑘 ∈ 𝑖, 𝛼 ∈ {𝑎, 𝑑} (16)

𝑡𝛼𝑖𝑘 − (𝑡𝛼𝑗𝑘 + ℎ𝑚𝑖𝑛𝑘 + 𝜖) ≤ 𝑀
(

1 − 𝑥𝛼𝑖𝑘𝑗
)

, ∀𝑖 ∈  , 𝑗 ∈ 𝑖𝑘, 𝑘 ∈ 𝑖, 𝛼 ∈ {𝑎, 𝑑} (17)

𝑦𝛼𝑖𝑘𝑗 = 𝑥𝛼𝑖𝑘𝑗 ∧ 𝑥𝛼𝑗𝑘𝑖, ∀𝑖 ∈  , 𝑗 ∈ 𝑖𝑘, 𝑘 ∈ 𝑖, 𝛼 ∈ {𝑎, 𝑑} (18)

1 +
∑

𝑗∈𝑖𝑘

𝑦𝛼𝑖𝑘𝑗 − 𝑐𝑘 ≤ 𝑀𝑧𝛼𝑖𝑘, ∀𝑖 ∈  , 𝑘 ∈ 𝑖, 𝛼 ∈ {𝑎, 𝑑} (19)

𝑐𝑘 −
⎛

⎜

⎜

⎝

1 +
∑

𝑗∈𝑖𝑘

𝑦𝛼𝑖𝑘𝑗 + 𝜖
⎞

⎟

⎟

⎠

≤ 𝑀
(

1 − 𝑧𝛼𝑖𝑘
)

, ∀𝑖 ∈  , 𝑘 ∈ 𝑖, 𝛼 ∈ {𝑎, 𝑑} (20)

2 ≤ 𝑧𝛼𝑖𝑘 + 𝑧𝛼𝑗𝑘 + 𝑦𝛼𝑖𝑘𝑗 , ∀𝑖 ∈  , 𝑗 ∈ 𝑖𝑘, 𝑘 ∈ 𝑖, 𝛼 ∈ {𝑎, 𝑑} (21)
9
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𝑡𝛼𝑗𝑘 − 𝑡𝛼𝑖𝑘 ≤ 𝑀𝑞𝛼𝑖𝑘𝑗 , ∀𝑖 ∈  , 𝑗 ∈ 𝑖𝑘, 𝑘 ∈ 𝑖, 𝛼 ∈ {𝑎, 𝑑} (22)

𝑡𝛼𝑖𝑘 − (𝑡𝛼𝑗𝑘 + 𝜖) ≤ 𝑀
(

1 − 𝑞𝛼𝑖𝑘𝑗
)

, ∀𝑖 ∈  , 𝑗 ∈ 𝑖𝑘, 𝑘 ∈ 𝑖, 𝛼 ∈ {𝑎, 𝑑} (23)
∑

𝑗∈𝑖𝑘

𝑞𝑎𝑖𝑘𝑗 ≤
∑

𝑗∈𝑖𝑘

𝑞𝑑𝑖𝑘𝑗 + 𝑐𝑘 − 1, ∀𝑖 ∈  , 𝑘 ∈ 𝑖 (24)

∑

𝑗∈𝑖𝑘

𝑞𝑑𝑖𝑘𝑗 ≤
∑

𝑗∈𝑖𝑘

𝑞𝑎𝑖𝑘𝑗 + 𝑐𝑘 − 1, ∀𝑖 ∈  , 𝑘 ∈ 𝑖 (25)

𝑞𝛼𝑖𝑘𝑗 , 𝑥
𝑠
𝑖𝑘𝑙𝑗 , 𝑥

𝛼
𝑖𝑘𝑗 , 𝑦

𝑠
𝑖𝑘𝑙𝑗 , 𝑦

𝛼
𝑖𝑘𝑗 , 𝑧

𝑠
𝑖𝑘𝑙 , 𝑧

𝛼
𝑖𝑘 ∈ {0, 1}, ∀𝑖 ∈  , 𝑗 ∈ 𝑖𝑘, 𝑘 ∈ 𝑖, 𝛼 ∈ {𝑎, 𝑑} (26)

Constraints (10)–(15) are concerned with capacity and headway constraints at stations. Similarly, Constraints (16)–(21) are
concerned with sections. The cornerstone of checking capacity constraints at stations and sections is interval overlap checks. This
is easiest done by evaluating 𝑠1 ≤ 𝑒2 ∧ 𝑠2 ≤ 𝑒1, where 𝑠 is the start time and 𝑒 is the end time for the intervals 1 and 2. If the
expression evaluates to true, the intervals overlap. This can be broken down into two less-than-or-equals expressions. At a station,
two trains’ timetables overlap, if one train arrive at the station before the other has departed plus the minimum headway time. This
overlap check is represented by the variable 𝑦𝑠𝑖𝑘𝑙𝑗 which is 1 if timetables of trains 𝑖 and 𝑗 overlap. The value of 𝑦𝑠𝑖𝑘𝑙𝑗 is enforced by
Constraint (12), which is the conjunction of the two less-than-or-equal expression (𝑥𝑠𝑖𝑘𝑙𝑗 and 𝑥𝑠𝑗𝑚𝑛𝑖) both being assigned by a value in
the Constraints (10) and (11). Constraint (10) ensures that 𝑥𝑠𝑖𝑘𝑙𝑗 is 1 if train 𝑖 arrives at the station (which for 𝑖 lies between sections
𝑘 and 𝑙) before 𝑗 leaves the station (which for 𝑗 lies between sections 𝑚 and 𝑛). Section indices 𝑚 and 𝑛 are introduced as train 𝑗 can
enter and leave the station on different sections than train 𝑖 and still have overlapping dwell time. One example is when a platform
on a station or a junction leads to two different stations. This is also shown in Fig. 3. Train 𝑗 is taken from the set 𝑆𝑖𝑘𝑙 implying
that 𝑗 must use the same platform group in the same direction as 𝑖 at the station between sections 𝑘 and 𝑙. Constraint (11) ensures
that 𝑥𝑠𝑖𝑘𝑙𝑗 is 0 otherwise. If both 𝑥𝑠𝑖𝑘𝑙𝑗 and 𝑥𝑠𝑗𝑚𝑛𝑖 are 1, an overlap has been detected and 𝑦𝑠𝑖𝑘𝑙𝑗 is 1. Similar checks are performed when
a train enter and leave a section when checking section capacity in Constraints (16)–(18). The only difference is that running a
section is not a blocking operation. Thus, the blocking train does not need to leave the section for another train to enter. Instead,
we check if their arrival and departure times are at least ℎ𝑚𝑖𝑛𝑘 apart, respectively.

Constraint (13) ensures that 𝑧𝑠𝑖𝑘𝑙 is 1 if the dwelling of train 𝑖 at the station overlaps with more trains than the platform group
capacity (𝑐𝑖𝑘𝑙) allows by summing the 𝑦𝑠𝑖𝑘𝑙𝑗 variables. Note, that the capacity is given for one direction only because it is identical
for both directions as mentioned earlier. 𝑐𝑖𝑘𝑙 = 1 means that there is a track in both directions, i.e. 2 in total. Constraint (14) ensures
that 𝑧𝑠𝑖𝑘𝑙 is 0 otherwise. This count alone is not enough to determine a capacity violation, so, we define a capacity violation between
two trains if 3 conditions are met: (1) train 𝑖 overlaps with more trains than the capacity (𝑧𝑠𝑖𝑘𝑙), (2) train 𝑗 overlaps with more
trains than the capacity (𝑧𝑠𝑗𝑚𝑛), and (3) trains 𝑖 and 𝑗 overlap (𝑦𝑠𝑖𝑘𝑙𝑗). This is enforced by Constraint (15). Analogously, the same
constraints exist for when a train enters and leaves a section - no more trains can drive onto a section or leave a section than the
section capacity allows, unless the minimum headway time is respected.

