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ABSTRACT
The idea of pushing computation to storage devices has been ex-
plored for decades, without widespread adoption so far. The defini-
tion of Computational Programs namespaces in NVMe (TP 4091)
might be a breakthrough. The proposal defines device-specific pro-
grams, that are installed statically, and downloadable programs,
offloaded from a host at run-time using eBPF. In this paper, we
present the design and implementation of Delilah, the first public
description of an actual computational storage device supporting
eBPF-based code offload. We conduct experiments to evaluate the
overhead of eBPF function execution in Delilah, and to explore
design options. This study constitutes a baseline for future work.
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1 INTRODUCTION
Computational storage [3] is the current incarnation of decades old
ideas about active storage [19] and near-data processing [2]. Ac-
cording to SNIA1, computational storage denotes architectures that
provide computation coupled to storage, to offload host processing
or reduce data movement [5]. The upcoming NVMe2 standard for
computational storage proposes extended Berkeley Packet Filter
(eBPF) as a means to define and execute storage functions offloaded
at run-time. Is eBPF well-suited for computational storage? How
can it be used efficiently for data management? These questions
should be tackled experimentally. In this paper, we present the de-
sign and implementation of Delilah , the first publicly described
system supporting eBPF code offload on a real computational stor-
age platform.

The BSD Packet Filter (BPF) was originally designed to eval-
uate boolean valued functions without copying packets inside a
UNIX kernel [17]. Its modern incarnation, eBPF [20], has evolved
1Storage Network Industry Association, the trade association representing storage
companies.
2Non-Volatile Memory Express, the consortium defining the industry-standard host-
SSD interface specification.
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into a vendor-neutral Instruction Set Architecture. It has become a
means to execute user-defined functions inside the Linux kernel for
performance monitoring [12], security monitoring [10] and more
recently storage management [22]. eBPF is also used as an interme-
diate representation in the context of hardware accelerated packet
filtering [6].

NVMe proposes to use eBPF for computational storage [4]. The
upcoming TP4091 introduces a new I/O command set for computa-
tional programs. Computational programs are either downloadable
functions, offloaded from the host at run-time, or device-defined
functions, e.g., operating system images or FPGA bitstreams, that
are installed before a device is deployed. eBPF is considered an
example environment for the definition and execution of download-
able functions.

A downloadable eBPF functions may orchestrate calls to different
device-specific functions and also perform datamassaging. But, how
can a host pass parameter values to a device-specific function using
an eBPF program? How can a device-specific function return data
to the host? Can downloadable and device-specific functions be
executed efficiently? These are the questions we tackle in this paper.

To explore the potential and limitations of downloadable func-
tions and computatinal storage in the context of data management
systems, we built Delilah, a system supporting eBPF code offload
on an actual computational storage device. In this paper, our con-
tributions are the following:

• We survey the eBPF ecosystem;
• We describe the design and implementation of Delilah 3;
• We use Delilah to evaluate the overhead of executing eBPF
functions and to explore design options.

2 BACKGROUND
2.1 eBPF Ecosystem
BPF stands for BSD (or Berkeley) Packet Filter. It was originally
proposed in 1992 to perform user-defined packet filtering within a
Unix kernel [17]. BPF defined a bytecode structure together with a
virtual machine. In 2014, Alexei Starovoitov introduced extended
BPF (eBPF), an adaptation of BPF for Linux and modern proces-
sors4. eBPF’s capability to execute user-defined functions outside
the boundaries of user-space has proven useful for a range of ap-
plications. This has led to the development of a rich ecosystem of
tools and libraries. The eBPF foundation was established in August
20225 to organize the governance of this ecosystem. In this section,
we only cover the aspects of eBPF that are relevant in the context
of computational storage.

3Code and experiments are available online at https://github.com/delilah-csp [13]
4https://lwn.net/Articles/598545/
5The eBPF foundation (http://ebpf.foundation) is a Linux Foundation Project.
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2.1.1 eBPF Programs. eBPF can be seen as a vendor-neutral In-
struction Set Architecture6. An eBPF program is composed of a
single main routine, located in memory in a program slot that can
be read from the eBPF run-time environment. It is a sequence of 64-
bit (and 128-bit) encoded instructions. Instructions are operations
referencing registers (source and destination) or values (denoted as
immediate). Each instruction is composed of:

• 8 bit opcode that represents an operation. Opcodes are grouped
into classes based on the low 3 bits of the opcode. These
classes include load, store, ALU, byteswap and branch in-
structions.

