
© 2021 Journal of Pathology Informatics | Published by Wolters Kluwer - Medknow 1

Abstract

Research Article

IntroductIon

In the past few years, artificial intelligence (AI) techniques,
particularly supervised deep learning, have gained wide
adoption for medical image analysis. Applications of these
methods have been shown to be effective for multiple tasks
including image segmentation,[1] registration,[2] disease
diagnosis,[3] and others, with state‑of‑the‑art models
demonstrating performance on par with or even better than

human experts.[4] However, these results have also brought
to the fore a concern about their reproducibility[5] – many

Background: Artificial intelligence (AI) is fast becoming the tool of choice for scalable and reliable analysis of medical images. However,
constraints in sharing medical data outside the institutional or geographical space, as well as difficulties in getting AI models and modeling
platforms to work across different environments, have led to a “reproducibility crisis” in digital medicine. Methods: This study details the
implementation of a web platform that can be used to mitigate these challenges by orchestrating a digital pathology AI pipeline, from raw data
to model inference, entirely on the local machine. We discuss how this federated platform provides governed access to data by consuming
the Application Program Interfaces exposed by cloud storage services, allows the addition of user‑defined annotations, facilitates active
learning for training models iteratively, and provides model inference computed directly in the web browser at practically zero cost. The
latter is of particular relevance to clinical workflows because the code, including the AI model, travels to the user’s data, which stays private
to the governance domain where it was acquired. Results: We demonstrate that the web browser can be a means of democratizing AI and
advancing data socialization in medical imaging backed by consumer‑facing cloud infrastructure such as Box.com. As a case study, we test the
accompanying platform end‑to‑end on a large dataset of digital breast cancer tissue microarray core images. We also showcase how it can be
applied in contexts separate from digital pathology by applying it to a radiology dataset containing COVID‑19 computed tomography images.
Conclusions: The platform described in this report resolves the challenges to the findable, accessible, interoperable, reusable stewardship of
data and AI models by integrating with cloud storage to maintain user‑centric governance over the data. It also enables distributed, federated
computation for AI inference over those data and proves the viability of client‑side AI in medical imaging.

Availability: The open‑source application is publicly available at https://episphere.github.io/path, with a short video demonstration at https://
youtu.be/z59jToy2TxE.

Keywords: Artificial intelligence, client‑side artificial intelligence, consumer‑facing governance, TensorFlowJS, web computing

Address for correspondence: Praphulla M. S. Bhawsar,
1603 E Jefferson St., Rockville, MD 20852, USA.

E‑mail: bhawsarpm@nih.gov

Access this article online

Quick Response Code:
Website:
www.jpathinformatics.org

DOI:
10.4103/jpi.jpi_100_20

This is an open access journal, and articles are distributed under the terms of the Creative
Commons Attribution‑NonCommercial‑ShareAlike 4.0 License, which allows others to
remix, tweak, and build upon the work non‑commercially, as long as appropriate credit
is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

How to cite this article: Bhawsar PM, Abubakar M, Schmidt MK,
Camp NJ, Cessna MH, Duggan MA, et al. Browser‑based data annotation,
active learning, and real‑time distribution of artificial intelligence models:
From tumor tissue microarrays to COVID‑19 radiology. J Pathol Inform
2021;12:38.
Available FREE in open access from: http://www.jpathinformatics.org/text.
asp?2021/12/1/38/326825

Browser‑based Data Annotation, Active Learning, and
Real‑Time Distribution of Artificial Intelligence Models: From

Tumor Tissue Microarrays to COVID‑19 Radiology
Praphulla M. S. Bhawsar1, Mustapha Abubakar1, Marjanka K. Schmidt2, Nicola J. Camp3, Melissa H. Cessna4, Máire A. Duggan5, Montserrat García‑Closas1,

Jonas S. Almeida1

1Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Maryland, USA, 2Division of Molecular Pathology, Netherlands
Cancer Institute, Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands, 3Huntsman Cancer Institute, University of Utah, UT 84112, USA, 4Department of

Pathology, Intermountain Healthcare Biorepository, Intermountain Healthcare, UT 84107, USA, 5Department of Pathology and Laboratory Medicine, Cumming School
of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada

Submitted: 02‑Nov‑2020 Revised: 05‑May‑2021 Accepted: 18‑Jun‑2021 Published: 27‑Sep‑2021

J Pathol Inform 2021, 1:38 http://www.jpathinformatics.org/content/12/1/38

Journal of Pathology Informatics2

of these models are developed in siloed environments using
specific software libraries, and because reproducing the
exact environment is not always convenient or possible, their
reusability and performance are considerably compromised by
their lack of portability across platforms. As a consequence,
the full value of AI applications to Digital Medical Imaging
represents a particular challenge to the findable, accessible,
interoperable, reusable (FAIR) stewardship[6] of scientific data
in conventional computational platforms, be it on‑premises or
in centralized cloud architecture.

