
PhD Thesis

The Design and Implementation of the Management

Action Language and the Life Cycle of Other DSLs

Holger Stadel Borum

Advisor: Peter Sestoft
Dept: Computer Science
Submitted: July 29, 2022

2

Is [TypeScript’s] type system sound?
No.

Have you tried to prove that [TypeScript’s] type
system is sound?

No.
Do you want to?

No.

Q&A session
Anders Hejlsberg

3

Abstract

A domain-specific language (DSL) is a programming language designed for use in a
particular problem domain. Typically, a DSL is more convenient, expressive, safe
and usable within its intended domain, in return for being less general and less
useful in other domains. Hence, DSLs are applied across many domains to alleviate
software engineering problems such as programmer productivity, code efficiency,
software variability, and software quality. Due to their diverse application domains
and purposes, DSLs take many different forms, and DSL creators encounter diverse
challenges.

In this thesis, we explore the design, implementation, and lifecycle of DSLs.
Specifically, we develop a rather non-trivial DSL called Management Action
Language (MAL) for the pension and life insurance domain together with a major
software vendor. Through a highly introspective process, we build on the lessons
from this experience to draw conclusions about DSL design, implementation, and
evolution. We complement this work by sending a questionnaire to the creators of
other DSLs to survey the creators’ experience.

First, we explore human-centred design and co-design of DSLs to ensure that our
DSL, or any DSL, is usable by its intended users. We use our experiences with
designing MAL to propose a two-phase human-centred design method and show
that non-programming experts can be used generatively in a DSL design process.

Second, we explore DSL implementation, focusing on run-time performance and
safety. Within the context of MAL, we show how we implemented a code generator
that creates more efficient code than comparable handwritten code while providing
compile-time guarantees on initialisation and reserve preservation.

Third, we survey the established practices in the lifecycle of DSLs through
a questionnaire sent to designers of historical DSLs. We focus on different
phases in a DSL’s lifecycle and show, among other things, that (a) we find no
correlation between the level of user involvement in the design process and the
level of programming experience of users of DSLs and (b) that most DSLs evolve
after creation, and that handling this evolution affects the practical success of a DSL.

Finally and separately, within the context of so-called Dynamic Condition Response
(DCR) graphs, a kind of DSL for describing workflows in organisations developed
by Hildebrandt and Mukkamala, we describe our work towards providing static
secrecy guarantees when the workflows adversarial parties that may seek to infer
actor decisions intended to be private.

4

Resumé

Et domæne-specifikt sprog (DSL) er et programmeringssprog designet til brug i et
afgrænset domæne. Typisk bytter et DSL tilgængelig, udtrykskraft, sikkerhed og
brugervenlighed i dets domæne for at anvendelig i andre domæner. Derfor bliver
DSL’er brugt p̊a tværs af mange forskellige domæner til at løse problemstillinger i
softwareudvikling som f.eks. programmørers produktivitet, effektiv kode, software
variabilitet og softwarekvalitet. DSL’ers mangeartede anvendelser og formål
betyder, at skabere af DSL’er støder p̊a lige s̊a mangeartede udfordringer.

I denne afhandling udforsker DSL’ers design, implementering, og livscyklus. Vi
udvikler et ikke trivielt DSL kaldet Management Action Language (MAL) for
pensions og livsforsikingsdomænet sammen med et større softwarefirma. Vi
bruger vores erfaringer fra en introspektiv proces til at drage konklusioner om
DSL-design, implementering og evolution. Vi komplementerer dette arbejde med
en spørgeskemaundersøgelse sendt til skabere af andre DSL’er, som undersøger
andres DSL-erfaringer.

Først undersøger vi brugen af human-centred design og co-design af DSL’er til at
sikre, at et DSL kan bruges af dets målgruppe. Vi bruger vores erfaringer med at
designe MAL til at foresl̊a en tofaset human-centred designmetode, og vi viser at
eksperter uden programmeringsbaggrund kan bruges skabende i en designproces.

Derefter undersøger aspekter af DSL implementation med et fokus p̊a effektivitet og
sikkerhed. I kontekst af MAL viser vi, hvordan vi implementerede en kodegenerator,
som producerer kode, der er mere effektiv end sammenlignelig h̊andskreven kode
mens der gives garanti om initialisering og bevaring af reserve.

Herefter kortlægger vi etablerede praksisser i DSL’ers livscyklus gennem en
spørgeskemaundersøgelse af skabere af historisk vigtige DSL’er. I undersøgelsen
fokuserer vi p̊a forskellige faser i livscyklussen og viser blandt andet at, (a) vi ikke
finder en korrelation mellem niveauet af brugeres inddragelse i designprocessen og
brugeres programmeringserfaring, og (b) at de fleste DSL’er udvikler sig, og at
hvordan denne udvikling h̊andteres p̊avirker et DSLs succes.

Endelig beskriver vi igangværende arbejde indenfor s̊akaldte Dynamic Condition
Response (DCR) grafer som modeller arbejdsprocesser udviklet af Hildebrandt og
Mukkamala. Her præsenterer vi arbejdet henimod at give hemmelighedsgarantier
n̊ar parter med forskellige mål indg̊ar i samme arbejdsproces.

5

Acknowledgement

Thanks to Peter Sestoft for supervising me during my bachelor’s thesis,
master’s thesis, and now my PhD thesis. Throughout this time, Peter has
provided me with support, guidance, and challenges. He has remained
calm when I have encountered problems and shared his both wide and
very specific experiences.

Thanks to people at the Actulus department in Edlund and, in particular,
Henning Niss for endlessly supporting me, fighting on my behalf, and
challenging my ideas.

Thanks to Christoph Seidl for helping me focus my thesis and research,
sharpen my ideas, navigate academia, and improve my writing.

Thanks to Ulf Norell for hosting me at Chalmers University of Technology
and giving me a glimpse into the universes of dependant types.

Thanks to Morten Tychsen Clausen for diligently helping me improve
and implement the Management Action Language, and to Maria Bendix
Mikkelsen, Christian Myrup Albinus, Simon Stampe Leiszner, Mikkel
Rahlff Berggreen for your work and investigations related to MAL.

Thanks to Frederik Madsen for your friendship, support and collaboration
during our bachelor’s, master’s, and PhD studies.

Thanks to Søren Debois for treating me as an equal from early in my
bachelor’s studies.

Thanks to all past and present colleagues in SQUARE for academic
sparring and social events.

Thanks to Innovation Fund Denmark for funding the project (7076-00029B).

Thanks to all my family and friends and to Stefan Borum and Tilde Nor
Stadel Borum for proofreading and editing.

Thanks to Sidsel Engmann Juul for never-ending love and support.

6

Revision
This version of the thesis have been revised based on the feedback in the
Prelimenary Report on the Phd Thesis.

Contents

1 Introduction 9
1.1 Context of Thesis . 9
1.2 Chapters and Research Contributions 10

2 Management Action Language 13
2.1 Language Motivation . 13
2.2 Language Example . 14
2.3 Language Guarantees . 19
2.4 Summary . 20

3 DSL Design 22
3.1 Human-Centred Design . 22
3.2 Discussion of Research Contributions 24
3.3 DSL Typology . 28
3.4 Summary . 31

4 Implementation of Management Action Language 32
4.1 Computational Cost of Projections 32
4.2 Extent of the MAL Implementation 33
4.3 Generating C# Code for Management Actions 34
4.4 Management Action Language as a Product 38
4.5 Summary . 44

5 Life Cycles of DSLs 45
5.1 Survey Study on DSLs’ Life Cycle 45
5.2 Purpose and Method . 46
5.3 Findings in Context of other Publications 46
5.4 Summary . 49

6 Secrecy Analysis in Distributed Workflows 50
6.1 Distributed Dynamic Condition Response Graphs 50

7

8 CONTENTS

6.2 DCR Knowledge . 54
6.3 Static Analysis . 54
6.4 Improvements and Challenges . 55
6.5 Summary . 57

7 Conclusion 58
7.1 Evolution . 58
7.2 Pragmatism . 59
7.3 Future Work . 61

Appendix A On Designing Applied DSLs for Non-Programming Ex-
perts in Evolving Domains 73

Appendix B Co-designing DSL Quality Assurance Measures for and
with Non-programming Experts 86

Appendix C Transforming Domain Models to Efficient C# for the
Pension Industry 97

Appendix D Survey of Established Practices in the Life Cycle of
Domain-Specific Languages 109

Appendix E Static Secrecy Guarantees for Dynamic Condition Re-
sponse Graphs 122

Chapter 1

Introduction

This PhD project was part of the research project Projection of Balances and
Benefits in Life Insurance (Probabli), which investigates how to perform solvency
calculations for Danish pension companies from an actuarial and a software engi-
neering perspective. Three parties have participated in the project: the University
of Copenhagen researched the actuarial mathematics of balance (consisting of assets
and liabilities) projections, we at IT University of Copenhagen investigated balance
projections through software language engineering, and the software company
Edlund A/S (Edlund) provided industrial expertise on both the mathematical and
software engineering perspective with its new balance projection platform.

1.1 Context of Thesis

The Danish pension sector is unusually large compared to the size of the country’s
economy. The sector manages reserves equivalent to 2 times Danish gross domestic
product [1] and is thus of societal significance. The Probabli project exemplifies
how the responsibilities of a Danish pension actuary have changed within the last
couple of decades. In addition to their traditional area of work, actuaries now also
often play a role as both users and developers of complex and high-impact software
projects. This development has been caused by the availability and low cost of
computational resources that have made it feasible to run large-scale balance pro-
jections of a pension company’s portfolio of pension insurance policies. A pension
company uses balance projections to calculate or approximate different quantities of
interest, such as reserves and payment streams. The company’s internal motivation
for making these projections originates from an interplay between the company’s
motivation for improving its business, on the one hand, and new external financial
regulations, on the other hand. Still, the balance projections require substantial
software engineering efforts from pension actuaries.

9

10 CHAPTER 1. INTRODUCTION

This thesis presents and contextualises our work with creating the domain-
specific language (DSL) called Management Action Language (MAL). We previously
the ongoing work with MAL in the master’s thesis [2]. A DSL is a programming
language designed to be well suited for solving particular, delimited kinds of tasks.
As a form of software product line [3], MAL’s purpose is to easily let different Dan-
ish pension companies use the same balance projection platform even though they
are managed differently. We present the work in the thesis Chapter 2 through 4,
focusing respectively on MAL itself, non-technical DSL design, and DSL implemen-
tation. MAL is the primary source of empirical data augmented with experiences
from related projects.

We designed MAL to solve a narrow but substantial problem primarily relevant
to Danish pension companies, but we see its creation within the broader context of
actuaries undertaking new roles. In other words, we created MAL in response to the
actuarial field evolving, and such evolution is not unique to the field of actuaries.
On the contrary, the availability of computational resources has caused many
non-programming professionals to take on similar roles as users and developers
of complex software products. We use the term non-programming professionals
to keep the thesis consistent with the included papers, although Shaw makes a
strong argument for using the term vernacular software developers [4]. Therefore,
while the thesis takes the specific perspective of our experiences working with MAL
within the actuarial domain, we generalise to the common case of non-programming
professionals when possible.

1.2 Chapters and Research Contributions

DSL research is a diverse field concerned with the engineering process, from de-
signing to creating to eventually retiring a DSL. The research involves methods,
techniques, and tools supporting this process, along with many experiences and
examples of applying DSLs as solutions to problems in different domains and
contexts [5]. The research focused on supporting DSL development has primarily
revolved around techniques for doing so with less focus on tools, evaluation, and
integration with software engineering processes [6]. Furthermore, this research
has overwhelmingly considered domain analysis, design, and implementation with
almost no attention to maintenance and validation of DSLs [6].

The focus on design, domain analysis, and implementation is largely shared by
our papers (included in Appendices A-E) that primarily present our work related
to MAL (Table 1.1). However, the thesis also investigates the broader life cycle
of DSLs, which includes maintenance and evolution and other life phases such as

1.2. CHAPTERS AND RESEARCH CONTRIBUTIONS 11

launch and retirement. The main contributions are in the papers (Appendices
A-E). Chapters 2-6 give an overview that contextualises the papers and additionally
updates and reflects the papers’ content when relevant. The thesis is structured as
follows:

In Chapter 2, we give a brief introduction to MAL by walking through the imple-
mentation of a small module calculating the tax on yields from pension scheme
assets, and we compare it to the existing solution. Furthermore, we describe some
of MAL’s language guarantees.

In Chapter 3, we summarise our contributions to the design of DSLs from both a
human-centred and a co-design perspective. Furthermore, we argue for classifying
DSLs according to their problem or challenge space instead of their solution space,
domain, or implementation technology. We argue for the utility of such a classi-
fication by showing how the challenge space of MAL affected its design process
compared to similar DSLs.

In Chapter 4, we describe the current state of MAL’s language implementation
in terms of IDE support, code-generator, and MAL template code. We describe
the work leading to a code generator producing code that is between 1.27× and
1.46× faster than comparable handwritten C#. Furthermore, we discuss and anal-
yse why it is difficult for MAL to move from a reserch project to an Edlund product.

In Chapter 5, we present the findings of our survey of established practices in the
life cycles of DSLs appearing in different curated DSL collections. We discuss the
findings relating to user involvement in DSL design, evolution, and pragmatism in
relation to our other work presented in the previous chapters.

In Chapter 6, we present ongoing work into statically providing secrecy guaran-
tees for Dynamic Condition Response graphs that model distributed workflow
processes. We first informally argue for the need for an approximation of secrecy
and then sketch an approach to approximation inspired by information flow analysis.

In Chapter 7, we conclude the thesis by summarising the thesis’ contribution and
discussing how two underlying themes of evolution and pragmatism appear in
the different thesis chapters. Furthermore, we present five avenues of future work
relating to DSLs, user evaluation, and workflow secrecy.

This thesis makes the following new contributions and updates to our articles:

� A comparison between a specification written in MAL and the specification

12 CHAPTER 1. INTRODUCTION

Table 1.1: The constituent papers of the thesis, their status, a summary
of their contribution, and which thesis chapter they primarily relate to.

App. Ch. Title Status Venue

A 3 On Designing Applied DSLs for
Non-Programming Experts in Evolving
Domains

Published MODELS’21

A classification of languages according to evolutionary characteristics, a proposed DSL design
method, and a case study of MAL’s design process.

B 3 Co-designing DSL Quality Assurance
Measures for and with
Non-programming Experts

Published DSM’21

A presentation of MAL, an approach to and experiences with co-design within DSLs, and
the design of debugging spreadsheets as a general quality assurance measure.

C 4 Transforming Domain Models to
Efficient C# for the Pension Industry

Submitted MLE’22

An identification of common operations in management action specifications, a strategy for
generating code for these specifications, and benchmark results.

D 5 Survey of Established Practices in the
Life Cycle of Domain-Specific
Languages

Accepted MODELS’22

A presentation of empirical data regarding DSL’s lifecycle, an analysis of this data, and
empirically based recommendations.

E 6 Static Secrecy Guarantees for Dynamic
Condition Response Graphs

Working
Paper

(TBD)

A formalisation of secrecy approximation in DCR executions, our work towards an efficient
secrecy approximation, and the concept of minimal runs.

as handwritten management template code. (Section 2.2)

� A proposal and draft for creating a problem space DSL typology. (Section
3.3)

� An analysis and discussion of problems MAL is facing in transitioning from a
research project to a product. (Section 4.4)

� An informal presentation of our information flow inspired approach to secrecy
analysis in DCR graphs. (Chapter 6)

Chapter 2

Management Action Language

The Management Action Language (MAL) was designed in an industrial collabora-
tion between Edlund and the IT University of Copenhagen to improve Edlund’s
balance projection platform. MAL is a spiritual successor of the domain-specific
language Actulus Modeling Language (AML) [7], which was designed and developed
in a similar collaboration between the same institutions. Whereas AML allows
actuaries to specify pension products, MAL allows actuaries to specify how pension
product instances are managed in balance projections. The two languages are only
integrated to the degree that input values to a balance projection may originate
from an AML specification. In this chapter, we present MAL as follows: First, we
give a brief motivation for creating MAL by describing the system it is designed
to replace. Second, we present MAL’s concrete syntax through a small module
definition and compare it with the existing solution. Third, we present important
language guarantees provided by MAL. A snapshot of MAL’s typechecker and code
generator is public available [8], but the entire code base is not publicly available
as it integrates with proprietary DLLs.

2.1 Language Motivation

Edlund is a Danish software company specialising in creating software for the
Danish pension industry. One of Edlund’s products is a platform that allows
a pension company to perform balance projections in accordance with financial
regulations. The projection platform (Figure 2.1) is separated into calculations that
are the same for all pension companies (the projection engine) and calculations
that are specific to a given company (so-called management actions).

The purpose of MAL is to allow actuaries in pension companies to express
efficient, company-specific management action in a secure and correct way. From
the perspective of software product lines [3], MAL is a way to facilitate software

13

14 CHAPTER 2. MANAGEMENT ACTION LANGUAGE

Figure 2.1: A simplified depiction of the projection platform consisting
of Edlund’s general projection engine and the company-specific manage-
ment actions.

variability by allowing a pension company to specialise the projection platform
with the company’s business rules. Currently, Edlund allows companies to submit
management actions described by implementing a C# interface to the projection
platform. To help customers, Edlund has created a sizeable, modifiable template
solution in C#. We designed MAL to replace this solution and allow for the creation
of a similar template solution and easier customisation of the template.

2.2 Language Example

We present MAL by specifying a module that calculates tax on yields from pension
scheme assets (PAL, short for pensionsafkastbeskatningsloven [9]). The module
computes the tax for pension policies and groups. In Danish pension tradition,
a group is a collection of pension policies that share specific dividend payments.
We compare the specification to equivalent real-world template specification in
C#. For brevity of presentation, we use a simplified data model and do not show
initialisation, but we remain true to how the template specifications look.

The PalValues module is a small computational unit that is a fifth of the size
of the largest one, measured in lines of code. We start by defining a skeleton with
C++-style comments as numbered holes that we will fill in later:

module PalValues
// 1 Data contracts
// 2 Action and Function declarations

export action manage ()
{

// 3 Management
}

2.2. LANGUAGE EXAMPLE 15

The above declaration defines the module PalValues, which exports a manage action
that takes no arguments. We will proceed by defining: 1 , the module’s data con-
tracts that specify what data the module requires and provides. 2 , the module’s
local actions and functions used in the calculations. 3 , the computational content
of the manage action.

In C#, a class is used for a similar computational unit. It consists of: 1 , a number
of read-only fields that specify the result of the calculation. These values are
returned to the caller of the static Calculate method that instantiates a PalValues

object. 2 , utility methods used in the calculations. 3 , the body of the Calculate
method that contains the computational content of the unit.

class PalValues
{

// 1 Read -only fields

// 2 Method declaration

static PalValues Calculate(
PalValues previousPalValues ,
IReadOnlyDictionary <string , PolicyPeriodResult >

policyIdPeriodResult ,
IReadOnlyDictionary <string , GroupPeriodResult >

groupIdPeriodResult)
{

// 3 Management
}

}

1 Data contracts in MAL

The PAL template solution calculates the tax on yields from pension scheme assets
for both pension policies and groups.

export data PalTax
InvestmentReturnTaxAsset : Float
InvestmentReturnTaxPaymentForPeriod : Float

end

The above code defines a data entity for PalTax that contains two floating-point
numbers specifying the investment return asset and payment for the period. We
use the definition to specify that the module calculates PalTax for both policies
and reserve groups with the following data contracts:

16 CHAPTER 2. MANAGEMENT ACTION LANGUAGE

contract Policy
{

requires {
Result : PolicyResult

}
provides{

Pal : PalTax
}

}
contract ReserveGroup extends Group
{

requires {
Result : GroupResult

}
provides {

Pal : PalTax
}

}
contract Global
{

requires {
PalTaxRate : Float

}
}

The above code specifies that the PalValues module uses the Result of both a
Policy and a ReserveGroup to calculate their PalTax. Also, the Global object must
have a PalTaxRate. We omit some empty data contracts required by the type
checker.

In C#, class fields describe the values provided by a computational unit:

Dictionary <string , double >
PolicyIdInvestmentReturnTaxPaymentForPeriod ,
PolicyIdInvestmentReturnTaxAsset ,
GroupIdInvestmentReturnTaxPaymentForPeriod
GroupIdInvestmentReturnTaxAsset;

double PalTaxRate;

There are three important aspects of the C# declaration to discuss. First, the
specification follows a consistently used convention of storing computed values in a
dictionary mapping identifier strings to floating-point numbers. While one could
have created a class similar to PalTax to only manage one dictionary for policies
and one for groups, this choice would have broken the convention. Second, the code
above shows only values provided by the computations. The required values are
most often specified as parameters to the Calculate method. While the pattern,

2.2. LANGUAGE EXAMPLE 17

in this case, allows for a short specification, the size of a method’s signature tends
to become large and difficult to read when additional data is required due to many
dictionary arguments. Third, it is unclear from the specification that PalTax is
calculated only for a ReserveGroup. For our purpose, it suffices to know that a
ReserveGroup is conceptually a subtype of a Group. Such a constraint that appears
in comment documentation is easy to overlook, misunderstand, and mistrust.

2 Action and function declaration in MAL

We now define how PalTax is updated by the updateSinglePal management action.
A data field may be updated in a MAL action, whereas it may not in a MAL
function.

action updateSinglePal(Pal : PalTax
, realisedReturn : Float)

{
let investmentReturnTaxForPeriod =

realisedReturn * Global.PalTaxRate
let startPeriodAssets =

Pal.InvestmentReturnTaxAsset
let investmentReturnTaxPaymentForPeriod =

max(investmentReturnTaxForPeriod - startPeriodAssets , 0)
let investmentReturnTaxAsset =

startPeriodAssets
- investmentReturnTaxForPeriod
+ investmentReturnTaxPaymentForPeriod

Pal.InvestmentReturnTaxPaymentForPeriod =
investmentReturnTaxPaymentForPeriod

- investmentReturnTaxAsset
Pal.InvestmentReturnTaxAsset = investmentReturnTaxAsset

}

The action primarily consists of simple arithmetic and assignments that we will
not describe in detail. It is worth noting that the action makes use of the globally
available entity Global.

In C#, a method is used for a similar computational definition. We do not show
the content of the method as it is verbose and difficult to format in a readable
manner. The method is implemented by iterating through the dictionaries in the
argument of the method.

static Tuple < Dictionary <string , double >
, Dictionary <string , double >
> CalculateInvestmentReturnTaxAssets

(double palRate
, IReadOnlyDictionary <string , double > investmentReturnTaxAsset
, IReadOnlyDictionary <string , double > realisedReturn

18 CHAPTER 2. MANAGEMENT ACTION LANGUAGE

)
{

// Omitted 14 lines and 639 characters formatted for an IDE
// In comparison the entire above MAL action has 13 lines
// and 630 characters when formatted for an IDE
return Tuple.Create(investmentReturnTaxPaymentForPeriod

, investmentReturnTaxAsset);
}

3 Management in MAL

Finally, we can specify the behaviour of the module’s manage action as follows:

update policy in Policies
{

do updateSinglePal(policy.Pal
, policy.Result.PeriodRealisedReturn)

}
update group in Groups:ReserveGroup
{

do updateSinglePal(group.Pal
, group.Result.PeriodRealisedReturn)

}

The above code calls the previously defined action updateSinglePal to compute
the PalTax for both policies and reserve groups. Note the usage of the type filter
construct Groups:ReserveGroup that chooses all reserve groups from the collection
Groups.

In C#, the same calculations are made by similar calls to the previously defined
method CalculateInvestmentReturnTaxAssets. However, before a call, argument
data must be manipulated to be compatible with the method’s signature, and after
both calls, data is manipulated to return a PalValues object.

var policyIdPeriodRealisedReturn = policyIdPeriodResult.Map(
(policyId , resultForPolicyId)

=> resultForPolicyId.PeriodRealisedReturn);
var policyIdPalResults =

CalculateInvestmentReturnTaxAssets
(previousPalValues.PalTaxRate
, previousPalValues.PolicyIdInvestmentReturnTaxAsset
, policyIdPeriodRealisedReturn);

//... groupIdPalResults is calculated in a similar manner ...
return new PalValues

(policyIdPalResults.Item1
, policyIdPalResults.Item2
, groupIdPalResults.Item1

2.3. LANGUAGE GUARANTEES 19

, groupIdPalResults.Item2
)

In this code fragment, we see some of the consequences of storing computed
quantities in dictionaries. First, a considerable amount of dictionary manipu-
lation has to be performed to match method signatures. Second, many inter-
mediate dictionaries are created only for short-term use. An example of this is
policyIdPeriodRealisedReturn. While it is easy to point to problems with using
dictionaries in this fashion, it should be noted that the template developers have
reasons for doing so. First, the dictionaries are versatile in that it is easy to create
a quantity locally without having to worry about how it would fit in an inheritance
hierarchy. This property of locality is especially relevant in that it makes it easy for
customers to introduce local modifications. Second, the dictionaries are compatible
with the projection engine’s interface. Another choice of data structure would
necessitate a significant amount of conversions to be compatible with the interface.

Summarising the MAL vs. C# comparison, we have shown how we, in the
design of MAL, have included and improved concepts appearing in the template
specification. Instead of using classes to encapsulate a computational unit, MAL
uses modules with explicit data contracts declaring what values the module requires
and provides. Instead of using local string-indexed to store computed values, MAL
expands data entities with new fields when needed. Finally, we have not shown
how to output values from a projection. However, it should be mentioned that this
can be done in a declarative manner in MAL by annotating a data declaration.

2.3 Language Guarantees

We have already hinted at some usability and guarantees provided by MAL. Still,
we want to treat important language guarantees in their own section. We use
the word guarantee in its informal meaning of property provided by the language
without a formal proof of soundness. We previously used Agda [10] to prove a
subset of MAL [2] to be type-safe but found the time cost of creating proofs to
hinder the development of MAL.

2.3.1 Initialisation Before Use

MAL uses explicit data models and data contracts to statically guarantee that a
field is initialised before it is used. This guarantee comes in two flavours: First,
within a module, all fields are assigned before they are used. Second, before calling
into a module, all of the module’s required data fields must be initialised. This
guarantee should be seen in contrast to the usage of identifier-index dictionaries to

20 CHAPTER 2. MANAGEMENT ACTION LANGUAGE

keep track of values in the C# solution. In the above example, a string-indexed
dictionary is used to keep track of the InvestmentReturnTaxAsset of policies and
groups. Here it is not clear that such a value exists for all policies but only for
specific types of groups. Furthermore, there is no guarantee that a value exists at a
specific identifier in a dictionary, i.e., there is no guarantee that the value has been
initialised. Although we have not seen the need, MAL’s initialise-before-use check
could be upgraded to an update-before-use check that ensures a computation only
uses values updated within its time period.

2.3.2 Relationship Cardinality

Management actions traverse a relationship graph between policies and different
types of groups. MAL ensures the cardinality of different kinds of relations. For
example, all policies must belong to exactly one interest group but may belong
to zero or one expense group. Again, this guarantee should be seen in contrast
to the C# solution where, as part of the interface, these relations are stored in
identifier-index dictionaries with no cardinality guarantees.

2.3.3 Reserve Preservation

MAL is to be used to manage large monetary reserves. In doing so, MAL ensures
that the sum of reserves remains constant so that it is impossible to invent or lose
money by accident. In relation to this property, a MAL program is correct by
construction in that there is an explicit construct for reserve transfer. An example
of the construct is seen below that transfer 200 from the reserve of group to the
reserve of policy.

group.Reserve |> 200 |> policy.Reserve

2.4 Summary

In this chapter, we have presented MAL, which we designed for actuaries to express
management actions in balance projections. We have done so by defining a module
for PalValues and comparing it to existing handwritten C#. First, we defined
the data contract of the module. Second, we defined an action for updating the
PalValue of a single policy or group. Third, we defined the manage action that
iterated through all relevant policies and groups. In creating this definition, we have
seen how MAL lets users modify and extend the data model in a manner where
the language implementation guarantees that values are initialised. In addition,

2.4. SUMMARY 21

MAL’s explicit data model makes it possible to provide guarantees on relationship
cardinality, which is difficult to do in the current C# setup. While we in this
chapter have argued for the utility of MAL programs in terms of code structure,
readability, and error-proneness, MAL also generates efficient code, as we argue in
Section 4.3.

Chapter 3

DSL Design

Domain-specific languages promise their users support tailored to their tasks.
Nevertheless, many DSL users still have to engage with a complex, abstract
software system to solve programming tasks with a multitude of solutions. The
purpose of DSL design is to help users in this task by making it easier to create
large, complex, secure, efficient, and correct software solutions. Therefore, a DSL
designer should get methodological prescriptions for designing a usable DSL. We
contribute to the investigation of how human-centred design (HCD) can be used for
such methodological prescriptions through our experiences with creating MAL. The
important HCD activity of evaluation has, arguably, been neglected as a DSL design
activity [11]. Several practitioners propose early user evaluation of DSLs [12, 13].
However, such evaluation cannot simply be introduced in a development process
but must be facilitated by other activities. In this chapter, we first present the field
of DSL design from the perspective of HCD, then we summarise and discuss our
research contributions, and finally, we discuss the utility of a problem-space oriented
classification of DSLs as opposed to the current solution space classification.

3.1 Human-Centred Design

Human-centred design seeks to include the users in the design process to ensure
that the designed artefact is usable [14]. We use the terms user-centred design
and human-centred design interchangeably, although the latter may be argued
to have a broader socio-technical design perspective [15] similar to participatory
design [16]. For such a design process, we prefer to simply use the term participatory
design. While Myers et al. [17] and Coblenz et al. [18] present HCD techniques for
programming language design, we instead present example applications of design
techniques during the different design activities. Besides a planning activity (which
we return to in Sections 3.2.1 and 3.3), human-centred design is an iterative process
consisting of the four activities [19] presented below.

22

3.1. HUMAN-CENTRED DESIGN 23

Context-of-use elicitation investigates the setting in which the DSL is to be
used. It is difficult to find reports on conducting this activity, but a prominent
example is a usability study of a similar software product [20]. More often, papers
present the context-of-use as a given prior for a design project with no methodologi-
cal description, e.g., [21, 22, 23]. We conjecture that there are three reasons for this
scarcity of reports on context-of-use elicitation. First, context-of-use elicitation of
DSL projects may not differ from the general case of software engineering. Second,
the problem tackled by DSL design may have already been established as being
important. Third, the authors of papers regarding DSLs do not see context-of-use
elicitation as a primary central contribution of their work.

Requirement elicitation establishes the functionality that must be available in
a DSL. Requirements are often stated with no methodological description as to how
they were found. We find that requirements often come from a) the system that the
designed DSL is to replace [24], b) the analysis of established domains [25], or c)
case study analysis [26]. Again, we conjecture that the scarcity of methodological
considerations are due to them not being perceived a primary challenge by DSL
practitioners.

Producing design solutions creates or prototypes the DSL for subsequent eval-
uation. For this activity, we find it useful to distinguish between idea generation
methods and prototyping methods.

For idea generation, we believe the dominant methods to be bottom-up analysis,
brainstorming, and rapid prototyping, but we again find few reports from practi-
tioners applying such methods. A frequent piece of advice is to “[a]dopt whatever
formal notations the domain experts already have, [...]” [27, 28] which suggests
a bottom-up analysis. Natural programming [29] is one generative method that
has been applied to adopt the notation and conceptual model of users [20, 30]. A
similar approach is adopted by different versions of example-driven meta-model
development [31, 32, 33, 34] for domain-specific modelling languages (DSMLs).
Zaytsev created the framework Language Design with Intent [35] that presents 96
actionable design decision points for software language designers.

For prototyping, one needs to create an artefact for both design-space exploration
and evaluation. Language workbenches [36, 37] help in the implementation of DSLs.
A recent systematic mapping study finds that the most used tools are XText, Eclipse
Modeling Framework (EMF), and MetaEdit+ [38]. However, a prototype does not
need to be a fully functioning language design since non-functioning mock-ups may

24 CHAPTER 3. DSL DESIGN

still allow for exploration and evaluation. Whiteboard and magnets [26] can be
used for collaborative modelling. Language backporting [39] implements design
experiments in a mainstream host language. Different Wizard of Oz [40] tech-
niques are used to mimic systems that have been only partially implemented [41, 39].

Evaluation seeks to find strengths and flaws in a DSL with the purpose of refining
it. For HCD, it is important that users are involved in this evaluation, which means
that methods that do not involve users, such as cognitive walkthroughs, heuristic
evaluation, or other forms of expert evaluation, are only supplementary. Also, we
recognise the difference between scientific evaluation and evaluation for the purpose
of design validation. While there is an overlap between the two activities, our
interest here is the latter. A recent, updated systematic literature review [42, 43]
finds usability evaluation combined with recordings or questionnaires to be the
predominant HCD method. Barǐsić et al. [11] present a conceptual framework for
adding an evaluation as a phase in DSL development. Like us, they emphasise the
need for early user evaluation but assume a design context with many available users.
Evaluation with different users at different stages may be used to progressively
ensure different usability goals [13]. Collective task solving conducted at workshops
can be used to refine a DSL [44]. Evaluation may be an open house activity where
guests willingly participate in different experiments [45]. Other evaluation has used
randomised controlled trials for in-depth examination of different topics, such as
the impact of choice of keywords [46] or the introduction of lambdas in C++ [47].

3.2 Discussion of Research Contributions

In our paper On Designing Applied DSLs for Non-Programming Experts in Evolving
Domains [48](Appendix A), we explored HCD of DSLs through the design and
implementation of our domain-specific language MAL. We propose a two-phase
design method for designing DSLs in evolving domains. The method moves from
a phase of low-certainty exploration using in-team domain experts for lightweight
evaluation to a phase of higher validity design validation using external domain
experts. A more participatory design approach was investigated in our paper
Co-designing DSL quality assurance measures for and with non-programming ex-
perts [49](Appendix B) where DSL users were generatively engaged in the idea
generation activity. In this section, we critically discuss selected contributions of
these papers.

3.2. DISCUSSION OF RESEARCH CONTRIBUTIONS 25

3.2.1 Challenge Identification

We synthesised the proposed two-phase design method during the design of MAL.
This process means we generalise our concrete experiences to a wider set of design
contexts where we expect them to be relevant. We do not think that we can gener-
alise by ignoring specific challenges. On the contrary, the investigation of specific
design challenges is the foundation for the generalisation. As an example, we iden-
tify the challenge that user involvement in the design process has to be limited due
to the few available users and the scarcity of their time. This challenge led to the
concrete advice that during the first design phase, only an in-team domain expert
should be used for evaluation. In a design context where many users who can de-
vote time to evaluation are easily available, the prescription would likely be different.

The described method for generalisation implicitly bounds the applicability of
the proposed design method to those that have similar challenges to ours. From
this perspective, it is natural to consider whether our design experiences could be
more generally applicable by making challenge identification an explicit step of the
method similar to the planning activity in HCD [19]. However, in doing so, the
proposed method could suffer from a lack of prescriptions since our experiences do
not allow us to prescribe what to do in other design contexts. Thus, any prescriptive
method has to strike a balance between the overly general advice of “Do something
reasonable” to specific advice of the form “Here is something reasonable that we
did”. We return to the subject of challenge identification in our discussion of how
a problem space DSL typology may be useful for DSL practitioners (Section 3.3).

3.2.2 Evolution and Requirement Elicitation

Language evolution is an aspect of DSL creation that played a significant role in
the creation of MAL [48](Appendix A). Amstel et al. [50] found that their DSL
evolved in response to changes in its problem domain and application domain and
to improve the quality of models and the quality of transformations. These causes
of evolution adequately characterise our experiences with creating MAL, but we
find it useful to further analyse problem domain evolution.

We found two kinds of evolution in MAL’s problem domain. First, there was a
problem-domain expansion that introduced new concepts and rules to be expressed
or changed in existing concepts. Second, there was a problem-domain settlement
when solutions to previously unsolved problems appeared. The latter kind of evolu-
tion is a symptom of what we call an amorphous domain, i.e., a domain with many
uncertainties. As an example, MAL’s problem domain of balance projections is
defined by the following four stakeholders. First, the Danish Financial Supervisory

26 CHAPTER 3. DSL DESIGN

Authority implements the rules within the framework of EU legislation. Second,
Danish pension actuaries develop different mathematical models of how to perform
balance projections. Third, each Danish pension company has to individually
decide how to best implement financial regulations for its business. Fourth, soft-
ware vendors and developers have to figure out what is technically feasible. The
combination of these stakeholders and a young domain means that there have been
many unknowns in MAL’s problem domain while it has slowly settled. Even in
2022, there still are unsolved problems; most stakeholders are seemingly perplexed
when considering how to allow decisions to be made on prospective values, if doing
so is even possible.

An amorphous domain is problematic for DSL design since it makes require-
ment elicitation an uncertain and ill-defined task. Domain experts may not be
comfortable with delimiting the solution space since they see what we may call
potential solutions to a given problem. Although it may be easy for a designer to
create constructs for all potential solutions, doing so will tend to make the language
more general-purpose and contain superfluous constructs and features. We found
that only designing the language for the currently established domain mitigated
this problem to some degree. However, the realisation of potential solutions, such
as adding customisable projection times or using a probabilistic data model, still
caused language evolution. Still, we also saw requests for features that were not
considered as needed for potential solutions but could easily have been handled by
making the language more general-purpose, e.g., by adding traditional while loops.

The experiences with DSL evolution led us to a deductive categorisation of
programming languages inspired by Lehman’s S-type, P-type, and E-type programs.
Our categorisation categorises according to their evolutionary characteristics but
does not use Amstel’s above-mentioned causes for evolution since they are not
applicable to all types of language. We hypothesise that DSLs created as a software
engineering solution are E-type programming languages. Like an E-type program,
an E-type language is highly susceptible to evolution since it becomes part of
and affects its own application domain. Although we have not investigated the
categorisation inductively, we find other DSL practitioners have had similar ideas.
Karaila [51] analysis 20 years of evolution of the Functional Block Language from
the perspective of being an E-type program and finds that Lehman’s laws [52]
characterise the evolution well.

3.2.3 Prototyping, Evaluation, and Idea Generation

A user of a DSL seeks to find one of several solutions with different merits to an
open-ended problem. They do so by expressing a plan to be executed in the future

3.2. DISCUSSION OF RESEARCH CONTRIBUTIONS 27

while identifying and correcting errors based on a wealth of information [53]. Such
interaction has fundamental differences from a well-defined task such as withdraw-
ing money from an ATM and therefore questions the applicability of conducting
traditional short-term usability tests [54]. From this perspective, we investigate
prototyping and evaluation of DSLs [48](Appendix A) and how to engage users
actively in idea generation [49](Appendix B).

To have a purpose, evaluation should have the possibility of affecting the DSL
design. Therefore, we propose that designers should create low-cost and early
prototypes with a corresponding lightweight evaluation. Such low-cost evaluation is
especially important for novice designers who explore a domain new to them since it
allows them to make and fix mistakes. We found during the phase of low-certainty
exploration that creating non-functional text-editor prototypes allowed us to evaluate
a diverse set of language designs early. We experienced that it is unreasonable
to expect a domain expert to have opinions on different language constructs but
that comparing and modifying solutions prompted feedback. Once the design
settles, we propose validating the design with actual users on a functional proto-
type to mitigate the risk of having received biased feedback from the in-team expert.

Co-design is another approach to ensuring that a designed artefact is usable by
its intended end-users. The idea is to engage users actively in the design process
so that they can create solutions to their needs. MAL has certain compile-time
guarantees (Section 2.3) and a prototype debugger implementation. Still, it was
difficult for us to figure out what quality assurance measures domain experts needed
when working with balance projections. Therefore we set out to co-design quality
assurance measures in a workshop with prospective MAL users. Here we found that
our prospective users approached quality assurance from the analytical perspective
of understanding their solution, whereas we approached quality assurance from a
testing perspective. Upon realising this difference, the workshop became fruitful,
leading to three concrete designs for quality assurance. From these experiences,
we conclude that DSL users can be engaged actively in creating designs, although
bridging a gap in perspectives is a significant part of doing so.

3.2.4 What About Tools?

While DSL tooling is an important aspect of DSL research, the presented research
contributions to human-centred DSL design have appeared as orthogonal to tooling.
Here we discuss different claims of how different tooling might have affected our
findings.

28 CHAPTER 3. DSL DESIGN

Language workbenches facilitate rapid prototyping
We found it important to create low-cost DSL prototypes for early design evaluation
and therefore prescribe using text-editor prototypes. However, one may argue that
since workbenches reduce the turnaround time of defining and implementing DSLs,
they can and should be used for prototyping purposes. The argument would be
that workbench-supported prototypes allow for more realistic evaluation since they
provide a realistic programming environment. Still, we found a need to explore
markedly different non-trivial designs and implementing each in a workbench would
require significantly more implementation time than sketching them in a text
editor. Also, having the DSL designer play the role of development environment
was adequate for evaluation. So while it is possible that prototype workbench
implementation is advisable in some situations (discussed in Section 3.3.3), we
found the overhead too large when working with a complex DSL.

Language workbenches reduce the cost of evolution
We found language evolution to be a significant challenge in the development
of MAL. One could hope that tool support would reduce some of this cost by,
for example, facilitating co-evolving the language definition with its programs.
However, we found that most of the time spent on language evolution was spent
analysing evolved GPL programs and understanding this evolution’s impact on
the language definition. As a side note, the motivation for creating MAL, to a
large extent, originated from the difficulty of understanding the GPL program. We
spent relatively little time actually adjusting the language definition and program
instances where tool support could practically have helped us.

3.3 DSL Typology

So far, we have purposefully avoided giving a strict definition of the term domain-
specific language. The term is broadly used to encompass languages ranging
from advanced configuration file formats to Turing complete languages. From the
perspective of DSL design, we find the broadness of the term problematic since
vastly different design approaches may be suitable for different types of languages.
Tomassetti and Zaytsev [55] similarly find the broadness of the term an obstacle
for DSLs being adopted in software engineering and suggest a subcategorisation
similar to ours as a solution. In our context, the problem with the broadness relates
to the planning activity in HCD that plans how usability activities are to be used
during the project by exploring the wider design context.

