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The simulated data used in eye-tracking-related research has been largely generated using normative eye 
models with little consideration of how the variations in eye biometry found in the population may influence 
eye-tracking outcomes. This study investigated the influence that variations in eye model parameters have 
on the ability of simulated data to predict real-world eye-tracking outcomes. The real-world experiments 
performed by two pertinent comparative studies were replicated in a simulated environment using a high-
complexity stochastic eye model that includes anatomically accurate distributions of eye biometry parame-
ters. The outcomes showed that variations in anterior corneal asphericity significantly influence simulated 
eye-tracking outcomes of both interpolation and model-based gaze estimation algorithms. Other, more com-
monly varied parameters such as the corneal radius of curvature and foveal offset angle had little influence 
on simulated outcomes.   
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Introduction 
The performance of an eye-tracker can be affected by a multitude of factors of which the 

variation in interpersonal eye biometry found in the population is thought to be a major contributor 
(Holmqvist, 2017; Blignaut, 2016). This makes developing an eye-tracker that performs well on a 
significantly large portion of the population a difficult endeavour.  
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Interpersonal variations in the performance of eye-tracking methods have been widely reported. 
Lai et al. (2014) reported interpersonal variations in gaze estimation errors as large as 0.7°. 
Villanueva and Cabeza (2008) reported errors larger than 2° between participants for a model-based 
gaze estimation algorithm using a similar eye-tracking hardware configuration. A series of studies 
investigating interpolation-based gaze estimation methods also reported significant interpersonal 
variations in eye-tracking performance (Blignaut and Wium, 2013; Blignaut, 2014; Blignaut, 2016). 

Simulated eye-tracking data are generated by replicating the hardware and user of a device in a 
simulated environment. Ray-tracing operations are then used to simulate the position of features 
used by an eye-tracker such as the pupil and glints of the user on the image sensor of a camera 
model. Contemporary simulation environments also include realistic head models which allow the 
simulation of synthetic images of the entire eye region (Wood et al., 2016; Kim et al. 2019, Nair et 
al., 2020). 

Using simulations, large and diverse eye-tracking datasets can be generated in a fraction of the 
time it would take to generate an equivalent amount of data in user studies (Wood et al., 2016). 
These datasets facilitate the rapid, repeated, and independent evaluation of eye-tracking methods. 
This is particularly advantageous during the early development of an eye-tracker in which various 
configurations of hardware and algorithmic components are considered (Villanueva and Cabeza, 
2008; Narcizo et al., 2021). 

Increasing the interpersonal variations in simulated eye-tracking data has been one of the central 
ambitions in the development of increasingly complex synthetic image data. This is evidenced by 
the increasing number of realistic eye-region textures and complexities of the methods used to sim-
ulate variations in the structure of the eye-region from the initial development of synthetic eye-
tracking images by Świrski and Dodgson (2014) to more contemporary works such as the models 
developed by Wood et al. (2016) and Stengel et al. (2019). However, a potential source of eye-
tracking errors as fundamental as variations in eye biometry have been largely overlooked in pursuit 
of increasing the interpersonal diversity in simulated eye-tracking data. 

Investigations that endeavour to include variations in eye biometry in simulated data have a few 
options. The simplest method is the one-at-a-time approach in which one parameter of an eye model 
is systematically varied within reported biometric ranges while keeping the other parameters con-
stant. This method allows researchers to independently investigate the influence of each eye param-
eter on simulated outcomes (Szczęsna and Kasprzak, 2006; Hansen et al., 2010). Another method is 
to simultaneously generate a combination of eye model parameters from anatomically observed dis-
tributions (Huang et al., 2014) These approaches should be used with caution as they are likely to 
produce combinations of ocular biometry that are not biometrically plausible (Rozema et al., 2016). 
The realism of the data is also limited by the complexity of the eye model of which the parameters 
were varied. For example, varying the parameters of an eye model that includes a single spherical 
cornea surface, as most studies in the eye-tracking-related literature have done, does not include 
realistic variations in the asphericity of the cornea in the simulated data. 

Stochastic eye models are a promising alternative that can be used to include variations in eye 
biometry in simulated eye-tracking data using a high-complexity eye model. A stochastic eye model 
is developed by measuring several anatomical parameters of the eyes of a large population. The 
measured biometry is then used to develop a statistical model that can generate an infinite number 
of random biometrically plausible eye models with a distribution of parameters indistinguishable 
from the population from which the model was derived. Despite the availability of stochastic eye 
models such as those proposed by Rozema et al. (2011) and Rozema et al. (2016), stochastic models 
have not been considered in eye-tracking-related literature. 

The combination of reported interpersonal variation in eye-tracking outcomes, the prevalence of 
simulated eye-tracking data, and the lack of eye biometry diversity included in the simulated data 
used throughout the eye-tracking-related literature motivate the need for an investigation of the in-
fluence that variations in eye model parameters have on the predictive power of simulated eye-
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tracking data. The combination of these findings suggests that the development of eye-tracking 
methods informed by simulated eye-tracking data may be hamstrung by a lack of eye biometry dis-
tributions in the data. This may have contributed to the interpersonal variations in eye-tracking per-
formance observed in real-world eye-tracking outcomes. 

This study investigated the influence that variations in eye model parameters have on the ability 
of simulated data to predict real-world eye-tracking outcomes. A stochastic eye model was used to 
generate unique eye models with biometrically plausible distributions of eye model parameters. The 
real-world experiments performed by Guestrin and Eizenman (2006), and Blignaut (2014) were then 
simulated using each eye model. These two comparative studies were chosen so that the influence 
of interpersonal variations in eye model parameters on both interpolation and model-based gaze 
estimation algorithms could be investigated. The main findings of each comparative study were 
identified, and the simulated outcomes were compared to the real-world experimental outcomes of 
the comparative studies. A multivariate regression analysis was also performed to investigate the 
sensitivity of the simulated gaze estimation errors to changes in eye model parameters. 