Another major barrier to facilitating the FAIRness of data and
models is the limited shareability of medical data outside the
clinical, organizational, or geographical domain where it is
generated.[7] Model training typically requires the dataset to be
present in a location that is directly accessible to the machine
on which the training is to be performed, most often as a
locally downloaded copy. Sometimes the data are unlabeled,
a scenario where the machine that provides the annotation
service needs to be able to access the data as well. Moving
files across computers to achieve these individual tasks is often
unviable because of tight privacy and compliance requirements
when dealing with medical data. Logistic barriers can also be
a major obstacle, especially with large datasets common in
Pathology and Genomics sequencing laboratories. Finally, in
cases where the data are stored at a central on‑premise location,
setting up proper governance and access management is rarely
straightforward. The cloud has emerged to resolve many of
these challenges, but the software tools conventionally used
by researchers and clinicians alike have not kept pace with
these new computational architectures. Specifically, it remains
difficult to integrate these tools with centralized cloud storage
where (a) the governance of the data is inherently federated;
and (b) the annotation process needed for AI training requires
its distribution to domain experts.

A number of efforts have been pursued to address these
obstacles. For example, the DeepInfer framework by Mehrtash
et al.[8] uses a Docker engine to standardize the evaluation
environment and runs various deep learning models on the
client machine. TOMAAT by Milletari et al.[9] facilitates
deployment of trained models to the cloud, making them
accessible as a remote service. These frameworks require
a client like the 3D Slicer[10] visualization software to
communicate with the model server and obtain inferences.
More recently, Philbrick et al. developed RIL‑Contour,
a software application to accelerate image annotation for
and with deep learning.[11] Although RIL‑Contour provides
a one‑stop solution for annotation and modeling, it is a
standalone application that requires setting up multiple external
dependencies, something that clinically oriented users may
find hard to do. Sedghi et al. took a browser‑based approach
for the user interface with Tesseract‑MI.[12] However, it too
uses a Docker engine that would need to be deployed – and
maintained – for use across machines. These solutions
approach the web browser as just a user interface rather than
as a means for distributed web computing as proposed here.

They also do not integrate with cloud storage or provide
user‑centric governance that largely drives cloud adoption in
the first place. Instead, they assume the local availability of
data as a system resource decoupled from user governance.
The implications of centralized designs for applying AI models
to sensitive data are just as problematic: the data have to be
sent to the modeling engine for inference, leaving only two
possibilities, one unscalable, the other insecure. Respectively,
either (a) the engine is made available locally in a specialized
computational environment or (b) sensitive data are entrusted
to a central AI engine where inference is opaque to the users.
In conclusion, there is an urgent need for platforms that
both enable the migration of the AI inference code to where
access to the sensitive data is available (e.g., a patient portal
and/or a pathologist’s workspace), and incorporate the type
of consumer‑facing cloud storage associated with the “Box
model” as put forward by Bremer et al.,[13] where security and
governance are delegated to and taken care of by the cloud
storage service that hosts the data, and the client only need
consume the Application Program Interfaces (APIs) exposed
by the service to take advantage of this delegation.

In this study, we describe the implementation of a web
platform that meets these challenges of distribution and
FAIRness by providing tools for data annotation and model
inference entirely on the browser at zero cost and with no
installation (i.e., “zero‑footprint”). Although local files can be
used with the application for model training and inference, the
study focuses primarily on how cloud storage services have
been integrated into the platform, with Box.com as a specific
example. Specifically, we aim to demonstrate the practical
implementation of a ready‑to‑use hosted web application
that has no server‑side computing elements, requires no
deployment, and can be accessed from any device with a web
browser through a Uniform Resource Locator (URL). The
accompanying application extends the “Box model” to provide
researchers having no machine learning experience with the
tools to train, use, and share AI models.

Methods

The web browser has evolved rapidly to keep pace with
the development of the World Wide Web as a global
computational space. Browser engines today support the
full‑stack of computational features, from persistent storage
and background processes to in‑browser web servers (service
workers). Because of the ubiquitous nature of web computing,
these are now optimized to the point that they are emerging as
the preferred solution for distributed software ecosystems. The
software entities that take full advantage of these ecosystems
are called web applications, with the more device‑agnostic
ones often designated as Progressive Web Apps (PWAs).
Like conventional websites, PWAs are accessible through
a dereferenceable URL that one can visit on a web browser.
Although web applications generally contain distinct client
and server‑side components, they do in fact allow for the full
stack application logic to be executed entirely on the client as

J Pathol Inform 2021, 1:38 http://www.jpathinformatics.org/content/12/1/38

Journal of Pathology Informatics 3

well. The platform we describe here is an example of the latter,
a completely client‑side PWA. This approach guarantees that
the data never leave the user’s machine, that the code running
on the browser is completely transparent, and that any network
interaction can be readily examined through the developer
toolbox packaged with all modern web browsers. The PWA
leverages browser functionalities such as the HTML5 Canvas
and Web Workers so as to provide an intuitive and smooth
user experience while being capable of performing heavy
computations in the background.

