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Abstract 

In comparison to computational linguistics, with its abundance of natural-language datasets, 
corpora of music analyses are rather fewer and generally smaller. This is partly due to difficulties 
inherent to the encoding of music analyses, whose multimodal representations—typically a 
combination of music notation, graphic notation, and natural language—are designed for 
communication between human musician-analysts, not for automated large-scale data analysis. 
Analyses based on hierarchical models of tonal structure, such as Heinrich Schenker’s, present 
additional notational and encoding challenges, since they establish relations between non-
adjacent tones, and typically interpret successions of tones as expressions of abstract chordal 
sonorities, which may not be literally present in the music score. Building on a published XML 
format by Rizo and Marsden (2019), which stores analyses alongside symbolically encoded 
scores, this paper presents a generic graph model for reasoning about music analyses, as well as 
a graphical web application for creating and encoding music analyses in the aforementioned XML 
format. Several examples are given showing how various techniques of music analysis, primarily 
but not necessarily hierarchical, might be unambiguously represented through this model.1 

1 Background 
In contemporary music theory, theories of tonal structure often represent a piece of music as a 
hierarchy of simpler models known as “reductions”. Beyond the mature theory of Schenker 
(1977), and the scholarship of disciples such as Salzer (1962), the discipline has seen a 
proliferation of such theories, and an accumulation of hierarchical analyses, especially since the 
1970s and ’80s (e.g., Benjamin, 1981; Finkensiep and Rohremeier, 2021; Komar, 1971; Lerdahl & 
Jackendoff, 1996; Rohrmeier, 2011; Yust, 2018; see also Rohermeier & Pearce, 2018). A common 
concern of hierarchical theories is the distinction between structural and ornamental functions 
of a given tonal entity at various levels of the tonal structure. 

Examples of hierarchical analyses abound in textbooks and the music-theory literature, yet 
corpora of such analyses are scant at best. By way of comparison, they are generally smaller than 
data sets available in natural language processing (NLP), where access to large-scale data—not 

 
1 The source code of the web application is published under the AGPL license with DOI 10.5281/zenodo.6395095 
and downloadable at https://github.com/DCMLab/reductive_analysis_app/. 
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only of actual utterances and text, but also of analyses—has proven valuable both in evaluating 
the coverage of various theories, and in measuring the performance of computerized approaches 
to analysis. An array of analogous problems remains open, especially in music-theory building, 
and would significantly benefit from the availability of large “ground-truth” corpora of 
hierarchical analyses. The pioneering work of Kirlin and Yust (2016), who extracted the implicit 
analytical criteria of human experts by applying machine-learning algorithms on a small corpus, 
is suggestive of the possibilities. Hierarchical-analysis corpora would also enable innovative 
studies on musical genres and styles, taking into account deep-level tonal structures as well as 
surface features. 

Furthermore, corpus building provides an incentive for rigorously systematic thinking. The 
creation of large-scale data sets of hierarchical analyses necessitates an additional level of 
conceptual clarity in the models and theories, which may expose interesting edge-cases and 
exceptions, as well as discrepancies between theoretical principles and analytical practice. 
Despite these compelling research problems, the conceptual and notational complexity of 
hierarchical analyses, coupled with the lack of a general-purpose annotation tool for intuitively 
encoding them, have impeded the development of large-scale corpora. 

In response to these needs, this paper presents a graphical web app for creating new 
analyses and interacting with them in various ways. Crucially, in contrast to models that establish 
relations between multi-note entities, such as key regions or form units, the building block in our 
model is the individual note. All higher-level tonal entities consist of sets of related notes. In 
principle, this design renders the app suitable for a wide range of models, including, beyond 
Schenkerian and neo-Schenkerian theories, also motivic or “semiotic” techniques, pitch-class set 
theory, and various transformational theories. 

2 Related work 

The lack of computer-accessible corpora of music analyses is actively being remedied in various 
forms. For harmonic analyses, scholarship and software by Hentschel et al. (Hentschel, Moss, et 
al., 2021; Hentschel, Neuwirth, et al., 2021; Neuwirth et al., 2018) applies a file format and 
annotation standard compatible with the MuseScore system to encode the analysed harmonies 
within the actual score file. For analysing form, Dezrann (Giraud et al., 2018) is a web application 
written to facilitate collaborative analysis of scores, annotating sections of the score using a 
graphical tool. 