Traditionally domain-specific languages are presented using solution space cate-
gorisations. That is the dichotomy of internal and external DSLs, the dichotomy

3.3. DSL TYPOLOGY 29

of interpretation and code generation, and sometimes the differences between pro-
jectional editing and parsing or textual and visual languages. While knowing the
solution space characteristic of a DSL guides a creator towards its technical design,
it does not provide a starting point for the language design process. Here we present
a starting point for a problem space typology of DSLs. We argue for the utility of
the individual dimensions by hypothesising guidelines for the design process. We
only hypothesise since our limited experience with working with MAL does not
allow us to make stronger claims. Still, we find the guidelines reasonable and think
they or others should be investigated empirically. Also, we see a similar idea in the
context modelling activity of the USE-ME framework [11] that determines DSL
evaluation from the problem space. Zaytsev shares our interest in having design
guidelines with the aforementioned Language Design with Intent toolkit. However,
we find the framework to be of too fine granularity and too solution-oriented to
be actionable. Similarly, Poltronieri et al. propose the evaluation framework Usa-
DSL [56] to support designers in the evaluation of DSLs. Although the framework
presents many used evaluation methods, metrics, instruments, and so forth, it
provides little to no guidance on which methods to use in a given situation.

3.3.1 Users

The target users of different DSLs vary in programming experience, availability,
group size, and level of heterogeneity. All of these aspects influence what level
and kind of evaluation is possible and needed in a design project. Halvorsrud
et al. found that the heterogeneity of their users made its usability evaluation
challenging [44]. Therefore, they made a large-scale workshop evaluation which
was possible due to the availability of users. We found usability testing to be
important due to users’ limited programming experience and sought to make the
best use of their time due to their limited availability [48](Appendix A). We
conjecture that when target users are a homogenous group of programming experts,
then usability testing becomes less important due to their mental model being
close to the designer’s. Still, if the designed DSL introduces advanced or esoteric
programming concepts or notation, the design should be validated.

3.3.2 Tasks

The tasks carried out by users of different DSLs vary in their open-endedness and
the kind of their task (read, modify, or write DSL code). We conjecture that for
open-ended tasks, usability evaluation requires longer sessions with users, whereas
heuristic evaluation or cognitive walkthroughs may be adequate for tasks with a
single solution. Also, whether users are to primarily read, modify, or write DSL

30 CHAPTER 3. DSL DESIGN

fragments should be reflected in the usability evaluation and potentially even in
the design of the DSL.

3.3.3 Evolution Characteristics and Application Context

The evolutionary characteristics and application context of a DSL influence when
and how to implement or create prototypes. We have already discussed different
kinds of evolution in Section 3.2.2, along with a brief presentation of our evolution-
based characterisation of DSLs. While our characterisation could be used in this
context, it is more important to identify how likely the DSL is to evolve and why.
Connected to this question is identifying the application context of the DSL, for
instance, whether the DSL is to serve as a thin interface to an existing library
or to be compatible with a complex existing infrastructure. We conjecture that
early DSL implementation is suitable for stable domains with a simple existing
application context, whereas prototyping becomes important for more evolving
domains and complex application contexts.

3.3.4 Development Context

A design project takes place in a development context that may dictate the order
of some activities. While an iterative development process is often prescribed
as suitable for a DSL project, DSL practitioners may find themselves having to
conform to a linear development process or maybe even open source or collaborative
development. We conjecture that one should seek some form of early user evaluation
even in linear development, but if not possible, one should rely on expert evaluation.
By contrast, in extreme cases of agile development, all user evaluations could come
from actual DSL usage.

3.3.5 System Impact

When a DSL is developed as part of safety-critical systems, one has to consider how
to ensure the DSL implementation and integration are correct [57]. We conjecture
that usability evaluation of such a DSL is also important for the purpose of reducing
the risk of user-made errors. Therefore, such a safety-critical DSL should have
earlier functional implementation and more thorough evaluation activities with
users. On the contrary, DSLs may also be developed for software systems where
mistakes are benign or even interesting (e.g., languages for the creation of art).
For such systems, usability evaluation may be less important or may have another
focus than reducing user-made errors.

3.4. SUMMARY 31

3.3.6 DSL genres

Different genres of domain-specific languages have been established to solve more
general domain-specific problems [12, 58]. It seems meaningful to establish design
methodology within these different genres if possible since these languages are often
reminiscent of each other in some aspect. We do not propose such descriptions but
find genres such as task specification languages [59], financial product languages [60,
61, 7], or format description languages [62, 63] relevant.

3.4 Summary

In this chapter, we have contextualised and discussed our work with human-centred
design and co-design of DSLs. First, we have presented the four phases of HCD while
presenting related work within each phase. Second, we have critically examined
our contributions by discussing our findings in terms of their generalisability and
whether they were affected by our choice of tooling. Finally, we have argued for
the utility of a finer granularity categorisation of DSLs for improving guidelines for
DSL design. Based on our experiences, we propose six problem-space dimensions
that we conjecture influence the process of a design project. These influences come
in two forms, a) what kind of process is required in a given design situation and b)
what kind of process is possible in a given design situation. We think this kind of
categorisation is in itself a small step towards providing DSL practitioners with
design guidelines.

Chapter 4

Implementation of Management
Action Language

In our survey of established practices in DSLs’ life cycle [64](Appendix D), we find
that DSLs are most often developed to improve users’ productivity or code quality
in terms of correctness and understandability. In this chapter, we first describe
why MAL belongs to a minority of DSLs where program efficiency matters due
to the high computational cost of performing balance projections. Second, we
contextualise our work by presenting other approaches to balance projections in
the Danish pension industry. Third, we give a high-level description of MAL’s
implementation and discuss the benefits of generating code for management actions.
Finally, we discuss why MAL is unlikely to transition from a research project to an
actual product despite our perceived benefits of using MAL.

4.1 Computational Cost of Projections

The purpose of a projection is to examine how the assets and liabilities of a pension
company develop far into the future to ensure that the company remains solvent
throughout this period. A projection typically involves moving a company’s portfo-
lio (app. 10,000 policies with 100-step cash flows) 100 years into the future, over
1,000 different economic scenarios. A projection must, for each economic scenario,
step through all years, and for each year, iterate through all policies and make
computations on its cash flows. There is a considerable computational cost in
making such projections, and Danish pension companies consider it important
to lower this cost. Danish financial regulations allow pension companies to have
different fundamental methods for making these projections. MAL is specifically
designed for a projection platform that essentially performs a Monte Carlo simula-
tion. Although there is a diversity in methods, pension companies use the following
two methods for improving the performance of projections:

32

4.2. EXTENT OF THE MAL IMPLEMENTATION 33

Sacrifice Precision
The performance of projections may be improved at the cost of the precision of
projections. From this perspective, many parameters may be changed more or
less cleverly. To mention three examples: First, a company may select a few
representative policies to use in a projection and thereby avoid the substantial
computational cost of using its entire portfolio. Second, a company may choose to
use fewer and longer time steps used in a projection. Third, a company may choose
different underlying policy state models, such as a three-state or one-state model.

Efficiency of Specification
The performance of a projection may be improved by optimising different parts
of a specification with no loss of precision. Such optimisations can either be in
the form of choosing better procedures (e.g., solving partial differential equations
analytically rather than numerically when possible) or optimising the procedure
itself (e.g., improving memory allocation and layout, changing the order of op-
erations, parallelising execution, and reusing computations when possible). The
optimisations used by MAL’s code generator all fall into this latter category.

4.2 Extent of the MAL Implementation

From the perspective of implementation, we regard MAL’s implementation to be
at a stage where it could be taken into production (apart from Edlund assuring
the quality of MAL). The implementation consists of:

� A fault-tolerant parser.

� A static analyser (typechecker and initialisation check).

� A code-generator producing efficient C#.

� Visual Studio Code support through the Language Server Protocol [65].

� Template implementation in MAL corresponding to approximately 10,000
lines of template management actions in C#.

� Property-based testing [66] of a subset of MAL testing the parser, the type-
checker, and the code generator.

� A documentation website used for usability testing.

� An early prototype of debugging support using the Debugger Adapter Proto-
col [67].

34 CHAPTER 4. IMPLEMENTATION OF MAL

4.3 Generating C# Code for Management Ac-

tions

Since a code generator is a constituent part of DSL, a code generator is, along
with its DSL, tailored to a domain and in itself tailored to a target language.
This specificity means that while code generation is relevant to external DSLs,
implementations are distinct for different languages. For example, Reiche et al. [68]
generate high-level synthesis code from an image processing specification, and
Barriga et al. [69] generate code for different hosts that simulates an internet
of things system from a model specification. Still, general techniques for code
generation, such as deforestation [70, 71] and vectorisation [72], are applicable to
many code generation contexts. In our paper Transforming Domain Models to
Efficient C# for the Pension Industry [73](Appendix C), we describe how we created
MAL’s code generator from identified common management-action-specification
patterns and general code-generation techniques. Here we first describe other
approaches to executing management actions, then discuss the implementation
from the perspective of implementation, and, finally, discuss the benefits of using
code generation in our project.

4.3.1 Executing Management Actions

We have, so far, primarily used the term management action to describe the
business rules of pension companies as they appear in the projection platform.
However, the term is general to at least all Danish pension companies that perform
balance projections. In other words, Danish pension companies must perform
balance projections based on management actions, and therefore these companies
all1 need an executable formalisation of their management actions, whether they use
Edlund’s platform or not. From observing advisory board meetings for the Probabli
project and an industry conference, we find that Danish pension companies specify
their management actions in general-purpose languages. This specification is either
part of in-house balance projections or input to a projection platform, possibly a
product of one of Edlund’s competitors. To our knowledge, our project is the only
DSL that lets actuaries express management actions.

1To be precise, it is possible that a company may not need to define management actions if
it only sells products where the customer assumes all financial risks, and the company thereby
assumes none.

4.3. GENERATING C# CODE FOR MANAGEMENT ACTIONS 35

4.3.2 Implementation Process

In [73](Appendix C), we present MAL’s code-generator by stating that we identified
pervasive management action patterns and then describing efficient code generation
for these patterns leading to a significant speedup of execution. This presentation
is misleading to the degree that it gives the impression of a simple, linear implemen-
tation process moving from analysis to implementation to performance evaluation,
resulting in the presented speedup. Rather, we began with implementing a naive
code generator that produced code compatible with the projection engine. The
code generator was naive in the sense that whenever faced with a design choice, we
chose the design easiest to implement. Then, we implemented a significant portion
of DSL code to test the correctness of the implementation. Then, we improved the
implementation by manually inspecting generated code and by running different
performance experiments using Benchmark.NET [74]. This work included designing
and implementing an internal intermediate language (IL) to ease implementation,
improving the generated data structures, generating a virtual portfolio state (see
Section 4.3.4), constant identification, and experimenting with evaluation patterns
for the generated code. In parallel with this experimental work, the generator
itself had to evolve to remain compatible with the projection platform and more
significantly, so did the implemented DSL code (Section 3.2.4).

4.3.3 Code Generation Overview

The code generator transforms a MAL program given as an abstract syntax tree
(AST) into a C# program in three steps (Figure 4.1). First, the Analyser checks that
the program is well-formed by both validating the program’s data model, typing
its statements and expressions, and making an initialisation check (Section 2.3.1).
Second, the IL Generator transforms statements and expressions into statements
and expressions in an intermediate language (IL) close to C#. All optimisations,
such as deforestation, in-lining, vectorisation, and extracting loop constants, occurs
in the IL Generator. Since C# was the target language, we worked on high-level
optimisations since .NET’s JIT compiler handles low-level optimisations such as
register allocation. We parametrised the code generator with the optimisations it
should perform to allow for experimentation. Third, the C# Generator creates the
final C# program. This generation both consists of a) creating interfaces, classes,
and TypeSpans and b) making a simple transformation from IL to C#. A TypeSpan
(a MAL concept) is a collection of entities that has constant time type filtering.
Although the IL Generator could hypothetically create C# code directly, we found
it useful to introduce the intermediate language to separate optimisations from
concerns relating to producing valid C#.

36 CHAPTER 4. IMPLEMENTATION OF MAL

Figure 4.1: A depiction of the code generation process starting (to the
left) from a MAL abstract syntax tree (AST) and ending (to the right)
with C#. We use the term Analysed AST and Analysed IL to indicate
the program is augmented with analysis information, such as types.

4.3.4 Data Representation Challenges

We encountered the following two engineering challenges in representing MAL’s data
model in C#. First, we found that it was natural and efficient to represent MAL’s
data definitions as C# classes. However, Edlund’s projection engine internally
represents the portfolio state in identifier-indexed dictionaries, as presented in
Section 2.2. This means that our first naive code generator produced code having
to translate between these two representations whenever computations switched
between management actions and the projection engine. To eliminate this overhead,
we changed the code generator to create and generate what we call a virtual portfolio
state. To the projection engine, the virtual portfolio state appears as a collection
of identifier-indexed dictionaries. However, internally, they index into MAL’s
generated classes.

Second, MAL has union types that allow the user to state that a value is
one of several types. For example, the type {OneStatePolicy, ThreeStatePolicy}
should be read as the type that contains the two values: OneStatePolicy and
ThreeStatePolicy. When working with a value of a union type, the user is allowed
to manipulate fields shared by the possible values. We found that the simplest
way of representing union types in C# was through interfaces. However, we found
that our first naive implementation that generated interfaces for all possible union
types suffered from being inefficient when combined with type downcasts (to a

4.3. GENERATING C# CODE FOR MANAGEMENT ACTIONS 37

Table 4.1: Benchmarks from executing MAL in a realistic produc-
tion cloud environment. The benchmarks were performed on Stan-
dard F2s v2 machines with either an Intel Xeon Platinum 8370C, an
Intel Xeon Platinum 8272CL, or an Intel Xeon Platinum 8168 processor
and 4 GiB of memory.

1k policies 1k ES 10k policies 1 ES

C# Management 3,560 s 28.9 s

MAL Management 2,435 s 22.8 s

Speedup Management 1.46× 1.27×
C# Full Projection 15,943 s 120.3 s

MAL Full Projection 14,486 s 109.8 s

Speedup Full Projection 1.1× 1.09×

more precise type). Generating interfaces only for union types actually used in a
program led to a significant performance improvement of generated code.

4.3.5 Benefits of Code Generation

We see three benefits of introducing code generation to the projection platform,
namely: runtime performance, interface flexibility, and control over external code.
We treat each topic separately.

Runtime Performance
We have benchmarked MAL’s generated code against comparable handwritten
C# code (Section 2.2) using a realistic production setup. These benchmarks show
that MAL’s generated code is between 1.27× and 1.46× faster than comparable
handwritten C# (Table 4.1). From our experiments, we ascribe the speedup to the
following two factors: First, MAL comparatively has a lower memory allocation
rate (MB/sec) since the code generator can deforest many computations and avoid
creating intermediate collections. Second, MAL generates code that performs
constant time type-filtering on collections which is an often-used operation in
management actions.

Interface Flexibility
The evolution of the projection engine’s interfaces forced the implementation of
MAL to evolve too. However, this evolution of MAL often did not require changes

38 CHAPTER 4. IMPLEMENTATION OF MAL

to MAL programs when only the code generator had to be adjusted. For the
maintainer of the projection engine, MAL can allow for some changes to interface
specifications by providing a layer of separation that can hide these changes from
the end-user.

More Control of Performance of Customers’ Solutions
Edlund has spent considerable effort on optimising the performance of the projection
platform. This optimisation has primarily occurred in the projection engine since
this is the part of the platform Edlund is in full control over. On the contrary,
it is difficult for Edlund to optimise management actions since they either a) are
developed by a customer or b) are defined in template code that should remain
relatively stable. From this perspective, MAL’s code generator would allow Edlund
to further experiment with generating more optimised code. For instance, there are
several unexplored ideas, such as loop merging, that could increase the performance
of compiled code. Also, from a security perspective, this control is relevant in that
it prevents customers from executing arbitrary C#.

4.4 Management Action Language as a Product

We have so far argued that MAL’s implementation is mature enough to transition
to an Edlund product (Section 4.2), and we have argued for benefits of using
MAL in terms of being more declarative (Section 2.2), providing safety guaran-
tees (Section 2.3), being more usable (Chapter 3), and generating efficient code
(Section 4.3.5). Still, it currently seems unlikely that MAL will transition from
a research project to an Edlund product. We previously set out to analyse why
this transition is difficult in an extended journal version of On Designing Applied
DSLs for Non-Programming Experts in Evolving Domains [48](Appendix A). This
analysis is to undergo a major revision based on reviewer feedback. Still, we rewrite
parts of the extension here because we find it important to disseminate cases where
a DSL encounters problems in being adopted.

First, we describe how MAL’s business context, and thereby MAL’s purpose, has
developed through the project. Second, we present a cost/benefit analysis of using
MAL. This analysis expresses the problems Edlund and we perceive in transitioning
to MAL rather than an objective measure of costs and benefits. Finally, we discuss
MAL’s transition to a product from the perspective of Tomassetti’s and Zaytsev’s
reflection paper [55] on the lack of DSL adoption and from the perspective of
academia-industry collaboration.

4.4. MANAGEMENT ACTION LANGUAGE AS A PRODUCT 39

4.4.1 Development in Business Context

Edlund’s projection platform was created at a time when all Danish pension compa-
nies were investigating how they would perform and document balance projections
in accordance with the Danish Financial Supervisory Authority’s (FSA’s) admin-
istrative instructions. The potential customers of the new platform were either
existing customers of other products, users of competitors’ software, or customers
who made their own in-house development. Therefore, the platform was designed
so that existing customers could use it with other existing products and potential
customers could use it with other third-party or in-house software products.

During the beginning of the development of the projection platform, it was in
serious competition to obtain an initial market share. The initial market share
was vital since it takes a substantial effort to persuade a company to change to
a new product after their initial choice. Edlund sought to demonstrate that its
new platform was sound both in an actuarial mathematical and a technological
sense to obtain an initial market share. Therefore, an early minimal viable product
was developed, which could be refined to customer-specific needs using an agile
development process. Part of this product was a management template for a
realistic pension company, demonstrating some of the product’s potential.

As the management template co-evolved with the projection platform, the
potential for a DSL became apparent. The management template expanded to
demonstrate new functionality and accommodate specific customer wishes. While
the projection platform was being developed, pension companies investigated how
to use it for their purpose. This investigation involved analysing the requirements
from the Danish FSA, developing mathematical models of the company, under-
standing the projection platform, and acquiring employees capable of using the
platform through hiring and training. From this perspective, a DSL could not
only be a technical solution but a selling point since it could make the projection
platform more attractive and accessible to customers. The DSL could make it
easier for customers to acquire employees capable of using the platform and make
the platform accessible to more diverse pension companies by making them easier
to model.

As we designed and developed MAL, the projection platform’s market settled
and matured. Pension companies decided on how they would meet the requirements
from the Danish FSA, and in doing so, the companies both settled on a technological
platform and started their initial exploration of specifying management actions.
This development meant that now when MAL has reached a maturity where it
has merits, its business potential has moved more from attracting a diverse set of

40 CHAPTER 4. IMPLEMENTATION OF MAL

potential customers towards improving the situation for existing ones.

4.4.2 Costs and Benefits

We analyse the costs and benefits of transitioning MAL to a product in this new
business context. We do so from the perspective of both Edlund and Edlund’s
customers. This analysis has been discussed with part of Edlund’s management,
and while the analysis does not seek to quantify costs and benefits monetarily, it
reflects our shared understanding in terms of implementation, performance, and
reputation costs. These costs are summarised in Table 4.2.

Edlund’s perspective

Initially, Edlund will have a substantial implementation cost of turning MAL
into a part of the projection platform and thereby a product. This cost includes
a) improving MAL as a product in terms of integration, improved language doc-
umentation, improved language environment, and general quality assurance of
MAL, and b) current templates written in MAL must be expanded to include all
functionality of their existing general-purpose counterparts. However, MAL also
alleviates some implementation costs from the outset since MAL’s code generator
introduces the possibility of evolving company generic parts of the projection engine
without the customer noticing. Also, MAL makes it easier to experiment with code
optimisations and other forms of code generation and could be a selling point for
future customers. There is a risk of a reputation cost since some customers would
also have to be convinced to switch from their GPL language to MAL. This could
impact Edlund’s customer relationship even if there are benefits from the onset to
customers.

Recurringly, Edlund will have a long-term implementation cost by committing
to maintain the MAL implementation (parser, type checker, code generator) and
documentation. Part of this obligation is to acquire or keep employees with
competencies to do so. Another part of this obligation is to evolve MAL as needed
and maintain template code akin to a standard library in MAL for customers to
use. However, from an implementation perspective, there are also several recurring
benefits of using MAL. First, MAL provides more freedom in restructuring, evolving,
and optimising the platform, especially if they manage to convince all customers
to use MAL. Second, MAL allows for greater modularisation of template code that
is easier to maintain. Third, MAL could alleviate friction when onboarding new
customers if the customer’s wishes are to be implemented in the template solution.

4.4. MANAGEMENT ACTION LANGUAGE AS A PRODUCT 41

Customer’s Perspective

Customers can roughly be separated into three categories represented by customer
type A, customer type B, and customer type C. A type A customer has strong in-
ternal programming resources that develop its management action from scratch. A
type B customer modifies the template solution to fit its needs. A type C customer
uses the template solution as-is and requests modifications of the template solution
whenever needed.

Initially, there is no implementation cost for type C customers, who could
simply use the MAL templates as-is. For type B customers, there is some imple-
mentation since they must make the same modification to the MAL template as
they have made to the existing template. For type A customers, there is a high
implementation cost since they must rewrite their existing solution from scratch.
In addition, both type A and B customers must acquire some MAL competen-
cies. However, both can expect that it is easier to work in MAL templates once
they acquire said competencies. Both type B and type C customers can expect
a performance benefit since they can expect an immediate 1.27×–1.46× speedup
in management action code and corresponding savings in computation time and
costs. Type C customers can expect a similar speedup if the performance of their
existing management action code is comparable to the template solution.

Recurringly, customers can expect what could be considered the traditional
benefits of working in a DSL with a higher level of abstraction. That is lower
learning costs, higher programmer efficiency, and more secure, efficient programs.
In addition, template-based customers of type B or type C will benefit from using
MAL’s module system that makes module contracts explicit. More speculatively,
using MAL increases the possibility of using code for internal communication or
communication with the Danish FSA. There are also downsides to using MAL.
First, while MAL’s limited expressiveness is one of its strengths, it is also a potential
problem. It is likely that some customers will need MAL to be more expressive,
and when this happens, they need to convince Edlund to expand the language.
Although it is possible to invoke general-purpose procedures from MAL, the point
of using MAL disappears if such invocations are regularly needed. A recent example
of such new functionality is creating unbounded loops that terminate upon some
convergence measure. Second, a customer could fear that using MAL makes it
more challenging to migrate to another system in the future. However, such a
coupling already exists with the current GPL solutions, and the coupling could
even be lower if MAL were to be launched as an open-source project where other
vendors could contribute with code generators.

42 CHAPTER 4. IMPLEMENTATION OF MAL

Table 4.2: Summary of expected cost and benefits of using MAL. All
costs and benefits are ranked from low to high. Empty cell occurs
where the cost is not relevant. The reputation cost is not relevant for
any customer type.

Initial Recurring

Benefit Cost Benefit Cost

Edlund

- Implementation Low High Medium Low

- Performance Low Medium

- Reputation Medium

Customer type A

- Implementation Low High Low Low

- Performance Low Low

Customer type B

- Implementation Medium Medium Medium

- Performance Low Low

Customer type C

- Implementation

- Performance Low Low

4.4. MANAGEMENT ACTION LANGUAGE AS A PRODUCT 43

4.4.3 Challenges to Adopting DSLs

In their aforementioned paper, Tomassetti and Zaytsev identify and discuss reasons
for the lack of more mainstream adoption of DSLs based on anecdotal experiences
and community discussions. Although MAL is in a situation where the language
has already been developed, we find that the paper describes several challenges we
have experienced and discuss them here. In particular, it is perceived to be risky to
introduce MAL to customers as a product. This is possibly a valid perception, with
a deadline for implementing the new financial regulations approaching in 2023. The
following discussed factors contribute to the perception that it is risky to introduce
MAL.

First, the general lack of DSL adoption makes management more cautious in
choosing to adopt a DSL. That is, using MAL is not the neutral option for expressing
management actions, whereas using a general-purpose language is (Section 4.3.1).
Therefore, we have had to argue for the benefits of using MAL, although it is easy
to point to problems with the current neutral solution of using C#.

Second, adopting MAL would require Edlund to have competencies to maintain
and evolve the language. This is a long-term obligation that requires retaining
current employees and acquiring future employees both with such competencies.
This means that adopting MAL is not a question of only software engineering but
also human resources.

Third, creating MAL in a collaborative research project introduces some risks for
Edlund, even though MAL was created under a cooperation agreement explicitly
addressing potential licensing issues. We hypothesise that some of the cost of
transitioning MAL to a product could have been mitigated if the language had
been introduced to customers at an earlier stage. However, from the perspective
of Edlund, this advice was not straightforward to follow due to the nature of
collaborating with academia. When starting developing the projection platform,
Edlund saw the potential utility of creating a DSL as a way to handle the software
variability of their new product. While the company pursued this idea within the
setting of academia and industry collaboration, it seemed necessary to have an earlier
alternative solution for three reasons. First, at the start of the project, Edlund did
not know the PhD fellow who would work on the project or how the project would
turn out. Second, Edlund wanted to demonstrate an early working projection
platform for potential customers and needed management action specifications for
this purpose. Third, Edlund needed an early way to experiment with the projection
platform to investigate the mathematics of balance projections. A solution to this
problem would be the primary instigator of creating the DSL, but that would
question the purpose of the collaboration.

44 CHAPTER 4. IMPLEMENTATION OF MAL

4.5 Summary

In this chapter, we have described our work with implementing MAL and, specifi-
cally, its code generator. First, we have described why it is important for MAL
to generate efficient code due to the computational cost of large-scale balance
projections. Second, we describe how our experimental work with implementing
MAL’s code generator. We have described the overall process of code generation
and how generated code is around 1.3× faster than comparable handwritten C# in
a production setup. In [73](Appendix C), we describe the generation in greater
detail with translation schemes for generating TypeSpans and interfaces for union
types. Finally, we have discussed the how MAL’s business context has developed
and our experienced challenges in seeking to transition MAL to a product through
a cost-benefit analysis.

Chapter 5

Life Cycles of DSLs

DSLs have been used within many different domains to solve a wide variety of
problems. This work has led to papers demonstrating the domain utility of a
newly created DSL and its contribution to the DSL field. However, these papers
leave the reader wondering what happened to the DSL after its initial creation
and publication. In this chapter, we set out to mitigate this problem. We discuss
the findings and limitations of our paper Survey of Established Practices in the
Life Cycle of Domain-Specific Languages [64](Appendix D), which examine the life
cycle of 30 DSLs through a questionnaire.

5.1 Survey Study on DSLs’ Life Cycle

The diverse set of DSLs and publications on DSLs has led other scholars to survey
the field to establish the current state of the field. These surveys either look to the
DSLs themselves or the related publications as the primary source of information.
Both investigation methods come with strengths and weaknesses. Analysing DSLs
themselves gives unbiased information on the DSLs and their features but gives
no information on the development process and usage. Analysing publications
may give information on the development process and usage but only to the
degree that authors report the subject of interest. Also, publication analysis relies
on the self-reporting by authors. To mention some examples of both kinds of
analysis and the subject the studies explore: Dragule et al. survey the design
space of DSLs for robotic missions by examining 30 programming environments
for robotic missions [75]. Kapre and Bayliss find key features of DSLs used for
high-performance field-programmable gate array computing through the survey of
9 DSLs [76]. Nascimento et al. [5] and Kosar et al. [6] conduct systematic mapping
studies to investigate research within the field. Iung et al. [38] conducted a similar
systematic mapping study for tools being used by DSL creators.

45

46 CHAPTER 5. LIFE CYCLES OF DSLS

5.2 Purpose and Method

The original idea of our survey was to investigate what has happened to influential
DSLs after their publication. Specifically, we wondered what has happened to
DSLs appearing in the classical paper Domain-Specific Languages: An Annotated
Bibliography [77]. From this idea, we set out to survey established practices in the
life cycle of DSLs by e-mailing (or by other means of internet contacting) a ques-
tionnaire to DSLs appearing in various curated DSL collections. The questionnaire
focused on the user perspective, design process, and evolution, since these sub-
jects are a) difficult to examine by analysing publications and b) major themes in
this thesis. To our knowledge, our survey using a questionnaire is the first of its kind.

Our chosen method of sending a questionnaire to selected authors has its own
methodological weaknesses. First, there is a selection bias in that we were not able
to contact all authors, and not all authors answered the questionnaire. From this
perspective, we expect a survivorship bias since authors of successful DSLs are
both easier to contact and more likely to answer. Also, we expect that authors
of newer publications are easier to contact (since contact information appearing
in a publication is more likely up-to-date). Second, we rely solely on recipients’
interpretation of our questions and their self-reported answers. Even though we
found it unlikely that recipients maliciously answered the questionnaire, it may be
difficult for authors to remember the exact details of a project they began a decade
or more ago. Our primary mitigation to these issues was to a) try different ways of
contacting authors, b) make it easy to answer the questionnaire and skip questions,
and c) discuss the wording of questions with colleagues beforehand.

We obtained a response rate of 43% from authors who could have received the
questionnaire, that is, from invitations sent to authors that did not get an error
response from a mail server. We are happy with the response rate since we find
that a high response rate minimises the risk of a selection bias in who responded.
We ascribe some of the response rate to every author receiving a personalised
questionnaire invitation that specifically mentions both the author’s DSL(s) and
the author’s publication(s). We also asked whether we could contact the authors
for clarification or small interviews as a form of further investigation.

5.3 Findings in Context of other Publications

We summarise and discuss our findings that directly relate to other aspects of our
work. Our DSL sample had the following characteristics. The average age of the
30 DSLs was 11 years (introduced in 2010), with 80% being younger than 12 years.

5.3. FINDINGS IN CONTEXT OF OTHER PUBLICATIONS 47

Allowing multiple answers, 77% of the DSLs were developed within an academic
setting, 38% were developed in an industrial setting, and 30% were developed in
an open-source community. The most common purpose for creating the DSL was
“to improve program conciseness and readability”, selected by 50% of respondents.
However, only 3% had this as their only option.

5.3.1 No Established Practice for User Involvement

We attempted to elicit practices for involving users in the development process. Such
practices are relevant to our own work with human-centred design and co-design.
However, we find that such practices are difficult to examine through analysis
of publications since far from all authors report on user involvement. Whenever
authors do not make such reporting, one cannot know whether it is because there
was no user involvement or whether the authors did not find user involvement to
be an important part of their work. Through the survey, we found:

1. DSLs are developed for users with all levels of programming experience (from
none to expert).

2. DSLs are designed with all levels of user involvement (from none to all
decisions).

3. We found no correlation between the level of user involvement and program-
ming experience (or year of DSL introduction).

4. Prospective users were most commonly involved in requirement elicitation
and feedback.

5. In some projects, users are part of the design team; in other projects, they
are not involved at all.

6. When asked broadly about their thoughts on their entire project, authors
did not report dissatisfaction with how users had been involved.

In summary, there are widely different approaches to involving users in a DSL
project. Still, most practitioners are not dissatisfied with their approach. These
findings leave one wondering how there can be such diverse approaches with
little dissatisfaction. We hypothesise that the following two circumstances both
contribute:

(a) The level of user involvement must be seen within the specific setting of a
design project. In some projects, the amount of user involvement may be
dictated by the settings, so there was no choice for the practitioner and, thus,
little dissatisfaction. For example, users may be either unavailable or, at the
opposite end of the spectrum, part of the design team.

48 CHAPTER 5. LIFE CYCLES OF DSLS

(b) Respondents answer within the frame of their own choices regarding the
design process. Proponents of user involvement are more likely to have
and like user involvement, and conversely for sceptics of user involvement.
Also, proponents of user involvement may overestimate the utility of user
involvement, and sceptics may underestimate the utility of user involvement.

5.3.2 Evolution is Pervasive and Important

In our paper [48](Appendix A and Section 3.2.2), we presented our categorisation
of programming languages based on their evolutionary characteristics. We hypothe-
sised that many DSLs belong to the class of rapidly evolving E-type languages due
to the DSL affecting the application domains they are designed for. For example,
launching a DSL likely causes a response from users having ideas about new aspects
of the application domain or features not included in the original design. Such
user feedback may lead to the evolution of the DSL, which again causes a new user
response.

Although the survey was not meant to empirically test the hypothesis, we find
the following empirical evidence for our characterisation of these DSLs:

� The vast majority of surveyed DSLs had experienced evolution.

� The evolution of a DSL affects its success.

� Allowing multiple answers, 47% of the DSLs evolved due to new user wishes,
40% evolved due to new areas of application, and 13% evolved due to changes
in the existing application domain.

Still, we also found some evidence that questions aspects of the characterisation
of DSLs’ (and E-languages’) causes for evolution, since 40% of DSLs evolve due
to changes in the implementation and 37% evolve due to changes in external
technology. It is unlikely that the DSLs’ introduction to an application domain
affected these two causes of evolution.

5.3.3 Pragmatic Development

We found pragmatism to be a reappearing theme in several of the survey findings.
While pragmatism is not an explicit theme in our work so far, we see it as a
reappearing underlying theme and address it in Section 7.2. From this perspective,
we find it relevant to display how the theme appears in the survey. Here, we should

5.4. SUMMARY 49

clarify that we use the term pragmatic as the opposite of idealistic.

We find that respondents report using different kinds of flexibility allowed by
their project in a pragmatic manner. First, several respondents reported that
they have had to make breaking changes to their language, especially early in its
life. Second, some respondents reported that finding new application domains
for their DSL was important for its success. Third, respondents reported major
improvements made to the DSL and its launch in terms of performance, usability,
and modularity.

5.4 Summary

In this chapter, we have presented our survey that set out to investigate practices
in the life cycle of DSLs. We used a questionnaire since it provided the best method
of investigation as it allowed for fine-grained investigation on subjects of interest
when compared to surveying articles or DSLs themselves. We have discussed our
findings regarding how users are involved in a project, the evolution of DSL, and
pragmatism in approach in relation to work presented in previous chapters.

Chapter 6

Secrecy Analysis in Distributed
Workflows

With Mads Frederik Madsen and Søren Debois

We take a detour to present ongoing work within the business process modelling
language called Dynamic Condition Response (DCR) graphs [78], where we consider
how to implement secrecy guarantees to the language. DCR graphs allow for a
high-level business process description that can facilitate collaboration between
adversarial actors [79]. Due to the difference in goals, an actor in a multi-actor
business process may want aspects of their activities to remain secret to others.
Mads Frederik Madsen and Søren Debois have ongoing work defining and investi-
gating secrecy and indistinguishability in DCR graphs from a primarily theoretical
perspective1. We reiterate some of this work as background information (while
not claiming any ownership) since it is needed for the chapter. In this chapter, we
consider a more practice-oriented extension of their previous work by investigating
the possibility of statically providing secrecy guarantees (the latter part of Section
6.3 and onwards) for DCR graphs. Here, we give an informal presentation of
our approach that is formalised in our draft paper Static Secrecy Guarantees for
Dynamic Condition Response Graphs [80](Appendix E).

6.1 Distributed Dynamic Condition Response

Graphs

A distributed DCR graph consists of a set of events, a set of actors, a set of relations,
and a marking describing the state. We will use the example DCR graph depicted
in Figure 6.1 for a crash course in DCR graphs and as a running example. The
events (Event A, Event B, Event C, and Event D) are depicted as nodes. Each event

1Since this is ongoing, work we do not have a published reference at the time of writing

50

6.1. DISTRIBUTED DYNAMIC CONDITION RESPONSE GRAPHS 51

belongs to one of the three actors (Alice, Bob, and Carol), which is annotated
at the top of each event node. In the secrecy analysis, we consider four types of
relations (include, exclude, condition, and response). Here, we only present the
include and exclude relation. In the example, there are four include relations
denoted by a green arrow with a + head (e.g., Event A includes Event B) and one
exclude relation denoted by a red arrow with a % head (e.g., Event D excludes
Event A). Each event has a marking that describes its state that is known only to
its actor. The marking of an event describes whether it

� has been executed (denoted by a checkmark, e.g., Event D, but not Event A in
Figure 6.1)

� is enabled or disabled (denoted by a white or grey background, respectively),
meaning whether the event can be executed or not.

� is included or excluded (denoted by a solid or dashed border, respectively),
which here corresponds exactly to the enabled/disabled state since we only
consider include and exclude relations.

In the example, Event A can be executed since it is enabled. The result executing
Event A is depicted in Figure 6.2. The changes from Figure 6.1 to Figure 6.2 is that:

� Event A has become executed.

� Event B and Event C have become included (and thereby enabled) due to the
two outgoing include relations from Event A.

� No events have become excluded since Event A does not have any outgoing
exclude relations.

A DCR graph is a high-level process specification that has a translation into a
low-level specification as a labelled transition system (LTS). The LTS representation
describes (and defines) a DCR graph’s dynamic behaviour as a graph that has
markings as nodes and event executions as transitions (or directed edges). Figure
6.3 shows a fragment of the LTS corresponding to the DCR graph depicted in
Figure 6.1. The following procedure translates a DCR graph to an LTS:

1. Create an LTS node for each reachable marking of the graph.

2. Create a transition between a source and target node if it is possible to
execute an event in marking represented by the source node, and doing so
leads to marking represented by the target node.

The cost of this translation is at worst exponential in the number of events since a
DCR graph’s number of possible markings is exponentially bounded by its number
of events.

52 CHAPTER 6. SECRECY ANALYSIS IN DISTRIBUTED WORKFLOWS

Figure 6.1: The DCR graph that we will use as our motivating example
in this chapter in the standard visual notation. The graph consists of
four events, each belonging to one of three actors.

Figure 6.2: The DCR graph that is obtained by executing Event A in
Figure 6.1. Event A has become executed. Event B and Event C have become
included and enabled.

6.1. DISTRIBUTED DYNAMIC CONDITION RESPONSE GRAPHS 53

Figure 6.3: A fragment of the labelled transition system (LTS) obtained
from the DCR graph depicted in Figure 6.1. The LTS fragment contains
two nodes representing the markings of Figure 6.1 and Figure 6.2 and
two edges representing the changes in marking from executing Event A.
The full LTS has additional outgoing transitions from the Figure 6.2
node corresponding to the execution of Event B and Event C.

54 CHAPTER 6. SECRECY ANALYSIS IN DISTRIBUTED WORKFLOWS

6.2 DCR Knowledge

Using Figure 6.1, we can give the following informal examples of knowledge and
secrecy. If Bob at some point observes Event B changing its state to included then
he knows that Alice has executed Event A. He may make this inference since there
is only one incoming include relation to Event B, and it originates from Event A. If
Carol at some point observes Event D changing its state to included she knows that
Bob has executed either Event B or Event C. She may make this inference since there
are two incoming include relations to Event D originating from respectively Event B

and Event C. However, it remains secret to Carol whether Bob has executed Event B

since she can never know for certain that Bob has executed Event B. It is known to
Carol that Alice has executed Event A by the following line of reasoning. Alice

must execute Event A for Bob to execute Event B or Event C. It is known to Carol

that Bob has executed either Event B or Event C, and therefore, it is also known to
her that Alice has executed Event A.

A bit less informally, we are interested in reasoning about whether an actor
knows that a property P : marking → bool is true for a marking at some point
during execution. We say that actor A knows P iff there exists a sequence of event
executions that leads to a marking where P is inferable to be true by A. Since A
only observes the part of the marking that describes her event, A may not know
that P is true in a marking even if it is. Conversely, we say that P is secret to A iff
A does not know P , i.e., there does not exist a sequence of event executions that
make P inferable by A. Even more formally, we use a notion of knowledge similar
to that of epistemic logic as presented in [81].

6.3 Static Analysis

As the above examples demonstrate, it quickly becomes complicated, error-prone,
and cumbersome to reason about actors’ secrecy and knowledge, even in a simple
example. Therefore, we seek a static analysis of secrecy that is both efficient and
correct. If we do not care about efficiency, we analyse secrecy for a given DCR
graph and actor through the following procedure:

1. Translate the DCR graph to its LTS representation.

2. Group the markings of executions that the actor cannot distinguish2 from

2Since we are rather informal in this chapter, we use the informal term cannot distinguish. To
give a more precise intuition, observe how Carol cannot observe a state change when transitioning
between the two nodes of Figure 6.3. To her, these two markings are indistinguishable.

6.4. IMPROVEMENTS AND CHALLENGES 55

each other (the markings of a group are indistinguishable to the actor).

3. If there exists a group where some property P holds for all markings, then P
is known to the actor.

While step 2 is not completely trivial due to the possibility of infinite runs, the
above procedure lets us reason precisely about knowledge and secrecy. However,
the exponential translation to an LTS representation makes this approach compu-
tationally infeasible for large DCR graphs.

Instead, inspired by information flow analysis [82], we seek a sound approxima-
tion of secrecy that is computationally feasible. A crude approximation of secrecy
can be obtained by letting knowledge flow over all relations of a DCR graph by the
following procedure:

1. Initially, consider all events to know everything about their own state (and
implicitly the effect of executing the event).

2. Iteratively, let knowledge flow over include and exclude relations such that
all knowledge flow from the source event of a relation to its target event.

3. Terminate when an iteration does not cause any change to the knowledge of
events.

Table 6.1 shows all steps of the crude approximation for the DCR graph in Figure
6.1. Since there is a finite amount of knowledge in the system, the above procedure
terminates. While this approach is computationally feasible, it is unsatisfying in that
it is too crude in overestimating knowledge. For example, the analysis erroneously
would state that Carol knows whether Bob has executed Event B, although this
property is secret, as argued in Section 6.2.

6.4 Improvements and Challenges

While the afore-mentioned crude knowledge approximation is not completely trivial,
we find it too crude to be useful. It is essentially a glorified graph reachability
analysis stating that if Event B is reachable by Event A, then the owner of Event B

knows everything about Event A. Therefore, we seek to strike a balance between
completeness and efficiency that is more complete while remaining sound.