The practice of using cloud storage for data management has
recently gained traction in digital pathology and biomedicine
as a whole. Architecturally, these services act as cloud‑based
middleware providing a FAIR API ecosystem. In our case,
the APIs securely exposed by Box enable our application to
automatically make full use of their offerings (such as viewers
for nonweb standard image formats like DICOM and TIFF)
as they become available, while also allowing us to focus
on developing features and letting Box ensure authorized
access to the data. It cannot be overemphasized how much
of the developer effort and compliance load is lifted from the
development exercise by relying on consumer‑facing/governed
API ecosystems.

The data we work with in the described PWA are currently
limited exclusively to medical images. Figure 1 shows the
architecture of the platform. Below, we outline how it facilitates
each aspect of the medical AI workflow. The application code
is open‑source and publicly available at: https://github.com/
episphere/path.

Authentication and governance
Consumer‑facing cloud storage services depend critically on the
robustness and security of their authentication and authorization
mechanisms. They also go to great lengths to integrate these
mechanisms with institutional authentication systems, perform

regulatory auditing, and provide security oversight. As a
consequence, these mechanisms become available for use by
applications registered with the cloud service, the so‑called
“Box Apps” in the case of Box. These applications can be
thought of as client‑side extensions to the cloud storage
service, but without programmatic constraints to integrating
additional services or components, such as AI‑powered
analytics. Our platform performs user authentication and
authorization through such an application registered with Box.
This enables researchers at other institutions to directly use
the integration with their institutions’ own Single Sign‑On
systems. To that end, we employ the OAuth2.0 protocol[14]
where the user logs in to their Box account, and Box then
provides our platform with a token that identifies the user and
allows them to access their data in Box through the platform.
OAuth2.0 ensures that authentication is handled completely
by the service, not the platform, so there is no registration
involved and the user’s credentials are never exchanged or
compromised. Essentially, the OAuth2.0 process generates a
token that allows the application code to act on behalf of the
user under scoped authorization where only content owned by
or shared with that user is accessible to them.

Storage services give users the option to share files with others
and define the permissions those users would have over the
shared data. This user‑defined governance is the basis for both the
trustworthiness and distributed robustness of consumer‑facing
Box systems.[13] Access and permission management is taken
care of by Box outside the scope of the application code; any
update in the access arrangements is propagated everywhere
instantly by the service. Consequently, because our application
only acts as an intermediary between Box and the client, once
a content sharing is enacted in the environment of the storage
service, the shared files automatically become accessible to
the user in our platform, in real time. In summary, decoupling
governance by delegating it to the storage provider eliminates
the need for the platform to maintain complex data management
architectures on its own. It also facilitates collaboration, as
researchers wishing to work on the same dataset need only set
shared access to the relevant folders and files under data access
policies they can establish and oversee on their own, rather than
through the mediation of “trusted brokers.”

Image viewing and operations
Once authentication is successful within the application, the
user has access to all the files in their cloud storage account
directly from the web application interface. They can navigate
through the files and select images to view in the application.
Supported image formats include JPEG, PNG, and TIFF.
The images are viewed using an HTML5 Canvas; it should
be noted here that advances in Web technologies, such as
the native Canvas become available immediately to the
PWA without it having to explicitly maintain dependencies
with specialized external libraries, as is the case for more
conventional systems in use for Digital Pathology and other
digital imaging applications. As a consequence, advanced
image processing operations, potentially involving the use of

Figure 1: Platform architecture. The browser runs the web application
which acts as the connector between the cloud storage provider and the AI
service on the cloud. Communication happens with the cloud provider only
if model training is to be performed on the cloud or if a deployed model
needs to be used for running inferences on the data in the application

J Pathol Inform 2021, 1:38 http://www.jpathinformatics.org/content/12/1/38

Journal of Pathology Informatics4

GPUs, such as zooming and foreground image segmentation,
can be efficiently performed using the tools programmed into
the application itself.

Data annotation
Adding annotations to raw imaging data is the first step
toward the supervised training of a model. These annotations,
however, need to be managed in such a way that the
association between them and the data is preserved within
the governance scope of each user. Keeping these annotations
in external files or databases require a dedicated entity to
manage those associations. To solve this problem, the DICOM
standard prescribes embedding annotations as metadata
within the individual files themselves. While this does make
the association implicit, it is not available to native image
formats. Adding to the challenge, developing a “shadow”
metadata system would be a major engineering effort,
comparable to what went into developing the DICOM format.

Unsurprisingly, the metadata management functionality is
a key feature of cloud‑based storage providers like Box,
where it is included as a service with its own dedicated APIs
alongside version control, backup, and other core features.
Again, the application described here benefits from these
advanced metadata management APIs as a direct result of
integrating cloud storage. The way Box enables the addition
of metadata on a file is not by embedding it inside the file
itself but by storing it in a separate managed database along
with the association, in essence creating an appearance of
it being actually present on the file. Because storage and
association are taken care of by the cloud service, we can
adhere to the DICOM standard in spirit by saving annotations
to this “pseudo‑metadata.” One could argue that this solution
goes beyond the DICOMs metadata embedding, since the
original files stay the same, and it is up to the user to decide
whether the annotations travel with the file if it needs to be
moved elsewhere.