• 4 bit destination register (dst)
• 4 bit source register (src)
• 16 bit offset
• 32 bit immediate (imm)

ALU, byteswap and load/store operationsmanipulate data at 64/32/16/8
bits granularity. A wide 128-bit instruction encoding appends a 64
bit immediate value after a basic instruction.

There are eleven registers: r0 holds the return value for an eBPF
program, r1-r5 hold the arguments for called functions, r6-r9 are
callee-saved registers and r10 is a read-only register holding the
stack frame pointer.

The call instruction uses imm as the index in a function pointer
table maintained by the eBPF run-time environment.

The program counter is implicit. It cannot be manipulated ex-
plicitly by eBPF instructions. It is managed by the run-time envi-
ronment based on the flow of execution. As a consequence, eBPF
does not support indirect jumps, indirect function calls or jumps
across eBPF programs7.

eBPF instructions do not support floating point operations.

2.1.2 Compiler Support. Both gcc and clang/LLVM have an eBPF
backend that generates eBPF programs from C programs8.

Let us take a simple example that illustrates the compilation
process and introduces some of the characteristics of eBPF that we
will get back to later in the paper. Figure 1 is a simple C function
that performs data massaging and calls an external function. More
specifically, the simple function takes a pointer as an argument,
casts it as a struct pointer (line 6, the struct is defined in lines 1-4),
calls an external function (regfunc) using as a parameter the string
component from the input struct (line 7), and appends an integer
beyond the input struct in memory (lines 8 and 9). This integer is
the product of the result of the external function with the integer
element of the input struct.

Figure 2 is the corresponding eBPF program in LLVM assembly9.
Register r1 contains the input pointer, which is first saved to a
callee-saved register r6 (line 2), then incremented by the size of
the integer n (4 bytes) so that it points to the s component of the
input struct (line 3). Register r1 is now the input argument for the
external function call (line 4). The integer value to which r6 points

6The eBPF foundation now maintains a standard, currently eBPF Instruction Set
Specification, v1.0: https://github.com/ebpffoundation/ebpf-docs.
7Within the Linux kernel, eBPF supports an additional operation: tail call. It relies
on an additional function pointer map to execute jumps to other eBPF programs.
(https://blog.cloudflare.com/assembly-within-bpf-tail-calls-on-x86-and-arm).
8There is no support in eBPF for variadic functions or polymorphic types. As a result,
C++ programs cannot be compiled into eBPF.
9https://releases.llvm.org/15.0.0/docs/CodeGenerator.html

1 struct param {

2 int n;

3 char s[100];

4 };

5 int simple(void* ctx) {

6 struct param *p = (struct param *) ctx;

7 int v = regfunc(p->s);

8 ctx += sizeof(struct param);

9 * ((int*)ctx) = v*(p->n);

10 return 0;

11 }

Figure 1: A C program calling an external function (simple.c).

is then loaded into r1 (line 5). r1 is multiplied by the return value
of the external function stored in r0 (line 6). Finally, r1 is stored at
the first memory address beyond the input struct, i.e., the address
pointed to by the contents of r6 + 104 (line 7). The return value of
the eBPF program, 0, is assigned to r0 (line 7) and the eBPF program
exits (line 8).

1 simple:

2 r6 = r1

3 r1 += 4

4 call regfunc

5 r1 = *(u32 *)(r6 + 0)

6 r1 *= r0

7 *(u32 *)(r6 + 104) = r1

8 r0 = 0

9 exit

Figure 2: The eBPFprogramgenerated from simple.c in LLVM
assembly (clang -O1 -S -target bpf simple.c).

Note that the compiler does not take into account the character-
istics of the eBPF run-time environment, which might only allow
programs of a given size that verify predefined properties. For
instance, the compiler can generate eBPF programs that contain
unbounded loops.

2.1.3 Runtime Environments. There exists several software imple-
mentations of the eBPF ISA. Most prominently are: the eBPF sub-
system within the Linux kernel, which consists of an interpreter
and several JIT compilers along with a runtime environment; and
uBPF which is a library that implements a virtual machine with a
JIT designed to both in user-space and can be embedded to run in
kernel-space.10.