Methods 
This section describes the methodology used to simulate the real-world eye-tracking experiments 

performed by two comparative studies using a stochastic eye model. The section begins with a de-
scription of the comparative studies followed by the simulated environment developed to replicate 
the experiments performed in the comparative studies. The implementation of the stochastic eye 
model used to generate biometrically viable variations in eye model parameters is then discussed. 
Finally, the methods used to evaluate the simulated data against the findings of the comparative 
studies are described together with the methodology of the eye model parameter sensitivity analyses.  

Comparative Studies 
The experiments conducted by the two comparative studies described in Table 1 were replicated 

in a simulated environment, as described in the following section. The table describes the number 
of participants that were included in each study, the hardware configuration of the eye-tracker used, 
and the types of gaze estimation algorithms investigated. The hardware configurations and gaze 
estimation algorithm categories are based on the categories described by Kar & Corcoran (2017). 
The final column describes the outcomes that the eye-tracking data was used to assess. 

Table 1. Comparative studies. 

Study Participants Eye-tracker 
configuration 

Gaze estimation 
algorithm 

Evaluated 

Guestrin (2006) 4 Remote Model Head movements 

Blignaut (2014) 26 Remote Interpolation Algorithm comparison 

Calibration configuration 

 

Guestrin and Eizenman (2006) evaluated the performance of a model-based gaze estimation al-
gorithm for a remote eye-tracker consisting of a single camera and two light sources during head 
movements. The experiment consisted of five sets of nine fixation targets that four participants were 
tasked with sequentially directing their gaze towards. Each set of fixations was performed at a dif-
ferent head position with the first fixation procedure performed in the central head position. The 
fixation procedure was then repeated four times with head movements of 30 mm left and right and 
then 40 mm forward and backwards.  
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The model-based gaze estimation algorithm evaluated by Guestrin and Eizenman (2006) in-
volved calibrating the parameters of a three-dimensional eye model using the extracted image fea-
tures and the known positions of the hardware components of the eye-tracker. The orientation of the 
eye model was then taken as the direction of the user’s gaze. The radius of curvature of the cornea 
(Rac), the distance between the corneal centre of rotation the anatomical pupil centre (K), and the 
foveal offset (α) were calibrated by minimizing the average gaze estimation errors across the nine 
fixation targets in the central head position using a non-linear search algorithm. The initial parameter 
values suggested by Guestrin and Eizenman (2006) were used for the search algorithm with Rac = 
7.8 mm, K = 4.2 mm and α = (5, 1.5)° and ηac = 1.3375. The calibrated algorithm was used to 
calculate the estimated gaze point for the 45 simulated fixations and the average angular gaze esti-
mation error over the nine fixation targets in the central (H1) and 36 fixation targets in the peripheral 
(H2) head positions for each participant were recorded. 

Blignaut (2014) evaluated the performance of a large set of regression function combinations 
and calibration configurations on the performance of a binocular interpolation-based gaze estimation 
algorithm using a remote eye-tracker. Interpolation-based algorithms use extracted image features 
to fit some mapping function, in this case, a polynomial regression function that maps the positions 
of the image feature to the user’s estimated gaze position. The experiment used a remote eye-track-
ing configuration consisting of one camera and one infrared light source that recorded the pupil and 
glint features of 26 participants as they sequentially directed their gaze towards 135 fixation targets. 

At each fixation, the pupil-glint vector was calculated as the vector between the pupil and glint 
centres and normalized by the distance between the pupils of the two eyes. The calculated pupil-
glint vectors were used to calibrate twelve different regression functions using each of the six cali-
bration configurations investigated by Blignaut (2014). Calibration involved calculating the coeffi-
cients of the regression functions that minimized the gaze estimation errors over a set of calibration 
targets with known positions using a least squares solver. The calibration configurations used con-
sisted of an arrangement of 5, 9, 14, 18, 23 and 135 (C5, C9, C14, C18, C23 and C135) of the 135 
fixation targets. The average gaze estimation error across the 135 fixation targets was then calculated 
for each of the 72 calibrated regression functions as the angular error between the average estimated 
gaze point of both eyes and the fixation targets. The regression functions that produced the smallest 
average errors using each calibration configuration were identified and are referred to here as the 
best functions. 

Stochastic Eye Model  
The first version of the aspheric stochastic model of the right eye developed by Rozema et al. 

(2011), referred to as SyntEyes, was used in this study. The SyntEyes model was derived from the 
ocular biometry of 127 participants (37 male, 90 female, 123 Caucasian and 4 non-Caucasian). Var-
ious ophthalmic imaging equipment was used to capture 39 eye biometry parameters from each 
participant that were used to derive the 17 parameters describing the SyntEyes model. The parame-
ters generated by the SyntEyes model are age, anterior corneal keratometry parameters (Kac,M, Kac,J0 

and Kac,J45), anterior and posterior corneal eccentricity (Eac and Epc), posterior corneal keratometry 
parameters (Kpc,M, Kpc,J0 and Kpc,J45), central corneal thickness (CCT), anterior chamber depth (ACD), 
anterior and posterior lens radii of curvatures (Ral and Rpl), lens thickness (T), axial length (AL), lens 
power (D) and low-light pupil diameter (Pd). 