Constraints (22)–(25) avoid illegal overtakings. The variable 𝑞𝛼𝑖𝑘𝑗 indicates if train 𝑖 precedes train 𝑗 on arrival/departure at
section 𝑘, this is ensured by Constraints (22) and (23). Next, Constraint (24) then ensure that a train can only take over the number
of other trains which the capacity allows. For example, if 𝑐𝑘 = 1, then the train cannot overtake at all. If 𝑐𝑘 = 2, then the train can
overtake one train on that section. This is to ensure that a train does not try to overtake two other trains that runs exactly parallel
when 𝑐𝑘 = 2. Similarly, Constraint (25) ensures that a train cannot be overtaken by too many trains at a time by the same principles.

Other research (Wang et al., 2019) uses big M for capacity and headway constraints similarly to Constraints (16) and (17).
Differently to this article, they do not aggregate the platform capacity (e.g. for a platform group) and checks for each platform if
the headway time is respected.

4. A data-driven matheuristic for MONO-EETT

This section will introduce our proposed algorithm for solving the MONO-EETT problem defined in Section 3.5. The algorithm is
a matheuristic using a mathematical program to generate the initial population for a GA based on NSGA-II (Deb et al., 2002). Both
use two objectives: PTT and energy consumption. The latter uses a novel approach to energy consumption estimation by learning
the trade-off between energy consumption and running time from historical data as a preparation step to the matheuristic.

4.1. Learning the trade-off curve from historical data

An important part of this article is to model the relationship between actual energy consumption and running time for each
section in the network from extensive historical data. Contrary to the well established approach in literature explained in Section 2,
the trade-off curve will instead be estimated based on actual data rather than simulated through EETC. One of the advantages of
doing so is the accurate modelling of the actual driving behaviours on the network. In previous literature this could only be achieved,
for instance, by adding fuzzy variables to the EETC simulation when estimating the trade-off curve. Since the outcome of the two
approaches are the same (i.e. a trade-off curve), both approaches could in future literature be used interchangeably, depending on
the desired outcome of the timetable optimisation problem at hand. A comparison between the two approaches will be given at the
end of this section, in order to visually inspect the difference between the two obtained trade-off curves.

First, to model the trade-off curve, Madsen et al. (2019) proposes a five-step approach, where the first three steps are the
following: (1) data reduction, (2) outlier detection, and (3) regression modelling. The same steps will be used in this article,
10
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Fig. 5. Learning trade-off curve: data reduction, outlier detection, and regression modelling steps.

Fig. 6. Comparison between the trade-off curves obtained by fitting to actual data and simulating data respectively.

owever, with some improvements. First, instead of modelling the energy consumption of each specific train configuration, the
nergy consumption is divided by the total mass of the train to get the energy consumption of moving a ton (Wh/t). That increases the
mount of data available for each section, contributing to a more accurate fit in regression modelling. Second, to handle fluctuating
nergy consumptions for different running times, Madsen et al. (2019) suggested rounding real-valued run times to nearest integer
nd average their energy consumption. However, our experiments have shown that a better fit in regression modelling was obtained
sing the median instead. The outlier detection step has not changed, since the density-based clustering algorithm DBSCAN (Ester
t al., 1996) performs satisfactory with the parameters (𝜀 = 0.08,𝑀𝑖𝑛𝑃 𝑡𝑠 = 10) obtained in Madsen et al. (2019). Last, an energy

function was fitted for each planned running time in the regression modelling step. Thus, the same section could have multiple energy
functions based on different timetables. Naturally, the only difference between those energy functions is a displacement in time due
to the different planned target arrival times. Since the slopes should be similar, the distinction in planned run time is unnecessary
added complexity. This article proposes to calculate the average energy function, to generalise the multiple energy functions for
each section into one. The final average energy function obtained is equivalent to a trade-off curve used in the literature.

Fig. 5 shows the results in each step of the improved approach, which can be compared to the previous approach in Madsen
et al. (2019). Fig. 5(a) shows the raw historical data of every planned trip conducted between two stops in the network. Fig. 5(b)
shows the output of the three first steps for one out of six planned run times. Last, Fig. 5(c) shows the fitted energy functions for
each planned run time on a section, and the final average energy function, 𝑒𝑖𝑘𝑙(⋅) (dotted black). Using the suggested approach, a
satisfactory fit was obtained on all instances of the historical data. Specific to Fig. 5(b), a 𝑅2 value of 0.93 was obtained.

As explained in the beginning of this section, a rather traditional approach to estimating the trade-off curves exists. Fig. 6
shows two trade-off curves. The green curve is the result of the data-driven approach proposed by Madsen et al. (2019), and is the
same trade-off curve obtained in Fig. 5. The blue curve is the trade-off curve obtained by using the well-established approach in
literature (Scheepmaker et al., 2017). The EETC simulations are obtained by using the proprietary solver by Cubris. The first obvious
difference between the two curves is before the 230 s mark. This inaccuracy is due to missing or sparse data before 230 s and after
370 s, as seen on Fig. 5(b). These inaccuracies are handled by limiting the temporal range of the trade-off curve. More relevant to the
11
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comparison is the noticeable difference in energy consumption overall. As expected, the actual energy consumption is much higher
than the simulated energy consumption, due to the difference in driving behaviours and the human factor. The blue curve shows
what ideally is to be achieved, whereas the green curve shows what is more likely to be achieved on the network. The simulated
trade-off curve can be seen as an optimistic model, whereas the actual trade-off curve to a greater extent models the realised
behaviour. Using the new proposed data-driven approach gives future research new possibilities, for instance, of benchmarking the
potential energy savings when combining EETC with EETT.

4.2. The matheuristic

In the literature review it was evident that heuristic approaches to TTP has gained a lot of attention. Heuristic approaches,
uch as GAs, allow finding good approximate solutions by exploring large search spaces within reasonable time. Another significant
enefit is the ability to optimise multiple objectives without needing to quantify their importance or weight before optimisation. In
he MONO-EETT problem, 𝐸(𝑡) and 𝑃 (𝑡) are incomparable and competing, i.e. reducing one will increase the other. Non-domination

based algorithms, such as NSGA-II, handles this. For these reasons, this article proceeds with a GA as the foundation for the proposed
matheuristic to solve the MONO-EETT problem.

Algorithm 1: Outline of the matheuristic based on NSGA-II.
1 def optimise(𝑇: Original timetables, 𝑃: Population size):
2  ← MIP-initialiser(𝑇 , 𝑃 ) ⊳ Algorithm 2
3 while ¬terminate_algorithm() do
4  ← empty set of offspring
5 for 𝑖 ← 1 to 𝑃 by 1 do
6 (𝑟, 𝑝) ← binary_tournament_selection()
7 𝑞 ← hybrid_single_point_crossover(𝑟, 𝑝)
8 𝑞′ ← mutation(𝑞)
9 𝑤 ← repair_heuristic(𝑞′) ⊳ Algorithms 3-5
10 if feasible(w) then
11  ←  ∪ {𝑤}
12 end
13 end
14  ←  ∪
15 assign_non_dominated_rank()
16 assign_crowding_distance()
17  ← survivor_selection()
18 end
19 return 

Algorithm 1 provides an overview of the proposed matheuristic. Based on the original timetables 𝑇 , an initial population  of
ize 𝑃 is created on line 2 using the MIP-initialiser. Lines 3–18 comprises the GA approach to optimisation of the population. The
ptimisation works by generating 𝑃 children on lines 5–13 which represents one generation of offspring. To decrease the running
ime per generation, the loop is parallelised to produce multiple children at a time. First, two parents are selected on line 6 (see
ection 4.2.4). Then a child is created by combining the two parents through crossover on line 7 (see Section 4.2.5). To ensure
iversity from the rest of the population, the child is mutated on line 8 (see Section 4.2.6). In this article, all individuals in the
opulation must be feasible. Therefore, the child is repaired on line 9 to guarantee that all constraints are met (see Section 4.2.7).
nly if the repair succeeded, the child is added to the set of offspring on line 11.

