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Abstract

Research Article

IntroductIon

In the past few years, artificial intelligence (AI) techniques, 
particularly supervised deep learning, have gained wide 
adoption for medical image analysis. Applications of these 
methods have been shown to be effective for multiple tasks 
including image segmentation,[1] registration,[2] disease 
diagnosis,[3] and others, with state‑of‑the‑art models 
demonstrating performance on par with or even better than 

human experts.[4] However, these results have also brought 
to the fore a concern about their reproducibility[5] – many 
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of these models are developed in siloed environments using 
specific software libraries, and because reproducing the 
exact environment is not always convenient or possible, their 
reusability and performance are considerably compromised by 
their lack of portability across platforms. As a consequence, 
the full value of AI applications to Digital Medical Imaging 
represents a particular challenge to the findable, accessible, 
interoperable, reusable (FAIR) stewardship[6] of scientific data 
in conventional computational platforms, be it on‑premises or 
in centralized cloud architecture.

Another major barrier to facilitating the FAIRness of data and 
models is the limited shareability of medical data outside the 
clinical, organizational, or geographical domain where it is 
generated.[7] Model training typically requires the dataset to be 
present in a location that is directly accessible to the machine 
on which the training is to be performed, most often as a 
locally downloaded copy. Sometimes the data are unlabeled, 
a scenario where the machine that provides the annotation 
service needs to be able to access the data as well. Moving 
files across computers to achieve these individual tasks is often 
unviable because of tight privacy and compliance requirements 
when dealing with medical data. Logistic barriers can also be 
a major obstacle, especially with large datasets common in 
Pathology and Genomics sequencing laboratories. Finally, in 
cases where the data are stored at a central on‑premise location, 
setting up proper governance and access management is rarely 
straightforward. The cloud has emerged to resolve many of 
these challenges, but the software tools conventionally used 
by researchers and clinicians alike have not kept pace with 
these new computational architectures. Specifically, it remains 
difficult to integrate these tools with centralized cloud storage 
where (a) the governance of the data is inherently federated; 
and (b) the annotation process needed for AI training requires 
its distribution to domain experts.

A number of efforts have been pursued to address these 
obstacles. For example, the DeepInfer framework by Mehrtash 
et al.[8] uses a Docker engine to standardize the evaluation 
environment and runs various deep learning models on the 
client machine. TOMAAT by Milletari et al.[9] facilitates 
deployment of trained models to the cloud, making them 
accessible as a remote service. These frameworks require 
a client like the 3D Slicer[10] visualization software to 
communicate with the model server and obtain inferences. 
More recently, Philbrick et al. developed RIL‑Contour, 
a software application to accelerate image annotation for 
and with deep learning.[11] Although RIL‑Contour provides 
a one‑stop solution for annotation and modeling, it is a 
standalone application that requires setting up multiple external 
dependencies, something that clinically oriented users may 
find hard to do. Sedghi et al. took a browser‑based approach 
for the user interface with Tesseract‑MI.[12] However, it too 
uses a Docker engine that would need to be deployed – and 
maintained – for use across machines. These solutions 
approach the web browser as just a user interface rather than 
as a means for distributed web computing as proposed here. 

They also do not integrate with cloud storage or provide 
user‑centric governance that largely drives cloud adoption in 
the first place. Instead, they assume the local availability of 
data as a system resource decoupled from user governance. 
The implications of centralized designs for applying AI models 
to sensitive data are just as problematic: the data have to be 
sent to the modeling engine for inference, leaving only two 
possibilities, one unscalable, the other insecure. Respectively, 
either (a) the engine is made available locally in a specialized 
computational environment or (b) sensitive data are entrusted 
to a central AI engine where inference is opaque to the users. 
In conclusion, there is an urgent need for platforms that 
both enable the migration of the AI inference code to where 
access to the sensitive data is available (e.g., a patient portal 
and/or a pathologist’s workspace), and incorporate the type 
of consumer‑facing cloud storage associated with the “Box 
model” as put forward by Bremer et al.,[13] where security and 
governance are delegated to and taken care of by the cloud 
storage service that hosts the data, and the client only need 
consume the Application Program Interfaces (APIs) exposed 
by the service to take advantage of this delegation.

