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Abstract.   Conserving biological diversity given ongoing environmental changes requires the knowledge 
of how organisms respond biologically to these changes; however, we rarely have this information. This 
data deficiency can be addressed with coordinated monitoring programs that provide field data across 
temporal and spatial scales and with process-based models, which provide a method for predicting how 
species, in particular migrating species that face different conditions across their range, will respond to 
climate change. We evaluate whether environmental conditions in the wintering grounds of broad-tailed 
hummingbirds influence physiological and behavioral attributes of their migration. To quantify winter 
ground conditions, we used operative temperature as a proxy for physiological constraint, and precipi-
tation and the normalized difference vegetation index (NDVI) as surrogates of resource availability. We 
measured four biological response variables: molt stage, timing of arrival at stopover sites, body mass, and 
fat. Consistent with our predictions, we found that birds migrating north were in earlier stages of molt and 
arrived at stopover sites later when NDVI was low. These results indicate that wintering conditions impact 
the timing and condition of birds as they migrate north. In addition, our results suggest that biologically 
informed environmental surrogates provide a valuable tool for predicting how climate variability across 
years influences the animal populations.
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Introduction

In response to climate change and associ-
ated changes in the biotic environment, spe-
cies are shifting their geographic distributions 
(Parmesan and Yohe 2003, Lehikoinen et al. 2004, 
Bellard et al. 2012, Burrows et al. 2014), altering 
their behavior (e.g., Cotton 2003, Coppack and 

Pulido 2004, Dunn and Moller 2014, Ko et  al. 
2014, Ockendon et  al. 2014), and surviving by 
either adapting to these new conditions or track-
ing their current climatic niche and resources 
(Parmesan 2006, Berg et  al. 2010, Charmantier 
and Gienapp 2014, Merila and Hendry 2014). 
Increased interannual variability in climate, such 
as the frequency and intensity of extreme weather 
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events, may alter species distributions and cause 
population declines that potentially have last-
ing impacts (Easterling et  al. 2000, Boucek and 
Rehage 2014, Lynch et  al. 2014, Vasseur et  al. 
2014). While predicting how species will respond 
to interannual weather variability is critical, the 
vast majority of predictive models use climate 
data summarized over many years and correl-
ative methods to estimate how species’ geo-
graphic ranges might shift in response to climate 
change. Although these approaches can provide 
valuable insight into how species might respond, 
they generally do not uncover the mechanisms 
that influence species responses (Kearney and 
Porter 2009, Berg et al. 2010, Dormann et al. 2012, 
Sunday et al. 2014).

Recent attempts to develop process-based 
models (reviewed by Dormann et  al. 2012) are 
starting to provide alternative ways to deal 
with the complex problem of predicting how 
species will respond to the climate change. We 
advance this research area by developing a gen-
eral mechanistic approach that combines physi-
ologically informed environmental factors and 
remote sensing measures of vegetation produc-
tivity with information on species behavior and 
physiological state. Our approach assesses the 
influence of environmental change, including 
extreme cold events, on organisms over short 
timescales. To exemplify our approach, we stud-
ied how wintering conditions affected the migra-
tory behavior and condition of the broad-tailed 
hummingbird (Selasphorus platycercus) at migra-
tory stopover sites. Broad-tailed hummingbirds 
are a latitudinal migratory species that occurs at 
high elevations on both breeding and wintering 
grounds and thus may be particularly sensitive 
to the changes in climate (Warren et al. 2013). In 
addition, due to their small body size (high sur-
face area-to-volume ratio), hummingbirds have 
both high thermoregulatory costs and a high 
basal metabolic rate (Lasiewski 1963) and there-
fore should be strongly influenced by weather 
and resource fluctuations.

Physiology-based models aimed at under-
standing species distributions use informa-
tion about the biophysical characteristics of an 
organism (e.g., Porter et  al. 2002, Kearney and 
Porter 2004, Buckley 2008, Huey et  al. 2012). 
For hummingbirds, as with many other organ-
isms, there are two key components to consider 

in physiological models: (1) the physiological 
demand associated with the organism’s activi-
ties under a given set of weather conditions (e.g., 
cold temperatures) and (2) the ability to acquire 
minimally sufficient resources to meet the met-
abolic demands for survival, including energeti-
cally demanding activities such as reproduction 
and molt (e.g., Weathers and Stiles 1989, Hiebert 
1993, Powers and Conley 1994).

