

16

Partitura: A Python Package for
Symbolic Music Processing
Carlos Cancino-Chacón1, Silvan David Peter1, Emmanouil Karystinaios1, Francesco Foscarin1, Gerhard

Widmer1

Johannes Kepler University

Austria

carlos_eduardo.cancino_chacon@jku.at, silvan.peter@jku.at, emmanouil.karystinaios@jku.at,

francesco.foscarin@jku.at, gerhard.widmer@jku.at

Maarten Grachten

Independent Researcher

The Netherlands

maarten.grachten@gmail.com

Abstract

Partitura is a lightweight Python package for handling symbolic musical information. It provides

easy access to features commonly used in music information retrieval tasks, like note arrays (lists

of timed pitched events) and 2D piano roll matrices, as well as other score elements such as time

and key signatures, performance directives, and repeat structures. Partitura can load musical

scores (in MEI, MusicXML, Humdrum **kern, and MIDI formats), MIDI performances, and score-

to-performance alignments. The package includes some tools for music analysis, such as

automatic pitch spelling, key signature identification, and voice separation. Partitura is an open-

source project and is available at https://github.com/CPJKU/partitura/.

Introduction

In the past few years, symbolic music processing has been gaining increasing attention in the

Music Information Research (MIR) community, with several music datasets of symbolic formats

recently released (e.g., Foscarin, McLeod, Rigaux, Jacquemard, & Sakai, 2020; Kong, Li, Chen, &

Wang, 2020; Micchi, Gotham, & Giraud, 2020). Systems that target symbolic data are usually more

efficient and easier to interpret than systems that target lower-level representation of music, such

as audio files. This is not surprising, as sequences of notes are more compact and interpretable

than sequences of amplitudes over time. Symbolic formats can encode much more than a

sequential note representation. Symbolically encoded musical scores arrange those notes in

temporal and organizational structures such as measures, beats, parts, and voices. They can also

explicitly represent dynamics and temporal directives and other high-level musical features such

as time signature, pitch spelling, and key signatures.

1 Equal contribution

mailto:carlos_eduardo.cancino_chacon@jku.at
mailto:silvan.peter@jku.at
mailto:emmanouil.karystinaios@jku.at
mailto:francesco.foscarin@jku.at
mailto:gerhard.widmer@jku.at
mailto:maarten.grachten@gmail.com
https://github.com/CPJKU/partitura/
https://github.com/CPJKU/partitura/

Music Encoding Conference 2022 Proceedings

17

While this rich set of musical elements adds useful information that can be leveraged by MIR

systems, it also drastically increases the complexity of encoding and processing symbolic musical

formats. Common formats for storage such as MEI, MusicXML, Humdrum **kern and MIDI are

not ideally suited to be directly used as input in MIR tasks.2 Therefore, the typical data processing

pipeline starts with parsing the relevant information from those files and putting it into a

convenient data structure (e.g., numerical arrays that can be used directly as input for machine

learning or signal processing methods). Both operations require musical knowledge and can be

very time-consuming, thus constituting a major barrier, especially for data-driven approaches that

require a large dataset to be trained, and for researchers with limited musical background.

These problems have motivated us to develop Partitura. Our goal is to simplify, as much as

possible, all steps from the symbolic encoding to a convenient input data structure for a MIR

system. Partitura can straightforwardly produce standard data structures while still handling a

complete set of symbolic music elements to create a customized one. Partitura can parse symbolic

representations of musical scores and performances from multiple file encodings (MEI, MusicXML,

Humdrum **kern, and MIDI) into Python objects to easily access their content. Moreover, it can

produce commonly used data structures such as piano rolls and note arrays at different time

resolutions.

The rest of this paper is structured as follows: Section 1 highlights the differences between

Partitura and other python packages for processing symbolic musical formats. The package

functionalities are detailed in Section 2, and in Section 3 we provide a short usage example. Finally,

in Section 4 we draw some conclusions on this paper and discuss possible future work.

1 Related Work

Among the available Python packages for parsing and processing music in symbolic formats, there

are two that stand out in terms of popularity and usability, Pretty MIDI and music21.