Using Equation 1, a set of randomly generated eye models (E) described by n = 17 normally 
distributed parameters (b) are generated from a multivariate Gaussian distribution using a vector (z) 
describing the mean values of the eye model parameters and a covariance matrix (C) describing the 
relationships between these parameters. The mean vector (z) and covariance matrix (C) provided by 
Rozema et al. (2011) are used.  
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The 17 parameters generated by the SyntEyes model were used to calculate the 14 parameters 
of a right eye model that includes aspheric anterior corneal surfaces, and a circular pupil with the 
parameters given in Table 2. Note that the corneal shape parameters are not directly generated by 
the SyntEyes model and were calculated as a function of the SyntEyes parameters using the equa-
tions provided by Rozema et al. (2011). Given the high degree of symmetry between the eyes re-
ported by Durr et al. (2015), the same eye model parameters were used to simulate the left and right 
eyes of the same user. The eye model was defined relative to the optic axis with all the ocular sur-
faces and pupil centered on the optic axis.   

Table 2. The parameters of the eye model generated by the SyntEyes model (Rozema et al., 2011) 

Parameter Description Calculation 

Rac Anterior corneal radius of curvature 377.2/Kac,M  

Qac Conic constant of the anterior corneal surface -Eac
2 

ηac Index of refraction of the anterior corneal surface η(ω)ac 

Rpc Posterior corneal radius of curvature 1.3772-1.336/Kpc,M 

Qpc Conic constant of the posterior corneal surface -Epc
2 

ηpc Index of refraction of the posterior corneal surface η(ω)pc 

CCT Central corneal thickness CCT 

ACD Anterior chamber depth ACD 

Pd Pupil diameter Pd 

Ral Radius of curvature of the anterior lens surface Ral 

Rpl Radius of curvature of the posterior lens surface Rpl 

ηl Index of refraction of the lens surfaces ηl(ηac) 

T Thickness of the lens T 

AL Axial length of the eye model AL 

 

The refractive index of the lens and corneal surfaces were calculated as a function of the incident 
light wavelength (𝜔) using Cauchy’s equation (Atchison and Smith, 2005) with the chromatic dis-
persion coefficients used by Aguirre (2019). Rozema et al. (2011) caution that since the radius of 
the curvature of the lens surfaces (Ral and Rpl) and thickness of the lens (T) are randomly generated, 
the resulting power of the lens might not correspond to the lens power parameter (D) generated by 
SyntEyes. Based on the recommendation by Rozema et al. (2011), the refractive index of the lens 
(ηl) was calculated as a function of the corneal index of refraction (ηl) using a derivation of the thick 
lens formula, given in Equation 2 with, A = T – Ral + Rpl, to ensure that the resulting power of the 
lens matches the lens power (D) generated by the model.  
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The SyntEyes parameters only describe the anterior segment components of the eye model. Pos-
terior segment parameters were required to perform fixations of the eye model. The posterior cham-
ber parameters of the eye model proposed by Aguirre (2019) were used. This includes an ellipsoidal 
retina surface, an offset angle of the fovea from the optic axis (α), separate centres of rotation for 
azimuth (Er,z) and elevation (Er,y) eye rotations. Aguirre (2019) scaled these parameters according 
to the spherical refraction (SR) of the eye model and the laterality of the eye being simulated. Since 
the SyntEyes model does not generate a value of spherical refraction, the spherical refraction (SR) 
of the eye model was calculated as SR(AL) = (23.58 - AL)/0.299 according to the relationship pro-
posed by Atchison (2006). 

Simulation Procedure  
The MATLAB-based gkaModelEye framework (Aguirre, 2019) was used to develop the simu-

lation environment used in this investigation. The framework contains computational models of the 
various components present in an eye-tracking experiment including an eye, camera, light sources, 
and screen. The framework uses ray tracing operations to simulate the image features observed by 
the camera of an eye-tracker such as the glint and apparent pupil for various orientations of the eye 
model. This framework was preferred over other options such as the et_simul (Bohme et al., 2008) 
and UnityEyes (Wood et al., 2016) frameworks as it readily facilitates the inclusion of a high-com-
plexity eye model and provides the functionality to configure the simulation environment to repli-
cate the experiments performed by the comparative studies.  

The configuration of the simulation environment developed was defined by the nine parameters 
described in Table 3. The configurations of the parameters that were used to replicate the experi-
ments performed by the comparative studies investigated in this chapter are also given in the table. 
Figure 1 illustrates the graphical output of the simulation environment configured to replicate the 
experimental configuration used by Blignaut (2014). The origin of the simulation environment was 
placed on the intersection of the optic axis with the anterior corneal surface of the eye in an unrotated 
orientation. The x-axis was directed along the optic axis of the eye towards the screen, the y-axis 
was directed nasally for the right eye and temporally for the left eye and the z-axis was directed 
superiorly. 

Table 3. The parameters of the simulation environment and the configurations of the environment used 
to replicate each comparative study. 

Parameter Description Guestrin et al. (2006) Blignaut (2014) 

It (mm) Position of the camera’s nodal point (315, !"#∗
%

, -150.5) (520, !"#∗
%

, -300) 

Ir (°) Rotation of the camera around its 
nodal point 

(0, 13.8, 0) (0, 30, 0) 

Is (mm) Dimensions of the camera’s image 
sensor 

(4.8, 3.6) (4.48, 3.36) 

Ifl (mm) Focal length of the camera 35 10 

Lt,1 (mm) Position of the first point light 
source 

(615, !"#∗
%
+ 188.5.5, 0)  (560, !"#∗

%
, -250)  

Lt,2 (mm) Position of the second point light 
source 

(615, !"#∗
%
− 188.5.5, 0)  
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Parameter Description Guestrin et al. (2006) Blignaut (2014) 

Lw (nm) Illumination wavelength of the light 
source 

850 850 

St (mm) Position of the centre of the screen (650, !"#∗
%
, 0) (800, !"#∗

%
, −131.5) 

Ss (mm) Dimensions of the screen (377, 301) (495, 280) 

Sf (targets) Configuration of the fixation targets (3, 3) (15, 9) 

*IPD – Interpupillary distance 

 
Figure 1. An illustration of the simulation environment that was configured to replicate the experi-
ment performed by Blignaut (2014). The black dots on the screen represent the fixation targets that 
participants were asked to focus their gaze on. 