Temperature plays a critical role in the physi-
ological demands on an organism. For instance, 
low temperatures increase thermoregulatory 
costs and could decrease the energy avail-
able for other activities. One well-established 
measure of temperature associated with ther-
moregulatory costs is operative temperature 
(Te), which measures the thermal environment 
an individual experiences in its microhabitat 
(Bakken 1980). Because operative temperature 
integrates radiant (i.e., energy gained from 
the sun or bounced off warm surfaces and lost 
from an organism), conductive (i.e., heat trans-
ferred between an organism and the environ-
ment), and convective (i.e., heat transferred by a 
fluid—liquids/gasses) heat transfer, it should be 
a more accurate measure than ambient tempera-
ture, which is the temperature of the air itself, 
and does not account for how the organism 
experiences temperature (Bakken 1976, 1992, 
Dzialowski 2005). When the operative tem-
perature of the environment falls below a bird’s 
thermoneutral zone (a range of temperatures 
within which an endotherm spends almost no 
energy on maintaining its body temperature), 
additional energy resources must be acquired 
to support the increased heat production 
required to maintain a constant body tempera-
ture (Lasiewski 1963, McWhorter and Martinez 
del Rio 2000). Thus, during extreme cold events, 
hummingbirds must increase the energy con-
sumption to fuel their higher thermoregulatory 
costs and/or move to warmer, less costly condi-
tions to decrease these costs. Even if sufficient 
energy resources are available to fuel-increased 
thermoregulation and the corresponding for-
aging costs, hummingbirds are limited in the 
rate that they can consume and process nec-
tar, which may create a physiological limit on 
energy intake (McWhorter and Martinez del Rio 
2000) and thus likely limit the extreme weather 
conditions they can tolerate.
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Changing climate conditions influence the 
identity, quantity, and quality of food resources at 
any given time, which can make it challenging for 
organisms to obtain sufficient resources (Carroll 
et al. 2001, Memmott et al. 2007). Hummingbirds 
obtain much of their energy from nectar and 
most of their protein from insects. With their 
high metabolic rates, hummingbirds are partic-
ularly susceptible to fluctuations in the avail-
ability of these resources. For example, when 
the amount or concentration of sucrose in nectar 
available to birds is experimentally decreased, 
hummingbirds lose weight and exhibit negative 
energy balance (Brice 1992, Powers and McKee 
1994, López-Calleja et al. 1997, McWhorter et al. 
2003). Further, numerous studies documenting 
hummingbird movement patterns show that 
hummingbird diversity and abundance corre-
spond to flower and nectar abundance (Stiles 
1980, Araujoa and Sazima 2003, Cotton 2007, 
Abrahamczyk and Kessler 2010), which can be 
impacted by frost and low temperatures (Inouye 
2000, 2008, Inouye et al. 2002). While evaluating 
the availability of resources (nectar and insects) 
across broad geographic regions is challenging, 
bird distribution, abundance, and migratory 
condition are often correlated with remote sens-
ing measures of productivity, such as vegetation 
indices (normalized difference vegetation index, 
NDVI; enhanced vegetation index, EVI), indicat-
ing that these variables might provide a rough 
measure of resource abundance (Zimmerman 
1988, Stervander et  al. 2005, Goetz et  al. 2014, 
McBride et al. 2014, Paxton et al. 2014). Further, 
recently remotely sensed productivity (EVI) 
has been linked to nectar abundance using 
groundtruthed data from flowers, thereby sug-
gesting that it may be an approximate surrogate 
(Feldman and McGill 2014).

For broad-tailed hummingbirds, we devel-
oped hypotheses that relate thermoregulatory 
costs (measured by operative temperature) and 
resource availability (using NDVI as a proxy) 
on their wintering grounds to both physiologi-
cal and behavioral attributes detected at spring 
migration stopover sites as birds returned to 
their high-elevation breeding sites in the moun-
tains of United States and Canada (Fig.  1). 
Specifically, we expect that high thermoregu-
latory costs  (e.g., due to lower-than-average 
temperatures)  and low resource availability 

constrain the investment in high energy activ-
ities  on the wintering grounds, such as molt 
(Lindstrom et al. 1993, Klaassen 1995), and gen-
erate the changes in migratory behavior to adjust 
to these constraints. Therefore, we predict that 
in cold, low-resource winters, broad-tailed hum-
mingbirds delay their annual winter molt, arrive 
later at spring migratory stopover sites, and have 
lower body mass and fat scores than in years 
where the wintering grounds experience average 
or above-average temperatures and resources. 
We used an 11-yr time series of broad-tailed 
hummingbird capture data taken at 18 migratory 
stopover sites located early in their migratory 
route to assess the role of winter thermal demand 
and resources in body condition and migratory 
behavior. Taken together, our model allowed us 
to use thermal ecology (operative temperature) 
and a proxy for resource availability (NDVI) to 
explore how wintering ground conditions influ-
ence hummingbird condition and behavior as 
they move northward to their breeding grounds 
and, more generally,  to  test a new framework 
for understanding  how migrating animals will 
respond to climate change.

Methods

Winter range
We defined the wintering period as 15 

November to 15 March (Calder and Calder 2013). 
To determine the winter range during this period, 
we queried observation locations from the Global 
Biodiversity Information Facility (GBIF; www.
gbif.org) for broad-tailed hummingbirds from 
1936 to 2011 (www.gbif.org/resource/80761). We 
used wintering ground observations above an 
elevation of 1500  m because this reflects the 
known distributional limits of broad-tailed hum-
mingbirds in their wintering area in Mexico 
(Calder and Calder 2013). We lumped GBIF data 
across years instead of considering each year 
independently because we did not have suffi-
cient observations in the wintering range on a 
yearly basis. While we realize that GBIF observa-
tions may have some limitations and error, our 
data filtering should provide an estimate of the 
geographic locations of overwintering birds 
because they fall within and span the known 
range of the species. In total, we had 201 loca-
tions for defining winter conditions (Fig. 2).
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Thermoregulatory cost estimate
We used operative temperature (Te) to esti-

mate thermoregulatory costs. Te integrates the 
effects of radiant heat exchange, conduction, and 
to a lesser degree, convection. In other words, it 
accounts for the effects of direct solar radiation 
and wind and is therefore a better predictor of an 
organism’s thermoregulatory demands than 
ambient temperature (Bakken 1976). Because Te 
does not fully account for the effects of convec-
tion (Bakken 1980), which can substantially 
increase the thermoregulatory costs in cold tem-
peratures, modeling hummingbird response to 
extreme cold using Te represents a conservative 
best-case scenario (i.e., the effects of wind chill 
could make winters even colder, increasing 

thermoregulatory costs). Te is also likely to be 
conservative because the small body size of hum-
mingbirds will likely heighten the sensitivity to 
temperature extremes.