PrettyMIDI (Raffel & Ellis, 2014) is a Python package that focuses on the analysis,

modification, and generation of MIDI data in a fast and straightforward way. A strong feature of

PrettyMIDI is its ability to easily extract MIDI properties such as the position of beats and

downbeats, key and time signatures, and to produce piano roll representation with a specific

sample frequency. Partitura follows the PrettyMIDI philosophy of speed and simplicity but extends

it to other symbolic formats of musical scores, and to the other notation elements they contain.

Moreover, while PrettyMIDI only represents time in seconds, Partitura can work with other time

units such as beats and quarter notes.

Another well-known Python package for handling both MIDI and richer symbolic encodings

of musical scores is music21 (Cuthbert & Ariza, 2010). Indeed, music21 has been developed and

supported for many years now. It offers a robust parser for many file formats, and support for

many “advanced” score elements such as nested tuples and beamings. Among the package goals,

there are advanced modifications of musical scores, such as transpositions, pitch respelling,

2 A few works exist that directly target Humdrum **kern files, e.g., (Román, Pertusa, & CalvoZaragoza, 2019), but

some preprocessing is always required.

18

insertion, and deletion of voices and measures. All this is supported by an internal representation

based on nested containers called Streams that model the hierarchical temporal and

organizational structure of the score in measures, voices, and parts. Partitura does not aim at

rebuilding such a complete and complex framework; instead, it focuses on a different goal:

lightweight extraction of features that are relevant for MIR research, typically sequential

representations of score elements such as piano rolls or note arrays. To efficiently target this

objective, Partitura uses a much simpler, but nonetheless complete, sequential representation of

musical scores, with musical elements arranged in a timeline.

2 Partitura

Partitura can handle three symbolic data types: musical scores, performances, and score-to-

performance alignments. The score contains a representation of music, highly structured in staves,

measures, beats, and voices, and express durations in musical units quantized to fractions of

quarter notes and beats. The performance is a sequential representation of musical events

expressed on a continuous timeline and not quantized to fixed values. Alignments between the

two formats can be done at note- or time-level (e.g., beat and measure). Different file formats can

be parsed into dedicated internal representations to offer easy access to the file content. A set of

functions creates data structures that are often used in MIR research. Finally, Partitura offers

some music analysis tools.

2.1 Internal Data Structures

Different internal data types are built to represent scores, performances, and score-to-

performance alignments.

For a score, Partitura uses three main classes: TimePoints, TimedObjects, and Parts. At the

highest level, there are one or more Part objects, possibly grouped by PartGroup objects. Parts

are typically associated with instruments, and each Part may have one or more staves. Each Part

contains a timeline that encapsulates a sequence of TimePoint objects, each denoting a temporal

position in the score. TimePoints encode score time in non-negative integer units. The relation of

this unit to a quarter note is chosen such that any temporal position present in the score can be

represented in integer values.

Musical elements (for example, a Note) are added to the timeline by registering them with

the TimePoints corresponding to their start and end positions. Any element registered with two

TimePoints is a TimedObject. Partitura represents a large set of score elements as subclasses of

the TimedObject, e.g., notes, rests, time signatures, key signatures, slurs, measures, tempo and

loudness directives. Figure 1 shows a schematic representation of a Part object and its

components.

In contrast to scores, the performance is inherently sequential and can be represented in a

simpler structure. Partitura uses PerformedPart objects that consist of two ordered containers

which store notes and MIDI control information. A note object of a PerformedPart is a dictionary

Music Encoding Conference 2022 Proceedings

19

encoding MIDI note parameters (onset, offset, velocity, pitch, channel, and track) as well as a

deterministically generated unique note identifier.

Figure 1: Schematic representation of a Part. The blue lines represent the starting times of the objects in the score

and the red lines represent the end times.

Score-to-performance alignments are represented with a Part, a PerformedPart, and a

sequence of alignment pairs. Each alignment pair encodes a link between a note ID (or time

position) in the score and a note ID (or time position) in the performance.