In this study, we describe the implementation of a web 
platform that meets these challenges of distribution and 
FAIRness by providing tools for data annotation and model 
inference entirely on the browser at zero cost and with no 
installation (i.e., “zero‑footprint”). Although local files can be 
used with the application for model training and inference, the 
study focuses primarily on how cloud storage services have 
been integrated into the platform, with Box.com as a specific 
example. Specifically, we aim to demonstrate the practical 
implementation of a ready‑to‑use hosted web application 
that has no server‑side computing elements, requires no 
deployment, and can be accessed from any device with a web 
browser through a Uniform Resource Locator (URL). The 
accompanying application extends the “Box model” to provide 
researchers having no machine learning experience with the 
tools to train, use, and share AI models.

Methods

The web browser has evolved rapidly to keep pace with 
the development of the World Wide Web as a global 
computational space. Browser engines today support the 
full‑stack of computational features, from persistent storage 
and background processes to in‑browser web servers (service 
workers). Because of the ubiquitous nature of web computing, 
these are now optimized to the point that they are emerging as 
the preferred solution for distributed software ecosystems. The 
software entities that take full advantage of these ecosystems 
are called web applications, with the more device‑agnostic 
ones often designated as Progressive Web Apps (PWAs). 
Like conventional websites, PWAs are accessible through 
a dereferenceable URL that one can visit on a web browser. 
Although web applications generally contain distinct client 
and server‑side components, they do in fact allow for the full 
stack application logic to be executed entirely on the client as 
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well. The platform we describe here is an example of the latter, 
a completely client‑side PWA. This approach guarantees that 
the data never leave the user’s machine, that the code running 
on the browser is completely transparent, and that any network 
interaction can be readily examined through the developer 
toolbox packaged with all modern web browsers. The PWA 
leverages browser functionalities such as the HTML5 Canvas 
and Web Workers so as to provide an intuitive and smooth 
user experience while being capable of performing heavy 
computations in the background.

The practice of using cloud storage for data management has 
recently gained traction in digital pathology and biomedicine 
as a whole. Architecturally, these services act as cloud‑based 
middleware providing a FAIR API ecosystem. In our case, 
the APIs securely exposed by Box enable our application to 
automatically make full use of their offerings (such as viewers 
for nonweb standard image formats like DICOM and TIFF) 
as they become available, while also allowing us to focus 
on developing features and letting Box ensure authorized 
access to the data. It cannot be overemphasized how much 
of the developer effort and compliance load is lifted from the 
development exercise by relying on consumer‑facing/governed 
API ecosystems.

The data we work with in the described PWA are currently 
limited exclusively to medical images. Figure 1 shows the 
architecture of the platform. Below, we outline how it facilitates 
each aspect of the medical AI workflow. The application code 
is open‑source and publicly available at: https://github.com/
episphere/path.

Authentication and governance
Consumer‑facing cloud storage services depend critically on the 
robustness and security of their authentication and authorization 
mechanisms. They also go to great lengths to integrate these 
mechanisms with institutional authentication systems, perform 

regulatory auditing, and provide security oversight. As a 
consequence, these mechanisms become available for use by 
applications registered with the cloud service, the so‑called 
“Box Apps” in the case of Box. These applications can be 
thought of as client‑side extensions to the cloud storage 
service, but without programmatic constraints to integrating 
additional services or components, such as AI‑powered 
analytics. Our platform performs user authentication and 
authorization through such an application registered with Box. 
This enables researchers at other institutions to directly use 
the integration with their institutions’ own Single Sign‑On 
systems. To that end, we employ the OAuth2.0 protocol[14] 
where the user logs in to their Box account, and Box then 
provides our platform with a token that identifies the user and  
allows them to access their data in Box through the platform. 
OAuth2.0 ensures that authentication is handled completely 
by the service, not the platform, so there is no registration 
involved and the user’s credentials are never exchanged or 
compromised. Essentially, the OAuth2.0 process generates a 
token that allows the application code to act on behalf of the 
user under scoped authorization where only content owned by 
or shared with that user is accessible to them.

Storage services give users the option to share files with others 
and define the permissions those users would have over the 
shared data. This user‑defined governance is the basis for both the 
trustworthiness and distributed robustness of consumer‑facing 
Box systems.[13] Access and permission management is taken 
care of by Box outside the scope of the application code; any 
update in the access arrangements is propagated everywhere 
instantly by the service. Consequently, because our application 
only acts as an intermediary between Box and the client, once 
a content sharing is enacted in the environment of the storage 
service, the shared files automatically become accessible to 
the user in our platform, in real time. In summary, decoupling 
governance by delegating it to the storage provider eliminates 
the need for the platform to maintain complex data management 
architectures on its own. It also facilitates collaboration, as 
researchers wishing to work on the same dataset need only set 
shared access to the relevant folders and files under data access 
policies they can establish and oversee on their own, rather than 
through the mediation of “trusted brokers.”