When the set of feasible offspring has been generated, they get added to the population on line 14. Then, each individual is
ssigned a domination rank and a crowding distance on lines 15 and 16 (see Section 4.2.1). Last, these two metrics are used to
elect the fittest 𝑃 individuals on line 17 based on non-dominated sorting (see Eq. (27) of Section 4.2.1).

.2.1. NSGA-II
The matheuristic presented in this article is based on NSGA-II and uses the same sorting that primarily sorts the population by

he non-domination rank of an individual and secondarily sorts by crowding distance (in descending order). The non-domination
ank is the number of other individuals a given individual is dominated by. An individual is dominated by another individual if
he other individual has strictly better objective values for all objectives. The crowding distance is sum of the normalised distances
o neighbouring individuals on the Pareto front. By these two metrics we can define an order of individuals to sort them by their
itness (Deb et al., 2002):

𝑝 ≺ 𝑞 ∶ 𝚛𝚊𝚗𝚔(𝑝) < 𝚛𝚊𝚗𝚔(𝑞) ∨ (𝚛𝚊𝚗𝚔(𝑝) = 𝚛𝚊𝚗𝚔(𝑞) ∧ 𝚍𝚒𝚜𝚝(𝑝) > 𝚍𝚒𝚜𝚝(𝑞)), (27)

here 𝚛𝚊𝚗𝚔(𝑝) is the non-domination rank of 𝑝 and 𝚍𝚒𝚜𝚝(𝑝) is the crowding distance of 𝑝. Non-domination and crowding distance
nsures both quality and diversity of the population. The reader is referred to Deb et al. (2002) for a in-depth explanation of the
12
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4.2.2. Genotypic representation
In the genotypic representation implemented in this article, one chromosome represents a potential solution to the set of

imetables in the network. Each chromosome describes an individual in the population. In the chromosome, the genes are organised
n two dimensions, where a real-valued representation of genes has been chosen. The first dimension contains the timetables,
here each index 𝑖 is a timetable for a train line. The second dimension contains the timetable sections, where each index 𝑘 is

a section in the timetable 𝑖. One gene, therefore, consists of the arrival and departure times for the timetable 𝑖 on section 𝑘. An
example of the chromosome is shown in Fig. 7. This structure allows for easier access for the GA operators when handling multiple
timetables. Compared to single-vector representations (such as Xu et al., 2016; Wang et al., 2019) typically used for single timetable
optimisation, the representation is less memory efficient as the lists of genes are not equal in length. Both representations give a
1-to-1 correspondence between genes and the decision variables used in the MONO-EETT formulation. The 𝑖th timetable from the
chromosome will be used where applicable instead of the whole chromosome to simplify visual examples later in the article because
operations are performed equally on each timetable. The 𝑖th timetable will be represented as the usual horizontal value vector. This
is shown in Fig. 7.

4.2.3. Initial population
GAs are sensitive to the initial population in terms of diversity of solutions, convergence, and quality of solutions. Our approach

to generating the initial population is inspired by the MIP-recombination proposed by Borisovsky et al. (2009) for solving the supply
management problem. Using this method requires the problem at hand to be solved by a MIP solver in a short amount of time.

We will use a similar approach to warm-start the GA with an initial population consisting of high quality and diverse solutions. We
call this a MIP-initialiser. In this article, the entire initial population besides the original timetable is generated by the MIP-initialiser.
When the term ‘‘locking’’ is used, we refer to Constraint (5). Instead of operating on two parents, this MIP-initialiser will operate
using one parent being the original timetable. The advantage of using the MIP-initialiser is that no constraints are being violated.
Using the MIP-initialiser is only possible if the problem takes a relatively short amount of time to solve by the MIP solver. It is shown
in Section 5.3 how the initiation time grows with the number of variables to optimise. If this time grows too big for the problem
at hand, heuristic methods are a viable option. Here, it is important to judge the trade-off between computation time and solution
quality when comparing alternative initialisation methods. For instance, benchmarks with the two metrics, Hypervolume (Yu et al.,
2018) and 𝛥 (Deb et al., 2002), introduced in Section 5 could be used for this. Given the original timetables 𝑇 and the population
size 𝑃 , the MIP-initialiser goes through the steps detailed in Algorithm 2.

Algorithm 2: Outline of MIP-initialiser.
1 def MIP-initialiser(𝑇: Original timetable, 𝑃: Population size):
2  ← {𝑇 }
3  ←  ∪ {𝑇 optimised with respect to 𝐸(𝑡)}
4  ←  ∪ {𝑇 optimised with respect to 𝑃 (𝑡)}
5 for 𝑖 ← 1 to 𝑃 − 2 by 1 do
6 𝑂(⋅) ← 𝐸(⋅) or 𝑃 (⋅) by uniform probability
7 if 𝑂(⋅) = 𝐸(⋅) then
8 𝑝 ← 𝑖∕(𝑃 − 2) ⊳ referred to as 𝑝𝐸
9 else if 𝑂(⋅) = 𝑃 (⋅) then
10 𝑝 ← 0.3𝑖∕(𝑃 − 2) ⊳ referred to as 𝑝𝑃
11  ← ∅
12 for 𝛼 ∈ {𝑎, 𝑑}, 𝑖 ∈  , 𝑘 ∈ 𝑖 do
13 if with probability𝑝 then
14  ←  ∪ (𝛼, 𝑖, 𝑘)
15 end
16  ←  ∪ {𝑇 optimised with respect to 𝑂(𝑡) using fixation constraints based on }
17 end
18 return 

The initial population will consist of the original timetable, a PTT-optimal timetable, and an energy-optimal timetable. This
s shown on lines 2–4. Furthermore, 𝑃 − 3 individuals are generated on lines 5–16 by randomly locking times in the timetables.

hen the optimal single-objective individuals are added to the initial population, the search is more easily guided to find solutions
ominating more of the solution space. All generated individuals are added to the set  and returned.

The two objectives use different probabilities, 𝑝𝐸 and 𝑝𝑃 , for locking times in the timetables based on our experimental results
see Section 5). This is reflected on lines 8 and 10. A straightforward approach would be to assign a flat probability to 𝑝𝐸 and 𝑝𝑃

respectively, i.e. it is the same for all individuals. A higher probability for locking a time shifts the generated individuals closer
to the original timetable. A lower probability shifts the generated individuals closer to the optimal solutions for each objective.
However, this does not contribute to diverse trade-offs between the objectives. A flat probability only produce trade-offs in the
13

same neighbourhood in the solution space. This is shown in Section 5. Instead, we made the probability depend on the index, 𝑖, of
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Fig. 7. A chromosome in the GA.

the individual in the initial population. This way, individuals are created with different trade-offs between 𝐸(𝑡) and 𝑃 (𝑡) extending
from the optimal solutions to the original solution.

On lines 12–14, the set of fixed arrival and departure times in the timetable,  , is constructed.  contains triples of 𝛼, the train
𝑖 and the section 𝑘. 𝛼 indicates with 𝑎 if it is an arrival time and 𝑑 if it is a departure time. This is also summarised in Table 2.

The MIP model optimised on lines 3, 4, and 16 is based on the constraints of MONO-EETT given in Section 3 with three
minor modifications. First, only one objective, 𝑂(⋅), will be optimised at a time. Second, Constraints (28) and (29) are added to
the formulation.