As mentioned, Rizo and Marsden have worked on an MEI-based storage format for 
hierarchical music analyses, though to date no corpus has been published using it. Other corpora 
of hierarchical analyses, such as that by Kirlin (2014) and Harasim et al. (2020), have opted to 
store analyses separately from the score, using relatively simple ad hoc file formats, since their 
main object of interest is the analytical data as such, not its relation to the score. A similar 
encoding strategy of separate files is adopted in the 300-piece corpus of Hamanaka et al. (2014), 
which provides a MusicXML encoding of each piece, as well as all its reductions according to 
Lerdahl & Jackendoff’s generative theory of tonal music (GTTM). 

The use of graphs to encode analyses has a long history in linguistics, especially for encoding 
semantics, with the large-scale Abstract Meaning Representation (AMR) graph-bank releases 
(Baranescu et al., 2013) being an especially salient example. Probably the most widely-known 
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theories modelling music in graph- or tree-like fashion are those of the Schenkerian and neo-
Schenkerian traditions, and the GTTM by Lerdahl and Jackendoff (1996). Recent work by Yust 
evidently draws inspiration from both of these approaches, though his Minimal Outerplanar 
Graphs are more strictly hierarchical than the freer graph-like structures of Schenkerian analysis 
(Yust, 2018). 

Recent work by Finkensiep and Rohrmeier (2021) also uses an approach to music analysis 
with close affinities to the model presented here. Establishing note connections within a graph 
expressive of hierarchical relations, their model proposes a set of simple operations to generate 
more complex tonal structures. Also relevant is Robert Snarrenberg’s WesterParse, a software 
tool and associated corpus for proto-Schenkerian linear analysis of species counterpoint 
(Snarrenberg, 2021). Snarrenberg’s work is based on Peter Westergaard’s seminal Introduction 
to Tonal Theory (Westergaard, 1975). 

3 Graphs and graph encoding 

In contrast to broader approaches which take key regions, themes or motifs, or harmonies as the 
objects of study, this framework primarily regards these types of musical objects as entities 
recursively generated by simpler ones, with the individual musical note as the minimal entity.2 
Moreover, the concept of an analysis is in itself abstracted into a generalised notion of relations. 
Finally, relations need to relate to not only notes, but also other relations. In short, for the 
purposes of this framework, a music analysis is a set of relations that makes precise claims about, 
on the one hand, a set of musical notes, and, on the other hand, themselves. 

Analyses can relate certain of its members as secondary to others, e.g., a neighbour note is 
usually considered as less salient or important than the note(s) that it elaborates. The concept of 
rhythmic hierarchy is also familiar and has been well theorised. Likewise, there are many 
approaches to the hierarchical analysis of harmonies (see, e.g., Harasim, 2020; Lerdahl & 
Jackendoff, 1996; Rohrmeier, 2011; and others reviewed in Rohrmeier & Pearce, 2018). 

The structure chosen to model and encode analyses is that of a graph—a collection of 
vertices connected by edges. This choice strikes an appropriate balance between non-local and 
interleaving relations and the need for formal and precise representations. As an additional 
benefit, tree analyses can be seamlessly embedded within the encoding, as tree structures are a 
special case of graph structures. 

In particular, notes and analytical relations between them are encoded as vertices in the 
graph, while edges connect relation vertices to their member entities (other relations or 
individual notes). Though less free than an entirely unrestricted graph structure, where vertices 
and edges could also be introduced to represent other concepts, this extremely generic structure 
still places a large amount of responsibility on the part of the encoder to clarify the semantics of 
relation vertices—that is, what they actually represent in a music-analytical sense. This is 
especially important since there may be several ways of encoding any particular analytical 
concept. For example, a Schenkerian linear progression could be encoded as a single relation 

 
2 The notion of a “note” is not always self-evident in music analysis. Depending on the abstractions of the chosen 
theoretical model, it may lack, for example, a specific register, an exact metric placement of its onset, or an exact 
duration. Conversely, a tone may not necessarily exist in the original score as a material pitch event, yet may be 
implied by the voice leading and even play an important structural role in the analysis (Rothstein, 1991). 
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labelled as such, but could also be encoded as the combination of a passing relation and an 
arpeggiation between the endpoints of the passing motion. Unlike the former option, the latter 
would semantically represent the fundamental principle of linear progressions as stepwise 
unfoldings of deeper-level harmonic intervals. In general, the semantic neutrality of the low-level 
(meta)relation “primitives” of this model allows for the representation of higher-level analytical 
concepts of a wide range of individual analytical techniques, albeit at the inevitable cost of 
verbosity: multiple (meta)relations are often needed to represent a single analytical concept. 

Modelling hierarchical tonal structure as graphs also enables the encoding of hierarchical 
violations, which are partly admissible, and certainly existent in actual analytical documents, at 
least in Schenkerian analysis. It also makes possible the encoding of associative (non-hierarchical) 
relations, most notably motivic repetitions. 