10uBPF is the core component of the eBPF for windows project (https://github.com/
microsoft/ebpf-for-windows). Furthermore there is a Rust implementation similar to
uBPF called rBPF (https://github.com/qmonnet/rbpf).

https://github.com/ebpffoundation/ebpf-docs
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https://github.com/microsoft/ebpf-for-windows
https://github.com/qmonnet/rbpf
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Recently, hardware implementations of the eBPF ISA have been
proposed, most prominently hBPF11 a project of the eBPF founda-
tion, and Sephirot [6], a proprietary design specialized for packet
processing.

A tool is now available to evaluate the conformance of an eBPF
runtime to the Instruction Set Architecture defined by the eBPF
foundation12.

The code of external functions, that can be called from eBPF
programs, is linked with the process that runs the run-time envi-
ronment. When an external function is registered, its name and
function pointer are added to the external function pointer map. A
lookup based on an external function name returns its index in the
function pointer map.

2.1.4 eBPF Lifecycle. We can distinguish the following phases in
the life cycle of an eBPF program:

(1) Produce bytecode by compiling a C program;
(2) Link bytecode by replacing external functions with their in-

dex in the function pointer map, or replacing offsets into
structs with their actual offset in memory;

(3) Load bytecode into the run-time environment;
(4) Verify bytecode, possibly rewriting it to be safe;
(5) Execute bytecode with a virtual machine or native assembly

if it has been JIT’ed as part of phases 3 or 4.
The Linux eBPF verifier enforces that eBPF programs terminate

without using too many resources and without leaking the contents
of kernel memory. This verifier is in constant evolution. For intance,
all loops were banned initially. This was too restrictive. Bounded
loops have been supported since kernel 5.3. It is now over 15K
lines of code13. In contrast, the uBPF loader merely checks that an
eBPF program fits inside the allocated program slot. The eBPF for
Windows project uses PREVAIL [11] together with uBPF.

2.1.5 Memory Management. We have so far mentioned, the stack
and a program slot as regions of memory associated to the eBPF
runtime environment. The size of the stack is a parameter of the
environment, together with the maximum number of instructions
in the program slot. In uBPF, they are set by default to 512B and
64K respectively.

In addition, mechanisms are provided to exchange data between
the eBPF run-time environment and the outside world. In the Linux
kernel, eBPF programs executed within the kernel can exchange
data with user-space (or maintain state across executions) through
key-value data structures denoted maps.

More importantly for us, the program that triggers the execution
of an eBPF program usually passes a memory buffer as a context
to that program. By convention, the first argument of an eBPF
program is a pointer that can be used to refer to this context (as
in Figure 1). Most programs using eBPF in the Linux kernel (e.g.,
socket filters, tc filters, XDP programs) and all uBPF programs
respect that convention. With socket filters, for instance, the filter
takes one argument, a pointer to an __sk_buff that has a field
data_end is a pointer to the end of the context, so that its length
can be computed.

11https://github.com/rprinz08/hBPF
12https://github.com/Alan-Jowett/bpf_conformance/
13https://github.com/torvalds/linux/blob/master/kernel/bpf/verifier.c

2.2 Computational Storage
The SNIA Computational Storage Architecture and Programming
Model standard [5] distinguishes between (i) computational stor-
age processors without storage (e.g., an accelerator card equipped
with Eideticom NoLoad14), (ii) computational storage drives that
encapsulate computational storage processor and device storage
(e.g., Samsung SmartSSD [9]) and (iii) computational storage arrays
that contain multiple (computational) storage devices (e.g., a flash
array equipped with a DPU such as Fungible Storage Cluster15).

A computational storage processor is composed of: (i) computa-
tional storage engines (CSE), each able to execute functions in the
context of a runtime environment, and (ii) memory, allocated from
the device RAM, for a given function. The notion of computational
storage engine abstracts various execution environments, such as
OS image, container, FPGA bitstream or eBPF bytecode, which are
given as examples.

We can dive a bit deeper into the relationship between host,
computational storage processor and the underlying SSDs. We iden-
tify three possible architectures: (a) on-path over PCIe where the
computational storage processor is a PCIe device for the host, and
a PCIe root for the SSDs, (b) off-path over PCIe, where the compu-
tational storage processors and the SSDs are connected to the host
in the same PCIe hierarchy domain so that they can communicate
via peer-to-peer Direct Memory Accesses (p2pDMA), and (c) Smart
NIC, where the computational storage processor is part of a NIC
which is connected to SSDs via PCIe.