The fixation procedure performed in the eye-tracking experiments was simulated by sequentially 
fixating the eye model on a series of fixation targets and then using ray tracing operations to simulate 
the position of the glint and apparent pupil centres on the image sensor of the camera model. Each 
fixation was performed by rotating the eye model in accordance with Listing’s law around its centres 
of rotation (Er,z and Er,y) so that its line of sight aligns with the fixation target (Aguirre, 2019). This 
is a non-trivial operation as the position of the entrance pupil’s centre to which the line-of-sight is 
defined changes non-linearly as the eye rotates (Nowakowski, 2012). The gkaModelEye framework 
(Aguirre, 2019) uses a non-linear search algorithm to find the orientation of the eye that results in a 
line-of-sight that intersects the fixation target as well as the entrance pupil’s centre and the fovea of 
the eye model.  

During each fixation, the position of the apparent pupil boundary was simulated by projecting 
30 points uniformly arranged around the anatomical pupil boundary through the cornea so that the 
rays intersect the nodal point of the camera and its image sensor. The apparent pupil’s centre was 
then calculated as the centre of an ellipse fitted to the projected apparent pupil boundary points using 
a least squares solver. The glint centres were simulated as the intersection of rays with the image 
sensor that project from each point light source, reflects off the anterior corneal surface and then 
intersects the nodal point of the camera. All ray traces performed in this study were confirmed to 
intersect the nodal point of the camera within 10%+ mm. 
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The simulation environment only included one eye model at a time. Binocular eye-tracking data 
of a single user was generated by performing the fixation procedure twice with the same eye model 
in a different position.  The right eye of a user was simulated by translating the screen, camera, and 
light source components half of the interpupillary distance (IPD) along the positive y-axis. Con-
versely, a left eye was simulated by translating the same components by half of the interpupillary 
distance along the negative y-axis. A fixed interpupillary distance of 63 mm was used in all the 
simulations based on the interpupillary distance of the average human reported by Dodgson (2004). 
The interpupillary distance was kept constant so that variations in eye model parameter were the 
only influence on gaze estimation outcomes. 

The stochastic eye model was used to generate 100 unique eye models. The fixation procedures 
performed in the two comparative studies were then simulated using each of the 100 eye models. 
An example of two superimposed eye models generated with the SyntEyes model is illustrated in 
Figure 2. The eye model shown in orange has a shorter axial length, slightly larger anterior chamber 
depth and more aspheric cornea than the eye model shown in blue. The average gaze estimation 
errors at the central (H1) and peripheral (H2) head positions was then calculated for the comparative 
study by Guestrin and Eizenman (2006) and the 12 regression functions calibrated using each of the 
six calibration configurations for the comparative study by Blignaut (2014).  

 
Figure 2. A comparison of two eye models that were generated using the SyntEyes model. The orange 
eye model has a smaller axial length, slightly larger anterior chamber depth and a more aspheric cornea 
than the eye model shown in blue. 

Analyses 
The distribution of the eye model parameters generated by the SyntEyes model (Rozema et al., 

2011) were inspected to ensure that the model was correctly implemented in the simulation envi-
ronment, The simulated pupil and glint centres were then plotted to inspect the influence of eye 
model parameter variations on the simulated image features.  

The simulated gaze estimation errors were compared to the real-world eye-tracking errors re-
ported by Guestrin and Eizenman (2006), and Blignaut (2014). Two-tailed student t-tests were per-
formed to compare the mean simulated and real-world gaze estimation errors and a two-tailed F-test 
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was performed to compare the variance in errors simulated to the errors reported in the real world 
reported by Guestrin and Eizenman (2006). A single sample student t-test was performed to compare 
the simulated and real-world gaze estimation errors generated by the experiment performed by 
Blignaut (2014). 

The simulated data was also investigated to identify any significant relationships between the 
simulated gaze estimation errors and the 11 eye model parameters given in Table 2 excluding the 
indexes of refractions (η). A multivariate regression analysis was performed using Matlab (v2019b, 
Mathworks, USA). The multivariate regression function is given in Equation 2 with the parameter 
matrix (B) containing the h = 11 parameters of the n = 100 eye models that were used to generate 
the simulated data. The parameter matrix (B) was converted to z-scores by subtracting the mean 
value of each parameter column from each element in the column and then dividing it by the standard 
deviation of the column. The error matrix (W) consisted of t = 8 columns representing the gaze 
estimation errors categories simulated for the two comparative studies. The error categories were 
chosen to correspond to the results reported by the comparative studies with l = 1, 2 representing 
the errors generated at H1 and H2 by simulating the experiment performed by Guestrin and Eizen-
man (2006). The remaining columns, l = 3 … 8 represented the best functions’ errors simulated 
using each of the six calibration configurations evaluated by Blignaut (2014).  

 

𝐵,,.𝑎.,& = 𝑊,,&; 		𝑖 ∈ [0, 𝑛], 	𝑞 ∈ [0, ℎ], 	𝑙 ∈ [0, 𝑡] (2) 

 

By solving for the coefficients aq,l, the value of each coefficient describes the sensitivity (m) of 
the simulated gaze estimation errors in the corresponding error category (Wl) to changes in the eye 
model parameters (q) in units of standard deviations. The ρ parameter of each regression coefficient 
in the resulting multivariate regression model was inspected for eye model parameters that have a 
significant influence (ρ < .05) on the simulated gaze estimation errors of each error category (l). The 
coefficients aq,l were again solved using only the significant eye model parameters. 