Figure 2: The web application with Tissue Adequacy model prediction scores for different Breast Cancer TMA core images. The “My Box” tab is
the file browser that allows the user to navigate through their Box account within the application. The “Annotations” tab lets them define classifications
and add labels or comments to an image; the model prediction score is shown immediately adjacent to where the user would assign the label. The
thumbs‑up, crossed fingers, and thumbs down buttons denote the Optimal, Suboptimal, and Unsatisfactory labels, respectively, and are what the
pathologists used to classify the image in one of the three classes. The model score is the activation value of the final layer of the trained neural network
and is a continuous value normalized between 0 and 1 – the higher the score, the greater the likelihood of the prediction being true. (a) An example
of a core with optimal Tissue Adequacy, with a classification score of 0.938 to the Optimal class by the model. (b) A core showing inadequate tissue,
and the model agrees with high “confidence” as can be seen from the classification score of 1 for the Unsatisfactory class

b

a

J Pathol Inform 2021, 1:38 http://www.jpathinformatics.org/content/12/1/38

Journal of Pathology Informatics 5

The annotation solution described above has the added
benefit of the metadata not having to conform to file format
restrictions – in fact, cloud services allow any textual string
to be applied as metadata. Our application uses this to allow
the user to define their own annotations and/or labels for the
entire dataset. These definitions are stored in a configuration
file on the cloud, and once created, they are accessible to
anyone with permission to access the dataset files. Any
annotations or comments made on an image are then saved as
this “pseudo‑metadata” on the cloud in the JavaScript Object
Notation (JSON) format. Ultimately, these annotations are the
mechanism by which the targets and inputs for AI training are
configured. Having the annotation visually close to the file
also makes it much easier to create the training dataset: no
querying needs to happen to fetch specific annotations from
an external location (a process that used to be described as
“database enrichment”), since the Box platform maintains that
association index by default. The annotation manifest serves
as a reference to the current state of the dataset as well as for
AI model training on the cloud.

Model training – from server‑side AutoML to client‑side
TensorFlow.js
Most commonly used machine learning libraries allow for
cloud‑based deployment of trained models, exposing them
through APIs over HTTP. More recently, frameworks such as
ConvNetJS,[15] TensorFlow.js,[16] and ONNX.js[17] have proven
the viability of using full‑fledged neural networks directly from
the web browser instead. Our application uses TensorFlow.js as
the framework of choice, primarily because it supports WebGL
for running complex matrix computations on the machine’s
GPU (if available). It is still true, however, that training models
with millions of parameters from scratch might not be feasible
on the local machine; it is also nontrivial to design the best
convolutional neural network (CNN) topology for a given
problem. To address this, our platform can be used with both
in‑browser and cloud‑based model training approaches, with
the option to use Google’s Cloud AutoML service.[18] The latter
is a managed neural network modeling service that runs various
automated algorithms to find model parameters best suited for
a given dataset, trains a CNN on the provided imaging data,
and outputs a performant model all on its own, effectively
removing any barrier for researchers with limited machine
learning experience from getting to an acceptable model. This
is yet another reason why the platform uses TensorFlow.js,
given its out‑of‑the‑box support for models trained through
Cloud AutoML. The aforementioned manifest created from
the annotated files is structured in such a way as to be usable
with Cloud AutoML straightaway.

Model inference
Once training is complete, the model can either be downloaded
or deployed on the cloud. While Cloud AutoML provides
an option for cloud deployment immediately after training,
this approach is fairly expensive. This is one of the main
reasons why we opted to load the model locally through our

platform instead, given that it can be used in‑browser at zero
cost and with an improvement in performance (no remote
communication needed, see 3.1 in Results). Furthermore, the
trained model can be stored in the same location in Box as the
dataset, effectively resulting in the access permissions of the
dataset propagating automatically to the model and sharing
it instantly with all users having access to the initial folder
without breach of governance. This was not anticipated by
the original design but ended up being a major feature of the
solution proposed: because multiple users have access to the
same trained models, and these can be used to classify images
stored under their individual governance, this amounts to
federated AI classification that scales with the number of users.

The files that represent a TensorFlow.js model include a JSON
file that contains the model topology, along with one or more
binary files containing the weights at each node. These files
can be used with the TensorFlow.js library to load the model in
any environment that can run JavaScript, such as the browser.
Our platform loads the model inside a Web Worker and uses
it to obtain inferences in the background. Intriguingly, from a
provenance perspective, these inferences behave as annotations
in and of themselves and are therefore saved back to Box as
additional “pseudo‑metadata” to be used for future analyses.
To help incorporate model predictions into the user’s analysis,
we display the predictions in the same place where the user
would add their annotations.