Our current goal of completeness is to be able to reason about uncertainty by
using logic disjunction (“or”), e.g., Carol knows Event B or Event C was executed.
Uncertainty can be introduced to the flow analysis by making a disjunction for

56 CHAPTER 6. SECRECY ANALYSIS IN DISTRIBUTED WORKFLOWS

Table 6.1: A table showing the knowledge of each event for different
iterations of our crude knowledge approximation of the DCR graph in
Figure 6.1. We use E to mean knowledge of event E being executed and
* knowledge of all events.

Step Event A Event B Event C Event D

0 A B C D

1 A,D A,B A,C B,C,D

2 * A,B,D A,C,D *

3 * * * *

knowledge incoming from identical relations. However, doing so introduces two
problems to the approximation. First, the approximation may now not terminate
due to disjunctions growing infinitely. We solve this by having a flat set representa-
tion of logic disjunction where elements of the set represent worlds an actor cannot
distinguish. Second, when having disjunctions, there is a need to reason about
events being prevented from executing since an actor may use such information
for inference. For example, Carol knows Event B or Event C was executed. Carol
also knows that Event B has been prevented from executing. Therefore, she may
conclude that Event C was executed.

In our paper [80](Appendix E), we present our secrecy approximation in its
current form and our work towards proving that our approximation is sound,
meaning it may report false negatives but not false positives on secrecy. While
we believe it to be sound, previous proof efforts have uncovered problems with
previous versions of the secrecy approximation. In working with the proof, many
details show up, such as a) handling response and condition relations, b) making
inferences from knowing that an event is disabled from executing, and c) considering
knowledge obtained from different orderings of event execution. These details mean
that a substantial amount of work has been put into defining secrecy approximations
and the concept of minimal runs3 and proving that it is a secrecy approximation,
which we can continue to refine.

3A run is a sequence of event executions

6.5. SUMMARY 57

6.5 Summary

In this chapter, we have argued for the necessity of approximating secrecy in DCR
graphs since an exact analysis is computationally infeasible. We have given an
informal presentation of a crude version of our approximation that lets information
flow over DCR relations. Still, we seek a better approximation that allows us to
reason about uncertainty in actor knowledge. However, introducing uncertainty
comes with new problems since it requires us to reason about events being prevented
from being executed instead of just events being executed. Due to the complexity
of our approximation, we see this work as incomplete until we have a formal proof
showing that our approximation of secrecy is sound.

Chapter 7

Conclusion

In this thesis, we have presented our different work emerging from a project that
set out to design and implement a DSL for the Danish pension industry. Besides
demonstrating the feasibility and utility of such a domain-specific language (DSL),
this work falls into three general areas. First, we have explored the possibility of
using human-centred design and co-design to create DSLs in the context of the
Management Action Language (MAL). Here we found that when we adapted these
design methods to our design context, they led to valuable findings. Second, we have
explored the implementation of DSLs both in the context of MAL and in the context
of Dynamic Condition Response (DCR) graphs. For MAL, an important aspect of
the implementation was to generate efficient code due to the computational cost of
balance projections. For DCR graphs, we presented ongoing work towards statically
and soundly providing secrecy guarantees. Third, we have investigated the broader
life cycle of DSLs beyond design and implementation. We sent a questionnaire to
creators of DSLs appearing in different curated DSL collections to establish the
current state of practices in topics such as user involvement and evolution. Also,
we analysed and discussed the problems MAL is facing in transitioning from a
research project to a product.

We find that a theme of evolution and pragmatism reappear in many of the
discussed topics. It is not by accident that the themes have reappeared since we
have found them interesting and chosen to investigate them. Still, we find it worth
concluding on these two themes on their own.

7.1 Evolution

In hindsight, it was almost inevitable that MAL’s domain and MAL itself were
going to evolve during this PhD project since the language was being designed
for a new projection platform being incrementally developed for a new domain.

58

7.2. PRAGMATISM 59

However, this was not at the forefront of our mind when setting out to design MAL;
instead, usability and user evaluation were.

In our paper [48](Appendix A), the evolution we experienced led us to create a
classification of programming languages according to their evolutionary character-
istics (Section 3.2.2). When revisiting this classification, we consider whether it
would be more meaningful to classify causes of programming language evolution
instead of the programming languages themselves. This consideration originates
from experiencing that many programming languages are somewhat P-type and
somewhat E-type. Instead of getting hung up on this difference, we find it more
useful to a) discuss underlying causes of evolution in terms of P-type or E-type
languages and b) discuss what kind of mitigations there are for different causes of
evolution. From this perspective, the classification is similar in spirit to the DSL
typology proposed in Section 3.3.

In our paper [64](Appendix D), we surveyed other DSL creators’ experiences
in the life cycle of their DSL. We have already discussed some of these findings in
relation to the proposed classification in Section 5.3. While we found that some of
these findings supported classifying application-domain oriented DSLs as E-type
languages, we also found that it is common for DSLs to evolve due to changes in
their implementation technology. This cause for evolution is neither captured by
S-type, P-type, or E-type language categories.

In our paper [64](Appendix E), we presented our ongoing work toward providing
secrecy guarantees for Dynamic Condition Response (DCR) graphs. We see this
work as a clear example of E-type evolution as follows: DCR graphs provide a
declarative and high-level notation for modelling multi-actor business processes.
This notation led to work considering and demonstrating the viability of using DCR
graphs to let adversarial actors cooperate in well-defined business processes. Again,
this expected use of the notation led to considerations of the precise meaning
of secrecy in DCR graphs, which in turn led to our work with approximating
secrecy. As such, modelling with DCR graphs caused an evolution of the language
implementation because of the utility the notation provided to its application
domain.

7.2 Pragmatism

We framed this thesis by prefacing it with a quote by the renowned language de-
signer Anders Hejlsberg that materialises an underlying thesis theme of pragmatism
in programming language design. At the IT University of Copenhagen, Hejlsberg

60 CHAPTER 7. CONCLUSION

presented work on designing TypeScript [83, 84], which by 2022 has rapidly become
one of the most commonly used programming languages worldwide [85, 86, 87].
From an academic perspective, one could prescribe that when someone sets out to
design a typed alternative to JavaScript, then they should ensure that the type
system is meaningful by proving that it is sound. Instead, Hejlsberg presented the
pragmatic goal for TypeScript that it should accept as many existing meaningful
JavaScript programs as possible. Hejlsberg was willing to compromise the type-
theoretic soundness of TypeScript’s type system to reach this goal. In this project,
we have experienced similar conflicting goals between the ideal and actual world,
leading to pragmatic choices.

In our paper [48](Appendix A), we set out to use user-centred design to create
MAL, a language specifically for Danish actuaries. In an ideal world, we would, in
each design iteration, evaluate a fully functioning implementation with actual users.
However, due to the limited availability of users and the cost of implementing
designs, we started out by evaluating text-editor prototypes with in-team experts.
Also, in an ideal world, domain experts would be able to define and delimit a
domain. However, we found that since the domain was also new to domain experts,
then we had to rely on qualified guesses on how the domain would look after further
exploration.

In our paper [49](Appendix B), we set out to co-design quality assurance mea-
sures with MAL’s prospective users. The co-design activity is in itself a pragmatic
choice since we ourselves knew what we considered as good practices for quality
assurance and knew how we could support these practices. However, we were unsure
if our prospective users would agree with our perspective on quality assurance and
if they would find our quality assurance measures valuable.

In our paper [64](Appendix D), we investigated the experiences of other DSL
creators. As already discussed in Section 5.3, we found that other creators often
reported making different pragmatic choices. Most surprisingly, we found a couple
of reports on changing the domain of a DSL which almost per definition seems to
contradict the original intent of the language. These experiences resulted in us
giving the recommendation that DSL creators should use the flexibility allowed by
their project, i.e., be pragmatic in their approach to development and design.

Reflecting on this recommendation, it is possible that we should have made
some other choices during the creation of MAL. First, we spent a significant effort
on proving a subset of MAL to be type safe (Section 2.3). While this effort allowed
us to broaden our academic horizons and develop new skills, it had only little

7.3. FUTURE WORK 61

effect on improving MAL’s typechecker. Second, we find that it would have been
advisable to try to use MAL as a product earlier in the project. Doing so would
have meant exposing Edlund’s customers to a less complete language design and
implementation, which can be viewed as a pragmatic approach to launching a DSL.
However, this would have made Edlund reliant on an external developer (namely,
me) for maintaining business-critical functionality (Section 4.4).

7.3 Future Work

We see five avenues of future work in the subjects explored in this thesis. Three of
these call for further empirical investigations into existing DSLs and GPLs. We
treat each avenue on its own.

7.3.1 Problem Space DSL Typology

In Section 3.3, we presented our bid for the creation of a problem space DSL
typology for the purpose of helping DSL creators in their methodological design
choices. However, the proposed typology is based on our experience, our view of
state of the art, and our hypothesising. Future work should refine the (or make
an alternate) typology based on empirical explorations. The explorations should
examine a) different kinds of DSL dimensions and b) the costs and benefits of
applying different design techniques. For example, one could compare the findings
of usability tests with the findings of a heuristic cognitive walk-through along
different DSL dimensions.

7.3.2 Empirical Investigations into S, P, and E Languages

The presented categorisation of S-type, P-type, and E-type languages should be
investigated more closely to see how well it describes the evolution of existing
languages. We see two easily accessible sources for information on changes that
could be categorised. First, one could examine release notes from established
languages. Second, one could examine the changes taking place in open source
programming language projects.

7.3.3 Interview DSL Creators on Life Cycle of DSLs

In the survey [64] on the life cycle of DSLs, we used a questionnaire to get uniform
answers on topics of interest. However, due to the nature of the questionnaire,
many subjects were only investigated at a surface level. The questionnaire should

62 CHAPTER 7. CONCLUSION

be followed up by in-depth interviews with some of the DSL creators to validate
our interpretation of the findings and to further examine the topics.

7.3.4 Bayesian Modelling of Knowledge in DCR Graphs

We used a non-probabilistic (or possibilistic) model of knowledge when examining
secrecy guarantees of DCR graphs in that an actor either does or does not know
something. A natural extension of this work would be to use a more Bayesian model
of knowledge where an actor model has some prior assumption about others and
let the actor update the prior when making observations. This is the setup used in
quantitative information flow [88] where one could seek to bound the information
leak from an actor observing (and possibly interacting with) the system.

7.3.5 Tool Support for DSL Evaluation

Within the field of language engineering, there is a focus on workbenches and tool
support. However, there is a lack of tool support for conducting usability evaluations
of programming languages. In psychology, tools such as OpenSesame [89] and
iMotions [90] allow researchers to easily set up experiments and choose different
measures such as reaction time or eye tracking. Similarly, the field of programming
language research should have tools assisting language evaluation. For example,
a tool with support for the Language Server Protocol [65] could allow a designer
to semantically validate whether a task is solved by test participants while giving
advanced measure outputs such as eye-tracking interactions with keywords.

Bibliography

[1] B. M. Jensen, M. D. Raffnsøe, and J. She, “Forsikrings- og pensionssektoren i
ny kvartalsvis statistik,” 2019, (In English: The Insurance Sector and Pension
Sector in New Quarterly Annualy Statistic).

[2] H. S. Borum, “Management Action Language - Design and Technical De-
scription of a Domain Specific Language for Non-programming Professionals,”
Ph.D. dissertation, IT University of Copenhagen, Denmark, 2020.

[3] S. Apel, D. Batory, C. Kästner, and G. Saake, Feature-Oriented Software
Product Lines, S. Apel, D. Batory, C. Kästner, and G. Saake, Eds. Berlin,
Heidelberg: Springer, 2013, https://doi.org/10.1007/978-3-642-37521-7.

[4] M. Shaw, “Myths and mythconceptions: what does it mean to be a
programming language, anyhow?” Proceedings of the ACM on Programming
Languages, vol. 4, no. HOPL, pp. 234:1–234:44, Apr. 2022. [Online]. Available:
https://doi.org/10.1145/3480947

[5] L. Nascimento, D. Viana, P. Neto, D. Martins, V. Garcia, and S. Meira, “A
Systematic Mapping Study on Domain-Specific Languages,” Nov. 2012.

[6] T. Kosar, S. Bohra, and M. Mernik, “Domain-Specific Lan-
guages: A Systematic Mapping Study,” Information and Software
Technology, vol. 71, pp. 77–91, Mar. 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584915001858

[7] D. Christiansen, K. Grue, H. Niss, P. Sestoft, and K. S. Sigtryggsson, “An Actu-
arial Programming Language for Life Insurance and Pensions,” in Proceedings
of 30th International Congress of Actuaries, 2013.

[8] H. Borum, “MAL,” Jul. 2022, original-date: 2022-07-25T19:17:45Z. [Online].
Available: https://github.com/hborum/MAL

[9] Skatteministeriet, “Bekendtgørelse af pensionsafkastbeskatningsloven,”
Jun. 2020, library Catalog: Retsinformation. [Online]. Available:
https://www.retsinformation.dk/eli/lta/2020/185

63

64 BIBLIOGRAPHY

[10] “The Agda Wiki,” accessed: May 2022. [Online]. Available:
https://wiki.portal.chalmers.se/agda/pmwiki.php

[11] A. Barǐsić, V. Amaral, and M. Goulão, “Usability driven DSL
development with USE-ME,” Computer Languages, Systems &
Structures, vol. 51, pp. 118–157, Jan. 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1477842417300477

[12] M. Voelter, DSL Engineering: Designing, Implementing and Using Domain-
Specific Languages. Lexington, KY: CreateSpace Independent Publishing
Platform, Jan. 2013.

[13] A. Barǐsić, V. Amaral, M. Goulao, and A. Aguiar, “Introducing usability
concerns early in the DSL development cycle: FlowSL experience report,”
p. 10, 2014.

[14] D. Norman, The Design of Everyday Things: Revised and Expanded Edition,
revised edition ed. New York, New York: Basic Books, Nov. 2013.

[15] S. Gasson, “Human-Centered vs. User-Centered Approaches to Information
System Design,” p. 18.

[16] K. Bodker, F. Kensing, and J. Simonsen, Participatory It Design: Designing
for Business and Workplace Realities. Cambridge, MA, USA: MIT Press,
2004, https://doi.org/10.1109/TPC.2005.853942.

[17] B. A. Myers, A. J. Ko, T. D. LaToza, and Y. Yoon, “Programmers Are
Users Too: Human-Centered Methods for Improving Programming Tools,”
Computer, vol. 49, no. 7, pp. 44–52, Jul. 2016.

[18] M. Coblenz, J. Aldrich, B. A. Myers, and J. Sunshine, “Interdisciplinary
programming language design,” in Proceedings of the 2018 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software, ser. Onward! 2018. Boston, MA, USA:
Association for Computing Machinery, Oct. 2018, pp. 133–146.

[19] M. Maguire, “Methods to support human-centred design,” International Jour-
nal of Human-Computer Studies, vol. 55, no. 4, pp. 587–634, Oct. 2001. [Online].
Available: https://linkinghub.elsevier.com/retrieve/pii/S1071581901905038

[20] J. Wong and J. I. Hong, “Making mashups with marmite: towards
end-user programming for the web,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. San Jose
California USA: ACM, Apr. 2007, pp. 1435–1444. [Online]. Available:
https://dl.acm.org/doi/10.1145/1240624.1240842

BIBLIOGRAPHY 65

[21] A. Romero-Garces, L. J. Manso, M. A. Gutierez, R. Cintas, and P. Bustos,
“Improving the lifecycle of robotics components using Domain-Specific
Languages,” arXiv:1301.6022 [cs], Jan. 2013, arXiv: 1301.6022. [Online].
Available: http://arxiv.org/abs/1301.6022

[22] D. Gritzner and J. Greenyer, “Synthesizing Executable PLC Code
for Robots from Scenario-Based GR(1) Specifications,” in Software
Technologies: Applications and Foundations, M. Seidl and S. Zschaler,
Eds. Cham: Springer International Publishing, 2018, vol. 10748, pp.
247–262, series Title: Lecture Notes in Computer Science. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-74730-9 23

[23] P. Detzner, T. Kirks, and J. Jost, “A Novel Task Language for Natural
Interaction in Human-Robot Systems for Warehouse Logistics,” in 2019 14th
International Conference on Computer Science Education (ICCSE), Aug. 2019,
pp. 725–730, iSSN: 2473-9464.

[24] M. Schuts, “Industrial Experiences in Applying Domain Specific Languages
for System Evolution,” Ph.D. dissertation, 2017.

[25] B. Hoffmann, K. Chalmers, N. Urquhart, and M. Guckert, “Athos - A
Model Driven Approach to Describe and Solve Optimisation Problems:
An Application to the Vehicle Routing Problem with Time Windows,”
in Proceedings of the 4th ACM International Workshop on Real World
Domain Specific Languages, ser. RWDSL ’19. Washington D. C., DC,
USA: Association for Computing Machinery, Feb. 2019, pp. 1–10. [Online].
Available: https://doi.org/10.1145/3300111.3300114

[26] R. Halvorsrud, I. M. Haugstveit, and A. Pultier, “Evaluation of a modelling
language for customer journeys,” in 2016 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC), Sep. 2016, pp. 40–48, iSSN:
1943-6106.

[27] D. Wile, “Lessons learned from real DSL experiments,” Science of Computer
Programming, vol. 51, no. 3, pp. 265–290, Jun. 2004. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167642304000310

[28] G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe, M. Schindler, and S. Völkel,
“Design Guidelines for Domain Specific Languages,” arXiv:1409.2378 [cs], Sep.
2014, arXiv: 1409.2378. [Online]. Available: http://arxiv.org/abs/1409.2378

[29] B. A. Myers, J. F. Pane, and A. Ko, “Natural programming languages and
environments,” Communications of the ACM, vol. 47, no. 9, pp. 47–52, Sep.
2004.

66 BIBLIOGRAPHY

[30] M. Coblenz, J. Sunshine, J. Aldrich, B. Myers, S. Weber, and F. Shull, “Explor-
ing language support for immutability,” in Proceedings of the 38th International
Conference on Software Engineering. Austin Texas: ACM, May 2016, pp.
736–747. [Online]. Available: https://dl.acm.org/doi/10.1145/2884781.2884798

[31] J. Sánchez-Cuadrado, J. de Lara, and E. Guerra, “Bottom-Up Meta-Modelling:
An Interactive Approach,” in Model Driven Engineering Languages and Sys-
tems, ser. Lecture Notes in Computer Science, R. B. France, J. Kazmeier,
R. Breu, and C. Atkinson, Eds. Berlin, Heidelberg: Springer, 2012, pp. 3–19.

[32] M. Kurhmann, G. Kalus, and A. Knapp, “Rapid Prototyping for
Domain-specific Languages - From Stakeholder Analyses to Modelling
Tools,” Enterprise Modelling and Information Systems Architectures
(EMISAJ), vol. 8, no. 1, pp. 62–74, 2013, number: 1. [Online]. Available:
https://emisa-journal.org/emisa/article/view/102

[33] J. L. C. Izquierdo, J. Cabot, J. J. López-Fernández, J. S. Cuadrado, E. Guerra,
and J. de Lara, “Engaging End-Users in the Collaborative Development of
Domain-Specific Modelling Languages,” in Cooperative Design, Visualization,
and Engineering, ser. Lecture Notes in Computer Science, Y. Luo, Ed. Berlin,
Heidelberg: Springer, 2013, pp. 101–110.

[34] J. J. López-Fernández, J. S. Cuadrado, E. Guerra, and J. de Lara, “Example-
driven meta-model development,” Software & Systems Modeling, vol. 14, no. 4,
pp. 1323–1347, Oct. 2015.

[35] V. Zaytsev, “Language Design with Intent,” in 2017 ACM/IEEE 20th Inter-
national Conference on Model Driven Engineering Languages and Systems
(MODELS), Sep. 2017, pp. 45–52.

[36] M. Fowler, “Language workbenches: The killer-app for domain specific lan-
guages,” 2005.

[37] S. Erdweg, T. van der Storm, M. Völter, M. Boersma, R. Bosman, W. R. Cook,
A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, G. D. P. Konat, P. J. Molina,
M. Palatnik, R. Pohjonen, E. Schindler, K. Schindler, R. Solmi, V. A. Vergu,
E. Visser, K. van der Vlist, G. H. Wachsmuth, and J. van der Woning, “The
State of the Art in Language Workbenches,” in Software Language Engineering,
D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C.
Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan,
D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, M. Erwig, R. F. Paige,
and E. Van Wyk, Eds. Cham: Springer International Publishing, 2013, vol.
8225, pp. 197–217.

BIBLIOGRAPHY 67

[38] A. Iung, J. Carbonell, L. Marchezan, E. Rodrigues, M. Bernardino, F. P. Basso,
and B. Medeiros, “Systematic mapping study on domain-specific language
development tools,” Empirical Software Engineering, vol. 25, no. 5, pp. 4205–
4249, Sep. 2020. [Online]. Available: https://link.springer.com/10.1007/s10664-
020-09872-1

[39] M. Coblenz, G. Kambhatla, P. Koronkevich, J. L. Wise, C. Barnaby, J. Sun-
shine, J. Aldrich, and B. A. Myers, “PLIERS: A Process that Integrates User-
Centered Methods into Programming Language Design,” arXiv:1912.04719
[cs], Aug. 2020.

[40] J. D. Gould, J. Conti, and T. Hovanyecz, “Composing Letters with a Simulated
Listening Typewriter,” Proceedings of the Human Factors Society Annual
Meeting, vol. 25, no. 1, pp. 505–508, Oct. 1981, publisher: SAGE Publications.

[41] A. Blackwell, M. Burnett, and S. Jones, “Champagne Prototyping: A Research
Technique for Early Evaluation of Complex End-User Programming Systems,”
in 2004 IEEE Symposium on Visual Languages - Human Centric Computing.
Rome: IEEE, 2004, pp. 47–54.

[42] I. Poltronieri Rodrigues, M. de Borba Campos, and A. F. Zorzo, “Usability
Evaluation of Domain-Specific Languages: A Systematic Literature Review,”
in Human-Computer Interaction. User Interface Design, Development and
Multimodality, ser. Lecture Notes in Computer Science, M. Kurosu, Ed. Cham:
Springer International Publishing, 2017, pp. 522–534.

[43] I. Poltronieri, A. C. Pedroso, A. F. Zorzo, M. Bernardino, and
M. de Borba Campos, “Is Usability Evaluation of DSL Still a Trending
Topic?” in Human-Computer Interaction. Theory, Methods and Tools,
M. Kurosu, Ed. Cham: Springer International Publishing, 2021, vol. 12762,
pp. 299–317, series Title: Lecture Notes in Computer Science. [Online].
Available: https://link.springer.com/10.1007/978-3-030-78462-1 23

[44] R. Halvorsrud, C. Boletsis, and E. Garcia-Ceja, “Designing a Modeling Lan-
guage for Customer Journeys: Lessons Learned from User Involvement,” in
2021 ACM/IEEE 24th International Conference on Model Driven Engineering
Languages and Systems (MODELS), Oct. 2021, pp. 239–249.

[45] A. Barǐsić, J. Cambeiro, V. Amaral, M. Goulão, and T. Mota, “Leveraging
teenagers feedback in the development of a domain-specific language: the case
of programming low-cost robots,” in Proceedings of the 33rd Annual ACM
Symposium on Applied Computing. Pau France: ACM, Apr. 2018, pp. 1221–
1229. [Online]. Available: https://dl.acm.org/doi/10.1145/3167132.3167264

68 BIBLIOGRAPHY

[46] A. Stefik and S. Siebert, “An Empirical Investigation into Programming
Language Syntax,” ACM Transactions on Computing Education, vol. 13, no. 4,
pp. 19:1–19:40, Nov. 2013.

[47] P. M. Uesbeck, A. Stefik, S. Hanenberg, J. Pedersen, and P. Daleiden,
“An empirical study on the impact of C++ lambdas and programmer
experience,” in Proceedings of the 38th International Conference on
Software Engineering, ser. ICSE ’16. Austin, Texas: Association for
Computing Machinery, May 2016, pp. 760–771. [Online]. Available:
https://doi.org/10.1145/2884781.2884849

[48] H. S. Borum, H. Niss, and P. Sestoft, “On Designing Applied DSLs for
Non-programming Experts in Evolving Domains,” in Proceedings of the 24th
ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems, ser. MODELS ’21. Virtual Event, Fukuoka: Association for
Computing Machinery, Oct. 2021.

[49] H. S. Borum, C. Seidl, and P. Sestoft, “Co-designing DSL quality assurance
measures for and with non-programming experts,” in Proceedings of the 18th
ACM SIGPLAN International Workshop on Domain-Specific Modeling, 2021,
pp. 31–40.

[50] M. van Amstel, M. van den Brand, and L. Engelen, “An exercise
in iterative domain-specific language design?” in Proceedings of the
Joint ERCIM Workshop on Software Evolution (EVOL) and International
Workshop on Principles of Software Evolution (IWPSE) on - IWPSE-EVOL
’10. Antwerp, Belgium: ACM Press, 2010, p. 48. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1862372.1862386

[51] M. Karaila, “Evolution of a Domain Specific Language and its engineering
environment - Lehman’s laws revisited,” p. 7, 2009.

[52] M. Lehman, J. Ramil, P. Wernick, D. Perry, and W. Turski, “Metrics and laws
of software evolution-the nineties view,” in Proceedings Fourth International
Software Metrics Symposium, Nov. 1997, pp. 20–32.

[53] A. Blackwell, “First steps in programming: a rationale for attention investment
models,” in Proceedings IEEE 2002 Symposia on Human Centric Computing
Languages and Environments, Sep. 2002, pp. 2–10.

[54] J. G. Redish, “Expanding usability testing to evaluate complex systems,”
Journal of usability studies, vol. 2, no. 3, pp. 102–111, 2007, publisher: Citeseer.

BIBLIOGRAPHY 69

[55] F. Tomassetti and V. Zaytsev, “Reflections on the Lack of Adoption of Domain
Specific Languages.” in STAF Workshops, 2020, pp. 85–94.

[56] I. Poltronieri, A. F. Zorzo, M. Bernardino, and M. de Borba Campos,
“Usa-DSL: usability evaluation framework for domain-specific languages,” in
Proceedings of the 33rd Annual ACM Symposium on Applied Computing, ser.
SAC ’18. Pau, France: Association for Computing Machinery, Apr. 2018, pp.
2013–2021. [Online]. Available: https://doi.org/10.1145/3167132.3167348

[57] M. Voelter, B. Kolb, K. Birken, F. Tomassetti, P. Alff, L. Wiart,
A. Wortmann, and A. Nordmann, “Using language workbenches and
domain-specific languages for safety-critical software development,” Software
& Systems Modeling, vol. 18, no. 4, pp. 2507–2530, Aug. 2019. [Online].
Available: https://doi.org/10.1007/s10270-018-0679-0

[58] R. Lämmel, Software Languages: Syntax, Semantics, and Metaprogramming.
Springer International Publishing, 2018.

[59] E. Aertbeliën and J. De Schutter, “eTaSL/eTC: A constraint-based task
specification language and robot controller using expression graphs,” in 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems, Sep.
2014, pp. 1540–1546, iSSN: 2153-0866.

[60] S. Peyton Jones, J.-M. Eber, and J. Seward, “Composing contracts: an
adventure in financial engineering (functional pearl),” ACM SIGPLAN Notices,
vol. 35, no. 9, pp. 280–292, Sep. 2000.

[61] S. Frankau, D. Spinellis, N. Nassuphis, and C. Burgard, “Commercial uses:
Going functional on exotic trades,” Journal of Functional Programming, vol. 19,
no. 1, pp. 27–45, Jan. 2009.

[62] J. van den Bos and T. van der Storm, “A Case Study in Evidence-Based DSL
Evolution,” in Modelling Foundations and Applications, ser. Lecture Notes
in Computer Science, P. Van Gorp, T. Ritter, and L. M. Rose, Eds. Berlin,
Heidelberg: Springer, 2013, pp. 207–219.

[63] M. Schuts and J. Hooman, “Industrial Application of Domain Specific
Languages Combined with Formal Techniques,” in Proceedings of the 1st
International Workshop on Real World Domain Specific Languages - RWDSL
’16. Barcelona, Spain: ACM Press, 2016, pp. 1–8. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2889420.2889421

70 BIBLIOGRAPHY

[64] H. S. Borum and C. Seidl, “Survey of Established Practices in the Life Cycle
of Domain-Specific Languages,” 2022, submitted to: MODELS’22 (TODO:
update).

[65] “Official page for Language Server Protocol.” [Online]. Available:
https://microsoft.github.io/language-server-protocol/

[66] K. Claessen and J. Hughes, “QuickCheck: a lightweight tool for random testing
of Haskell programs,” in Proceedings of the fifth ACM SIGPLAN international
conference on Functional programming, ser. ICFP ’00. New York, NY, USA:
Association for Computing Machinery, Sep. 2000, pp. 268–279.

[67] “Official page for Debug Adapter Protocol.” [Online]. Available:
https://microsoft.github.io/debug-adapter-protocol/

[68] O. Reiche, M. Schmid, F. Hannig, R. Membarth, and J. Teich, “Code generation
from a domain-specific language for C-based HLS of hardware accelerators,”
in 2014 International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), Oct. 2014, pp. 1–10.

[69] J. A. Barriga, P. J. Clemente, E. Sosa-Sánchez, and l. E. Prieto, “SimulateIoT:
Domain Specific Language to Design, Code Generation and Execute IoT
Simulation Environments,” IEEE Access, vol. 9, pp. 92 531–92 552, 2021,
conference Name: IEEE Access.

[70] P. Wadler, “Deforestation: transforming programs to eliminate trees,”
Theoretical Computer Science, vol. 73, no. 2, pp. 231–248, Jan. 1988. [Online].
Available: https://doi.org/10.1016/0304-3975(90)90147-A

[71] A. Gill, J. Launchbury, and S. L. Peyton Jones, “A short cut
to deforestation,” in Proceedings of the conference on Functional
programming languages and computer architecture - FPCA ’93. Copen-
hagen, Denmark: ACM Press, 1993, pp. 223–232. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=165180.165214

[72] K. Kennedy and J. R. Allen, Optimizing compilers for modern architectures:
a dependence-based approach. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2001.

[73] H. S. Borum and M. T. Clausen, “Generating Efficient Management Actions
for the Pension Industry,” 2022, in Review.

[74] “BenchmarkDotNet,” 2021, https://benchmarkdotnet.org/. Accessed Dec
2021. [Online]. Available: https://benchmarkdotnet.org/

BIBLIOGRAPHY 71

[75] S. Dragule, S. G. Gonzalo, T. Berger, and P. Pelliccione, “Languages for
Specifying Missions of Robotic Applications,” in Software Engineering for
Robotics, A. Cavalcanti, B. Dongol, R. Hierons, J. Timmis, and J. Woodcock,
Eds. Cham: Springer International Publishing, 2021, pp. 377–411. [Online].
Available: https://doi.org/10.1007/978-3-030-66494-7 12

[76] N. Kapre and S. Bayliss, “Survey of domain-specific languages for FPGA
computing,” in 2016 26th International Conference on Field Programmable
Logic and Applications (FPL), Aug. 2016, pp. 1–12, iSSN: 1946-1488.

[77] A. van Deursen, P. Klint, and J. Visser, “Domain-specific languages: an
annotated bibliography,” ACM SIGPLAN Notices, vol. 35, no. 6, pp. 26–36,
Jun. 2000. [Online]. Available: https://doi.org/10.1145/352029.352035

[78] T. T. Hildebrandt and R. R. Mukkamala, “Declarative Event-Based
Workflow as Distributed Dynamic Condition Response Graphs,” Electronic
Proceedings in Theoretical Computer Science, vol. 69, pp. 59–73, Oct. 2011,
arXiv:1110.4161 [cs]. [Online]. Available: http://arxiv.org/abs/1110.4161

[79] M. F. Madsen, M. Gaub, T. Høgnason, M. E. Kirkbro, T. Slaats, and S. De-
bois, “Collaboration among adversaries: distributed workflow execution on a
blockchain,” in Symposium on Foundations and Applications of Blockchain,
2018, p. 8.

[80] H. S. Borum, M. F. Madsen, and S. Debois, “Static Secrecy Guarantees For
DCR Graphs,” 2022, work in progress (Todo Update).

[81] R. Fagin, J. Y. Halpern, Y. Moses, and M. Vardi,
Reasoning About Knowledge, Jan. 2004. [Online]. Available:
https://direct.mit.edu/books/book/1825/Reasoning-About-Knowledge

[82] D. E. Denning and P. J. Denning, “Certification of programs for secure
information flow,” Communications of the ACM, vol. 20, no. 7, pp. 504–513,
Jul. 1977. [Online]. Available: https://doi.org/10.1145/359636.359712

[83] “JavaScript With Syntax For Types.” library Catalog: www.typescriptlang.org.
[Online]. Available: https://www.typescriptlang.org/

[84] G. Bierman, M. Abadi, and M. Torgersen, “Understanding TypeScript,” in
ECOOP 2014 – Object-Oriented Programming, ser. Lecture Notes in Computer
Science, R. Jones, Ed. Berlin, Heidelberg: Springer, 2014, pp. 257–281.

[85] “HackerRank 2020 Developer Skills Report.” [Online]. Avail-
able: https://info.hackerrank.com/rs/487-WAY-049/images/HackerRank-
2020-Developer-Skills-Report.pdf

72 BIBLIOGRAPHY

[86] “Stack Overflow Developer Survey 2021.” [Online]. Available:
https://insights.stackoverflow.com/survey/2021

[87] “PYPL PopularitY of Programming Language index,” library Catalog:
pypl.github.io. [Online]. Available: https://pypl.github.io/PYPL.html

[88] M. S. Alvim, K. Chatzikokolakis, A. McIver, C. Morgan, C. Palamidessi, and
G. Smith, The Science of Quantitative Information Flow, ser. Information
Security and Cryptography. Cham, Switzerland: Springer, Springer Nature,
2020.

[89] S. Mathôt, D. Schreij, and J. Theeuwes, “OpenSesame: An open-source,
graphical experiment builder for the social sciences,” Behavior Research
Methods, vol. 44, no. 2, pp. 314–324, Jun. 2012. [Online]. Available:
https://doi.org/10.3758/s13428-011-0168-7

[90] “iMotions: Unpack Human Behavior,” library Catalog: imotions.com. [Online].
Available: https://imotions.com/

Appendix A

On Designing Applied DSLs for
Non-Programming Experts in
Evolving Domains

73

On Designing Applied DSLs for Non-programming
Experts in Evolving Domains

Holger Stadel Borum
Department of Computer Science

IT University of Copenhagen
Copenhagen, Denmark

hstb@itu.dk

Henning Niss
Edlund A/S

Copenhagen, Denmark
henning.niss@edlund.dk

Peter Sestoft
Department of Computer Science

IT University of Copenhagen
Copenhagen, Denmark

sestoft@itu.dk

Abstract—Domain-specific languages (DSLs) have emerged as
a plausible way for non-programming experts to efficiently
express their domain knowledge. Recent DSL research has taken
a technical perspective on how and why to create DSLs, result-
ing in a wealth of innovative tools, frameworks and technical
approaches. Less attention has been paid to the design process.
Namely, how can it ensure that the created DSL realises the
expected benefits? This paper seeks to answer this question when
designing DSLs for highly specialised domains subject to resource
constraints, an evolving application domain, and scarce user
participation. We propose an iteration of alternating activities
in a human-centred design method that seeks to minimise the
need for expensive implementation and user involvement. The
method moves from a low-validity exploration of highly diverse
language designs towards a higher-validity exploration of more
homogeneous designs. We give an in-depth case study of designing
an actuarial DSL called MAL, or Management Action Language,
which allows actuaries to model so-called future management
actions in asset/liability projections in life insurance and pension
companies. The proposed human-centred design method was
synthesised from this case study, where we found it useful for
iteratively identifying and removing usability problems during
the design.

Index Terms—Model-driven engineering, Domain-specific lan-
guage, Human-centred design

I. INTRODUCTION

As computations have become prevalent in most parts
of society, many domain experts with little programming
experience (non-programming experts) are required to input
their knowledge into complex computer systems as part
of their everyday lives. Domain-specific languages (DSLs)
promise a way for experts to do so without relying on the
assistance of programming professionals. By tailoring a
language to the needs of domain experts, a DSL may be
more flexible and expressive than a traditional graphical
user interface (GUI) while still being easier to use than a
general-purpose programming language (GPL).

In this paper, we are concerned with how to tailor
a language to the needs of non-programming domain
experts. In other words, we investigate how to ensure that
a DSL realises its expected benefits when one sets out to

Innovation Fund Denmark (7076-00029B)

design it to accommodate non-programming experts. It is
more difficult for a language designer to anticipate how
non-programming users approach a language than how
programming professionals do. Therefore, we seek to answer
the question by proposing a design method based on our
experiences using human-centred design (HCD) to structure
the language design process for a DSL called MAL. We
distinguish between a method as a general design framework
and a technique as a concrete tool that can be applied as
part of a method. MAL was designed in a collaboration
between Edlund A/S and the IT University of Copenhagen
to allow Edlund’s customers to model company-specific
management actions on a general asset/liability projection
platform (see Section VII-A). Based on our experiences
with designing MAL, we propose a two-phase design
process moving from low-validity exploration of diverse
language designs towards a higher-validity exploration of less
diverse designs. We seek to mitigate the risk of designing a
language unusable by non-programming experts by having an
HCD approach that incorporates the user perspective into the
design process through observation and continuous evaluation.

We consider DSLs as a specific model-driven engineering
(MDE) practice where the abstract syntax of a DSL is
a metamodel, language artefacts are models, and code
generations are transformations. Due to the many usages of
DSLs, we limit our investigation to consider only the design
of applied DSLs (ADSLs) for non-programming experts.
An ADSL is a DSL that seeks to alleviate problems in
large, complex software systems as opposed to exploring
more theoretical aspects of programming languages. While
there are other names for similar types of DSLs (application
domain DSL [1] or real-world DSL [2]), we prefer to use
the term applied since all DSLs exist within the real world
and an application domain. An ADSL lives within a complex
software ecosystem with its corresponding business processes.
An ADSL must be compatible with this context. At the same
time, the introduction of an ADSL often aims to change
business processes by empowering the end-user with new
capabilities and corresponding responsibilities. Therefore,
an ADSL is likely to evolve to remain compatible with its
context, which it intentionally sets out to change.

74 APPENDIX A. ON DESIGNING APPLIED DSLS

The paper will progress as follows: Section II describes
the method of the paper. Section III describes state of the
art. Section IV presents a language classification based on
evolution relevant to the design of ADSLs. Section V identifies
challenges to designing ADSLs for non-programming experts.
Section VI describes our proposed iterative, two-phased
design method. Section VII presents our in-depth case study
of creating MAL leading to the proposed method. Finally,
Section VIII discusses threats to the validity of our case study.

The contributions of this paper are:
• A classification and discussion of language evolution

based on Manny Lehman’s program classification.
• An identification of ADSLs’ characteristics and design

challenges.
• A proposal of a design method for creating ADSLs.
• A case study of MAL’s design process leading to the

proposed method.

II. METHOD

In this paper, we propose a design method for ADSLs based
on our experiences with designing MAL. We do so from
the position that a detailed qualitative case study is a valid
scientific method for providing grounds for generalisations [3].
We use our in-depth understanding of challenges faced when
designing MAL to synthesise a general approach to ADSL
design. Although we use these experiences as a justification
for the proposed method, they should only be thought of
as a justification and not as an evaluation of the method.
Additional experiments and experiences with using the method
are required for evaluative purposes. For the sake of clarity,
we choose to present the proposed method followed by the
case study since it allows the reader to more easily follow the
case study.

III. STATE OF THE ART

Programming language usability has been a driving factor
in the history of programing language design [4] [5] [6].
The movement from unsafe, low-level languages towards
safe, high-level languages can be attributed to a demand for
easier ways to construct large, complex, efficient, safe, and
correct software systems. While the idea of using human-
computer interaction (HCI) techniques in language design
[7] has been applied before, there is little well-established
design methodology ensuring the usability of a programming
language. This is the case even though usability is a primary
concern of programming language design. Instead, new
programming paradigms and language features have claimed
to improve the programming experience and have either
succeeded or failed through industrial or academic adoption
or lack thereof. For a language designer, this survival of the
most popular approach to language improvements provides no
guidance on how to design a language. Furthermore, although
there exist many heuristic guidelines and rules for language
design [8] [9], these do not help the designer choose concrete

design activities. As an example, the theory of Physics of
Notation (PoN) [10] contains nine guiding principles for
designing visual notations but provides no design-procedural
guidelines. Van der Linden and Hadar [11] find that few
PoN practitioners report user involvement when eliciting
requirements for a visual notation.

Human-centred design (HCD) seems like the most
promising methodology for guiding a designer on how to
create programming tools [12], including ADSLs for non-
programming experts. HCD seeks to include the user in the
design process to ensure that a designed artefact is innovative
and solves the user’s needs, i.e., it has high usability [13].
Preliminary research findings suggest that while expert
programming language designers believe human-centred
techniques are of great value to language design, very few
use them in practice [14]. Roughly, HCD techniques can
be divided into formative techniques that create new ideas
and evaluative techniques that evaluate a specific idea. Many
techniques have been adapted from general HCI techniques to
the context of programming language design [15]. Evaluative
techniques have a central position in HCD for programming
languages, possibly because programing language design has
historically neglected evaluative studies [16] [17]. For our
proposed method, we group the evaluative techniques into the
following two general cases:

High validity, low variability experiments, or randomised
controlled trials, explore few independent variables with a
large sample size. These statistically significant experiments
may uncover fundamental truths about programming
languages’ usability with a rigour comparable to medical
studies [16] [18]. For example, such work has involved the
effect of static type systems [19] or choice of keywords [20].
From the perspective of ADSL design, such experiments are
costly due to the required number of participants and time
spent conducting the experiments. However, the results of
such existing studies may be used as heuristic guidelines for
future languages. This approach to design has been proposed
as the evidence-based programming language design method,
which seeks to base language design choices on relevant
usability studies [21]. Although such a design method may
eventually be of great value in the design of GPLs, such a
method is less feasible to transfer to the design of a specific
DSL. The primary problem is that the method requires an
experiment that investigates a particular design decision. If we
seek a domain-specific solution for a previously unexplored
domain, it is unlikely that existing experiments directly
address our problems.