Estimates of Te were made using a linearized 
solution of the energy budget equation from 
Greek et al. (1989): 

where Ta is ambient temperature, Rabs is the 
absorbed longwave and shortwave radiation 
flux density (W/m2; Eq. 2), ε is the emissiv-
ity of the  bird’s surface (0.95; Walsberg 1992), 
σ is the Stefan–Boltzmann constant (5.67 × 
10−8  W·m−2·K−4), ρCp is the product of density 

(1)Te=Ta+ (Rabs−εσT 4
a)∕(ρCp∕ra+4εσT 3

a),

Fig. 1. Conceptual figure developing our physiological modeling approach. The top box shows the data that 
went into our models, while the lower box shows the predicted biological responses at the spring migration sites 
to each of the winter predictor variables.
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and specific heat capacity of air (1200 J·m−3·K−1), 
and ra is the aerodynamic resistance to convective 
heat transfer (s/m). We assumed ra = 37.76 u−0.495 
(Greek et al. 1989), where u is wind speed (m/s).

Rabs was estimated as follows: 

where Sp is direct shortwave radiation (W/m2); 
Ap/A is ratio of projected shadow area on a sur-
face perpendicular to the solar beam to the total 
surface area (estimated to be 0.25; Greek et  al. 
1989) and is used to estimate the proportion of 
the total surface area directly exposed to Sp; Sd 
is diffuse shortwave radiation (W/m2); as is mean 
shortwave absorptivity (0.89; Greek et al. 1989); 
aL is mean longwave absorptivity (0.97; Walsberg 
1992); and Li is incoming longwave radiation.

Thermal surface properties (ε, as, and aL) have 
not yet been measured for hummingbirds; there-
fore, we used the values from other avian species 
as detailed above in our description of the equa-
tions above (Greek et al. 1989, Walsberg and Wolf 
1995). This is appropriate because the ε and aL of 
feathers show little variation across multiple bird 
species (Walsberg 1992), and as varies by <10% 
in birds with darker dorsal surfaces (Campbell 
1977). Further, error in our assumed value of as 
has reduced impact on the calculated operative 

temperature in small species (Greek et al. 1989). 
For meteorological data (Ta, Sp, Sd, and Li), we 
used the National Centers for Environmental 
Prediction (NCEP) Climate Forest System ver-
sion 2 (CFSv2; Saha et al. 2014). The CFSv2 is a 
global high-resolution circulation model that 
couples atmosphere, ocean, land surface, and 
sea ice to estimate weather conditions of these 
coupled domains on six-hourly time steps at 0.2° 
spatial resolution (Saha et al. 2014).

To generate the thermoregulatory cost variable, 
we determined the percentile of days that had a 
six-hour period (i.e., the lowest resolution of our 
weather data) where the operative temperatures 
≤10°C (referred to as “percentile days with Te 
≤10°C”). We chose the threshold value of 10°C 
because in laboratory studies broad-tailed hum-
mingbirds were unable to maintain body mass 
when kept at 10°C regardless of diet quality, sug-
gesting a physiological bottleneck with regard 
to energy intake (McWhorter and Martinez del 
Rio 2000). Thus, when wintering grounds have 
many cold days and when percentile days with 
Te ≤10°C is high, the birds are expected to have 
high thermoregulatory cost and as a result high 
physiological demand. When percentile days 
with Te ≤10°C is low, the thermoregulatory cost 
on the wintering ground is low.

Our estimate of thermoregulatory cost is based 
on meteorological data that describe general 
atmospheric conditions, but do not reflect small-
scale microclimate variability. Hummingbirds 
characteristically perch on trees and shrubs that 
might offer microclimate refuge from wind, but 
not from extreme cold temperature. Therefore, 
even though our physiological model is parame-
terized with broad-scale data, it should be a good 
predictor of the general impact of environmental 
temperature on animals that use large-scale land-
scapes, such as hummingbirds (e.g., Weathers 
and Sullivan 1993, Kearney et al. 2009).