Image viewing and operations
Once authentication is successful within the application, the 
user has access to all the files in their cloud storage account 
directly from the web application interface. They can navigate 
through the files and select images to view in the application. 
Supported image formats include JPEG, PNG, and TIFF. 
The images are viewed using an HTML5 Canvas; it should 
be noted here that advances in Web technologies, such as 
the native Canvas become available immediately to the 
PWA without it having to explicitly maintain dependencies 
with specialized external libraries, as is the case for more 
conventional systems in use for Digital Pathology and other 
digital imaging applications. As a consequence, advanced 
image processing operations, potentially involving the use of 

Figure 1: Platform architecture. The browser runs the web application 
which acts as the connector between the cloud storage provider and the AI 
service on the cloud. Communication happens with the cloud provider only 
if model training is to be performed on the cloud or if a deployed model 
needs to be used for running inferences on the data in the application
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GPUs, such as zooming and foreground image segmentation, 
can be efficiently performed using the tools programmed into 
the application itself.

Data annotation
Adding annotations to raw imaging data is the first step 
toward the supervised training of a model. These annotations, 
however, need to be managed in such a way that the 
association between them and the data is preserved within 
the governance scope of each user. Keeping these annotations 
in external files or databases require a dedicated entity to 
manage those associations. To solve this problem, the DICOM 
standard prescribes embedding annotations as metadata 
within the individual files themselves. While this does make 
the association implicit, it is not available to native image 
formats. Adding to the challenge, developing a “shadow” 
metadata system would be a major engineering effort, 
comparable to what went into developing the DICOM format. 

Unsurprisingly, the metadata management functionality is 
a key feature of cloud‑based storage providers like Box, 
where it is included as a service with its own dedicated APIs 
alongside version control, backup, and other core features. 
Again, the application described here benefits from these 
advanced metadata management APIs as a direct result of 
integrating cloud storage. The way Box enables the addition 
of metadata on a file is not by embedding it inside the file 
itself but by storing it in a separate managed database along 
with the association, in essence creating an appearance of 
it being actually present on the file. Because storage and 
association are taken care of by the cloud service, we can 
adhere to the DICOM standard in spirit by saving annotations 
to this “pseudo‑metadata.” One could argue that this solution 
goes beyond the DICOMs metadata embedding, since the 
original files stay the same, and it is up to the user to decide 
whether the annotations travel with the file if it needs to be 
moved elsewhere.

Figure 2: The web application with Tissue Adequacy model prediction scores for different Breast Cancer TMA core images. The “My Box” tab is 
the file browser that allows the user to navigate through their Box account within the application. The “Annotations” tab lets them define classifications 
and add labels or comments to an image; the model prediction score is shown immediately adjacent to where the user would assign the label. The 
thumbs‑up, crossed fingers, and thumbs down buttons denote the Optimal, Suboptimal, and Unsatisfactory labels, respectively, and are what the 
pathologists used to classify the image in one of the three classes. The model score is the activation value of the final layer of the trained neural network 
and is a continuous value normalized between 0 and 1 – the higher the score, the greater the likelihood of the prediction being true. (a) An example 
of a core with optimal Tissue Adequacy, with a classification score of 0.938 to the Optimal class by the model. (b) A core showing inadequate tissue, 
and the model agrees with high “confidence” as can be seen from the classification score of 1 for the Unsatisfactory class

b

a
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The annotation solution described above has the added 
benefit of the metadata not having to conform to file format 
restrictions – in fact, cloud services allow any textual string 
to be applied as metadata. Our application uses this to allow 
the user to define their own annotations and/or labels for the 
entire dataset. These definitions are stored in a configuration 
file on the cloud, and once created, they are accessible to 
anyone with permission to access the dataset files. Any 
annotations or comments made on an image are then saved as 
this “pseudo‑metadata” on the cloud in the JavaScript Object 
Notation (JSON) format. Ultimately, these annotations are the 
mechanism by which the targets and inputs for AI training are 
configured. Having the annotation visually close to the file 
also makes it much easier to create the training dataset: no 
querying needs to happen to fetch specific annotations from 
an external location (a process that used to be described as 
“database enrichment”), since the Box platform maintains that 
association index by default. The annotation manifest serves 
as a reference to the current state of the dataset as well as for 
AI model training on the cloud.