𝑡𝛼𝑖𝑘 − 𝑇 𝛼
𝑖𝑘 ≤ 𝑑𝑚𝑎𝑥, ∀𝑖 ∈  , 𝑘 ∈ 𝑖, 𝛼 ∈ {𝑎, 𝑑} (28)

𝑇 𝛼
𝑖𝑘 − 𝑡𝛼𝑖𝑘 ≤ 𝑑𝑚𝑎𝑥, ∀𝑖 ∈  , 𝑘 ∈ 𝑖, 𝛼 ∈ {𝑎, 𝑑} (29)

hese constraints ensure that each arrival and departure time in the timetable cannot change more than 𝑑𝑚𝑎𝑥 from the original
imetable. Otherwise, the MIP solver may move a timetable arbitrarily much into the future to avoid conflicts. We set 𝑑𝑚𝑎𝑥 = 300 s
o keep changes small.

The third change is the linearisation of 𝐸(𝑡). 𝐸(𝑡) is a convex quadratic objective function and takes slightly more computational
ffort to optimise than a linear objective. We experienced that the linearised objective resulted in 10%–15% faster computation
imes than its quadratic counterpart. Therefore, this objective has been linearised for the MIP-initialiser by five linear tangents. A
ew decision variable is introduced, 𝑒′𝑖𝑘𝑙, and Constraint (30) is added:

𝑒′𝑖𝑘𝑙 ≥ 𝜆𝑓𝑖𝑘𝑙1(𝑡
𝑎
𝑖𝑙 − 𝑡𝑑𝑖𝑘) + 𝜆𝑓𝑖𝑘𝑙0, ∀𝑖 ∈  , (𝑘, 𝑙) ∈ 𝑖, 𝑓 ∈ {1,… , 5}, (30)

where 𝜆𝑓𝑖𝑘𝑙1 is the linear coefficient and 𝜆𝑓𝑖𝑘𝑙0 is the constant of the 𝑓 th linearisation function. 𝑒′𝑖𝑘𝑙 will now represent the energy
consumption of train 𝑖 departing from section 𝑘 to section 𝑙. Finally, the linearised objective becomes:

𝐸′(𝑡) =
∑

𝑖∈

∑

(𝑘,𝑙)∈𝑖

𝑒′𝑖𝑘𝑙 , (31)

This showed a minor improvement in the MIP-initialiser’s computational performance. It also allows for optimisation beyond the
global minimum of the energy function, assuming that the energy will neither increase nor decrease. This is relevant when the
maximum section run time lies beyond the global minimum of the second-degree polynomial.

4.2.4. Parent selection
Selecting parents to generate a child through crossover comes with a trade-off between quality and diversity. This implementation

uses the binary tournament selection from NSGA-II, where two individuals are picked randomly from the population. Two parents
are needed to create an offspring, thus two tournaments are needed. For each tournament, only the fittest parent is selected according
to the sorting introduced in Eq. (27). After the tournaments, the two fittest parents will create an offspring through crossover and
mutation. Parent selection is repeated for each crossover.

4.2.5. Crossover
Two crossovers have been considered in this article: single-point crossover (SPC) (Mitchell, 1998) and average crossover

(AC) (Abd Rahman and Ramli, 2013). Both crossovers have their strengths and weaknesses and will be studied further in Section 5.
SPC works by choosing a random station 𝑘 in a timetable 𝑖 to be the crossover point. Then the child of the crossover gets sections
1,… , 𝑘−1 from the first parent, and the sections 𝑘,… , |𝑇𝑖| from the second parent. |𝑇𝑖| is the number of sections in timetable 𝑖. This
s demonstrated in Fig. 8.

In the work of Abd Rahman and Ramli (2013), the AC generates two children and works by using a similar crossover point to
14

efine how many genes are being averaged. The first child gets its first half (until the crossover point) averaged and the second



Journal of Rail Transport Planning & Management 26 (2023) 100374M.V.H. Als et al.

c
f
f
c
t

Fig. 8. Example of single-point crossover.

Fig. 9. Example of average crossover.

half is unchanged. The second child gets its second half averaged and the first half is unchanged. Inspired by this, the authors of
this article chose to average the entire chromosome to produce one child. This is shown in Fig. 9. For AC, the crossover operation
affects all timetables, while SPC only changes one timetable. This configuration of the crossover operators proved the best results
in our experimental tuning of the operators.

Neither SPC nor AC guarantees a conflict-free crossover. Since the crossover impacts the arrival and departure times, constraints
could have been violated. For instance, the random station crossover point in SPC could have gotten an arrival time which is after
its departure time. Station capacities could have been violated for both SPC and AC if too much dwell time was given, and the
minimum and maximum run time constraints could have been violated. Therefore, repair heuristic described in Section 4.2.7 are
employed to repair capacity conflicts in the generated children after both crossover and mutation to ensure feasibility throughout the
algorithm’s running time. Unfortunately, the literature review did not uncover the details of repair strategies in the relevant papers.
This repair heuristic is not guaranteed to be successful, thus, the population is not guaranteed to produce 𝑃 new offspring each
generation. Though, this may decrease diversity of the population over time. This is in contrast to thorough repairs guaranteeing 𝑃
offspring which comes at the cost of running time.

This article proceeds with a hybrid crossover of AC and SPC, where each crossover has a 50% chance of being selected.
Experimental evidence is shown in Section 5. Neither SPC nor AC alone performs as good as the hybrid.

4.2.6. Mutation
The mutation operator is quite simple but important for the diversity of the Pareto front and to help escape local minima. Each

section in all timetables has a probability 𝑝𝑚𝑢𝑡 to get its arrival and departure times changed by some random value. Therefore,
multiple timetables can be mutated at a time, and a timetable can have multiple mutated sections. The random value is sampled
from a 0-mean Gaussian distribution with a standard deviation 𝜎𝑚𝑢𝑡: once for the arrival time and once for the departure time. This
auses smaller mutations to be common and bigger mutations to be unlikely but not impossible. Big mutations are generally avoided
or MONO-EETT because they are more likely to turn out infeasible. After the mutation, the constraints are repaired. If the repair
ails, the mutated child is discarded, and the unmutated child proceeds. At this point, the unmutated child is not guaranteed to
onform to the constraints. Therefore, the child will be repaired by the repair heuristic presented in Section 4.2.7. If the repair fails,
he child is discarded and the next parent selection is started. For this implementation 𝑝𝑚𝑢𝑡 = 0.02 and 𝜎𝑚𝑢𝑡 = 10 were chosen.

4.2.7. Repair heuristic and capacity conflict resolution
Considering the complexity of applying multiple crossovers and mutations on timetables in a heavily constrained network, a

repair heuristic is required to guarantee feasible timetables. The design goal of the crossover and mutation operators described in
Sections 4.2.5 and 4.2.6 has been to make fast, small, and local mutations to the timetables, in order to minimise the number of
conflicts to be repaired by the heuristic. The repair heuristic does not guarantee any ordering of the timetables and may insert or
remove overtakings if it is needed to make the timetables feasible. If the timetables have been destroyed too much, the repair can
end up taking too much computation time, which in the end can cause less diverse solutions. This is opposed to using otherwise
popular large neighbourhood search methods, which instead would require a non-greedy repair heuristic to ensure the survival of
the diverse individuals.

To ensure fast computation time, the repair heuristic implements a greedy first-come-first-serve (FCFS) strategy with a fail-fast
approach. Since individual timetable constraints are repaired after both the crossover and mutation operators, the heuristic repairs
15

the network constraints consisting of overtaking constraints and station and section capacity constraints. The heuristic will try in a
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Fig. 10. Repair heuristic strategies. The solid lines represent a solution with a violation, and the dashed lines represent the repaired solution.

iven amount of iterations to repair the network. If unsuccessful, the child will be discarded. In each iteration, the heuristic applies
repair strategy for the overtaking constraint and the station and section capacity constraints. Each repair strategy will be described
ext.