Real‑time collaboration and extension by code injection
The web application accompanying this report allows users to
collaborate with each other on the platform in real time, using
the TogetherJS library over peer‑to‑peer WebRTC to facilitate
screen‑sharing and communication over audio or chat. Users
can also choose to inject their own code within the application
context simply by using the URL hash parameter “extModules”
and specifying the URL to the script file containing the code they
wish to run. Because there are no server‑side components, there
is no risk of the injected code making any unauthorized changes.

results

Digital pathology case study: Analyzing breast cancer
tissue microarray images
Tissue microarrays (TMAs) have gained rapid popularity over
the last decade for histological analysis in digital pathology.
The technique has been especially impactful in the field
of oncology, such as for biomarker discovery in clinical
studies and large‑scale epidemiological studies investigating
etiological heterogeneity by cancer subtypes.[19] An important
challenge for large‑scale studies involving unsupervised image
analysis of individual tissue core images is the institution of
rapid preanalytical quality control (QC) checks, such as for
adequacy of the tissue core (e.g., adequate amount of tumor)
and biomarker staining for scoring (e.g., percent cells stained
or intensity of biomarker staining).[20,21] Although both classes
of parameters can be assessed visually by a pathologist, this
approach is not readily scalable to thousands of cores from

J Pathol Inform 2021, 1:38 http://www.jpathinformatics.org/content/12/1/38

Journal of Pathology Informatics6

TMAs, hence the need for automation. To test the utility of our
platform on this problem, we employed a dataset of breast TMA
cores from the B‑CAST project[22] stored in our institutional
Box instance. These TMAs were collated from several studies
and have been stained for a variety of immunohistochemical
biomarkers, making this dataset diverse enough to assess
the usability of the application in a generic digital pathology
context. The TMA core images themselves range from sizes
of 40KB to 35MB and are in the JPEG, PNG, and TIFF file
formats.

The objective of this experiment was to see if the application
could be used to first have pathologists add labels for Tissue
Adequacy – denoting amount of visible tissue present in the
image – to a smaller dataset of examples, then train a deep
CNN on these images and subsequently obtain in‑browser
inferences from it on a larger dataset. To start off, we selected
110 images from the Amsterdam Breast Cancer Study (ABCS)
and the Utah Breast Cancer Study as our training dataset,
with varying degrees of tissue adequacy across the chosen
images. We then created and defined categorical labels for
the Tissue Adequacy class, namely Optimal, Suboptimal, and
Unsatisfactory, so as to make it easier and faster to add labels
to the images. We then used the interface to subjectively assign
one of the three labels to each image. It should be noted that
the data stayed under controlled access in a shared folder in
our Box accounts this entire time, with all annotations being
stored in the form of “pseudo‑metadata” as described before.
We used this labeled dataset to train a CNN using the Cloud
AutoML service. Although model training could just as well
have been completed on the local machine, delegating it to
a managed AI modeling service essentially allowed us to
take full advantage of the advanced hyperparameter tuning
functionality provided by Google as a managed service. To test
the trained model in different environments, it was deployed
on the cloud as well as downloaded to the same folder in Box
that housed the training dataset images, thus giving anyone
authorized to view those images access to the model as well.
The downloaded model was then consumed by the application
and ran in the same browser context [see Figure. 2].

To evaluate performance, both model deployments were used to
obtain inferences for over 5000 images from the ABCS study,
none of which were present in the training dataset. This took
the model deployed on the cloud about 5 h with parallelized
asynchronous requests; comparatively, it took the client‑side
model <2 h on a commodity computer without a discrete GPU and
without any parallelization whatsoever. Despite the considerably
small training dataset size, the model was surprisingly accurate
in classifying TMA images across formats, sizes, and stains for
tissue adequacy. The receiver operating characteristic (ROC)
curves in Figure 3 show the excellent performance of the model
as a binary classifier of tissue adequacy as satisfactory and
unsatisfactory based on two scenarios, one where satisfactory
includes the suboptimal class with the optimal and another where
suboptimal is excluded [see legend of Figure 3].

COVID‑19 case study: Identifying COVID‑19 positive cases
from chest X‑ray images
The need for an urgent response to the COVID‑19 pandemic
has led to several collaborative research efforts around the
world with unprecedented sharing of data in the public domain.
The availability of FAIR data in this regard has significantly
motivated the use of AI and deep learning to complement
these initiatives. As a case study to examine the utility of the
platform in a nonpathological context, we applied it on a public
dataset compiled by Subramanian et al.[23] containing labeled
chest computed tomography images of unaffected people
and patients of COVID‑19 and viral pneumonia. The dataset
comprises 296 JPEG images in total, with 92 observations
of COVID‑19 cases and 102 each of unaffected people and
pneumonia patients. We imported these images into our
institutional Box instance and created a class definition through
the platform to classify each image based on the dataset labels.
Once classification was complete, we generated the manifest
for model training and used Cloud AutoML over the entire
dataset. Training took a little over an hour and the resulting
model showed a validation AUC of about 0.835. This model
was then used in‑browser to obtain inferences on a different
labeled dataset[24] containing 388 images stratified similarly as
the original data [see Figure. 4]. Using the predictions made
on the second dataset, we identified images that the model
could not classify with a high enough score or those that were
classified incorrectly. These images were then added to the
training data, and a new model was trained on a randomly
shuffled dataset with the same number of images as before. This
second version generalized markedly better with a validation
AUC of 0.88, providing an illustration for how our application
can be used for active learning, in which predictions by the AI
model on new data are subsequently checked and re‑classified
by experts, with the extended annotated results provided back
for model retraining. Figure 5 shows the ROC curves for the
model before and after active learning.