Low validity, high variability experiments explore many
different independent variables on a small sample size
as input to design decisions. The idea is that “20 cheap
studies of a variety of ideas and features are likely to be
far more valuable than one expensive study of a particular
feature”, as stated by the Champagne Prototyping technique

75

[22]. These evaluative techniques are typically variants of
a Wizard of Oz technique [23], which seeks to evaluate a
system on participants by using an approximation of the final
system1. Champagne Prototyping is used to validate end-user
programming features by exposing users to scenarios in their
normal rich functioning system while only mimicking the
core feature of interest. The PLIERS method, which will
be discussed later, also proposes a Wizard of Oz technique
where the language designer functions as a type system and
compiler that can provide users with the illusion of interacting
with the final system. Although these techniques provide a
way of exploring a diverse set of design ideas, they do so at
the cost of the validity of their findings.

HCD methods for DSL design are more difficult to find.
So far, we have discussed only human-centred techniques as
parts of a language design process, except for the evidence-
based language design method. Although these techniques
are of great use and value to designers, they provide little
guidance on how to structure a DSL design process. Even
the guidance in the foundational book Domain-Specific
Languages [25] does not feel comfortable making more
specific suggestions than to “[t]ry out different ideas on your
target audience”. However, some practitioners do provide
some guidance. Although early work descriptively divided
DSL development into the phases of decision, analysis,
implementation, and deployment [26], there is seemingly
a contemporary consensus on using an iterative approach
[1] [12]. The book DSL Engineering [1] recommends early,
agile development of a core language and classifies language
development according to domain experts’ knowledge.
The more recent book Software Languages [27] only
deals “superficially with domain analysis, language design,
evolution, and retirement.” The developers of FlowSL
recommend early usability evaluation when developing DSLs
for non-programmers [28]. Another case study shows how
to evaluate a DSL by treating it as a traditional GUI [29].
The Design Your Own Language [30] toolkit consists of 96
cards, each representing a possible design aspects that affects
the behaviour of users. While the toolkit thoroughly presents
and categorises these decisions important to users, it lacks
processual guidelines for practitioners who seek to navigate
them. Inspired by free and open software communities, the
DSL named Colaboro [31] may be used for decision making
in community-based design projects. Lastly, users may be
included at fixed points in the design process, for example,
through a questionnaire to make syntax decisions [32].

For general-purpose programming languages, the PLIERS
method makes specific suggestions for conducting human-
centred, iterative language refinement [33]. It provides
a general design process, a set of HCD formative and
evaluative techniques, and mitigation for common problems
for conducting such experiments. Although there is an overlap

1Some high validity experiments have a similar approach [24].

between DSL design and GPL refinement, a substantial part
of the method does not apply to the design of ADSLs
for non-programming experts. For example, the method
assumes users with substantial programming experience and
a relatively stable domain. It does so when it suggests that
design questions on a specific language can be back-ported
into a more commonly known language.

Analytical frameworks for understanding and analysing
usability issues of programming languages are also used
for evaluative purposes. They can be used as a theoretical
foundation to guide an evaluative technique and to interpret
its findings. Although the Cognitive Dimension Framework
[34] was developed to identify usability issues in visual
programming languages, its 14 analysis dimensions have
proven useful for analysing many kinds of programming
languages [33] [35] [36]. The Attention Investment Model is
another framework that seeks to explain whether end-users
will use a programming tool. It does so by weighing the
pros of adopting the tool against the cons and risks of doing
so [37]. From the perspective of ADSLs, the theory claims
that users will only use an ADSL if the benefits of using it
outweigh both problems and potential risks. Therefore, an
ADSL should not only make a modest improvement of the
current practices.

The technical design of DSLs comprises programming
languages, tool support, and workbenches for DSL
construction [38]. Several tools exist to alleviate the
pains of developing DSLs by reducing the development cost.
To mention some: MPS, Xtext, Racket, or the Language
Server Protocol all ease the implementation of a DSL by
allowing the reuse of IDE features, language features, and
even complete languages. There are plenty of case studies
and examples of how these tools can be used to create DSLs
[39] [40] [41] [42]. Although the technical choices of DSL
implementation affect a design method and vice versa, we
will not consider technical design as part of our design
method. This separation allows our method to stringently
consider the human-centred perspective and practitioners to
make their own technological decisions.

IV. LANGUAGE EVOLUTION

In a classical paper from 1980, Manny Lehman proposed
to classify programs into the three categories of S, P, and
E-programs [43]. Briefly, an S-type program is precisely
derivable from its specification, a P-type program may have a
precise problem specification but requires an approximation in
its implementation, and an E-type program is embedded in the
real world and is thereby part of its own application domain.
With the progression from S-type to E-type programs follows
more software evolution caused by the distance between a
program’s specification and its actual implementation and
usage.

76 APPENDIX A. ON DESIGNING APPLIED DSLS

TABLE I
EXAMPLES OF LANGUAGES BELONGING TO THE DIFFERENT CLASSES.

Category Languages
S-type λ-calculus, regular expressions, Com-

municating Sequential Processes
P-type C, Java, C#
E-type ADSLs, PHP, JavaScript, Python

Inspired by Lehman, we derive a similar classification for
programming languages where each class has its own reasons
for language evolution. We have found that this classification
provides a good framework for distinguishing causes of
language evolution, based on our knowledge of current and
historical programming languages and their development
over time. While S-type languages are very stable, P-type
languages continuously evolve and even more so for E-type
languages. Languages are in themselves interesting to consider
in the perspective of evolution since languages often outlive
software written in them. We will use this classification to
argue that an ADSL is an E-type language that necessitates a
design method that handles language evolution. Table I shows
examples of languages belonging to different classes.

We distinguish between exogenous and endogenous
evolutionary forces corresponding to Lehmann’s first and
sixth laws of evolution [43]. The exogenous forces come
from changes in the domain itself (caused by new legislation,
new business practices, and the like) and from changes in the
underlying technology (such as the shift from mainframes
to stand-alone desktop computers to networked desktops to
web servers, etc.). The endogenous forces come from users
adopting the language, liking some aspects of it and disliking
or missing others, causing them to request changes in the
language.

An S-language is created for the sake of its own
specification that serves as a cardinal example of an external
concept. An S-type language is designed to demonstrate or
model the external concept, which means that the primary
reason for writing a program in the language is to demonstrate
the external concept’s properties. An S-type language only
evolves when its external concept changes or if a better
model is discovered. Therefore, S-languages are very stable,
and it is uncommon for an S-language to evolve. In fact,
an S-language will likely evolve into a new, independent
language, demonstrating some other external concept. Many
languages designed for programming language research and
education are S-languages. The λ-calculus is an S-language
since its purpose is to model computations with its semantics
being of greater interest than its application. The class also
contains other languages such as a simple imperative C-like
language used to teach compiler construction or simple
state machine-based languages [25] used to demonstrate
DSLs as a concept. While these languages may resemble
P-type languages, they are S-type since they are reduced

to fundamental concepts directly aligning them with their
specification.

A P-language is created for the sake of its programs
and their application context. A P-language is designed to
create and maintain complex programs, which means that
it considers software engineering aspects such as hardware,
efficiency, code-reuse, and broader development context. A
P-language will primarily evolve in response to exogenous
forces in its application context: new hardware technologies,
software engineering practices, or programming language
paradigms. P-languages are more concerned with language
usage within a specific computational model than the
language itself. As a result, there are many pairs of S and
P-type languages where an S-type language demonstrates
the computational model while a P-type language makes
the model practically usable. Some examples of pairs are
λ-calculus & Haskell, Algol-60 [44] & Algol-W [45] or
Pascal [46], regular expressions & Perl compatible regular
expressions [47] and Communicating Sequential Processes
[48] & Occam [49] or Erlang [50].

An E-language is created for the sake of its programs
that, in turn, are shaped by their application context. Like
P-languages, an E-language is designed to create and maintain
complex programs, but where a P-language derives its form
from some computational model, an E-language is primarily
influenced by its application context. An E-language is likely
to evolve due to both exogenous and endogenous forces.
This means that the development of many E-languages has
an ad-hoc feeling compared to P-languages. PHP is an
example of an E-language created for the purpose of dynamic
server-side creation of webpages with database access. As
web technology evolved, so did PHP with the additional
user requirements, security fixes, and larger web frameworks.
Also, many DSLs are E-languages since they are shaped by
their domain, which is part of the application context.

Some properties of this classification are best made
explicit: First, a language is not inherently S-type, P-type, or
E-type. Instead, it is the purpose and usage of a language
that determines its class. Thus, the class of a language may
change over time. Second, there is a clear correlation between
a P-type or E-type and whether it is a GPL or a DSL.
However, the classes are not equivalent. For example, a stable
DSL that serves as a top-level state-machine interface is a
P-type language since it makes a computational model readily
available to its users. Likewise, we have already argued why
a GPL such as PHP has many E-type characteristics. Third,
the classification does not establish that S-type languages are
superior to E-type languages or vice versa. Neither is the
point that one should write S-type programs in an S-type
language and so forth. The point of the classification is
to provide a new perspective for the reasons for language
evolution. Based on the above classification, we have the
following hypotheses:

77

Hypothesis 1: Most ADSLs are E-type languages and part
of an endogenous evolutionary cycle.

Such an evolutionary cycle would unfold as follows: an
initial version of the DSL supports only parts of the domain
(to avoid wasted implementation effort) and additionally
contains misunderstandings of the domain. Nevertheless, the
implemented parts may be successful in attracting users who
request additions and adaptations, which causes the DSL to
subsequently attract more users who request new features.

Hypothesis 2: Language evolution is hindered by a formal
language specification, which means that a formal language
specification in itself moves a language towards an S-type
language.

Evolving a formal language specification is costly,
especially if the specification guarantees properties such as
type safety. Therefore, a language creator may, rightfully,
opt not to evolve a language when the evolution requires
its formal specification to change. When this happens, the
language specification is in itself deemed more important
than the language usage, which is a characteristic of S-type
languages. This may be the reason why Standard ML is more
S-like than similar languages such as OCaml and F#.

We use the hypotheses to make the following assertion: a
design method for ADSLs must handle the described endoge-
nous evolutionary cycle. For this purpose, it may be counter-
productive to spend time formally describing the developed
language and proving language properties. Formalisation may
be desirable for other reasons, but it may impede the language
design process, at least in the early stages.

V. DESIGN CHALLENGES

In this section, we describe the challenges of having a
human-centred design process for creating ADSLs for non-
programming experts. Most of these challenges stem from
seeking to have users evaluate language designs, as such
evaluation requires some way for users and designers to
communicate complex concepts.

Challenge 1: High impact systems

ADSLs may have a high impact in the sense that they
model important phenomena so that errors can have serious
consequences. Whether domain experts use the DSL to es-
timate a pension company’s solvency [51], model financial
contracts [52] [53], or manage telecommunication switches
[54], mistakes can come at a high price. A design process for
a high impact ADSL should consider ways to minimise the
risk of errors.

Challenge 2: Few experts

A domain may have few experts, even if it is of great
importance. In general, the more specialised a domain be-
comes, the fewer experts there are in the domain. In some

highly specialised domains, such as asset/liability projections
of Danish pension companies, there are very few experts,
meaning that a design method cannot rely on many repeated
user evaluations with domain experts. This scarcity challenges
the core of HCD since users are vital for the method. For our
purposes, we will assume that the design team always has
one expert available since we deem it unlikely that one would
create a DSL for a specialised domain without an expert’s
help.

Challenge 3: Gap between designer and user

There will always be a knowledge gap between designer
and user. This gap is vast in the design of an ADSL since
both language designers and domain experts come from very
specialised domains which require years of experience and
education to grasp. Even though neither person will fully
comprehend the other’s domain, a design method must seek
to bridge this gap since any form of miscommunication may
translate into problems with the design.

Challenge 4: Evolving and amorphous domains

As stated in section IV, an ADSL will likely evolve, even
during its development. Domain experts may discover new
opportunities and requirements during the design process,
which means there is a risk of a language being outdated
before it is completed. Therefore, the design method should
allow for domain changes even late in the process.

When there are substantial uncertainties (such as unfinished
mathematical models or unclear legislation) in a domain, we
call it amorphous. By this, we mean that domain experts are
actively working on clarifying these uncertainties resulting in
an evolving domain. These uncertainties make it difficult to
design a DSL since they move the design in the direction
of general-purpose solutions. An amorphous domain leads
to a particular form of evolution, resulting in a decrease in
domain entropy. While one should seek to answer all domain
questions, it may not be possible to do during the design phase.

Challenge 5: Intangible and abstract product

A domain-specific language is an intangible and abstract
product that makes it difficult for users and customers to
monitor it during development. This challenge applies to all
software products [55] but even more so for DSLs because it
can be hard to present a DSL to users. Presenting a DSL’s
grammar and semantics is likely too abstract for the user,
while presenting a single program may be too concrete to
demonstrate broad design implications.

Challenge 6: Part of a complex system

Since an ADSL is created as part of a complex software
system, the DSL may seek to replace a significant codebase.
When this is the case, users may only be interested in complex
models corresponding to thousands of lines of code. This
means that it may not be possible to provide users with a
small core DSL, which will be incrementally expanded and
improved.

78 APPENDIX A. ON DESIGNING APPLIED DSLS

VI. PROPOSED METHOD

We propose a pragmatic, iterative, two-phased method to
design ADSLs for non-programming experts. This method
is synthesised from our experience with designing MAL,
which will be discussed in Section VII. With the proposed
method, we strive for a process that lets practitioners create
DSLs that realise their expected benefits while handling the
challenges described in the previous section. This approach
is opposed to striving for a design process that leads to an
optimal language where a statistically significant experiment
justifies each design decision. Such a method should be
applicable to anyone from a novice to an expert DSL designer
but customisable to the needs of a specific design context.
By proposing this method, we seek to contribute to a design
methodological discussion of how such a method can help
practitioners tailor a language to a domain.

We seek to use an HCD approach because the method
promises a way of exploring innovative ideas while ensuring
that these ideas are grounded in users’ needs. At its core,
HCD is an iterative process that consists of two activities.
The first activity creates an artefact or a prototype; the second
activity evaluates the prototype with a user experiment. This
process allows us to continuously evaluate and evolve a
language design, but it immediately raises two questions.
How do we create an artefact suitable for evaluation? and
how is said artefact evaluated?

Our two-phase design method moves from a low-validity
exploration of diverse prototypes towards a high-validity
exploration of few prototypes2. The phase of low-validity
exploration consists of small, fast design iterations using
pseudocode prototypes allowing the designer to explore the
language domain through vastly different language designs.
During this phase, an in-team expert serves as the best
approximation of actual users. When the prototypes of
the low-validity exploration converge, the second phase of
design validation begins. In this second phase of design
validation, the loosely evaluated design from the first phase
is implemented and tested to find usability problems.

A. Low-validity exploration

The first phase consists of small design iterations that seek
to explore the design space at a low cost. Cheap and flexible
prototypes are necessary for this process since the time used
on a prototype is inversely proportional to the number of
iterations. In this phase, prototypes should be purely textual
and could be called pseudocode prototypes analogous to
paper prototypes. These prototypes should be supplemented
by formative techniques such as corpus analysis, interviews,
natural programming, or domain-driven design [12] [56].
During these activities, one should be looking for desired

2With an emphasis on towards since we are not proposing experiments
which give statistically significant results.

language properties and constraints to incorporate into the
design as early as possible.

The purpose of a prototype is to investigate a specific
design decision and facilitate a discussion on the decision.
Therefore, a prototype should be focused on exploring the
solution to only a few problems, so it gives information
on the subject of interest. It may do so in extreme, even
unrealistic ways as long as it serves as an idealised example
and not as an end product. Also, a prototype may tackle
macro-level questions such as how to improve overall program
comprehension. In that sense, the prototyping process uses
the hermeneutic circle since it views the part in the context
of the whole and vice versa.

The in-team expert is used to evaluate each prototype. The
goal is to prompt the expert for questions and opinions such
as, ”Why can I not just do X?”, ”What if I want to do Y?”,
or ”What is the purpose of Z?”. However, merely showing
a pseudocode prototype may not give the expert sufficient
grounds to provide feedback. Therefore, part of the evaluation
should be to walk through different scenarios in a text editor
to show how one would work with the prototype. A scenario
could be to change a specific business rule, write a new rule
from scratch, or find an error in the program. When possible,
the expert should dictate what to do or write. Again this is
analogous to what one would do with a paper prototype of
a graphical user interface. During the phase of low-validity
exploration, the designer will experience that the language
design of the prototypes become more and more stable. As
this happens and the number of unexplored, potentially viable
designs also diminishes, we say that the prototypes converge
to a single language design. In other words, a consensus
should emerge on how one would like to express different
computations. When this consensus is reached, the phase of
low-validity exploration ends.

B. Design validation

The low-validity exploration produces a rough language
design that neither the designer nor the expert objects to. There
is, however, still a risk that the language design contains
significant flaws. First, the design may have unrealistic
assumptions on the possible language guarantees since the
design builds upon pseudocode prototypes. Second, the
low-validity exploration may have biased the in-team expert,
or they may, for other reasons, not represent domain experts
in general. Phase two seeks to mitigate these risks by creating
a lightweight language implementation and testing it with as
many participants as feasible3. This process should ensure
that the language design is based on realistic assumptions
and usable by outside experts. Any problems discovered
should be addressed by changing the design leading to, if

3The number of needed usability tests has been discussed at least since
Nielsen’s and Launder’s mathematical analysis of usability problems [57].
From our perspective, it is unlikely that someone ends up with the possibility
of performing too many usability tests when creating ADSLs.

79

TABLE II
CHALLENGES AND REMEDIES

Challenge (section V) Remedy
High impact systems No specific
Very few users Initially use in team expert, then vali-

date with external users
Designer and expert gap Small and fast iterations
Intangible product Text-editor prototypes and demonstra-

tions
Evolving domain Incremental and flexible approach
No small programs No expectation of small programs

possible, new tests. These potential problems are the reason
the implementation needs to be as lightweight as possible.
There are two products of the second phase: first, a lightweight
language implementation ready to be put to use and second,
knowledge of the language’s strengths and usability issues.

C. Tackling challenges

Here we will address why the proposed method handles the
challenges identified in Section V. These are summarised in
Table II. The small and fast design iterations facilitated by
pseudocode prototypes serve a multitude of purposes. First,
they seek to bridge the gap between the designer and the in-
team expert by letting the designer become familiar with the
domain and the expert to become familiar with DSL concepts.
Second, they allow for flexibility in the design process to
handle domain discoveries made by domain experts and the
corresponding evolution of the DSL. Third, the repeated
demonstrations of prototypes try to lessen the intangibility of
the system. The challenge of having few test participants is
handled by using the in-team expert as a best approximation
of users. The second phase primarily exists to mitigate risks
introduced by the first phase, namely that the prototype may
be unrealistic and that real users may be different from the
in-team expert. There is no specific mitigation for developing
a high-impact DSL apart from improving usability and incor-
porating domain constraints into the DSL, thereby eliminating
some potential user errors.

VII. CASE STUDY

In this section, we describe a case study on our experience
using the design method to design the actuarial DSL,
Management Action Language (MAL). It would be
misleading to say that we had a fixed two-phase design
methodology from the outset of the project. Instead, the
two-phased method was discovered and synthesised during
the project to account for the identified risks. This process
introduces a threat to the validity of our findings (discussed
in Section VIII), but recognising the threat is the first part of
mitigation.

Although we played the active part of designers in the
process, we take the perspective of process observers in this
section. For the sake of readability, we will call the in-team
expert Erin and the designer David. First, we give a detailed

description of our design context and why MAL serves as a
cardinal example for an ADSL. Then we discuss our expe-
riences using the two-phase method. Finally, we discuss the
methodological problems experienced throughout the project.

A. Design context

MAL was created in cooperation between the Danish
software company Edlund A/S, specialising in software for
the life insurance and pension industry, and the IT University
of Copenhagen. One of Edlund’s products is a platform that
projects the asset/liability balance of a pension company
in accordance with financial regulations. This projection of
assets and liabilities is used to ensure and document that a
pension company will remain solvent in the future. On this
platform, a company must model its business rules, so-called
management actions. MAL provides companies with a way
of doing so.

MAL seeks to alleviate the following pains in the projection
platform:

• There is a high entry barrier for actuaries for modelling
and understanding business rules in a GPL.

• Some domain properties are difficult to ensure in a GPL.
• It is a security risk to allow actuaries to model and

execute models written in a GPL.
• Customers are provided with a template GPL program

where it is difficult to pick and choose different manage-
ment actions.

• It is difficult for Edlund to experiment with performance
initiatives applicable to customer models expressed in a
GPL.

Given enough time and training, there is no doubt that
actuaries could learn to use any language. Therefore, MAL
more ambitiously aimed to make the language enjoyable to
its users, which could be a selling point of the projection
platform.

MAL is a cardinal example of an ADSL with all of its chal-
lenges (see Section V). It resides within an advanced software
platform and a business-customer relation where Edlund must
be competitive. To provide users with language flexibility,
MAL generates valid GPL programs and allows invoking
some external GPL code. There are few potential users of the
language, each interested in complex models of management
actions of a company, including policies, reserves, assets,
cash flows, future discretionary benefits, etc. The domain of
MAL is evolving and amorphous. The amorphicity stems
from uncertainties in the exact requirements of the Danish
FSA and ongoing actuarial research into the mathematics of
asset/liability projections [58] [59]. In addition, the Danish
pension industry manages assets corresponded to 300% of
Denmark’s GDP in 2019, which means that mistakes made
in such projections could have severe consequences for the
Danish economy [60].

80 APPENDIX A. ON DESIGNING APPLIED DSLS

B. Execution

We will now describe how the two phases were executed
to create MAL. We first describe what happened during the
phase and how the method helped us to overcome problems.
This description is followed by a list of condensed lessons
related to the phase.

1) Low-validity exploration: The phase of low-validity
exploration was used to explore a wide range of language
designs and ideas by iterating through low-cost pseudocode
prototypes. Corpus analysis, interviewing, and domain
modelling were the primary formative techniques used
to create these prototypes. The corpus analysis consisted
of analysing existing GPL programs that MAL was to
replace. While this analysis allowed for a thorough domain
investigation, it also hindered using natural programming
as a technique since the in-team expert, Erin, could simply
point to existing code, when asked how to express some
computation. Collaborative domain modelling served as a
better technique to get prescriptive input on how Erin wanted
to work in the domain. During the project, David observed
that several ideas from this collaborative domain modelling
showed up in the GPL programs.

Several ideas were rejected in their initial form but
modified and included in later prototypes. For example,
early in the process, David recognised that the DSL needed
some way for actuaries to model a new quantity that they
wanted to compute. One of the first prototypes explored
the possibility of inferring a data model from a written
program. The idea was that actuaries could simply calculate
and use a quantity by assuming it existed. Although the lack
of explicit modelling turned out to be a bad idea, further
prototype refinement led to a language where usability tests
indicate that users enjoy modelling data in MAL. Later,
David identified the problem that programs became bloated
with iteration constructs. Again, David created a prototype
that explored the possibility of having implicit iterations. This
also turned out to be an unusable idea since its extreme way
of making programs less verbose led to incomprehensible
programs. However, this idea later reappeared as projections
on the level of portfolios, which users generally like. The
point of describing these iterations is to show how they
facilitated the exploration of extreme ideas, which, due to
their low cost, could be discarded or refined as David saw
fit. An experienced language designer could likely have
avoided some of the, in hindsight, design missteps, but from
this method’s perspective, that would only mean that an
experienced designer needs fewer design iterations.

Erin, who was developing the mathematics to be
implemented in MAL, was used as the best approximation of
users during the design process. Therefore, it was difficult
for Erin to state exact requirements and limitations for the
language since she could only say how things looked right

now and in the near future. Often, it was just “possible” that
some functionality was required or “not likely” to be needed.
Instead of requiring Erin to scope the domain, we primarily
analysed her existing computations to synthesise a language
design. This approach had the benefit that Erin could compare
existing computations with equivalent DSL solutions, which
gave her a better basis for questioning design choices.

After approximately ten prototypes, David had a rough idea
of how the language would look. He had identified important
functionality of the language (data modelling, calculations,
and output specification) and had a sketch of a language
that provided said functionality. However, there were still
unresolved questions. First, since Erin had been used as an
approximation of users, it was still unclear whether other
actuaries would actually enjoy using the language. Also, in
the initial language sketch, much attention was paid to how
programs of interest could be modelled. Less attention had
been paid to how a program would fit into Edlund’s customer
relationship, where the company provides template solutions
to several customers.

Lesson 1: Do not be afraid of seemingly stupid, crazy, or
unrealistic ideas. Even if an idea does not end up in the final
language, it can still shape and delimit the language.

Lesson 2: Do not require the domain expert to make
absolute statements about functionality. Instead, ask how
likely it is that some functionality is required. Design the
language for functionality, which has a high probability of
being required.

Lesson 3: A comparison between existing models and
equivalent DSL models will likely prompt a reaction from
domain experts. So will modifying models expressed by the
DSL.

Lesson 4: For a novice designer, it is easy to come up with
unrealistic ideas. Therefore, a novice designer should seek to
validate that an idea is realistic.

2) Design validation: In the second phase, David sought
to validate that the language was highly usable by actuaries.
The plan was to conduct traditional usability experiments with
actuaries to find and weed out usability issues. Therefore,
phase two began with a lightweight implementation of the
DSL and an identification of important usability goals. The
Cognitive Dimension Framework [34] was used to identify
these goals and corresponding tasks. For example, one goal
was that “the user should understand the different kinds of
data and where the data comes from” (hidden dependencies).

In total, two usability tests were conducted; one with an
Edlund actuary and one with a customer actuary. The test
consisted of training (30 min), task solving (120 min), and
a semi-structured interview (30 min). The tests strengthened

81

David’s belief in many design choices since both users
saw potential in MAL’s data modelling and were able to
understand and modify complex programs. However, the
usability tests also found significant problems with syntactical
choices, training material, and error messages. An example
of one of these problems was that the prototype had moved
from a C-like towards an ML-like syntax without much
complaint from Erin. When exposing fresh actuaries to the
language, it became clear that actuaries are more experienced
with a C-like notation. As one participant explicitly stated:
“[they] were missing curly braces and semicolons for
structure”. Although such a syntactic problem is easy to fix, it
is essential to identify to flatten the learning curve of the DSL.

During the second phase, it became clear that the language
should not only be tailored to its domain. It should also
be aligned with Edlund’s customer relations. Concretely,
MAL needed to support Edlund’s service of providing its
customers with template implementation of management
actions. Therefore, a module system was implemented that
made it easier for customers to pick and choose between
standard management actions distributed across multiple files.
This was done even though one test participant explicitly
stated that it was easy to navigate in a MAL program since it
was contained in a single file. Although this was arguably a
paternalistic choice, we firmly believe that it is to the benefit
of the users.

Lesson 5: The design resulting from phase one will likely
contain obvious flaws easily discovered when testing it with
an external domain expert.

Lesson 6: Implementing any language functionality will
increase the cost of design revisions and make the design less
flexible.

Lesson 7: Consider how to teach the language when
designing the language. The teaching of the language is
almost as important as the language itself and easily forgotten.

C. Domain evolution

The domain of MAL evolved during both design phases
causing changes to the language design and its implementa-
tion. There were several causes to this evolution. One cause
was regular software maintenance and refactoring, leading to
small functionality changes. Another cause was novel domain
discoveries leading to new data models and functionality, e.g.
it turned out that it should be possible to model a policy by
a probabilistic three-state entity. Finally, some evolution was
caused by users’ wishes. They wanted a clearer understanding
of the projection platform, improved debugging facilities, and
more control over the projection. At the beginning of the
project, this evolution was straightforward to handle since
we had no implementation. When implementation began in
the second phase, evolution came at a high cost. This cost

included development time on improving functionality and
time spent updating existing MAL programs when breaking
updates were made. It is possible that focusing more on the
tooling of the technical design could have reduced some of this
cost, e.g., by using a projectional editor. Nonetheless, these
experiences reinforce our belief that one should try to delay
implementation until it is necessary for some objective.

D. Experienced problems

If the only purpose of our design process was to ensure
the usability of MAL, then we find it adequate. However,
it is also a success criterion for an ADSL project that
the language is used and actually alleviate the pains it is
intended to. Although we are currently integrating MAL
into Edlund’s projection platform, we find it necessary to
discuss our experienced problems with taking the language
into production.

One problem with the design method, and implementation,
is that while MAL was developed, actuaries had invested
a significant amount of time into solutions written in a
GPL. Although we believe MAL demonstrates significant
improvements, actuaries may judge that these improvements
do not offset the time invested into their current solutions
[37]. Therefore, it would have been desirable to either start
the development of MAL at an earlier point in time or to
speed up the development.

Another solution to this problem could have been to have
a more participatory design approach by involving Edlund’s
customers more directly in the design process [61]. However,
such inclusion was not possible for us since it could potentially
strain customer relations. Therefore, the future of the language
depends on whether it demonstrates benefits significant enough
that it can be introduced without fear of straining customer
relations.

VIII. THREATS TO VALIDITY

The experiences described in the case study are the empirical
findings presented in this paper. As explained in Section II,
these findings should not be seen as an evaluation of the
proposed method but as the material used to synthesise the
method. This raises the possible external threat to validity
that our experiences are not generalisable and the internal
threat to validity that we are biased in the case study. We
deal with each threat separately.

First, it is possible that our case study, and therefore the
proposed method, is not generally applicable. This risk stems
from the possibility of simply tailoring a design methodology
to the specific design situation. To mitigate this risk, we
have sought to be as precise as possible in describing the
design context of MAL and identifying general challenges
to the design process which are applicable to other ADSLs.
At the same time, we have described our in-depth context-
dependent experiences through a case study motivating our

82 APPENDIX A. ON DESIGNING APPLIED DSLS

methodological choices. Ultimately, future evaluation with
other projects is needed to get a fuller understanding of the
method.

Second, it is possible that we as authors have an inherent
confirmation bias in presenting our case study: we believe
that the design method is effective and leads to good ADSLs,
and may selectively present only supporting evidence. But
in fact, we have sought to describe a method that can
mitigate specific problems and have openly discussed our
experiences and problems using the method, with two goals:
First, we hope that some practitioners may learn from our
experiences. Second, we hope that this article will provoke
other practitioners to more explicitly discuss their design
processes for domain-specific languages and challenge ours.

IX. CONCLUSION

In this paper, we have described our experiences with
conducting human-centred design to create an ADSL for
non-programming experts in an evolving domain. We have in
two ways described the characteristics of ADSLs, which we
have found important for the design process. First, we have
derived a language classification of programming languages
based on their evolutionary characteristics. We argue that
ADSLs belong to the class of steadily evolving E-type
languages highly influenced by their application domain.
Second, we have identified challenges to the design process.
Based on these, we have argued that a design method must
be able to handle evolving domains as well as include
user validation in the design process while minimising user
participation when possible.

We have conducted a case study on the design process of
MAL and how this process sought to realise MAL’s expected
benefits. We found that early usage of rapid prototyping using
pseudocode prototypes allowed us to explore a large design
space. Using an in-team domain expert to conduct low-validity
evaluations of these language designs allowed us to identify
and fix usability issues. The low cost of the prototypes had
the additional benefit of allowing rapid evolution of MAL’s
domain. Later in the process, domain experts external to
the team was used for a higher validity evaluation of the
language. These explorations indicate that users enjoy how
they can model data, the conciseness of expressions, and find
the language adequate in its expressiveness and functionality.
Even more importantly, the evaluations pointed us to concrete
usability issues, which the in-team expert did not uncover.
However, we did experience problems in the design process.
Once we began implementing the language, it became more
expensive to handle domain evolution. Also, we experienced
obstacles in taking the language into production primarily
due to the perceived high costs of transitioning to MAL for
Edlund’s customers.

Based on these experiences, we have proposed a two-phase
design method that seeks to guide ADSL designers in their
innumerable syntactic and semantic design choices. An
initial low-validity exploration using pseudocode prototypes
allows the in-team expert to remain non-committal on design
questions for as long as possible. A following higher-validity
exploration seeks to ensure that the language design is
generally usable by domain experts. Conclusively, the method
seeks to incorporate the user’s perspective into the design
process while minimising the cost of conducting evaluations,
thereby avoiding unnecessary overhead. We are currently
looking into the possibility of conducting short co-design
workshops with domain experts to design quality assurance
measures for ADSLs. Future work will seek to evaluate this
method by applying it to the design of other ADSLs.

REFERENCES

[1] M. Voelter, DSL Engineering: Designing, Implementing and Using
Domain-Specific Languages. Lexington, KY: CreateSpace Independent
Publishing Platform, Jan. 2013.

[2] “ACM Workshop on Real World Domain Specific Languages
2019,” May 2021, accessed on: May 13, 2019. [Online]. Available:
https://sites.google.com/site/realworlddsl

[3] B. Flyvbjerg, “Five Misunderstandings About Case-Study Research,”
Qualitative Inquiry, vol. 12, no. 2, pp. 219–245, Apr. 2006, publisher:
SAGE Publications Inc.

[4] F. P. Brooks, “Keynote address: language design as design,” in History
of programming languages—II. New York, NY, USA: Association for
Computing Machinery, Jan. 1996, pp. 4–16.

[5] E. Dijkstra, “Programming considered as a human activity,” in Classics
in software engineering. USA: Yourdon Press, Jan. 1979, pp. 1–9.

[6] C. A. R. Hoare, “Hints on programming language design.” Stanford
University, Stanford, CA, USA, Technical Report, 1973.

[7] B. A. Myers, J. F. Pane, and A. Ko, “Natural programming languages
and environments,” Communications of the ACM, vol. 47, no. 9, pp.
47–52, Sep. 2004.

[8] J. F. Pane and B. A. Myers, “Usability Issues in the Design of Novice
Programming Systems,” School of Computer Science, Carnegie-Mellon
University, Pittsburg, Pennsylvania, Tech. Rep., Aug. 1996.

[9] L. McIver and D. Conway, “Seven Deadly Sins of Introductory Pro-
gramming Language Design,” in Proceedings of the 1996 International
Conference on Software Engineering: Education and Practice (SE:EP
’96), ser. SEEP ’96. USA: IEEE Computer Society, Jan. 1996, p. 309.

[10] D. Moody, “The “Physics” of Notations: Toward a Scientific Basis
for Constructing Visual Notations in Software Engineering,” IEEE
Transactions on Software Engineering, vol. 35, no. 6, pp. 756–779, Nov.
2009, conference Name: IEEE Transactions on Software Engineering.

[11] D. van der Linden and I. Hadar, “A Systematic Literature Review of
Applications of the Physics of Notations,” IEEE Transactions on Soft-
ware Engineering, vol. 45, no. 8, pp. 736–759, Aug. 2019, conference
Name: IEEE Transactions on Software Engineering.

[12] B. A. Myers, A. J. Ko, T. D. LaToza, and Y. Yoon, “Programmers
Are Users Too: Human-Centered Methods for Improving Programming
Tools,” Computer, vol. 49, no. 7, pp. 44–52, Jul. 2016.

[13] D. Norman, The Design of Everyday Things: Revised and Expanded
Edition, revised edition ed. New York, New York: Basic Books, Nov.
2013.

[14] A. Stefik, B. Sharif, B. A. Myers, and S. Hanenberg, “Evidence About
Programmers for Programming Language Design (Dagstuhl Seminar
18061),” Dagstuhl Reports, vol. 8, no. 2, pp. 1–25, 2018, place:
Dagstuhl, Germany Publisher: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

[15] M. Coblenz, J. Aldrich, B. A. Myers, and J. Sunshine, “Interdisciplinary
programming language design,” in Proceedings of the 2018 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, ser. Onward! 2018. Boston,
MA, USA: Association for Computing Machinery, Oct. 2018, pp. 133–
146.

83

[16] A. Stefik and S. Hanenberg, “Methodological Irregularities in
Programming-Language Research,” Computer, vol. 50, no. 8, pp. 60–63,
2017, conference Name: Computer.

[17] I. Poltronieri Rodrigues, M. de Borba Campos, and A. F. Zorzo,
“Usability Evaluation of Domain-Specific Languages: A Systematic
Literature Review,” in Human-Computer Interaction. User Interface
Design, Development and Multimodality, ser. Lecture Notes in Computer
Science, M. Kurosu, Ed. Cham: Springer International Publishing,
2017, pp. 522–534.

[18] S. Hanenberg, “Empirical, Human-Centered Evaluation of Programming
and Programming Language Constructs: Controlled Experiments,” in
Grand Timely Topics in Software Engineering, ser. Lecture Notes in
Computer Science, J. Cunha, J. P. Fernandes, R. Lämmel, J. Saraiva,
and V. Zaytsev, Eds. Cham: Springer International Publishing, 2017,
pp. 45–72.

[19] S. Kleinschmager, R. Robbes, A. Stefik, S. Hanenberg, and E. Tanter,
“Do static type systems improve the maintainability of software systems?
An empirical study,” in 2012 20th IEEE International Conference on
Program Comprehension (ICPC), Jun. 2012, pp. 153–162.

[20] A. Stefik and S. Siebert, “An Empirical Investigation into Programming
Language Syntax,” ACM Transactions on Computing Education, vol. 13,
no. 4, pp. 19:1–19:40, Nov. 2013.

[21] A.-J. Kaijanaho, “Evidence-based programming language design : a
philosophical and methodological exploration,” Jyväskylä studies in
computing, no. 222, 2015, accepted: 2015-11-17T10:33:20Z ISBN:
9789513963880 Publisher: University of Jyväskylä.

[22] A. Blackwell, M. Burnett, and S. Jones, “Champagne Prototyping:
A Research Technique for Early Evaluation of Complex End-User
Programming Systems,” in 2004 IEEE Symposium on Visual Languages
- Human Centric Computing. Rome: IEEE, 2004, pp. 47–54.

[23] J. D. Gould, J. Conti, and T. Hovanyecz, “Composing Letters with a
Simulated Listening Typewriter,” Proceedings of the Human Factors
Society Annual Meeting, vol. 25, no. 1, pp. 505–508, Oct. 1981,
publisher: SAGE Publications.

[24] T. Marter, P. Babucke, P. Lembken, and S. Hanenberg, “Lightweight pro-
gramming experiments without programmers and programs: an example
study on the effect of similarity and number of object identifiers on the
readability of source code using natural texts,” in Proceedings of the
2016 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, ser. Onward! 2016.
Amsterdam, Netherlands: Association for Computing Machinery, Oct.
2016, pp. 1–14.

[25] M. Fowler, Domain Specific Languages, 1st ed. Addison-Wesley
Professional, 2010.

[26] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages,” ACM Computing Surveys, vol. 37, no. 4,
pp. 316–344, Dec. 2005.

[27] R. Lämmel, Software Languages: Syntax, Semantics, and Metaprogram-
ming. Springer International Publishing, 2018.

[28] A. Barišić, V. Amaral, M. Goulao, and A. Aguiar, “Introducing usability
concerns early in the DSL development cycle: FlowSL experience
report,” p. 10.

[29] A. Barišić, V. Amaral, M. Goulão, and B. Barroca, “Quality in use
of domain-specific languages: a case study,” in Proceedings of the 3rd
ACM SIGPLAN workshop on Evaluation and usability of programming
languages and tools, ser. PLATEAU ’11. Portland, Oregon, USA:
Association for Computing Machinery, Oct. 2011, pp. 65–72.

[30] V. Zaytsev, “Language Design with Intent,” in 2017 ACM/IEEE 20th
International Conference on Model Driven Engineering Languages and
Systems (MODELS), Sep. 2017, pp. 45–52.

[31] J. L. C. Izquierdo and J. Cabot, “Community-driven language devel-
opment,” in 2012 4th International Workshop on Modeling in Software
Engineering (MISE), Jun. 2012, pp. 29–35, iSSN: 2156-7891.

[32] M. J. Villanueva, F. Valverde, and O. Pastor, “Involving End-Users in
the Design of a Domain-Specific Language for the Genetic Domain,”
in Information System Development, M. José Escalona, G. Aragón,
H. Linger, M. Lang, C. Barry, and C. Schneider, Eds. Cham: Springer
International Publishing, 2014, pp. 99–110.

[33] M. Coblenz, G. Kambhatla, P. Koronkevich, J. L. Wise, C. Barnaby,
J. Sunshine, J. Aldrich, and B. A. Myers, “PLIERS: A Process that
Integrates User-Centered Methods into Programming Language Design,”
arXiv:1912.04719 [cs], Aug. 2020.

[34] T. Green and M. Petre, “Usability Analysis of Visual Programming
Environments: A ’Cognitive Dimensions’ Framework,” J. Vis. Lang.
Comput., 1996.

[35] S. Clarke, “Evaluating a new programming language,” 13th Workshop
of the Psychology of Programming Interest Group, pp. 275–289, 2001.

[36] S. P. Jones, A. Blackwell, and M. Burnett, “A user-centred approach
to functions in Excel,” in Proceedings of the eighth ACM SIGPLAN
international conference on Functional programming, ser. ICFP ’03.
Uppsala, Sweden: Association for Computing Machinery, Aug. 2003,
pp. 165–176.

[37] A. Blackwell and M. Burnett, “Applying attention investment to end-user
programming,” in Proceedings IEEE 2002 Symposia on Human Centric
Computing Languages and Environments, Sep. 2002, pp. 28–30.