Model training – from server‑side AutoML to client‑side 
TensorFlow.js
Most commonly used machine learning libraries allow for 
cloud‑based deployment of trained models, exposing them 
through APIs over HTTP. More recently, frameworks such as 
ConvNetJS,[15] TensorFlow.js,[16] and ONNX.js[17] have proven 
the viability of using full‑fledged neural networks directly from 
the web browser instead. Our application uses TensorFlow.js as 
the framework of choice, primarily because it supports WebGL 
for running complex matrix computations on the machine’s 
GPU (if available). It is still true, however, that training models 
with millions of parameters from scratch might not be feasible 
on the local machine; it is also nontrivial to design the best 
convolutional neural network (CNN) topology for a given 
problem. To address this, our platform can be used with both 
in‑browser and cloud‑based model training approaches, with 
the option to use Google’s Cloud AutoML service.[18] The latter 
is a managed neural network modeling service that runs various 
automated algorithms to find model parameters best suited for 
a given dataset, trains a CNN on the provided imaging data, 
and outputs a performant model all on its own, effectively 
removing any barrier for researchers with limited machine 
learning experience from getting to an acceptable model. This 
is yet another reason why the platform uses TensorFlow.js, 
given its out‑of‑the‑box support for models trained through 
Cloud AutoML. The aforementioned manifest created from 
the annotated files is structured in such a way as to be usable 
with Cloud AutoML straightaway.

Model inference
Once training is complete, the model can either be downloaded 
or deployed on the cloud. While Cloud AutoML provides 
an option for cloud deployment immediately after training, 
this approach is fairly expensive. This is one of the main 
reasons why we opted to load the model locally through our 

platform instead, given that it can be used in‑browser at zero 
cost and with an improvement in performance (no remote 
communication needed, see 3.1 in Results). Furthermore, the 
trained model can be stored in the same location in Box as the 
dataset, effectively resulting in the access permissions of the 
dataset propagating automatically to the model and sharing 
it instantly with all users having access to the initial folder 
without breach of governance. This was not anticipated by 
the original design but ended up being a major feature of the 
solution proposed: because multiple users have access to the 
same trained models, and these can be used to classify images 
stored under their individual governance, this amounts to 
federated AI classification that scales with the number of users.

The files that represent a TensorFlow.js model include a JSON 
file that contains the model topology, along with one or more 
binary files containing the weights at each node. These files 
can be used with the TensorFlow.js library to load the model in 
any environment that can run JavaScript, such as the browser. 
Our platform loads the model inside a Web Worker and uses 
it to obtain inferences in the background. Intriguingly, from a 
provenance perspective, these inferences behave as annotations 
in and of themselves and are therefore saved back to Box as 
additional “pseudo‑metadata” to be used for future analyses. 
To help incorporate model predictions into the user’s analysis, 
we display the predictions in the same place where the user 
would add their annotations.

Real‑time collaboration and extension by code injection
The web application accompanying this report allows users to 
collaborate with each other on the platform in real time, using 
the TogetherJS library over peer‑to‑peer WebRTC to facilitate 
screen‑sharing and communication over audio or chat. Users 
can also choose to inject their own code within the application 
context simply by using the URL hash parameter “extModules” 
and specifying the URL to the script file containing the code they 
wish to run. Because there are no server‑side components, there 
is no risk of the injected code making any unauthorized changes.

results

Digital pathology case study: Analyzing breast cancer 
tissue microarray images
Tissue microarrays (TMAs) have gained rapid popularity over 
the last decade for histological analysis in digital pathology. 
The technique has been especially impactful in the field 
of oncology, such as for biomarker discovery in clinical 
studies and large‑scale epidemiological studies investigating 
etiological heterogeneity by cancer subtypes.[19] An important 
challenge for large‑scale studies involving unsupervised image 
analysis of individual tissue core images is the institution of 
rapid preanalytical quality control (QC) checks, such as for 
adequacy of the tissue core (e.g., adequate amount of tumor) 
and biomarker staining for scoring (e.g., percent cells stained 
or intensity of biomarker staining).[20,21] Although both classes 
of parameters can be assessed visually by a pathologist, this 
approach is not readily scalable to thousands of cores from 
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TMAs, hence the need for automation. To test the utility of our 
platform on this problem, we employed a dataset of breast TMA 
cores from the B‑CAST project[22] stored in our institutional 
Box instance. These TMAs were collated from several studies 
and have been stained for a variety of immunohistochemical 
biomarkers, making this dataset diverse enough to assess 
the usability of the application in a generic digital pathology 
context. The TMA core images themselves range from sizes 
of 40KB to 35MB and are in the JPEG, PNG, and TIFF file 
formats.