Resource availability estimate
To estimate the resource availability for the 

winter period, we used vegetation productivity 
from the NDVI as a proxy of gross photosynthe-
sis (Sellers 1987, Goetz and Prince 1999) and total 
precipitation. While a direct measure of resource 
availability (such as flower counts) would be 
preferable, these data are not yet available at the 
broad scale. NDVI images from MODIS are 

(2)Rabs= (Sp(Ap∕A)+Sd)as+aLLi,

Fig.  2. Map showing broad-tailed hummingbird 
localities (triangles are Global Biodiversity Informa
tion Facility locality data, and circles are Humming
bird Monitoring Network locality data). Elevation (in 
meters) is shown in the gray shading on the map.
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compiled into 16-d composite images for each 
1-km pixel globally since January 2000 (Tucker 
1979, Huete et al. 2002). These images are anno-
tated with quality flags (MOD13A1 and 
MYD13A1 data products, representing Terra-
MODIS and Aqua-MODIS NDVI products, 
respectively; https://lpdaac.usgs.gov; Huete et al. 
2002). Given that MODIS is a passive sensor 
(basically a picture, see Graham and Goetz 2009 
for review) and therefore is influenced by atmo-
spheric conditions such as cloud cover, we used 
the quality flags to retain the three highest qual-
ity values. Because optimal conditions for obtain-
ing NDVI values vary temporally, readings that 
met our retention criteria were between 1 and 
30 d apart (mean: 15 d). Obtaining an estimate of 
NDVI over the entire winter season required a 
summary of these high-quality observations. 
Given that these observations were not evenly 
spread across a given wintering season, simply 
taking an average might bias our estimate of 
NDVI. Therefore, we interpolated the daily 
NDVI values for each day and 1-km cell using 
univariate Akima interpolation (Akima 1991). 
Resource availability was then estimated as the 
average observed daily NDVI value across all 
grid cells with broad-tailed hummingbird obser-
vations during the winter season. Total precipita-
tion across the season was derived from the 
Climate Forest System version 2 (CFSv2; Saha 
et al. 2014).

Biological response data
We gathered biological response data during 

the spring migration from the Hummingbird 
Monitoring Network (HMN; partially processed 
data in Data S1). For this study, we used 11 yr of 
data (2002–2012) from sampling periods in March 
through early June at low- and mid-elevation 
sites in Arizona (18 total sites, 5–11 sampled each 
year for molt, arrival, mass, and fat; Appendix 
S1: Tables S1 and S2; Fig. 2).

We chose these sites because broad-tailed 
hummingbirds were captured during north-
bound migration, but not in habitats where they 
nest (Calder and Calder 2013). At each site, hum-
mingbirds were baited with a 4:1 sugar solution 
in hummingbird feeders within two modified 
Hall traps (Russell and Russell 2001). Monitoring 
occurred once every two weeks from early 
March to late October, and each session lasted 

5  h. All captured hummingbirds were banded 
with United States Geological Survey (USGS)—
Biological Resources Division-numbered alumi-
num leg bands if not already so marked. No bird 
was held longer than 30 min because humming-
birds have high metabolic rates and need to feed 
frequently throughout the day.

Biological responses derived from banding 
data included molt stage, date of spring arrival, 
body mass, and fat (Pyle 1997). The molt stage of 
hummingbirds was measured at 14 levels (pre-
molt through postmolt) and was determined by 
the sequence of flight feather replacement, which 
occurs in ascending order (innermost to outer-
most) from primary feather 1 (P1) to primary 
feather 8 (P8), but the sequence is inverted for the 
outermost two feathers, where primary feather 
10 (P0 in the data) is replaced before primary 
feather 9 (P9), an inversion unique to humming-
birds. Premolt stages were ranked as moderately 
worn (M) or ragged (R) feathers, and postmolt 
as fresh (F) or lightly worn (L). To simplify anal-
yses, we grouped molt into three categories: (1) 
premolt and early molt (M, R, and P1–P8), (2) 
late molt (P0 or P9), and 3) completed molt (F or 
L) (Appendix S1: Fig. S1). For a given site and 
year, we used the molt stage of the 50th quantile 
bird (i.e., at a site–year where 2n + 1 birds were 
caught, the molt category of the n + 1th bird was 
used). Bird arrival date is the date by which 50% 
of the total number of birds for each year and site 
were caught (for distribution of the arrival data, 
see Appendix S1: Figs. S1 and S2). Body mass is 
how much a bird weighed in grams when it was 
captured, before feeding and release (Appendix 
S1: Fig. S4). Fat was scored at five levels, based 
on the visual inspection of the bird’s throat and 
abdominal region in an ordinal sequence: 0 = no 
fat; T = trace of fat on the throat; 1 = up to half-
furculum; 2 = half- to full furculum; and 3 = bulg-
ing throat and on side (Appendix S1: Fig. S5).

Biological response models
We designed a set of regression models to test 

each of our predictions, using molt stage, arrival 
date, body mass, and fat as response variables 
and using thermoregulatory cost (percentile days 
with Te ≤10°C), resource availability (average 
winter NDVI), and an interactive term of opera-
tive temperature and NDVI as predictor vari-
ables. The percentile days with Te ≤10°C was 
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log-transformed to improve normality. Predictor 
variables were rescaled by centering at the grand 
mean with a standard deviation of 1.

