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Abstract 

The use of intelligent systems linked to musical tasks such as automatic composition, 
classification, and Music Information Retrieval has increasingly shown itself to be a promising 
field of study, not only from a computational, but also from a musical point of view. This paper 
aims to develop an innovative method capable of producing a coded image that contains all the 
information of a musical measure, generating a structure that can be used in several 
computational applications involving machine learning, especially deep learning and 
convolutional neural networks (CNNs). To illustrate the usefulness of this method, the measure 
image is applied to a CNN to solve the problem of automatic musical harmonization. This brief 
application achieves better results than those known in the literature, demonstrating the 
method’s effectiveness. 

Introduction 

The art of music undergoes constant changes, sometimes appropriating science to achieve its 
transformations. Music and computing can be considered indivisible through the generation of 

new sounds and even acting in composition (Webster, 2002) ⁠. 
But this does not mean that computers can understand music: the human element is 

fundamental in this process. Specifically, when the subject is automatic musical computation, it 
is necessary to encode musical information, often wholly represented by a musical score. It is 
natural that in the encoding process, some information is lost, which can negatively affect the 
performance of automated systems. 

The most common ways to perform this encoding process involve numeric vectors 
(Franklin, 2006; Laden & Keefe, 1989; Mozer, 1994; Todd, 1989). Other authors use coding 
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approaches with image representations, such as Velarde et al. (2016) and Modrzejewski et al. 

(2019) ⁠.  
This paper aims to present a standardized way to elaborate musical visual representations 

focusing on intelligent systems applications. The analysis space is limited to one musical measure 
at a time. First, the measure has its rhythmic information standardized. Then, an image capable 
of containing all melodic and rhythmic information of that measure is built, regardless of the time 
signature and tempo. To illustrate the method’s usefulness, we apply the Measure Image (MI) in 
the automatic harmonization task. For a melodic input, defining the best chord to harmonize it is 
necessary. We obtain better results than those found in the literature, using a CNN with simple 
architecture. 

1 Standardization of Rhythmic Information 

The length of a musical measure is governed by a time signature, which indicates the number 
and type of rhythmic figure that fills it. There are numerous possible time signatures, which 
causes a problem, as this way, songs with different time signatures will have different lengths, 
highlighting the need for standardization. 

By default, the duration  of the semibreve is equal to , and the other durations are 
fractions of it. The fraction is directly related to the denominator number of the time signature 

. The numerator, in turn, indicates the total of that figure type that will complete a measure. 
Knowing this, one can define the durations vector of the  rhythmic figures of a measure as 

in Equation 1: 

 
 

(1) 

To standardize measure durations independent of , we want to define the normalized 
durations vector. To do so, we perform the scalar multiplication of  by  forming the vector 

, that is, , which has properties according to Equation 2: 

 
 

(2) 

In possession of this information, it is possible to perform rhythmic standardization. The 
next step is to encode this information into a MI. 

2 Measure Image Construction 

A musical measure contains a lot of information, particularly the duration and pitch of each note 
when observing the melodic context. So that none of this information is lost, we propose building 
an image capable of containing it. 

A three-dimensional matrix  is considered per image, where  and  are 
coordinates of discrete and finite values called pixels, and dimension  is a composition of RGBA 

dimensions (Adler et al., 2003; Gonzalez & Woods, 2010) ⁠.  
The visual piano roll approach is applied to compose an image with melodic information, a 

form of representation that uses horizontal lines to define the duration of notes, and each line 
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represents a pitch (FL Studio, 2021) ⁠. Figure 1 demonstrates the construction and meaning of each 
component of the MI. 

 

 

Figure 1: MI originated from a measure with all significant parts explained: (1) how to represent a note duration 
and pitch, (2) the resolution and size of the image, (3) how to represent different octaves, (4) appoggiaturas, and 
(5) the use of the alpha channel to store fractional duration information. 

3 Applying the Measure Image to Deep Learning 

Aiming at applying MI as an input to an automatic harmonization system, we wanted to test a 

CNN architecture to obtain results using the CSV Leadsheet Database (Lim et al., 2017) ⁠. The 
database was first standardized in terms of melody (all songs were transposed to the key of C 
major), harmony (only major and minor triads were considered), and rhythm (applying Equation 

2 to the duration of each note). A simple model based on AlexNet (Krizhevsky et al., 2012) ⁠ was 
used, as illustrated in Figure 2.  
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Figure 2: Illustrative structure of the CNN architecture applied during the experiment. 
 

In this model, three layers of convolution (Conv.) and subsampling (Pool) applying the max 
function, i.e., max-pooling, are interspersed with an increasing number of filters (32, 64, and 128, 
respectively). The sequence places three fully connected layers (Dense) at the end, where Dense1 
and Dense2 have 128 neurons each and 24 neurons at the Output. Each convolution and fully 
connected layer uses the ELU activation function, excepting the output layer, which performs 
softmax activation. Dropout and batch normalization techniques were applied.  

Only 30% of the database was used, being divided 60% for training, 20% validation, and 
20% testing. The model was run 30 times to be cross-validated, resulting in average and best 
accuracy (ACC) of 50.88% and 52.34%, respectively, and average and best Cohen’s Kappa  ( ) of 
38.31% and 40.37%, respectively. 

Based on the subjective levels of , the average result can be defined as reasonable, with 
the best value being just above the lower limit to be considered a moderate or still adequate 

result (Artstein & Poesio, 2008) ⁠. 
The ACC values allow us to identify an improvement compared to the results in the 

literature, especially when compared to the work of Lim & Lee (2017) ⁠, and against a random 
guess, being equal to 4.17% for the 24 chord classes considered. Analyzing the resulting 
normalized confusion matrix illustrated in Figure 3 can better explain these statements. 

 

 

Figure 3: Confusion matrix of the CNN model generated with the results of its best execution. 
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It is easy to notice the present diagonal line, indicative of the good classification 
performance of the system. Similarly, there is a greater density of correct classification for the 
chords of C major, F major, and G major. 

The success of this simple model compared to classical techniques in the literature 
demonstrates the promise of the results obtained by the application of MI using CNNs. 

Conclusion 

A new way of representing and encoding musical measures was developed, intended for  
application in intelligent systems. It was put to the test by serving as the input to an automatic 
harmonizing system that obtained reasonable results considering its simple construction and 
comparing its results with existing approaches and random baselines. 

In the future, we intend to explore more possible applications for MI, such as classification 
and automatic composition tasks, in addition to the development of a generic application that 
can be used in development environments for quick and easy use. 
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