The objective of this experiment was to see if the application 
could be used to first have pathologists add labels for Tissue 
Adequacy – denoting amount of visible tissue present in the 
image – to a smaller dataset of examples, then train a deep 
CNN on these images and subsequently obtain in‑browser 
inferences from it on a larger dataset. To start off, we selected 
110 images from the Amsterdam Breast Cancer Study (ABCS) 
and the Utah Breast Cancer Study as our training dataset, 
with varying degrees of tissue adequacy across the chosen 
images. We then created and defined categorical labels for 
the Tissue Adequacy class, namely Optimal, Suboptimal, and 
Unsatisfactory, so as to make it easier and faster to add labels 
to the images. We then used the interface to subjectively assign 
one of the three labels to each image. It should be noted that 
the data stayed under controlled access in a shared folder in 
our Box accounts this entire time, with all annotations being 
stored in the form of “pseudo‑metadata” as described before. 
We used this labeled dataset to train a CNN using the Cloud 
AutoML service. Although model training could just as well 
have been completed on the local machine, delegating it to 
a managed AI modeling service essentially allowed us to 
take full advantage of the advanced hyperparameter tuning 
functionality provided by Google as a managed service. To test 
the trained model in different environments, it was deployed 
on the cloud as well as downloaded to the same folder in Box 
that housed the training dataset images, thus giving anyone 
authorized to view those images access to the model as well. 
The downloaded model was then consumed by the application 
and ran in the same browser context [see Figure. 2].

To evaluate performance, both model deployments were used to 
obtain inferences for over 5000 images from the ABCS study, 
none of which were present in the training dataset. This took 
the model deployed on the cloud about 5 h with parallelized 
asynchronous requests; comparatively, it took the client‑side 
model <2 h on a commodity computer without a discrete GPU and 
without any parallelization whatsoever. Despite the considerably 
small training dataset size, the model was surprisingly accurate 
in classifying TMA images across formats, sizes, and stains for 
tissue adequacy. The receiver operating characteristic (ROC) 
curves in Figure 3 show the excellent performance of the model 
as a binary classifier of tissue adequacy as satisfactory and 
unsatisfactory based on two scenarios, one where satisfactory 
includes the suboptimal class with the optimal and another where 
suboptimal is excluded [see legend of Figure 3].

COVID‑19 case study: Identifying COVID‑19 positive cases 
from chest X‑ray images
The need for an urgent response to the COVID‑19 pandemic 
has led to several collaborative research efforts around the 
world with unprecedented sharing of data in the public domain. 
The availability of FAIR data in this regard has significantly 
motivated the use of AI and deep learning to complement 
these initiatives. As a case study to examine the utility of the 
platform in a nonpathological context, we applied it on a public 
dataset compiled by Subramanian et al.[23] containing labeled 
chest computed tomography images of unaffected people 
and patients of COVID‑19 and viral pneumonia. The dataset 
comprises 296 JPEG images in total, with 92 observations 
of COVID‑19 cases and 102 each of unaffected people and 
pneumonia patients. We imported these images into our 
institutional Box instance and created a class definition through 
the platform to classify each image based on the dataset labels. 
Once classification was complete, we generated the manifest 
for model training and used Cloud AutoML over the entire 
dataset. Training took a little over an hour and the resulting 
model showed a validation AUC of about 0.835. This model 
was then used in‑browser to obtain inferences on a different 
labeled dataset[24] containing 388 images stratified similarly as 
the original data [see Figure. 4]. Using the predictions made 
on the second dataset, we identified images that the model 
could not classify with a high enough score or those that were 
classified incorrectly. These images were then added to the 
training data, and a new model was trained on a randomly 
shuffled dataset with the same number of images as before. This 
second version generalized markedly better with a validation 
AUC of 0.88, providing an illustration for how our application 
can be used for active learning, in which predictions by the AI 
model on new data are subsequently checked and re‑classified 
by experts, with the extended annotated results provided back 
for model retraining. Figure 5 shows the ROC curves for the 
model before and after active learning.