Regardless of the architecture, computational storage increases
the cost of the storage subsystem. This cost is offset if computa-
tional storage makes it possible to (i) significantly reduce the use
of core or RAM resources on the host (e.g., [8]), or to (ii) achieve
application speedup through hardware acceleration of significant
storage functions (e.g., [15]).

3 DELILAH
We designed and implemented Delilah to experiment with eBPF
offload on an actual computational storage device. To the best of
our knowledge, this is the first public description of such a system.

3.1 Requirements
We use the OpenSSD Daisy platform16 as computational storage
device. Daisy is the latest generation of OpenSSD prototypes, de-
signed by Prof. Song and his team at Hanyang University [14]. The
prototype is commercially available through CRZ Technology.

Daisy is an accelerator card, equipped with 2x100GE and PCIe
Gen3x16 connectors, a Zynq Ultrascale+ Multiprocessor System on
a Chip (MPSoC) and a backplane interface for connecting two M.2
SSDs. In the rest of this paper, we consider Daisy in the context of
an on-path/PCIe architecture.

The Zynq Ultrascale+ MPSoC is a heterogeneous multiprocess-
ing platform combining hardware acceleration on FPGA with the
flexibility of ARM cores running embedded Linux. The ARM pro-
cessor (Cortex A-53, denoted PS) only has access to peripherals

14https://www.eideticom.com/products.html
15https://www.fungible.com/product/nvme-over-tcp-fungible-storage-cluster/
16https://www.crz-tech.com/crz/article/Daisy/
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(PCIe, RAM DIMMs, M.2 SSDs) through the FPGA (denoted PL).
The boot image of the Daisy should contain:

• A PL image: An FPGA bitstream generated from a block
design that may be used on generic IP (e.g., Xilinx IP for
a DMA engine), or specific accelerators defined in a hard-
ware description language. The Vivado toolchain is used to
synthesize this bitstream.

• A PS image: Embedded Linux with specific programs cross
compiled for the ARM cores.

The main requirement is that Delilah should enable the offload
of eBPF programs from a host onto Daisy. These programs should call
registered functions that access stored data on the M.2 SSDs.

It is necessary to verify that code offloaded from the host is not
malicious. In particular, it is crucial to ensure that downloadable
functions do not exploit the eBPF run-time environment to corrupt
or deny access to stored data. This requires verification of the eBPF
virtual machine or JIT compiler. Recent work has made significant
progress on that front [18, 21]. In addition, registered functions and
eBPF programs should be verified. While the Linux eBPF verifier is
an obvious reference, its strict limitations (e.g., banning unbounded
loops) are not well-suited for our purpose. Backward jumps are
essential for data massaging, which makes termination analysis
much harder. At the same time, termination of eBPF programs is
important so that the device is not locked up by an infinite loop.
We leave the verification of registered functions and offloaded eBPF
programs as a topic for future work.

3.2 Design
At its core, Delilah implements a host-controller transport proto-
col through a driver module in the host kernel and a controller on
the device. Figure 3 shows the architecture of Delilah (in green)
and the components it relies on (in grey). In the rest of this Section,
we detail the design and implementation of Delilah .

3.2.1 Delilah Controller. In Section 2.1.3, we identified three
eBPF run-time environments: the Linux kernel eBPF run-time en-
vironment, the uBPF run-time environment in user-space and the
eBPF hardware processor.

A thorough exploration of the use of the Linux kernel eBPF
run-time environment or of a hardware-based eBPF run-time en-
vironment for computational storage are topics for future work.
The Linux kernel eBPF run-time environment is the most robust
and mature. It might be well-suited on a Smart NIC where data
is transferred through the network and storage stacks inside the
kernel. eBPF hardware processing should be well-suited on FPGA
accelerator cards, specially in the context of off-path architectures.

In the rest of the paper, we focus on computational storage with
the uBPF run-time environment, which gives us most flexibility
for exploring the design space. The Delilah controller, the uBPF
virtual machines and registered functions are part of the PS image.
Note that hardware-accelerated functions are part of the PL image.

The RAM associated with a uBPF run-time environment is used
to store an eBPF program, to maintain the state of the virtual ma-
chine (e.g., the map of pointers to external functions), and the
context which is used to pass input to an eBPF program and collect
its output (as we saw in Section 2.1).

Figure 3: The Delilah architecture includes a host driver, a
device controller and registered functions in user-space(PS)
or hardware accelerated (PL).