3.1 Formal definitions 

Graphs. Formally, a directed graph 𝑔 = (𝑉, 𝐸, att) is a set of vertices 𝑉, a disjoint set of edges 𝐸, 
and an attachment function att: 𝐸 → 𝑉2. A directed path (of length 𝑙) in a graph is a string 
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…e
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v
l
 of alternating vertices and edges such that att(𝑒𝑘) = (𝑣𝑘 , 𝑣𝑘+1). A path 

from a vertex 𝑢 to itself is a cycle. A (directed) graph without cycles is called a Directed Acyclic 
Graph (DAG).  

Partial orders. A relation R⊂S2 is an order if it is reflexive (∀𝑎: 𝑅(𝑎, 𝑎)), antisymmetric 
(𝑅(𝑎, 𝑏) ∧ 𝑅(𝑏, 𝑎) → 𝑎 = 𝑏), and transitive (𝑅(𝑎, 𝑏) ∧ 𝑅(𝑏, 𝑐) → 𝑅(𝑎, 𝑐)). It is a total order if it 
is total (∀𝑎, 𝑏: 𝑅(𝑎, 𝑏) ∨ 𝑅(𝑏, 𝑎)), and a partial order if it is not. 

Each partial order corresponds to a DAG, and the reflexive and transitive closure of the edge 
relation edge ⊂ 𝑉2 defined as ∀(𝑢, 𝑣 ∈ 𝑉): edge(𝑢, 𝑣) ≡ ∃𝑒 ∈ 𝐸: att(𝑒) = (𝑢, 𝑣) of a DAG  
𝑔 = (𝑉, 𝐸, att) is a partial order. 

3.2 Vertices and edges 

A note is the basic unit of analysis, and each note is represented in the graph as a single vertex. 
As used in this framework, a note is a musical object that has a graphical representation in a 
score. Frequently, it has an associated pitch, rhythmic value and timbre, and perhaps also lyrics, 
accents, dynamics, or other musical information. At the initial state, there are no other vertices 
in the graph, and no edges. 

In order to relate notes to each other in an analysis, relation vertices are introduced into the 
graph. Each relation can have an associated type (as well as other data), and is connected to the 
notes it relates using edges. For all notes 𝑛 in a relation 𝑟, we add an edge 𝑒 = (𝑟, 𝑛) marked 
with whether the note is primary or secondary in the relation. If there is no distinction between 
notes in a relation, they are usually considered secondary. Let 
primary(𝑟, 𝑣)(secondary(𝑟, 𝑣)) indicate that 𝑣 is primary (secondary) in 𝑟. 3 

Similarly, to relate relations to each other, additional meta-relation vertices can be 
introduced into the graph, with the same marking of the edges which connect a meta-relation to 

 
3 An alternate way of modelling relations is as hyperedges, which also generally explicitly order the notes that a 
relation connects. 
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relations or other meta-relations. In short, edges in the graph can connect i) relations to notes, 
ii) meta-relations to relations, and iii) meta-relations to meta-relations. Henceforth we will be 
using the term “(meta)relation” as a shorthand of “relation or meta-relation.” 

3.3 Partial orders and hierarchies 

The hierarchies implied by the distinction between primary and secondary members of a 
(meta)relation can be reified as (partial) orders on various subsets of the vertex set of the graph. 
Let 𝑔 = (𝑉, 𝐸, att) be a graph, 𝑅 ⊂ 𝑉 its (meta)relation vertices, 𝑁 ⊂ 𝑉 its note vertices, and  
𝑆 ⊂ 𝑅 some specific set of (meta)relations of interest. We can then define the relation  
<𝑆

′ on the set 𝑁 as  

∀(𝑢, 𝑣 ∈ 𝑉): 𝑢 <𝑠
′ 𝑣 ⟺ (∃𝑟: 𝑟 ∈ 𝑆 ∧ 𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑟, 𝑣) ∧ 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦(𝑟, 𝑢)) 

and <𝑠 as the reflexive and transitive closure of 
<𝑆

′ . <𝑠 is not necessarily an order, as there may be note vertices 𝑢, 𝑣, 𝑢 ≠ 𝑣 such that u <𝑠 v 
and v <𝑠 u, violating antisymmetry. 

From a partial order <𝑠, we can extract one or more maximal (minimal) vertices 𝑣, such that 
∄𝑢: 𝑢 ≠ 𝑣 ∧ (𝑣 <𝑠 𝑢)(∄𝑢: 𝑢 ≠ 𝑣 ∧ (𝑢 <𝑠 𝑣)). Indeed, it is possible to partition the set ordered 
by a partial order into a collection of “levels” from the maximal or minimal direction, e.g., by 
iteratively removing all the maximal (minimal) elements (which would constitute the “next top 
(bottom) level”), and computing the next set of maximal (minimal) elements. 