dIscussIon

Although it is becoming increasingly popular to deploy models on
the cloud, this approach can be costly. In our case studies, we tried
using the cloud deployment option offered by Cloud AutoML, and
we were billed about USD 30 per day to deploy and use the TMA
model on the Google Cloud Platform. This is especially noticeable
given that the PWA was able to load the same model in the browser
to make predictions at zero cost (apart from the electricity usage
of the local machine). In addition, the remotely deployed model
was also constrained by the fact that each file needed to be sent
to it through HTTP for analysis, which is undesirable for medical
images both for privacy reasons and because sending sizeable files
over the network is quite slow. With the two factors put together,
we found that prediction time for the in‑browser model was around
150 ms on average per image, while the remote model took over 5
s per image mainly due to network overhead. We attempted to
reduce costs on the cloud by deploying the models through a
serverless function instead of a separate virtual instance. While

J Pathol Inform 2021, 1:38 http://www.jpathinformatics.org/content/12/1/38

Journal of Pathology Informatics 7

this option is less expensive, file transfer is still necessary, and
there is a significant increase in average prediction time because
of the extra “warm‑up” period of an inactive serverless container.
As a result, any difference in computational performance between
the in‑browser and cloud‑based approaches effectively favors the
former. The in‑browser AI deployment model is ranked higher in
terms of availability and explainability as well. While this was
predictable in principle, the 30‑fold decrease in latency, zero
footprint, no data transfer, and virtually no costs of deployment
puts to rest any doubts about the practicality of the proposed
in‑browser AI solution.

Training a model on a third‑party cloud provider is possible
only if the storage service that houses the data can be connected
to and used by the modeling service as a data source. In the
above case studies, this was a definite limitation for our

platform. Since Box does not tie into Google Cloud Storage,
which is where Cloud AutoML requires training data to be
placed, data transfer is unavoidable in this training system. This
challenge to integrating advanced AI hyperparameterization
engines that do not require localized data is not particular
to our platform, however. A number of initiatives both in
academia and industry have recognized this limitation and
are advancing federated learning[25] as an alternative. In this
model, training takes place in a distributed manner by taking
advantage of idle compute resources at the locations (“at the
edge”) where the benefits of model predictions are ultimately
realized but without requiring shared access to the training
data. This is a recurring theme in this report: once federated
learning is part of the cloud ecosystem, i.e., once its APIs allow
for the distribution of computation to client applications, the

Figure 4: The web application showing the model prediction for a chest X‑ray image of a COVID‑19 patient. Note that the annotation classes from
the breast cancer tissue microarray dataset were not carried over – the annotation classes are defined by the user and are specific to the dataset

Figure 3: The receiver operating characteristic (ROC) curves for the Tissue Adequacy mode considering (a) only the optimal classification as the
true positive, and (b) both the optimal and suboptimal classifications combined as the true positive. The curves suggest that the model can be reliably
used for QC on the basis of tissue presence. The two y‑axes provided for each receiver operating characteristic plot denote the conventional true
positive rate on the left (in blue) and the corresponding threshold values on the right (in red). The latter is provided to allow the graphic determination
of what AI model scores [from Figure 2] will correspond to different proportions of true and false positives

ba

J Pathol Inform 2021, 1:38 http://www.jpathinformatics.org/content/12/1/38

Journal of Pathology Informatics8

approach reported here will be particularly well positioned to
make full use of that distribution instead of having to develop
it independently.

The model classifications and the corresponding scores,
as mentioned previously, are stored with the file in Box as
“pseudo‑metadata.” This gives users a significant computational
bonus because once one person has used a model to classify an
image, others automatically get that classification for free by
simply fetching this stored metadata from Box, instead of having
to run the image through the model themselves. Consequently,
despite the fact that the models run locally, the application
enables all users to benefit from the combined computational
resources of everyone using the models on the shared dataset,
essentially making this a distributed, federated computing
platform. Moreover, storing the predictions as annotations that
can be accessed on the platform also facilitates incrementally
selective analyses. For instance, researchers can use the model
predictions for QC to guide decisions on data inclusion or
exclusion based on prespecified quality metrics. In the TMA
case study, we could choose to only keep images that the Tissue
Adequacy model classifies to be optimal, avoiding wasted
analytical effort – and added analytical error – with inadequately
visible tissue. This would significantly reduce the number of
images that would otherwise have to be seen and manually
discarded by the pathologist. Moreover, having the models in a
local environment allows for rapid iterative model development
and active learning, as evidenced by the COVID‑19 case study.

An added bonus of developing this as a completely client‑side
web application is that no setup, downloads, or installation
whatsoever are required. All that is needed is for the data to
be put into a cloud storage system supporting “Box‑like” APIs
with consumer‑facing governance. This allows everyone with
or without computing expertise to use it collaboratively and
thus accelerates the process of creating standardized datasets
and subsequent AI modeling. This combination of easy access
and faster analysis was observed to be especially helpful

when trying to analyze a rapidly evolving problem such as
the ongoing COVID‑19 outbreak. While this case study was
only conducted as a demonstration of the flexibility of a system
originally conceived for digital pathology, it shows that the
proposed solution can be effectively redirected to other image
analysis scenarios in real time. When rendered as a PWA, the
platform described here is accessible on just about any device
with a web browser, so medical staff on the field could make
use of models trained by experts elsewhere, potentially without
requiring network access when analyzing local data. Moreover,
as another direct result of relying on the APIs supporting
consumer‑facing governance, this platform gives the researcher
the ability to fine tune their models through active learning as
and when more data becomes available, evolving the classifier
toward increasingly effective and reliable analyses.