In the regression analysis, response variables 
that represented quantiles (molt stage and arrival 
date) were weighted by the total number of birds 
caught at each site in each year. The ordinal 
response variable fat score was treated as contin-
uous in the regression models because distance 
among the values was constant. However, given 
that the timing between each of the three molt 
categories is not constant, we treated molt as a 
binomial factor. The progress through the three 
molt categories was represented as a number of 
successes relative to the total number of possible 
categories it could have completed at the time the 
birds at a given site were captured. For example, 
a bird captured in early molt would be consid-
ered to have begun early molt, but failed to enter 
the other molt categories. Because all response 
data were gathered at the fixed capture stations 
of the HMN, “capture station” was included as a 
random effect to account for between-site differ-
ences or any site fidelity exhibited by the migrant 
bird populations as well as unmeasured vari-
ables such as elevation and resources that may 
likely cause stations to be different. Models were 
run at an annual time step from the 2000–2001 
winter to the 2011–2012 winter. We used linear 
mixed-effects models in R (R Core Team 2013; 
package lme4, Bates et al. 2014; package bbmle, 
Bolker and R Development Core Team 2014). For 
binomial response variables (molt category), we 
used a generalized linear mixed model (glmer, 
package lme4, Bates et al. 2014), and for numeric 
response variables (arrival date, body mass, and 
fat), we used a linear mixed-effects model (lmer, 
package lme4).

For each of our four response variables, we first 
evaluated whether including the predictor vari-
ables, or their interaction, was justified (Bauer 
and Curran 2005, Afshartous and Preston 2011). 
To this effect, the full model, including both pre-
dictor variables and their interaction, was com-
pared with all its submodels and with a null 
model without fixed effects (but including ran-
dom effects for capture station) using Akaike’s 
information criterion, corrected for small sam-
ple sizes (AICc; Burnham and Anderson 2002, 
Hurvich and Tsai 1989). Furthermore, Akaike 
weights (w; Hobbs and Hilborn 2006) were 

calculated to compare the models that differed 
little in AIC. Akaike weights quantify the prob-
ability that the model emerges as the best sup-
ported by the data for each model among a given 
set. We compared the models using both a con-
servative and a liberal AICc. The conservative 
AICc uses the number of sites as the number of 
groups (nsites = 18) and is likely to overestimate 
as the number of true classes, while the liberal 
AICc uses the number of data rows as the num-
ber of groups and is likely to underestimate the 
number of true classes. We report the liberal 
value here, but the results from both AICc’s were 
qualitatively similar, indicating that they are 
robust to how we consider groups. To evaluate 
the model fit, we calculated pseudo-R2 because 
traditional R2 are problematic for mixed-effects 
models (Bolker et  al. 2009). The pseudo-R2 was 
calculated as the residual variance of the model 
against the residual variance of a fixed intercept-
only null model (1 − [model deviance/null devi-
ance]). Analyses were conducted in R 3.0, and the 
code and partially processed data to replicate the 
analyses can be found in Data S1.

Results

Resource availability estimate
Normalized difference vegetation index and 

precipitation varied substantially in the winter-
ing ground across the 12 yr we evaluated (Fig. 3). 
These two variables were correlated such that 
NDVI declined quickly in years of low cumula-
tive rainfall (cor = 0.85; P < 0.001, df = 10; Appendix 
S1: Fig. S6). Given the strong correlation between 
NDVI and cumulative precipitation, we only 
retained NDVI for further analyses as an integra-
tive variable. During winter season, 2006–2007, 
2009–2010, and 2011–2012 had high NDVI values 
and thus resource availability. In contrast, 2005–
2006, 2008–2009, and 2010–2011 had low NDVI 
values that dropped quickly during the winter 
season. In general, years with a positive Oceanic 
Niño Index (La Niña years) had lower NDVI val-
ues and cumulative precipitation and also tended 
to be colder (Fig. 3; Appendix S1: Fig. S1).

Thermoregulatory cost estimate
The percentile days with Te ≤10°C, our esti

mate of thermoregulatory cost, also varied across 
years. The winter of 2010–2011 was particularly 
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costly in terms of thermoregulation with over 
150 d with 6-h periods where operative tempera-
ture (Te) was below 10°C in mountain regions 
(i.e., areas above 1500 m, which generally defines 
the distribution of broad-tailed hummingbirds; 
Calder and Calder 2013) in Mexico (Fig.  4). 
Finally, the percentile days with Te ≤10°C and 
NDVI were not significantly correlated 
(cor  =  −0.23; P  =  0.29, df  =  10; Fig.  4), although 
there were some years, notably 2010–2011, when 
thermoregulatory cost was particularly high and 
NDVI was particularly low. Hence, we used both 
the percentile days with Te ≤10°C and NDVI in 
our analyses.

Biological response models
The 50th quantile broad-tailed hummingbirds 

were most commonly in the completed molt  
(F-L; 48.44%) or late molt (10-9; 42.19%) catego-
ries as compared to the pre- and early molt cate-
gory (M-8; 9.38%). However, in spring 2010, all 
migratory birds had completed molt, while in 
spring 2011 only 16.89% had completed molt, 
only 36.43% had entered late molt, and 46.68% 

were still in the pre- to early molt category. In 
spring 2006 and 2009, birds were also captured in 
pre- to early molt (12.45% and 9.09%, respec-
tively) and late molt (73.09–52.27%, respectively) 
with relatively fewer birds having completed 
molt (for the distribution of data, see Appendix 
S1: Fig. S2). The best model for molt stage 
included the individual effects of NDVI and per-
centile days with Te ≤10°C, but no interaction 
term (AICc weight  =  0.99; pseudo-R2  =  0.20; 
Table  1, Fig.  5). The effect of NDVI is positive 
(β = 0.88), indicating that birds arrive in later molt 
stages when resources on the wintering ground 
are high. Percentile days with Te ≤10°C and molt 
stage are negatively related (β = −0.60), indicating 
that when the winter is colder, migrating birds 
have higher thermoregulatory costs and arrive in 
earlier molt stages. Molt category was calculated 
for a given site and year as the molt stage of the 
50% quantile bird, but the results for the 25% and 
75% quantile birds yielded similar patterns of 
significance (see Appendix S2).The date by which 
50% of the birds had arrived was 26 April on 
average across the sites and years (range  =  22 