4 Workflow & use cases 

4.1 Basic annotation workflow 

When annotating a piece of music using the tools presented here, the user must provide the 
score in an encoding format that the Verovio tool (Pugin et al., 2014) can convert to MEI 
(MusicXML, ABC, etc.). The score will then be rendered to an SVG image by the Verovio Javascript 
engraver, and the user will be presented with the user interface. Annotating a relation between 
notes can be done simply by clicking on the notes, and then selecting or typing in the appropriate 
relation type in the pop-up window that appears; the annotated relations will be displayed as a 
curved hull enclosing the constituent notes. After a short annotation session, the score may look 
similar to that of Figure 3. For a more detailed look at an annotation process, see Section 4.4. 

4.2  Hierarchies, reductions and layers 

The web app can show the partial orders implied by the 
annotated relations, as described in Section 3.3. Figure 1 shows 
a hierarchical placement from the “minimal” perspective, where 
the “more ornamental” notes are placed at the bottom, and 
successive higher levels show the new set of minimal notes once 
the lower level is discounted. There is moreover the option to 
“reduce out” successive levels from the minimal direction, 
removing, at each step, the minimal note vertices and all 
relations connected to them from view. In effect, this procedure 

Figure 1: Partial order visualisation 
in the web app 
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produces a progressively more abstract model of the original score (a “reduction”) by deleting 
notes of lowermost hierarchical value from it. Of special relevance to music analysis is the 
additional option to limit the reduction process to the scope of selected relations, providing the 
user with fine-grained control over which notes to hide. However, this user-guided procedure 
currently reduces-out only note vertices that are globally minimal, and will also hide the relations 
involving them as well. Work is ongoing to overcome these limitations. The implementation of 
more refined reduction algorithms, which would match the music-theoretical intuition, remains 
an open research problem. 

Also provided is the option to re-render the score into a new layer, which removes all 
hidden notes from the score, and deletes any measures thus made empty. Further options allow 
the removal of rhythmic information by placing each onset into its own quarter-note time-span—
a simple attempt at rhythmic “normalization”—with notes either sustained throughout the time-
span, or shifted to its onset. New layers can also be edited by adding new notes to the score, for 
instance notes implied by the harmonic context. At present, new notes need to have the same 
onset and length as existing notes. 

4.3  XML encoding 

At any stage of the music-analytic annotation process, the 
analysis can be stored within the MEI file of the original score, 
using a variant of the scheme introduced in Rizo and 
Marsden (2019). The original score element is not changed; 
instead, the graph is encoded in a separate XML subtree, whose 
vertices (nodes) establish links between corresponding notes of 
the analysis and original score. We use the @corresp attribute 

to this end (Rizo and Marsden, 2019 used @sameas). Relations 
exist only in the graph subtree, while layers are encoded as 
additional mdiv elements, with @corresp attributes linking 
elements to their origin instance: a note either in the original 
score, or in the layer where a new note was introduced.  

 

Figure 2: Example of a simple 
Schenkerian annotation 

Figure 3: An annotation of the Schenkerian example of Figure 2 as encoded and depicated in 
the web app. 
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4.4  Encoding examples 
 
 
 
 
 
 

 
 
 
 

 
 

 
 
 

 
 
 

 
 

 
 
 

 
 

 
 

 
Figure 2 depicts a minimal tonal structure.4  The example is presented in standard Schenkerian 
notation, with white notes hierarchically superior to black ones. Overall, the structure represents 
a prolongation of the tonic harmony. The upper voice delineates a stepwise descending motion 

3̂–2̂–1̂ supported, at the deepest level, by a bass arpeggiation I–V–I. Note that, at a lower level, 

a melodic neighbour-note 4̂ is harmonically supported by a predominant IV harmony and initiates 

a lower-level descending-third progression from 4̂ to the more structural 2̂. The counterpoint of 
this progression against the bass has rhythmic implications: the structural dominant harmony 
now appears horizontally expressed, as a displacement between its upper-voice tone D5 and its 
bass G4 (see diagonal line), while the passing tone E produces a passing 64 sonority. 

 
4 Despite possible first impressions, this structure could not be an Ursatz proper because scale degree 3̂ in the 

upper voice is assumed to be hierarchically superior to 2̂ and 1̂. In an Ursatz all three melody tones would have been 
irreducible.  