dIscussIon

Although it is becoming increasingly popular to deploy models on 
the cloud, this approach can be costly. In our case studies, we tried 
using the cloud deployment option offered by Cloud AutoML, and 
we were billed about USD 30 per day to deploy and use the TMA 
model on the Google Cloud Platform. This is especially noticeable 
given that the PWA was able to load the same model in the browser 
to make predictions at zero cost (apart from the electricity usage 
of the local machine). In addition, the remotely deployed model 
was also constrained by the fact that each file needed to be sent 
to it through HTTP for analysis, which is undesirable for medical 
images both for privacy reasons and because sending sizeable files 
over the network is quite slow. With the two factors put together, 
we found that prediction time for the in‑browser model was around 
150 ms on average per image, while the remote model took over 5 
s per image mainly due to network overhead. We attempted to 
reduce costs on the cloud by deploying the models through a 
serverless function instead of a separate virtual instance. While 
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this option is less expensive, file transfer is still necessary, and 
there is a significant increase in average prediction time because 
of the extra “warm‑up” period of an inactive serverless container. 
As a result, any difference in computational performance between 
the in‑browser and cloud‑based approaches effectively favors the 
former. The in‑browser AI deployment model is ranked higher in 
terms of availability and explainability as well. While this was 
predictable in principle, the 30‑fold decrease in latency, zero 
footprint, no data transfer, and virtually no costs of deployment 
puts to rest any doubts about the practicality of the proposed 
in‑browser AI solution.

Training a model on a third‑party cloud provider is possible 
only if the storage service that houses the data can be connected 
to and used by the modeling service as a data source. In the 
above case studies, this was a definite limitation for our 

platform. Since Box does not tie into Google Cloud Storage, 
which is where Cloud AutoML requires training data to be 
placed, data transfer is unavoidable in this training system. This 
challenge to integrating advanced AI hyperparameterization 
engines that do not require localized data is not particular 
to our platform, however. A number of initiatives both in 
academia and industry have recognized this limitation and 
are advancing federated learning[25] as an alternative. In this 
model, training takes place in a distributed manner by taking 
advantage of idle compute resources at the locations (“at the 
edge”) where the benefits of model predictions are ultimately 
realized but without requiring shared access to the training 
data. This is a recurring theme in this report: once federated 
learning is part of the cloud ecosystem, i.e., once its APIs allow 
for the distribution of computation to client applications, the 

Figure 4: The web application showing the model prediction for a chest X‑ray image of a COVID‑19 patient. Note that the annotation classes from 
the breast cancer tissue microarray dataset were not carried over – the annotation classes are defined by the user and are specific to the dataset

Figure 3: The receiver operating characteristic (ROC) curves for the Tissue Adequacy mode considering (a) only the optimal classification as the 
true positive, and (b) both the optimal and suboptimal classifications combined as the true positive. The curves suggest that the model can be reliably 
used for QC on the basis of tissue presence. The two y‑axes provided for each receiver operating characteristic plot denote the conventional true 
positive rate on the left (in blue) and the corresponding threshold values on the right (in red). The latter is provided to allow the graphic determination 
of what AI model scores [from Figure 2] will correspond to different proportions of true and false positives
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approach reported here will be particularly well positioned to 
make full use of that distribution instead of having to develop 
it independently.

The model classifications and the corresponding scores, 
as mentioned previously, are stored with the file in Box as 
“pseudo‑metadata.” This gives users a significant computational 
bonus because once one person has used a model to classify an 
image, others automatically get that classification for free by 
simply fetching this stored metadata from Box, instead of having 
to run the image through the model themselves. Consequently, 
despite the fact that the models run locally, the application 
enables all users to benefit from the combined computational 
resources of everyone using the models on the shared dataset, 
essentially making this a distributed, federated computing 
platform. Moreover, storing the predictions as annotations that 
can be accessed on the platform also facilitates incrementally 
selective analyses. For instance, researchers can use the model 
predictions for QC to guide decisions on data inclusion or 
exclusion based on prespecified quality metrics. In the TMA 
case study, we could choose to only keep images that the Tissue 
Adequacy model classifies to be optimal, avoiding wasted 
analytical effort – and added analytical error – with inadequately 
visible tissue. This would significantly reduce the number of 
images that would otherwise have to be seen and manually 
discarded by the pathologist. Moreover, having the models in a 
local environment allows for rapid iterative model development 
and active learning, as evidenced by the COVID‑19 case study.