Fig. 3. Daily estimated normalized difference vegetation index and cumulative precipitation at the wintering 
grounds for broad-tailed hummingbirds for 11 yr. The mean Oceanic Niño Index (www.cpc.noaa.gov/products/
analysis_monitoring/ensostuff/ensoyears.shtml) is shown for the same period.
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March–9 June, SD = 16.82 d). During years of low 
NDVI (2005–2006, 2008–2009, and 2010–2011), 
the average bird arrival date was 16 May, 25 
April, and 23 April, respectively; during high 
resource years (2006–2007, 2009–2010, and 2011–
2012), the average bird arrival date was 21 April, 

26 April, and 23 April, respectively (for the distri-
bution of data, see Appendix S1: Fig. S3). The full 
model for arrival data fit best, indicating that the 
individual effects of NDVI and percentile days 
with Te ≤10°C as well as their interaction are 
important (AICc weight  =  1; pseudo-R2  =  0.16; 
Table 1, Fig. 5). There was a negative relationship 
between arrival timing and NDVI (β  =  −3.84), 
indicating that in years where NDVI was high 
and resources were potentially plentiful, birds 
arrived earlier. The relationship between percen-
tile days with Te ≤10°C and arrival time was 
weaker than NDVI and in the opposite direction 
as predicted (β  =  0.87); when thermoregulatory 
cost is high, birds arrived earlier. The interaction 
was positive (β = 4.01), indicating that when there 
were many percentile days with Te ≤10°C (i.e., 
high thermoregulatory cost), NDVI had a greater 
negative effect on arrival time (i.e., birds arrived 
even earlier; Fig. 6). The same qualitative result 
was obtained when the 25% quantile of sta
ndardized cumulative captures was used (see 
Appendix S2).

There was a considerable variation in both 
body mass (mean  =  3.39  g, SD  =  0.30, range  =  
2.5–5.0  g; for the distribution of data, see 
Appendix S1: Fig. S4) and fat accumulation (68% 
of birds had no fat and 23% had a fat score of 

Fig. 4. Mean winter normalized difference vegeta
tion index (NDVI; resource availability) and the per
centile of days with operative temperature ≤10°C 
(thermoregulatory cost) across winter periods.

Table 1. Summary of the results for the best model where the percentile days with Te ≤10°C (Te) was used to 
measure the physiological demand and NDVI was used as a surrogate of resources for each biological re-
sponse variable.

Biological 
response

Best 
model

No. 
obs

No. 
groups

Liberal 
AICc 

weight
Liberal 
dAICc df

Pseudo- 
R2

Percentile 
days  

Te ≤ 10°C 
estimate 

NDVI 
estimate 

Te × NDVI 
estimate

(95% CI) (95% CI) (95% CI)
SE SE SE

Molt Te + NDVI 128 17 0.99 0 4 0.2 −0.6 0.88 NA
(−0.70, −0.49) (0.71, 1.05)

0.12 0.08
Arrival Te × NDVI 68 18 1 0 6 0.16 0.87 −3.84 4.01

(−3.48, 5.21) (−7.56, 
−0.11)

(0.33, 7.7)

2.22 1.9 1.88
Body mass NDVI 1318 18 1 0 4 0.03 NA 0.03 NA

(0.02, 0.05)
0.01

Fat Null 1318 18 1 0 3 0.09 NA NA NA

Notes: AIC, Akaike’s information criterion; NDVI, normalized difference vegetation index.
dAICc is reported as the difference between each model from the top model. 95% confidence intervals (CI) are in parenthe-

ses, and standard error (SE) is in italics. Model fit is reported as pseudo-R2. The number of observations is the number of rows 
entering the model and the number of groups is the number of sites (random effects).
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1; for the distribution of data, see Appendix S1: 
Fig. S5). The best model for body mass indicated 
only a very weak positive relationship between 
body mass and NDVI (AICc weight  =  1; pseu-
do-R2 = 0.03; β = 0.03), suggesting that birds have 
slightly lower mass in years when resources are 
low (Table 1, Fig. 5). For body fat, AICc did not 
indicate a model better than the null, suggesting 
no significant response of fat to NDVI or percen-
tile days with Te ≤10°C (Table 1, Fig. 5).