(b) 

(c) 

(d) 

(e) 

(a) 

(f) 

(g) 

(h) 

Figure 4: Successive stages of the annotation process, with “tool tips” displaying the labels of various elements 
under the user’s cursor. 
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The complete annotation of such a tonal context in our web app is shown in Figure 3. Every 
Schenkerian operation of the previous, conventionally-notated figure is now represented by one 
or more graph relations, each visualised with a straight arc between two or more notes. Relation 
arcs are colour-coded by the app, and labelled by the annotator, according to the type of relation 
that they represent. 

Figure 4a demonstrates a potential first step of this annotation process, in which 4̂ is 

declared as an upper neighbour to 3̂. Red note-heads represent the primary notes in a given 
relation (hierarchically higher), green note-heads the secondary ones (hierarchically lower). Less 

trivial is the annotation of the aforementioned linear progression from 4̂ to 2̂ via a passing 3̂. 
While a number of encoding strategies could be conceived for such a pattern, we choose to 
explicitly represent the double nature of the Schenkerian linear progression: both as a passing 
motion between two hierarchically higher tones (Figure 4b), and as the elaboration of a harmonic 
relation (arpeggiation) between its outer tones (Figure 4c). The overarching descending third 

progression 3̂–2̂–1̂ is encoded in similar fashion, using two relations (Figures 4d and 4e). As for 
the encoding of the bass line, it should now be self-evident given the colour coding of the filters 
panel (Figure 3). 

The thorniest aspect of our encoding pertains to the “diagonal” displacement. Encoding 
Schenkerian displacements as simple relations between two individual tones would make an 
economical but not quite eloquent representation, since it would not directly capture the deeper 
contrapuntal causes of this rhythmic phenomenon. Instead, we opt for an encoding with a degree 
of expressive redundancy, grouping together not only the two displaced tones themselves, but 
also the respective voice-leading transformations which generate the displacement. This is 
achieved with the meta-relation shown in Figure 4f. We then assign a second meta-relation to 
the displacement proper (Figure 4g). Finally, we group the two meta-relations together 
(Figure 4h). The finished annotation is depicted in Figure 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5 (a) Prolongational tree of J. S. Bach’s O Haupt 
voll Blut und Wunden, reproduced from Lerdahl and 
Jackendoff 1996, p. 202. 

(b) Encoding of prolongational tree using hierarchy 
of meta-relations. 
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The encoding process for a GTTM prolongational reduction is similar. Figure 5 shows one 
possible annotation of Lerdahl and Jackendoff’s analysis of Bach’s O Haupt (Lerdahl & Jackendoff, 
1996, p. 202). We use relations (highlighted here in green) to demarcate the notes of each 
sonority in the chorale, then apply meta-relations to encode the prolongational tree in bottom-
up fashion. Left-branch prolongations are encoded as secondary–primary relations in our model, 
right-branching prolongations as primary–secondary. The resulting tree of meta-relations in 5b 
effectively reproduces the original tree of 5a.  

Our final example (Figure 6) demonstrates an application of our model on Yust’s Maximally 
Outerplanar Graphs (MOPs) (Yust, 2018, p. 34). The coloured tree in the screenshot is a partial-
order visualisation, produced without human intervention or supervision by the web app once 
the triangles of the original MOP graph had been encoded. The close match between the 
visualisation of Yust and the automatic output of the web app shows that Yust’s model and 
visualisation is suited for automatic processing, and highlights the ways the web app enforces 
precision: in the Yust graph, two of the triangles actually span four notes of the reduction each. 
This shows up in the web app visualisation as quadrangles, in both cases with no hierarchical 
distinction between the two lower notes. 

5 Conclusion 

Although the model and annotation tool described above were initially motivated by needs of 
corpus construction, their current scope evolved to be broader, spanning music teaching and 
computer-assisted music analysis, among other fields. Additional features are under construction 
to support such applications alongside corpus building. Among them is an automatic “spelling 
checker” for annotated relations, ensuring, for example, that “passing motions” are indeed 

Figure 6: Analysis of Chopin’s Mazurka op. 33, no. 2, reproduced from Yust (2018), p. 34, and visualization of its 
encoding in the web app. 
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stepwise, sequential, and monotonic, or that neighbour notes are indeed a step apart from their 
main note(s).  

As demonstrated in Section 4.4, both app and model are versatile enough to support 
multiple tonal theories and styles of annotation. However, as the Schenkerian example suggests, 
the visual rendering of these relations bears little resemblance to any standard notations of 
graphic analysis, nor is it currently optimal from a readability perspective. The design of 
alternative visualisations for hierarchical relation annotations is thus another field of active 
research. 
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