The host-device protocol organizes how the host transfers pro-
grams and data to the device memory. It extends the Eid-Hermes
protocol17. With PCIe, two mechanisms can be used to write data:
(i) transfer through DMA or (ii) direct transfer through the memory-
mapped region used for configuration (a so-called BAR aperture).
Writes through the BAR aperture are usually reserved for coordi-
nation between host and device. This is how the host signals the
device that a function should be executed. We use DMA to transfer
programs and data.

3.2.2 Block Design. The Delilah controller must access Daisy
peripherals (PCIe connection to the host and to M.2 SSDs and
RAM DIMMS) through the PL. This requires a block design that
defines a DMA engine over PCIe (for communication with the
host), memory interfaces (for accessing RAM) and PCIe bridges
(for communicating with the M.2 SSDs). Because of lack of space,

17https://github.com/Eideticom/eid-hermes/blob/master/specs/eid-hermes-theory-
of-operation.md
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we do not get into the details of our block design or discuss the
interesting trade-offs that it involves.

3.2.3 Delilah Driver. Themain issuewhen designing the driver is
to avoid overhead. We designed the Delilah so that it can be called
directly with asynchronous commands, from programs running in
user-space.

We defined the driver as a char device that defines uring com-
mands. They are similar to ioctls but are asynchronous and can
only be used with io_uring submission and completion queues [1].

The driver defines commands for transferring an eBPF program
from the host to the device memory, for writing program arguments
on the device memory, for triggering the execution of an eBPF
program and for reading the result from device memory.

3.3 Implementation
We implemented the Delilah block design with Vivado 2019.1. The
Delilah controller and the registered functions associated with
the uBPF environment are programmed in C and cross compiled
with gcc 12.1 for PetaLinux 2019.1, the embedded operating system
running on the ARM processor (PS). The Delilah driver is also
implemented in C and compiled with gcc 12.1. All code is available
online [13].

3.3.1 DMA Buffers. DMA is the usual mechanism to transfer data
over PCIe. We rely on DMA transfers via XDMA18 XDMA is a DMA
engine over PCIe defined by Xilinx. We use the Xilinx IP in our
block design and our driver uses the XDMA Linux driver.

The regions of the device memory that can be read and written
from the host via DMA are defined as DMA buffers in XDMA. We
rely on user-space mappable DMA buffers19 to access them from the
Delilah controller in user-space.

We define reserved memory in the PetaLinux device tree. The
Linux contiguous memory allocator is used to allocate a contigu-
ous DMA buffer that is then made available to the uBPF virtual
machines. The DMA buffer is cached in the Zynq PS.

There is no means in Delilah to directly DMA data from the
host into the ARM cores caches on the device. Such a feature is
supported by Xeon processors (DDIO20) and via cache stashing
on ARM processors based on the Dynamiq architecture, which is
not the case for the ARM Cortex A-53, embedded on the Zynq
Ultrascale+ MPSoC.

The cache is flushed before a program is loaded in the uBPF
virtual machine to make sure that it accesses the contents that has
been DMAed to the program slot and not old cached contents. Like-
wise, the cache is invalidated before and after program executed, so
that (i) data DMAed by the host can be read by the eBPF program
and (ii) data written by the eBPF program is flushed to memory
and can then be DMAed to the host.

3.3.2 Interrupts. In order to generate an interrupt, the PCIe DMA
/ Bridge IP must receive a signal on a given pin. In order to send
this signal, the Delilah controller relies on a GPIO IP block and
its associated driver, which is part of the Linux kernel.

18https://github.com/Xilinx/dma_ip_drivers/tree/master/XDMA/linux-kernel
19https://github.com/ikwzm/udmabuf
20https://www.intel.de/content/www/de/de/io/data-direct-i-o-technology-
brief.html

The Delilah driver registers a callback in XDMA that is asso-
ciated with the MSI-X interrupt. This callback triggers the uring
completion.

4 EVALUATION
Our evaluation is essentially a sanity check of the host-device pro-
tocol. We quantify the overhead associated to offloading eBPF pro-
grams to identify potential problems in our implementation and
identify potential optimizations.

4.1 Experimental Framework
We focus on latency as a metric for our experiments.

We run experiments on the Daisy platform equipped with a
single SSD (Samsung EVO970). The Daisy is connected to a host
via PCIe Gen3 x16. The host is equipped with Intel(R) Core(TM)
i7-4790 CPU @ 3.60GHz with 4 cores and 32 GB DDR3. It runs
Ubuntu 22.04 (Linux 6.2.6, liburing 0ce8a73f) and clang 14.0 is used
to compile eBPF programs.