Discussion

Given ongoing climate change, and in particu-
lar increases in weather variability across years, 
determining how animals cope with change and 
whether they are able to adjust to particularly 
cold or low productivity conditions is key for 
mitigating the effects of these changes, particu-
larly if this increased variability results in carry-
over effects where the conditions in one time 
period influence the success of individuals in the 
following period (Saino et  al. 2004, Gordo and 
Sanz 2008, Balbontin et  al. 2009, Harrison et  al. 
2011, Conklin and Battley 2012, Catry et al. 2013, 
Senner et al. 2014, Cooper et al. 2015). Here, we 
show that broad-tailed hummingbirds moving 
northward during migration demonstrate plas-
ticity in their behavior and physiology and that 
these responses can be explored using biolo
gically informed models with relatively simple 

environmental surrogates for thermoregulatory 
costs and resource availability on their wintering 
grounds. We find that in years when our remote 
sensing proxy for resources (NDVI) indicates 
that low productivity and our thermoregulatory 
cost estimate (based on the number of days that 
had six-hour periods below a bird’s operative 
temperature) are high, birds migrating north are 
in earlier stages of molt. In addition, when 
resources are high on the wintering ground, 
birds migrate earlier, presumably to obtain high-
quality breeding sites and to initiate earlier 
breeding. While remote sensing variables have 
been shown to correlate with migration timing 
and bird condition (Saino et al. 2004, Gordo and 
Sanz 2008, Balbontin et  al. 2009), broad-scale 
measures of operative temperature have rarely 
been attempted. Our estimate of operative 
temperature was not correlated with NDVI, indi-
cating that both these biologically informed envi-
ronmental surrogates for both resources and 
thermoregulatory cost can provide a valuable 
tool for predicting how climate variability might 
influence the animal populations. Our approach 
provides new avenues for integrating different 
types of data including remote sensing observa-
tions, physiological measurements, and field 
monitoring to address the impacts of ongoing cli-
mate change. In addition, our results emphasize 
the importance of monitoring networks and 
citizen science data, which gather broad-scale 

Fig. 5. Individual response curves derived from our model for the molt stage of the 50th quantile bird (see 
Methods) for percentile of days with operative temperature ≤10°C (thermoregulatory cost) and mean winter 
normalized difference vegetation index (NDVI; resource availability). Each point represents the response of a 
site in a given year.
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observations through time (Wethington and 
Russell 2003, Telleria et  al. 2013, Sullivan et  al. 
2014, Supp et  al. 2015), for evaluating how 
weather variability will affect the animal 
populations.

Like many birds, North American migrant 
hummingbirds, including broad-tailed hum-
mingbirds, generally conduct the energetically 
demanding activities of reproduction and molt 
at different times of the year (e.g., Baltosser 1995, 
Barta et  al. 2008). As predicted, we found that 
molt completion during the nonbreeding season 

on the wintering grounds was lower in years 
when the resources were low and the thermoreg-
ulatory cost was high. This result is corroborated 
by several studies on both migrant and resident 
birds where birds fail to molt when the resources 
are low (Freed and Cann 2012, Barshep et  al. 
2013a, b, but see Boone et al. 2010). In years where 
hummingbirds fail to complete molt before 
migration, they must conduct multiple energet-
ically expensive activities simultaneously, either 
completing molt while migrating or when they 
start breeding. In addition, migration cost may 

Fig. 6. The top row shows individual response curves derived from our model for the arrival date (Julian day 
of year) of the 50th quantile bird (see Methods) for percentile of days with operative temperature ≤10°C 
(thermoregulatory cost) and mean winter normalized difference vegetation index (NDVI; resource availability) 
(both variables are scaled and plotted in standard deviation units). The best supported model for arrival date 
suggested an interactive effect between predictor variables, as shown in the bottom row (shaded boxes indicate 
the region of statistical significance). (A) In the top plot, spring arrival time is shown as predicted by 
thermoregulatory costs to the birds and the slope is conditional on resource availability, as shown in the lower 
plot. As resource availability decreases, the slope for arrival time and thermoregulatory cost switches from 
positive to negative. (B) The top plot shows spring arrival time as predicted by resource availability and the 
slope is conditional on thermoregulatory cost. As thermoregulatory cost decreases, the slope for arrival time and 
resource availability becomes more negative.
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be higher for hummingbirds that have not com-
pleted molt, especially of flight feathers, because 
greater energy expenditure is required for hover-
ing and forward flight in these birds (Chai 1997, 
Chai and Dudley 1999).

The role of wintering ground weather in first 
arrival dates on the breeding grounds has increas-
ingly been documented across different types 
of migratory birds; birds tend to arrive later to 
their breeding grounds in years with dry weather 
often caused by large oscillations such as the 
North Atlantic Oscillation and El Niño–Southern 
Oscillation (Cotton 2003, Gordo et  al. 2005, 
Stervander et al. 2005, Rainio et al. 2006, Gordo 
2007, Holmes 2011, Robson and Barriocanal 2011, 
Tottrup et  al. 2012). As predicted, broad-tailed 
hummingbirds tended to arrive earlier at the 
migration stopover sites across southern Arizona 
in years when winter NDVI was high, suggest-
ing that hummingbirds reach their breeding 
grounds early in these more productive years. 
This result was conditional on thermoregulatory 
costs; when costs were low, birds were able to 
further advance their arrival. This result suggests 
that even if NDVI is somewhat low, low thermo-
regulatory costs could still permit relatively early 
arrival of birds to their spring stopover sites.