[38] S. Erdweg, T. van der Storm, M. Völter, M. Boersma, R. Bosman, W. R.
Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, G. D. P. Konat,
P. J. Molina, M. Palatnik, R. Pohjonen, E. Schindler, K. Schindler,
R. Solmi, V. A. Vergu, E. Visser, K. van der Vlist, G. H. Wachsmuth, and
J. van der Woning, “The State of the Art in Language Workbenches,”
in Software Language Engineering, D. Hutchison, T. Kanade, J. Kittler,
J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz,
C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar,
M. Y. Vardi, G. Weikum, M. Erwig, R. F. Paige, and E. Van Wyk, Eds.
Cham: Springer International Publishing, 2013, vol. 8225, pp. 197–217,
series Title: Lecture Notes in Computer Science.

[39] M. Voelter, B. Kolb, T. Szabó, R. Daniel, and A. van Deursen, “Lessons
learned from developing mbeddr: a case study in language engineering
with MPS,” Software & Systems Modeling, 2017.

[40] D. Ratiu, M. Voelter, and D. Pavletic, “Automated testing of DSL
implementations—experiences from building mbeddr,” Software Quality
Journal, vol. 26, no. 4, pp. 1483–1518, Dec. 2018.

[41] A. M. Şutı̂i, M. v. d. Brand, and T. Verhoeff, “Exploration of modularity
and reusability of domain-specific languages: an expression DSL in
MetaMod,” Computer Languages, Systems & Structures, vol. 51, pp.
48–70, Jan. 2018.

[42] N. Vasudevan and L. Tratt, “Comparative Study of DSL Tools,” Elec-
tronic Notes in Theoretical Computer Science, vol. 264, no. 5, pp. 103–
121, Jul. 2011.

[43] M. M. Lehman, “Programs, life cycles, and laws of software evolution,”
Proceedings of the IEEE, vol. 68, no. 9, pp. 1060–1076, Sep. 1980,
conference Name: Proceedings of the IEEE.

[44] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis,
H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. van
Wijngaarden, M. Woodger, and P. Naur, “Report on the algorithmic
language ALGOL 60,” Communications of the ACM, vol. 3, no. 5, pp.
299–314, May 1960.

[45] N. Wirth and C. A. R. Hoare, “A contribution to the development of
ALGOL,” Communications of the ACM, vol. 9, no. 6, pp. 413–432, Jun.
1966.

[46] N. Wirth, “The programming language pascal,” Acta Informatica, vol. 1,
no. 1, pp. 35–63, Mar. 1971.

[47] “Perl Compatible Regular Expressions,” accessed on: May 13, 2019.
[Online]. Available: http://www.pcre.org/

[48] C. A. R. Hoare, “Communicating sequential processes,” Communica-
tions of the ACM, vol. 21, no. 8, pp. 666–677, Aug. 1978.

[49] D. May, “Occam,” Apr. 1983.
[50] J. Armstrong, “The development of Erlang,” in Proceedings of the

second ACM SIGPLAN international conference on Functional program-
ming, ser. ICFP ’97. Amsterdam, The Netherlands: Association for
Computing Machinery, Aug. 1997, pp. 196–203.

[51] “Tyche modelling platform,” accessed on: May 13, 2019. [Online].
Available: https://www.rpc-tyche.com/Software/Modelling

[52] S. Peyton Jones, J.-M. Eber, and J. Seward, “Composing contracts: an
adventure in financial engineering (functional pearl),” ACM SIGPLAN
Notices, vol. 35, no. 9, pp. 280–292, Sep. 2000.

[53] J. Andersen, E. Elsborg, F. Henglein, J. G. Simonsen, and C. Stefansen,
“Compositional specification of commercial contracts,” International
Journal on Software Tools for Technology Transfer, vol. 8, no. 6, pp.
485–516, Oct. 2006.

[54] D. A. Ladd and J. C. Ramming, “Two Application Languages in
Software Production,” p. 9.

[55] I. Sommerville, Software Engineering, 9th ed. USA: Addison-Wesley
Publishing Company, 2010.

[56] Evans, Domain-Driven Design: Tacking Complexity In the Heart of
Software. USA: Addison-Wesley Longman Publishing Co., Inc., 2003.

84 APPENDIX A. ON DESIGNING APPLIED DSLS

[57] T. K. Landauer and J. Nielsen, “A Mathematical Model of the Finding
of Usability Problems,” INTERCHI, p. 8, 1993.

[58] K. Bruhn and A. S. Lollike, “Retrospective reserves and bonus,”
Scandinavian Actuarial Journal, pp. 1–19, Aug. 2020.

[59] D. K. Falden and A. K. Nyegaard, “Retrospective Reserves and Bonus
with Policyholder Behavior,” Risks, vol. 9, no. 1, p. 15, Jan. 2021,
number: 1 Publisher: Multidisciplinary Digital Publishing Institute.

[60] B. M. Jensen, M. D. Raffnsøe, and J. She, “Forsikrings- og pension-
ssektoren i ny kvartalsvis statistik,” 2019.

[61] K. Bodker, F. Kensing, and J. Simonsen, Participatory It Design:
Designing for Business and Workplace Realities. Cambridge, MA,
USA: MIT Press, 2004.

85

Appendix B

Co-designing DSL Quality
Assurance Measures for and with
Non-programming Experts

86

Co-designing DSL Quality Assurance Measures
for and with Non-programming Experts

Holger Stadel Borum
hstb@itu.dk

IT University of Copenhagen
Copenhagen, Denmark

Christoph Seidl
chse@itu.dk

IT University of Copenhagen
Copenhagen, Denmark

Peter Sestoft
sestoft@itu.dk

IT University of Copenhagen
Copenhagen, Denmark

Abstract
Domain-specific languages seek to provide domain guaran-
tees that eliminate many errors allowed by general-purpose
languages. Still, a domain-specific language requires addi-
tional quality assurance measures to ensure that specifica-
tions behave as intended by the users. However, some do-
mains may have specific quality assurance measures (e.g.,
proofs, experiments, or case studies) with little tradition of
using quality assurance measures customary to software en-
gineering. We investigate the possibility of accommodating
such domains by conducting a workshop with 11 prospec-
tive users of a domain-specific language named MAL for the
pension industry. The workshop emphasised the need for
supporting actuaries with new analytical tools for quality
assurance and resulted in three designs: quantity monitors
let users identify outlier behaviour, fragment debugging lets
users debug with limited evaluative power, and debugging
spreadsheets let users visualise, analyse, and remodel con-
crete calculations with an established domain tool. Based on
our experiences, we hypothesise that co-design workshops
are a viable approach for DSLs in a similar situation.

CCS Concepts: • Software and its engineering → Do-
main specific languages.

Keywords: domain-specific language, co-design

ACM Reference Format:
Holger Stadel Borum, Christoph Seidl, and Peter Sestoft. 2021. Co-
designing DSL Quality Assurance Measures for and with Non-
programming Experts. In Proceedings of the 18th ACM SIGPLAN
International Workshop on Domain-Specific Modeling (DSM ’21), Oc-
tober 18, 2021, Chicago, IL, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3486603.3486776

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
DSM ’21, October 18, 2021, Chicago, IL, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9106-1/21/10. . . $15.00
https://doi.org/10.1145/3486603.3486776

1 Introduction
Quality assurance is an important software engineering
practice that ensures that developed software behaves as
expected in different contexts. While domain-specific lan-
guages (DSLs) and models seek to eliminate many erro-
neous behaviours permissible by general-purpose languages
(GPLs), they do not eliminate the need for quality assurance.
Because user errors made in a DSL may have serious conse-
quences (e.g., when guiding financial decisions), the design
of quality assurance measures should be an integral part of
DSL design. When users do not have a background in soft-
ware engineering, it is not apparent which measures they
deem viable. Users may come from fields with quality as-
surance measures that do not align directly with traditional
software engineering practices, e.g., proofs, experiments, or
case studies. This possible discrepancy creates a need for
actively involving users in the design of quality assurance
measures to ensure that a) the measures support users in
their quality assurance and b) users will find the designed
quality assurance measures valuable and use them.

In this paper, we first discuss and investigate state-of-the-
art for co-designing DSLs (Section 2). Then we describe the
DSL named Management Action Language or MAL (Section
3), for which we want to design quality assurance measures.
The purpose of MAL is to provide customers of Edlund A/S
with a user-friendly and efficient way of specifying so-called
management actions in the projection of the asset/liability
balance of a pension company. These projections are a form
of risk management that ensures a pension company re-
mains solvent when using a management action strategy.
Therefore, it is of great importance that a MAL program
accurately models real management actions, such as how to
handle varying yields of investments on pension products
with an interest guarantee. While MAL’s prospective users
have a strong mathematical background, some have limited
programming experience, which means they come from a
field where proofs, peer discussions, and problem analysis
are important quality assurance measures. To accommodate
this background, we held a co-design workshop with 11
prospective users on the quality assurance of asset/liability
projections (Section 4). Since all workshop participants come
from customer companies of Edlund, the workshop was not
merely an experiment in co-design but an actual step in

87

DSM ’21, October 18, 2021, Chicago, IL, USA Borum, Seidl, Sestoft

the development and deployment of MAL with the corre-
sponding risk of straining Edlund’s customer relations. The
workshop sought to engage users actively in designing qual-
ity assurance measures to ensure the measures matched the
customers’ workflow. The workshop, combined with our
prior domain knowledge, resulted in the design of three
quality assurance measures. First, quantity monitors can be
used to identify unexpected or outlier behaviour for users
to examine (Section 5). Second, fragment debugging allows
users to debug MAL code without having direct access to the
entire asset/liability projection (Section 6). Third, interactive
debugging spreadsheets lets users visualise and analyse pro-
gram behaviour within a comfortable setting of spreadsheets
(Section 7). We conclude that the co-design workshop was
a viable approach for creating quality assurance measures
for MAL leading to designs tailored to the domain, and we
hypothesise that the approach is viable to overcome similar
challenges for other DSLs (Section 8).

The contributions of this paper are both an empirical co-
design workshop experience and the connected constructive
designs derived from the workshop. Concretely, our contri-
butions are:

• A presentation of MAL to be used in asset/liability
projections

• An approach to and experiences with co-designing
quality assurance measures through a user workshop
demonstrating how three concrete quality measures
were derived from the co-design workshop.

• Debugging spreadsheets as a general quality assurance
measure applicable to domains with complex mathe-
matical calculations.

2 State of the Art
We understand co-design (or collaborative design) as a de-
sign methodology where designers, implementers, and users
collaborate to create a design [9]. Co-design may be more
or less pervasive in a design process in terms of who col-
laborates, when they collaborate, and to what degree non-
designers collaborate on even footings with the designer [9].
Our work may be considered only as a one-off workshop
where users participate equally powerful as the designer, but
we do consider a single co-design workshop as being signifi-
cantly more collaborative than having none. In that sense,
this work focuses on collaborative design generation, and it
may be more suitable to label our work as co-creation [26].
Although co-design is mentioned partially as a rebranding of
participatory design [6] [26], we refrain from using this term
since it suggests a more holistic design methodology where
stakeholder analysis, vision anchoring, and vision alignment
play an essential role.

It is difficult to find papers that explicitly deal with co-
designing DSLs. In fact, we have found only a single case
discussing co-designing a DSL for community-supported ap-
pliances [24]. Unfortunately, this work focuses primarily on
the resulting design and very little on the co-design process
leading to the language.

However, there exists work on language co-design if we
broaden our view to include work that does not itself claim to
conduct co-design. Example-driven meta-model development
seeks to include domain experts generatively in the design
process by inducing meta-models from examples created
by the domain experts [29] [18] [22]. In this method, the
software engineer takes on a facilitating design role using
their meta-modelling expertise to monitor and guide the de-
sign process. With other similar methods, a meta-model and
potentially a modelling tool is created from free-form mod-
elling [21] [10]. Natural programming is a similar bottom-up
method for designing programming languages [25]. Here
a programming language design is created based on pseu-
docode solutions written by users. This method is similar
to the advice of looking at existing notations but where we
would hardly consider following this advice as conducting
co-design. Non-software product lines can be seen as a form
of co-creation late in a product development process [26],
and similarly, software product lines [4] for DSLs [32] can be
seen as a form of late-stage DSL co-creation. However, we
think that earlier user collaboration in the design process is
necessary for us to meaningfully talk about co-design. The
DSL named Collaboro [17] was created to involve communi-
ties in the design process of DSLs. Other work investigates
how to involve users non-generatively in the DSL design
process [33] or evaluates modelling tools empirically [30].
We have done similar work with MAL [8].

With regards to quantity monitors and fragment debug-
gers, the main contribution of this paper is the process of
deriving these as suitable quality assurance measures, not
the innovation of the concepts themselves. Quantity moni-
tors have been used as a quality assurance measure in many
DSLs and seem especially popular within the robotics com-
munity [14] [3]. We speculate that this popularity is because
the domain of robotics shares the characteristic with as-
set/liability projections of being challenging to define cor-
rect behaviour in. For fragment debuggers, more advanced
debuggers for distributed asynchronous systems had already
been proposed and developed by the ’90s [28]. Also, time-
travelling debuggers have extensively used a record/replay
idea to allow users to step back execution time [5].

To our best knowledge, the concept of using spreadsheets
to debug programs is novel. Although there exist many tools
helping end-users to debug and test spreadsheets [13] [1] [2],
this functionality is somewhat the opposite of what we are

88 APPENDIX B. CO-DESIGNING DSL QA MEASURES

Co-designing DSLQuality Assurance Measures for and with Non-programming Experts DSM ’21, October 18, 2021, Chicago, IL, USA

proposing. Other work explores different ways of visualis-
ing programs [31] and traces [23] [12], but we have found
no examples of using spreadsheets to do so. During our
examination of recent US patents concerning spreadsheet
implementation [7], we found no such functionality.

3 Management Action Language
Edlund is a company that creates software solutions for pen-
sion companies. MAL is designed as a part of the solvency
projection platform that actuaries use as a risk-management
tool for customer companies. A single projection consists of
two subprocedures: First, a projection step is performed by
the projection engine that transforms quantities of a company
one timestep into the future. Second, a management step is
performed that mimics the management made by the pen-
sion company. In the management step, a company can, for
example, choose how to distribute investment yields to poli-
cyholders. These two subprocedures are iteratively executed
until the projection’s endpoint. Since a single projection is
parametrised on an economic scenario, the projection plat-
form essentially performs a Monte Carlo simulation using
different economic scenarios.

While pension companies can use the same projection step,
they each have their own management step that models the
business rules of the company. Currently, these business
rules are written in a general-purpose language. The pri-
mary purpose of MAL (see Figure 1) is to afford actuaries
with an easier way to model business rules in a manner that
allows them to be executed efficiently by the projection plat-
form. This affordance primarily comes from the following:

The inheritance-based data declarations let users
model data in an object-oriented fashion and use union types
as a fine-grainedmechanism to group similar extensions. E.g.,
if a user creates the two cash flow extensions Foo and Bar,
then they may read from or update fields shared by these on
the union type {Foo|Bar}.

The expression language lets users declaratively describe
the actuarial mathematics of a projection. We observed basic
arithmetic, function application, and mappings as the pri-
mary vocabulary used by actuaries discussing management
actions.

Themodule system lets users split their computations into
units and reuse these in different projections. Furthermore,
the module system allows Edlund to maintain a standard
library of template actions that customers may modify. An
example of such a template action could be how to calculate
the solvency capital requirement of a company.

Code generation cleanly decouples application logic from
business logic. This decoupling hidesmessy details of general-
purpose solutions such as interfaces from users. Simultane-
ously, it allows Edlund to make some changes to the under-
lying software platform without users noticing.

4 Co-design Workshop
In 2019, the Danish pension industry managed assets for
200% of Denmark’s BNP [19]making it important for prospec-
tive users of MAL to accurately model business rules. Our
work with designing MAL left us with a many-faceted pic-
ture of its prospective users. Briefly, prospective users have
a strong mathematical background and use mathematical
models originating from ongoing actuarial research with sev-
eral unanswered questions. Users regularly use spreadsheets
as part of their analytical and experimental work. Many
users have limited software engineering experience and cor-
respondingly limited experience with software testing prac-
tices such as unit, regression, or property-based testing. Still,
users want to account for tiny fractions of Danish Kroner
and ensure that calculations pass so-called Martingale tests.
This picture, combined with our non-expert domain under-
standing, made it difficult for us to design quality assurance
measures. Although we could hope to adopt test practices
from software engineering in MAL, we had concerns about
whether such facilities would be suitable for the domain
and, even more importantly, whether users would appre-
ciate them. To mitigate this risk, we decided to conduct a
co-design workshop to include users directly in the design
of quality assurance measures.

4.1 Plan
We invited actuaries from customer companies to partici-
pate in a workshop on quality assurance of asset/liability
projections. The invitation purposefully did not mention
whether we targeted the current general-purpose or future
domain-specific solution to avoid participants getting hung
up on this difference. Our intention was to focus on design-
ing quality assurance measures in general and suchmeasures
could apply to both settings with different implementation
strategies. We prepared three activities progressing from the
descriptive to the normative. The movement from eliciting
what is to investigating what can be would allow participants
to engage with different levels of creativity. First, we would
ask participants to sketch and present their current approach
to quality assurance. Second, we would ask participants to
identify kinds of properties to ensure and specific properties
of projections. During this activity, we had different kinds
of properties prepared to facilitate the discussion. Finally,
we would ask participants for approaches to ensure these
properties. During this activity, we were prepared to sketch
different traditional approaches to testing to facilitate the

89

DSM ’21, October 18, 2021, Chicago, IL, USA Borum, Seidl, Sestoft

𝑡 ::= Tag
𝜏 ::= Type
𝑥 ::= Identifier

𝑣 ::= 𝑛
| 𝑓
| 𝑠

𝑒 ::= 𝑣 | 𝑥
| 𝑓 (𝑒, . . .)
| 𝑖 𝑓 (𝑒, 𝑒, 𝑒)
| 𝑒.𝑥
| 𝑒 : {𝑡, . . .}
| map 𝑥 in 𝑒 with { 𝑒 }
| match 𝑥 with p 𝑡 𝑥 -> 𝑒 p . . .
| 𝑒@𝑥

Integer
Float
String

Function application
Conditional
Projection
Tag filter
Map
Tag match
Map + Projection

𝑠 ::= 𝑒 <| 𝑒 <| 𝑒
| update 𝑥 in 𝑒 with{ 𝑠 }
| let 𝑥 = 𝑒
| 𝑒.𝑥 = 𝑒
| do 𝑥 (𝑒, . . .)
| 𝑠 . . .

𝑜 ::= CashFlow | Reserve

𝑑 ::= action 𝑥 (𝑥 : 𝜏, . . .)with{𝑠}
| fun 𝑥 (𝑥 : 𝜏, . . .) = 𝑒
| data 𝑡 < extends 𝑡 >
{𝑥 : 𝜏 <, output as 𝑜 >, . . .}
| import 𝑥

𝑚 ::= module 𝑥 𝑑 . . .
| main 𝑥 𝑑 . . .

Reserve transfer
Update iteration
Let binding
Assignment
Procedure call
Block

Action
Function
Data

Import

Module
Main module

Figure 1. A subset of MAL’s grammar containing the most important language constructs. Legend: ’. . .’ means repeated
productions. ’<’ and ’>’ delimit an optional production.

discussion. Participants were not asked to prepare anything
in advance and were asked to use whiteboard drawings as
a means of communication to welcome off-the-top-of-the-
head ideas and discussions.

4.2 Execution
Eleven people working with asset/liability projections par-
ticipated in the workshop, which was held virtually due to
COVID-19 restrictions. An online whiteboard application
was used as the interactive medium. Unfortunately, multi-
ple people faced technical issues using the whiteboard (e.g.,
firewall setups and cross-organisational access permissions).
These restrictions made conversation and activities less fluid,
but, luckily, participants were willing to put in the effort to
overcome these challenges. We refrained from recording the
session as to not impede participants’ willingness to partici-
pate in the open discussion. Therefore, the quotations in the
following text are not ad verbum but as close as possible.

Existing Quality Assurance Measures. All companies re-
lied on external calculations (often performed in a spread-
sheet) to check that implemented management actions be-
haved as intended. A common approach was to start with
an elementary external scenario which was incrementally
made more advanced and realistic by incorporating more
and more advanced data and management actions. This ap-
proach was reported to be well-suited for identifying errors
such as forgetting to implement parts of a calculation or
missing a negation. At the time, companies made limited use
of unit and regression tests, but this usage could be increased
over time. It was reported that errors were rarely discovered
using these kinds of tests. Finally, many errors occurred in

the interface with the projection engine, and these errors
were difficult to debug. During the discussion, some partic-
ipants were hesitant to embrace automatic testing, as one
said: “I am afraid of relying only on automatic tests because
manual tests provide new insights [to the understanding of
management actions]”. This difference between us thinking
of quality assurance in terms of software passing a good
test suite and participants thinking of it as ensuring a deep
understanding of management actions was pervasive for the
entire workshop.

From Testing to Analyses. Participants struggled when
asked to try to identify types of properties or projection-
specific properties, such as the total reserve must equal the
sum of all discounted future cash flows. Even when con-
cretely asked if there were any guarantees to be made be-
tween two versions of external spreadsheet calculations, par-
ticipants could not find any. One participant said: “I would
love to list different properties, but the calculations are so
complex that I am simply unable to do so”. This development
was, put mildly, problematic for the remaining workshop
that assumed we could at least identify some properties or
property types. After some thought, we chose to shift focus
from identifying properties to the more general question of
“how do you think we can improve existing quality assur-
ance?” Although this question was not originally planned,
it progressed the workshop and led to a thematic shift in
the workshop, moving from various testing approaches to
analytical tools.

Participants all seemed to agree that they could use better
tools to understand management actions. They did not need

90 APPENDIX B. CO-DESIGNING DSL QA MEASURES

Co-designing DSLQuality Assurance Measures for and with Non-programming Experts DSM ’21, October 18, 2021, Chicago, IL, USA

improved support for testing but needed more support to un-
derstand specified models and calculations. Three concrete
qualitative measures appeared as a result of this discussion.
First, one participant wanted to identify and examine outlier
behaviour by “for example, looking for values that diverge
from the [Monte Carlo] average by, say, more than three
standard deviations”. Such behaviour could be benign but
interesting to examine more closely, especially since such
outliers could significantly impact the average. This discus-
sion led to the design of quantity monitors (Section 5). Second,
participants sought improved facilities for live debugging
since their current setup is hindered by limited access to the
projection engine. This wish led to further work with frag-
ment debugging (Section 6). Third, based on the discussion,
we proposed that it could be possible to export calculations
from a DSL or GPL program to a spreadsheet for further
investigation. Participants showed interest in such function-
ality, even when discussed as a relatively vague concept.
These discussions led to the design of debugging spreadsheets
(Section 7).

5 Quantity Monitor
From the workshop, we learned that while domain experts
have an in-depth understanding of their domain, they find it
difficult to state precise properties about their management
actions when prompted. This absence of precise, interim
properties makes it difficult to test solutions and impossible
to perform conventional property-based testing [11]. How-
ever, domain experts still have an intuition of how their
domain behaves, which they want to use to monitor the exe-
cution of a program. A quantity monitor lets domain experts
express this intuition as Boolean predicates that can iden-
tify scenarios where the domain behaves counter-intuitively.
Such behaviour may either be caused by a modelling error
or a benign misunderstanding of the domain. In both cases,
the behaviour warrants further examination. For quantities
approximated using a Monte Carlo simulation, it is possible
to leverage the simulation to look for outlier behaviour in
concrete Monte Carlo runs. By assuming that an observation
close to the observed average is either correct or benign, we
may look for outlier observations far from the average to
examine. We refer to such observations as crosscutting since
they crosscut simulations.

5.1 Specification and Report
In MAL, a quantity monitor could be specified with a loop-
like notation, as seen in Figure 2. The monitor-construct
consists of a list of Boolean expressions that specifies the
monitored properties. The example in Figure 2 states that 1)
the reserve of a policy remains non-negative, 2) a policy al-
ways belong to exactly one interest group, and 3) the reserve
of a policy does not exceed five standard deviations above
the Monte Carlo average of the policy’s reserve. While the

monitor p in Policies
{

0 <= p.Reserve
count(p.Groups:Interest) = 1
p.Reserve < MC.avg(p.Reserve)

+ 5 * MC.sd(p.Reserve)
}

Figure 2. A policy monitor specified in MAL.

first two properties are reminiscent of classical assert state-
ments and could be implemented as such, the third property
introduces many complications since it requires property
checking across multiple Monte Carlo simulations. We in-
tentionally designed MAL to encapsulate a single Monte
Carlo simulation and thereby disallowing one simulation
from depending on others. However, if users are allowed
to monitor only single runs in isolation and the aggregated
result, it is possible that errors may hide in the aggregation.
Therefore, users are allowed to specify crosscutting proper-
ties with the sampling consequences discussed in Section 5.2.

Quantity monitors may be used to generate a monitor
report that lists instances where properties do not hold dur-
ing a projection. A domain expert may both use a monitor
report to identify scenarios that need to be examined and as
a testament to the quality of their management actions. For
this latter purpose, a domain expert may find it acceptable
that a property does not always hold and find it valuable to
document how often the property holds.

5.2 Monitoring Strategies
A quantity monitor comes with a trade-off between its pre-
cision and its performance cost. The cost of monitoring is
especially significant for crosscutting properties. For these
properties, a substantial amount of data has to be stored
during execution to compare the individual value with its ag-
gregate. Managing this kind of data is especially cumbersome
for more expensive simulations performed in a distributed
setup. Here we describe four monitoring strategies with their
respective pros and cons.

Total monitoring checks all updates made to monitored
quantities. This strategy guarantees to discover if a property
does not hold at some time during a specific projection. How-
ever, the strategy is costly since it requires a lot of additional
program evaluation and stored data for simulation cutting
properties.

Result monitoring checks that properties hold at the be-
ginning and at the end of a projection. This strategy provides
no guarantees during execution and could almost be imple-
mented as pre and post-processing by the users themselves.

91

DSM ’21, October 18, 2021, Chicago, IL, USA Borum, Seidl, Sestoft

However, the strategy is computationally cheap since it al-
most requires no extra data nor evaluation.

Random, heuristic, and explicit monitoring all seek to
strike a balance between the guarantees provided by the
monitor and the cost of doing so. Random monitoring sam-
ples at random points during execution. Heuristic monitoring
samples in accordance to some metric, such as at least 50%
percentage of values have changed since the last sample.
Explicit monitoring lets users define when to monitor with
explicit monitor statements.

6 Fragment Debugging
After a quantity monitor has identified suspicious behaviour
to investigate, the user needs tools for analysing the be-
haviour. At the workshop, we discussed classical live debug-
ging and debugging spreadsheets (Section 7) as quality as-
surance means to inspect and analyse worrisome behaviour.
While live, step-by-step debugging functionality is available
in most development environments, such functionality may
be limited for a DSL that expresses only program fragments.
Users may have evaluative powers to execute only DSL frag-
ments, with the remaining execution being unavailable due
to IP protection, cost of maintenance, security concerns, or
other worries regarding a customer relationship. This means
that execution may either take place locally on a users’ ma-
chine or remotely on a server, possibly in the cloud. To remain
general, we say that some execution may be performed by an
execution engine that corresponds to the projection engine
for MAL. We identify five different approaches to step-by-
step fragment debugging:

Local debugging and remote debugging correspond to a
traditional debugging where all evaluation is executed by a
single machine (a,b in Table 1). For our purposes, the local
setup is uninteresting since it requires users to have full eval-
uative powers. In contrast, the full remote setup is feasible
but requires that the remote setup is implemented with such
functionality in mind as it requires the setup to communicate
following a specified debug protocol.

Live distributed debugging has an execution split between
the execution engine and the fragment debugger (c in Table
1). With this approach, the execution engine calls the debug-
ger whenever it requires a DSL fragment to be executed. This
approach allows users to make live code and value changes
during debug execution. However, an execution engine may
not have been implemented with this functionality in mind,
and it may therefore not be able to defer execution to a re-
mote environment when required.

Prerecorded debugging starts with a normal remote pro-
gram execution where the execution engine is responsible

Table 1. Approaches to DSL fragment debugging showing
where fragments (F) and execution engine (E) is executed.

a b c d,e
Local F,E F F
Remote F,E E F,E

for evaluating DSL fragments (d in Table 1). Whenever a DSL
fragment is evaluated, the execution engine records the state
relevant for this evaluation. After execution, these recorded
states may be used by the user’s debugger to simulate the ex-
ecution engine. In this simulation, the DSL fragments may be
reevaluated, allowing the user to experiment with changing
values. However, these changes will not affect the prere-
corded execution. There are two other downsides to this
approach. First, the engine must be able to record relevant
states, and the additional data may slow down execution.
Second, the user will have to wait for an entire program
execution before being performing any debugging.

Fast forward debugging is essentially the same as prere-
corded debugging, where a new recording is made to handle
live code and value changes (e in Table 1). Although this ap-
proach provides users with greater flexibility, the flexibility
comes with a performance cost. Also, the evaluation engine
may have to be significantly altered to be able to either han-
dle changes occurring midway during executions or starting
midway execution. If the latter is possible, then it seems like
it should be possible to support live distributed debugging.

7 Debugging Spreadsheets
One conclusion of our design workshop is that Danish ac-
tuaries profoundly and happily use spreadsheets for mod-
elling, analysis, and calculations. Spreadsheet applications
shine in their ability to visualise concrete calculations and
interactively recalculating them. There are several features
that seek to introduce abstractions to spreadsheets, such as
sheet-defined functions [20] [27], anonymous functions [16],
macros, and external scripts. However, these abstractions
are most suitable to be used as part of concrete calculations
and not as a mechanism to specify general programs. In this
section, we will show how spreadsheets can be used to de-
bug concrete MAL calculations. We call such a spreadsheet a
debugging spreadsheet. We first show an example demonstrat-
ing how a debugging spreadsheet can be derived from an
execution of a MAL program and then move on to presenting
a debugging-spreadsheet semantics for MAL. Although the
debugging-spreadsheet semantics is presented for MAL, it
should be evident that a similar approach is possible for other
languages and seems especially appropriate for functional
and arithmetic heavy languages.

92 APPENDIX B. CO-DESIGNING DSL QA MEASURES

Co-designing DSLQuality Assurance Measures for and with Non-programming Experts DSM ’21, October 18, 2021, Chicago, IL, USA

update policy in Policies
{

let baseFactor = pow(1 + Global.Param.BaseFee, Projection.PeriodLength) - 1
policy.Fee = baseFactor * policy.TotalReserve

}

Figure 3. A MAL snippet that calculates a fee of all policies.

Table 2. A formula view of a part of the corresponding debugging spreadsheet of the MAL snippet in Figure 3. The loop is
unrolled such that the iteration for Policy 1 starts in A1 and the iteration for Policy 2 starts in E1.

A B C D E
1 Policy 1 Policy 2
2 Global.Param.BaseFee Projection.PeriodLength
3 let baseFactor = =POWER(1+C3,D3)-1 0.02 1.3 ...
4 policy.TotalReserve
5 policy.Fee = =B3*C5 5234.23 ...

7.1 Example
Imagine a scenario where an actuary observes that there is
an erroneous fee of some policy (see Figure 3). If the actu-
ary does not immediately find an error in the specification,
then they must observe all values used in the calculation
to identify the problem. Table 2 shows a debugging spread-
sheet of an execution of the example program that allows
users to investigate the error with an established domain
tool. Note that the values corresponding to baseFactor and
policy.Fee are calculated by the spreadsheet, which means
it is possible for the user to further analyse the calculations.

7.2 Design Goals
The derivation of a debugging spreadsheet from a MAL exe-
cution should maximise:

1. Recognisability, i.e., the degree to which users can
recognise their original computations.

2. Completeness, i.e., the degree to which MAL programs
can be translated to a spreadsheet.

3. Consistency, i.e., the degree to which a user edit in a
debugging spreadsheet is equivalent to an edit in the
corresponding MAL program. Conversely, an inconsis-
tent edit does not have an equivalent MAL edit.

As we will see, these parameters are not independent, at
least not from a practical point of implementation. The main
challenge is that as the completeness of a solution increases,
it becomes more difficult to ensure consistency and to find a
recognisable layout.

The layout of a debugging spreadsheet is a good start-
ing point for our discussion and a key concern for recog-
nizability. We use the design concept of mapping by letting
a MAL-program line roughly correspond to a spreadsheet

row with calculations extending from left to right. As a con-
sequence, we unroll loops horizontally, as seen in Table 2.
Such unrolling introduces the possibility of inconsistencies
by having a copy of a formula for each unrolled iteration.
However, such possible formula inconsistencies are to be
expected by seasoned spreadsheet users.

Composite andmutable data (objects) can be represented
in three ways. First, all data objects can be placed on a sep-
arate sheet and referenced as needed. When an object is
updated, a new data entry is made on the sheet with new
references pointing to this updated entry. Second, the spread-
sheet can be augmented with both composite and mutable
values making it possible to accurately represent data objects.
Third, it is possible to observe whenever a value is read and
later updated. Therefore, values can be placed directly in the
debugging spreadsheet the first time they are used and when
they are subsequently updated. We use the third approach
since we believe the first approach would lower recognis-
ability, and the second requires a non-standard spreadsheet
implementation and may be exotic to even seasoned spread-
sheet users.

Function applications can be represented by either inlin-
ing the function body or mimicking the function application
in the spreadsheet. The inlining strategy is possible since
concrete executions always terminate. Although the inline
strategy introduces the same kind of possible inconsistencies
as loop unrolling, it makes it possible to debug the function
in the spreadsheet. Alternatively, there are multiple ways to
mimic a MAL function in the spreadsheet. First, some nu-
meric functions such as + and max can use their spreadsheet
counterpart. Second, some user functions can be recreated
as a spreadsheet function, as an anonymous function, or in
an external scripting language. Third, as a last resort, MAL

93

DSM ’21, October 18, 2021, Chicago, IL, USA Borum, Seidl, Sestoft

E⟦E⟧ : env → cells[,]
E⟦n⟧(Γ) = [] +𝑣 NumberCell n

E⟦x⟧(Γ) =
{
[] +𝑣 CellRef c if Γ(𝑥) = c

MAL(x) if 𝑥 ∉ 𝑑𝑜𝑚(Γ)

E⟦e1.x⟧(Γ) = MAL(e1.x)

E⟦f(e1, . . . , e𝑛)⟧(Γ) ={
[] +𝑣 f′(e′1, . . . , e′𝑛) +ℎ 𝑐1 +ℎ ... +ℎ 𝑐𝑛 if 𝑠𝑠 (f) = f′

𝑀𝐴𝐿(f(e1, . . . , e𝑛)) +ℎ 𝑐1 +ℎ ... +ℎ 𝑐𝑛 if f ∉ 𝑑𝑜𝑚(𝑠𝑠)

where 𝑐1 = E⟦e1⟧(Γ)
...

𝑐𝑛 = E⟦e𝑛⟧(Γ)

S⟦S⟧ : env → env ∗ cells[,]
S⟦let x = e⟧(Γ) =

let 𝑐𝑠 = E⟦e⟧(Γ)
Γ [x ↦→ 𝑐𝑠 [1, 0]], [] +𝑣 TextCell "let x =" +ℎ 𝑐𝑠

S⟦e1 .x = e2⟧(Γ) =
let 𝑐𝑠 = E⟦e2⟧(Γ)
Γ, [] +𝑣 TextCell "e1.x =" +ℎ 𝑐𝑠

S⟦s1 . . . s𝑛⟧(Γ) =
let Γ1, 𝑐𝑠1 = S⟦s1⟧(Γ)
...

let Γ𝑛, 𝑐𝑠𝑛 = S⟦s𝑛⟧(Γ𝑛−1)
Γ𝑛, 𝑐𝑠1 +𝑣 ... +𝑣 𝑐𝑠𝑛

S⟦update x in e with s1 end⟧(Γ) =
let [v1, . . . , v𝑛] = E𝑀𝐴𝐿⟦e⟧
let Γ1, 𝑐𝑠1 = S⟦s1⟧(Γ)
let 𝑐𝑠 ′1 = v1 as string +𝑣 𝑐𝑠1
...

let Γ𝑛, 𝑐𝑠𝑛 = S⟦s1⟧(Γ)
let 𝑐𝑠 ′𝑛 = v1 as string +𝑣 𝑐𝑠𝑛
let Γ, 𝑐𝑠 ′1 +ℎ . . . +ℎ 𝑐𝑠 ′𝑛

Figure 4. Semantics for debugging spreadsheets for a subset
of MAL. For conciseness, the semantics does not contain
expression inlining and caches for non-bound variables and
data objects.

could evaluate the function application and include only the
result in the spreadsheet, even though this approach intro-
duces possible inconsistencies. To keep things simple, we use
the following prioritised strategy: 1) look for a spreadsheet
counterpart and 2) let MAL handle the evaluation.

7.3 Semantics of Debugging Spreadsheets
We present a semantics for debugging spreadsheet for a sub-
set of MAL’s expressions and statements in Figure 4. While
users will need a way of specifying what part of an exe-
cution they are interested in debugging, we will assume
some appropriate mechanism (e.g., statements, command-
line arguments, or breakpoint conditions) exists externally
to the described semantics. A spreadsheet cell, c ∈ cell,
and spreadsheet expressions, e𝑠𝑠 ∈ E𝑠𝑠 , can be understood
intuitively and are similar towhat is found in Spreadsheets im-
plementation technology [27]. We use [] to denote the empty
cell, which is used only for the purpose of layout. A block of
cells, cs ∈ cell[,], spans a rectangle. We consider a single
cell as a singleton block of cells. A block of cells may be row-
column indexed, e.g., cs[1,0]. Two blocks may be composed
either horizontally or vertically with the left-associative op-
erators +ℎ and +𝑣 , respectively, with blocks aligned at the
top and left, respectively. We define the function label that
creates a cell block that consists of an expression and a label
above it.

label : Ess ∗ string → cell[,]
label(ess, l) = TextCell l +v Cell e𝑠𝑠

We allow ourselves to appeal to the actual MAL evaluation
of expressions with the oracle function E𝑀𝐴𝐿⟦e⟧ : E → E𝑠𝑠
that takes a MAL expression and returns a spreadsheet value
representing the evaluated expression. We assume that an
evaluation engine exists thatmaintains relevant context. This
trick allows us to present the debugging spreadsheet seman-
tics without also having to present MAL’s semantics. We
wrap E𝑀𝐴𝐿⟦𝑒⟧ in the function MAL that labels the resulting
value with the original expression.
MAL : E → cell[,]
MAL(e) = label(EMAL⟦e⟧, e as string)
We use the environment Γ ∈ env to keep track of where local
variables are placed in cells. Here env is of type string →
cell. The function E⟦e⟧(Γ) takes the expression e in the
environment Γ returns a block of cells with the result expres-
sion at the leftmost and second topmost cell, i.e., at index 1,0.
Likewise, the function S⟦s⟧(Γ) takes the expression s in the
environment Γ and returns a block of cells and an updated
environment.

8 Lessons Learned
When reflecting on what we learned from the workshop,
we move from the perspective of MAL’s design to that of

94 APPENDIX B. CO-DESIGNING DSL QA MEASURES

Co-designing DSLQuality Assurance Measures for and with Non-programming Experts DSM ’21, October 18, 2021, Chicago, IL, USA

DSL co-design in general and then discuss potential prob-
lems with transferring our experiences to other situations
by discussing internal and external threats to validity. We
take the methodological standpoint that an in-depth case
study does provide grounds for generalisations [15]. This
standpoint is the reason why we need to discuss the specifics
of our workshop since it lets other practitioners thoroughly
compare their design situation to ours and see whether our
lessons learned are applicable to them.

From the perspective of the design of MAL, the work-
shop broadened our view of what quality assurance is in
actuarial practices to also include analysis. Therefore, an-
alytical tools are important for an in-depth understanding
of the complicated mathematics modelled by management
actions. If we are to support users in their work activities,
we should both create tools that allow for strict test require-
ments to specific calculations and tools for analysing specific
behaviour. The workshop led us to three concrete quality as-
surance measures supporting this workflow which we think
will greatly improve MAL. Fragment debugging was already
partly implemented, but the workshop emphasised the need
to improve the technical solution both of the domain-specific
and the general-purpose solution. In addition, wewere happy
to hear that users during the workshop pointed to problems
that MAL in itself seeks to solve. MAL both seeks to improve
program understandability as requested by users and elim-
inate the need for users to worry about the projection engine.

From the perspective of DSL co-design, it is possible to
actively engage non-programming experts in the design of
quality assurance. Experts may have another perspective on
quality assurance, but if everyone is flexible in their defini-
tions, discussion can be fruitful. These kinds of differences
can make it challenging to prepare a precise plan for the
workshop. Even if fallback plans are prepared, the workshop
facilitator should be open to changes if the workshop activi-
ties reveal such a need. Still, we believe it is important for the
facilitator to structure the workshop and prepare discussion
inputs since workshop participants cannot be expected to
generate designs on their own. We believe that the design of
debugging spreadsheets can be used to debug other DSLs in
similar domains.

For internal threats to validity, it is possible that other
processes could have led us to change our perspective on
quality assurance in MAL with similar quality assurance
measures. While it is difficult to mitigate such a threat, we
note that our prior work with designing MAL did not lead
to such a shift in perspective. Also, we had a selection bias
in workshop participants since all participants volunteered
to participate, which means they may not represent the gen-
eral domain expert who may be more reluctant to engage in
workshop activities. However, we find it to be a reasonable

necessity that all participants should willingly participate
and engage in a workshop for it to be successful.

For external threats to validity, we could have benefited
from having experts from a mathematical domain with a
vocabulary somewhat close to that of software engineer-
ing, meaning our experience are not transferable to non-
mathematical domains. Second, one could fear that users
from different companies were unwilling to share potential
business secrets. Such fear did not seem to limit our partici-
pants. We primarily attribute this willingness to participants
sharing an interest in improving the projection platform
and to a high level of mutual trust between Danish actuar-
ies. Third, one could fear that the design workshop could
strain customer relations and become an arena for contract
negotiations.