A partial regression plot was generated for each error category (l) for the constant term against 
the residuals of the regression model that includes the terms for all the significant eye model param-
eters. Partial regression plots are commonly used in multivariate regression analyses to analyze the 
influence that the addition of an independent variable has on the residuals of a regression model that 
includes terms for all the other independent variables being considered (Velleman and Welsch, 
1981). Therefore, a partial regression plot for the constant term of a regression model visualizes the 
performance of the entire model. 

The R2 error of each regression model was calculated to evaluate the variance in simulated gaze 
estimations that were captured by the significant eye-model parameters for each error category 
(Draper and Smith, 1998). An R2 value of one indicates that the significant eye model parameters 
completely described the variance in simulated gaze estimation errors with no influence from the 
other eye model parameters. Deviations from one define the magnitude of contributions from non-
significant eye model parameters or a non-linear relationship between errors and eye model param-
eters. 

Results 
In this section, the simulated outcomes are evaluated against the experimental findings of the 

comparative studies and the relationships between eye model parameters and the simulated eye-
tracking outcomes are described. 
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Eye Model Parameters 
The distribution of the eye model parameters of the 100 eye models generated by the SyntEyes 

model (Rozema et al., 2011) are given in Table 4. The mean values of the parameter distributions 
correspond closely to the mean values of the SyntEyes model (Rozema et al., 2011). This demon-
strates that the eye model was correctly implemented in the simulation. 

Table 4. The distribution of the eye model parameters of the 100 eye models generated by the SyntEyes 
model (Rozema et al., 2011).  

Parameter Outcome 

Rac 7.79 ± 0.24 mm 

Qac -0.21 ± 0.16 

η&' 1.34 

Rpc 6.52 ± 0.24 mm 

Qpc -0.11 ± 0.17 

η(' 1.34 

CCT 0.545 ± 0.037 mm 

ACD 3.41 ± 0.37 mm 

Pd 6.44 ± 1.20 mm 

Ral 10.47 ± 1.32 mm 

Rpl 6.96 ± 0.89 mm 

η) 1.44 ± 0.01 

T 4.00 ± 0.51 mm 

AL 23.74 ± 1.07 mm 

 

Simulated Image Features 
The influence that variations of eye model parameters have on the simulated image features are 

illustrated in Figure 3. The blue and orange image features were simulated using the correspond-
ingly colored eye models in Figure 2 with the eye models sequentially fixated on 135 fixation tar-
gets in the simulation environment shown in Figure 1.  

 
A clear difference between the simulated pupil and glint centres can be observed. The pupil 

centre features of Eye Model 2 have a larger distribution than the features of eye model 1. The as-
pect ratio of the glint features for Eye Model 2 is flatter and translated in the positive y-axis rela-
tive to the glint features simulated using Eye Model 1. 
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(a) (b) 

Figure 3. The simulated (a) pupil and (b) glint features generated for two eye models.  

Guestrin and Eizenman (2006) 
The mean and 95% confidence intervals (CI) of the simulated outcomes generated in this study 

for the comparative study by Guestrin and Eizenman (2016) are compared to the real-world out-
comes at H1 and H2 in Figure 4. The simulated outcomes at both head positions were found to be 
strongly right-skewed (H1: skewness = 1.86, H2: skewness = 1.84). This indicates that the simulated 
gaze estimation errors were more strongly concentrated towards smaller errors than the normal dis-
tribution illustrated in Figure 4 suggests. However, the simulated errors are reported as a normative 
distribution to facilitate the comparison to experimental results. 

 

 
Figure 4. A comparison of the real-world outcomes of the study performed by Guestrin and Eizenman 
(2006) and the simulated outcomes achieved in this study. 

The simulated mean errors at both head positions (H1: M = 0.36, SD = 20; H2: M = 0.36, SD = 
20) were not significantly different from the real-world outcomes (H1: t(4.47) = 0.21, ρ = .84; H2: 
t(3.47) = 1.79, ρ = .16). The variances in eye-tracking errors between the simulated and real-world 
outcomes were also not significantly different (H1: F(99,3) = 5.53, ρ = .18; H2: F(99,3) = 1.89, ρ = 
.67). However, the simulated data was not able to predict the increase in the mean or variance of 
errors during head movements observed in the real-world data.  
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Only the anterior corneal asphericity (Qac) demonstrated a statistically significant influence (ρ 
< .05) on the simulated gaze estimation errors at each head position, as illustrated in Figure 5. A 
significant sensitivity of 0.2° error per standard deviation (SD) change in anterior corneal asphe-
ricity was found at both head positions. Figure 5 further shows that the variations in errors are well 
described by variations in anterior corneal asphericity with R2 = .99 at both head position catego-
ries. 

 
Figure 5. The influence of the anterior corneal asphericity on the gaze estimation errors generated by 
the simulation of the real-world experiment performed by Guestrin and Eizenman (2006). 

Blignaut (2014) 
The distribution of the simulated and experiential best functions errors are illustrated in Figure 

6. The simulated best function errors were significantly different from the experimental outcomes 
using each calibration configuration (t(25) > 5.34, ρ < .05 for all tests). 

 
Figure 6. A comparison of the real-world outcomes of the study performed by Blignaut (2014) and the 
simulated outcomes achieved in this study. 

The simulated data predicted the negligible relative decrease in errors achieved by increasing the 
number of calibration targets beyond 14 as observed in the experimental data. The real-world de-
crease in the best functions’ errors was 0.28° and the simulated decrease was 0.20° for an increase 
from five to nine calibration targets. All subsequent increases in calibration targets resulted in a 
change in errors of under 0.1° in both the real-world and simulated errors. 
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The variances of the simulated and real-world outcomes could not be compared as the variance 
of the real-world outcome was not reported by Blignaut (2014). However, an interesting observation 
can be made from Figure 6. The figure shows that the variance in simulated errors decreased with 
each addition of calibration targets up to C14. This indicates that as the number of calibration targets 
was increased, the best functions were better able to account for the interpersonal variations in image 
feature distributions. After C14, the best functions could almost completely compensate for inter-
personal variations in eye model parameters.  