Early arrival at breeding sites often increases 
the individual reproductive success, by early 
establishment and defense of high-quality ter-
ritories, acquisition of high-quality mates, and 
increased offspring survival (Perrins 1970, 
Moller 1994, Newton 2008). The fitness effects of 
early arrival have been more commonly shown 
in socially monogamous bird species, but pro-
miscuous species such as broad-tailed hum-
mingbirds may also gain a fitness advantage 
of early arrival by acquiring a high-quality dis-
play location in a lek, a high-quality nest site, or 
high-quality territories containing early nectar 
resources (Pitelka 1951, Stiles 1971, 1973, Stiles 
and Wolf 1979). The potential advantage of early 
arrival on northern latitude breeding grounds for 
broad-tailed hummingbirds and other animals 
may increase if early spring nectar resources 
become available earlier as a result of ongoing cli-
mate change. However, there may be a disadvan-
tage of early arrival if the changes in movement 
patterns result in asynchrony between animals 
and their food plants along their migration route 
(McKinney et al. 2012).

The lack of a relationship between body mass 
or fat and our environmental predictors likely 
reflects hummingbird-specific physiology and 
behavior as well as biological processes that 
respond quickly to changing conditions experi-
enced along the migration route. Because hum-
mingbirds are adapted to use torpor (rather than 
fat stores) to compensate for energy shortages, 
it is perhaps not surprising that we see no rela-
tionship between body mass or fat and winter-
ing ground temperatures (Powers et  al. 2003). 
Further, high metabolic costs associated with 
carrying extra weight may not be advantageous 
for hummingbirds. For instance, hummingbirds 
have been observed increasing their weight by 
>25% before roosting, but such weight gain is 
not observed during the day, when they tend to 
maintain a constant mass presumably to maintain 
flight efficiency (Calder et  al. 1990). In general, 
while weight and fat may be useful predictors 
for physiological condition during migration in 
many species, they tend to be poor predictors in 
very small bird species, perhaps because most 
individuals are lean and have relatively little 
fat (Barnett et al. 2015). In addition, fat stores in 
small birds change rapidly so point measure-
ments of fat content can be difficult to interpret 
(Carpenter et  al. 1993, Powers et  al. 2003) and 
likely reflect the conditions a bird encountered 
along its migratory path rather than its wintering 
grounds.

Generating predictor variables that reflect the 
physiological demand of a given species can be 
particularly useful for modeling the effects of 
weather variability on organisms with high met-
abolic rates, such as hummingbirds (Kearney 
and Porter 2004, Buckley 2008, Huey et al. 2012). 
In particular, the short (hourly) temporal scales 
over which hummingbirds respond (Beuchat 
et al. 1979, Powers and Conley 1994) are not nor-
mally considered when predicting the effects of 
weather or climate on species behavior and dis-
tribution. Newly available weather data such as 
the remote sensing data we employed (i.e., Saha 
et al. 2014) can be used to parameterize fine tem-
poral resolution physiological models and more 
realistically capture organism responses to the 
environment (Dormann et al. 2012).

Similarly, satellite vegetation indices have 
become commonly used for many ecological 
and climate change research questions and have 
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successfully been used to evaluate the spatial 
variation in abundance across many animal pop-
ulations from browsers and grazers (e.g., Bartlam-
Brooks et al. 2011, Ryan et al. 2012, Borowik et al. 
2013) to migrating birds (e.g., Tottrup et al. 2008, 
Dodge et  al. 2014, La Sorte et  al. 2014). These 
studies suggest that vegetation indices, such as 
NDVI, may be a viable proxy for resource avail-
ability. In particular, flower nectar, on which 
hummingbirds rely, is affected by environmental 
variables such as precipitation and soil moisture, 
which in turn are typically highly correlated with 
NDVI (Crimmins et al. 2014). However, linking 
nectar production to hummingbird occurrence 
and behavior at the local scales over which hum-
mingbirds forage remains an important research 
challenge (Feldman and McGill 2014).

Periods with a large number of climate anom-
alies as compared to other periods may be par-
ticularly problematic for animal populations, 
especially those with strong, identifiable, phys-
iological constraints. As such, hummingbirds 
provide an ideal system for evaluating the 
effects of environmental changes on biological 
diversity. We identified one winter in particular, 
2010–2011, that was the most extreme example 
in our time series, with both reduced resources 
and greater thermoregulatory costs. This reduc-
tion was observed between visits just before and 
just after the cold events at an overwintering area 
used by hummingbirds in Mexico (C. Rodriguez, 
G. Stiles, and S. Wethington, personal observation). 
When hummingbirds reach the physiological 
limits due to the repeated cold weather condi-
tions, they can respond quickly and dramatically. 
Thus, finding environmental limits on the phys-
iological constraints is critical for mitigating the 
predicted environmental changes and would be a 
valuable focus of future research (Sáenz-Romero 
et al. 2010).

Here, we have shown that proxies for resource 
availability, such as remote sensing vegetation 
indices and thermoregulatory cost parameter-
ized using high temporal resolution weather 
data, are useful for understanding how popu-
lations respond to ongoing climate change and 
weather variability. The continued refinement 
of mechanistic distribution models and environ-
mental data to drive the models provides new 
insights into the influences of environmental 
change on species.
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