The overtaking constraint repair heuristic outlined in Algorithm 3 works as follows. Note, the heuristic is only applied to the
rriving trains at a station to avoid repairing the overtaking constraint violation multiple times to the same section. First, the trains
re ordered by their departure time and arrival time on lines 2 and 3. Then, the departure index 𝑗 and arrival index 𝑘 are retrieved
or a train in order of their departure time on lines 5 and 6. If the absolute difference between a departing train’s departure and

Algorithm 3: Outline of fail-fast overtaking repair heuristic.
1 def repair_section_overtaking(𝑘: section,  =: trains going in same direction on section 𝑘):
2  𝑑 ←  = sorted by 𝑡𝑑𝑖𝑘
3  𝑎 ←  = sorted by 𝑡𝑎𝑖𝑘
4 for 𝑖 ∈  𝑑 do
5 𝑗 ← index of 𝑖 in  𝑑

6 𝑘 ← index of 𝑖 in  𝑎

7 if | 𝑘 − 𝑗 | ≥ 𝑐𝑘 then
8 𝑡′𝑎𝑖𝑘 ← 𝑡𝑎𝑗𝑘
9 𝑡′𝑎𝑗𝑘 ← 𝑡𝑎𝑖𝑘
10 if 𝑡′𝑎𝑖𝑘 − 𝑡𝑑𝑖𝑘 ≥ 𝑟𝑚𝑖𝑛𝑖𝑘 ∧ 𝑡′𝑎𝑗𝑘 − 𝑡𝑑𝑗𝑘 ≥ 𝑟𝑚𝑖𝑛𝑗𝑘 ∧ 𝑡𝑑𝑖,𝑘+1 − 𝑡′𝑎𝑖𝑘 ≥ 𝑤𝑚𝑖𝑛

𝑖𝑘,𝑘+1 then
11 𝑡𝑎𝑖𝑘 ← 𝑡′𝑎𝑖𝑘
12 𝑡𝑎𝑗𝑘 ← 𝑡′𝑎𝑗𝑘
13 else
14 return without changes (repair failed)
15 end
16 return with changes (repair succeeded)
16
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arrival indices is greater than or equal to the section capacity 𝑐𝑘, then the train is involved in an overtaking constraint violation
and thus must be repaired on lines 8–12. The overtaking violation is repaired by switching arrival times with another train where
the arrival index equals the train’s departure index on lines 8 and 9. It is only allowed to switch arrival times on lines 11 and 12 if
it does not violate the minimum dwell time constraint 𝑤𝑚𝑖𝑛

𝑖𝑘,𝑘+1 and the minimum running time constraints 𝑟𝑚𝑖𝑛𝑖𝑘 and 𝑟𝑚𝑖𝑛𝑗𝑘 . Otherwise,
the repair has failed and the child is discarded based on the fail-fast strategy.

Fig. 10(a) illustrates this repair strategy, where the last departing train 𝑣 at station 𝑎 produces an overtaking constraint by arriving
before train 𝑖 and 𝑗 at station 𝑏. Train 𝑣 has a departure index of 2 but an arrival index of 0, thus, violating the section capacity 𝑐𝑘
of 2. To repair this, 𝑣 first switches arrival time with 𝑗 and afterwards 𝑗 switches arrival time with 𝑖. The repaired individual then
becomes 𝑖′, 𝑗′, and 𝑣′.

Next, the station capacity repair heuristic will be considered which is outlined in Algorithm 4. First, the station capacity utilisation
is calculated on line 3 as the number of overlapping dwelling trains with the current train, 𝑖. This is explained in Section 3.5 in
Constraints (10)–(15). If the current station capacity utilisation is greater than or equal to the station capacity constraint 𝑐𝑖𝑘𝑙, then
the station capacity constraint is violated. By the FCFS strategy, only the last violating trains will get allocated a new arrival time
in order to repair the violation. Thus, line 5 filters and sorts the trains by their arrival time. Next, for each violating train in  ′,
the amount of drift required to repair the violation is calculated on line 7. This is calculated as the difference between the current
overlapping train 𝑗’s departure time and the current train 𝑖’s arrival time plus the headway time ℎ𝑚𝑖𝑛𝑙 . If the arrival time is not locked
according to Constraint (5) and adding the drift to the current arrival time does not violate the maximum running time constraint
𝑟𝑚𝑎𝑥𝑖𝑘 , then the arrival time is updated on line 9. This way, the violating trains will arrive as soon as a platform is cleared and the
headway time has been obeyed. Fig. 10(b) illustrates a simple example of how the station capacity violation gets resolved. The
platform capacity at station 𝑎 is 2 but on station 𝑏 it is 1, therefore train 𝑖 blocks the single platform until it departs plus a headway
time. Train 𝑗 is scheduled to arrive at time 𝑎𝑗 in the blocking interval of train 𝑖 from 𝑎𝑖 to 𝑑𝑖 + ℎ. Train 𝑗 is therefore rescheduled
to arrive when train 𝑖 has departed from the platform plus the headway time.

Algorithm 4: Outline of repairing station capacity using the FCFS strategy.
1 def repair_station_capacity((𝑘, 𝑙): station,  =: trains going in same direction on station (𝑘, 𝑙)):
2 for 𝑖 ∈  = do
3 overlaps ← count_overlaps_at_station(𝑖, 𝑘, 𝑙)
4 if overlaps ≥ 𝑐𝑖𝑘𝑙 then
5  ′ = { 𝑗 ∈  =

| 𝑡𝑎𝑗𝑘 > 𝑡𝑎𝑖𝑘 } sorted by 𝑡𝑎𝑗𝑘 in descending order
6 for 𝑗 ∈  ′ do
7 drift = 𝑡𝑑𝑗𝑙 + ℎ𝑚𝑖𝑛𝑙 − 𝑡𝑎𝑖𝑘
8 if (𝑎, 𝑖, 𝑘) ∉  ∧ 𝑡𝑎𝑖𝑘 + drift − 𝑡𝑑𝑖𝑘 ≤ 𝑟𝑚𝑎𝑥𝑖𝑘 then
9 𝑡𝑎𝑖𝑘 ← 𝑡𝑎𝑖𝑘 + drift

10 end
11 end

Last, the section capacity repair heuristic shown in Algorithm 5 will be described. First, the section capacity utilisation is
alculated on line 3 as the number of overlapping departing or arriving trains using interval overlap checks for the headway time, as
efined in Section 3.5 in Constraints (16)–(18). Similarly to the station capacity repair heuristic, the section capacity repair heuristic
lso implements the FCFS strategy. However, if the current section capacity utilisation is greater or equal to the capacity constraint
𝑘, then the last violating trains will get delayed at the station dwelling until the section is cleared. Thus, line 5 filters and sorts the
rains by their departure time. Next, for each violating train in  ′, the amount of drift required to repair the violation is calculated
n line 7. This is calculated as the difference between the current overlapping train 𝑗’s departure time and the current train 𝑖’s
eparture time plus the headway time ℎ𝑚𝑖𝑛𝑘 . If the departure time is not locked according to Constraint (5) and adding the drift to
he current departure time does not violate the minimum running time constraint 𝑟𝑚𝑖𝑛𝑖𝑘 , then the departure time is updated on line

9. Fig. 10(c) illustrates a simple example of how the section capacity violation gets resolved. There is only a single track between
station 𝑎 and 𝑏, therefore, train 𝑖 blocks train 𝑗 from departing until the headway time ℎ𝑚𝑖𝑛 has passed. To repair this violation, train

gets rescheduled to be dwelling at station 𝑎 until the headway time has passed.
If any constraints remain violated after all repair strategies have been attempted, the child is discarded.