Although this work focused primarily on classification, our
approach can also be applied to other image analyses involving
supervised learning, such as segmentation, registration, and
object detection. Furthermore, a recent effort by Bremer et al.[26]
toward web‑based interoperation with whole slide imaging data
makes it possible to extend our tool to that domain. This is directly
enabled by the authorized API‑based approach described in this
report in that it can engage whole slides images stored on the
cloud one tile at a time, in a manner consistent with the security
and resource constraints of the web browser. The resulting effect
of retrieving individual tiles with HTTP range requests can be
assessed, for example, at https://episphere.github.io/svs

conclusIons

Web applications are rapidly becoming the preferred way of
delivering software solutions for a variety of applications. This
reflects their ubiquity and inherent extensibility by code injection
onto a safe sandbox environment in the browser. These features
are in drastic contrast with both conventional desktop and HPC
software. The accompanying open‑source platform showcases
how digital pathology, radiology, and medical imaging in general

Figure 5: The receiver operating characteristic curves for the COVID‑19 chest computed tomography model considering the COVID‑19 classification
as the true positive (a) trained on just the initial dataset and (b) after retraining the model through active learning. The two Y‑axes are the same as in
Figure 3, with the left axis showing the true positive rate and the right axis denoting the threshold value

ba

J Pathol Inform 2021, 1:38 http://www.jpathinformatics.org/content/12/1/38

Journal of Pathology Informatics 9

can take advantage of these trends by providing researchers
with the ability to perform the entire image analysis workflow
without leaving the browser. The application of the platform to
the breast cancer TMA case study demonstrates its viability and
utility for research. The COVID‑19 case study illustrates how
it can also be used for rapid dataset formulation, AI modeling,
and active learning, potentially in real‑time. Together, these case
studies show how the problems of data governance, security, and
annotation management are best solved jointly by leveraging
the extensive capabilities of consumer‑facing cloud storage
services like Box. The outlined approach creates zero‑footprint,
zero‑cost model predictions without requiring transfer of
possibly sensitive data. These features have the potential to
deflect regulatory deterrents to AI deployment by advancing a
model in which the code moves to where the data are governed,
rather than the latter being transferred to third‑party execution
environments. This is just as important for regulatory models
that can only be addressed with user‑centric governance as it is
for data socialization schemes advanced by community‑driven
open source projects. Moreover, because the model can be tested
in an environment as ubiquitous as the web browser merely by
sharing it through cloud storage, reproducibility becomes much
more straightforward for those generating the data. Finally, the
browser as a full‑stack computational platform is now adding
new native APIs enabling advanced features previously available
only in specialized environments. In the context of applying
federated AI to Digital Pathology, the adoption of the WebGPU
standard[27] as well as of frameworks for distributed edge
computing such as those approached by QMachine[28] suggest
that Web Computing backed by consumer‑facing Box‑like
cloud middle‑layers may be ideally suited for deep learning
applications to computational pathology.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

references
1. Hesamian MH, Jia W, He X, Kennedy P. Deep learning techniques for

medical image segmentation: Achievements and challenges. J Digit
Imaging 2019;32:582‑96.

2. Lewis K, Rost NS, Guttag J, Dalca AV. Fast learning‑based registration
of sparse 3D clinical images. In: Proceedings of the ACM Conference
on Health, Inference, and Learning (CHIL ’20). New York, NY, USA:
Association for Computing Machinery; 2020. p. 90‑8.

3. Cheng JZ, Ni D, Chou YH, Qin J, Tiu CM, Chang YC, et al. Computer‑aided
diagnosis with deep learning architecture: Applications to breast lesions in
US images and pulmonary nodules in CT scans. Sci Rep 2016;6:24454.

4. Litjens G, Kooi T, Bejnordi BE, Setio AA, Ciompi F, Ghafoorian M,
et al. A survey on deep learning in medical image analysis. In:
Medical Image Analysis. Elsevier; 2017. Available from: https://doi.
org/10.1016/j.media.2017.07.005. [Accessed on 28 Aug 2021]

5. Carter RE, Attia ZI, Lopez‑Jimenez F, Friedman PA. Pragmatic
considerations for fostering reproducible research in artificial
intelligence. NPJ Digit Med 2019;2:42.

6. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M,
Baak A, et al. The FAIR Guiding Principles for scientific data
management and stewardship. Sci Data 2016;3:160018.

7. Kalkman S, Mostert M, Gerlinger C, van Delden JJM, van Thiel GJ.
Responsible data sharing in international health research: A systematic
review of principles and norms. BMC Med Ethics 2019;20:21.