9 Conclusion
In this paper, we have investigated the possibility of using
co-design workshops to design DSL quality assurance mea-
sures with non-programming experts. We have done so to
mitigate the risk of designing traditional software engineer-
ing quality assurance measures that are only partly usable in
the domain. We first gave a short presentation of how MAL
can be used in asset/liability projections. Then we described
our workshop plan and experiences with executing the plan
with prospective users of MAL. One result was that actuar-
ies, and likely other non-programming experts, care deeply
about quality assurance and can participate generatively
in co-design workshops. Another result of the workshop
was that our focus shifted from testing tools to analytical
tools as quality assurance measures. We consider this shift
in itself as a sign of the workshop being productive for the
design project. We believe that our approach to co-designing
quality assurance may be used by others facing the similar
challenge of designing measures for non-programming ex-
perts. In addition, we have shown how the workshop led
to three concrete quality assurance measures. We believe
that our findings regarding quality assurance can influence
the design of further DSLs and, especially debugging spread-
sheets can be applied to other domains with heavy usage of
spreadsheet calculations.

Acknowledgments
We thank Innovation Fund Denmark (7076-00029B), Edlund,
and their customers for their participation.

References
[1] Robin Abraham and Martin Erwig. 2007. UCheck: A spreadsheet type

checker for end users. Journal of Visual Languages & Computing 18, 1
(Feb. 2007), 71–95. https://doi.org/10.1016/j.jvlc.2006.06.001

[2] Rui Abreu, André Riboira, and Franz Wotawa. 2012. Debugging
Spreadsheets: A CSP-based Approach. In 2012 IEEE 23rd International

95

DSM ’21, October 18, 2021, Chicago, IL, USA Borum, Seidl, Sestoft

Symposium on Software Reliability Engineering Workshops. 159–164.
https://doi.org/10.1109/ISSREW.2012.31

[3] Erwin Aertbeliën and Joris De Schutter. 2014. eTaSL/eTC: A constraint-
based task specification language and robot controller using expression
graphs. In 2014 IEEE/RSJ International Conference on Intelligent Robots
and Systems. 1540–1546. https://doi.org/10.1109/IROS.2014.6942760
ISSN: 2153-0866.

[4] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013.
Feature-Oriented Software Product Lines. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-37521-7.

[5] Earl T. Barr and Mark Marron. 2014. Tardis: affordable time-travel
debugging in managed runtimes. ACM SIGPLAN Notices 49, 10 (Oct.
2014), 67–82. https://doi.org/10.1145/2660193.2660209

[6] Kerl Bodker, Finn Kensing, and Jesper Simonsen. 2004. Participatory
It Design: Designing for Business and Workplace Realities. MIT Press,
Cambridge, MA, USA. https://doi.org/10.1109/TPC.2005.853942.

[7] Holger Stadel Borum, Malthe Ettrup Kirkbro, and Peter Sestoft. 2018.
Spreadsheet Patents. Technical Report TR-2018-200.

[8] Holger Stadel Borum, Henning Niss, and Peter Sestoft. 2021. On
Designing Applied DSLs for Non-programming Experts in Evolving
Domains. In Proceedings of the 24th ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems (MODELS ’21).
Association for Computing Machinery, Virtual Event, Fukuoka. (To
be published).

[9] Ingrid Burkett. 2012. An introduction to co-design. (2012).
[10] Hyun Cho, Jeff Gray, and Eugene Syriani. 2012. Creating visual

Domain-Specific Modeling Languages from end-user demonstration.
In 2012 4th International Workshop on Modeling in Software Engineer-
ing (MISE). 22–28. https://doi.org/10.1109/MISE.2012.6226010 ISSN:
2156-7891.

[11] Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight
tool for random testing of Haskell programs. In Proceedings of the fifth
ACM SIGPLAN international conference on Functional programming
(ICFP ’00). Association for Computing Machinery, New York, NY, USA,
268–279. https://doi.org/10.1145/351240.351266

[12] Bas Cornelissen, Andy Zaidman, Arie van Deursen, and Bart van
Rompaey. 2009. Trace visualization for program comprehension: A
controlled experiment. In 2009 IEEE 17th International Conference on
Program Comprehension. 100–109. https://doi.org/10.1109/ICPC.2009.
5090033 ISSN: 1092-8138.

[13] J. Steve Davis. 1996. Tools for spreadsheet auditing. International
Journal of Human-Computer Studies 45, 4 (Oct. 1996), 429–442. https:
//doi.org/10.1006/ijhc.1996.0061

[14] Michael De Rosa, Jason Campbell, Padmanabhan Pillai, Seth Goldstein,
Peter Lee, and ToddMowry. 2007. DistributedWatchpoints: Debugging
Large Multi-Robot Systems. In Proceedings 2007 IEEE International
Conference on Robotics and Automation. IEEE, Rome, Italy, 3723–3729.
https://doi.org/10.1109/ROBOT.2007.364049 ISSN: 1050-4729.

[15] Bent Flyvbjerg. 2006. Five Misunderstandings About Case-Study
Research. Qualitative Inquiry 12, 2 (April 2006), 219–245. https:
//doi.org/10.1177/1077800405284363 Publisher: SAGE Publications Inc.

[16] Andy Gordon and Simon Peyton Jones. 2021. Enriching
Excel with higher-order functional programming. https:
//www.microsoft.com/en-us/research/blog/lambda-the-ultimatae-
excel-worksheet-function/

[17] Javier Luis Cánovas Izquierdo and Jordi Cabot. 2012. Community-
driven language development. In 2012 4th International Workshop on
Modeling in Software Engineering (MISE). 29–35. https://doi.org/10.
1109/MISE.2012.6226011 ISSN: 2156-7891.

[18] Javier Luis Cánovas Izquierdo, Jordi Cabot, Jesús J. López-Fernández,
Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara. 2013. Engag-
ing End-Users in the Collaborative Development of Domain-Specific
Modelling Languages. In Cooperative Design, Visualization, and Engi-
neering (Lecture Notes in Computer Science), Yuhua Luo (Ed.). Springer,

Berlin, Heidelberg, 101–110. https://doi.org/10.1007/978-3-642-40840-
3_16

[19] Birthe Merethe Jensen, Martin Dencker Raffnsøe, and Jingyu She. 2019.
Forsikrings- og pensionssektoren i ny kvartalsvis statistik.

[20] Simon Peyton Jones, Alan Blackwell, and Margaret Burnett. 2003. A
user-centred approach to functions in Excel. In Proceedings of the eighth
ACM SIGPLAN international conference on Functional programming
(ICFP ’03). Association for Computing Machinery, Uppsala, Sweden,
165–176. https://doi.org/10.1145/944705.944721

[21] Marco Kuhrmann. 2011. User Assistance during Domain-specific
Language Design. FlexiTools Workshop (2011).

[22] Jesús J. López-Fernández, Jesús Sánchez Cuadrado, Esther Guerra,
and Juan de Lara. 2015. Example-driven meta-model development.
Software & Systems Modeling 14, 4 (Oct. 2015), 1323–1347. https:
//doi.org/10.1007/s10270-013-0392-y

[23] A.D. Malony, D.H. Hammerslag, and D.J. Jablonowski. 1991. Traceview:
a trace visualization tool. IEEE Software 8, 5 (Sept. 1991), 19–28. https:
//doi.org/10.1109/52.84213 Conference Name: IEEE Software.

[24] Silvia Mirri, Marco Roccetti, and Paola Salomoni. 2018. Collaborative
design of software applications: the role of users. Human-centric
Computing and Information Sciences 8, 1 (March 2018), 6. https://doi.
org/10.1186/s13673-018-0129-6

[25] Brad A. Myers, John F. Pane, and Andy Ko. 2004. Natural programming
languages and environments. Commun. ACM 47, 9 (Sept. 2004), 47–52.
https://doi.org/10.1145/1015864.1015888

[26] Elizabeth B.-N. Sanders and Pieter Jan Stappers. 2008. Co-creation
and the new landscapes of design. CoDesign 4, 1 (March 2008), 5–18.
https://doi.org/10.1080/15710880701875068

[27] Peter Sestoft. 2014. Spreadsheet Implementation Technology:
Basics and Extensions. MIT Press, Cambridge, MA, USA.
https://doi.org/10.7551/mitpress/8647.001.0001.

[28] J. Sienkiewicz and T. Radhakrishnan. 1996. DDB: a distributed de-
bugger based on replay. In Proceedings of 1996 IEEE Second Interna-
tional Conference on Algorithms and Architectures for Parallel Processing,
ICA/sup 3/PP ’96. 487–494. https://doi.org/10.1109/ICAPP.1996.562913

[29] Jesús Sánchez-Cuadrado, Juan de Lara, and Esther Guerra. 2012.
Bottom-UpMeta-Modelling: An Interactive Approach. InModel Driven
Engineering Languages and Systems (Lecture Notes in Computer Science),
Robert B. France, Jürgen Kazmeier, Ruth Breu, and Colin Atkinson
(Eds.). Springer, Berlin, Heidelberg, 3–19. https://doi.org/10.1007/978-
3-642-33666-9_2

[30] Daniel Strüber, Anthony Anjorin, and Thorsten Berger. 2020. Vari-
ability representations in class models: an empirical assessment. In
Proceedings of the 23rd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems (MODELS ’20). Associ-
ation for Computing Machinery, Virtual Event, Canada, 240–251.
https://doi.org/10.1145/3365438.3410935

[31] T. Systa, Ping Yu, and H. Muller. 2000. Analyzing Java software by
combining metrics and program visualization. In Proceedings of the
Fourth European Conference on Software Maintenance and Reengineer-
ing. 199–208. https://doi.org/10.1109/CSMR.2000.827328

[32] Edoardo Vacchi, Walter Cazzola, Suresh Pillay, and Benoît Combemale.
2013. Variability Support in Domain-Specific Language Development.
In Software Language Engineering (Lecture Notes in Computer Science),
Martin Erwig, Richard F. Paige, and Eric Van Wyk (Eds.). Springer
International Publishing, Cham, 76–95. https://doi.org/10.1007/978-
3-319-02654-1_5

[33] Maria Jose Villanueva, Francisco Valverde, and Oscar Pastor. 2014.
Involving End-Users in the Design of a Domain-Specific Language
for the Genetic Domain. In Information System Development, María
José Escalona, Gustavo Aragón, Henry Linger, Michael Lang, Chris
Barry, and Christoph Schneider (Eds.). Springer International Publish-
ing, Cham, 99–110. https://doi.org/10.1007/978-3-319-07215-9_8

96 APPENDIX B. CO-DESIGNING DSL QA MEASURES

Appendix C

Transforming Domain Models to
Efficient C# for the Pension
Industry

97

Transforming Domain Models to Efficient C# for the Danish Pension Industry

HOLGER STADEL BORUM, IT University of Copenhagen, Denmark

MORTEN TYCHSEN CLAUSEN, IT University of Copenhagen, Denmark

Danish insurance and pension companies are required by financial regulations to report certain financial quantities to prove that
they are solvent and managed responsibly. Parts of these quantities are computed the same way for all companies, whereas so-called
management actions, describing, e.g., surplus sharing, vary between companies. Hence it is desirable to have a flexible calculation
platform that allows actuaries to easily create company-specific models, which are also computationally efficient. In this paper, we
present our work with implementing a code generator for a DSL called the Management Action Language (MAL) as a form of variability
management. While one of the goals of MAL is to generate efficient code from an actuary’s specification, it is non-trivial how to
produce such code. We identify four reoccurring patterns in the models created by actuaries as subjects to optimisations. We describe
our process for implementing a code-generator by a) identifying four specification patterns (inheritance, union types, type filtering,
and numerical maps) that are pervasive in these calculations, and b) describing how to generate efficient C# from MAL for these
patterns. We evaluate the code-generator by benchmarking it against handwritten production code and show an approximate 1.3×
speedup in a production environment. This evaluation demonstrates that, with MAL, an individual pension company may reuse the
general calculation platform and all of the optimisations built into MAL’s code generator when modelling the company’s business
rules.

CCS Concepts: • Software and its engineering→ Source code generation; Domain specific languages; • General and refer-
ence→ Performance.

Additional Key Words and Phrases: Domain specific languages, performance, code generation, vernacular software development

ACM Reference Format:
Holger Stadel Borum and Morten Tychsen Clausen. 2022. Transforming Domain Models to Efficient C# for the Danish Pension Industry.
In Proceedings of Modeling Language Engineering (MLE’22). ACM, New York, NY, USA, 11 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Current legislation requires Danish insurance and pension companies to report a number of quantities as a way of
proving that they are solvent and managed responsibly [8]. The calculations of these quantities are complicated since
they a) involve projecting financial products into the future, b) must model a specific company, c) are calculated in
different economic scenarios, and d) involve complex mathematical formulas. While parts of these calculations are
identical for all companies (such as the projection of assets and reserves), other parts are company-specific since they
model company-specific rules called management actions (such as surplus sharing). This duality means that a projection
platform consists of a generic company-independent part and a specialised company-specific part, as shown in Figure 1.

In the current practice, actuaries submit management action specifications to a projection platform written in
a general-purpose language such as C#, as seen in Figure 1. This practice is challenged by actuaries with limited

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
Manuscript submitted to ACM

1

98 APPENDIX C. TRANSFORMING DOMAIN MODELS

MLE’22, October 23–25, 2022, Montreal, Canada Holger Stadel Borum and Morten Tychsen Clausen

Economic Scenarios
Portfolio
Pension

Projection Paramters
...

Financial
Report

Input Projection Platform Output

MAL Program

MAL

C# Program

Code Generation

Practice

Proposed
Extension

Projection
Engine

Management
Actions

Fig. 1. A diagram with the current projection process where the projection platform is separated into a general projection engine and
company-specific management actions. In the proposed extension, the management actions are generated from a specification written
in the Management Action Language.

programming experience (or vernacular software developers [20]) being required to specify efficient management actions
due to projections being computationally expensive.

Our proposal is to modify the current practice with a domain-specific language (DSL) and a code generator that
generates efficient management actions from more declarative specifications. Our DSL called the Management Action
Language (MAL, Section 2), was designed for the purpose of allowing actuaries as vernacular software developers
to model management actions and have them automatically transformed, optimised, and executed efficiently on a
projection platform. In this paper, we present our work with implementing a code generator for MAL to perform
this transformation (Section 3). We identify four specification patterns that find are pervasive in management action
specifications and discuss how we generate efficient code for these in a target language with a more restrictive type
system (Section 3.1-3.3).

In doing so, we demonstrate a case where a DSL can be used to generate code that is 1.3× more efficient compared to
handwritten production code in the target language (Section 4).

In short, the contributions of this paper are:

• An identification of specification patterns pervasive in management action specifications.
• Implementation strategy for generating code from these specifications with C# as target language.
• Positive results that show a speedup when benchmarking generated code against comparable handwritten code.
• Negative results that do not show a speedup for loop vectorisation.

2 THE DANISH PENSION INDUSTRY AND DSLS

The Danish pension and life insurance industry manages a large number of assets [12], and it is, therefore,
important for the Danish economy that the industry is healthy. Here we give an ultra-compact conceptual model of
the domain that is coherent with the DSL concepts described in the paper, primarily based on [17]. A pension (or life
insurance) is a saving to be paid to the policyholder (or a beneficiary) upon the policyholder reaching a specific age (or
dying). A pension company is a company that offers pension and life insurance products to customers. A policy is an

2

99

Transforming Domain Models to Efficient C# for the Danish Pension Industry MLE’22, October 23–25, 2022, Montreal, Canada

instance of a product bought by a specific customer. The policies held by a company are, collectively, the portfolio of the
company. The reserve of a policy is its present value which is the total of all its future payments. A company is solvent
when it can meet all expected future insurance claims. A company determines whether it is solvent by computing
its balance consisting of its assets, e.g., bonds, and liabilities, where the reserve of policies is a substantial part of the
liabilities. It is common to put a policy into different types of groups according to its interest rate, biometric risk, and
administrative expense profile.

The projection of the balance is one way for a pension company to argue that it is responsibly managed and
will remain solvent. A pension company is required by Danish regulation to make such an argument to the Danish
Financial Supervisory Authority (FSA). There are two major challenges in performing such a projection which we
call the performance challenge and variability challenge. The performance challenge is that such projections are
computationally expensive. A projection should take many different economic scenarios (in the order of 10 up to 1000)
into account to simulate how the portfolio behaves with varying yields and losses on investments. One way of doing
so is to parametrise a projection on an economic scenario and then perform a Monte Carlo simulation over different
economic scenarios. This simulation approach is the one used by the projection platform that MAL was designed
for. The variability challenge is that a projection must model certain business rules of the company that specify how
investment yields and losses are generally handled. These business rules are called management actions. Management
actions are not used only as input to a balance projection but must also be shown and approved by the board of directors
of a pension company and be reported with “recipe-like” precision to the FSA.

The Management Action Language was designed to allow actuaries to model management action in balance
projections. A design goal was to emphasise the mathematics of these models while minimising boilerplate code. MAL
consists of three parts: On top, a module system lets actuaries group management actions into meaningful computational
units. Each module consists of two parts: First, data declarations and data contracts define what data a module requires
and provides (see Figure 3 for a small example of data declarations). Second, imperative management actions and pure
functional expressions define how a module computes data. Figure 2 shows a fragment of a MAL module that uses
computational patterns that are pervasive when modelling management actions.

update eGroup in Groups:Expense {

let reserveInclIRTA = eGroup.Reserve + eGroup.PAL.InvestmentReturnTaxAsset

let periodTechnicalExpenses =

sum(map p1 in eGroup.Policies:OneStatePolicy {

Util.SumExpenses(p1.Result.PeriodTechnicalExpenses)

}

)

eGroup.ExpenseDividend =

if periodTechnicalExpenses == 0

then 0

else bound (0.02 * reserveInclIRTA / (periodTechnicalExpenses / Projection.PeriodLength), 0, 1)

}

Fig. 2. An abridged but realistic MAL fragment demonstrates commonly used patterns, namely: a) inheritance based type filtering of
Expense and OneStatePolicy and b) a often used map-sum pattern.

3 CODE GENERATION

In this section, we give a high-level description of our approach to translating MAL into C#. The translation is subject
to the following somewhat conflicting design considerations.

3

100 APPENDIX C. TRANSFORMING DOMAIN MODELS

MLE’22, October 23–25, 2022, Montreal, Canada Holger Stadel Borum and Morten Tychsen Clausen

data Group {
Child : Group

}
data Risk extends Group {

Child : Risk
}
data Expense extends Group {
}

public class Risk : Group ,Expense_Risk {
private Risk _Child;
public new Risk Child
{ get {return _Child ;}

set {_Child = value;
base.Child = value;}

}
}

public interface Expense_Risk {
Group Child { get; set; }

}

public class TypeSpan_Expense_Risk : IEnumerable <Expense_Risk > {
private Expense [] Expense;
private Risk[] Risk;
public TypeSpan_Expense Filter_Expense () {

return new TypeSpan_Expense(Expense);
}
/* Remaining Filters and enumeration omitted. */

}

Fig. 3. Examples of code generation. Top left: An artifical MAL-snippet with a data declaration for Group and the two subtypes
Risk and Expense. Top Right: Generated C# class for Risk. Middle: Generated C# interface for the Expense and Risk union type.
Bottom: The generated C# TypeSpan that is a collection type for Expense and Risk with constant time filtering.

(1) C#was chosen as the target language for the code generator due to a wish to potentially generate a self-contained
C# version of a MAL program.

(2) The produced C# should be compatible with several existing interfaces and flexible enough to handle some
evolution of these.

(3) Performance of the generated code was important due to the computational cost of calculations.

During the design of MAL, we identified four specification patterns (inheritance, union types, type filtering, and
numerical maps) that were pervasive in expressing management actions. As an example, there may exist three different
kinds of Groups (see Section 2), say Risk, Interest, and Expense (object-oriented inheritance). Both Risk and Expense
groups may have a shared quantity we want to compute (union type). We may compute the value by choosing all Risk
or Expense groups (type filtering) and then, for each group, compute the value specified by summing over a map of the
group’s policies (numerical map). We describe how we generate C# code for each of the above-specified patterns. To
accommodate type filtering, we generate what we call a TypeSpan, which is a collection of objects with constant time
type filtering. In Section 4, we argue the generated code is comparatively efficient and correct.

Figure 3 shows an example of how we translate data declarations in MAL to classes and interfaces in C# using
the subsequently presented translation schemes. However, to conserve space, we will primarily work on an abstract
representation of a MAL program without presenting the full abstract or concrete syntax. To do so, given a MAL
program, we define L to be a set of labels of data fields used, T to be the set of the program’s types, T⟦_⟧ to be a type
translation from MAL to C#, and <: to be a subtype relation on T with lub<: (_) as a function providing the least upper
bound on a set of types. We use dom(_) to denote the domain of a function,⇀ to denote a partial map, and P(_) to
denote the powerset.

4

101

Transforming Domain Models to Efficient C# for the Danish Pension Industry MLE’22, October 23–25, 2022, Montreal, Canada

D⟦d⟧ =

public class d : d’ when ∃(d, d′) ∈ I
{

Fields𝑑⟦dom(F(d))⟧
}

Fields𝑑⟦{lb1, ..., lb𝑛}⟧ = Field𝑑⟦lb1⟧ ... Field𝑑⟦lb𝑛⟧

Field𝑑⟦lb⟧ =

private T⟦F(d)(lb)⟧ _ lb ;

public new T⟦F(d)(lb)⟧ lb ;

{ get {return _ lb ;}

set {_ lb = value;

base. lb = value}
}

public T⟦F(d)(lb)⟧ lb ;

if ∃ 𝑑 ′ . (𝑑,𝑑 ′) ∈ I
∧ 𝑙𝑏 ∈ 𝑑𝑜𝑚(F(𝑑 ′))

Otherwise

Fig. 4. Translation scheme, D⟦_⟧ , for generating classes from data declarations. The scheme uses Fields𝑑⟦_⟧ to generate a field for
all labels (lb) of a data declaration using Field𝑑⟦_⟧. Notice how Field⟦_⟧ shadows a field when a data declaration specialises the
type of the field. Legend: A solid frame delimits a quasi-quotation area where we may make use of our functions, variables, and
some pseudocode. A dashed frame delimits code parts that are only included when relevant.

3.1 Data Declarations and Inheritance

MAL implements a single inheritance system that affords users the possibility of describing different versions of the
same actuarial concept. That is, if a user wants to create a Risk group and an Expense group, they can do so by letting
both inherit from Group.

Definition 1. The data declarations of a MAL program can be represented by the tuple (D, I, F) where:
• D is a set of data declaration names.
• I is a binary relation on (𝑑1, 𝑑2) ∈ D denoting that 𝑑1 inherits from 𝑑2. I∗ denotes the transitive closure on I.
• F : D → L ⇀ T is a map from a data declaration name to its fields to their type.

We only consider well-formed data declaration where (1) a data declaration at most inherits from a single other declaration and (2) an
inheritance only specialises fields from its supertype while respecting the subtype relation, or formally:

• ∀(𝑑1, 𝑑2) ∈ I . ∀𝑑3 ∈ D . 𝑑2 ≠ 𝑑3 ⇒ (𝑑1, 𝑑3) ∉ I

• ∀(𝑑1, 𝑑2) ∈ I . ∀𝑙𝑏 ∈ dom(F(𝑑2)) ⇒ F(𝑑1) (𝑙𝑏) <: F(𝑑2) (𝑙𝑏)

Figure 4 shows a scheme D⟦_⟧ for translating data declarations into C#. The primary thing to notice about the
scheme is that when a data declaration is extended with a field that is a subtype of the original field, then this field is
shadowed in the generated subclass. This choice means that in MAL, there are severe restrictions to field assignments
on a superclass to ensure that the generated class hierarchy remains consistent throughout an execution.

3.2 Union Types and TypeSpans

To provide users with the possibility of working flexibly with collections of entities, MAL implements data declaration
filtering on collections with the possibility of doing so with a union type.

5

102 APPENDIX C. TRANSFORMING DOMAIN MODELS

MLE’22, October 23–25, 2022, Montreal, Canada Holger Stadel Borum and Morten Tychsen Clausen

Definition 2. The union types used in a MAL program are denoted by U ⊆ P(D) . We assume we have an injective function
𝑖𝑑U : P(D) → String that provides a union type with a unique name. The function FU : P(D) → L ⇀ T provides types to the fields of
𝑢 : U with FU (𝑢) (𝑙) = lub<: ({F(𝑑) (𝑙) |𝑑 ∈ 𝑢 }) . The function FU (𝑢) is only defined on the domain ∩𝑑∈𝑢 dom(F(𝑑)) .

A union type 𝑢 : U is well-formed when it (1) is non-empty and (2) all names within the union inherit transitively from a given data
declaration, or formally:

• 𝑢 ≠ ∅
• ∃𝑑′ ∈ D . ∀𝑑 ∈ 𝑢 . (𝑑,𝑑′) ∈ I∗

For each union type of a MAL program, we generate an interface corresponding to the type (Figure 5) and a TypeSpan
that serves as a collection for the union type with constant time filter operations (Figure 5). While we potentially need
to make this generation for exponentially many combinations of a data declaration’s subtypes, we can limit this number
to the union types that are actually used in a concrete MAL program. This means that while the size of the generation
is theoretically upper bounded by an exponential function, it is linear in the length of a program. The generation of
TypeSpan provides users with a constant filter operation on a collection of data declarations, with zero cost for type
casts or type checking.

U⟦u⟧ =
public interface 𝑖𝑑U(u) {

UFields𝑢⟦dom(F(u))⟧
}

UFields𝑢⟦{lb1, ..., lb𝑛}⟧ =
T⟦F𝑢(u)(lb1)⟧ lb1 { get; set; }

... public T⟦F𝑢(u)(lb𝑛)⟧ lb𝑛 { get; set; }

TS⟦{d1, ..., d𝑛}⟧ =

public class TypeSpan_ 𝑖𝑑𝑢 ({d1, ..., d𝑛 })
: IEnumerable < 𝑖𝑑𝑢 ({d1, ..., d𝑛 }) > {

private T⟦d1⟧ [] d1 ;

... private T⟦d𝑛⟧ [] d𝑛 ;

For all u′ ∈ P({d1, ..., d𝑛 }) generate Filter⟦u′⟧
// constructors , enumeration , etc. omitted

}

Filter⟦{d1, ..., d𝑛}⟧ =
public TypeSpan_ 𝑖𝑑U ({d1, ..., d𝑛 }) Filter_ 𝑖𝑑U ({d1, ..., d𝑛 }) () {

return new TypeSpan_ 𝑖𝑑U ({d1, ..., d𝑛 }) (d1,...,d𝑛);
}

Fig. 5. On top: Translation scheme, U⟦_⟧ , for generating interfaces for union types. The scheme uses UFS𝑢⟦_⟧ to generate the fields
on the union type. On bottom: Translation scheme for generating the TypeSpan for a union type. Note the constant time filtering
operations created by Filter⟦_⟧.

3.3 Vectorisation

The expression language of MAL contains a map operation since it is frequently used in management specifications.
When generating code for a numerical map operation, it seemed like an obvious optimisation to generate code using
advanced vector extensions (AVX). We call this form of generation vectorisation.

6

103

Transforming Domain Models to Efficient C# for the Danish Pension Industry MLE’22, October 23–25, 2022, Montreal, Canada

Our approach to vectorisation was to vectorise all map operations that contained an arithmetic operation, which is
always possible since MAL’s expression language is free of side effects. Since most values are fields on an object in
MAL, we had to transform relevant values into AVX vectors when needed. We used the following high-level process of
vectorisation:

(1) Identify that a map operation uses an arithmetic operation.
(2) Traverse the collection being mapped over in slices of the hardware-specific size of the AVX registers.
(3) Transform relevant data to AVX vectors.
(4) Use AVX instructions whenever possible.

However, in an actual implementation, several other details show up to ensure efficient code, such as an identification
of loop-constant expressions, removal of intermediate arrays, compatibility with deforestation [25], and improving
heuristics for choosing when to vectorise an expression.

The idea behind the optimisation is that an AVX instruction is used on 2 ∗ vl elements rather than just 2 at a time,
where vl is the hardware-specific register size. The total number of operations performed should thus become ∼ 1

vl of
the number of operations in a non-vectorised translation.

4 EVALUATION

We evaluate MAL’s implementation from a technical perspective since a user-oriented evaluation has previously
been conducted [7]. We evaluate by comparing the performance of generated code against an equivalent handwritten
specification written in C#. This specification is realistic in the sense that significant effort has been put into its over
14,000 lines of code while being developed with the entire projection platform. It is also realistic since it serves as
a template implementation for several pension companies who may either modify the template or write their own
implementation from scratch.

4.1 Performance Experiments

We are interested in investigating how the performance of code generated from MAL compares to comparative
handwritten C# code. For performance measures, two different benchmark setups are used. The first local setup almost
executes only management code on a dedicated benchmark machine to investigate how the generated code performs.
The second production setup executes a full projection in a realistic execution on a cloud service to investigate the total
impact of using MAL in the real system.

4.1.1 Only management code. We are interested in a) how does MAL perform on a portfolio of realistic size? And b)
how does the MAL implementation scale on increasing portfolio sizes? The benchmark was performed on a machine
with an Intel Xeon E5-2680 v3 with 48 logical 2.5 GHz cores and 32 GB of memory, running 64-bit Windows 10, version
20H2, and .NET 4.8.4084. The result of the benchmarks is seen in Figure 6.

Observation 1. The execution time of all solutions scales linearly in the number of policies.

We explain this observation from the fact that all solutions perform their majority of work linearly in the number of
exercises.

Observation 2. For all number of policies, the solution generated from a MAL program is faster than the C# solution with a speedup
factor of approximately 1.3×.

7

104 APPENDIX C. TRANSFORMING DOMAIN MODELS

MLE’22, October 23–25, 2022, Montreal, Canada Holger Stadel Borum and Morten Tychsen Clausen

1 2 3 4 5 6 7 8 9 10
0

4

8

12

16

20

Portfolio size (#policies×1000)

Ti
m
e
(se

co
nd

s)

C#
MAL
MAL-V

Fig. 6. Running time of benchmarking management code performed on randomly generated portfolios. The benchmarks were
generated using BenchmarkDotNet [2] with WarmupCount=8, IterationCount=40, InvocationCount=1. One standard deviation
is plotted as the error but it is not visible since it is generally < 3%.

We explain this speedup from the second observation from the fact that: a) MAL’s translation from data declarations
to classes provides a pretty efficient memory layout compared to the C# solution, which often uses dictionaries and
indirect lookups for similar purposes. b) MAL solution generates less garbage due to the use of classes and deforestation.
c) MAL’s easily reusable constant time type filtering without type casts is faster than checking every individual of a
collection. Although this functionality is possible to write in C# it is difficult to do in any reusable manner without
some form of code generation.

Observation 3. We cannot find any difference in the execution time of code generated with and without vectorisation.

We explain this negative result from the overhead of taking numerical values from an object and placing them into
an array. We hypothesise that we need a more vectorisation-friendly memory layout to see a speedup.

4.1.2 Full projection. We are interested in how using MAL affects the part of the execution that does not involve
executing management code directly. However unlikely, it is possible that MAL’s memory footprint, some delayed
execution, or slower serialisation means that the full projection using MAL could be slower, even if the management
code executes faster. For full projections, it is worth noting that even though the majority of execution time takes place
outside of management code, then the time spent in management has grown significantly (from around 10% to around
20%). It seems like the trend is likely to continue for two reasons. First, parts of the non-management code may be
optimised for all projections (e.g., by solving some partial-differential equitations analytically instead of numerically).
Second, new requirements to the projection platform have a tendency to be implemented as management code that is
available for users to modify. Table 1 shows the speedup from using MAL in a production setting. From this benchmark,
we conclude that MAL provides around 1.3× speedup compared to handwritten management actions and that MAL does
not negatively affect the remainder of the projection. The setup and data used for this benchmark are quite different
from that used in Figure 6, which means that their real times are not comparable.

8

105

Transforming Domain Models to Efficient C# for the Danish Pension Industry MLE’22, October 23–25, 2022, Montreal, Canada

Table 1. Benchmarks for full projections in a production environment on Standard_F2s_v2 machines. The table shows two different
projection setups with speedups for only management code and for the full projection.

10k policies, 1 economic scenario 1k policies, 1k economic scenarios

Task C# MAL Speedup C# MAL Speedup

Management Init 1.0 s 3.8 s 0.2× 238.8 s 469.9 s 0.51×
Management Update 26.4 s 17.3 s 1.77× 3198.0 s 1833.7 s 1.74×
Management Finalize 1.5 s 1.7 s 1.15× 123.3 s 131.5 s 0.94×

Management Total 28.9 s 22.8 s 1.27× 3,560 s 2,435 s 1.46×

Full Projection Total 120.3 s 109.8 s 1.09× 15,943 s 14,486 s 1.10×

4.2 Implementation Correctness

We argue that MAL’s code generator is correct by passing a test suite that consists of the following four kinds of tests:

(1) MAL passes 9 relevant regression tests designed for the C#-solution. The only test that does not pass requires
some extra functionality that is currently not present in MAL.

(2) MAL produces the same results as the code for C# randomly generated portfolios.
(3) Using FSCheck [1] to create a generator for random valid MAL programs, we have performed a series of

property-based tests. The properties we tested for are:
• Printing and then parsing a MAL program results in a syntactically equivalent program.
• A typed MAL program retains its types after printing and parsing it.
• Transforming an error-free MAL program produces an error-free C# program.

(4) A small suite of unit tests ensures the correctness of different smaller components.

5 RELATED WORK

Danish pension companies must perform balance projections based on management actions, and therefore these
companies all need an executable formalisation of their management actions, whatever platform they use. While it
is common for actuaries at Danish pension companies to publish their actuarial models for academic inspection and
discussion, it is not common for Danish pension companies to publish information on their software solutions. However,
from participating in project advisory board meetings and from an industry conference, we find that Danish pension
companies specify their management actions in general-purpose languages (C# and Visual Basic) but are interested in
other approaches. To our knowledge, our project is the only DSL that lets actuaries express management actions, and
this article is the first on the efficient execution of management actions.

Domain-specific languages have been used several times in financial domains to model financial products or entities,
e.g., [18, 22–24]. MAL is a spiritual successor to the Actuarial Modeling Language (AML) [9] that is used to model
pension products. MAL is somewhat different from these DSLs since it does not seek to precisely model financial
products but rather the management or manipulation of financial products. In this aspect, MAL is similar to the
proprietary actuarial DSL T# [3], which is part of the company RPC’s financial modelling platform called Tyche. While
there is little public documentation of T#, the language approach is different from ours since it is a scripting language

9

106 APPENDIX C. TRANSFORMING DOMAIN MODELS

MLE’22, October 23–25, 2022, Montreal, Canada Holger Stadel Borum and Morten Tychsen Clausen

that seemingly calls into an external library.

Other DSLs from vastly different domains with different target languages. For example, OptiML is designed to let
machine learning researchers specify machine learning algorithms that are translated to efficient parallel code [21],
SARVAVID is designed to ease genomic analysis by providing kernels for doing so and generating efficient C++ [15], and
CFDLang is designed for specifying performance-critical operations in computational fluid dynamics can be translated
into efficient C code [13, 19].

Many aspects used in MAL’s code-generation design are covered generally and in-depth by others. For object-oriented
inheritance, see [4], for union types see [11], and for vectorisation, see [14]. We considered looking into optimisations
for loop parallelism [16] and data flattening [5] similar to the parallel language of Futhark [10], but found a conflict in
the design of MAL compared to Futhark, which hindered such an approach. Futhark is a functional language where
programs are built from parallel primitives operating on arrays of data. MAL is designed with actuaries as target users
and leans toward object-oriented programming to be more reminiscent of C#, as actuaries in the Danish industry are
most likely to have some limited experience with C# or Java. Users of MAL are thus not limited to programming using
parallel building blocks, and any guarantee of performance increase from automatic parallelisation is lost.

TypeScript is a widely-used general-purpose language that implements the concept of union types [6], but with
JavaScript as its target language, union types can seemingly just be erased when translating to JavaScript. Our work is
different since we have to embed union types in the type system of C#.

6 CONCLUSION

In this paper, we have presented our work with generating efficient management actions for the pension industry from
MAL. We identified four specification patterns that we found pervasive in the specification of management actions,
namely: inheritance, union types, type filtering, and numerical maps. We described our efforts with generating efficient
C# code for these patterns by showing translation schemes. We have shown that the code generated from our translation
schemes leads to an approximate 1.3× speedup and conjecture that a significant part of this comes from our work with
interfaces for union types and a collection with a constant time type filtering. We also report a negative result: our
effort to generate code for numerical maps using AVX instruction resulted in no speedup.

Acknowledgements. We thank Innovation Fund Denmark (7076-00029B) for funding this work. We also thank Peter
Sestoft for supervising this work.

REFERENCES
[1] FsCheck: Random Testing for .NET. https://fscheck.github.io/FsCheck/. Accessed July 2022.
[2] BenchmarkDotNet, 2021. https://benchmarkdotnet.org/. Accessed Dec 2021.
[3] RPC Tyche - Tyche, 2021. https://www.rpc-tyche.com/products/tyche.html. Accessed Dec 2021.
[4] Abadi, M., and Cardelli, L. A Theory of Objects. Monographs in Computer Science. Springer New York, New York, NY, 1996.
[5] Bergstrom, L., Fluet, M., Rainey, M., Reppy, J., Rosen, S., and Shaw, A. Data-only flattening for nested data parallelism. In Proceedings of the 18th

ACM SIGPLAN symposium on Principles and practice of parallel programming (Shenzhen, China, Feb. 2013), PPoPP ’13, Association for Computing
Machinery, pp. 81–92.

[6] Bierman, G., Abadi, M., and Torgersen, M. Understanding TypeScript. In ECOOP 2014 – Object-Oriented Programming (Berlin, Heidelberg, 2014),
R. Jones, Ed., Lecture Notes in Computer Science, Springer, pp. 257–281.

10

107

Transforming Domain Models to Efficient C# for the Danish Pension Industry MLE’22, October 23–25, 2022, Montreal, Canada

[7] Borum, H. S., Niss, H., and Sestoft, P. On Designing Applied DSLs for Non-programming Experts in Evolving Domains. In Proceedings of the
24th ACM/IEEE International Conference on Model Driven Engineering Languages and Systems (Virtual Event, Fukuoka, Oct. 2021), MODELS ’21,
Association for Computing Machinery.

[8] Bruhn, K., and Lollike, A. S. Retrospective reserves and bonus. Scandinavian Actuarial Journal (Aug. 2020), 1–19.
[9] Christiansen, D., Grue, K., Niss, H., Sestoft, P., and Sigtryggsson, K. S. An Actuarial Programming Language for Life Insurance and Pensions.

In Proceedings of 30th International Congress of Actuaries (2013).
[10] Henriksen, T., Serup, N. G. W., Elsman, M., Henglein, F., and Oancea, C. E. Futhark: Purely functional gpu-programming with nested parallelism

and in-place array updates. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation (New York,
NY, USA, 2017), PLDI 2017, ACM, pp. 556–571.

[11] Igarashi, A., and Nagira, H. Union types for object-oriented programming. In Proceedings of the 2006 ACM symposium on Applied computing
(Dijon, France, Apr. 2006), SAC ’06, Association for Computing Machinery, pp. 1435–1441.

[12] Jensen, B. M., Raffnsøe, M. D., and She, J. Forsikrings- og pensionssektoren i ny kvartalsvis statistik, 2019. (In English: The Insurance Sector and
Pension Sector in New Quarterly Annualy Statistic).

[13] Karl Friebel, F. A., Soldavini, S., Hempel, G., Pilato, C., and Castrillon, J. From Domain-Specific Languages to Memory-Optimized Accelerators
for Fluid Dynamics. In 2021 IEEE International Conference on Cluster Computing (CLUSTER) (Sept. 2021), pp. 759–766. ISSN: 2168-9253.

[14] Kennedy, K., and Allen, J. R. Optimizing compilers for modern architectures: a dependence-based approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2001.

[15] Mahadik, K., Wright, C., Zhang, J., Kulkarni, M., Bagchi, S., and Chaterji, S. SARVAVID: A Domain Specific Language for Developing Scalable
Computational Genomics Applications. In Proceedings of the 2016 International Conference on Supercomputing (Istanbul, Turkey, June 2016), ICS ’16,
Association for Computing Machinery, pp. 1–12.

[16] Oancea, C. E., and Rauchwerger, L. Logical inference techniques for loop parallelization. ACM SIGPLAN Notices 47, 6 (June 2012), 509–520.
[17] Perdersen, L. R. Grundlæggende firmapension, 5 ed. Forsikringsakademiets Forlag, 2014. (In English: Foundation in Company Pensions).
[18] Peyton Jones, S., Eber, J.-M., and Seward, J. Composing contracts: an adventure in financial engineering (functional pearl). ACM SIGPLAN Notices

35, 9 (Sept. 2000), 280–292.
[19] Rink, N. A., Huismann, I., Susungi, A., Castrillon, J., Stiller, J., Fröhlich, J., and Tadonki, C. CFDlang: High-level code generation for

high-order methods in fluid dynamics. In Proceedings of the Real World Domain Specific Languages Workshop 2018 (Vienna, Austria, Feb. 2018),
RWDSL2018, Association for Computing Machinery, pp. 1–10.

[20] Shaw, M. Myths and mythconceptions: what does it mean to be a programming language, anyhow? Proceedings of the ACM on Programming
Languages 4, HOPL (Apr. 2022), 234:1–234:44.

[21] Sujeeth, A. K., Lee, H., Brown, K. J., Chafi, H., Wu, M., Atreya, A. R., Olukotun, K., Rompf, T., and Odersky, M. OptiML: an implicitly parallel
domain-specific language for machine learning. In Proceedings of the 28th International Conference on International Conference on Machine Learning
(Bellevue, Washington, USA, June 2011), ICML’11, Omnipress, pp. 609–616.

[22] van Deursen, A. Domain-Specific Languages versus Object-Oriented Frameworks: A Financial Engineering Case Study, 1997.
[23] Voelter, M. DSL Engineering: Designing, Implementing and Using Domain-Specific Languages. CreateSpace Independent Publishing Platform,

Lexington, KY, Jan. 2013.
[24] Voelter, M., Koščejev, S., Riedel, M., Deitsch, A., and Hinkelmann, A. A Domain-Specific Language for Payroll Calculations: An Experience

Report from DATEV. In Domain-Specific Languages in Practice, A. Bucchiarone, A. Cicchetti, F. Ciccozzi, and A. Pierantonio, Eds. Springer
International Publishing, Cham, 2021, pp. 93–130.