. Results - A case study

This section will argue for non-trivial parameter choices from an experimental standpoint and discuss how the network’s
omplexity and degrees of freedom will affect the performance in terms of quality and computational time. Finally, the results
n terms of the objectives will be presented and related to the business case. All results in this section are based on the case study
resented in Section 5.1 to evaluate the combination of the data-driven approach with the matheuristic. This is challenging to
valuate properly on synthetic and random instances because EETC approaches to the estimation of the trade-off curve would then
e more appropriate for such evaluation than the data-driven approach suggested in this article. For this reason, evaluation of the
17

atheuristic on random instances has not been considered. The case study uses network infrastructure and energy consumption data
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from regional trains running 9 train lines giving 18 timetables in the network. Due to their confidentiality, it is not possible to share
the ODMs and related travel flow data. For simplicity, minimum headway and dwell time are equal for all timetables and sections,
where ℎ𝑚𝑖𝑛𝑘 = 60 s and 𝑤𝑚𝑖𝑛

𝑖𝑘𝑙 = 30 s. Following parameters are set for the parameter tuning unless explicitly specified otherwise:
population size is 𝑃 = 50, number of generations is 100, mutation standard deviation is 𝜎𝑚𝑢𝑡 = 10 and mutation rate is 𝑝𝑚𝑢𝑡 = 0.02.
All tests have been run on a Windows 10 computer with AMD FX-8320@3.5 GHz and 24 GB RAM. The MIP-initialiser uses the
commercial MIP solver Gurobi 9.1 with standard parameters. The algorithm is implemented in the programming language C# .NET
Core 5.0.

For evaluating the quality of Pareto fronts, two metrics are used: Hypervolume (HV) (Yu et al., 2018) and 𝛥 (Deb et al., 2002). In
short, the HV metric indicates how much of the solution space is dominated by the Pareto front and if the algorithm has converged.
The metric has the scale [0, 1], and a higher value is more desirable. The used reference point is created from the optimal solutions
by using the maximum value of each objective. 𝛥 is used to indicate diversity and convergence of the Pareto front. A value closer
to 0 is more desirable. The reader is referred to the cited papers for a more in-depth explanation of these metrics.

5.1. Case study description

Until now, we have introduced the incorporation of historical data from rolling stock for energy consumption estimation.
This subsection will introduce the case study that will be used to evaluate the proposed algorithm. The research is conducted
in collaboration with Cubris that develops a DAS called GreenSpeed for European TOCs. A DAS is a unit installed in the driver’s
cabin giving real-time advice to the train driver for what speed to drive. In the case of GreenSpeed, given the timetable of the train,
it will advise energy-efficient driving by calculating the energy-optimal speed profile using a proprietary algorithm (Haahr et al.,
2017). In general, it is possible to save between 5%–20% energy by optimising speed profiles (Hansen and Pachl, 2014). However,
a train can only drive as efficiently as the timetable allows it. Thus, this article explores how data from DAS’ can be used to enhance
the energy efficiency of the train operation by adjusting the timetable.

As a part of Cubris’ work in optimising their customers’ operation, this article had access to historical train runs from a large
North European TOC which in this article has been anonymised. The TOC operates regional trains from one of the busiest railway
stations in Europe, labelled station ML-1 in Fig. 11. Since 2015, the TOC’s trains have been equipped with GreenSpeed and have
recorded more than 140,000 train runs (i.e. executed timetables) which is approximately 1.06 million data points in total where
each data point contains a section run time and actual energy consumption.

However, this article will only analyse a subset of this data related to 9 train lines on the Main Line (ML) and the South West
(SW), South (S) and South East (SE) branches. The train lines are depicted in Fig. 11. Each line has 2 timetables, one in each
direction, giving 18 timetables. A total of 107 stations and junctions exist in this subset of the network. Depending on the train line,
it takes 1 to 3 h from the initial departure for a train to reach its terminal station. Each train line cycles every hour during the day
and has at most 12 cycles each day. Timetable planners rarely consider larger instances than this at a time to avoid too big changes
after the planning. The station ML-1 and station SW-27 are the two stations in the subset that are farthest apart with over 250 km
in straight line distance.

5.2. Parameter tuning

Not all parameters are discussed in this section because they are believed to be trivial to tune. Out of the 18 timetables in the
aforementioned case, 10 are locked and cannot be optimised. The unlocked timetables are those going to and from ML-26, S-25
and S-33, i.e. the Main Line and Branch S. The reader can consult Fig. 11. By locking other timetables this article achieved similar
results. For graphs showing any of the two metrics, the results are an average of 10 runs. Before the 10 runs, an additional run is
added to warm up the cache which is not included in the results.

Algorithm 5: Outline of repairing section capacity using the FCFS strategy.
1 def repair_section_capacity(𝑘: section,  =: trains going in same direction on section 𝑘):
2 for 𝑖 ∈  = do
3 overlaps ← count_overlaps_on_section(𝑖, 𝑘)
4 if overlaps ≥ 𝑐𝑘 then
5  ′ = { 𝑗 ∈  =

| 𝑡𝑑𝑗𝑘 > 𝑡𝑑𝑖𝑘 } sorted by 𝑡𝑑𝑗𝑘 in descending order
6 for 𝑗 ∈  ′ do
7 drift = 𝑡𝑑𝑗𝑘 + ℎ𝑚𝑖𝑛𝑘 − 𝑡𝑑𝑖𝑘
8 if (𝑑, 𝑖, 𝑘) ∉  ∧ 𝑡𝑑𝑖𝑘 + drift − 𝑡𝑎𝑖𝑘 ≥ 𝑟𝑚𝑖𝑛𝑖𝑘 then
9 𝑡𝑑𝑖𝑘 ← 𝑡𝑑𝑖𝑘 + drift

10 end
11 end
18
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Fig. 11. Subset of the network managed by the TOC. Note that not all stations and junctions are included.

Fig. 12. Different configurations of the MIP-initialiser. Each plot has solutions from 10 runs.

5.2.1. Initial population
Adjusting the probability for locking a time in the timetable in the MIP-initialiser is not a trivial task. Three experiments were

carried out, and the results are shown in Fig. 12. Each plot has 1000 points representing a solution in the solution space. The
MIP-initialiser was for each configuration run 10 times, generating 100 solutions each time. Fig. 12(a) gives the best result visually
and according to the metrics. In this case, the MIP-initialiser was set up as described in Section 4.2. In Fig. 12(b), both objectives has
a probability of locking a time that increases from 0.0 to 1.0. Finally, Fig. 12(c) shows the result when both objectives have a flat
probability of 0.3 of locking a time in the timetable. In general, the more timetables that can be optimised, the greater the potential
savings. As an initial population, having diverse solutions with different trade-offs between the objectives is ideal. This is visible
from the three experiments, the metrics of which are shown under each plot in Fig. 12. With the changing probabilities of locking,
solutions with varying levels of trade-offs are generated, thus being much more diverse. With the diversity also comes a larger HV of
dominated solution space. The flat probability MIP-initialiser only generates solutions in the same trade-off neighbourhood because
only so much time can be redistributed, thus, becoming less diverse. Secondly, it is evident that the two objectives can tolerate
different probability ranges in order to be diverse. PTT is very dependent on how stations are connected. Thus, if a timetable’s times
at two busy stations become locked, the PTT between these stations will not change. In the ODMs used for this article, passengers
travelling between busy stations are the main contributor to PTT, while minor stations only contribute very little. When increasing
the locking probability, the biggest potential for improvement is removed by increasing the probability of the busy stations getting
locked. That is the main reason that 𝑃 (𝑡) operates better at a lower locking probability than 𝐸(𝑡), and these results may change
ignificantly with other ODMs than those used here. For the case at hand, the MIP-initialiser produces satisfactory results.