2.2 Supported File Formats

Partitura can parse score formats such as MEI, MusicXML, and Humdrum **kern, and produce

Part objects. The case of MIDI files is more complex, as they can encode either a performance or

a bare-bones score representation (Back, 1999). Partitura loads MIDI scores and MIDI

performances into Part and PerformedPart objects respectively. As far as output file formats are

concerned, Partitura can produce MusicXML and MIDI files from Parts and MIDI files from

PerformedParts.

Partitura supports import and export functionality for match files, a format for encoding

symbolic score-to-performance music alignments (Foscarin et al., 2022). Furthermore, Partitura

parses simpler alignment file formats such as the .match and .corresp files proposed by Nakamura,

Yoshii, and Katayose (2017).

20

2.3 Generated Data Structures

Although convenient for the lossless representation of score time, the internal representation of

time points and durations as integers is not particularly meaningful from a musical perspective.

For this reason, Partitura can output temporal positions and durations in two other units: quarter

notes and beats. For example, the upper-staff notes of the score in Figure 1 would have a temporal

position of [0,1,5,6,7,...] if we are considering quarter notes, [−1,0,4,5,6...] if we are considering

“slow-tempo beats” (12 beats for the measure), or [−0.333,0,1,0.333,0.666,...] if we are

considering “fast-tempo beats” (4 beats for the measure). Mappings between various time units

are readily available as Part methods.

Figure 2: An abstract example of a note array (left) and a piano roll(right).

Partitura can automatically generate two data structures that are commonly used in MIR

tasks: note arrays and piano rolls matrices (see Figure 2). A note array is an ordered sequence of

note features. Such features can include note descriptors (e.g., midi-pitch, pitch-spelling, onset

position, voice, and duration), but also context information like metrical position, time signature,

and key signature. Users can choose from these features the ones that are related to their

application. A use case is demonstrated in Figure 4. From this representation, we can build a

dedicated word encoding of the musical score, as done by Hawthorne et al. (2019). A piano roll is

a matrix of shape (number of pitches × number of time frames) where the length of a time frame

can be set as fractions of beats or quarter notes. For example, if we consider 4 frames per quarter

note, and the piano range, the score of Figure 1 would produce a piano roll of shape (88 × 28).

This representation is widely used in the MIR community, for example, by Huang et al. (2019).

Built-in methods to create note arrays and piano rolls matrices are available for both Part and

PerformedPart objects. For efficient processing in Python, note arrays and score piano rolls are

numpy arrays.3

2.4 Music Analysis and Repetition Unfolding Tools

Partitura includes some tools for music analysis that are intended to fill in missing information

with plausible values, for instance, when loading a score from a MIDI file. The list of available tools

includes the Krumhansl–Shepard algorithm (Krumhansl, 1990) for key signature estimation, the

ps13s1 algorithm (Meredith, 2006) for pitch spelling, and VoSA (Chew & Wu, 2004) for polyphonic

3 https://numpy.org/

https://numpy.org/

Music Encoding Conference 2022 Proceedings

21

voice estimation. To our knowledge, this is the first publicly available Python implementation of

ps13s1 and VoSA.

Musical scores often encode repetition structures with repeat signs, Volta brackets, and

navigation directions such as al Coda, dal Segno, da Capo, or al Fine. When performed, musical

scores are “unfolded” and multiple possible unfoldings can exist for a piece, as players often

decide to skip some repetitions. Partitura supports the generation of such unfoldings from a

score’s repetition structure and their conversion into a new Part object.

3 Getting Started

In this section, we present a quick introduction to the usage of the Partitura package. For more
examples of use cases, as well as a more detailed description of the elements of the package,
please refer to the online documentation.2 A hands-on tutorial can be found on Google Colab.3
The Partitura package can be installed from Python Package Index 4 with the command: pip

install partitura or directly from the source code available on GitHub.