A development server (12th Gen Intel(R) Core(TM) i7-12700KF
with 12 cores and 32 GBDDR4), running Ubuntu 16.04 (Linux 4.15.0),
is used to compile the block design, to offload FPGA bitstream and
OS image to the Daisy platform before experiments [13].

4.2 Experimental Results
To evaluate the latency of eBPF code offload in Delilah , we rely
on a simple eBPF program that takes as argument a file name and
calls a registered function. that reads that file in the data slot. The
files contain data sets of various sizes.

Figure 4 shows the end-to-end latency (in ms) associated with the
four Delilah driver commands for (i) writing an eBPF program to
a program slot on the device, (ii) writing the program’s arguments
in a data slot, (iii) executing the program and reading the result,
when the program calls a registered function that reads a file whose
size varies from 1KB to 100 MB.

Surprisingly, we observe that the latency for executing the pro-
gram has a high floor of approximately 15 ms, regardless of the size
of the data read by the registered function. As expected, the latency
for writing program and data to the device is low and the latency
for reading the output data is proportional to the size of the data
transferred.

While program and data read/write are performed via DMA
from the host, program execution entails a command sent by the
host to the device via BAR0 (see Section 6.2.3) and the execution
of the offloaded in uBPF with a registered function. We compare
the baselines from Figure 4 with (a) the end-to-end latency of exe-
cuting the eBPF program without registered function, and (b) the
latency of executing eBPF program and registered function on the
Delilah controller.

We break down the latency when offloading the eBPF program
reading a 1KB file. The overhead on the host driver and the latency
of executing eBPF and registered function are negligible. This is
very positive. Even the latency associated to interrupt handling is
small. Most of the time is spent invalidating and flushing the cache
associated to DMA buffers. This time is proportional to the size of
the cache, not to the amount of data.

https://github.com/Xilinx/dma_ip_drivers/tree/master/XDMA/linux-kernel
https://github.com/ikwzm/udmabuf
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Figure 4: End-to-end latency (in ms) associated with the four
Delilah driver commands.

Figure 5: Breakdown of the latency (in ms) for end-to-end
execution for a file size of 1 KB.

The cost of flushing the entire cache (as described in 3.3.1) is unac-
ceptable. As an optimization, we introduce selective cache flushing,
a mechanism that makes it possible for the host to communicate
to the device to declare how many bytes must be invalidated both
for reads and writes when sending the execution command. This
state is easily maintained by the host, and the controller defaults to
flusing the entire cache is this information is not provided.

Figure 6 shows the end-to-end latency for the 4 Delilah driver
commands with selective cache flushing. Now, we observe that
execution time is proportional to the amount of data processed, as
it should be.

In Section 3.2.1, we mentionned the two mechanisms that ex-
ist for data transfer over PCIe: DMA and transfer over the BAR
aperture. BAR has been used to write small log updates [16] while
DMA is the default to read or write data pages. Let us compare
transfer the latency cost for writing data with both mechanisms.
We experimented with transfer sizes ranging from 1B to 100 MB.
Figure 7 shows the result we obtained.

The key observation is that BAR is faster when the amount of
data is small. BAR writes are fastest until data is 1 KB. DMA is
superior when transfer size is greater than 10 KB. For us, it would

Figure 6: End-to-end latency (in ms) associated with the four
Delilah driver commands using selective cache flushing.

Figure 7: CMB vs. DMA transfer latency.

make sense to use BAR to write programs and use DMA to read
and write data.

Here are directions for future work. First, we should focus on
minimizing latency, e.g., using the uBPF JIT compiler rather than
the interpreter. There might be other coherence issues that arise
then. Second, we should complement the latency analysis presented
in this paper with a throughput analysis (possibly altering the
block design). Third, we should quantify the speedups that can be
achieved with hardware accelerated functions, called from eBPF
programs. Finally, we should evaluate Delilah for eBPF code
offload in the context of a real-world data system. In particular,
we need to evaluate how well-suited eBPF is for filtering, data
massaging and feature engineering.

5 CONCLUSION
We presented the design and implementation of Delilah , the
first publicly described system supporting eBPF code offload on a
real computational storage platform, OpenSSD Daisy. Our design
is representative of a class of computational storage processors,
implementing an on-path/PCIe architecture. Much work remains
to be done to explore how computational storage and eBPF code
offload will benefit data-intensive systems.
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