8. Mehrtash A, Pesteie M, Hetherington J, Behringer PA, Kapur T, Wells WM,
et al. DeepInfer: Open‑source deep learning deployment toolkit for
image‑guided therapy. In: Medical Imaging 2017: Image‑Guided
Procedures, Robotic Interventions, and Modeling. SPIE; 2017. Available
from: https://doi.org/10.1117/12.2256011. [Accessed on 28 Aug 2021]

9. Milletari F, Frei J, Ahmadi S. TOMAAT: Volumetric Medical Image
Analysis as a Cloud Service; March, 2018. Available from: https://arxiv.
org/abs/1803.06784v2. [Accessed on 28 Aug 2021]

10. Pieper S, Halle M, Kikinis R. 3D Slicer. In: 2004 2nd IEEE International
Symposium on Biomedical Imaging: Macro to Nano. IEEE; 2004.
Available from: https://doi.org/10.1109/isbi.2004.1398617. [Accessed
on 28 Aug 2021]

11. Philbrick KA, Weston AD, Akkus Z, Kline TL, Korfiatis P, Sakinis T,
et al. RIL‑contour: A medical imaging dataset annotation tool for and
with deep learning. J Digit Imaging 2019;32:571‑81.

12. Sedghi A, Hamidi S, Mehrtash A, Ziegler E, Tempany C, Pieper S, et al.
Tesseract‑Medical Imaging: Open‑Source Browser‑Based Platform for
Artificial Intelligence Deployment in Medical Imaging. SPIE; 2019.
Available from: https://doi.org/10.1117/12.2513004. [Accessed on 28
Aug 2021]

13. Bremer E, Kurc T, Gao Y, Saltz J, Almeida JS. Safe “cloudification”
of large images through picker APIs. In: AMIA. Annual Symposium
Proceedings. AMIA Symposium; 2016.

14. The OAuth2.0 Authorization Framework. Available from: https://tools.
ietf.org/html/rfc6749. [Accessed on 28 Aug 2021]

15. Andrej Karpathy. ConvNetJS: Deep Learning in your Browser. Available
from: https://cs.stanford.edu/people/karpathy/convnetjs. [Accessed on
28 Aug 2021]

16. Smilkov D, Thorat N, Assogba Y, Yuan A, Kreeger N, Yu P. et al.
TensorFlow.Js: Machine Learning for the Web and Beyond; 2019.
Google Research. Available from: https://arxiv.org/abs/1901.05350.
[Accessed on 28 Aug 2021]

17. ONNX.js: Run ONNX Models Using JavaScript. Available from:
https://github.com/Microsoft/onnxjs. [Accessed on 28 Aug 2021]

18. Google Cloud AutoML: Train High‑Quality Custom Machine Learning
Models with Minimal Effort and Machine Learning Expertise. Available
from: https://cloud.google.com/automl.

19. Broeks A, Schmidt MK, Sherman ME, Couch FJ, Hopper JL, Dite GS,
et al. Low penetrance breast cancer susceptibility loci are associated
with specific breast tumor subtypes: Findings from the Breast Cancer
Association Consortium. Hum Mol Genet 2011;20:3289‑303.

20. Howat WJ, Blows FM, Provenzano E, Brook MN, Morris L, Gazinska P,
et al. Performance of automated scoring of ER, PR, HER2, CK5/6
and EGFR in breast cancer tissue microarrays in the Breast Cancer
Association Consortium. J Pathol Clin Res 2015;1:18‑32.

21. Sherman ME, Howatt W, Blows FM, Pharoah P, Hewitt SM,
Garcia‑Closas M. Molecular pathology in epidemiologic studies: A primer
on key considerations. Cancer Epidemiol Biomarkers Prev 2010;19:966‑72.

22. The Breast CAncer STratification (B‑CAST) Project. Available from:
http://www.b‑cast.eu/. [Accessed on 28 Aug 2021]

23. Subramanian T, et al. Sansten AI Labs COVID‑19 X‑Ray Image Dataset.
Available from: https://lnkd.in/geyyd3V. [Accessed on 16 Jun 2020]

24. COVID19 High Quality Images: 120 High Quality Images for
COVID19, Viral Pneumonia and Normal. Available from: https://www.
kaggle.com/theroyakash/covid19/data. [Accessed on 28 Aug 2021]

25. Brendan McMahan and Daniel Ramage. Federated Learning: Collaborative
Machine Learning without Centralized Training Data. Available from:
https://ai.googleblog.com/2017/04/federated‑learning‑collaborative.
html. [Accessed on 28 Aug 2021]

26. Bremer E, Saltz J, Almeida JS. ImageBox 2 – Efficient and rapid access
of image tiles from whole‑slide images using serverless HTTP range
requests. J Pathol Inform 2020;11:29.

27. The WebGPU Specification, GPU for the Web Community Group.
Available from: https://gpuweb.github.io/gpuweb. [Accessed on 28 Aug
2021]

.28. Wilkinson SR, Almeida JS. QMachine: Commodity supercomputing in
web browsers. BMC Bioinformatics 2014;15:176.