Figure 3: Imported Files

3.1 Importing Files

As mentioned in Section 2.1, Partitura treats musical scores and performances differently, and

this is reflected in how scores and performances are imported. Partitura includes a generic

load_score method for loading files as scores (i.e., as Parts), as well as a

load_performance method for loading files as performances (i.e., as PerformedParts). These

generic methods infer the format of the input file automatically. Additionally, there are individual

methods for loading supported formats (e.g., load_musicxml, load_mei, load_kern for

MusicXML, MEI, Humdrum **kern files, respectively). For MIDI files, Partitura provides both

load_score_midi and load_performance_midi methods. By doing so, we expect users

to know what kind of information they would like to extract from MIDI files. As mentioned in

4 https://partitura.readthedocs.io/
5 https://tinyurl.com/partituratutorial
6 https://pypi.org

https://github.com/CPJKU/partitura/
https://partitura.readthedocs.io/
https://tinyurl.com/partituratutorial
https://pypi.org/

22

Section 2.4, we use the included music analysis tools to infer plausible values for the missing

information (especially pitch spelling and voice information) in MIDI files imported as scores.

Figure 3 shows an example of loading files.

3.2 Computing Note Arrays and Piano Rolls

Figure 4 shows an example of extracting note arrays and piano rolls from a score (the syntax is the

same for performances). This example illustrates the philosophy of Partitura of reducing the most

common operations on symbolic music to one-line Python commands.

In Partitura, note arrays are implemented using Numpy structured arrays,5 arrays in which

each column can have a different datatype. By default, note arrays generated from scores include

onset and duration information (in beats, quarters and divs), MIDI pitch, voice and note ID. Note

arrays generated from performances include onset and duration in seconds, MIDI pitch, velocity

track and channel, and Note ID. The note_array method in Parts and PerformedParts can receive

a list of user defined callable methods which can compute other features at the note level (e.g.,

scale degree, etc.).

Output:

Figure 4: Extracting note arrays and piano rolls (score of Figure 1).

7 https://numpy.org/doc/stable/user/basics.rec.html

https://numpy.org/doc/stable/user/basics.rec.html

Music Encoding Conference 2022 Proceedings

23

Since computing piano rolls results in very sparse matrices, Partitura computes piano rolls

as Scipy sparse matrices.6 The method compute_pianoroll can also specify the desired resolution

of the piano roll by specifying the number of sub-divisions for each time unit with the time_div

argument.

3.3 Music Analysis Tools

As mentioned in Section 2.4, Partitura includes tools for estimating key signature, pitch spelling,

voice information, and tonal tension, which can be found in the partitura.musicanalysis module.

The methods in this module accept Parts, PerformedParts or note arrays as input and return a

Numpy structured array with the estimated information, except for estimate_key which returns

the estimated key signature as a string (e.g., 'Cm', 'F#m', etc.). Figure 5 shows an example of

how to compute this information from a score.

Figure 5: Music analysis tools in Partitura

4 Conclusion and Future Work

In this paper, we presented Partitura, a Python package for handling symbolic music information

that requires minimal music expertise. This package can parse common symbolic music formats,

like MusicXML, MEI, and MIDI, and conveniently represents them as Python objects that are easy

to manipulate in automatic data pipelines. Moreover, it can straightforwardly produce the most

commonly used data structures for MIR tasks. To the best of our knowledge, Partitura is the only

Python library that can handle alignments between scores and corresponding performances.

Future work will be in the direction of making Partitura file parsers more robust to faulty

encoding practices that are unfortunately very frequent in symbolic musical scores. Moreover,

support for more score elements and different data structures will be added to keep Partitura on

track with new needs and demands from the research community. We are working on making

Partitura faster and more efficient by optimizing existing methods and including support for

8 https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr matrix.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html

24

parallel data processing. Another functionality that will be added is the automatic score unfolding

to match the repetition structure of a given performance. Finally, we will develop more analysis

tools to infer high-level score elements, with the final goal of being able to “scorify” a performance

or an incomplete score representation.

Acknowledgements

This project receives funding from the European Research Council (ERC) under the European

Union’s Horizon 2020 research and innovation programme, grant agreement No 101019375

(Whither Music?).