[25] Wadler, P. Deforestation: transforming programs to eliminate trees. Theoretical Computer Science 73, 2 (Jan. 1988), 231–248.

11

108 APPENDIX C. TRANSFORMING DOMAIN MODELS

Appendix D

Survey of Established Practices in
the Life Cycle of Domain-Specific
Languages

109

Survey of Established Practices in the
Life Cycle of Domain-Specific Languages

Holger Stadel Borum
hstb@itu.dk

IT University of Copenhagen
Copenhagen, Denmark

Christoph Seidl
chse@itu.dk

IT University of Copenhagen
Copenhagen, Denmark

ABSTRACT
Domain-specific languages (DSLs) have demonstrated their useful-
ness within many domains such as finance, robotics, and telecom-
munication. This success has been exemplified by the publication
of a wide range of articles regarding specific DSLs and their mer-
its in terms of improved software quality, programmer efficiency,
security, etc. However, there is little public information on what
happens to these DSLs after they are developed and published. The
lack of information makes it difficult for a DSL practitioner or tool
creator to identify trends, current practices, and issues within the
field. In this paper, we seek to establish the current state of a DSL’s
life cycle by analysing 30 questionnaire answers from DSL authors
on the design and development, launch, evolution, and end of life
of their DSL. On this empirical foundation, we make six recom-
mendations to DSL practitioners, scholars, and tool creators on the
subjects of user involvement in the design process, DSL evolution,
and the end of life of DSLs.

CCS CONCEPTS
• Software and its engineering→Domain specific languages;
• General and reference→ Surveys and overviews.

KEYWORDS
Domain-specific languages, Survey
ACM Reference Format:
Holger Stadel Borum and Christoph Seidl. 2018. Survey of Established
Practices in the Life Cycle of Domain-Specific Languages. In Proceedings
of ACM / IEEE 25th International Conference on Model Driven Engineering
Languages and Systems (MODELS) (MODELS ’22). ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Domain-specific languages (DSLs) have been established as a multi-
faceted tool in software engineering that can be used to improve
usability [17], performance [27], security [25], and code reuse [19].
From an academic standpoint, little is known about most DSLs’
life cycle beyond initial publications that demonstrate their merits,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MODELS ’22, October 23–28, 2022, Montreal, Canada
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/1122445.1122456

whether they be innovations within the application domain [20],
investigations and innovations of DSL technologies [40], or more
processual design considerations [12]. Reports on the broader life
cycle of DSLs are scarce, if not altogether lacking. While some
experts may have enough experience creating DSLs to know the
current state of practices, it should be available to any DSL practi-
tioner and tool-creator. Kosar et al. find in their systematic mapping
study that most primary DSL studies focus on domain analysis, de-
sign and implementation, with only 10 out of 390 investigating
maintenance and validation [24]. We find that the articles closest
to investigating the DSL life cycle typically fall into two categories.
First, a retrospective analysis summarises lessons learned from
years of working with DSLs [23, 41]. Second, DSL evolution may be
investigated through an explicit process discussion of evolution rea-
sons and results [18, 35, 37, 39]. While both types of investigations
are valuable and should be encouraged, their scarcity, combined
with their diverse and non-standardised reporting, makes it difficult
to use them for establishing the current state of DSLs’ life cycles.

In this paper, we set out to alleviate the lack of information
on DSLs after their publication by empirically investigating the
established practices in the life cycles of DSLs. Our purpose is to
survey current established practices in DSLs’ life cycles and, from
this foundation, make recommendations for future research. We do
so through a questionnaire sent to selected DSL authors on their
DSLs’ life cycle phases (design and development, launch, evolution,
and end of life). The questionnaire has an effective response rate of
43% from DSL authors whose DSL appeared in eight different DSL
corpora (Section 2). The questionnaire is especially focused on top-
ics difficult to examine outside of self-report since other methods
more easily investigate technical choices such as tooling, see [21].
This focus translates to questions on user perspectives in different
life phases. In addition, the survey investigates other aspects such
as development setting, causes of DSL evolution, and reflections on
the impact of different initiatives (Section 3). Based on our analysis,
we make six recommendations for the DSL field (Section 4). We
discuss threats to the validity of our findings (Section 5) and the
utility of our approach compared to similar research (Section 6). To
conclude, we summarise our findings (Section 7).

The contributions of this paper are:
• The presentation of empirical data regarding the design and
development, launch, evolution, and end of life of DSLs.

• An analysis of data establishing current practices in the life
cycles of DSLs.

• Empirically based recommendations for DSL practitioners.

110 APPENDIX D. SURVEY ON ESTABLISHED PRACTICES

MODELS ’22, October 23–28, 2022, Montreal, Canada Holger Stadel Borum and Christoph Seidl

Extra: 3

Invitation: 102

Contact Error: 35

No Contact Error: 67
Answer: 32

No Answer: 36

Decline: 2

Sample: 30

Excluded: 2

Figure 1: A depiction of our process flowing from sending invitations to the left to obtaining the sample to the right.

2 METHOD
The purpose of our survey was to establish current practices in
DSL’s life cycle by sending a questionnaire [13] to DSL authors.
The fundamental method for our investigation was to first identify
a number of relevant DSLs, then send the authors of these DSLs an
invitation to the questionnaire regarding their specific DSL, and,
finally, analyse the responses. We sought to obtain a representative
sample of DSLs of interest to academia and industry by survey-
ing DSLs from curated DSL collections. We sent the first round
of invitations during the Summer of 2021, and we sent a second
round of re-invitations during the Winter of 2021 to authors we had
been unable to contact. We postpone discussions of methodological
threats to validity to Section 5.

We asked all invitees to answer the questionnaire regarding a
specific DSL project through email or a similar contact method. Fig-
ure 1 shows how the original 102 invitations resulted in a sample of
30. We received an error message from 35 of our invitations, mean-
ing that 67 DSL authors received an invitation at most. We allowed
participants to make submissions about other DSL projects they
found relevant. We received and included three such submissions,
which we label as extra. We obtain an effective response rate of at
least 29/67 = 43% when not counting extra answers.

2.1 Invitations
We used existing curated collections of DSLs as our pool of invita-
tion candidates. We chose the following collections to ensure that
the investigated DSLs were of interest to academia and industry:

• The paper, Domain-Specific Languages: An Annotated Bibli-
ography [39]

• The workshop series proceedings of Real World Domain Spe-
cific Languages [3, 4, 6, 7]

• The conference proceedings of Domain-Specific Languages
’99 [1]

• The workshop proceedings of Functional Programming Con-
cepts in Domain-Specific Languages [2]

• The workshop proceedings of Domain-Specific Languages
Design and Implementation [38]

• The collection of financial DSLs, dslfin.org [10]
• The collection of DSLs,Wikipedia categories [5]
• The collection of robotic DSLs, Robotics DSL Zoo [9, 30]

We had two exclusion criteria for filtering out artefacts appearing
in these collections. We removed an artefact if it a) was not a DSL or
if b) the authors did not intend for their DSL to be used. Criterion a
was primarily important since these collections contain many meth-
ods and tools not relevant to the survey. Whenmaking this decision,

we considered 1) if it was stated that the artefact was a DSL, 2) if
the artefact had textual or visual language constructs tailored to a
specified domain, and 3) if the application domain of the artefact
was narrow. We primarily removed non-language artefacts, but we
removed a couple of artefacts since we analysed them to have too
many general-purpose characteristics to include. One example of
such a language is the programming language Q# [36], designed
for expressing quantum algorithms seamlessly alongside classical
computations. While the domain of Q# is quantum algorithms, we
find that its domain application domain of quantum computations
and classical computations is an extension of many general-purpose
languages. For criterion b, we were lenient in deciding whether a
DSL was not intended to be used by only excluding DSLs where
the authors explicitly stated they were not. This leniency is also
apparent from the received answers, where two participants explic-
itly stated that the purpose of the DSL was not intended for use.
We excluded these submissions from the final sample.

2.2 Questions and Data Interpretation
Besides factual questions, the questionnaire consisted of a) multiple-
choice questions allowing multiple answers and free-text answers
and b) free-text questions. Only a few factual questions were re-
quired to be answered by participants. All of these questions were
easily answerable by all participants to not create a barrier to par-
ticipation.

Free-text answers were analysed and grouped into representative
categories using open coding. We either created a new category
or used a predefined choice when appearing in multiple-choice,
multiple-answers questions. To be transparent about this process,
we emphasise new categories in figures, and for each category, we
visualise the fraction we interpreted to belong there. We used only
new categories when interpreting answers to free-text questions
since there were no predefined choices for these questions. We
assigned a single free-text answer to several categories when we
found it to describe a multitude of subjects. In the presentation, we
show representative cases for each category. These answers have
been anonymised and edited for presentation while preserving their
original meaning. We excluded a couple of free-text answers from
interpretations since they contained apparent mistakes. When we
encountered such answers, we ensured that the remaining answers
of the submission were coherent.

3 RESULTS
The survey questionnaire focused on five topics: 1) DSL character-
istics, 2) evaluation and user involvement in design, 3) launch, 4)

111

Survey of Established Practices in the Life Cycle of Domain-Specific Languages MODELS ’22, October 23–28, 2022, Montreal, Canada

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

20
18

20
20

20
22

1

2

3

4

When was the DSL introduced? (30 responses)

Figure 2: Data plot of when the surveyed DSLs where intro-
duced. The mean age of the DSLs is 11 (introduced in 2010).

evolution, and 5) end of life. We treat each topic in its own section
by first giving an executive summary, then presenting the results,
and finally discussing our findings. We cross-examine data from
different topics whenever relevant. We report answers to multiple-
choice questions in percentages and answers to free-text questions
in the number of respondents. Findings and claims are numbered
using circled numbers x which permit later referencing.

3.1 DSL Characteristics
We present the characteristics of the 30 DSLs in our sample, i.e.,
the age of the DSLs, their development setting, and the reason for
creating them1. The characterisation of the sample forms a basis
for the kind of DSLs our subsequent findings are generalisable to.
The surveyed DSLs are predominantly developed in an academic
setting and are on average 11 years old, with the majority being
younger.

Results. The DSLs in the sample are between 0 and 36 years old
(introduced between 1985 and 2021), with an average age of 11
years. While this is a broad range, 80% of the DSLs are younger
than 12 years (Figure 2). Of the surveyed DSLs, 77% were developed
within an academic setting (Figure 3). Still, of these DSLs devel-
oped in an academic setting, 52% were also partly developed within
some other setting. Of the surveyed DSLs, 30% were developed in
an open-source community, 38% were developed in an industrial
setting2, and 19% were developed in both an academic and indus-
trial setting. The sample represents all of our suggested reasons
for developing a DSL (Figure 4). While 50% of DSLs sought “to
improve program conciseness and readability”, only 3% had this
as their only reason. Comparatively, 55% of DSLs were created for
more technical reasons such as “to separate business logic from
application logic” or “to improve program performance”.

Discussion.We confirmed our anticipation of having a majority
of academically developed DSLs since we primarily invited DSLs
from academic collections (see Section 2). We find that while it is
1We are also interested in the type of users presented in Section 3.2.
2This category consists of in-house development, industrial consortium development,
and governmental development.

0% 20% 40% 60% 80% 100%

Academic development

Open-source-community
development
Outsourced

development
In-house company

development
Industrial consortium

development
Developed by
government

In what setting was the DSL developed? (30 responses)

Figure 3: Data plot of development setting of surveyed DSLs.

0% 20% 40% 60% 80% 100%

To separate business logic
from application logic

To enable domain experts
to write business logic

To improve program
conciseness and readability

To improve program
performance

To improve program
correctness

To improve programmers’
efficiency

To demonstrate
the DSL’s viability

Why was the DSL developed? (30 responses)

Original Free text interpretation

Figure 4: Data plot of reasons for developing the DSL.

often mentioned that DSLs allow for a higher-level description of a
domain, this is rarely the only reason for creating a DSL. Authors
often seek other effects allowed by the higher-level description, such
as improving program correctness or programming efficiency. In all,
1 we find that the sampled DSLs primarily represent academically
developed DSLs with some industrial uses that were developed for
many different reasons and have an age between 5 and 12 years.

3.2 Evaluation and User Involvement
Expert evaluation is the most used evaluative method during DSL
design, but different user-centred evaluation methods are also com-
monly used. We find no established practice for the level of user
involvement during the DSL design, and we do not find any corre-
lation between the degree of user involvement and a DSL’s intro-
duction year or the level of users’ programming experience.

Results. 2 Expert evaluation is the predominant method for evalu-
ating a DSL during design and development, and it is used by 57% of
DSLs (Figure 5). Of these, 41% use it as their only evaluative method.

112 APPENDIX D. SURVEY ON ESTABLISHED PRACTICES

MODELS ’22, October 23–28, 2022, Montreal, Canada Holger Stadel Borum and Christoph Seidl

0% 20% 40% 60% 80% 100%

Usability tests

User workshops

Heuristic evalution

Expert evaluation

Case studies

Actual usage

Which methods were used to evaluate the
usability of the DSL during design and development?

(30 responses)

Original Free text interpretation

Figure 5: Data plot of broad categories of evaluative meth-
ods. We have shown free-text answers mentioning different
kind of case-studies as their own category, although they
could also be considered as a formof expert or heuristic eval-
uation depending on how they were conducted.

Different human-centred evaluation methods3 are used by 53% of
DSLs. Finally, 3 heuristic evaluation is used only by 20% of DSLs,
even though the method does not require any user involvement.

We find that DSLs are created for target users who have vastly
different levels of programming experiences ranging from none
(score 1) to expert (score 7) (Figure 6). While there are DSLs that tar-
get users with no programming experience, it is more common for
DSLs to target users that have at least some programming experi-
ence. We also find that there is a wide range of involvement of users
in the design process ranging from none (score 1) to involvement in
every decision (score 7) (Figure 6). 4 Users are primarily involved
in designing the DSL by assisting in requirement elicitation and
by giving feedback during user tests, workshops, or from actual
usage (Table 1). For requirement elicitation, users are involved in
outlining the domain of the DSL, either by telling what kind of
problems they usually face, by more actively designing scenarios,
or by being involved in designing the DSL itself. The dominating
methods for obtaining feedback on a DSL design are testing with
users, conducting workshops, and actual language usage. Six re-
spondents mentioned that these techniques are used iteratively
through several increments of the DSL. Different kinds of language
demonstrations are also used to obtain feedback from users through
iterative interactions. It is common for DSLs to be designed by their
users, either by having the designer being a user themself or by
having a user within the design team.

Discussion. 5 We conjecture that the evaluative technique of ex-
pert evaluation has a significant impact on the usability of created
DSLs due to its widespread usage. Also, we find that many DSL

3This category consists of usability tests and user workshops.

2 4 6

1

2

3

4

5

6

7

Programming experience
Us

er
in
vo
lv
em

en
t

Plot of user programming
experience vs user involvement (30 responses)

1 entry
2 entries

Figure 6: A data plot of users’ programming experience vs.
the level of user involvement inDSL design. The dimensions
range from none (score 1) to expertise/involvment in all de-
cisions (score 7).

authors are interested in having users evaluate their DSL during de-
sign and development seen by the usage of human-centredmethods.

For the programming experience of users, we expected most
DSLs to be designed for users with some programming experience
since we expected most DSLs to be developed for a domain where
programming activities have become necessary. We find it more
surprising that 17% of DSLs are created for users with little to no
programming experience.

We find that there are large differences in how users are involved
in the design project and the level of involvement 6 . When the
users of the DSL are part of the design team, we find it safe to
presume that these in-team users are involved to some extent with
most aspects of the language design and thereby impact the design
significantly. We hypothesised that there could be a correlation
between the level of user involvement in the design process and the
programming experience of users. It is reasonable to involve users
in the design of the DSL because they, as experts, are qualified to
give informed feedback. On the contrary, it is also reasonable to
involve users with little experience to ensure they understand the
designed concepts and find them adequate. However, 7 the Kendall
rank correlation coefficient of 0.09 between programming experi-
ence and user involvement shows no correlation with a p-value of
0.52. We made similar correlation tests between the year of DSL in-
troduction and programming experience or user involvement. Both
of these tests found no correlation with p-values of respectively
0.33 and 0.84.

113

Survey of Established Practices in the Life Cycle of Domain-Specific Languages MODELS ’22, October 23–28, 2022, Montreal, Canada

Table 1: How were users involved in the language design?
(30 responses)

Requirement
elicitation
(7 answers)

• We asked the users to specify mathematically
the problems they usually face.
•Use case driven approach, elaborating on domain
level specification of specific use cases.

Feedback
(8 answers)

• Via conferences and mailing lists, where they
could express their opinions.
•Workshops for the initial and later incremental
versions.
• Feedback from a small in-house group.
• Continuous user testing.

In team
(4 answers)

• Prospective users were in the design team.
• A small set of expert users were involved from
the beginning in all aspects.

Designer is
the user
(3 answers)

• I am a user myself and was part of the creation
and design of the language.

Actual/early
usage
(2 answers)

• Make them use the initially released versions;
collect feedback to improve subsequent releases.
• Users used the initially released version; they
gave feedback for later releases.

Other
(5 answers)

• Feature-Oriented Domain Analysis.
• Through case studies.

No involve-
ment
(2 answers)

• The language is primarily machine-to-machine
oriented.

3.3 Launching
DSL authors use a wide range of techniques to attract a user base
when launching a DSL. Such techniques often affect the success of
a DSL, and it is especially important to demonstrate the merits of
using the language to attract users.

Results.The language ecosystem (development environment, train-
ing material, and language documentation) is used by 73% of DSLs
to encourage usage. Smoothing the transitioning to using the DSL
by either being backwards compatible or assisting in the transition-
ing is part of 30% of DSLs’ launch strategy. Another approach used
by 13% of DSLs is to require usage through company policy. Seven
respondents opted to provide free-text answers focusing on promo-
tion and social initiatives instead of the more technical approach
suggested by the proposed answers.

Of 23 respondents, 9 answered that the initiatives for encourag-
ing DSL usage affected their DSL’s success (Table 2). Two topics
reoccur in several responses. First, the initiatives are decisive for
the success of the DSLs. Second, the assistance in transitioning from
old solutions sometimes mitigates a steep learning curve. Again,
seven respondents replied that the success of the DSL is primarily
affected by its merits and the demonstration of these.

0% 20% 40% 60% 80% 100%

An attractive
developmentenvironment

Training material

Comprehensive language
documentation

Backwards compatibility
to old solutions

Help to transition from old
solutions into the new language

Company policy

Academic publications

Demonstration of merits

Workshops

Sales and Marketing

Community building

How did you seek to encourage
users to use the DSL? (30 responses)

Original Free text interpretation

Figure 7: Data plot of techniques for encouraging DSL usage.

Discussion.While our proposed reasons for user encouragement
primarily focus on implementation efforts, free-text answers focus
more on demonstrating the merits of the DSL, social initiatives,
and promotion. We would expect more participants to choose even
more of such options if we had originally proposed them. We find
that respondents emphasise that the merits of a DSL should present
an improvement in the quality of life of its users compared to its
alternatives. One respondent mentions that, for them, the improve-
ment is so significant that the alternative of not using the DSL is
unattractive.We interpret these answers relating to social initiatives
and promotion to indicate that they see these aspects as necessary.
Therefore we find that 8 it is essential to demonstrate the primary
parts of the DSL to users, namely its merits. This demonstration can
occur through different channels such as academic publications,
sales and marketing, or community building.

3.4 Evolution
Almost all DSLs evolve after their launch, which is experienced by
users as, among others, new language constructs and improvements
in language implementation. How the evolution is performed is
important for the success of a DSL, whether it is improving the ex-
isting language implementation, finding new application domains,
or improving the development environment.

Results. 9 Evolution is a pervasive phenomenon for DSLs, with
86% of respondents of the entire sample reporting at least one cause
of evolution. Almost all suggested evolution factors are equally
common (Figure 8). Of respondents, 60% are affected by factors

114 APPENDIX D. SURVEY ON ESTABLISHED PRACTICES

MODELS ’22, October 23–28, 2022, Montreal, Canada Holger Stadel Borum and Christoph Seidl

Table 2: Do you think these efforts affected the success of
the DSL? Why? (23 responses)

Affirmative
(9 answers)

• Yes, but some users prefer to stick to the GUI.
• Yes. I don’t think people would have adopted it
if we hadn’t actively promoted and sold it.
• Yes, the transition from earlier languages was
effective.

Language
merits
important
(7 answers)

• It succeeded really as a step-change in what
could be done in terms of quality: there are many
other DSLs in this general domain, but today only
a few are meaningfully used. These present such
opposite extremes that there is no real decision
point in a single project as to which to use.

Other
(7 answers)

• Users had by policy to use the DSL.
• I would not characterise the DSL as very success-
ful, but it does allow the users to quickly extend
the existing system with non-standard products.

0% 20% 40% 60% 80% 100%

Changes in implementation
technologies

Changes in internal
technologies

Changes in external
technologies

New user wishes

An agile development process

New areas of application

Changes in the existing
application domain

Merger with other DSL

Little evolution
or no evolution reported

What factors have contributed to evolving
the DSL after its launch? (29 answers)

Original Free text interpretation

Figure 8: Data plot of evolution causes.

they are somewhat in control over, such as accommodating user
wishes, having an agile development process, seeking new areas
of application, and making changes to technologies internal to the
maintainer. Still, 63% are affected by factors outside of their con-
trol, such as changes to the application domain, implementation
technologies, and external technologies.

From the users’ perspective, the most common form of DSL evo-
lution is the addition of new language constructs or syntactic sugar
(Figure 9). It is comparatively rare that major changes are made to
the existing syntax, which happens to 23% of DSLs. 10 17% of DSL
creators have found it necessary to introduce breaking updates. A

0% 20% 40% 60% 80% 100%

Addition of new language
constructs or syntactic sugar

Major improvements of the
language implementation

Expanding the application
domain of the DSL

Major revisions of the
learning materials

Major improvements of the
development environment

Major revisions of the
documentation

Major changes to the general
language syntax

Breaking updates

Transition to other DSL

Which changes have been made to the
DSL from a user perspective? (29 answers)

Original Free text interpretation

Figure 9: Data plot of DSL changes from the user perspec-
tive. Judging whether is major was left to the discretion of
participants.

major evolution of the ecosystem of DSLs also occurs but is rarer.

11 Of 21 respondents, 13 answered that evolution of a DSL is
important, if not vital, to the success of DSLs (Table 3). As we have
already shown, the evolution may take many forms, such as improv-
ing the quality of the DSL, accommodating user wishes, and making
it more accessible and applicable. These improvements are impor-
tant since they may introduce benefits that did not originally exist
and help keep the DSL relevant. One respondent who mentions
that evolution did not significantly affect their DSL’s success even
states that “I suspect those changes did not affect the language’s
success, except that if it had never made any progress, then it would
have faded away.”

Discussion.We identify that a DSL’s constituents have different
evolutionary characteristics. The questionnaire indicates that often
the DSL (language constructs, implementation, and domain) itself
is susceptible to evolution caused by new user wishes and domain
evolution. Comparatively, the ecosystem of the DSL is less suscep-
tible to major evolution. We hypothesise that this difference is due
to the developers having more control over the ecosystem of the
DSL than the usage of the DSL.

We expected that most DSL authors would rarely introduce
breaking updates to their language. Surprisingly, we found that
breaking updates are not that uncommon. We hypothesise that

115

Survey of Established Practices in the Life Cycle of Domain-Specific Languages MODELS ’22, October 23–28, 2022, Montreal, Canada

Table 3: Do you think these efforts affected the success of
the DSL? Why? (21 answers)

Vital
(1 answer)

• Continuous improvement is necessary to keep
the language alive. Later this was not possible
without disappointing users.

Affirmative
(12 answers)

• Yes, we designed modular, reusable components,
which became a major benefit of adoption.
• Yes, we improved performance, reliability, and
usability.

Not signifi-
cantly
(1 answer)

• I suspect those changes did not affect the lan-
guage’s success, except that if it had never made
any progress, then it would have faded away.

Inconclusive
(2 answers)

• Unclear if they helped with the success.

Language
merits
important
(1 answer)

• Success mainly due to stability of the DSL and
reuse of example DSL specifications (library).

breaking updates occur when DSL author has pragmatically esti-
mated that the cost of migrating DSL programs is sufficiently low.
We find this form of pragmatism to be a characteristic of DSLs as op-
posed to general-purpose languages where non-breaking updates,
for the most part, are unthinkable.

3.5 End of Life
In investigating the end of life (EOL), we recognise that a) it can be
complicated to say when a DSL is phased out and b) it is impossible
to foresee when, why, and if a DSL will be phased out. Therefore,
we asked participants to answer questions to their best ability even
if their DSL was not at the EOL. We emphasise that these answers
are a mixture of actual experiences and estimates.

Results.Many DSLs are long term software projects that remain
in use a decade after their introduction (Figure 10). Of the surveyed
DSL, 53% of authors did not consider their DSL project to have
reached its EOL. These DSLs have an average age of 12 years, and
several of them estimate that they will remain in use for 5, 10, 15, or
more years. 12 DSLs that had reached their EOL were commonly
retired either due to changes in their domain, better tooling, or
adoption by other languages (Figure 4). DSLs that were not phased
out yet answered similarly for the expected reasons of their retire-
ment with a focus on new languages or tooling replacing the DSL.

Finally, we asked survey participants whether there were any
efforts that the DSL authors would have taken with the power of
hindsight (Table 5). While this question does not investigate fea-
tures of the surveyed DSL as such, we found it relevant to examine
whether DSL creators had any prevalent lessons learned. Besides
the authors who answered they would have made no efforts look-
ing back, the answers highlight five different aspects. First, it is
inevitable to have such efforts that they would have made. Sec-
ond, creators should remember activities for attracting users, either

0% 20% 40% 60% 80% 100%

0 years

1 year

2 years

3 years

4 years

5 years

6 years

Phased out

Not EOL

Unknown Status

Life span of DSLs (28 answers)

Figure 10: The life span of the surveyed DSLs. The find-
ings stem from the answers to two different questionswhere
some participants stated their DSL where phased out with-
out mentioning a specific year.

Table 4:What was, or will be, the primary reason for the DSL
to have been phased out? (Best estimate if in the future) (21
answers)

Ecosystem
changes
(2 answers)

• Dependent on obsolete infrastructure.
• Software base and applications moved on, and
we lacked resources to keep the DSL updated.

Replaced by
other
language or
tooling.
(7 answers)

• Replaced by the SQL standard, making a stan-
dalone DSL somewhat redundant.
• Replaced by new tooling
• Better database design and centralised solutions
mooted the problem being solved.

Domain
changes
(3 answers)

• Domain itself phased out. The language was
reborn in new domains.
• Important changes in the domain.

Not EOL
(2 answers)

• This DSL is not EOL.

Lack of
users
(2 answers)

• Lack of continued commercial support, a need
to rewrite the systems based on it, and lack of
available expertise if usage declines.

Other
(2 answers)

• Development team has moved to other projects.

through promotion or internal usage. Third, there are different
ways of improving the development process. Such improvements
are considered both from a process perspective and an architecture
perspective. Fourth, the application domain can be difficult to work
in, and creators can consider switching to other application do-
mains. Fifth, case studies during development could have improved
the language, but creators were unable to do so due to case studies

116 APPENDIX D. SURVEY ON ESTABLISHED PRACTICES

MODELS ’22, October 23–28, 2022, Montreal, Canada Holger Stadel Borum and Christoph Seidl

Table 5: Looking back, are there any efforts that you would have taken during any of the previous phases? Why did you not
take them at the time? (23 answers)

Usage and
promotion
(4 answers)

• We considered but ultimately chose not to follow to exchange hardcoded specifications for their DSL counterparts.
However, the language and implementation are not sufficiently developed to support all specifications.
• Promoting its use. This was not done because of the DSL’s academic character and limited resources.

Usability
(1 answer)

•Make it more user friendly: make the compilation more robust to failure for various corner cases; improve error reporting
of syntactic/semantic errors.

Improve de-
velopment
(3 answers)

• Application context, domain application, and language evolved separately. It is possible that we could have unified them
from the start with a bottom-up approach with nothing working end-to-end along the way.
• Waited longer before committing to a DSL; rather, go for an opinionated library in a suitably flexible host language first.
•We should have looked sooner for a fundamentally simpler architecture for the underlying system instead of assuming
that it was fundamental.

Application
domain
(2 answers)

• The bottleneck for use was never the language itself but state of the art in the domain systems it targeted.
•We could have focused more on a broader domain earlier, and we could have pushed on off the shelf reusable components
earlier. We could have focused more on fault tolerance, including better support for lower performance applications.

Use case
studies
(2 answers)

• Developing larger examples in the language would have helped. Doing that while developing the language and preparing
the paper as part of a large team was challenging at the time.
• Consider more complex use cases during the DSL specification; impossible due to lack of human resources.

Inevitable
(2 answers)

• In a language that develops incrementally, at certain points, one is likely to wish one had done some things differently,
but they can’t be redone on account of maintaining backward compatibility.
• One always has a few regrets: features hastily added to the language early on, which now seem redundant or awkward,
for example, or implementation decisions that made the compiler code-base harder to maintain decades later on. But
basically, no, I wouldn’t do much of it differently if offered the chance.

Negative (5
answers)

• No

Other (1
answer)

• While interesting, DSL development is not my primary research field.

being a labour intensive endeavour.

Discussion.We find that while a DSL serves as an alternative to
using a GPL, it may be so successful that it is adopted by GPLs
or other tools. This adoption is explicitly mentioned by three re-
spondents, and it is also mentioned implicitly by three others since
they expect their DSL to become obsolete when more mainstream
tools or languages adopt the functionality the DSL provides. That
is, there is a dual movement of ideas between DSLs and in GPLs or
tools in that DSLs are created due to inefficiency in GPLs or tools,
which in turn may evolve seeing the utility demonstrated by the
DSL.

While we identified 8 promotion to be an important aspect of
launching a DSL, the retrospective answers indicate that promotion
may be a somewhat neglected activity. We also consider what DSL
authors did not mention as problems retrospectively. While we
found that evolution is important for the success of many DSLs 11 ,
only three answers relate directly handling evolution differently,
not counting those that discuss looking to expand the DSLs’ domain.
Likewise, while four answers consider usability and use cases of
the DSL, there are no explicit regrets as to how users were involved
in the design process. 13 These findings indicate that current ways
of having user involvement in the design process are not causing
dissatisfaction among DSL creators.

4 RECOMMENDATIONS
Based on the insights gained in our survey, we have six recommen-
dations for DSL practitioners, educators, and the field in general. In
doing so, we seek a balance between, on the one hand, recognising
the value of the established practices mentioned by DSL authors
and, on the other hand, challenging these practices.

R1: Explore practices for expert evaluation ofDSLs.We found
that expert evaluation is a widespread evaluation technique used
by 57% of respondents 2 . From this result, we conjectured that
the method of expert evaluation has a significant impact on the
design of many DSLs 5 . However, expert evaluation is susceptible
to the profile of the evaluating expert and how the expert evaluates
the language. While we also found that 22% of respondents use
heuristics evaluation, there still is a noticeable gap in unexplored
practices. Therefore, we recommend further investigations into
practices on expert evaluation of DSLs with two purposes: First,
academia should explore how expert evaluation is performed, by
whom, using which artefacts, and to what effect. One should com-
pare the effectiveness of using expert evaluation against comparable
techniques. Second, due to the widespread use of the techniques,
we find a need for academia and industry to establish guidelines
for practitioners jointly. We hypothesise that the guidelines should

117

Survey of Established Practices in the Life Cycle of Domain-Specific Languages MODELS ’22, October 23–28, 2022, Montreal, Canada

be low-cost and easily approachable if they are to be followed.

R2: Guidelines for the level and kind of user involvement.
We find that DSL creators have vastly different approaches to the
kind and level of user involvement during DSL design 6 . The user
involvement ranges from none at all, to requirement elicitation, to
use-case design, to language evaluation, to users being part of the
design team. Although we found no indication of dissatisfaction
regarding user involvement 13 , we still find a need for guidelines
for how and when users should be involved in a specific design
project. We hypothesised that there could be a correlation between
the level of user involvement and the programming experience of
users but found none 7 . Still, we believe that the prescriptions
should be based on the design context, such as who is the target
user, how available are users, what kind of tasks are they to perform,
and how complex is the DSL.

R3: Consider the purpose of heuristic design principles. We
found that heuristic evaluation is used only by 22% of survey partic-
ipants 3 . Still, heuristic design principles are valuable knowledge
since they are the expressed experience of experts within the field.
We hypothesise that the utility of heuristic design principles could
increase if they allow for more lightweight evaluation activities or
can be applied generatively in the design process. Therefore, we
recommend that the creators of heuristic design guidelines consider
how and when these guidelines should be used in DSL design.

R4: Use the flexibility allowed by the project.We find that DSL
authors report many different ways of being flexible or pragmatic
in their approach to DSL design. To mention three examples: First,
authors found it necessary to introduce breaking updates to their
languages. One respondent reported that this was necessary to
accommodate a shift in research focus to a different underlying
technology. Second, authors found new application domains for
their DSL project. One respondent reported that their DSL became
more successful by widening the range of applicable application
domains. Third, authors report major improvements made to the
DSL and its launch. These improvements come in many forms, such
as performance, usability, and modularity. From these insights, we
recommend that DSL practitioners should use the flexibility allowed
by their project as opposed to being dogmatic in their development
approach.

R5: Consider evolution as an intrinsic part of DSL creation.
We found that evolution is a part of most DSLs’ life cycles and that
this evolution is important for the success of many DSLs 9 11 .
We have already mentioned some examples of the importance of
evolution in recommendation R4. While this finding may not be
surprising for many practitioners and scholars within the field, we
find it essential to substantiate this claim empirically. From this
finding, we have a three-fold recommendation. First, creators of
DSLs should consider evolution as an aspect of DSL creation. Sec-
ond, tool creators should continue developing tools with dedicated
support for managing the evolution of language specifications and
artefacts. Third, educators, methods, and textbooks on DSL design
should treat evolution with utmost importance.

R6: Consider EOL through adoption a success criterion. We
found that DSL authors report that their DSL reached (or will reach)
EOL due to the DSL’s functionality being adopted by tools or other
languages 12 . One example is a language that has become obsolete
since its functionality was incorporated into a mainstream and
widely used standard. While the EOL of a DSL through being ab-
sorbed into another language or tool is commonly viewed as defeat,
we recommend declaring this as one potential success. Further-
more, we recommend using the means of language engineering
for the DSL to influence standard concepts and constructs used to
represent the domain.

5 THREATS TO VALIDITY
We have mitigated threats to validity originating from our sampling
method and our way of conducting the questionnaire.

Internal Validity relates to the degree to which we can trust
the findings within our survey. There is an internal validity risk
of not measuring the intended phenomenon when conducting a
questionnaire. We mitigated this risk of measuring something un-
intended in four ways. First, we presented and discussed both the
questionnaire’s purpose and questions with a colleague. Second,
we conducted a blind pilot run of the study with another colleague
and subsequently discussed their understanding of the asked ques-
tions. Third, for all answers that did not solely establish a fact, we
allowed participants to submit free-text answers allowing them to
answer a question differently than we had intended. Fourth, in our
presentation, we are transparent in what interpretation we have
made.

Another risk to internal validity is that there is insufficient data
for the claims made in our findings. Our primary mitigation of this
risk was to obtain a sample of sufficient size so as to be less suscepti-
ble to noise. Also, while we do not find any correlation, we find the
sample size to be adequate for our chosen method. We found that
including extra submissions did not change our statistical findings
but did provide valuable examples.

We considered excluding DSLs introduced before 1990 to avoid
too diverse subject DSLs since this might threaten internal validity.
However, old DSLs should be included to increase internal valid-
ity since an exclusion criterion comes with the following three
methodological problems. First, the survey seeks to investigate the
entire life cycle of DSLs, meaning that older DSLs are relevant for
the survey. Second, using the exclusion criterion, we would have
presupposed the lifetime and life cycle of DSLs. Third, if an old DSL
is still in use, then it is at least as interesting as a more modern one
when examining the current state of DSLs’ life cycle.

External Validity relates to the degree to which we should
believe our findings to be transferable. From this perspective, the
most severe threat is the application domain of the surveyed do-
main. We recognise that the chosen collections of DSLs to sample
from are biased towards DSLs within finance and robotics domains.
Therefore, our survey has the highest degree of external validity
when generalising to other DSLs within these and similar domains.

118 APPENDIX D. SURVEY ON ESTABLISHED PRACTICES

MODELS ’22, October 23–28, 2022, Montreal, Canada Holger Stadel Borum and Christoph Seidl

Still, we have mitigated the influence of the bias on our findings by
avoiding questions directly influenced by the domain, such as tool-
ing, application context, general kinds of domain tasks, monetary
costs, and underlying programming paradigms.

Another potential bias in the sample is that the survey sample
does not represent the actual population of DSLs. We recognise
that our sampling method is biased towards receiving answers from
newer publications for amultitude of reasons, e.g., authors changing
email addresses, authors retiring, DSL projects retiring, companies
dissolving, or newer authors being more excited about their work
being noticed. Therefore, we present the age to characterise the DSL
sample to make the bias transparent. We had mitigation measures
seeking a sample as representative as possible. First, we have sought
multiple channels of contacting all invited authors. Second, to avoid
participants getting stuck on non-applicable questions or questions
participants could not answer, we allowed skipping questions. We
deemed that older DSLs had a higher risk of encountering these
kinds of problems. Third, to accommodate participants who did
not want to submit data on the third-party platform, we allowed
participants to email their answers.

6 RELATEDWORK
Several studies seek to investigate the current state of different DSL
topics through meta-studies of the field. These studies, which we de-
scribe below, use three different sources to obtain information. First,
zoo analysis considers software itself as the primary source of infor-
mation. Second, publication analysis considers publications as the
primary source of information. Third, questionnaire analysis uses
self-reports from questionnaire recipients as the primary source of
information. Both zoo analysis and publication analysis come with
strengths and weaknesses compared to the questionnaire approach.
Zoo analysis does not rely on interpreting DSL authors’ possibly
biased reporting, but they cannot answer development-oriented
research questions. Publication analysis may answer development-
oriented research questions but relies on authors’ prior reports on
areas of interest and can only answer questions to the degree that
report uniformity and granularity allows.

Using zoo analysis, Dragule et al. survey DSLs for robotic mis-
sions [15]. They identify and categorise 30 robotic mission program-
ming environments and present their design space through a feature
model of the environments. Similarly, Kapre and Bayliss [22] sur-
vey 9 DSLs used for high-performance FPGA computing. Schauss
et al. create a chrestomathy of DSL implementations to teach im-
plementation techniques [34]. They subsequently conduct a pure
zoo analysis of their implementation to identify implementation
variations of interest. For this purpose, several DSL zoos are open
for future zoo analysis [8, 9].

Using publication analysis, Deursen et al. [39], Marnik et
al. [28], and Oliveira et al. [31] all made early investigations into
DSL development and implementation methodologies by reviewing
selected publications. More recently, Nascimento et al. [29] and
Kosar et al. [24] have conducted systematic mapping studies to
investigate research within the field. Of relevance to our study,

Kosar et al. find that much research proposes new techniques sup-
porting different development phases with an overwhelming focus
on design, implementation, and domain analysis, with very few
considering maintenance and validation. Iung et al. [21] conducted
a similar systematic mapping study for tools being used by DSL
creators. On the same topic, Erdweg et al. [16] evaluate and com-
pares language workbenches.

Systematic literature reviews are also used as a form of publi-
cation analysis. Like our paper, Poltronieri et al. investigate how
DSL authors evaluate their DSLs’ [33] and create a taxonomy for
evaluation on this basis. In an updated review [32], they find us-
ability evaluation to be the most often used evaluation technique.
However, they also find that even after applying a quality assess-
ment filter only, 13 out of 21 describe their used technique. This
finding points to a methodological difficulty in examining some
topics through publication analysis. As such, our method can be
seen as a different angle of attack with its own threats to validity.

Questionnaire analyses have been used to explore the broader
topic of model-based engineering. For example, Broy et al. [14] in-
vestigate the benefit of using model-based practices within the car
industry, Badreddin et al. [11] investigate trends in software prac-
titioners’ use of model practices, and Liebel et al. [26] investigate
students’ perception of modelling tools and UML.

7 CONCLUSION
In this paper, we have presented a survey to establish current prac-
tices in managing the life cycle of DSLs through a questionnaire.
The 30 answers from the authors of DSLs provide us with several
findings relating to the DSL management phases of the design and
development, launch, evolution, and end of life. Among others, we
find that a) there is no established practice as to the level of user
involvement during development, b) DSL authors find demonstrat-
ing the merits of a DSL is important during launch, c) handling
evolution correctly is important for the success of a DSL, and d) that
it is common for DSLs to be replaced by other tooling or languages.
Based on our findings, we have presented six recommendations
relating to different phases of a DSL’s life cycle. Among others, we
recommend a) further explorations of practices for expert evalua-
tion, b) that DSL practitioners are flexible in their approach to DSL
development, and c) that DSL evolution as a topic is treated with
utmost importance both in education, industry, and academia. For
future work, we propose that an open research database is created
where DSL creators register and update information on their DSL.
Such a database would provide the community with high-quality
information and allow more process-oriented research but require
a method for deciding what the database should contain.

8 ACKNOWLEDGEMENT
We thank Innovation Fund Denmark (7076-00029B) for funding, all
questionnaire recipients for their time and contributions, and Peter
Sestoft for invisioning and supervising the work.

119

Survey of Established Practices in the Life Cycle of Domain-Specific Languages MODELS ’22, October 23–28, 2022, Montreal, Canada

REFERENCES
[1] 1999. DSL ’99: Proceedings of the 2nd Conference on Domain-Specific Languages.