The relationship between eye model parameters and simulated gaze estimation errors given in 
Figure 7 further clarifies the observed error variances over the number of calibration targets. The 
strongest influence on errors was the anterior corneal asphericity (Qac) with a smaller but not insig-
nificant contribution by the anterior chamber depth (ACD) and posterior corneal asphericity (Qpc) at 
each calibration configuration.  

 
Figure 7. The influence of eye model parameters on the simulated outcomes generated by the real-world 
experiment performed by Blignaut (2014). 

Discussion 
A discussion of the findings of this study is provided in this section. The discussion starts with 

an overview of the implications of the findings of the study. The limitations of this investigation are 
then described followed by recommendations for future work. 

Implications of Findings 
The simulated mean and the variance in errors were statistically similar to the experiential out-

comes reported for the model-based gaze estimation algorithm evaluated by Guestrin (2006). This 
indicates that the stochastic eye model provided a good prediction of how the real-world eye-track-
ing outcomes produced by model-based gaze estimation algorithms are influenced by interpersonal 
variations in the shape of the eye. The simulated mean best functions errors were significantly dif-
ferent than the experimental results reported by Blignaut (2014). However, the simulated and real-
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world interpolation-based gaze estimation errors followed a similar trend when an increasing num-
ber of calibration targets were used.  

The most influential eye model parameter on the simulated gaze estimation errors in both com-
parative studies was the anterior corneal asphericity (Qac). The anterior chamber depth (ACD) and 
posterior corneal asphericity (Qpc) also had a smaller but statistically significant influence on simu-
lated interpolation-based gaze estimation errors. This indicates that studies aiming to simulate the 
interpersonal variations in the eye-tracking performance of an interpolation or model-based gaze 
estimation method should simulate variations in the asphericity of the cornea. 

This finding is alarming considering that variations in anterior corneal asphericity are rarely 
considered in simulated eye-tracking data (Wood et al., 2016; Kim et al., 2019; Porta et al., 2019). 
Other eye model parameters that are more frequently varied in the existing literature have been the 
anterior corneal radius of curvature and the foveal offset (Mardanbegi et al., 2018; Dierkes et al., 
2018; Petersch et al., 2021), the first of which was shown in this chapter to have a negligible influ-
ence on simulated eye-tracking outcomes. The foveal offset was not explicitly investigated in this 
study. However, the foveal offset was scaled relative to the axial length (AL) of the eye and a sig-
nificant influence would’ve been captured by this parameter. 

Limitations 
The distribution of eye model parameters generated by the SyntEyes model is dependent on the 

distribution of the eye biometry used to derive the model. The population used to generate the Syn-
tEyes model was slightly skewed towards women and highly skewed towards Caucasians. This may 
introduce some bias in the simulated eye-tracking outcomes and the findings of this study towards 
these populations. 

The first version of the SyntEyes model is a paraxial model intended to replicate the central 
visual field of the eye.  The maximum viewing angle of the eye model was just under 20° in the 
simulation of both comparative studies. Studies such as Polans et al. (2010) have shown that paraxial 
eye models fail to accurately replicate the visual performance of the eye at the peripheral viewing 
angles used in this study as they extrapolate centrally determined eye parameters to the periphery of 
the ocular surfaces and do not include realistic ocular surface decentrations and tilts. The risk of 
extrapolating central eye parameters are illustrated in Eye Model 2 in Figure 2 where the cornea 
becomes thinner towards its periphery which is not physiologically accurate (Bergmanson et al., 
2019).  

Rozema et al. (2016) developed the second version of the SyntEyes stochastic eye model. This 
model was derived from a larger and more diverse population and includes corneal surfaces de-
scribed by an 8th-order Zernike polynomial.  Unfortunately, this patient-specific eye model could 
not be used in this study as the Zernike coefficients are only provided for the central 6.5 mm of the 
corneal surfaces. This was not sufficient for simulating eye-tracking outcomes at large viewing an-
gles as the pupil and glint rays may not interest the corneal surfaces. 

Interpersonal variations in the pupil centre position and translation of the apparent pupil’s centre 
during changes in the size of the pupil have been shown to adversely influence the performance of 
eye-trackers (Choe et al., 2016). Pupil centre shifts were not included in this investigation as it is 
unclear the extent to which shifts in the apparent pupil’s centre are caused by the influence of the 
corneal optics as the anatomical pupil’s diameter changes or asymmetrical dilations and constriction 
of the anatomical pupil. 
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Future Work 
The work presented in this study demonstrated a method to readily include biometrically plau-

sible eye model parameter variations in simulated data using a stochastic eye model. This method 
has significant potential to increase the distributions of realistic interpersonal variations contained 
in synthetic image datasets. Supplementing the training of appearance-based gaze estimation algo-
rithms with a dataset that contains interpersonal variations in eye biometry could significantly im-
prove the outcomes achieved by these algorithms. 

The realism of simulated eye-tracking outcomes could be further improved by using a higher 
complexity stochastic eye model that includes patient-specific corneal surface parameters as well as 
ocular decentrations and tilts. Once a higher complexity stochastic eye model becomes available, 
the multivariate regression analysis method performed in this study can be repeated to gain further 
insight into how interpersonal variations in the anatomy of the eye influence eye-tracking outcomes. 
Improving the complexity of the eye model could also improve the similarity of the simulated out-
comes to the experimental outcomes generated by interpolation-based gaze estimation algorithms. 