.2.2. Crossover
The crossover operator is one of the most crucial parts of the GA for quality and diversity. Thus, making an informed decision

n which crossover to use is therefore important. Three heuristic crossovers are considered: single-point crossover (SPC), average
rossover (AC), and a hybrid crossover (HC) where SPC and AC have 50% chance of being applied. An experiment for each crossover
s shown in Fig. 13. Especially from Fig. 13(a) it is evident that SPC and HC take more generations than AC to converge. At the 150th
eneration, SPC has not reached a Pareto front of higher quality than AC in terms of non-domination and diversity. AC converges
ery fast, but it does not converge to a particular good Pareto front compared to HC. HC combines the best of both the AC and
19

PC. It finds good solutions relatively fast due to AC but can push to even better Pareto fronts due to SPC. This is also visible from
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Fig. 13. The performance of different crossovers. Metrics are averages of 10 runs.

Table 3
Test scenarios. ‘‘Opt. TT’’ = Optimised timetables. ‘‘No. Opt. TT’’ = Number of optimised timetables. The columns
‘‘Network’’ and ‘‘Opt. TT’’ refers to the network branches in Fig. 11.
Scenario Network No. stations Opt. TT No. Opt. TT

1 ML 25 ML 2/2
2 ML + S 60 ML 2/8
3 ML + S 60 ML + S 8/8
4 ML + S + SE 80 ML 2/14
5 ML + S + SE 80 ML + S 8/14
6 ML + S + SE 80 ML + S + SE 14/14
7 Full 107 ML 2/18
8 Full 107 ML + S 8/18
9 Full 107 ML + S + SE 14/18
10 Full 107 All 18/18

Fig. 13(c) that shows the Pareto fronts created by SPC, AC, and HC. HC finds a slightly better Pareto front than AC in the 150th
generation. In Fig. 13(b), SPC fails to improve the diversity significantly over time. AC and HC manage to improve, however, HC
is a bit worse due to using SPC. The bad diversity metrics also come to show in Fig. 13(c), where SPC has a big gap in its Pareto
front, which is a big contribution to 𝛥. HC has some minor holes in the Pareto front that is visible in its 𝛥-value also. The ability
of HC to keep improving the Pareto front beyond AC at the cost of some diversity is the main reason that HC was chosen for the
solution approach.

5.3. Scalability and sensitivity analysis

When applying a solution method to a real-world problem, it is important to assess the performance with respect to changes in
the input. This subsection will analyse the quality of the solutions as the network gets more complex (number of stations) and gets
more degrees of freedom (number of unlocked times).

Table 3 shows 10 scenarios that represent problems ranging from an isolated single-line optimisation to optimising timetables
in a complex network. The scenarios are based on the line diagram shown in Fig. 11 in Section 5.1. The simplest scenario is based
on the Main Line (ML), and to add more degrees of freedom, other branches of the network (S, SE, and SW) are unlocked for
optimisation. As mentioned earlier, the imagined use case is optimising a subset of the timetables in the network. The complexity of
scenarios is increased by adding more of the network to the optimisation, thus, adding more timetables that impose constraints on
the timetables being optimised. The results of the analysis are shown in Table 4. The results are generated by running the algorithm
on the scenario 10 times terminating after 100 generations. All results from the same scenario are generated using the same initial
population, except for the, average initiation time, which is the average of 10 runs of the MIP-initialiser independent of the other
columns. Since the proposed matheuristic is a two-step hybrid between a MIP and a GA, the performance of solving the problem
using the MIP-initialiser versus using the GA is shown by denoting the distinct average running time for each step respectively.

The results show that the algorithm can produce consistent results given the same initial population. The standard deviation of
the metrics, 𝜎𝐻𝑉 and 𝜎𝛥, indicate a relatively small spread of the results of the 10 runs. Generally, when optimising a few timetables
t a time (e.g. scenarios 1, 2, 4, and 7), the dominated HV is usually smaller. Also, the average computation time of 100 generations
s affected by the degrees of freedom. When more timetables are locked (i.e. fewer are optimised), the computation time goes up.
his may be explained by the repair heuristic experiencing more failed attempts to repair a solution with fewer degrees of freedom.
ne example is the overtaking constraint violation will need more degrees of freedom to efficiently reorder the trains because of

he greedy and fail-fast principles. Conversely, the MIP-initialiser experiences decreased computation time due to fewer variables
hat need to be optimised by the MIP solver, resulting in a more time-efficient optimisation. The results show no immediate relation
20
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Table 4
Metrics are averages of 10 runs. ‘‘Avg. comp. time’’ = Average computation time by the GA. ‘‘Avg. init. time’’ = Average initiation time by the MIP-initialiser.
Scenarios are defined in Table 3.

Scenario Avg. HV 𝜎𝐻𝑉 Avg. 𝛥 𝜎𝛥 Avg. comp. time (s) Avg. init. time (s) Avg. total time (s)

1 0.72 0.015 0.47 0.045 02.8 00.3 03.1
2 0.69 0.007 0.53 0.031 14.8 04.2 19.0
3 0.83 0.020 0.59 0.038 13.1 05.1 18.2
4 0.69 0.010 0.63 0.043 22.6 09.2 31.8
5 0.81 0.015 0.75 0.101 21.4 10.6 32.0
6 0.83 0.008 0.58 0.041 20.0 12.5 32.5
7 0.71 0.009 0.76 0.047 31.5 15.7 47.2
8 0.80 0.016 0.67 0.038 30.6 17.8 48.4
9 0.83 0.014 0.63 0.038 28.5 20.5 49.0
10 0.76 0.009 0.49 0.065 28.9 23.7 52.6

between network complexity and diversity. However, better diversity was achieved in scenarios 1, 2, 3, 6, and 10. For the worst-case
scenario, the average total computation time was less than one minute: 52.6 s, which is reasonable for usage in a decision support
tool. However, more complex networks that are not linear may affect the computation time.

Additionally, Table 4 can be used to analyse the performance and improvements made to the Pareto front by the GA compared
o the MIP-initialiser that is solving the same model by different approaches. From Table 4 it is evident that the MIP-initialiser is
utperforming the GA based on the average running time. However, if comparing the quality of the solutions, Fig. 12(a) shows that
t was only possible to achieve 𝐻𝑉 = 0.65 and 𝛥 = 0.75 with the MIP-initialiser. Whereas Table 4 shows that the GA improves these

metrics up to 𝐻𝑉 = 0.80 and down to 𝛥 = 0.67 for scenario 8 which is the most comparable to the scenario used in Fig. 12(a).
This shows that the GA was able to improve the solutions by 6.66% in HV and 10.66% in 𝛥. These results are expected since
the MIP-initialiser is not constructed to produce as diverse Pareto-optimal solutions, but rather to produce feasible solutions to be
diversified by the GA.

5.4. Timetable optimisation analysis

An important aspect of the results is relating it to the business case by evaluating how well the approach performs measured
by the objectives (i.e. the business KPIs). First, a comparison of an optimised timetable against the original timetable in service is
provided to reflect on how the planned run time affects the objectives. Next, five Pareto-optimal timetables are given to show the
diversity of the solutions. Last, the results are reflected in terms of return in profit.

Table 5 compares an original timetable in service from ML-1 to SW-27 against a Pareto-optimal timetable. This example uses all
18 timetables unlocked on the entire network to achieve maximal energy-saving potential. By extending the timetable by 11 min
and 40 s, the energy consumption can be decreased by 4%, however with the cost of increasing the passenger travel time by 2.51%.
Looking at the sections, there seems to be a high potential for saving energy from SW-23 to SW-24 and from SW-24 to SW-26
with savings of more than 20% by adding one minute of extra slack time. The sections from SW-3 to SW-7 and SW-7 to SW-10
have a difference in energy consumption of 0% because both running times are after the global minimum, meaning the energy
consumption will be constant. Though, this is possibly due to a misfit of the energy functions. The section from SW-26 to SW-27
also has a difference in energy consumption of 0%, however, this is caused by it was not possible to fit an energy function to the
underlying data due to missing data or too many outliers. The running time was therefore locked. Note that not all timetables in
the network will show similar performance. Some timetables will receive more slack time and others less to let timetables with a
higher saving potential gain bigger absolute savings. This is to minimise the objectives over the sum of the timetables.