Association for Computing Machinery, New York, NY, USA. https://doi.org/10.
1145/331960

[2] 2013. FPCDSL ’13: Proceedings of the 1st Annual Workshop on Functional Pro-
gramming Concepts in Domain-Specific Languages. Association for Computing
Machinery, New York, NY, USA. https://doi.org/10.1145/2505351

[3] 2016. RWDSL ’16: Proceedings of the 1st International Workshop on Real World
Domain Specific Languages. Association for Computing Machinery, New York,
NY, USA. https://doi.org/10.1145/2889420

[4] 2017. RWDSL17: Proceedings of the 2nd International Workshop on Real World
Domain Specific Languages. Association for Computing Machinery, New York,
NY, USA. https://doi.org/10.1145/3039895

[5] 2018. Category:Domain-specific programming languages. https://en.wikipedia.
org/w/index.php?title=Category:Domain-specific_programming_languages&
oldid=858848463 accessed 1 May 2021.

[6] 2018. RWDSL2018: Proceedings of the Real World Domain Specific Languages
Workshop 2018. Association for Computing Machinery, New York, NY, USA.
https://doi.org/10.1145/3183895

[7] 2019. RWDSL ’19: Proceedings of the 4th ACM International Workshop on Real
World Domain Specific Languages. Association for Computing Machinery, New
York, NY, USA. https://doi.org/10.1145/3300111

[8] 2020. DevBoost/EMFText-Zoo. https://github.com/DevBoost/EMFText-Zoo
original-date: 2012-08-07T07:22:54Z.

[9] 2020. Index – Robotics DSL Zoo. https://corlab.github.io/dslzoo/all.html accessed
1 May 2021.

[10] 2021. Financial Domain-Specific Language Listing and Resources. http://www.
dslfin.org/resources.html accessed 1 May 2021.

[11] Omar Badreddin, Rahad Khandoker, Andrew Forward, Omar Masmali, and Tim-
othy C. Lethbridge. 2018. A Decade of Software Design and Modeling: A Survey
to Uncover Trends of the Practice. In Proceedings of the 21th ACM/IEEE Inter-
national Conference on Model Driven Engineering Languages and Systems. ACM,
Copenhagen Denmark, 245–255. https://doi.org/10.1145/3239372.3239389

[12] Ankica Barišić, João Cambeiro, Vasco Amaral, Miguel Goulão, and Tarquínio
Mota. 2018. Leveraging teenagers feedback in the development of a domain-
specific language: the case of programming low-cost robots. In Proceedings of the
33rd Annual ACM Symposium on Applied Computing. ACM, Pau France, 1221–
1229. https://doi.org/10.1145/3167132.3167264

[13] Holger Borum. 2022. Artefact: Survey of Established Practices in the Life Cycle
of Domain-Specific Languages. https://github.com/hborum/models-22-survey
original-date: 2022-07-22T06:26:06Z.

[14] Manfred Broy, Sascha Kirstan, Helmut Krcmar, and Bernhard Schätz. 2012. What
is the Benefit of a Model-Based Design of Embedded Software Systems in the Car
Industry? https://doi.org/10.4018/978-1-61350-438-3.ch013 ISBN: 9781613504383
Library Catalog: www.igi-global.com Pages: 343-369 Publisher: IGI Global.

[15] Swaib Dragule, Sergio García Gonzalo, Thorsten Berger, and Patrizio Pelliccione.
2021. Languages for Specifying Missions of Robotic Applications. In Software
Engineering for Robotics, Ana Cavalcanti, Brijesh Dongol, Rob Hierons, Jon Tim-
mis, and Jim Woodcock (Eds.). Springer International Publishing, Cham, 377–411.
https://doi.org/10.1007/978-3-030-66494-7_12

[16] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Laurence Tratt, Remi
Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly, Alex
Loh, Gabriël Konat, Pedro J. Molina, Martin Palatnik, Risto Pohjonen, Eugen
Schindler, Klemens Schindler, Riccardo Solmi, Vlad Vergu, Eelco Visser, Kevin
van der Vlist, Guido Wachsmuth, and Jimi van der Woning. 2015. Evaluating
and comparing language workbenches: Existing results and benchmarks for
the future. Computer Languages, Systems & Structures 44 (Dec. 2015), 24–47.
https://doi.org/10.1016/j.cl.2015.08.007

[17] Marco Frigerio, Jonas Buchli, and Darwin G. Caldwell. 2013. A Domain Specific
Language for kinematic models and fast implementations of robot dynamics
algorithms. arXiv:1301.7190 [cs] (Jan. 2013). http://arxiv.org/abs/1301.7190 arXiv:
1301.7190.

[18] Ruediger Gad. 2017. Evolution of a Stream Transformation DSL. In Proceedings
of the 2nd International Workshop on Real World Domain Specific Languages -
RWDSL17. ACM Press, Austin, TX, USA, 1–10. https://doi.org/10.1145/3039895.
3039897

[19] Felienne Hermans, Martin Pinzger, and Arie van Deursen. 2009. Domain-Specific
Languages in Practice: A User Study on the Success Factors. In Model Driven
Engineering Languages and Systems (Lecture Notes in Computer Science), Andy
Schürr and Bran Selic (Eds.). Springer, Berlin, Heidelberg, 423–437. https://doi.
org/10.1007/978-3-642-04425-0_33

[20] Nico Hochgeschwender, Sven Schneider, Holger Voos, and Gerhard K Kraet-
zschmar. 2014. Declarative Specification of Robot Perception Architectures.
(2014), 12.

[21] Aníbal Iung, João Carbonell, Luciano Marchezan, Elder Rodrigues, Maicon
Bernardino, Fabio Paulo Basso, and Bruno Medeiros. 2020. Systematic mapping

study on domain-specific language development tools. Empirical Software Engi-
neering 25, 5 (Sept. 2020), 4205–4249. https://doi.org/10.1007/s10664-020-09872-1

[22] Nachiket Kapre and Samuel Bayliss. 2016. Survey of domain-specific languages
for FPGA computing. In 2016 26th International Conference on Field Programmable
Logic and Applications (FPL). 1–12. https://doi.org/10.1109/FPL.2016.7577380
ISSN: 1946-1488.

[23] Mika Karaila. 2009. Evolution of a Domain Specific Language and its engineering
environment - Lehman’s laws revisited. (2009), 7.

[24] Tomaž Kosar, Sudev Bohra, andMarjanMernik. 2016. Domain-Specific Languages:
A Systematic Mapping Study. Information and Software Technology 71 (March
2016), 77–91. https://doi.org/10.1016/j.infsof.2015.11.001

[25] J.R. Lewis and B. Martin. 2003. Cryptol: high assurance, retargetable crypto
development and validation. In IEEE Military Communications Conference, 2003.
MILCOM 2003., Vol. 2. 820–825 Vol.2. https://doi.org/10.1109/MILCOM.2003.
1290218

[26] Grischa Liebel, Omar Badreddin, and Rogardt Heldal. 2017. Model Driven Soft-
ware Engineering in Education: A Multi-Case Study on Perception of Tools and
UML. In 2017 IEEE 30th Conference on Software Engineering Education and Training
(CSEE T). 124–133. https://doi.org/10.1109/CSEET.2017.29 ISSN: 2377-570X.

[27] Sandra Macià, Sergi Mateo, Pedro J. Martínez-Ferrer, Vicenç Beltran, Daniel
Mira, and Eduard Ayguadé. 2018. Saiph: Towards a DSL for High-Performance
Computational Fluid Dynamics. In Proceedings of the Real World Domain Specific
Languages Workshop 2018 (RWDSL2018). Association for Computing Machinery,
Vienna, Austria, 1–10. https://doi.org/10.1145/3183895.3183896

[28] Marjan Mernik, Jan Heering, and Anthony M. Sloane. 2005. When and how to
develop domain-specific languages. Comput. Surveys 37, 4 (Dec. 2005), 316–344.
https://doi.org/10.1145/1118890.1118892

[29] Leandro Nascimento, Daniel Viana, Paulo Neto, Dhiego Martins, Vinicius Gar-
cia, and Silvio Meira. 2012. A Systematic Mapping Study on Domain-Specific
Languages.

[30] Arne Nordmann, Nico Hochgeschwender, and Sebastian Wrede. 2014. A Sur-
vey on Domain-Specific Languages in Robotics. In Simulation, Modeling, and
Programming for Autonomous Robots (Lecture Notes in Computer Science), Da-
vide Brugali, Jan F. Broenink, Torsten Kroeger, and Bruce A. MacDonald (Eds.).
Springer International Publishing, Cham, 195–206. https://doi.org/10.1007/978-
3-319-11900-7_17

[31] Nuno Oliveira, Maria João Pereira, Pedro Rangel Henriques, and Daniela Cruz.
2009. Domain specific languages: a theoretical survey. INForum’09 - Simpósio
de Informática (2009). https://bibliotecadigital.ipb.pt/handle/10198/1192 Ac-
cepted: 2009-10-01T12:52:37Z Publisher: Faculdade de Ciências da Universidade
de Lisboa.

[32] Ildevana Poltronieri, Allan Christopher Pedroso, Avelino Francisco Zorzo, Maicon
Bernardino, and Marcia de Borba Campos. 2021. Is Usability Evaluation of DSL
Still a Trending Topic? In Human-Computer Interaction. Theory, Methods and
Tools, Masaaki Kurosu (Ed.). Vol. 12762. Springer International Publishing, Cham,
299–317. https://doi.org/10.1007/978-3-030-78462-1_23 Series Title: Lecture
Notes in Computer Science.

[33] Ildevana Poltronieri, Avelino Francisco Zorzo, Maicon Bernardino, and Marcia
de Borba Campos. 2018. Usa-DSL: usability evaluation framework for domain-
specific languages. In Proceedings of the 33rd Annual ACM Symposium on Applied
Computing (SAC ’18). Association for Computing Machinery, Pau, France, 2013–
2021. https://doi.org/10.1145/3167132.3167348

[34] Simon Schauss, Ralf Lämmel, Johannes Härtel, Marcel Heinz, Kevin Klein, Lukas
Härtel, and Thorsten Berger. 2017. A chrestomathy of DSL implementations. In
Proceedings of the 10th ACM SIGPLAN International Conference on Software Lan-
guage Engineering (SLE 2017). Association for Computing Machinery, Vancouver,
BC, Canada, 103–114. https://doi.org/10.1145/3136014.3136038

[35] Mathijs Schuts, Marco Alonso, and Jozef Hooman. 2021. Industrial experiences
with the evolution of a DSL. In Proceedings of the 18th ACM SIGPLAN International
Workshop on Domain-Specific Modeling. Association for Computing Machinery,
New York, NY, USA, 21–30. https://doi.org/10.1145/3486603.3486774

[36] KrystaM. Svore, AlanGeller, Matthias Troyer, JohnAzariah, Christopher Granade,
Bettina Heim, Vadym Kliuchnikov, Mariia Mykhailova, Andres Paz, and Martin
Roetteler. 2018. Q#: Enabling scalable quantum computing and development
with a high-level domain-specific language. Proceedings of the Real World Domain
Specific Languages Workshop 2018 on - RWDSL2018 (2018), 1–10. https://doi.org/
10.1145/3183895.3183901 arXiv: 1803.00652.

[37] Marcel van Amstel, Mark van den Brand, and Luc Engelen. 2010. An exercise
in iterative domain-specific language design?. In Proceedings of the Joint ERCIM
Workshop on Software Evolution (EVOL) and InternationalWorkshop on Principles of
Software Evolution (IWPSE) on - IWPSE-EVOL ’10. ACM Press, Antwerp, Belgium,
48. https://doi.org/10.1145/1862372.1862386

[38] Tijs van der Storm and Sebastian Erdweg. 2015. Proceedings of the 3rd Work-
shop on Domain-Specific Language Design and Implementation (DSLDI 2015).
arXiv:1508.03536 [cs] (Aug. 2015). http://arxiv.org/abs/1508.03536 arXiv:
1508.03536.

[39] Arie van Deursen, Paul Klint, and Joost Visser. 2000. Domain-specific languages:
an annotated bibliography. ACM SIGPLAN Notices 35, 6 (June 2000), 26–36.

120 APPENDIX D. SURVEY ON ESTABLISHED PRACTICES

MODELS ’22, October 23–28, 2022, Montreal, Canada Holger Stadel Borum and Christoph Seidl

https://doi.org/10.1145/352029.352035
[40] Markus Voelter, Bernd Kolb, Klaus Birken, Federico Tomassetti, Patrick Alff,

Laurent Wiart, Andreas Wortmann, and Arne Nordmann. 2019. Using lan-
guage workbenches and domain-specific languages for safety-critical software
development. Software & Systems Modeling 18, 4 (Aug. 2019), 2507–2530.

https://doi.org/10.1007/s10270-018-0679-0
[41] DavidWile. 2004. Lessons learned from real DSL experiments. Science of Computer

Programming 51, 3 (June 2004), 265–290. https://doi.org/10.1016/j.scico.2003.12.
006

121

Appendix E

Static Secrecy Guarantees for
Dynamic Condition Response
Graphs

122

Static Secrecy Guarantees for
Dynamic Condition Response Graphs

(Working Paper)

Holger Stadel Borum Mads Frederik Madsen Søren Debois

A Dynamic Condition Response (DCR) graph models a business process at a
high abstraction level. In a distributed setup, A DCR graph lets adversarial
actors cooperate in a well-defined, explicit, agreed-upon business process.
In this form of cooperation, an actor must leak some information on what
activities they perform. However, it is non-obvious to figure out exactly
what information is leaked through cooperation. Still, an actor may wish
that internal choices in conducting activities remain secret to other actors.
Therefore, an actor should be able to reason about what information they
leak when agreeing to cooperate in a business process. While an exponential
model transformation can be used to analyse secrecy, we seek to leverage the
high abstraction level of DCR graphs to obtain a more computational feasible
approximation of secrecy. In this paper, we present our ongoing work on this
secrecy approximation that is inspired by information flow analysis.

1 Introduction

Actors with conflicting interests can use business process modelling to facilitate cooperation
in a well-defined agreed-upon process [1]. For example, a client and a contractor can define
their business process using a Dynamic Condition Response (DCR) graph to ensure there is
no ambiguity about who is allowed to (or must) perform an activity. Before participating in a
business process, an actor may wish to ensure that they do not leak information on their internal
choice of activities that could be used against them by an adversarial collaborator. Therefore,
we seek an approximation of secrecy in DCR graphs that is both sound and efficient while
being complete enough to be useful. Such approximation could also be used in non-adversarial
multi-actor collaboration where regulations such as GDPR require enforcing privacy policies.

The contributions of this working paper are:

� A formalisation of what it means to approximate secrecy in DCR executions.

� A presentation of our static secrecy approximation of DCR graphs in its current state.

� The definition of minimal runs in DCR graphs and a proof showing that minimal runs are
a sound approximation of runs. We believe the concept of minimal runs is a stepping stone
toward proving our approximation is sound.

1

123

Furthermore, in the final paper, we seek to:

� Prove the secrecy approximation to be sound, which may require some adjustments to the
approximation.

� Improve the secrecy approximation to be more complete, i.e., consider condition relations
and give fewer false negatives when analysing secrecy.

2 Notation

� P() denotes the powerset function.

� ∈ denotes a) set membership, b) subformula membership, e.g., > ∈ > ∨⊥ and > 6∈ ⊥ ∧ ⊥,
and c) sequence membership, e.g., A ∈ C ·A and A 6∈ C ·D.

3 Background

In the background section, we focus on presenting the concept of DCR graphs. We will also later
use a concept of knowledge similar to the modal logic described in [2] but present it in a later
section. First, we present a formal definition of DCR graphs and their semantics. Second, we
describe what it means for a DCR graph to be distributed among different actors. Third, we
define what we mean for an actor to observe the behaviour of a DCR graph.

Definition 1 (Dynamic Condition Response (DCR) graphs [3]). A DCR graph is a
tuple G = (E, M, R, L, l), where

� E is a set of events.

� M = (MEx, MIn, MPe, MEn) ∈ P(E)4 is the marking of the graph. Each of the four sets
that constitutes a marking denotes, respectively, the events that are executed,
included, pending, and enabled.

� R = (→•, •→,→+,→÷) is the relations of the graph consisting, respectively, of the
conditions, responses, includes and excludes, where all relations are binary event
relations, i.e., in E2.

� L is the labels of the graph.

� l is the labelling function of a graph, mapping events to labels: l : E→ L.

We denote the set of the possible markings in the graph by M (G) ⊆ P(E)4. For a given event e,
we denote the set of events it has outgoing include relations to, i.e., {e′ ∈ E | e→+e′}, as e→+.
Similarly, we use →+e to denote the set of events e has ingoing include relations from. We use
the same notation for the other kinds of relations →•, •→, and →÷.

Definition 2 (Semantics of a DCR graph as a labelled transitions systems [4]). Let
G = (E, M, R) be a DCR graph (L and l omitted). The corresponding labelled transition
system (LTS) is the tuple T (G) = (M (G), M, E,→), where → ⊆M (G)× E×M (G) is

the transition relation given by M
e−→ M′ s.t.

2

124 APPENDIX E. STATIC SECRECY GUARANTEES

� M = (MEx, MIn, MPe, MEn) is the marking before the transition

� e ∈ MEn

� M′ = (M′Ex, M
′
Pe, M

′
In, M

′
En) is the marking after the transition, where

◦ M′Ex = MEx ∪ {e}
◦ M′In = (MIn ∪ e→+) \ e→÷
◦ M′Pe = (MPe \ {e}) ∪ e•→
◦ M′En = {e′ ∈ M′In | (→•e′ ∩ M′In) ⊆ M′Ex}

We call a sequence of transitions in an LTS for a run r and denote all runs of T (G) by R(G).
When G is clear from the context, we denote its set of runs by R. For a set of runs R, we denote
their final markings by M(R).

Definition 3 (DCR distribution). A DCR graph can be distributed among a non-empty
set of agents Act s.t. each agent can observe and execute a subset of E. We denote agent
a’s set of events by Ea. For completeness, we require that the all events is owned by an
agent, i.e.,

⋃
a∈Act Ea = E.

Definition 4 (Observation on a run). An actor a can observe a transition t using some
observation function δ(Ea, t). The actor can observe a run by lifting δ to ∆(Ea, r) by
applying δ pointwise to each transition in r and removing any element from the sequence
if it is a chosen empty observation value, e.g., ∅ or ε.

In Definition 9, we define the concrete observation function used in this paper. For now, we
remain with an unspecified general one. The observation function is both used to describe
what an actor may observe and what an actor may not observe. We say that two runs are
indistinguishable to an actor iff there is no observational differences between them.

Definition 5 (Indistinguishability of runs). Two runs r, r′ ∈ R are indistinguishable to
agent a iff

∆(Ea, r) = ∆(Ea, r
′)

By [r]a, we denote the equivalence class of runs indistinguishable from r to a in R. By Rva,
we denote the set of all equivalent classes induced on R by ∆, i.e., Rva = {[r]a | r ∈ R}. The
indistinguishability relation of runs is trivially an equivalence relation by equality of sequences of
sets.

4 Knowledge in Distributed DCR Graphs

We will work with two knowledge perspectives appearing when actors cooperate in DCR graphs.
First, state knowledge describes the properties of the static image of the system in terms of
markings. Second, action knowledge describes the properties of the changes to the system in
terms of transitions. There is a duality between these knowledge perspectives in that if one
knows the changes that have occurred in a system, then one also knows something about the

3

125

current state of the system. We need these two perspectives precisely because of this duality in
that we will use an actor’s action knowledge to describe their state knowledge.

Definition 6 (Knowledge atoms). Let e be an event in E then knowledge atoms and
their meaning for the action and state perspective are defined as follows:

action atoms state atoms
e÷ has been made is excluded
e+ has been made is included
e! has been made is pending
eX has been made is executed
e◦ has been made is enabled
e• has been made is disabled
e¬! has been made is not pending
e¬X has been made is not executed

We use σ and e∗ as meta-variables to range over action and state atoms.

Using these knowledge atoms, we now define state knowledge and action knowledge. State
knowledge is defined by the function ρ(), which returns a set of state atoms that characterises
the marking as a static image. The set contains four state atoms per event that describes whether
the event is contained in (MEx, MIn, MPe, MEn).

Definition 7 (State knowledge in a marking). Given a marking M of some DCR graph,
let the state knowledge be:

ρ(M) ,
⋃

e∈E

{
e+ e ∈ MIn

e÷ o.w.
,

{
eX e ∈ MEx

e¬X o.w.
,

{
e! e ∈ MPe

e¬! o.w.
,

{
e◦ e ∈ MEn

e• o.w.

We lift ρ() to P() that works on a set of markings M by applying ρ to each marking. That is:
P(M) = {ρ(M) | M ∈M}.

From an action perspective, knowledge is defined by the function δ() that characterises an LTS
transition with an action atom for each marking change occurring in the transition.

Definition 8 (Action knowledge in a transition). Given a transition M
e′−→ M′ let its

action knowledge be:

δ(M
e′−→ M′) , {e+ | e ∈ (M′In \ MIn)} ∪ {e÷ | e ∈ (MIn \ M′In)}

∪ {e! | e ∈ (M′Pe \ MPe)} ∪ {e¬! | e ∈ (MPe \ M′Pe)}
∪ {e◦ | e ∈ (M′En \ MEn)} ∪ {e• | e ∈ (MEn \ M′En)}
∪ {eX | e ∈ (M′Ex \ MEx)}

We are now ready to define the specific observation function we use in this paper instead of the
general used in Definition 4. We say that an actor may observe all the changes that happen to
their events in a transition as a set of action atoms. Therefore, the empty set ∅ is the special
empty observation of the observation function.

4

126 APPENDIX E. STATIC SECRECY GUARANTEES

Definition 9 (Observation function). Given a transition t and an observation set Ea,
let the observation of a transition be:

δ(Ea, t) ,
⋃

e∈Ea
{e ∗ | e∗ ∈ δ(t)}

Definition 10 (Collapsed run observation). For an observation set Ea and a run r, we
use ∇ to collapse a sequence of knowledge in a run observation by

∇(Ea, r) =
⋃

t∈r
δ(Ea, t)

By R∇, we denote a set of runs collapsed with ∇ applied to each run individual run that is
R∇ = {∇(E, r) | r ∈ R}. By Rva

∇ , we denote the equivalence class of R collapsed with ∇ that is
Rva
∇ = {{∇(E, r′) | r′ ∈ R′} | R′ ∈ Rva}. We use w as a variable for the members of R∇ and

Rva
∇ with the mnemonic of a member representing a possible world.

We define composite knowledge formulas inductively using conjunction (∧) and disjunctions
(∨). We do not include negation for two reasons: First, from a state perspective, we already
have built-in negation atoms. E.g., the negation of an event being included is that it is excluded.
Second, from an action perspective, it is difficult to interpret what it means for an event to not
occur. If the negation of becoming included is becoming excluded, then we already have action
atoms to model this meaning. If negation means that at some point in time, an event does not
occur, then the negation of an atom is almost universally true. Still, we consider whether we can
meaningfully include negations to be able to reason about, for example, implications. However,
we leave these considerations for future work.

Definition 11 (Composite knowledge in possible worlds). By the judgement K |= ϕ,
we denote that a predicate ϕ is known in the knowledge base K whether K is state or
action knowledge. K is a set of sets of action or state knowledge:

K |= σ iff ∀ w ∈ K . σ ∈ w
K |= ϕ1 ∧ ϕ2 iff K |= ϕ1 and K |= ϕ2

K |= ϕ1 ∨ ϕ2 iff K \K ′ |= ϕ1 and K ′ |= ϕ2

Definition 12 (Secrecy of knowledge). A formula ϕ is secret in a knowledge base K iff
¬(K |= ϕ).

Definition 13 (State secrecy to an agent). A formula ϕ is secret state knowledge to
agent a iff ϕ is not revealed in any class of indistinguishable runs.

∀R′ ∈ Rva. ¬
(

P(M(R′)) |= ϕ
)

Definition 14 (Action secrecy to an agent). A formula ϕ is secret action knowledge to
agent a iff ϕ is not revealed in any class of indistinguishable runs.

∀R′ ∈ Rva. ¬
(
R′∇ |= ϕ

)

5

127

In the introduction of this section, we described a duality between state knowledge and action
knowledge. We formalise a property of this duality by showing that action secrecy under certain
conditions implies state secrecy.

Theorem 4.1 (Secrecy of action atoms implies secrecy in markings). If all state atoms
of formula ϕ is not true in the initial marking M0 and it is action secret to an agent, then
it is also marking secret to the agent. Formally:

∀σ ∈ ϕ . σ 6∈ ρ(M0) ∧ ∀R′ ∈ Rva . ¬
(
R′∇ |= ϕ

)
=⇒ ∀R′ ∈ Rva. ¬

(
P(M(R′)) |= ϕ

)

We choose to show the more general implication:

∀R′ ⊆ R . ∀σ ∈ ϕ . σ 6∈ ρ(M0) ∧ ¬
(
R′∇ |= ϕ

)
=⇒ ¬

(
P(M(R′)) |= ϕ

)

Proof. Choose any R′ and proof the contraposition by assuming P(M(R′)) |= ϕ.

We show ∃σ ∈ ϕ . σ ∈ ρ(M0) ∨
(
R′∇ |= ϕ

)
by structural induction on

P(M(R′)) |= ϕ.

Case 1 P(M(R′)) |= σ.
By law of excluding middle assume ∀σ ∈ σ . σ 6∈ ρ(M0), i.e., σ is not part of the
initial marking. For contradiction assume ¬(R′∇ |= σ), but that means that for
some run r in R′ then σ did not occur. However, this contradicts that σ is true in
all markings of R′.

Case 2 P(M(R′)) |= ϕ1 ∧ ϕ2.
By IH we know ∃σ ∈ ϕ1 . σ ∈ ρ(M0) ∨ R′∇ |= ϕ1.
By IH we know ∃σ ∈ ϕ2 . σ ∈ ρ(M0) ∨ R′∇ |= ϕ2.
By law of excluding middle assume ∀σ ∈ ϕ1 ∧ ϕ2 . σ 6∈ ρ(M0).
The negation of this assumption trivially lets us proof our goal.
∀σ ∈ ϕ1 ∧ ϕ2 . σ 6∈ ρ(M0) contradicts both ∃σ ∈ ϕ1 . σ ∈ ρ(M0) and ∃σ ∈ ϕ2 . σ ∈
ρ(M0).
So it must be that R′∇ |= ϕ1 and R′∇ |= ϕ2.
Using these we construct R′∇ |= ϕ1 ∧ ϕ2.

Case 3 P(M(R′)) |= ϕ1 ∨ ϕ2.
By IH we know ∃σ ∈ ϕ1 . σ ∈ ρ(M0) ∨ (R′ \R′′)∇ |= ϕ1.
By IH we know ∃σ ∈ ϕ2 . σ ∈ ρ(M0) ∨ R′′∇ |= ϕ2.
By law of excluding middle assume the negation ∀σ ∈ ϕ1 ∨ ϕ2 . σ 6∈ ρ(M0).
It must be that (R′ \ R′′)∇ |= ϕ1 and (R′′)∇ |= ϕ2 because o.w. we reach a
contradiction.
Using these we construct R′∇ |= ϕ1 ∨ ϕ2.

5 Abstract Knowledge Approximation

We introduce the notion of an approximation of an agent’s action knowledge. Our goal is an
over-approximation of action knowledge. That is: the approximation may state that an actor

6

128 APPENDIX E. STATIC SECRECY GUARANTEES

knows something they do not know. However, on the contrary, the approximation may not state
that an actor do not know something that they does.

The purpose of the approximation is to avoid an exponential time transformation of a DCR
graph to an LTS as described in Definition 2. We start by defining what it means for a set of
sets of action atoms to approximate a set of runs.

Definition 15 (Run approximation). For a given set of runs R, we denote that A
approximates R by:

R∇ v A , ∀w ∈ A . ∃w′ ∈ R∇ . w′ ⊆ w

Theorem 5.1 (Soundness of approximation). Given a set of runs R and an approxima-
tion A s.t. R∇ v A, then A is a sound approximation of secrecy of any formula ϕ (or,
conversely, it is a complete approximation of knowledge).

R∇ |= ϕ =⇒ A |= ϕ

Proof. Assume R∇ |= ϕ, continue by induction on ϕ.

Case ϕ = σ.
From R∇ |= σ, we know ∀w ∈ R∇ . σ ∈ w.
From R v A, we know that all sets in A is an extension of a set in R∇.
Therefore, it must be that ∀w ∈ A . σ ∈ w and we can construct A |= σ.

Case ϕ = ϕ1 ∧ ϕ2.
From R∇ |= ϕ1 ∧ ϕ2, we know R∇ |= ϕ1 and R∇ |= ϕ2.
By IH on each of these, we know A |= ϕ1 and A |= ϕ2.
We can now construct A |= ϕ1 ∧ ϕ2.

Case ϕ = ϕ1 ∨ ϕ2

From R∇ |= ϕ1 ∨ ϕ2, there must exist an R2 s.t. R1 = R \ R2, R1∇ |= ϕ1, and
R2∇ |= ϕ2.
We construct A1 and A2, s.t. A1 = A \A2, R1 v A1, and R2 v A2.
Let A1 = {a ∈ A | ∃w ∈ R1∇ . w ⊆ a}. Per definition we have that R1 v A1.
Let A2 = A \A1.

We show that R2 v A2.
For contradiction assume the negation R2 6v A2 which means ∃w2 ∈ A2 .¬∃w ∈
R2 . w ⊆ w2.
Choose this w2 ∈ A2 s.t. there does not exist w ∈ R2∇ . w ⊆ w2.
From R v A, then ∃w ∈ R∇ . w ⊆ w2 and since w is not in R2 then w ∈ R1.
However, this means that w2 ∈ A1 which contradicts w2 ∈ A \A1.

By IH using the two subtrees with respectively A1 and A2, then A1 |= ϕ1 and
A2 |= ϕ2. We can now construct A |= ϕ1 ∨ ϕ2.

7

129

6 Concrete Knowledge Approximation

We are going to define our approximation of knowledge as the fixed point of the knowledge
expansion function A() applied repeatedly to an initial approximation of actor knowledge. The
idea is to obtain a set of approximations such that for each set of indistinguishable runs, there
exists an approximation that approximates it. For terminology, we say that we are building a set
of approximations where each approximation consists of different worlds that are indistinguishable
to the actor. As the starting point for our fixed point for actor a, we construct a singleton set
of approximations that consists of singleton approximation with a world where actor a knows
everything about a’s events. For simplicity, we do not consider condition relations since we
do not believe that they are important for our choice of proof technique, but they make the
approximation much more complex.

Definition 16 (Initial knowledge). We define Aa
0 to model the initial knowledge for

agent a as follows:

wa =
⋃

e∈Ea

{
e+, e÷, eX, e¬X, e!, e¬!

}

Aa
0 =

{
{wa}

}

To introduce ambiguity in the approximation, we define effect equivalent events. The idea is that
two events are equivalent iff executing the events has the same effect on the DCR graph. We use
this equivalence class in the approximation to say that an actor may not be able to distinguish
between the execution of two events only if they belong to the same equivalence class. While
this may seem like a severe restriction on the approximation, previous proof efforts have shown
that we need something like it to ensure that an actor may not make inferences from the order
observations.

Definition 17 (Effect equivalent events). For the purpose of the approximation, we
define an equivalence class [e] on events stating two events are equivalent given they
have the same outgoing relations.

[e] = {e′ ∈ E | e→+ = e′→+

∧ e→÷ = e′→÷
∧ e•→ = e′•→
∧ e→• = e′→•
∧ e→� = e′→�}

For a set of events E we let [E] = {[e] | e ∈ E}.
We are going to define our set of approximations as a fixed point on the approximation expansion
function A() that we will define later. The function consists of three different types of knowledge
expansion rules that we define and explain individually. First, Adomain() uses information about
an event being disabled to infer that some event could not have been executed. Second, AX()
uses information about an event being executed to infer the effects of the execution. Third,
different versions of A∗1,∗2,∗3() use state change information to infer what could have caused
the change.

8

130 APPENDIX E. STATIC SECRECY GUARANTEES

We start with Adomain() informally stating that if an approximation contains a world where an
event is both disabled and executed, then we add another approximation without this world to
our set of approximations.

Definition 18 (Domain restriction).

AeX,e÷(A) = {w ∈ A | ∃e ∈ E. eX∈ w ∧ e÷ ∈ w}
Adomain(Ai) =

⋃

A∈Ai

{A \ {w} | w ∈ AeX,e÷(A) ∧ |A| > 1}

The function W (A, e∗) lets us pick out all world/event pairs in an approximation where a world
contains action atom e∗.

W (A, ∗) = {(w, e) | w ∈ A, e∗ ∈ w}
The set AeX denotes all action atoms one can possibly infer from knowing eX.

AeX = {e◦, e+, e¬!}
∪ {e′+, e′◦ | e′ ∈ e→+}
∪ {e′÷, e′• | e′ ∈ e→÷}
∪ {e′! | e′ ∈ e•→}

The approximation expansion AX() informally says: if there is an approximation with a world
that contains an executed event, then create a copy of the approximation with the world replaced
with one where all possible inferences are made on that execution.

Definition 19 (Execution forward inference).

AX(Ai) =

{
(A \ {w}) ∪

{
w ∪ AeX

}
| A ∈ Ai, (w, e) ∈W (A,X)

}

Finally, we need approximation expansions from knowing an event has become included, excluded,
or pending. These inferences all follow the same form, so we first present the general form with
∗1, ∗2, and ∗3 as wildcards. Informally, the wildcards say that from knowing ∗1, you may infer
∗2 from one of the incoming ∗3 relations.

Definition 20 (Execution backward inference).

A∗1,∗2,∗3(Ai) =

{
(A \ {w}) ∪

{
w ∪ ∗2 | e′ ∈ [∗3 e]

}
| A ∈ Ai, (w, e) ∈W (A, ∗1)

}

Using the general form of backwards inference, we can define the following four rules:

� From knowing inclusion, one may infer the execution of one incoming include relation:
A+,{e′X},→+()

� From knowing exclusion, one may infer the execution of one incoming exclusion relation:
A÷,{e′X},→÷()

9

131

� From knowing pending, one may infer the execution of one incoming response relation:
A!,{e′X},•→()

Definition 21 (Knowledge expansion function).

A(Ai) = Ai ∪ Adomain(Ai) ∪ AX(Ai)

∪ A+,{e′X},→+(Ai) ∪ A÷,{e′X},→÷(Ai) ∪ A!,{e′X},•→(Ai)

Definition 22 (Knowledge fixed point). We let Afix denote the fix point of repeatedly
applying the knowledge expansion function to the initial knowledge.

Ai
fix = A(...(A(Ai

0)))

Hypothesis 6.1 (Soundness of approximating secrecy). We hypothesise that the secrecy
approximation is sound (or that the approximation of knowledge is complete), i.e. for
any ϕ:

∀A ∈ Ai
fix . ¬(A � ϕ) =⇒ ∀R ∈ Rvi . ¬(R∇ � ϕ)

By Theorem 5.1 it suffices to show that:

∀R ∈ Rvi . ∃A ∈ Ai
fix . R v A

We do not have proof of this property at the time of writing.

7 Minimal Runs as a Stepping Stone to Proof of Sound-
ness

In working towards a proof of the soundness of the approximation (Hypothesis 6.1), we have
found that it is difficult to reason directly on sets of indistinguishable runs. The problem is that
in a set of indistinguishable runs, many things may have happened that an actor cannot know
anything about. Therefore, we have found it useful to introduce a notion of minimal runs that
reduces a set of runs to runs that only contain a transition if it affects a later transition or is
observable.

Definition 23 (Minimal Run). The run r is minimal to actor a iff all transitions of r
are either directly observable to a or enable a later transition in the run. That is, for
any division of r = r′ · t · r′′ either:

1. δ(Ea, t) 6= ∅

2. or, ∃t′ ∈ r′′ s.t. either

(a) e+ ∈ δ(E, t) ∧ eX∈ δ(E, t′)

Part (2) of the definition of minimal runs is ready to be expanded to the introduction of condition
relations with other cases, e.g., (b) eX∈ δ(E, t) ∧ e′X∈ δ(E, t′) ∧ e→+e′.
We use the notion of a minimal run to select only minimal runs from a larger set of runs.

10

132 APPENDIX E. STATIC SECRECY GUARANTEES

Definition 24 (Minimal runs). For a set of runs R we denote its subset of runs that
are minimal to a by bRca. That is:

bRca = {r ∈ R | r is minimal to a}
It is easy to see that bRca ⊆ R.

The idea of introducing the notion of minimal runs is to use it to prove that our approximation
of secrecy is sound. The definition allows us to use the properties stated in Definition 23 instead
of trying to prove something about a set of runs where the only known property is that they are
indistinguishable.

Lemma 7.1 (Minimal runs characterizes approximations). Given an approximation A
and a set of runs R, if A approximates bRca, then it also approximates R.

bRca∇ v A =⇒ R∇ v A

Proof. Trivial since bRca ⊆ R. That is, if there for all elements in A exists an
element in bRca with some property, then this element also exist in R.

8 Related Work

To our knowledge, this is the only static analysis of secrecy for DCR graphs. However, secrecy
and privacy have been studied in other similar settings of business process modelling. Different
work seeks to add privacy and secrecy to different business process models but does not consider
the potential information leak of the process itself. For example, Pullonen et al. [5] extend the
Business Process Modeling Notation (BPMN) with privacy constructs to model, e.g., confiden-
tiality and privacy. Saleem et al. [6] enhance BPMN with confidentiality, non-repudiation, and
integrity constructs. Similarly, Sang and Zhou [7] add privacy and secrecy constructs and secrecy
indicators to BPMN.

There are more general approaches to reasoning about information leakage of a system. Alur
et al. [8] defines the concept of privacy-preserving refinements in labelled transition systems,
which is similar is somewhat similar to our approximation relation. However, our approximation
is not a transformation and is knowledge preserving. Still, one could consider making actual
knowledge-preserving transformations on a DCR graph as an alternative approach to ours.
Information flow [10] analysis has been used to reason about secrecy in general-purpose programs,
and while our approximation approach is directly inspired by information flow analysis, the
technique is not straightforward applicable. Finally, from a probabilistic secrecy perspective,
quantitative information flow [9] is used to bound information leakage but requires a more
probabilistic knowledge setup.

9 Conclusion and Future Work

In this working paper, we have presented our work towards providing static secrecy guarantees
for Dynamic Condition Response (DCR) graphs. First, we have introduced state knowledge

11

133

and action knowledge as two different knowledge perspectives and shown a relation between
them. Second, we have defined the abstract notion of an approximation of knowledge (and
thereby secrecy) and presented our current concrete approximation. Finally, we have introduced
the concept of minimal DCR runs that may serve as a further knowledge approximation and a
stepping stone for a proof approximation soundness.

We are pursuing creating proof of soundness, performing performance experiments, and improving
the quality of the approximation as three avenues of future work. We first seek a proof since
this process may uncover problems in our approximation that invalidates any subsequent efforts.
While we have versions of the approximation that is both more complete and efficient, we
found them difficult to reason about. Therefore, we prefer starting by working with a simpler
approximation. We have put effort into creating a proof of soundness and have so far been
successful in showing a previous version of the approximation to be sound for an actor making
a single observation. Although we thought that this proof would allow us to “simply” add an
induction step and be done, we found a problem when making this step. What we have found to
be difficult is that, on the one hand, a run state that a sequence of events has happened forwards
in time, and, on the other hand, our approximation reasons about inferences backwards in time.

References

[1] M. F. Madsen, M. Gaub, T. Høgnason, M. E. Kirkbro, T. Slaats, and S. Debois, “Collabo-
ration among adversaries: distributed workflow execution on a blockchain,” in Symposium
on Foundations and Applications of Blockchain, 2018, p. 8.

[2] R. Fagin, J. Y. Halpern, Y. Moses, and M. Vardi, Reasoning About Knowledge, Jan. 2004.
[Online]. Available: https://direct.mit.edu/books/book/1825/Reasoning-About-Knowledge

[3] S. Debois, T. Hildebrandt, and T. Slaats, “Concurrency and asynchrony in declarative
workflows,” in International Conference on Business Process Management. Springer, 2016,
pp. 72–89.

[4] T. T. Hildebrandt and R. R. Mukkamala, “Declarative Event-Based Workflow as
Distributed Dynamic Condition Response Graphs,” Electronic Proceedings in Theoretical
Computer Science, vol. 69, pp. 59–73, Oct. 2011, arXiv:1110.4161 [cs]. [Online]. Available:
http://arxiv.org/abs/1110.4161

[5] P. Pullonen, J. Tom, R. Matulevičius, and A. Toots, “Privacy-enhanced BPMN: enabling data
privacy analysis in business processes models,” Software and Systems Modeling, vol. 18, no. 6,
pp. 3235–3264, Dec. 2019. [Online]. Available: https://doi.org/10.1007/s10270-019-00718-z

[6] M. Saleem, J. Jaafar, and M. Hassan, “A domain-specific language for modelling security
objectives in a business process models of soa applications,” AISS, vol. 4, no. 1, pp. 353–362,
2012.

[7] K. S. Sang and B. Zhou, “BPMN security extensions for healthcare process,” in 2015 IEEE
International Conference on Computer and Information Technology; Ubiquitous Computing
and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence
and Computing. IEEE, 2015, pp. 2340–2345.

12

134 APPENDIX E. STATIC SECRECY GUARANTEES

[8] R. Alur, P. Černý, and S. Zdancewic, “Preserving Secrecy Under Refinement,” in Automata,
Languages and Programming, ser. Lecture Notes in Computer Science, M. Bugliesi, B. Preneel,
V. Sassone, and I. Wegener, Eds. Berlin, Heidelberg: Springer, 2006, pp. 107–118.

[9] M. S. Alvim, K. Chatzikokolakis, A. McIver, C. Morgan, C. Palamidessi, and G. Smith,
The Science of Quantitative Information Flow, ser. Information Security and Cryptography.
Cham, Switzerland: Springer, Springer Nature, 2020.

[10] D. E. Denning and P. J. Denning, “Certification of programs for secure information flow,”
Communications of the ACM, vol. 20, no. 7, pp. 504–513, Jul. 1977. [Online]. Available:
https://doi.org/10.1145/359636.359712

13

135