Ethics and Conflict of Interest 

The author(s) declare(s) that the contents of the article are in agreement with the ethics described 
in http://biblio.unibe.ch/portale/elibrary/BOP/jemr/ethics.html and that there is no conflict of inter-
est regarding the publication of this paper.  

Acknowledgements 

“Research reported in this publication was supported by the South African Medical Research 
Council under a Self-Initiated Research Grant. The views and opinions expressed are those of the 
authors and do not necessarily represent the official views of the SA MRC. This work is also based 
on the research supported in part by the National Research Foundation of South Africa (Grant Num-
bers: 113337) 

References 
Aguirre, G. K. (2019). A model of the entrance pupil of the human eye. Scientific reports, 9(1), 

9360. https://doi.org/10.1038/s41598-019-45827-3 

Atchison, D. A., & Smith, G. (2005). Chromatic dispersions of the ocular media of human eyes. 
Journal of the Optical Society of America A, 22(1), 29-37. 

Atchison, D. A. (2006). Optical models for human myopic eyes. Vision research, 46(14), 2236-
2250. https://doi.org/10.1016/j.visres.2006.01.004 

Bergmanson, J., Burns, A., & Walker, M. (2019). Anatomical explanation for the central-periph-
eral thickness difference in human corneas. Investigative Ophthalmology & Visual Science, 
60(9), 4652-4652. 

Blignaut, P., & Wium, D. (2013). The effect of mapping function on the accuracy of a video-based 
eye tracker. In Proceedings of the 2013 conference on eye tracking South Africa, 39-46. 
https://doi.org/10.1145/2509315.2509321 

Blignaut, P. (2014). Mapping the pupil-glint vector to gaze coordinates in a simple video-based 
eye tracker. Journal of Eye Movement Research, 7(1). https://doi.org/10.16910/jemr.7.1.4 

Blignaut, P. (2016). Idiosyncratic feature-based gaze mapping. Journal of Eye Movement Re-
search, 9(3). https://doi.org/10.16910/jemr.9.3.2 

http://biblio.unibe.ch/portale/elibrary/BOP/jemr/ethics.html
https://doi.org/10.1038/s41598-019-45827-3
https://doi.org/10.1016/j.visres.2006.01.004
https://doi.org/10.1145/2509315.2509321
https://doi.org/10.16910/jemr.7.1.4
https://doi.org/10.16910/jemr.9.3.2


Journal of Eye Movement Research Fischer, J.D., van der Merwe, J. & Vandenheever, D. (2023) 
16(3):1 The influence of eye model parameter variations  
 

 16 

Böhme, M., Dorr, M., Graw, M., Martinetz, T., & Barth, E. (2008). A software framework for 
simulating eye trackers. In Proceedings of the 2008 symposium on Eye tracking research & 
applications, 251-258. https://doi.org/10.1145/1344471.1344529 

Choe, K. W., Blake, R., & Lee, S. H. (2016). Pupil size dynamics during fixation impact the accu-
racy and precision of video-based gaze estimation. Vision research, 118, 48-59. 

Dierkes, K., Kassner, M., & Bulling, A. (2018, June). A novel approach to single camera, glint-
free 3D eye model fitting including corneal refraction. In Proceedings of the 2018 ACM Sym-
posium on Eye Tracking Research & Applications, 1-9. 
https://doi.org/10.1145/3204493.3204525 

Dodgson, N. A. (2004, May). Variation and extrema of human interpupillary distance. In Stereo-
scopic displays and virtual reality systems XI, 5291, 36-46. https://doi.org/10.1117/12.529999 

Draper, N. R., & Smith, H. (1998). Applied regression analysis, 326.  

Durr, G. M., Auvinet, E., Ong, J., Meunier, J., & Brunette, I. (2015). Corneal shape, volume, and 
interocular symmetry: parameters to optimize the design of biosynthetic corneal substitutes. 
Investigative Ophthalmology & Visual Science, 56(8), 4275-4282. 
https://doi.org/10.1167/iovs.15-16710 

Guestrin, E. D., & Eizenman, M. (2006). General theory of remote gaze estimation using the pupil 
center and corneal reflections. IEEE Transactions on biomedical engineering, 53(6), 1124-
1133. https://doi.org/10.1109/TBME.2005.863952 

Hansen, D. W., Agustin, J. S., & Villanueva, A. (2010). Homography normalization for robust 
gaze estimation in uncalibrated setups. In Proceedings of the 2010 symposium on eye-tracking 
research & applications, 13-20. https://doi.org/10.1145/1743666.1743670 

Holmqvist, K. (2017). Common predictors of accuracy, precision and data loss in 12 eye-trackers. 
In The 7th Scandinavian Workshop on Eye Tracking, 1-25. 
https://doi.org/10.13140/RG.2.2.16805.22246 

Huang, J. B., Cai, Q., Liu, Z., Ahuja, N., & Zhang, Z. (2014). Towards accurate and robust cross-
ratio based gaze trackers through learning from simulation. In Proceedings of the Symposium 
on Eye Tracking Research and Applications, 75-82. https://doi.org/10.1145/2578153.2578162 

Kar, A., & Corcoran, P. (2017). A review and analysis of eye-gaze estimation systems, algorithms 
and performance evaluation methods in consumer platforms. IEEE Access, 5, 16495-16519. 
https://ieeexplore.ieee.org/document/8003267 

Kim, J., Stengel, M., Majercik, A., De Mello, S., Dunn, D., Laine, S., McGuire, M. & Luebke, D. 
(2019). Nvgaze: An anatomically-informed dataset for low-latency, near-eye gaze estimation. 
In Proceedings of the 2019 CHI conference on human factors in computing systems, 1-12. 
https://doi.org/10.1145/3290605.3300780 