Although most of the relevant papers found in the literature review could achieve a higher reduction in energy consumption,
our results cannot be compared. Previous work either relied on simulated data or optimal speed profiles to determine the energy
consumption of the optimised timetables. On the other hand, our results are based on extensive historical data from the train
operation of an entire railway network used to estimate the actual energy consumption. To our knowledge, we are the first to
contribute such results in TTP.

Table 5 only shows a single timetable out of the 18 optimised timetables. Instead, we turn our attention towards the network
solutions to see the diversity of the solutions. Table 6 compares five Pareto-optimal timetable networks for different objectives.
Overall, our approach can save up to 4.83% energy and decrease the passenger travel time by at most 8.72% compared to the
original timetable in service. If the Pareto-optimal solutions are fixed to the current energy consumption, then the passenger travel
time can be decreased by 4.64%, and for the opposite, the energy consumption can be decreased by 3.3%. Last, the median solution
(i.e. equally weighting each objective) can save 2.03% in energy consumption and 2.9% in passenger travel time. Fig. 14 shows
these five solutions in the context of the full Pareto front and the original timetable. The grey lines indicate the objective values of
the original timetable. Ideally, the timetable planner will select or adjust a solution within the grey lines to avoid compromising
one objective over the other.

These results can be related to the return in profit for a specific TOC. The Danish State Railways (DSB) will be used as an example
because they also run with GreenSpeed from Cubris (Andersen, 2018). In 2019, they consumed 249,623 MWh electricity and 63.7
million litres of diesel (DSB, 2020). Assuming our approach on average will save 3% in energy consumption, this will equal a saving
21



Journal of Rail Transport Planning & Management 26 (2023) 100374M.V.H. Als et al.
Table 5
Comparison of an optimised timetable against the original timetable in service.

Origin Destination Original Optimised Difference

run time run time Run time EC
hh:mm:ss hh:mm:ss ±mm:ss %Wh/t

ML-1 ML-4 00:07:30 00:06:47 −00:43 +00.19%
ML-4 ML-18 00:17:00 00:18:40 +01:40 −07.93%
ML-18 ML-26 00:18:30 00:20:23 +01:53 −03.20%
ML-26 SW-3 00:15:30 00:16:14 +00:44 −02.89%
SW-3 SW-7 00:18:00 00:19:54 +01:54 ±00.00%
SW-7 SW-10 00:18:30 00:16:02 −02:28 ±00.00%
SW-10 SW-11 00:09:30 00:09:22 −00:08 +00.52%
SW-11 SW-12 00:07:00 00:08:56 +01:56 −07.15%
SW-12 SW-13 00:06:30 00:07:22 +00:52 −11.61%
SW-13 SW-14 00:05:00 00:05:40 +00:40 −05.82%
SW-14 SW-15 00:08:30 00:09:21 +00:51 −02.53%
SW-15 SW-18 00:12:30 00:12:43 +00:13 −00.45%
SW-18 SW-20 00:11:00 00:11:33 +00:33 −00.45%
SW-20 SW-21 00:05:00 00:05:40 +00:40 −03.67%
SW-21 SW-23 00:07:00 00:07:09 +00:09 −00.68%
SW-23 SW-24 00:03:30 00:04:41 +01:11 −20.44%
SW-24 SW-26 00:04:00 00:05:43 +01:43 −28.71%
SW-26 SW-27 00:03:00 00:03:00 ±00:00 ±00.00%

Total 02:57:30 03:09:10 +11:40 −04.04%

Table 6
Comparison between five Pareto-optimal timetable networks.

Label Objective EC PTT Diff. EC Diff. PTT
Wh/t s %Wh/t %s

A Original 50 122.40 18 570 280.04 ±0.00% ±0.00%
B Lowest PTT 54 493.45 16 902 395.15 +8.72% −8.98%
C Fixed EC 50 121.59 17 707 819.79 −0.01% −4.64%
D Median EC & PTT 49 105.72 18 031 787.76 −2.03% −2.90%
E Fixed PTT 48 467.92 18 381 084.43 −3.30% −1.02%
F Lowest EC 47 702.28 19 712 213.96 −4.83% +6.15%

Fig. 14. The full Pareto front of the timetables shown in Table 6.

of 7488 MWh and 1.91 million litres of diesel per year. Thus, assuming a price of around e0.3 per kWh (Eurostat, 2021) and e1.4
per litre diesel (Fuels Europe, 2019) (2019 Denmark prices), the total financial saving for DSB would be more than e4,900,000 each
year. Thus, applying EETT in a TOC can result in significant savings in energy consumption and will be an attractive opportunity.
However, applications in larger and more complex networks with more constrained adjustments may yield lower savings.
22
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6. Conclusion and future work

Railway transportation is one of the most energy-efficient modes of land transportation and becomes increasingly important to
lleviate the effects of climate change. Energy-efficient train timetables can help TOCs cut costs and contribute towards a reduction
n CO2 emissions.

This article presented a data-driven approach to the multi-objective network-optimised energy-efficient train time-tabling
roblem. The problem formulation is based on a macroscopic network model and considers constraints for run time, dwell time,
ection and station capacities, overtaking, and locking timetable times. The objectives taken into account were passenger travel
ime and energy consumption. To our knowledge, we are the first to use extensive historical data from the train operation of an
ntire railway network to model the actual energy consumption. Using this kind of data for optimising railway timetables is a
ew contribution to the research. The proposed algorithm was a bi-objective matheuristic using an NSGA-II-based GA to generate
set of Pareto-optimal solutions. The feasibility of solutions throughout the algorithm’s running time was ensured by a greedy

CFS fail-fast repair heuristic applied after the mutation. A MIP-initialiser was introduced to generate the initial population with
atisfactory diversity and quality of solutions.

The used crossover operator is a hybrid between the single-point and average crossovers, which showed promising results in our
xperimental results compared to their performance individually. Given an initial population, the GA produces consistent results
ith a relatively low standard deviation. The matheuristic was applied to a real-world case from a large North European TOC with
network consisting of 107 stations and 18 timetables. Without sacrificing the other objective, an up to 3.3% energy saving and

.64% reduction in passenger travel time can be achieved, which amounts to over e4,900,000 per year if applied to the Danish
State Railways (DSB), thus, making it attractive for TOCs to look into energy-optimisation of railway timetables as proposed in this
article. In the worst case, the running time of the initial population and the GA was in total 52.6 s on average making it suitable
for integration with a decision support tool.

In future work, three improvements should be considered. First, further research is needed to explore efficient repair heuristics.
In this regard, large neighbourhood search methods may help cope with heavily destroyed solutions needing a non-greedy repair
heuristic. Related to this, it is interesting to investigate the impact of more thorough repairs on the 𝛥 diversity metric of the Pareto
front. Second, the algorithm should be extended to work for complex non-linear network structures, tracks with bidirectional traffic,
and asymmetric sections and stations with different numbers of tracks in each direction. These extensions allow the algorithm to
be generalised to work for all railway networks. Third, consideration of other objectives is needed to ensure the quality of the train
service. Such objectives include punctuality, timetable robustness, and passenger waiting time. This is not a trivial task and requires
careful attention to the solution quality and computation time. Last, it would be beneficial to perform simulations on the optimised
timetables, in order to test the quality of the timetables in terms of robustness and passenger flows. Such simulations could also
be used to improve the formulation of the PTT objective by taking into account changes in the passenger flow when arrival and
departure times are changed.
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