An added bonus of developing this as a completely client‑side 
web application is that no setup, downloads, or installation 
whatsoever are required. All that is needed is for the data to 
be put into a cloud storage system supporting “Box‑like” APIs 
with consumer‑facing governance. This allows everyone with 
or without computing expertise to use it collaboratively and 
thus accelerates the process of creating standardized datasets 
and subsequent AI modeling. This combination of easy access 
and faster analysis was observed to be especially helpful 

when trying to analyze a rapidly evolving problem such as 
the ongoing COVID‑19 outbreak. While this case study was 
only conducted as a demonstration of the flexibility of a system 
originally conceived for digital pathology, it shows that the 
proposed solution can be effectively redirected to other image 
analysis scenarios in real time. When rendered as a PWA, the 
platform described here is accessible on just about any device 
with a web browser, so medical staff on the field could make 
use of models trained by experts elsewhere, potentially without 
requiring network access when analyzing local data. Moreover, 
as another direct result of relying on the APIs supporting 
consumer‑facing governance, this platform gives the researcher 
the ability to fine tune their models through active learning as 
and when more data becomes available, evolving the classifier 
toward increasingly effective and reliable analyses.

Although this work focused primarily on classification, our 
approach can also be applied to other image analyses involving 
supervised learning, such as segmentation, registration, and 
object detection. Furthermore, a recent effort by Bremer et al.[26] 
toward web‑based interoperation with whole slide imaging data 
makes it possible to extend our tool to that domain. This is directly 
enabled by the authorized API‑based approach described in this 
report in that it can engage whole slides images stored on the 
cloud one tile at a time, in a manner consistent with the security 
and resource constraints of the web browser. The resulting effect 
of retrieving individual tiles with HTTP range requests can be 
assessed, for example, at https://episphere.github.io/svs

conclusIons

Web applications are rapidly becoming the preferred way of 
delivering software solutions for a variety of applications. This 
reflects their ubiquity and inherent extensibility by code injection 
onto a safe sandbox environment in the browser. These features 
are in drastic contrast with both conventional desktop and HPC 
software. The accompanying open‑source platform showcases 
how digital pathology, radiology, and medical imaging in general 

Figure 5: The receiver operating characteristic curves for the COVID‑19 chest computed tomography model considering the COVID‑19 classification 
as the true positive (a) trained on just the initial dataset and (b) after retraining the model through active learning. The two Y‑axes are the same as in 
Figure 3, with the left axis showing the true positive rate and the right axis denoting the threshold value
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can take advantage of these trends by providing researchers 
with the ability to perform the entire image analysis workflow 
without leaving the browser. The application of the platform to 
the breast cancer TMA case study demonstrates its viability and 
utility for research. The COVID‑19 case study illustrates how 
it can also be used for rapid dataset formulation, AI modeling, 
and active learning, potentially in real‑time. Together, these case 
studies show how the problems of data governance, security, and 
annotation management are best solved jointly by leveraging 
the extensive capabilities of consumer‑facing cloud storage 
services like Box. The outlined approach creates zero‑footprint, 
zero‑cost model predictions without requiring transfer of 
possibly sensitive data. These features have the potential to 
deflect regulatory deterrents to AI deployment by advancing a 
model in which the code moves to where the data are governed, 
rather than the latter being transferred to third‑party execution 
environments. This is just as important for regulatory models 
that can only be addressed with user‑centric governance as it is 
for data socialization schemes advanced by community‑driven 
open source projects. Moreover, because the model can be tested 
in an environment as ubiquitous as the web browser merely by 
sharing it through cloud storage, reproducibility becomes much 
more straightforward for those generating the data. Finally, the 
browser as a full‑stack computational platform is now adding 
new native APIs enabling advanced features previously available 
only in specialized environments. In the context of applying 
federated AI to Digital Pathology, the adoption of the WebGPU 
standard[27] as well as of frameworks for distributed edge 
computing such as those approached by QMachine[28] suggest 
that Web Computing backed by consumer‑facing Box‑like 
cloud middle‑layers may be ideally suited for deep learning 
applications to computational pathology.
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