Lai, C.C., Shih, S.W., & Hung, Y.P. (2014). Hybrid method for 3-D gaze tracking using glint and 
contour features. IEEE Transactions on Circuits and Systems for Video Technology, 25(1), 24-
37. https://doi.org/37. 10.1109/TCSVT.2014.2329362 

Mardanbegi, D., & Hansen, D. W. (2012, September). Parallax error in the monocular head-
mounted eye trackers. In Proceedings of the 2012 acm conference on ubiquitous computing, 
689-694. https://doi.org/10.1145/2370216.2370366 

Nair, N., Kothari, R., Chaudhary, A. K., Yang, Z., Diaz, G. J., Pelz, J. B., & Bailey, R. J. (2020, 
September). RIT-Eyes: Rendering of near-eye images for eye-tracking applications. In ACM 
Symposium on Applied Perception 2020, 1-9. https://doi.org/10.1145/3385955.3407935 

Narcizo, F. B., Dos Santos, F. E. D., & Hansen, D. W. (2021). High-accuracy gaze estimation for 
interpolation-based eye-tracking methods. Vision, 5(3), 41. https://doi.org/10.3390/vi-
sion5030041 

https://doi.org/10.1145/1344471.1344529
https://doi.org/10.1145/3204493.3204525
https://doi.org/10.1117/12.529999
https://doi.org/10.1167/iovs.15-16710
https://doi.org/10.1109/TBME.2005.863952
https://doi.org/10.1145/1743666.1743670
https://doi.org/10.13140/RG.2.2.16805.22246
https://doi.org/10.1145/2578153.2578162
https://ieeexplore.ieee.org/document/8003267
https://doi.org/10.1145/3290605.3300780
https://doi.org/10.1145/2370216.2370366
https://doi.org/10.1145/3385955.3407935
https://doi.org/10.3390/vision5030041
https://doi.org/10.3390/vision5030041


Journal of Eye Movement Research Fischer, J.D., van der Merwe, J. & Vandenheever, D. (2023) 
16(3):1 The influence of eye model parameter variations  
 

 17 

Nowakowski, M., Sheehan, M., Neal, D., & Goncharov, A. V. (2012). Investigation of the isopla-
natic patch and wavefront aberration along the pupillary axis compared to the line of sight in 
the eye. Biomedical optics express, 3(2), 240-258. https://doi.org/10.1364/BOE.3.000240 

Petersch, B., & Dierkes, K. (2022). Gaze-angle dependency of pupil-size measurements in head-
mounted eye tracking. Behavior Research Methods, 54(2), 763-779. 
https://doi.org/10.3758/s13428-021-01657-8 

Polans, J., Jaeken, B., McNabb, R. P., Artal, P., & Izatt, J. A. (2015). Wide-field optical model of 
the human eye with asymmetrically tilted and decentered lens that reproduces measured ocular 
aberrations. Optica, 2(2), 124-134. https://doi.org/10.1364/OPTICA.2.000124 

Porta, S., Bossavit, B., Cabeza, R., Larumbe-Bergera, A., Garde, G., & Villanueva, A. (2019). 
U2Eyes: A binocular dataset for eye tracking and gaze estimation. In Proceedings of the 
IEEE/CVF International Conference on Computer Vision Workshops, 3660-3664. 

Rozema, J. J., Atchison, D. A., & Tassignon, M. J. (2011). Statistical eye model for normal eyes. 
Investigative Ophthalmology & Visual Science, 52(7), 4525-4533. 
https://doi.org/10.1167/iovs.10-6705 

Rozema, J. J., Rodriguez, P., Navarro, R., & Tassignon, M. J. (2016). SyntEyes: a higher-order 
statistical eye model for healthy eyes. Investigative ophthalmology & visual science, 57(2), 
683-691. https://doi.org/10.1167/iovs.15-18067 

Świrski, L., & Dodgson, N. (2014). Rendering synthetic ground truth images for eye tracker evalu-
ation. In Proceedings of the Symposium on Eye Tracking Research and Applications, 219-222. 
https://doi.org/10.1145/2578153.2578188 

Szczęsna, D. H., & Kasprzak, H. T. (2006). The modelling of the influence of a corneal geometry 
on the pupil image of the human eye. Optik, 117(7), 341-347. 
https://doi.org/10.1016/j.ijleo.2005.11.001 

Wood, E., Baltrušaitis, T., Morency, L. P., Robinson, P., & Bulling, A. (2016). Learning an ap-
pearance-based gaze estimator from one million synthesised images. In Proceedings of the 
Ninth Biennial ACM Symposium on Eye Tracking Research & Applications, 131-138. 
https://doi.org/10.1145/2857491.2857492 

Villanueva, A., & Cabeza, R. (2008). A novel gaze estimation system with one calibration point. 
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 38(4), 1123-
1138. https://doi.org/1123-1138. 10.1109/TSMCB.2008.926606 

Wood, E., Baltrušaitis, T., Morency, L. P., Robinson, P., & Bulling, A. (2016, March). Learning 
an appearance-based gaze estimator from one million synthesised images. In Proceedings of 
the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications, 131-138. 
https://doi.org/10.1145/2857491.2857492 

Velleman, P. F., & Welsch, R. E. (1981). Efficient computing of regression diagnostics. The 
American Statistician, 35(4), 234-242. https://10.1080/00031305.1981.10479362 

 

https://doi.org/10.1364/BOE.3.000240
https://doi.org/10.3758/s13428-021-01657-8
https://doi.org/10.1364/OPTICA.2.000124
https://doi.org/10.1167/iovs.10-6705
https://doi.org/10.1167/iovs.15-18067
https://doi.org/10.1145/2578153.2578188
https://doi.org/10.1016/j.ijleo.2005.11.001
https://doi.org/10.1145/2857491.2857492
https://doi.org/10.1145/2857491.2857492
https://10.1080/00031305.1981.10479362