25

References
Back, D. (1999). Standard MIDI-file format specifications. Retrieved from

http://www.music .mcgill.ca/˜ich/classes/mumt306/StandardMIDIfileformat.html
(Accessed September 23, 2020)

Chew, E., & Wu, X. (2004). Separating Voices in Polyphonic Music: A Contig Mapping Approach.
Proceedings of the International Symposium on Computer Music Multidisciplinary Research
(CMMR). Esbjerg, Denmark.

Cuthbert, M. S., & Ariza, C. (2010). music21: A toolkit for computer-aided musicology and
symbolic music data. Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR). Utrecht, Netherlands.

Foscarin, F., Karystinaios, E., Peter, S. D., Cancino-Chac´on, C. E., Grachten, M., & Widmer, G.
(2022). The match file format: Encoding Alignments between Scores and Performances.
Proceedings of the music encoding conference 2022. Halifax, Canada.

Foscarin, F., McLeod, A., Rigaux, P., Jacquemard, F., & Sakai, M. (2020). ASAP: a dataset of
aligned scores and performances for piano transcription. Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR), 534–541. Montréal, Canada.

Hawthorne, C., Stasyuk, A., Roberts, A., Simon, I., Huang, C.-Z. A., Dieleman, S., . . . Eck, D.

(2019). Enabling Factorized Piano Music Modeling and Generation with the MAESTRO
Dataset. Proceedings of the International Conference on Learning Representations. New
Orleans, USA. Retrieved from https://openreview.net/forum?id=r1lYRjC9F7

Huang, A., Hawthorne, C., Roberts, A., Dinculescu, M., Wexler, J., Hong, L., & Howcroft, J. (2019).
Bach Doodle: Approachable music composition with machine learning at scale.
Proceedings of the International Society for Music Information Retrieval Conference
(ISMIR). Delft, Netherlands. Retrieved from https://arxiv.org/abs/1907.06637

Kong, Q., Li, B., Chen, J., & Wang, Y. (2020). Giantmidi-piano: A large-scale midi dataset for
classical piano music. arXiv preprint arXiv:2010.07061.

Krumhansl, C. L. (1990). Cognitive foundations of musical pitch. New York: Oxford University Press.

Meredith, D. (2006). The ps13 Pitch Spelling Algorithm. Journal of New Music Research 35(2), 121–
159.

Micchi, G., Gotham, M., & Giraud, M. (2020). Not all roads lead to Rome: Pitch representation
and model architecture for automatic harmonic analysis. Transactions of the International
Society for Music Information Retrieval (TISMIR) 3(1), 42–54.

Nakamura, E., Yoshii, K., & Katayose, H. (2017). Performance Error Detection and Post-

http://www.music.mcgill.ca/~ich/classes/mumt306/StandardMIDIfileformat.html
http://www.music.mcgill.ca/~ich/classes/mumt306/StandardMIDIfileformat.html
http://www.music.mcgill.ca/~ich/classes/mumt306/StandardMIDIfileformat.html
http://www.music.mcgill.ca/~ich/classes/mumt306/StandardMIDIfileformat.html
https://openreview.net/forum?id=r1lYRjC9F7
https://arxiv.org/abs/1907.06637

26

Processing for Fast and Accurate Symbolic Music Alignment. Proceedings of the
International Society for Music Information Retrieval Conference (ISMIR), 347–353.
Suzhou, China.

Raffel, C., & Ellis, D. P. (2014). Intuitive analysis, creation and manipulation of midi data with
pretty midi. Proceedings of the international society for music information retrieval
conference, 84–93. Taipei, Taiwan.

Román, M. A., Pertusa, A., & Calvo-Zaragoza, J. (2019). A Holistic Approach to Polyphonic Music
Transcription with Neural Netwoks. Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR), 731–737. Delft, Netherlands.

	Abstract
	Introduction
	1 Related Work
	2 Partitura
	2.1 Internal Data Structures
	2.2 Supported File Formats
	2.3 Generated Data Structures
	2.4 Music Analysis and Repetition Unfolding Tools

	3 Getting Started
	3.1 Importing Files
	3.2 Computing Note Arrays and Piano Rolls
	3.3 Music Analysis Tools

	4 Conclusion and Future Work
	Acknowledgements
	References

